
 
                                                                               1                                          Yuan   GTP-18-1396 

 

 
 
 

NUMERICAL ASSESSMENT OF REDUCED ORDER MODELING TECHNIQUES FOR DYNAMIC 
ANALYSIS OF JOINTED STRUCTURES WITH CONTACT NONLINEARITIES 

 
 

 
Jie Yuan*, Fadi El-Haddad, Loic Salles 
Department of Mechanical Engineering 

Imperial College London  
SW7 2AZ, London, UK 

Email: jie.yuan@Imperial.ac.uk 
f.el-haddad@imperial.ac.uk 

l.salles@imperial.ac.uk 
 

 

Chian Wong 
Rolls-Royce plc 

PO Box 31, DE24 8BJ, Derby, UK 
Email: Chian.Wong@Rolls-Royce.com 

 
 
 
 
 
 

ABSTRACT 
     This work presents an assessment of classical and state of the 
art reduced order modelling (ROM) techniques to enhance the 
computational efficiency for dynamic analysis of jointed 
structures with local contact nonlinearities. These ROM methods 
include classical free interface method (Rubin method, MacNeal 
method), fixed interface method (Craig-Bampton), Dual Craig-
Bampton (DCB) method and also recently developed joint 
interface mode (JIM) and trial vector derivative (TVD) 
approaches. A finite element jointed beam model is considered as 
the test case taking into account two different setups: one with a 
linearized spring joint and the other with a nonlinear macroslip 
contact friction joint. Using these ROM techniques, the accuracy 
of dynamic behaviors and their computational expense are 
compared separately. We also studied the effect of excitation 
levels, joint region size and number of modes on the performance 
of these ROM methods.  
 
NOMENCLATURE 

n Number of harmonic numbers 
m Number of DOFs in system 
𝑚"  Specific numbers of harmonics 
𝑓(%)  Continuation parameter 
𝑓(%'(,*)  Predicted continuation parameter 
	𝑔-(, 𝑔-.  Boundary force vector 
𝑞 Modal coordinates 
𝑨𝟏,𝑨𝟐 Signed Boolean localization matrix 

corresponding to 1st and 2nd substructure 
𝑩𝑻𝟏,	𝑩𝑻𝟐,	𝑩𝑵𝟏 ,	𝑩𝑵𝟐   Boolean matrix of DOFs in tangential 

direction (T) and normal direction (N) 
corresponding to the 1st and 2nd 
substructure separately 

𝑩𝑻, 𝑩𝑵 Boolean matrix of DOFs in tangential 
direction and normal direction on the 
contact interface 

𝐷78, 𝐷9	 Partial derivatives of the residual to 
unknowns and frequency 

𝐹;<( ,	𝐹;<.   External forces of 1st and 2nd substructure 

𝐹=, 𝐹>  Nonlinear tangential and normal forces 

𝐹?@  Nonlinear force vector 
𝑮𝟏, 𝑮𝟐  Flexible residuals 
𝑰  Identity matrix 
𝑅 Residual in the Newton method 
𝑴𝟏, 𝑴𝟐 Mass matrix of substructures 
𝑴,𝑲 Global mass and stiffness matrix 
𝑁* Pre-loading in the joint 
𝑲𝟏,	𝑲𝟐 Stiffness matrix of substructures 
𝑲𝒋𝒐𝒊𝒏𝒕  Linear stiffness matrix of the joint 
𝑻 Transformation matrix 
𝜔 Fundamental excitation frequency  
𝜂(, 𝜂.  Modal participation factors 
𝜇 Friction coefficient 
𝑢-(, 𝑢-. Physical boundary DOFs 
𝑢PQ  Zero harmonic frequency response 
𝑢(, 𝑢.  Physical displacement  
𝑢P"R, 𝑢P"S  Sine and cosine harmonic coefficient at jth 

harmonic number 
𝝋𝟏
𝑱𝑰𝑴,𝝋𝟐

𝑱𝑰𝑴 Joint interface mode vector 
𝝋𝟏
𝑻𝑽𝑫,𝝋𝟐

𝑻𝑽𝑫 Trial vector derivative vector 
𝝓𝟏
𝒇𝒊𝒙,𝝓𝟐

𝒇𝒊𝒙 Fixed interface modal displacements 
𝝋𝟏,	𝝋𝟐  Constrain modes  
𝝋𝒊,𝒋 Derivative of ith linear mode to jth modal 

displacement  
𝝓𝟏
𝒇𝒓𝒆𝒆 𝝓𝟐

𝒇𝒓𝒆𝒆  Free interface modes 
𝝓𝟏,𝒃  Free interface modes corresponding to the 

interface DOFs 
𝒅𝑭𝑻
𝒅𝜟𝒙

, 𝒅𝑭𝑻
𝒅𝚫𝒚

, 𝒅𝑭𝑵
𝒅𝜟𝒙

, 𝒅𝑭𝑵
𝒅𝜟𝒚

  Derivatives of tangential friction and 
normal contact force 

Δ𝑥, Δ𝑦 Tangential and normal relative 
displacement 

Δ𝑥R  Relative tangential sliding position 
∆𝑠 Step length in continuation 

 
 
ABBREVIATIONS 

iDFT Inverse discrete Fourier transform 
AFT Alternating frequency time 
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CB Craig-Bampton 
CBI Craig-Bampton with interface 

reduction 
CMS Component mode synthesis 
DCB Dual Craig-Bampton method 
DOF Degree of Freedom 
FE Finite Element 
FRF Frequency response function 
JIM Joint interface modes 
MHB Multi-Harmonic balanced 
MAC Modal assurance criteria 
NF Natural frequency 
ROM Reduced order modelling  
RR Reduction ratio 
POD Proper orthogonal decomposition 
TVD Trial vector derivatives 

 
INTRODUCTION 

Mechanical joints are always existing in an assembly when 
single components are integrated into a more complex structure 
[1]. They are particularly effective to hold together a structure 
and transfer the loads from one structural element to another [2, 
3]. However, the joint in an assembly  significantly augments and 
complicates the static and dynamic behaviours because of its 
internal contact friction nonlinearities e.g. the change of stability, 
the jump phenomenon and energy localization [4]. For bolted 
jointed structures, the contact friction phenomenon can lead to a 
reduction in the global stiffness due to the relative slipping 
motion on the contact interface. The damping from the joint due 
to interface frictional effects can take up to 90% of the total 
damping in an assembly [1, 5]. Such significant damping is 
mainly governed by the preloading and also the friction 
coefficients of contacting surfaces [2]. As a result, the joints are 
commonly used as one of the dominant fastening mechanisms for 
gas turbine assembled structures. For example, bladed disk 
systems comprise contact interfaces with frictional damper, 
dovetail joint and other types of nonlinear contact interactions [6, 
7]. They can effectively mitigate the high cycle fatigue problems 
particularly in bladed disk systems. These critical gas turbine 
components are usually subjected to high mechanical stress 
during the service conditions by the thermal loads, static fluid 
pressure and rotation-induced centrifugal loads [8]. The modal 
densities of bladed disk can be also very high due to a widely 
dense range of rotational frequency spectrum [9]. Considering the 
reliable service life and also efficient design of such an assembly, 
its dynamical behaviours must be captured accurately and 
efficiently [1]. However, the finite element (FE) discretization 
method for analysing such jointed structures is often impeded by 
the unaffordable computational expense. This is mainly attributed 
to the inherent nonlinearities within the joint that are 
characterised by the amplitude dependent stiffness and amplitude 
dependent damping, and also due to the modal size that 
commonly involves hundreds of thousands and even millions of 
DOFs [1]. The time integration method is traditionally used to 
solve such nonlinear systems, for example, using classical 
Runge-Kutta method or implicit methods like Newmark 
approach [10]. In general, these methods can deliver accurate 
results for transient response but are not computationally feasible 
for the dynamic analysis of large FE structures because small 
time steps are always required for capturing the high frequency 
dynamics on the contact friction interface [10]. Fortunately, from 
the design perspective, the steady state responses due to the 

periodic loading are far more important than others. This steady 
state response of nonlinear system can be alternatively obtained 
by using the multi-harmonic balance (MHB) approach. The MHB 
method has already shown its high efficiency for the analysis of 
nonlinear forced response of the jointed structures with local 
contact nonlinearities [7]. However, the method would further 
expand the size of the nonlinear equations by multiplying the 
chosen number of harmonic coefficients [7]. In spite of the 
advance in computer science, the simulation of a large assembly 
with local nonlinearities remains as a challenge. The 
nonlinearities from mechanical joints are therefore commonly 
neglected or linearized in the industrial applications for the large 
scale system [1]. One of viable approaches to include these 
nonlinearities into a large assembly is to reduce the model size by 
several orders of magnitudes using reduced order modelling 
(ROM) techniques [1].  
 
Component mode synthesis (CMS) techniques are widely used 
for model order reduction in the linear and nonlinear dynamic 
simulations of a large-scale assembly. These methods retain the 
physical interface DOFs between the components that is ideal to 
apply nonlinear contact friction model [11, 12]. For example, free 
interface based hybrid approach has been applied to the Imperial 
in-house code FORSE for model order reduction [13]. Another 
common approach is Craig-Bampton method that employs the 
fixed interface modes [1]. Both methods suit well for the jointed 
structures with localized nonlinearities. The principle of such 
CMS approaches is to represent the linear system using the linear 
normal modes and the static impulse modes associated with 
retained interface nodes. The nonlinear contact elements are then 
integrated through these retained nodes. The main drawback of 
these approaches is that the size of the model would be 
proportional to the number of DOFs involved in nonlinearities [8, 
11]. The size of nonlinear DOFs can be very large for a model 
with a bit large size of contact interface. It would also be 
increased by the fact that fine mesh tends to be used in the region 
of interfaces for accurately resolving the contact stress field [8].  
The increasing size of the reduced order model would obviously 
slow down the convergence speed. On the other hand, strong 
nonlinear force would affect the accuracy of CMS based ROM 
techniques. Without sufficient number of modes, they might be 
unable to capture the local elastic deformations in the joint [12]. 
This drawback seems more apparent in the CB method because 
the fixed interface modes do not include the deformation 
information on the interface [8]. Free interface based methods 
generally are better to describe the local behaviour of contact 
interfaces but some studies show they may suffer from numerical 
instabilities [14].  
 
In order to address the above-mentioned problems with CMS 
techniques, two interface reduction methods were proposed to 
condense static impulse modes to improve the efficiency. Becker 
and Gaul developed a common interface reduction technique to 
optimize the interface constrain modes when using the CB 
approach  [15]. The idea is to replace full size of constrain modes 
by a subset of eigenvectors. They are obtained from the 2nd modal 
analysis based on the reduced global matrix by using constrained 
modes from the 1st modal analysis. The method is referred to CBI 
in this study. Witteveen proposed another approach to reduce the 
number of nonlinear DOFs by using joint interface modes [16]. 
The process of generating these JIMs is to firstly statically 
condense the whole structure to the joint interface DOFs by 
respecting the Newton’s third law on the interface. This lead to a 



                                                                   3                                Yuan  GTP-18-1396 
 

reduced system that is used for a subsequent modal analysis. The 
resulting eigenvectors are so called JIMs. The case study by Gaul 
and Becker has confirmed the JIM method has superior 
convergence rate over the common interface reduction method 
[15]. This is because the JIMs would introduce more local 
flexibility in the interface that allow for a better accurate 
description of the interface movement [17]. Similarly, Segalman 
also presented a generalized version of such a approach but not 
for a joint focused local nonlinearity problem called Milman-Chu 
modes [18]. Another recent variant to compute the joint modes is 
based on the modal derivatives that is so-called trial vector 
derivatives (TVDs) approach [17, 18]. The idea of TVD approach 
is to enrich the subspace generated by CMS methods by taking 
into account the difference of such subspaces to that would have 
been obtained from the full nonlinear system [17]. TVDs are 
obtained by the first-order Tyler expansion of the CMS generated 
subspace. Proper orthogonal decomposition (POD) technique is 
then used to obtain the most influencing TVD vectors. Both of 
the TVD and JIM are considered in this paper. In addition, POD 
itself can be also widely referred as an independent ROM method. 
It can generate a projection basis using a set of snapshots of a full 
nonlinear system response. The advantage is being this projection 
basis models the entire structure without the distinction between 
DOFs involved. The obvious disadvantage is being that the 
solution of the full nonlinear system have to be computed firstly 
[19].    
 
The objective of this paper is to perform a numerical assessment 
of using classical and also state of the art reduced order modelling 
(ROM) techniques for the nonlinear dynamic analysis of a jointed 
structure with contact nonlinearities. These ROM methods 
include classical free interface method (Rubin method, MacNeal), 
fixed interface method (CB), DCB method and also JIM and TVD 
approaches. A finite element jointed beam model, one with a 
linear joint and the other with a nonlinear joint, are considered as 
two test cases. The paper is organized as follows: the formulation 
of the benchmark test cases, a jointed structure with local contact 
nonlinearities, is firstly presented; it is followed a brief 
presentation of the ROM techniques, namely the Galerkin 
projection approach and ROM methods; and then 2D macro-slip 
contact friction model and also the nonlinear MHB solver are 
introduced; we then introduce the two test case respectively 
following the discussions of the accuracy and computational cost 
between these ROM methods. 
  
 
SYSTEM FORMULATION 
    A nonlinear system consisting of two connected substructures 
with local contact friction is considered. Figure 1 illustrates an 
example of such a system made up of two cantilever 3D beams 
(Substructure 1 and Substructure 2) and also a contact frictional 
joint in between which is demonstrated by using 3D macro-slip 
contact friction element [20]. The nonlinear forces can be 
expressed as a function of frictional coefficient 𝜇, preloading 𝑁Q, 
contact stiffness 𝑘i, 𝑘? and also the relative displacement on the 
interface 𝑢-( , 𝑢-.. The tangential force is also dependent on the 𝐹> 
during the slip state. The partial differential governing equation 
of such a system without taking damping into account can be 
described as follow: 
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(2) 

 
    Where 𝑴𝟏, 𝑴𝟐, 𝑲𝟏,	𝑲𝟐 are the mass and stiffness matrix of 
two substructures;	𝑴, 𝑲 are the global mass and stiffness matrix 
of linear system; 	𝑩𝑻𝟏,	𝑩𝑻𝟐,	𝑩𝑵𝟏 ,	𝑩𝑵𝟐  are the Boolean matrix related 
to interface tangential and normal contact DOFs of two 
substructures where the nonlinear forces are applied; 𝐹;<( ,	𝐹;<.  are 
the external forces on the substructures; 𝐹=, 𝐹> are the nonlinear 
tangential and normal forces; 𝑢(, 𝑢. are the displacement of the 
structure where the subscript i, b means the DOFs belong to 
internal or boundary DOFs.  

 
 

 
Figure 1. An illustration of a nonlinear jointed structure with 

contact local nonlinearities  
 
GALERKIN PROJECTION 
    In the field of structural dynamics, the dynamic response of 
high dimensional system under the narrow spectrum loading can 
be approximately condensed in a low dimensional subspace [19]. 
The solution can be therefore expressed as a linear combination 
of vectors spanning the subspace, which would significantly 
reduce the number of unknowns. This type of reduction is 
generally known as the Galerkin projection. For linear system, 
this process is well established that uses the corresponding 
eigenvectors from the linear system as the basis vector which is 
also called modal superposition. The selection of the reduced 
basis is crucial in determining the accuracy of the reduced 
solution. The size of the reduced basis is important to determine 
the speed-up ratio. Assuming that these vectors form a reduced 
basis denoted by 𝑻, the displacement field 𝑢 can be projected 
onto the reduced basis as: 

 
𝑢(𝑡) ≈ 𝑻𝑞(𝑡) where   𝑻 = [𝑡(, 𝑡. … 𝑡�] 

 
(3) 

 
Where 𝑞(𝑡) is the reduced time dependent vector of unknowns 
and t�	is the ith vector in a reduced basis. Using such a projection, 
the governing equation (1) becomes:  
 
 

𝑻𝑻𝑴𝑻�̈� + 𝑻𝑻𝑲𝑻𝑞 = 𝑻𝑻𝐹;< − 𝑻𝑻(𝑩𝑻𝐹=(𝑻𝑞) (4) 
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																				+𝑩𝑵𝐹>(𝑻𝑞)) 
 

 
CRAIG-BAMPTON METHOD 
    CB method combines normal modes of components obtained 
by imposing fixed boundary conditions at the interface and static 
solution (so called constrain modes) for applied boundary 
displacement at each interface DOF. The global transformation 
matrix can be seen below:  
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(5) 

 
Where 𝝓𝟏

𝒇𝒊𝒙, 𝝓𝟐
𝒇𝒊𝒙are the fixed interface modes of the internal 

coordinates only of two substructures; 𝝋𝟏 , 	𝝋𝟐  are the 
corresponding constrain modes; 	𝜂(, 	𝜂.  are the modal 
participation factors; 𝑢-(, 𝑢-.  are the displacement vector 
associated to physical boundary DOFs; 𝑰 is the identity matrix.    

 
RUBIN METHOD 
    Rubin method combines free interface normal modes and static 
ones obtained from the static solution of applied interface load, 
which is also called attachment modes or flexible residual. The 
general expression of the transformation matrix without the 
presence of rigid modes can be described as follows: 

 

𝑻 = �
𝝓𝟏
𝒇𝒓𝒆𝒆 𝑮𝟏𝑨𝟏𝑻 𝟎 𝟎
𝟎 𝟎 𝑮𝟐𝑨𝟐𝑻 𝝓𝟐

𝒇𝒓𝒆𝒆�		 
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𝑢.
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𝑔-(
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(6) 

 
Where 𝝓𝟏

𝒇𝒓𝒆𝒆  𝝓𝟐
𝒇𝒓𝒆𝒆  are the free interface modes of these two 

substructures; 𝑮𝟏, 𝑮𝟐 are the flexible residuals obtained by the 
static solution to applied forces on the interface DOFs that the 
redundant information already included in free modes has been 
filtered out; 	𝑔-(, 𝑔-. are the signed boundary force vectors in the 
coupled interfaces, which can be transferred back to the boundary 
displacements using the following matrix as an example for 
substructure 1: 
 

𝑻𝟐𝟏 = j
𝑰 𝟎

−𝑮𝟏,𝒃𝒃�𝟏 𝝓𝟏,𝒃 𝑮𝟏,𝒃𝒃�𝟏 l (7) 

  
Where 𝑮𝟏,𝒃𝒃�𝟏   is the inversion of the flexible residual matrix 
related to boundary DOFs; 𝝓𝟏,𝒃  is the free interface modes 
corresponding to the interface DOFs. 
 
MACNEAL METHOD 

The idea of MacNeal method is to simplify the reduced mass 
matrix by removing the residual inertia term in the transformation 

matrix as shown below. For the stiffness matrix transformation, it 
remains same as the Rubin method. 

 

		𝑻𝑴 = �
𝝓𝟏
𝒇𝒓𝒆𝒆 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝝓𝟐

𝒇𝒓𝒆𝒆� 
(8) 

 
 
DUAL CRAIG BAMPTON METHOD 
    The main idea of the DCB method is to consider the interface 
connecting forces as unknowns in order to enforce the interface 
compatibility in a dual assembly fashion. Using the first 
transformation matrix 𝑻  in Rubin method, the reduced modal 
coordinates can be transformed as follows: 

 

𝑻 = �
𝝓𝟏
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    (9) 

 
     Where 𝜆 contains the boundary force vector including DOFs 
on the both sides of the interface, namely 𝑔-(  and 𝑔-. . The 
unknown forces are determined to satisfy the different boundary 
compatibility conditions. The classical dual assembly is 
developed only for the case in integrated structures where the 
absolute displacement on the interface are equal [21]. However,  
for the coupled structure system with contact friction, force 
equality with opposite signs is applied to the boundary DOFs 
instead. In this way, the size of 𝜆 can be reduced by half. The 
linearly coupled system (as shown in the Figure 3) is assembled 
in a dual fashion as follows:        

 

�
𝑴𝟏 𝟎 𝟎
𝟎 𝑴𝟐 𝟎
𝟎 𝟎 𝟎

� �
𝑢(̈
𝑢.̈
�̈�
� + �

𝑲𝟏 𝟎 𝑩𝟏𝑻

𝟎 𝑲𝟐 𝑩𝟐𝑻

𝑩𝟏 𝑩𝟐 −𝑲𝒋𝒐𝒊𝒏𝒕
�𝟏

� �
𝑢(
𝑢.
𝜆
�=�

𝐹;<(

𝐹;<.
0
� 

 
(10) 

 
   Where  𝑲𝒋𝒐𝒊𝒏𝒕 is the linear stiffness matrix of the joint. The last 
row of the system describes the linear elastic movement in the 
joint. For nonlinear joint with contact friction elements, the dual 
assembled system can be described below. 
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(11) 

 
Where 𝑭𝒏𝒍 represents the nonlinear force that would be evaluated 
by using contact friction model.  

 
JOINT INTERFACE MODES METHOD 
    The JIM method is to statically condense the system to the joint 
DOFs by respecting the Newton’s third law. Using such a static 
projection, JIMs can be obtained from the eigen analysis of the 
resulting reduced mass and stiffness matrix. More details of this 
process can be referred to [16]. The joint interface modes would 
employ free interface modes, which is shown as follow: 
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𝝓𝟏
𝒇𝒓𝒆𝒆 𝟎 𝝋𝟏
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TRIAL VECTOR DERIVATIVE METHOD 
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     The reduced base vectors of the classical CMS methods are 
based on the dynamic condensation of linear components, which 
does not take into account the effect nonlinearities on the linear 
modes. The idea of the TVD method is to compensate such an 
effect by including modal sensitivities of the linear reduced basis. 
The TVDs are defined as a set of the first order derivatives 𝝋𝒊,𝒋 
of each linear base vector 𝝋𝒊	to each trial vector weighting factor 
𝑞" . They can be approximated by differentiating the eigen 
equations (where the inertia terms are ignored). The formulation 
of the TVDs can be then expressed as:  

 

𝝋𝒊,𝒋 = 𝑲�𝟏 𝝏𝑲
𝝏𝑞"

𝝋𝒊 
(13) 

 
Since the size of TVDs is the square of the size of the CMS base 
vectors, POD method is used to filter out the redundant 
information. The detailed derivations can be found in [17]. The 
TVDs are used with free interface modes. For linear assembled 
structure shown in Figure 3, we will not consider the gap during 
the derivation of 𝝏𝑲

𝝏�#
. It means the contact stiffness of the joint 

will be added into 𝝏𝑲
𝝏�#

 no matter the normal relative displacement 

is negative or positive. 
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(14) 

 
CONTACT FRICTION MODEL 
      A node-to-node approach is used to model the contact friction 
in the joint [22]. The macro-slip contact law is employed to 
simulate the contact frictions on the interface, which includes 
stick, slip and gap states. These states are dependent on the 
preloading levels and also the amplitude of relative movements 
on the interface. The 2D macro-slip contact friction model and 
analytical derivatives of the nonlinear force are written as follows: 
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(17) 

 
Where (Δ𝑥 , Δ𝑦 ) are the time-dependent tangential and 

normal relative displacement within the joint interface; Δ𝑥R is the 
relative tangential sliding position, which needs to update at each 
time step; 	𝒅𝑭𝑻

𝒅𝜟𝒙
, 𝒅𝑭𝑻
𝒅𝚫𝒚

, 𝒅𝑭𝑵
𝒅𝜟𝒙

, 𝒅𝑭𝑵
𝒅𝜟𝒚

 are the derivatives of tangential 
friction and normal contact force in different friction states with 
respect to the relative displacement. They are used to analytically 
build the Jacobian matrix which is needed by the Newton-
Raphson solver. More details of this modelling approach can be 
referred to [23, 24]. 
 
NONLINEAR SOLVER 

The approach used for solving the Eq. (1) in this paper is 
based on the MHB method. The idea is to represent the steady 
state non-linear response and also the non-linear forces using 
truncated Fourier series. The displacement of the nonlinear 
system is described by  n harmonic series:  

 

𝑢(𝑡) = 	𝑢PQ +¥(𝑢P"R𝑐𝑜𝑠𝑚"𝜔𝑡 + 𝑢P"S𝑠𝑖𝑛𝑚"𝜔𝑡
?

"¨(

) 
 

(18) 

 
Where 	𝑢P"

R,S are cosine and sine harmonic coefficients; n is the 
number of harmonics; 𝜔 is the principal vibration frequency;	𝑢PQ  
is the zero harmonic frequency response. With such a 
representation, the size of whole nonlinear equations is expanded 
by multiplying the factor of 2𝑛 + 1 . The Newton-Raphson 
method, in coupling with the alternating frequency time (AFT) 
method [25], is used to solve these nonlinear equations. The 
principle of the AFT technique is to transform the solution from 
the frequency domain to time domain in order to calculate the 
nonlinear forces and then transform back using the inverse 
discrete Fourier transform (iDFT) method. Figure 2 describes the 
process how this method works with the contact friction model. 
The initial guess solution can be obtained from the linearized 
system or using the Homotopy method [26]. The contact friction 
forces are evaluated by two stages, which is similar to [27]: firstly, 
the nonlinear contact forces are predicted by assuming the 
nonlinear force is linearly proportional to relative displacement; 
the contact forces are then corrected by applying contact friction 
laws. 
 

 
Figure 2 An illustration of Newton-Raphson solver with 

alternating frequency time scheme 
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The continuation technique is then used to obtain the forced 
frequency response of this nonlinear system. The continuation 
algorithms mainly include two main steps, which are applied 
sequentially for each frequency point. It is started with a 
prediction point based on the previous solution followed by the 
iterative correction steps in order to reach the required tolerance. 
In this paper, we employ the secant method for the prediction due 
to its cheap computational cost and arc-length method for the 
correction step [28]. The secant method uses two previous 
converged points to obtain the next one as an initial guess as 
follows: 
 
ª𝑢P(%'(,*), 𝑓(%'(,*)« = ª𝑢P(%), 𝑓(%)« 
                    +∆𝑠%'( ¬ª𝑢P(%), 𝑓(%)« − ª𝑢P(%�(), 𝑓(%�()« 

 
(19) 

 
Where 𝑓(%) is the continuation parameter (namely the frequency) 
at the previous step and 𝑢P(%) is the previous convergent solution 
at 𝑓(%) ;  𝑓(%'(,*)  is the predicted frequency and 𝑢P(%'(,*)  is the 
predicted solution at 𝑓(%'(,*); ∆𝑠%'( is the step length at the 𝑖 + 1 
step. The objective of the correction step is to move from the 
predicted point that usually does not satisfy the convergence 
criteria towards the one does. This is done recursively as follows: 

 
ª𝑢P(%'(,®'(), 𝑓(%'(,®'()«

= ª𝑢P(%'(,®) + ∆𝑢P, 𝑓(%'(,®) + ∆𝑓« 
(20) 

	(∆𝑢P, ∆𝑓) can be the obtained using the linear approximation of 
residual around the previous iteration solution with imposed Arc 
length constraints: 
 
𝐷78𝑅ª𝑢P(%'(,®), 𝑓(%'(,®)«∆𝑢P + 𝐷9𝑅ª𝑢P(%'(,®), 𝑓(%'(,®)«∆𝑓

+ 𝑅ª𝑢P(%'(,®), 𝑓(%'(,®)« = 0 
 

(21) 

¯𝑢P(%'(,®'() − 𝑢P(%)¯
.
+ °𝑓(%'(,®'() − 𝑓(%)°

.
 

= (∆𝑠%'().,  𝑘 ≫ 0 

(22) 

 
Where 𝐷78, 𝐷9	are partial derivatives of the residual to unknowns 
and frequency respectively; 𝑅ª𝑢P(%'(,"), 𝑓(%'(,")«  is Newton 
residual at (i+1)th step and jth iteration; Eq. (21) is the first order 
Taylor expansion of the 𝑅ª𝑢P(%'(,®'(), 𝑓(%'(,®'()«, which include 
(2n+1)m equations. However, (2n+1) m+1 would be needed for 
solving the unknowns. This is why Arc length constraint shown 
in Eq. (22) is imposed on	(∆𝑢P, ∆𝑓). The adaptive step length ∆𝑠 
based on [26] is applied in order to make the simulation more 
efficient. 
 
TEST CASE 1-LINEAR JOINTED BEAMS 
     Figure 3 shows a jointed beam model with linear springs 
connecting the two equivalent beam substructures. The length of 
each beam is 0.3m. The width and height of the cross section is 
25mm and 6mm respectively. The beam of the substructure is 
modelled by using the Euler–Bernoulli beam, where each node 
has three DOFs (ux,uy,rz). The beams are made of steel with a 
nominal density of 7850 kg/m3 and Young’s modulus of 2.1x1011 
Nm-2. The tangential stiffness of the springs in the joint is 1x104 
N/m while normal contact stiffness is 5x106 N/m and bending 
stiffness of 8x106 N.m/rad. The total number of nodes is 102, 
namely 51 nodes for each beam. Figure 4 shows the first nine 
natural frequencies (NFs) and modes of this linear jointed beam 

system. These 9 modes all belong to the bending modes. Due to 
the large value of stiffness in the joint, local elastic modes in the 
joint did not appear. 

 
Figure 3   An illustration of the finite element modelling 

of a jointed beam with springs 
 

 

 
Figure 4 Natural frequencies and mode shapes of linear 

jointed beam system 
 
Figure 5 shows the variation of NF relative errors with the 

increasing number of equi-spaced joint nodes (6,18,30 and 42) on 
the whole beam for each considered ROM method. These ROMs 
includes global modal superposition (GMS), CB, Rubin, 
MacNeal, DCB, JIM, TVD. For all the methods, ten normal 
modes have been used as reduced basis. GMS makes use of 
global modes of the whole structure including the joint stiffness 
as the reduced basis. As expected, GMS method results in the 
smallest errors for a linear system but at the cost of extensive 
modal analysis of the whole structure. The relative errors from 
the MacNeal method increase significantly with the size of the 
joint nodes. It indicates that the residual mass neglected within 
the MacNeal method has a significant impact on the dynamic of 
an assembly with the large joint interface. Rubin method overall 
turns out to be the most accurate one because the free interface 
modes allow more flexibility on the interface. The relative errors 
of the first few modes gradually increase 2 to 3 orders while the 
errors of the high mode (5th to 10th) reduces by 5 orders with the 
increase of joint nodes on the interface. It is due to the fact that, 
with the increase of joint nodes, the NFs of the first 10 modes go 
up and the inertia effect gradually weakens. The static mode in 
CMS methods therefore has a better approximation for the effects 
of truncated modes for a stiffer structure. The same phenomenon 
can be also observed for the Craig-Bampton method but less 
significant than the Rubin one. In contrast to the Rubin method, 
CB with the ROM size method has a comparatively poor 
accuracy that is about 2 to 3 orders less on average. However, CB 
method appears more numerically robust with the increase of the 
joint size especially at low number of modes. This is consistent 
with the literature [8]. JIM approach appears not quite stable and 
accuracy for the low order modes. The relative errors decrease 
significantly to 10-4 with the number of nodes increases. With the 
same number of normal modes, it indicates that the JIMs is not 
good enough to capture the inertia movements that dominates in 
the low modes. The reformulated DCB method, with the same 
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size of JIM method, can represent the low order modes very well 
and even better than the Rubin method. In terms of the accuracy 
in the high frequency, the reformulated DCB method has the 
similar relative errors to JIM. TVD method shows very robust 
performance with the increase of interface nodes, keeping the 

relative error between 10-7 and 10-8.  Furthermore, the RR of TVD 
method is lowest of all the methods. The size of TVD based ROM 
is independent of the joint interface size. JIM and DCB method 
has the same reduction ratio. Both of these two methods only 
retain the half of the interface DOFs.  

 

 
Figure 5 NF relative errors of the jointed beams with increasing number of interface nodes at 6,18,30 and 42 Note: RR 

stands for reduction ratio (of the number of DOFs) 

 
 

 

Figure 6 MAC errors of jointed structures with increasing number of jointed nodes 

Figure 6 shows the modal assurance criterion (MAC) errors of 
the eigenvectors computed by these ROMs with the increase of 
interface node numbers. The MAC is commonly used in 
experimental measurement to assess the similarity between two 
mode shape. It is calculated by the normalized scalar product 
between the two sets of eigenvectors, those value ranges from 0 
(unrelated) to 1 (perfect match). More details about MAC can be 
found in [29]. Herein, one set is chosen from the eigenvector of a 
full model and the other one chosen from the corresponding 

reduced order model. The beam configurations are the same as 
those in Figure 5. It is worth noting that the missing points in 
yellow and red curves are the ones with MAC value of one. 
Overall, all of the methods stay low MAC errors under the level 
of 10-5, except for MacNeal method when the interface node 
increases to 42. Similar to the conclusions in Figure 5, Rubin 
method also has the lowest error and its accuracy improve when 
the number of joint nodes increases, followed by the TVD, JIM 
and DCB. They cluster together for the most of the first ten 
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modes. However, for the first two modes, the TVD has a big jump 
to the level over 10�(* while reformulated DCB method keep the 
lowest MAC errors. CB method again results in large errors in 
NF errors. However, the errors are very stable with the increase 
of the interface nodes.  
 
Figure 7 shows the comparison of all the ROM methods with the 
same size of reduced DOFs. The number of static modes 
associated to CB, Rubin and MacNeal methods are reduced by 
half through selecting the odd numbered interface nodes. The 
result shows the accuracy of CB, Rubin and MacNeal methods 
are significantly affected with the reduced static modes, making 
them completely incompetent with the other methods. The CBI 
method using interface modes instead however has greatly 
improved the accuracy. The TVD and DCB methods have the 
smallest NF errors. The DCB method has a better performance 
than TVD in the first few fundamental modes while TVD is better 
in the last few modes. 
 

 
Figure 7 NF relative errors of the jointed beams between the 
ROMs with the same size 

 
TEST CASE 2-NONLINEAR JOINTED BEAMS 
     In the case of a nonlinear test case, the joint is modelled by 
using the 2D contact friction model. The friction model has 
already been described in Eq. (14-16). Each beam is modelled by 
using 16 Euler-Bernoulli beam elements. In this case, the 
tangential friction stiffness in the contact interface is 102 N/m 
while the normal stiffness is 104 N/m. The normal preloading in 
the joint is 20 N and the tangential friction coefficient is 0.3. It is 
worth noting that the loss of contact is expected to occur during 
the vibration, because we have not placed torsional spring to 
simulate the restoring forces in bolted joint. However, we believe 
the presented case would be sufficient to compare the qualities of 
different ROM approaches.  
 
Figure 8 shows the modes of a linearized jointed beam with 
chosen contact stiffness without the torsional spring. The global 
modes of this assembled structure can be classified into in-phase 
mode (mode 1,3,5,7 where two structures move in the same 
direction) and out-of-phase mode (mode 2,4,6,8 where the two 
structures move in the opposite direction). The NFs of out-of-
phase modes are slightly higher than in-phase ones, because the 
large relative motion in the joint interface further stiffens the 
jointed structures for out-of-plane modes. 
 

 
Figure 8 The NFs and modes of a linearized joint beam 

with contact friction stiffness 
 

 
Figure 9 shows the frequency response of the nonlinear joint 
beam close to the first pair of tangential modes at excitation force 
of 0.1N, 1N, 5N and 10N. Each beam has 16 nodes where the 
interface between the beams has 2 nodes in this case. The 
direction of the excitation force and response displacement are 
both in y direction. As expected, the in-phase mode is on the left 
with a slightly low resonance frequency while the out-of-phase 
mode is on the right. We can see that the effect of the 
nonlinearities on the FRF of the in-plane motion is much less 
significant due to the small relative elastic deformations in the 
region of the joint. For the out-of-phase motion on the right, one 
can observe that the amplitude of the vibration response reduces 
significantly with the excitation force. At a low excitation level, 
e.g. 0.1N, the contact interface is in a stuck state when almost no 
energy is dissipated at the interface. When excitation force level 
increases, the stuck state cannot maintain anymore, and the macro 
slip subsequently occurs. The amplitude of the vibration then 
reduces significantly due to the strong friction energy dissipation 
as one can observe from the Figure 9. 
 

 
Figure 9 Forced frequency response close to the NFs of the 1st 
tangential modes under the different excitation levels 
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Figure 10 Forced frequency response close to the resonance 
frequency of the second normal mode pair with the different 
levels of excitation force 

 
Figure 10 shows the forced frequency function of the nonlinear 
joint beam close to the frequency of the second pair normal 
modes with different excitation levels. Similar to the tangential 
mode in Figure 9, the frequency of the out-of-phase mode is 
slightly higher. It changes significantly with the increase of 
excitation levels. The peak of the FRF close to this mode 
gradually shafts left to the first peak. This means the 
nonlinearities on the interface have a softening effect, which 
mainly comes from the gap state activated in joints when the 
preloading cannot hold the substructures together any more. The 
separation phenomenon also affects the in-phase mode but has 
much less.  
 
Figure 11 shows the comparison of the forced frequency response 
of the beam with four different configurations of interface nodes 
in the contact region under the same excitation force level of 5 N. 
With the increase of interface nodes, the resonance frequency of 
the in-phase mode increases slightly because a large size of 
contact interface makes the joint structure stiffer and therefore 
harder to deform. However, the FRF peak of the out-of-phase 
mode shift more on the left close to the in-phase FRF peak with 
the increasing size of interface nodes. The resonance frequency 
of out-of-phase mode increases when the number of joint nodes 
increases from 2 to 16. The frequency then decreases with the 
further increase of joint nodes. This indicates that the nonlinear 
effects become stronger when the number of interface nodes 
increases. As expected, the peak of the response level is similar 
with the increase of the interface nodes. This may be due to the 
decoupled motion between x and y direction when using the 
Euler–Bernoulli beam element. The excitation in y direction 
would not cause any deformation in the x direction. 
 

 

 
Figure 11 Forced frequency response close to the 2nd normal 
mode pair with the increasing number of interface nodes 

 
ROM SENSITIVITY ANALYSIS  

Figure 12 shows an example of the forced frequency response 
evaluated by using abovementioned seven ROM methods (with 
the excitation level of 5N, joint nodes number of 12 and mode 
number of 5 for each substructure).  The result shows all of the 
ROM methods can capture well the global variations of the 
frequency response curve of the full solution. However, one can 
observe the differences between ROM methods when zooming in 
the peak response close to the out-of-phase mode. It is worth 
noting that the evaluated frequency points between ROM 
methods are not consistent due to the adaptive step algorithm in 
the continuation technique. In order to make direct comparisons 
possible, a cubic interpolation process is used. In this way, the 
relative error of these ROM methods at a particular frequency 
range can be computed. A sensitivity study is then performed to 
investigate the effect of the excitation level, size of interface 
nodes and also the number of normal modes on the performance 
of these ROMs.  
 

 
 
Figure 12 An example of the forced frequency response using 
different types of ROMs (CB, Rubin, MacNeal, DCB, JIM, 
TVD and free interface modes)  

 
EXCITATIONAL LEVEL  

Figure 13 shows relative FRF errors of various ROM methods 
with the increase of excitation level at 0.1N, 1N, 5N and 10N ( 5 
modes for each substructure and 6 interface nodes). Please note 
that the number of frequency point is used as the title for x axis 
rather than the frequency because each excitation frequency 
might contain more than one response points. Each frequency 
point represents a unique response point at a particular frequency. 
The frequency point of out-of-phase resonance peak is remarked 
by black dash line. Figure 14 and 15 are plotted in the same way.  
 
Figure 13 shows, with the increase of the excitation force, the 
relative error of Rubin, MacNeal and CB methods gradually go 
up. TVD, DCB, free interface methods stay in the similar errors. 
Consistent with the linear case, the CB method still results in 
largest relative error in the resonance response peak among all 
other methods, which becomes more significant when the 
excitation level increases. TVD, Rubin and MacNeal turn out the 
most accurate ones. However, Rubin and MacNeal methods are 
not very robust comparing to the TVD ones. The relative error of 
Rubin and MacNeal fluctuate quite a lot with the increase of 
excitation levels.  One can see that their errors at the excitation 
level of 5 N become much larger than the TVD method.  
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Figure 13 Relative FRF errors of various ROM methods with the different excitation levels in the region of out-of-phase mode 

 
Figure 14 Relative FRF errors of various ROM methods with the different size of the contact interface in the region of out-of-phase 
mode 

 
Figure 15 Relative FRF errors of various ROM methods with the increasing mode number in the region of out-of-phase mode 
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THE NUMBER OF JOINT NODES 
Figure 14 shows the relative errors of all the ROM methods 

with different interface configurations in the frequency region of 
the out-of-phase mode (with the excitation level of 5 N and 5 
normal modes for each substructure). In general, the average error 
of CB, JIM and free interface methods decreases when joint 
interface size increases. DCB, Rubin, MacNeal and TVD 
methods maintain similar relative error levels between 10�² and 
10�³. The error curve of Rubin and MacNeal methods always 
stick together but their relative errors fluctuate a lot with size of 
the joint interface. JIM method results in much lower relative 
errors than the free interface modes method. Overall, TVD 
method is the most accurate and robust one with the increasing 
size of contact interface.    
 
THE NUMBER OF MODES 
     Figure 15 shows the relative FRF errors of different ROM 
methods with the different number of normal modes (at excitation 
level of 5N and number of joint nodes of 6). The result shows that 
Rubin and TVD methods converge to 10�³ using only 3 modes 
for each substructure. However, with the increase of the mode 
number, the accuracy of the Rubin method unexpectedly rolls 
back in the case of mode number 5; it then comes back to the level 
of the TVD method at mode number 8 and then goes back again. 
It indicates the Rubin method are not very robust with increase of 
normal modes. In contrast, CB, DCB and free interface methods 
have monotonic convergence rate when the number of modes 
goes up. JIM can also reach the same accuracy as Rubin method 
at the mode number of 10.   

CONCLUSION 
The objective of this paper was to assess the capability of the 

classic CMS and recently developed ROM techniques for 
simulating the dynamics of jointed structures with contact 
nonlinearities. A 2D jointed beam with a linear and nonlinear 
joint has been considered as two test cases. Seven states of the art 
ROM methods have been selected for such a numerical 
assessment. For linear case, the relative errors of NF, MAC are 
compared between these ROM techniques. Rubin method 
outperforms the other methods in term of NF and MAC errors but 
experiences some numerical instability in the low frequency 

region when the size of the interface node increases. In terms of 
accuracy, TVD method achieves the second best. It is also the 
most computational efficient one having the smallest reduction 
ratio. The resulting reduced model using such a method can be 
independent of the joint interface size. The reduced order models 
using JIM and DCB method have the same reduction ratio and 
also they result in the similar accuracy to TVD method from the 
fourth mode. The reformulated DCB method has better 
performance on the low modes when the interface nodes number 
increase. The linear case also shows that the MacNeal method is 
not suitable for a jointed structure with a large joint interface, 
which may lead to the unacceptable errors. For nonlinear test, a 
2D macro-slip contact friction model with stuck, slip and gap 
states were employed. The FRF of this nonlinear jointed structure 
was obtained by using a MHB method with AFT techniques. A 
sensitivity study was performed to investigate the effect of the 
excitation levels, the size of joint interface nodes and the number 
of normal modes on the dynamics of this assembled structure. In 
consistent with the linear case, Rubin method still achieves the 
lowest relative FRF errors among all the ROM methods. For this 
particular low order model, TVD method not only can achieve 
similar accuracy to Rubin methods but also more robust when the 
number of interface nodes and normal modes increases. The CB 
method still results in largest errors for both linear and nonlinear 
cases when comparing to the rest of methods. The relative error 
of this method increases when the nonlinearities of the system 
become strong. However, compared to free interface methods like 
the Rubin method, the CB method appears more numerically 
stable and robust. JIM method has not shown the obvious 
advantage compared to the free interface method. It might be due 
to the weak elastic coupling between nodes in the joint and inner 
structures that needs further investigations in future.  
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