
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are
retained by the author and/or other copyright owners. A copy can be downloaded for personal
non-commercial research or study, without prior permission or charge. This thesis and the accom-
panying data cannot be reproduced or quoted extensively from without first obtaining permission
in writing from the copyright holder/s. The content of the thesis and accompanying research data
(where applicable) must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holder/s.
When referring to this thesis and any accompanying data, full bibliographic details must be given,
e.g.
Thesis: Bhumika Mistry (2023) “Neural Arithmetic Logic Modules”, University of Southampton, Fac-
ulty of Engineering and Physical Science, Department of Electronics and Computer Sciences, PhD
Thesis, 1-214.

UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and the Physical Sciences
School of Electronics and Computer Science

Vision, Learning and Control

An Investigation into Neural Arithmetic
Logic Modules

by

Bhumika Mistry
ORCiD: 0000-0003-4555-0121

A thesis for the degree of
Doctor of Philosophy

July 2023

http://www.southampton.ac.uk
https://orcid.org/0000-0003-4555-0121

University of Southampton

Abstract

Faculty of Engineering and the Physical Sciences
School of Electronics and Computer Science

Doctor of Philosophy

An Investigation into Neural Arithmetic Logic Modules

by Bhumika Mistry

The human ability to learn and reuse skills in a systematic manner is critical to our
daily routines. For example, having the skills for executing the basic arithmetic oper-
ations (+,−,×,÷) allows a person to perform a variety of tasks including budgeting
expenses, scaling measurements to the desired proportions when cooking/baking, and
planning travel schedules. Machine Learning (ML) can reduce the manual workload
for humans, inferring underlying relations within the data without the need for heavy
feature engineering. However, the ability of such models to extrapolate and generalise
to unseen data in an interpretable manner is challenging. With this challenge in mind,
Neural Arithmetic Logic Modules (NALMs) have been developed. Such parameterised
modules, specialised for arithmetic operations, are designed to guarantee generalisa-
tion if weights are correctly learned and be interpretable in what they learn. This the-
sis seeks to thoroughly investigate the proposition that such specialised differentiable
modules with inductive biases toward arithmetic can be learned, uncovering the limi-
tations which remain. In this work, we begin by studying the extent to which NALMs
are able to learn arithmetic. We initially provide a comprehensive review of existing
NALMs and take our analysis a step further with empirical results on a new bench-
mark with evaluation metrics specifically for measuring extrapolation performance.
From this, we identify two arithmetic operations to further investigate, namely multi-
plication and division. For multiplication, we show how stochasticity can be applied
to alleviate issues regarding falling into local minimas which cannot extrapolate. For
division, we show through an extensive set of empirical results the mechanisms which
can aid and hinder robustness. Factors other than the architecture are investigated in-
cluding using images as the input modality, using a different loss criterion and feature
scaling. In the final chapter, we draw inspiration from a human cognitive theory, the
Global Workspace Theory (GWT), to develop an end-to-end architecture to combine
different NALMs for compositional arithmetic.

http://www.southampton.ac.uk

v

Contents

Declaration of Authorship xi

Acknowledgements xiii

Definitions and Abbreviations xv

1 Introduction 1
1.1 High-level Reasoning in Humans . 2
1.2 Inductive Biases . 3
1.3 Inductive Biases for System 2 . 5
1.4 A Stepping Stone towards Human Reasoning: Learning Mathematics . . 7

1.4.1 Motivating Specialist Modules over Generic MLPs 8
1.4.1.1 Results . 10

1.4.2 Shortcomings in Mathematical Reasoning when using Transform-
ers . 12

1.4.3 Representing Numbers in Machine Learning Models 16
1.4.3.1 Static Encoding . 17
1.4.3.2 Learnable Embeddings 19

1.5 Discovering Mathematical Expressions for Symbolic Regression 20
1.6 Research Questions and Contributions . 21

1.6.1 Research Questions . 21
1.6.2 Contributions . 22

1.7 Thesis Structure . 25

2 Review of NALMs 27
2.1 What are NALMs and Why use them? . 27

2.1.1 What is a NALM? . 27
2.1.2 What is the Aim of a NALM? . 28
2.1.3 Why is a NALM useful? . 29

2.2 Existing NALMs Architectures . 30
2.2.1 NALU . 31
2.2.2 iNALU . 32
2.2.3 NAU and NMU . 34
2.2.4 NPU and Real NPU . 36
2.2.5 G-NALU . 37
2.2.6 NLRL . 38
2.2.7 NSR . 40

2.3 NALU’s Shortcomings and Existing Solutions 42

vi CONTENTS

2.3.1 Negative Inputs and Negative Outputs 43
2.3.2 Gating Parameter Convergence . 43
2.3.3 Bias Considerations . 44
2.3.4 Initialisation Considerations . 45
2.3.5 Division . 47
2.3.6 Compositionality . 49

2.4 Applications of the NALU . 49
2.4.1 Existing Applications . 49
2.4.2 Applications Where NALU Is Inferior 51

2.5 Discussion: Remaining Gaps . 52

3 Benchmarking Existing and Future Models 55
3.1 Two Layer Arithmetic Task . 56
3.2 Evaluation Metrics . 57

3.2.1 Evaluation metrics used on the Arithmetic Dataset Task 58
3.3 Single Module Arithmetic Task . 59

3.3.1 Evaluation Metrics . 60
3.3.1.1 Alternative Options for Generating a Success Threshold 61

3.3.2 Results . 62
3.4 Summary . 66

4 Multiplication - Improving Robustness via Stochasticity 67
4.1 Robustness Issues with Multiplication Modules 68

4.1.1 Problem: Inputs that Induce Local Optima 68
4.2 A Stochastic Wrapper: The Stochastic NMU (sNMU) 69
4.3 Alternate Stochastic Methods . 71

4.3.1 Stochastic Gating . 72
4.3.2 Gradient Noise . 72

4.4 Single Layer Task . 72
4.5 Arithmetic Dataset Task . 73
4.6 MNIST Arithmetic . 76

4.6.1 Static MNIST Product . 76
4.6.1.1 Isolated Digit Classification 77
4.6.1.2 Colour Channel Concatenated Digit Classification . . . 79

4.6.2 Sequential MNIST Product . 82
4.7 Summary . 84

5 Division - Understanding the Underlying Learning Mechanisms 87
5.1 Related Work . 88
5.2 Architectures . 88

5.2.1 NRU . 89
5.2.2 NMRU . 90

5.3 Single Module Arithmetic Experiment Setup 91
5.4 Improving the Real NPU’s Robustness . 92
5.5 Uniform Range Datasets . 95
5.6 Mixed-Sign Input Datasets . 96
5.7 More Challenging Distributions: Larger Magnitudes and Mixed-Signs . 98

CONTENTS vii

5.8 Division by Small Magnitudes . 100
5.8.1 Impact of the Singularity Issue on Gold Solutions 100
5.8.2 Experimental Results . 100

5.9 Traits of Modules when Learning on the Redundancy Setting 102
5.10 MNIST Arithmetic - Isolated Digit Classification 103

5.10.1 Setup and Network Architecture 104
5.10.2 Metrics and Results . 104

5.11 Discussion . 105
5.12 Summary . 107

6 Factors to Consider when Learning NALMs 109
6.1 Feature Scaling . 109
6.2 Uninformative MSE Loss . 113
6.3 Alternate Losses: PCC and MAPE . 115

6.3.1 Arithmetic Dataset Task . 116
6.3.2 Product of Sequential MNIST . 117
6.3.3 Division: Different Losses on the Single Module Task (with Re-

dundancy) . 118
6.3.4 Summary . 119

7 Compositionality - Learning Multi-Step Operations 121
7.1 Task . 122
7.2 Methods . 124

7.2.1 MLP . 124
7.2.2 Quadratic Network . 124
7.2.3 Stacked NALMs . 124
7.2.4 Stacked Gated NALMs . 126
7.2.5 Recurrent Input Selector with Learnable NALMs 126
7.2.6 Recurrent Input Selector with Frozen NALMs 128

7.3 Results . 130
7.4 Summary . 133

8 Conclusions 135
8.1 Directions for Future Work . 138

8.1.1 Input and Module Selection for Compositional NALMs 138
8.1.2 Learning Coefficients . 138
8.1.3 Alternative Encoding of Numbers 139
8.1.4 Extension of the Evaluation Suite 140

Appendix A Inductive Biases for System 2 141

Appendix B Representation of Numbers in Humans, Animals and Computers 145
Appendix B.1 Humans . 145

Appendix B.1.1 How do Humans Process Numbers? 146
Appendix B.2 Animals . 147
Appendix B.3 Computers . 147

Appendix C Additional NALM Background Information 149

viii CONTENTS

Appendix C.1 Module Illustrations . 149
Appendix C.2 Step-by-step Example using the NALU 152
Appendix C.3 Naive NPU Derivation . 154

Appendix D NALM Benchmarking - Comparisons of Existing Works 157
Appendix D.1 Additional Experiments . 157
Appendix D.2 Cross Module Comparison . 158
Appendix D.3 Experiments and Findings of Modules for Logic Tasks 159

Appendix D.3.1 NLRL . 159
Appendix D.3.2 NSR . 160

Appendix E Experiment Details 161
Appendix E.1 Benchmark Synthetic Arithmetic Tasks 161

Appendix E.1.1 Experiment Parameters 161
Appendix E.1.2 Hardware and Runtimes 162

Appendix E.2 Multiplication MNIST Experiments 163
Appendix E.2.1 Experiment Parameters 163
Appendix E.2.2 Hardware and Runtimes 163

Appendix E.3 Division Experiments . 164
Appendix E.3.1 Parameter Initialisation 164
Appendix E.3.2 Hardware and Runtimes 164
Appendix E.3.3 Summary Table of the Ranges Used for the Single Layer

Task . 166
Appendix E.4 MNIST Product Tasks: Architecture Details 168

Appendix E.4.1 Isolated Digits . 168
Appendix E.4.2 Colour Channel Concatenated Digits 168
Appendix E.4.3 Sequential MNIST . 170

Appendix F Multiplication: Static MNIST Analysis 171
Appendix F.1 Class Accuracies . 171
Appendix F.2 Isolated Digits . 171
Appendix F.3 Colour Channel Concatenated Digits. 171
Appendix F.4 Digit Classification Accuracy over Epochs 173

Appendix G Division: Additional Analysis 175
Appendix G.1 Properties of a Division Module 175
Appendix G.2 NRU; Single Module Task (without Redundancy): Tanh Scale

Factor . 178
Appendix G.3 Real NPU; Single Module Task (without Redundancy) 179
Appendix G.4 NRU; the Single Module Task (without Redundancy): Effect

of Learning Rate . 180
Appendix G.5 Real NPU; Single Module Task (with Redundancy) 181
Appendix G.6 NMRU; Single Module Task (with Redundancy): Additional

Experiments . 182
Appendix G.7 NRU; Single Module Task (with Redundancy): Calculating

the Sign Separately . 184
Appendix G.8 Division MNIST Arithmetic Task: Effect of Gradient Norm Clip185

CONTENTS ix

Appendix H Gradients of the Arithmetic Dataset Task 187
Appendix H.1 MSE Loss for the Arithmetic Dataset Task 187
Appendix H.2 Explicit Gradients . 188

Appendix H.2.1 MSE Loss Partial Derivatives: 189
Appendix H.3 Generalised NAU and NMU Partial Derivatives of the loss for

a NAU-NMU . 190
Appendix H.4 Generalised NAU and NMU Partial Derivatives for a NAU-

sNMU . 190
Appendix H.4.1 MSE Loss Definition . 191
Appendix H.4.2 Loss derivatives wrt NAU and sNMU weights 191

References 193

xi

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been
generated by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research
degree at this University;

2. Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been
clearly stated;

3. Where I have consulted the published work of others, this is always clearly
attributed;

4. Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published as: Mistry et al. (2022a), Mistry et al.
(2022b), Mistry et al. (2022c)

Signed:.. Date:..................

xiii

Acknowledgements

To truly write my acknowledgements to its fullest would result in a significant
increase in the length of this thesis. Therefore, I opt to take the route of having a short
paragraph and instead allow my future actions to express my gratitude to those who
have helped me on this marathon of a journey.

First and foremost, I want to thank my supervisors Kate Farrahi and Jon Hare for their
continual support and guidance through this PhD, without which I would not have
made it very far. Thank you both, for giving me this opportunity. Secondly, I want to
thank the VLC research group members for all their insightful discussions and
wonderful company over the years. It is an excellent working environment. Thirdly,
thank you to all my friends and family for helping me when I needed that much
needed step away from the work! I would also like to thank the EPSRC for its support
in funding this research and the IRIDIS High-Performance Computing Facility, the
ECS Alpha Cluster, and associated support services at the University of Southampton
in the completion of this work. And finally, above all, thank you, Mum, Dad and Ma
for your boundless love, support and blessings. Needless to say, I would have never
have got to this stage without you.

xv

Definitions and Abbreviations

Network architectures
CNN Convolutional Neural Network.
DNN Deep Neural Network.
FCNN Fully Connected Neural Network.
GRU Gated Recurrent Unit.
LSTM Long Short Term Memory.
MLP Multi-Layer Perception.
NALM Neural Arithmetic Logic Module.
NPS Neural Production System.
PU Product Unit.
RIM Recurrent Independent Mechanism.
RNN Recurrent Neural Network.
STN Spatial Transformer Network.

NALMs
G-NALU Golden - Neural Arithmetic Logic Unit.
iNALU Improved Neural Arithmetic Logic Unit.
NAC+ Summative part of the Neural Arithmetic Logic Unit.
NAC• Multiplicative part of the Neural Arithmetic Logic Unit.
NALU Neural Arithmetic Logic Unit.
NAU Neural Addition Unit.
NLRL Neural Logic Rule Layer.
NMRU Neural Multiplicative Reciprocal Unit.
NMU Neural Multiplication Unit.
NPU Neural Power Unit.
NRU Neural Reciprocal Logic.
NSR Neural Status Register.
RealNPU Real Neural Power Unit.
sNMU Stochastic Neural Multiplicative Unit.
stgNMU Stochastic gated Neural Multiplicative Unit.

xvi DEFINITIONS AND ABBREVIATIONS

Terms
AI Artificial Intelligence.
AUC Area Under the Curve.
ANS Approximate Number System.
CDN Content-Delivery-Network.
CLS Crowdsourced-Live-Streaming.
CoT Chain of Thought.
EA Evolutionary Algorithms.
GCD Greatest Common Divisor.
GNW Global Neuronal Workspace.
GP Genetic Programming.
GPU Graphic Processing Unit.
GWT Global Workspace Theory.
LM Language Model.
ML Machine Learning.
MNIST Handwritten digit dataset (28 × 28 pixel, greyscale) split

into training (60K) and test (10K) sets.
msv Mixed Sign Vector.
NLP Natural Language Processing.
OOD Out-of-Distribution.
OTS Object Tracking System.
QoS Quality of Service.
RL Reinforcement Learning.
TPS Thin Plate Spline.
REINFORCE REward Increment = Non-negative Factor

× Offset Reinforcement × Characteristic Eligibility.
A class of reinforcement learning algorithms that falls under
Policy Gradient methods.

RHS Restrict Hypothesis Space.
SCOFF SChema/Object-File Factorisation.

Losses
MSE Mean Squared Error.
MAPE Mean Absolute Precision Error.
PCC Pearson’s Correlation Coefficient.
PCC-MSE Pearson’s Correlation Coefficient - Mean Squared Error.

Switches from using a PCC loss to a MSE loss after a
predefined number of training iterations.

1

Chapter 1

Introduction

Human-level systematic reasoning remains to be one of the holy grails of Artificial In-
telligence (AI). Humans are able to take a problem, understand it, decompose it, and
then plan and execute a solution. We can even learn tasks that the brain is not evolved
to do (e.g., budgeting weekly expenditures). Our reasoning enables us to adapt to new
situations in a timely manner despite the limited capacity of our brain. In Machine
Learning (ML), this adaptation is known as out-of-domain generalisation. For AI prac-
titioners the big question remains, what process(es) do we use for reasoning and how
can we encode such a process into our learning models? However, this question is
incredibly vague and broad, therefore, we instead look at answering a smaller, more
well-defined question which will allow us to come a step closer to solving the question
of human reasoning in machines.

In this thesis, we ask:

How can we learn to discover basic mathematics using ML models in a generalis-
able manner?

Specifically, this thesis is about understanding how to develop neural networks to
do extrapolative out-of-distribution (OOD) arithmetic by using interpretable special-
ist modules which we term Neural Arithmetic Logic Modules (NALMs).

The aim of this chapter is to provide the reader with an intuition into the reasoning
behind why this particular topic was chosen as the focal point. We begin at the broadest
level, considering how humans reason and some of the ingredients required to build
such neural networks. Then, we introduce mathematical reasoning in neural networks
along with a case study using Multilayer Perceptrons (MLPs) to promote the need for
focusing on arithmetic and the use of specialists. We identify some of the different
ways to represent numbers in ML models and end by introducing symbolic regression.

2 Chapter 1. Introduction

1.1 High-level Reasoning in Humans

From the cognitive science perspective, one answer to the question ‘what process(es) do
we use for reasoning’ is the existence of habitual and controlled processing (Botvinick
et al., 2001) representing the behaviours which are automatic and those which require
mental effort (e.g., attention). This dual-process model was introduced by Posner and
Snyder (2004), but the idea of having two ways of thinking can be traced back to much
earlier (James, 1890). A similar line of thought comes from the System 1 and System 2
thinking processes, popularised by Kahneman (2011). System 1 encapsulates the type
of thinking which is instantaneous, intuitive and requires little to no effort. System 2
refers to the logical side of the thinking process that is slower and requires effort. It
is pieced together by logical judgement and a mental search for additional informa-
tion acquired through past learning and experience. For example, consider the task of
counting the number of dots on a page. System 1 is used when there are a small num-
ber of dots (1 to ∼3), where we use subitizing to instantly know the number of dots
without having to count; if there are more than three dots, then our System 2 thinking
is used to explicitly count the number of dots (Dehaene, 1992). The two systems are
not independent, rather we combine systems in a complementary manner. For exam-
ple, System 2 gets called when System 1 fails to reach an answer. Peters et al. (2006)
experiment and compare participants with high and low numeracy skills on tasks re-
quiring number processing. Participants who were more numerate were found to use
their System 1 reasoning more frequently and reliably but also call upon their System
2 when tasked with more complex challenges.

There are two ways of processing problems depending on their difficulty. Simpler
problems are solved simply via retrieval of the solution stored in our long-term mem-
ory (Ashcraft, 1992) like in System 1 thinking. Complex problems are solved in a pro-
cedural fashion, solving the problem in multiple steps (Van Beek et al., 2014). With
practice, we can switch operations which once required procedural processing into re-
trieval, e.g., imagine a chess master against a novice; the novice would intensely pon-
der about the first counter move while a chess master can respond instantly.

Current ML systems using Deep Learning (DL) work well in solving System 1 tasks
such as image classification (e.g. Szegedy et al., 2017) and object detection (e.g. Redmon
et al., 2016), however the ability to do the System 2 reasoning which enables system-
atic generalisation (performing well on new situations in a methodological manner)
and fast learning (applying new rules without practice) remains desirable (Goyal and
Bengio, 2022). One may now ask how can reasoning process(es) be encoded into our learn-
ing models? At this point, let us assume the process of reasoning refers to System 2
thinking. But what does ‘encode’ refer to? In this case, encoding is considered as in-
corporating some form of favorability towards a particular solution for a model. This
is more commonly known as an inductive bias (IB).

1.2. Inductive Biases 3

1.2 Inductive Biases

One of the most accepted definitions of an inductive bias is defined by Mitchell (1980)
“to refer to any basis for choosing one generalization over another, other than strict consistency
with the observed training instances”. This definition for bias was defined with respect to
achieving the inductive leap required for generalisation. The term inductive leap stems
from the philosophy of logic, referring to going from sample observations to a general
conclusion. From logical reasoning, induction is also thought of as a primitive with
the ability to induce general rules of inference from known facts (Peirce, 1992). In ML,
an inductive leap is more commonly known as inductive or concept learning (Michal-
ski, 1983; Utgoff, 1986). More recently, Battaglia et al. (2018) defines IB as allowing “a
learning algorithm to prioritize one solution (or interpretation) over another, independent of the
observed data.” Put simply, a bias means there exists a preference and inductive means the
preference (bias) is towards how the learner prioritises a particular solution (from only
observing samples).

A learner with no bias is called an unbiased learner or inductive system. An unbi-
ased generaliser “makes no a priori assumptions about which classes of instances are most
likely, but bases all its choices on the observed data” Mitchell (1980). However, unless all
possible examples are observed, the inductive learning algorithm will not be able to
find a generalisable unique solution from the data alone, making inductive learning
an ill-posed problem. Such unbiased learners can only generate rules from the given
samples alone so at best can memorise the observed samples (training data), meaning
they will be unable to generalise to unseen data. From a perspective of loss landscapes,
no bias results in a learner having preferences to the local minima of the loss surface
leading to an unrobust solution easily affected by randomness from factors such as ini-
tialisation or the order of training data (Sutskever et al., 2013; Abnar et al., 2020; McCoy
et al., 2020; Dodge et al., 2020). Hence, having no bias is bad as it results in a learner
who memorises. But the opposite, having too strong a bias, results in a niche learner
that cannot generalise to different problems. This ties in nicely with the no-free-lunch
theorem (Wolpert and Macready, 1997) which states there is no universal one-fits-all
learner that can outperform all other learners on every task. For generalisation to oc-
cur for a specific task, IBs need to be utilised to restrict the hypothesis space (Craven,
1996). Therefore, biases are included to reduce the hypothesis search space but too high
a bias can lead to sub-optimal solutions.

At the crux of it, two types of IBs exist: the restrict hypothesis space (RHS) biases and the
preference biases (Craven, 1996). The former determines the expressivity of the hypothe-
sis space and the latter determines the preference between solutions in that space (i.e.,
how a learner will traverse the space). Other names used in the literature include rep-
resentational bias (Gordon and Desjardins, 1995) for RHS and procedural/algorithmic
bias (Rendell, 1987) for the preference bias. In both cases, we want to incorporate a bias

4 Chapter 1. Introduction

FIGURE 1.1: Example of the two types of IBs: RHS (explicit) biases and preference
(implicit) biases. Image sourced from https://sgfin.github.io/assets/thesis_im

ages/knowledge_paradigms.png from the post https://sgfin.github.io/2020/0
6/22/Induction-Intro/.

which enables some form of partiality toward the learnt solution. But where does this
bias come from? The answer is our prior knowledge. In other words, we use biases
to incorporate prior knowledge. The type of priors and the way we incorporate them
is where the two categories differ (as illustrated in Figure 1.1). RHS biases are a form
of explicit biases which are properties built into the model architecture. Such structural
priors are a form of relational biases which are “constraints on relationships and interactions
among entities in a learning process” (Battaglia et al., 2018). The type of entity represents
an element with attributes and a property which links entities is called a relation.1 For
example:

• Convolutional Neural Networks (CNNs) (LeCun et al., 1998) have an IB for lo-
cality, referring to only applying filters to entities that are close to each other (i.e.,
elements in a patch);

• Recurrent Neural Networks (RNNs) (Elman, 1990; Jordan, 1997) have an IB for
sequentiality, which is a result of the dependencies between the current hidden
state, previous hidden state and current input entities; relations between these
entities can be described as Markovian dependencies; and,

• Fully Connected Neural Networks (FCNN) (Rumelhart et al., 1986) have weak IB
(of independence) because all entities (units) can interact with each other.

In contrast, preference biases are a form of implicit biases which are built into the task
(rather than the model) and require learning. For example, the Transfer Learning

1For many of the well known DL architecture families, the structural properties can be viewed as
encoding certain invariances/equivariances to certain transformations but this is outside the scope of this
thesis.

https://sgfin.github.io/assets/thesis_images/knowledge_paradigms.png
https://sgfin.github.io/assets/thesis_images/knowledge_paradigms.png
https://sgfin.github.io/2020/06/22/Induction-Intro/
https://sgfin.github.io/2020/06/22/Induction-Intro/

1.3. Inductive Biases for System 2 5

paradigm shares knowledge gained from a previous task, while the Contrastive Learn-
ing paradigm learns representations by forcing similar samples together while pushing
dissimilar data apart.

A bias does not need to be static and determined at the start of learning; it can be
dynamic and change during learning. This is known as a bias shift (Gordon and Des-
jardins, 1995), where the selection of the bias occurs after training begins and can be
viewed as searching through the bias space. Two examples of dynamic biases are the
alignment of attention mechanisms (Vaswani et al., 2017) and dynamic routing of cap-
sules in Capsule networks (Sabour et al., 2017). In both cases, the preference for solu-
tions is learned and dependent on querying the context (Finlayson, 2020, pp. 7-20).

The type of networks we will consider (NALMs) have explicit biases and can have
implicit biases. The architectures are designed to be able to model exact operations such
as arithmetic expressions, which constrains the hypothesis space of available solutions.
NALMs assume that particular (transformed) weight values correlate to applying exact
operations on selected inputs. To induce such weights during learning, some works use
a specialised regularisation (discussed in Chapter 2), which can be thought of as a type
of implicit bias.

1.3 Inductive Biases for System 2

IBs ultimately allow for control over the possible solution search space and the traversal
of the learner in the space. If we consider the logical tasks requiring System 2 process-
ing, what types of IBs would be relevant?

One answer takes inspiration from human cognition. Specifically, the Global Workspace
Theory (GWT) proposed by Baars (1993, 1997) is a widely accepted neuroscientific the-
ory of consciousness (Michel et al., 2018), used in Chapter 7 to inspire our architecture
for compositionality. The basic global workspace model from Baars (1993) is illustrated
in Figure 1.2. The GWT proposes that high-level conscious processing is accomplished
by allowing selected parts of the brain (via top-down attentional amplification) to up-
date a shared communication representation (called a blackboard or workspace) which
gets broadcasted to the entire brain. The parts which get selected are task-dependent
and can be thought of as specialists. As only a selected few can write to the workspace,
it can be considered a communication bottleneck. The use of top-down attention is
similar to the biased competition theory of selective attention where areas of the brain
representing visual information undergo competition to allocate resources (Desimone
et al., 1995). Such competition is required due to our brains having limited processing
capacity and therefore requiring a form of selectivity to filter out irrelevant informa-
tion.

6 Chapter 1. Introduction

FIGURE 1.2: Example of the GW model reproduced from Baars (1993, Figure 2.3).
Each circle represents a specialised (unconscious) processor. For these specialists to
interact and coordinate requires exchanging information at a central point (the ‘global
workspace’) only accessible through competition. This example shows four specialists
accessing the workspace, where the resulting message from these specialists is broad-

casted to the whole system.

The GWT was extended by Dehaene (2014) to the Global Neuronal Workspace (GNW)
model, which considers the GW working with neurons. In this case, the workspace
neurons connect to the (unconscious) modules by long-distance pathways (connect-
ing prefrontal and parietal cortices) to obtain global availability (Prakash et al., 2008).
When the broadcast excitation exceeds a threshold, it creates a large-scale activity pat-
tern in the brain which is termed global ignition.

From considering the GWT, the following components need to be captured:

1. Specialists which can contribute different pieces of information to the workspace.

2. Competition between specialists for the sparse selection of relevant information.

3. Some form of global shared representation to encourage coherent knowledge.

In particular, extending the first point, we would ideally want these specialists to be
independent of each other in two ways. The first is independence in the function
they perform and the second is independence from each other such that no individ-
ual can inform or influence another (i.e., independent causal mechanisms (Schölkopf
et al., 2012; Schölkopf et al., 2021)). Throughout this work, we will assume indepen-
dence amongst the specialists. However, it is worth mentioning the possible role of
redundancy. Although independence allows for separation and concise formulation,
it also results in fewer ways to obtain the solution compared to an overparameterised

1.4. A Stepping Stone towards Human Reasoning: Learning Mathematics 7

architecture. In contrast, introducing redundancy between specialists may improve
searching the solution space. For example, imagine having a network with multiple
specialists of the same type. If each specialist represented an arithmetic operation, a
network with redundancy could be one which contains multiple specialists which all
can do addition. As each specialist has the same expressive power, the task of addition
could be split over all the specialists rather than just requiring a single specialist. Once
the network has finished training it is possible to simplify the network by removing
redundant units/specialists.

The specific inductive biases for System 2 include specialised mechanisms (modules),
independence of mechanisms, sparsity in using the mechanisms and reuse and com-
position of existing knowledge for novel situations. Encoding such biases into neural
networks has displayed gains in OOD performance and therefore in extrapolation abil-
ity and generalisation (Goyal et al., 2021c,b,a; Liu et al., 2021; Goyal et al., 2022).2

Although modularity can provide better systematic generalisation than monolithic ar-
chitectures (Bahdanau et al., 2019), modular networks can still exhibit problems regard-
ing module under-utilisation and lack of specialisation (Mittal et al., 2022a). Further-
more, upon inspecting pretrained generic neural architectures (such as RNNs, Trans-
formers, FCNNs and CNNs) in their ability to specialise to and reuse modules, Csordás
et al. (2021) find that module’s specialisation to learn different operations is possible to
an extent, but reuse of the specialist in a composable manner is not. Therefore, a bias
towards modularity does not imply the ability to specialise or compose as a human
might.

In contrast to networks which have biases towards modularity with no constraints on
the type of specialisation of the module, NALMs are designed to be naturally modular
networks where modules can specialise to one or more operations. This specialist na-
ture allows one to know the exact representational power of the network.

1.4 A Stepping Stone towards Human Reasoning: Learning
Mathematics

To teach machines to reason on any task could be considered too large of a step. On
top of this, reasoning and solving problems in a human-interpretable manner is an ad-
ditional challenge. Therefore, in this thesis, we opt to focus on a single type of reason-
ing, namely, mathematical reasoning. Such reasoning is unique to human intelligence
and is essential for scientific discoveries and progress. Mathematical reasoning relies
on having well-defined rules and patterns and can be composed of a sequence of un-
ambiguous concise steps. In contrast, domains such as natural language reasoning are

2A deeper review of such networks can be found in Appendix A.

8 Chapter 1. Introduction

more unstructured requiring a complex understanding of context due to subtleties such
as word meaning, syntax and semantics. For a human to learn mathematics requires
years of education and is incremental and compositional in learning the skills. Skills
are taught in a curriculum learning fashion, where problems are ordered by difficulty,
beginning with simple problems and gradually increase in difficulty. Hence, learning
reliable mathematical mechanisms can provide a stepping stone toward general AI,
closing the reasoning gap between humans and machines. Furthermore, the mathe-
matical domain allows one to easily create high-quality synthetic tasks with controlled
difficulty, making it easier to discover where challenges lie for models. For example,
being able to associate learning difficulties with particular arithmetic operations, train-
ing ranges or compositions.

Throughout this thesis, we focus on specialist neural network modules (NALMs) that
are designed to work directly on the numerical inputs rather than encodings/embed-
dings. To motivate why we focus on specialist neural networks over the other extreme
(monolithic networks) we show how universal approximators networks (i.e., MLPs)
fail to learn basic arithmetic. We also discuss the shortcomings of Transformer based
Language Models (LMs), a common architecture for mathematical reasoning tasks, in
learning generalisable mathematics. After which, we discuss the different types of in-
put representations to motivate why the specialists neural networks in this thesis will
not be relying on learnable embeddings or alternate forms of static encodings.

1.4.1 Motivating Specialist Modules over Generic MLPs

To begin, let us consider why we may want to use specialist modules over a more
generic neural network such as an MLP. To demonstrate this, consider the MLP in the
context of universal approximators. MLPs have high representational power enabling
them (in theory) to be universal approximators. More specifically, the universal ap-
proximation theorem states that feedforward networks with at least one hidden layer
using nonpolynomial activation functions, sufficient width, and a linear output layer
can approximate any Borel measurable function on a compact set up to an arbitrary de-
gree of precision (i.e., any nonzero amount of error) (Hornik et al., 1989; Leshno et al.,
1993). In other words, assuming a wide enough MLP, a network will have enough rep-
resentational power to approximate any continuous function up to a nonzero precision.

However, there lie three disadvantages. Firstly, at best, you only learn an approxima-
tor of the true function (Nielsen, 2015), meaning that performance on data outside the
training range may be poor; an approximation implies there exists no bias towards
learnt parameters being interpretable. Secondly, though bounds on the architecture
size can exist (Park et al., 2021) for different function classes, an optimal architecture
for a problem remains unknown. Thirdly, the ability to represent a function does not
imply the ability to learn the function in an empirical setting. ReLU MLPs are found

1.4. A Stepping Stone towards Human Reasoning: Learning Mathematics 9

to converge to linear functions along any direction from the origin outside the training
data range, meaning that such networks cannot extrapolate to most non-linear func-
tions (Xu et al., 2021). In other words, MLPs linearize to the OOD data. This holds for
different network depths, widths, learning rates and batch sizes (Xu et al., 2021, Ap-
pendix C.1 and C.2). In contrast, as specialist modules have the capacity to model an
exact function (rather than an approximation) they can extrapolate well.

To demonstrate the limitations of using MLPs for learning operations such as those in
arithmetic, we setup a simple arithmetic task to learn a single arithmetic operation.

Setup: Given two inputs x1 and x2, output the value for x1 ◦ x2, where ◦ ∈ {+,−,×,÷}.
Networks are trained on a range U [1,2), tested on an extrapolation range U [2,6) and
run over 25 seeds. A single hidden layer MLP network with a width of either 1 or 100
is learnt to check both extremes. Width 1 networks are trained for 50,000 epochs and
width 100 are trained for 2,000,000 epochs. A ReLU activation is used and we keep bias
terms to avoid constraining expressiveness. For a network to be considered interpola-
tive/extrapolative, the errors must be below a minimum loss threshold, determined
by the range of the data; for more details, see the Single Module Arithmetic Task in
Section 3.3.

Gold (TT) MLP (1) (FF) MLP (1) (TT) MLP (100) (TF)

A
D

D
S

U
B

M
U

L
D

IV

−6 −3 0 3 6 −6 −3 0 3 6 −6 −3 0 3 6 −6 −3 0 3 6

−6

−3

0

3

6

−6

−3

0

3

6

−6

−3

0

3

6

−6

−3

0

3

6

x1

x2

FIGURE 1.3: Surface plots for the four arithmetic operations, comparing the golden so-
lution (left column) to learnt MLPs of either width 1 or 100. The letters in the brackets
are True (T)/False (F), representing if the minimum loss threshold for the interpola-
tion and extrapolation range have been met respectively. The blue and red squares

represent the interpolation (training) and extrapolation (test) ranges respectively.

10 Chapter 1. Introduction

1.4.1.1 Results

Surface plots of the trained MLPs are given in Figure 1.3. The plots are compared to the
gold solution which represents the true function that should be modelled. The division
plots have a white line at x2 = 0 as division by 0 was omitted in the data collection
stage. The plots are drawn over an input domain of [-6,6], which is an extension of the
extrapolation range, in order to see if the true underlying function has been learnt.

For each MLP width, there are four possible outcomes representing whether the inter-
polation and extrapolation ranges are modelled adequately. For a width 1 network,
except for addition, there are no other cases of achieving success on the extrapolation
range and for width 100 no operation is able to achieve success on the extrapolation
range. However, for the one case where the extrapolation range is considered learnt
(i.e., MLP (1)(TT) for ADD) the remaining portion of the surface plot which does not
include the interpolation and extrapolation ranges has not been learnt correctly. For
this case in particular, the MLP learns to model Figure 1.4, which represents

ŷ = relu(x1w + x2w− b) · 1
w

+
b
w

,

where w can be any positive value and b can be any value. The resulting expression
learns to do addition, but only holds for positive inputs.

FIGURE 1.4: Example of a single hidden layer MLP with width one that can add two
positive numbers.

Unlike multiplication and division, which can at best be approximated by an MLP,
addition/subtraction can be learned with an MLP of width four. Rather, there exists
an MLP with the capacity to either add or subtract any two floating-point numbers.
Figure 1.5 presents such an MLP which consists of a two-layer neural network with
one hidden layer of width four using ReLU activations. The resulting expression for
addition is x1 + x2 = relu(x1) − relu(−x1) + relu(x2) − relu(−x2) and subtraction is
x1 − x2 = relu(x1) − relu(−x1) − relu(x2) + relu(−x2). These two expressions will
hold for inputs sampled from any number (both positive and negative) on the real

1.4. A Stepping Stone towards Human Reasoning: Learning Mathematics 11

(A) Add (x1 + x2) (B) Sub (x1 − x2)

FIGURE 1.5: MLPs with 1 hidden layer and 4 hidden units which learn extrapolative
addition (left) and subtraction (right). For clarity, only non-0 connections are shown.

domain. The resulting parameters for addition and subtraction respectively are⎡⎢⎢⎣
b(1)1,0 b(1)2,0 b(1)3,0 b(1)4,0

w(1)
1,1 w(1)

2,1 w(1)
3,1 w(1)

4,1

w(1)
1,2 w(1)

2,2 w(1)
3,2 w(1)

4,2

⎤⎥⎥⎦ =

⎡⎢⎣0 0 0 0
1 −1 0 0
0 0 1 −1

⎤⎥⎦
[︂
b(2)1,0 w(2)

1,1 w(2)
1,2 w(2)

1,3 w(2)
1,4

]︂
=
[︂
0 1 −1 1 −1

]︂
and ⎡⎢⎢⎣

b(1)1,0 b(1)2,0 b(1)3,0 b(1)4,0

w(1)
1,1 w(1)

2,1 w(1)
3,1 w(1)

4,1

w(1)
1,2 w(1)

2,2 w(1)
3,2 w(1)

4,2

⎤⎥⎥⎦ =

⎡⎢⎣0 0 0 0
1 −1 0 0
0 0 1 −1

⎤⎥⎦
[︂
b(2)1,0 w(2)

1,1 w(2)
1,2 w(2)

1,3 w(2)
1,4

]︂
=
[︂
0 1 −1 −1 1

]︂
.

Consider interpreting what the paths through each of the hidden units from Figure 1.5
will represent. The first and third hidden units will preserve the magnitude of x1 and x2

for positive values. The second and fourth hidden units will preserve the magnitude
of x1 and x2 for negative values. The hidden-to-output layer weights will combine
the magnitudes, reapplying the signs of negative inputs and applying signs for the
subtraction operation to subtract x2.

However, achieving these extrapolative MLPs is challenging as shown by surface plots
shown in Figure 1.6. It is worth noting that due to symmetry, other valid solutions can
be found through permutation of the above parameter matrices.

Again, notice the similar issue to the MLPs of width 1 and 100 where an MLP can
learn within the interpolation range (which it was trained on) and extrapolation range
(which it never saw) but fails to learn the true function. Observing the learnt weights,

12 Chapter 1. Introduction

Gold (TT) MLP (4) (FF) MLP (4) (TF) MLP (4) (TT)
A

D
D

S
U

B

−6 −3 0 3 6 −6 −3 0 3 6 −6 −3 0 3 6 −6 −3 0 3 6

−6

−3

0

3

6

−6

−3

0

3

6

x1

x2

FIGURE 1.6: Surface plots for addition or subtraction, comparing the golden solution
(left column) to learnt MLPs of width 4. The letters in the brackets are True (T)/False
(F), representing if the minimum loss threshold for the interpolation and extrapolation
range has been met respectively. The blue and red squares represent the interpolation

(training) and extrapolation (test) ranges respectively.

we find the MLPs learn to use all hidden units and paths producing a complex expres-
sion which lacks interpretability.

To summarise, we have shown how generic neural networks, specifically MLPs, strug-
gle to learn simple arithmetic operations in light of their expressive nature. Due to this,
we will focus our efforts on investigating extrapolative specialist modules which are
able to reproduce the gold solutions from the surface plots.

1.4.2 Shortcomings in Mathematical Reasoning when using Transformers

One popular direction to explore solving mathematical tasks is via a Transformer based
LM which represents problems as sequence-to-sequence translations. In other words,
teaching models which can translate a sequence of tokens (problem) into another se-
quence of tokens (solution). Studies have suggested that such models can obtain high
accuracy on tasks requiring complex arithmetic such as predicting the local stability of
differential systems (Charton et al., 2021) or modular linear arithmetic used in lattice
cryptography (Wenger et al., 2022; Li et al., 2023). Transformer LMs have been known
to sufficiently improve performance by increasing scale (model parameters) (Brown
et al., 2020; Thoppilan et al., 2022). However, the emergence of systematic reasoning
cannot be obtained simply through training larger models. For example, Rae et al.

1.4. A Stepping Stone towards Human Reasoning: Learning Mathematics 13

(2021) trains the LM named Gophen at different scales varying from millions to billions
of parameters, with the largest model used containing 280 billion parameters.3 They
find that logical and mathematical reasoning sees less benefit from scaling. Hendrycks
et al. (2021) explain in their study - “Accuracy also increases only modestly with model
size: assuming a log-linear scaling trend, models would need around 1035 parameters
to achieve 40% accuracy on MATH4, which is impractical”.

FIGURE 1.7: Copy of Anil et al. (2022, Table 1) showing performance in length general-
isation on the parity and variable assignment tasks, comparing fine-tuning, prompting

and scratchpads.

Rather than scaling by training/finetuning larger models, alternate methods to encour-
age the emergence of reasoning are required (see Figure 1.7). These techniques include
scratchpad training, chain of thought (CoT) reasoning, in-context learning and majority
voting (Lewkowycz et al., 2022). Scratchpads require finetuning models to output the
intermediate calculations, rather than the direct output (Nye et al., 2021). For example,
having state tracking as the intermediary outputs for code execution questions. Us-
ing scratchpads allows a model to explicitly reference intermediary calculations rather
than relying on internal representations of the calculations, encouraging better multi-
step reasoning. CoT reasoning requires prompting the model to output an explanation
on how to calculate the answer before giving the final output (Wei et al., 2022; Chowd-
hery et al., 2022). Unlike scratchpads which output execution steps, CoT reasoning
will give a natural language explanation using sentences. It also better matches how
humans use logical steps when solving tasks rather than having a single final output.
In-context learning requires providing the model with a few (∼ 2− 3) examples of in-
domain questions containing the expected outputs (sometimes with CoT reasoning)
before prompting the desired question to answer (Radford et al., 2019; Brown et al.,
2020). This technique enables skill acquisition without sacrificing model generalisabil-
ity. Finally, the majority voting strategy (also known as self-consistency) is a decoding
strategy in which multiple sequences of rationales and answers are given on which a
voting scheme is used to select a final answer (Wang et al., 2023).

3Which is ×1.6 the size of GPT3 (Brown et al., 2020)
4The Mathematics Aptitude Test of Heuristics (MATH) dataset consists of 12,500 math problems used

in competitions requiring strategy to be solved. Each problem comes with a step-by-step solution.

14 Chapter 1. Introduction

FIGURE 1.8: Copy of Zhou et al. (2022, Figure 8) showing different examples of in-
context prompting styles.

Zhou et al. (2022) uses scratchpad/CoT reasoning for detailed in-context prompts of
each step of the calculation. This includes steps which may be taken for granted such
as identifying the number of digits in a number before using it. An example of the
different prompting styles is given in Figure 1.8. Such algorithmic prompting improves
OOD generalisation towards reasoning problems. In particular, this work identifies
four learning stages for the LM to exhibit, inspired by how children are taught skills.
The stages include teaching an algorithm (e.g., two input addition) as a skill, accumu-
lating different skills (e.g., learning to do either addition or subtraction), composing
skills (e.g., doing multi-number addition to complete a multiplication) and using skills
as tools (e.g., using addition in a wider context problem which can require wider rea-
soning). Constraining the algorithmic prompts to be these comprehensive yet struc-
tured contexts allows the model to use the context as a human would expect. As a
result, if the context was modified to include systematic errors the accuracy would
also drop substantially. Due to the limitation of the allowed input context length in
Transformers, for the skill composition tasks such as two number addition, gaining
reasonable accuracy for OOD scenarios requires splitting the context and passing them
to multiple models. However, using such a technique for the ‘skills as tools’ stage re-
sults in degrading the performance of informal logical reasoning.

Minerva (a large LM which is fine-tuned on high-quality mathematic datasets) which
can also use in-context learning, CoT reasoning and majority voting was found to still
make the most mistakes based on incorrect reasoning for the CoT (Lewkowycz et al.,

1.4. A Stepping Stone towards Human Reasoning: Learning Mathematics 15

FIGURE 1.9: Copy of Lewkowycz et al. (2022, Appendix I; Figure 7). Accuracy on the
single arithmetic operation of two numbers using Minerva. 500 arithmetic questions

are sampled at random for each operation and choice of digits.

2022). Interestingly, Minerva exhibits only a few hallucinations meaning mathematical
concepts do not get fabricated regularly. Failures were intuitive and predictable, sug-
gesting some mathematical properties may be learnt. Another example of predictable
failure includes observing the failure modes for a small Transformer (up to 6 layers)
trained in matrix diagonalisation. Such models would consistently learn the eigen-
values and unit norms of rows and columns but fail on having orthogonal rows and
columns (Charton, 2022a). This would remain the case even if the training would be
prematurely ended or if larger training matrices were given.

Much progress is still required to be made for reasoning on tasks as simple as two
input OOD arithmetic as shown by Figure 1.9. For example, comparing the perfor-
mance of Minerva on multiplying two numbers with 4 vs 6 digit outputs shows a drop
of accuracy from ∼90% to ∼15%. Transformer LMs are data-hungry, but many real-
world datasets have tailed distributions where the longer the solution the lower the
frequency (Anil et al., 2022). It is those long solutions which tend to correspond to the
types of questions that LMs struggle with. Therefore, the LMs must learn to generalise
from short-length solutions to longer ones. Furthermore, issues regarding robustness,
compositionality and general OOD ability have been observed even though test accu-
racies are high (Welleck et al., 2022).

From comparing learning on in-domain data to OOD data, Transformers have shown
a preference for parallel strategies which favour using shortcuts and spurious correla-
tions rather than (sequential) serial ones (Anil et al., 2022). This can be observed for
the binary parity task which determines if the number of set bits (1s) is odd or even.
The learnt parallel strategy resulted in counting the frequency of ones and using a
threshold to determine the output. Such a strategy is unable to generalise to longer

16 Chapter 1. Introduction

sequences. Another example of shortcuts can be found when learning the greatest
common divisor (GCD) of two integers (e.g., for integers 18 and 24 the GCD would
be 6) (Charton, 2022b). GCD can perform well using a base 30 encoding rather than
the traditional base two or ten.5 Larger bases have the advantage of shorter input and
output sequences. However, the accuracy of the model becomes dependent on the
base the model is trained on; a factor which should not affect the ability to do GCD.
This suggests the model learns to cheat rather than learn the underlying mechanisms
to solve the task, otherwise all bases would expect to have similar performance. The
model learns shortcuts for easy cases, exploiting the representation of the given base
representation, but as a result, fails to generalise. For example, in base two, by counting
the number of rightmost 0’s in a token it is possible to determine the GCD of values 2n.

To summarise, techniques such as in-context prompting, scratchpads, CoT reasoning
and majority voting improve reasoning and generalisation of Transformers over scal-
ing. However, the reasoning is not perfect and can still fail on even the basic arithmetic
operations such as multiplication. There exists reliance on how inputs are encoded
and habits towards shortcutting. Furthermore, there due to the lack of transparency
of the parameters of the architecture, there is no guarantee of the network’s ability to
execute systematic solutions for mathematical tasks. In contrast, if instead specialists
networks designed for systematic generalisation are used, it would be possible to have
confidence in what the network learns without relying on large numbers of parameters
that require tricks to infer from.

1.4.3 Representing Numbers in Machine Learning Models

Artificial neural networks with human cognitive limitations have been developed, such
as simulating the distance effect where the time to discriminate two numbers increases
as the distance between the two numbers decreases (Anderson et al., 1994).6 But should
we build networks bounded by such biases for learning arithmetic? If a machine can
add, surely it should be able to add no matter the quantity with the same confidence
each time. Such reliability is essential for applications such as equation discovery in
physical and financial modelling. In other words, we want the representation and pro-
cessing of the numbers to guarantee extrapolation; working on OOD data. Existing
works in ML and DL have explored different types of encodings of numbers for arith-
metic tasks (see Figure 1.10) including static encodings and learnable vector embeddings.

5An example of a base 10 symbolic representation of the number 24 would be tokens ‘+’, ‘2’, ‘4’.
6See Appendix B for further coverage of number representations in humans, animals and computers.

1.4. A Stepping Stone towards Human Reasoning: Learning Mathematics 17

FIGURE 1.10: Breakdown of the types of static and learnable number encoding for-
mats used in ML/DL. This example considers an input of adding 12 and 3. The input
sequence structure represents how the input is given. The numeric encoding format is the
strategy used to represent the numbers in the input. The model type is the type of ar-
chitecture that can use such an encoding format. The blue path leads to how NALMs

represent numbers which is the type of representation used in this thesis.

1.4.3.1 Static Encoding

Static encodings are one-to-one mappings that take the numeric inputs and convert
them into the relevant encoded format to be used as input to the network. This can
include converting the numeric input to either a binary, one-hot, or floating-point for-
mat.

Binary Encoding. Binary inputs were a popular encoding choice with earlier net-
works that designed multilayered neural networks to perform operations such as n-bit
addition of N numbers, n-bit multiplication, or division of two numbers (Hajnal et al.,
1987; Siu and Bruck, 1990; Siu et al., 1993; Cannas, 1995; Franco and Cannas, 1998).
Durbin and Rumelhart (1989) attempted to create more expressible units by creating a
Product Unit (PU). The PU is similar to a standard neuron with no activation but with
two differences: (1) the cumulative summation is replaced with a cumulative product

18 Chapter 1. Introduction

and (2) the weights are no longer multiplied but are exponents to the input. The re-
sulting PU unit therefore can express polynomials while requiring fewer neurons than
a typical network to learn. However, Martı́nez-Estudillo et al. (2008) find the PUs are
prone to falling into local minima when using gradient descent and therefore rely on
non-differentiable evolutionary optimisation strategies such as crossover and mutation
to converge.

Other, more recent architectures which process binary inputs are Neural GPUs (Kaiser
and Sutskever, 2016). The Neural GPU is constructed from convolutional gated re-
current units and requires various training techniques such as curriculum learning,
relaxed parameter sharing and dropout to learn. Neural GPUs can extrapolate to long
sequence lengths (2000) from being trained on length 20 inputs for operations such as
binary multiplication, however, the models are not robust as only a few Neural GPU
models generalise to such a long sequences. Freivalds and Liepins (2017) offer an im-
provement by simplifying the architecture and training procedure by introducing diag-
onal gating and hard nonlinearities but require implementing additional cost functions
to enforce their constraints.

One-hot Encoding. Integer inputs could also be represented using one-hot encodings
of each digit. For example, Nollet et al. (2020) uses such an encoding on MLPs to learn
long multiplication and addition for up to 7 digits. The network learns to break the
task into processing steps representing sub-operations allowing for the (intermediary)
input to act as an external memory. Similar to the Neural GPU’s need for curriculum
learning (Kaiser and Sutskever, 2016), active learning was required to control the dif-
ficulty of the dataset to learn long multi-digit multiplication. Certain neurons in the
MLP were found to encode digit operations for some operands, however, extrapola-
tion performance to longer digits remained untested.

Floating-Point Encoding. Alternatively, we can use numerical inputs directly but
using a floating-point representation. Some approaches that can process raw numeri-
cal inputs include using MLPs, Genetic Programming (GP), and specialised arithmetic
units (NALMs).

In Section 1.4.1, we have shown how MLPs can process inputs using floating-point
representations when training to perform arithmetic operations. Our findings show
that the MLPs could not learn operations such as multiplication or division; when the
network has the capacity to model operations exactly (i.e., addition/subtraction) the
ideal solutions were unable to be learned.

GP is a class of Genetic Algorithms that search over the space of computer programs
using operations for natural selection (Koza, 1994). GP initialises a set of random can-
didate mathematical expressions (called a population) which gets iteratively evolved.

1.4. A Stepping Stone towards Human Reasoning: Learning Mathematics 19

The evolution process involves selecting the best candidates (parents) via a fitness func-
tion (e.g., lowest error), creating offspring of the parents using crossover and muta-
tion, and replacing the population with the new offspring. At the end of the iterations
or when a stopping criterion is met, the fittest candidate is selected as the final so-
lution. Though GP is able to explore vast search spaces, it is slow to converge and
non-differentiable so gradient-based optimisation is difficult to use (Landajuela et al.,
2022; Kamienny et al., 2022).

Specialised arithmetic units, commonly known as NALMs (Mistry et al., 2022a), have
specially designed architectures that can select and process a vector of inputs repre-
sented as floating-point values to learn arithmetic expressions. Therefore, no form of
input preprocessing or learning of embeddings is required. They are specially designed
for extrapolative arithmetic meaning that they can generalise to OOD data.

1.4.3.2 Learnable Embeddings

Rather than static encodings of the input, learning vector embeddings, which take ad-
vantage of high-dimensional representations would be considered the most common
approach for DL architectures such as Transformers. Nogueira et al. (2021) showed
that the symbolic encoding of the representation of the numbers (numeric encoding
format) in the input question matters for performance and data sample efficiency. For
example, an addition/subtraction task given as a text based question for up to 60 digit
numbers (completed using a pretrained T5 Transformer (Raffel et al., 2020)) found a
base ten scientific encoding (e.g., 32 is represented as “3 10e1 2 10e0”) to outperform
all other encodings including decimal, characters and words. Although better sym-
bolic representations can positively impact performance, they were unable to find a
representation which is generalisable to any input length. Russin et al. (2021) found
pretrained Transformers on character-level mathematical expressions can, to some ex-
tent, break down maths expressions to their sub-expressions if given enough training
data. However, rather than full compositionality, there is a mix between composition
and memorisation (table lookup). The vector representations of the operators would
store the aggregate results, while the digit representations were spatially organised ac-
cording to their natural order in the mental number line (Dehaene, 1999), e.g., vectors
representing one are closer to two than nine.

If mathematical questions are given in text form as input sequences (parsed as tokens)
without any preprocessing (e.g., tree-parsing) then models struggle in tasks requiring
multiple intermediate steps (Saxton et al., 2019). Processing inputs as expression trees
which get converted into prefix sequences to aid in encoding structure can solve com-
plex integral problems but has trouble with extrapolation over different input/output
sequence length (Davis, 2019; Lample and Charton, 2020). For example, if trained on
data which generates short derivative inputs then the model would perform poorly

20 Chapter 1. Introduction

on test data where the input data consists of long derivative inputs. This inability to
generalise to different data generators also occurs in other mathematical tasks such as
matrix diagonalisation where the train and test distributions of the eigenvalues would
differ (Charton, 2022a).7

Rather than encoding token-based inputs, Yan et al. (2020) shows that using a binary
encoding format for the inputs results in learning embeddings which if visualised show
a systematic number system. Such emergent internal number systems contained in the
learnt embedding space have been observed by many (Kondapaneni and Perona, 2020;
Cognolato and Testolin, 2022; D’Ascoli et al., 2022). Probing popular pretrained em-
bedding representations for numeracy finds fine-grained information about number
magnitude and order, however weak OOD extrapolative performance when tested on
numerical inputs whose magnitudes lie outside of the training range (Wallace et al.,
2019). Naik et al. (2019) also find embeddings currently cannot capture precise magni-
tude (a<b) and numeration (3=‘three’).

Overall, many recent efforts for training neural networks to learn extrapolative arith-
metic focus on learning and manipulating high-dimensional representations which can
be difficult to interpret and struggle with extrapolation. We on the other hand will
use this thesis as an opportunity to explore the extent to which we can learn extrap-
olative arithmetic using modular architectures (i.e., NALMs) which work directly on
real-valued inputs encoded using a floating point format.

1.5 Discovering Mathematical Expressions for Symbolic Regres-
sion

Throughout this thesis, we will investigate models which can model mathematical ex-
pressions. The focus will be on learning simple arithmetic, but if extended, the mod-
els explored can also be used to model rich expressions which occur in symbolic re-
gression. Symbolic regression is the task of discovering the underlying relationship
between the input variables (X) and the target output variable (Y). The relation is com-
posed of a combination of mathematical operations and coefficients. Ideally, models
will discover expressions that have a balance between accuracy and simplicity. That is,
the expression is correct while also being composed with a minimal number of terms.
The ability to discover such expressions from data makes symbolic regression models
especially applicable to physics (Udrescu and Tegmark, 2020). For example, recently
in astrophysics, Wadekar et al. (2023) use symbolic regression to discover a new equa-
tion (by adding a new term to the existing equation) that is able to reduce the scatter

7Some distributions such as Gaussian and Laplace (with heavy tails characteristics) are able to gener-
alise to OOD distributions, however all other tested distributions could not.

1.6. Research Questions and Contributions 21

in mass estimates of a galaxy cluster. These findings mean more accurate mass esti-
mations can be given of existing/upcoming X-ray surveys such as eROSITA, therefore
improving scientific contributions. Furthermore, the speed of equation discovery is an-
other benefit of SR. For example, Brunton et al. (2016)’s ML symbolic regression model
can discover the underlying equations for fluid dynamics which had taken experts 30
years to discover.

Examples of existing approaches for symbolic regression include GP (Genetic Program-
ming), sparse regression models and DNNs. GP uses Evolutionary Algorithms (EA) to
learn mathematical expressions (Koza, 1994; Schmidt and Lipson, 2009). EAs maintain
a population of expressions where individuals of the population get selected based on
a fitness function and modified via techniques such as crossover and mutation. Hy-
brid methods which combine GP with local search can also be used to further improve
generalisation (Kommenda et al., 2020). The Sparse Identification of Nonlinear Dy-
namics (SINDy) model is a data-driven sparse regression approach for symbolic re-
gression (Brunton et al., 2016). Given a library of pre-defined functions (e.g., selection,
negation, squaring, etc.), SINDy will discover a subset of relevant functions along with
a scaling coefficient for each selected function. Sparsity is promoted by using either the
LASSO regression or a least squares-based criteria. Finally, DNNs using Transformers
are another data-driven approach. Transformers treat the problem as a sequence-to-
sequence translation (Biggio et al., 2021; Kamienny et al., 2022).

1.6 Research Questions and Contributions

This section gives the research questions investigated throughout this work and the
novel contributions made. As NALMs are a fairly new research field, our work focuses
on strengthening the foundational understanding regarding NALMs including how to
benchmark, how to understand causes of failure, and how to compose.

1.6.1 Research Questions

RQ 1: To what extent are NALMs robust to learning basic arithmetic operations?

The first Research Question (RQ) focuses on assessing existing NALMs’ ability to learn
the basic arithmetic operations which they are built to do. To answer this question, we
need to consider how to measure the performance of NALMs, motivating RQ 1.1, and
in what ways to consider robustness, motivating RQ 1.2.

RQ 1.1: What evaluation strategies can be used to best analyse the different charac-
teristics of a NALM?

22 Chapter 1. Introduction

RQ 1.2: Which NALMs are robust to learning on different training distributions?

RQ 2: How can the failures in learning extrapolative models using NALMs be char-
acterised?

The second RQ focuses on investigating the causes of the observed failure cases of
NALMs. Two directions are considered. The first (RQ 2.1) is exploring failures caused
due to architecture design. The second (RQ 2.2) is exploring failures caused due to the
nature of the data and task.

RQ 2.1: What are significant architecture choices which influence the ability to learn?

RQ 2.2: Can modifying the ML pipeline provide performance gains in robust extrap-
olation?

RQ 3: Which strategies are most promising for combining different NALMs?

The final RQ focuses on NALM compositionality for learning multi-step arithmetic.
Similar to how a single operation can best be performed by a certain type of NALM,
we investigate how the architectures used to combine NALMs influence learning in
RQ 3.1. In RQ 3.2, we investigate designing a compositional architecture for NALMs.

RQ 3.1: To what extent does the way in which NALMs are combined affect their
ability to compose?

RQ 3.2: How can we build an architecture to compose NALMs for learning different
combinations?

1.6.2 Contributions

The novelty of this thesis lies in its findings on the feasibility of using NALMs as ML
models to reliably learn basic arithmetic in an extrapolative manner. An overview of
the thesis is given in Figure 1.11 and the contributions are summarised below.

Evaluating and benchmarking NALMs. In the context of RQ 1.1, we analyse exist-
ing evaluation methodologies for NALMs concluding that there is a lack of consistency
in the research field. In an attempt to alleviate this issue, we propose a new synthetic
arithmetic benchmark to measure the capabilities of NALMs in learning single-step op-
erations. We extend an existing set of evaluation metrics based on the work of (Mad-
sen and Johansen, 2019) for our benchmark (Chapter 3), which focuses on measuring
performance in relation to extrapolation success, convergence speed, and weight inter-
pretability for the desired operation. Our benchmark measures against various ranges

1.6. Research Questions and Contributions 23

FIGURE 1.11: Overview of the different components of this thesis. Chapter 2 is a
review of existing research on NALMs including areas of weakness. The remaining
chapters consider the components of the ML pipeline. Chapter 3 focuses on ways to
benchmark NALMs and have evaluation metrics suited for extrapolative arithmetic.
Chapters 4, 5 and 7 investigate ways to build better NALMs for multiplication, divi-
sion, and composition. Chapter 6 considers the effect of techniques such as feature

scaling and using different loss functions for training.

24 Chapter 1. Introduction

and distributions throughout the thesis (Chapters 3-6) to answer RQ 1.2 where we show
issues regarding robustness occurring in a range of NALMs.

The contributions for these RQs have been presented at the NeurIPS 2022 Journal
Showcase Track and published in

• Bhumika Mistry, Katayoun Farrahi, and Jonathon Hare. A primer for neural
arithmetic logic modules. Journal of Machine Learning Research (JMLR), 23(185):1–58,
2022a. doi:10.48550/ARXIV.2101.09530.

Challenges in Robustly Learning Multiplication and Division. A comprehensive
qualitative analysis of existing NALMs along with our findings from RQ 1, allows us to
identify the key areas of weaknesses in NALMs which leads us to RQ 2. Our contribu-
tions for RQ 2.1 include designing a novel stochastic wrapper for reducing the chance
of falling into local optima in multiplication in Chapter 4 and two novel NALMs for
learning division in Chapter 5. We provide extensive empirical results for our divi-
sion modules, comparing against an existing division NALM (the Real Neural Power
Unit (NPU) (Heim et al., 2020)) as a case study. Our findings identify the types of data
which hinder learning division for each module, including training on mixed-sign in-
puts, negative ranges, extremely small values and different distributions. For RQ 2.2,
in Chapter 6, we contribute findings on how factors outside of the NALM architecture
can significantly impact learning. We show how feature scaling impedes the learning
of extrapolative weights by disturbing their ability to discretise. Furthermore, by eval-
uating three different losses we show the importance of the choice of loss function used
when solving different arithmetic tasks for both numerical and image inputs.

A majority of the experiments for these RQs have been published in:

• Bhumika Mistry, Katayoun Farrahi, and Jonathon Hare. Exploring the learning
mechanisms of neural division modules. Transactions on Machine Learning Re-
search (TMLR), 2022b. ISSN 2835-8856.

• Bhumika Mistry, Katayoun Farrahi, and Jonathon Hare. Improving the robust-
ness of neural multiplication units with reversible stochasticity. CoRR, 2022c.
doi:10.48550/ARXIV.2211.05624.

Composition of NALMs. In Chapter 7, we investigate compositionality to answer
RQ 3. In relation to RQ 3.1, our findings indicate that deep stacking of NALMs does
not create effective learners. We argue that the sparse and discrete nature of NALM
parameters for the task results in gradient challenges when learning. To answer RQ 3.2,
we show that performance can be improved if the compositional network has access to
intermediate steps of working (a scratchpad) by designing an architecture influenced
by the GWT. The resulting architecture forces competition between modules to update
the scratchpad while broadcasting the information at every step.

1.7. Thesis Structure 25

1.7 Thesis Structure

We begin in Chapter 2 by providing the background knowledge required to under-
stand NALMs. This includes providing motivation for using NALMs, explaining ex-
isting NALMs and reviewing the current shortcomings of the field. We also provide
existing examples of applications where NALMs have been utilised in larger end-to-
end networks showing the possible breadth of this research field. Chapter 3 begins
by understanding how previous studies have evaluated NALMs, discovering a lack
of consistent evaluation. In attempts to alleviate this, we further build on one work
by adding a new benchmark with empirical results on the four main arithmetic op-
erations over multiple well-known NALMs. Chapter 4 and Chapter 5 build on ob-
servations made in Chapter 3 which identify difficulty in learning multiplication and
division reliably. Chapter 4 explore using a new technique of reversible stochasticity
to reduce chances of falling into a local optima, while Chapter 5 discovers reasons as
to why division is so difficult to learn and in the process introduces two new NALMs.
Rather than looking at NALM architectures, Chapter 6 focuses on understanding the
effects of changing different parts of the ML training pipeline on NALMs including
feature scaling and losses. Chapter 7 investigates how NALMs can be combined to
do compositional arithmetic. In particular, we show how building a globally accessi-
ble scratchpad containing intermediate workings can improve the chances of learning.
Chapter 8 discusses the overall findings of the thesis and potential areas of future work
for the field.

27

Chapter 2

Review of NALMs

In this chapter, we introduce and review the family of neural networks which we call
NALMs. Our review begins with a high-level overview clarifying the what and whys
and then delves into the formal definitions of existing NALMs. Once this foundation
is laid, we use the first NALM, the NALU, as a case study to provide a comprehensive
explanation of the existing pros and cons of the field as well as existing applications.
We conclude with the remaining gaps in the field which become the focal points for the
remainder of this thesis.

2.1 What are NALMs and Why use them?

We first answer three high-level yet important questions: 1. What is a NALM? 2. What
is the aim of a NALM? 3. Why is a NALM useful? From answering these questions,
we shall arrive at the following definition: A NALM is a neural network that performs
arithmetic and/or logic based expressions which can extrapolate to OOD data when parameters
are appropriately learnt whilst expressing an interpretable solution.

2.1.1 What is a NALM?

NALM stands for Neural Arithmetic Logic Module. Neural refers to neural networks.
Arithmetic refers to the ability to learn arithmetic operations such as addition. Logic
refers to the ability to learn operations such as selection, comparison based logic (e.g.,
greater than) and boolean based logic (e.g., conjunction). Module refers to the archi-
tecture’s of the neural units which learn arithmetic and/or logic operations. The term
module encompasses both a single (sub-)unit and multiple (sub-)units combined to-
gether.

28 Chapter 2. Review of NALMs

Neural
Arithmetic
Logic
Module

Generalised Explicit

Neural
Arithmetic
Logic
Module

FIGURE 2.1: High-level example of the input-output structure into a NALM. Both
networks are the same. The generalised network defines the notation of each element
in the input and output. The explicit network is an example of valid input and output

values.

What kind of operations can be learnt? Existing work has tried to model arithmetic
operations including addition, subtraction, multiplication, division and powers. Logic
based operations include logic rules (e.g., conjunction) (Reimann and Schwung, 2019),
control logic (e.g., <=) (Faber and Wattenhofer, 2020) and selection of relevant inputs.

How are operations learnt? Because a NALM is a neural network, a module can model
the relation between input and output vectors via supervised learning which trains pa-
rameters through backpropagation. To learn the relation between input and output
requires learning to select relevant elements of the input and apply the relevant opera-
tion/s to the selected input to create the output.

How is data represented? The input and outputs are both vectors. Each vector element
is a real-valued number which is implemented as a floating-point number. An exam-
ple of a single data sample is illustrated in Figure 2.1 where we assume that the NALM
used (made from two stacked sub-units) can learn addition, subtraction and multipli-
cation. In practice, data would be given in batch form for training. Furthermore, there
can be multiple output elements which can learn a different arithmetic expressions.

2.1.2 What is the Aim of a NALM?

The aim of NALMs is to provide systematic generalisation in learning arithmetic and/or
logic expressions. Once the learning state (training) has ended, if the correct weights
are learnt, the NALM can also extrapolate to unseen data (i.e., OOD data).

What does interpretability mean for NALMs? Imagine modelling the relation be-
tween input x and output y with a module f parameterised by θ, i.e., y = fθ(x). We
say a NALM is interpretable if you can set the module’s parameters (fθ) to express the
underlying relation between x and y in a provable way. Simply put, the parameters of a
NALM can be set such that, if the expression which the NALM calculates is written out,
it will hold for all valid inputs. For example, for modelling the addition of two inputs
(x1 and x2), having a model which takes in the two inputs and applies a dot product

with a weight vector set to ones results in y = fθ(x) =
[︂
w1 w2

]︂
·
[︄

x1

x2

]︄
=
[︂
1 1

]︂
·
[︄

x1

x2

]︄
which will always result in the output being x1 + x2 no matter the values of x1 and x2.

2.2. Existing NALMs Architectures 29

More broadly speaking, the type of interpretability we want from a NALM is decom-
posable transparency (Lipton, 2016). Transparency means to understand how the model
works. Decomposability is transparency at the component level defined by Lipton
(2016) as ‘each part of the model - each input, parameter, and calculation - admits an
intuitive explanation’. For example, for modelling force = mass× acceleration, there
are: the two inputs into the NALM representing mass and acceleration, the (multipli-
cation) operation parameters which are set to 1, and the calculation that multiplies the
two inputs resulting in the value for the force.

What does extrapolation on OOD data mean for NALMs? OOD data refers to data
which is sampled outside the training distribution. For example, if trained on a range
[0,10] a valid OOD range could be [11,20]. Extrapolation is the ability to correctly pre-
dict the output when given OOD data. In the context of NALMs, extrapolation means
that the model successfully learns the underlying principles for modelling the (arith-
metic/logic) operations it is designed for. From a practical viewpoint, a NALM with
successful extrapolative capabilities can be considered as a module where the loss in
predictive accuracy only occurs due to numerical imprecisions of hardware limitations.

2.1.3 Why is a NALM useful?

The ability to learn arithmetic seems trivial in comparison to other architectures such
as LSTMs, CNNs or Transformers which can be used as standalone networks to learn
tasks such as arithmetic, object recognition and language modelling. So, why care
about NALMs? Learning arithmetic, though it may seem a simple task, remains un-
solved for neural networks. Solving this problem requires precisely learning the un-
derlying rules of arithmetic such that failure cases will not occur in cases of OOD data.
Therefore, before considering more complex tasks, solving simple tasks seems reason-
able. Furthermore, even though NALMs specialise in arithmetic there is no restriction
in using them as part of larger end-to-end neural networks. For example, attaching
a NALM to a CNN as residual connections (Rana et al., 2020) to improve counting in
images. In Section 2.4, we discuss a vast array of applications in which NALMs are
being utilised. The extrapolative and interpretable properties of NALMs would also be
desirable when looking at alternate disciplines. Interpretability and transparency for
ML models have been acknowledged as necessary ingredients for obtaining a scientific
outcome in the natural science (Roscher et al., 2020), materials science and chemistry
domains (Oviedo et al., 2022). For example, interpretable models such as Generalised
Additive Models have been used to model and interpret the key features of chemical
adsorption of subsurface alloys (Esterhuizen et al., 2020).

30 Chapter 2. Review of NALMs

TABLE 2.1: A summary regarding the key properties of different NALMs. Properties
include the operations which can be modelled, if a form of explicit gating is used, if the
NALM can process negative inputs and if the NALM uses a form of discretisation regu-
larisation on its parameters. * indicates the NALM can only to learn arbitrary powers

(i.e., xp
i where p is a real number) if the power value is between -1 to 1.

NALU iNALU NAU NMU NPU G-NALU NLRL NSR

Addition ✓ ✓ ✓ ✓
Subtraction ✓ ✓ ✓ ✓
Multiplication ✓ ✓ ✓ ✓ ✓
Division ✓ ✓ ✓ ✓
Arbitrary Power ✓* ✓ ✓*
Boolean Logic ✓
Control Logic ✓
Gating ✓ ✓ ✓ ✓ ✓
Negative Input ✓ ✓ ✓ ✓ ✓
Discretisation ✓ ✓ ✓

2.2 Existing NALMs Architectures

This section introduces existing NALM architectures along with their mathematical
definitions. The mathematical notation will be in an element-wise form which provides
how to calculate an output element yo indexed at o given a single data sample (input
vector x). For completeness, we also provide illustrations for each module1 using the
matrix/vector with symbols and colouring following the key in Figure 2.2.

We begin with the first NALM, the NALU (Trask et al., 2018) followed by the: Improved
NALU (iNALU) (Schlör et al., 2020), Neural Addition Unit (NAU) / Neural Multiplica-
tion Unit (NMU) (Madsen and Johansen, 2020), Neural Power Unit (NPU) (Heim et al.,
2020), Golden Ratio NALU (G-NALU) (Rana et al., 2019), Neural Logic Rule Layer
(NLRL) (Reimann and Schwung, 2019) and Neural Status Register (NSR) (Faber and
Wattenhofer, 2020). A summary of the NALM properties is given in Table 2.1.

Element-wise addition

Element-wise subtraction

Element-wise multiplication

Element-wise 1-<value>

Element-wise reciprocal of input

Element-wise power

Input/output

Learnable parameter

Part of summative path calculation

Part of gating calculation

Part of multiplicative path calculation

Part of multiplicative sign retieval calculation

Matrix Multiplication

Data flow

Intermediary result

Transpose input

Concatenate input (column-wise)

Kronecker product

Concatenate input (row-wise)

FIGURE 2.2: Key of the symbols and colouring system for architecture illustrations.

1Module illustrations from the original papers are provided in Appendix C.1.

2.2. Existing NALMs Architectures 31

2.2.1 NALU

abs

NALU

FIGURE 2.3: NALU architecture. Example of a 3-feature input and 2-feature output
model.

The NALU, illustrated in Figure 2.3, provides the ability to model basic arithmetic op-
erations, specifically: addition, subtraction, multiplication and division. The NALU
requires no indication of which operation to apply and aims to learn weights that pro-
vide extrapolation capabilities if correctly converged. The NALU comprises of two
sub-units, a summative unit that models {+,−} and a multiplicative unit that models
{×,÷}. Following the notation of Madsen and Johansen (2020) we denote the sub-units
as NAC+ and NAC• respectively. Formally, for calculating a specific output value, the

32 Chapter 2. Review of NALMs

NALU is expressed as:

Wi,o = tanh(ˆ︃Wi,o)⊙ sigmoid(ˆ︃Mi,o) (2.1)

NAC+ : ao =
I

∑
i=1

(Wi,o · xi) (2.2)

NAC• : mo = exp

(︄
I

∑
i=1

(Wi,o · ln(|xi|+ ϵ))

)︄
(2.3)

go = sigmoid

(︄
I

∑
i=1

(Gi,o · xi)

)︄
(2.4)

NALU : yô = go · ao + (1− go) ·mo (2.5)

where ˆ︂W , ˆ︂M ∈ RI×O are learnt matrices (I and O represent input and output dimen-
sion sizes). A non-linear transformation is applied to each matrix and then both are
combined via element-wise multiplication to form W (Equation 2.1). Due to the range
values of tanh and sigmoid, W aims to have an inductive bias towards values {−1, 0, 1}
which can be interpreted as selecting a particular operation within a sub-unit (i.e., intra-
sub-unit selection). For example, in the NAC+ +1 is addition and -1 is subtraction, and
in the NAC• +1 is multiplication and -1 is division. In both sub-units, 0 represents not
selecting/ignoring an input element. A sigmoidal gating mechanism (Equation 2.4)
enables selection between the sub-units (i.e., inter-sub-unit selection), where an open
gate, 1, selects the NAC+ and closed gate, 0, selects the NAC•. Once trained, the gating
should ideally select a single sub-unit. G is learnt and the gating vector g represents
which sub-unit to use for each element in the output vector. Finally, Equation 2.5 gates
the sub-units and sums the result to give the output. NALU’s gating only allows for
each output element to have a mixture of operations from the same sub-unit. There-
fore, each output element is an expression of a combination of operations from either
{+,−} or {×,÷} but not {+,−,×,÷}. This issue is fixed by stacking NALUs such
that the output of one NALU is the input of another. For a step-by-step example of the
NALU, see Appendix C.2. Next, we overview the architectures of some recent mod-
ules.

2.2.2 iNALU

The iNALU identifies key issues in the NALU and modifies the unit to incorporate
solutions (detailed in Section 2.3). In particular, they use:

2.2. Existing NALMs Architectures 33

iNALU

abs

abs

sign

FIGURE 2.4: iNALU architecture. Example of a 3-feature input and 2-feature output
model.

• Independent weight matrices. To allow the multiplicative and summative paths
to learn their own set of Ŵ and M̂ weights to be used in calculating a for the
NAC+ and m for the NAC•.

WA
i,o = tanh(ˆ︃WA

i,o) · sigmoid(ˆ︃MA
i,o) , (2.6)

WM
i,o = tanh(ˆ︃WM

i,o) · sigmoid(ˆ︃MM
i,o) . (2.7)

• Clipping. Clipping the multiplicative weights using the equation below (with
ω = 20) and clipping the gradient of learnable parameters between [-0.1,0.1].

mo = exp(min(ln(max(|xi|, ϵ)) ·WM
i,o , ω) . (2.8)

• Multiplicative sign correction. Retrieve the output sign of the multiplicative
path,

msvo =
I

∏
i=1

(︂
sign(xi) · |WM

i,o |+ 1− |WM
i,o |
)︂

. (2.9)

34 Chapter 2. Review of NALMs

• Regularisation. Include a regularisation loss term that avoids having near-zero
learnable parameters,

Rsparse =
1
t ∑

θ∈{ˆ︃WA,ˆ︃MA,ˆ︃WM,ˆ︃MM,g}

∑O
o ∑I

i max(min(−θi,o, θi,o) + t, 0)
O · I , (2.10)

where t = 20. This activates if the loss is under 1 and there have been over 10
iterations of training data.

• Reinitialisation. Reinitialise the model weights if the average loss collected over
a number of consecutive iterations has not improved. More specifically, reinitial-
isation occurs for every 10th iteration, if over 10,000 iterations have occurred and
the average loss of the first half of those iterations of the errors is less than the
average loss of the second half plus its standard deviation, and the average loss
of the latter half of errors is larger than 1.

• Independent gating. Remove the dependence of the input values when learning
the gate parameters,

go = sigmoid(go) . (2.11)

The iNALU expression for calculating a single output element indexed at o is

iNALU : yô = go · ao + (1− go) ·mo ·msvo . (2.12)

Applications. Schlör et al. (2020) create a hybrid layer consisting of iNALU and ReLU
neurons for fraud detection, under the assumption that financial data inherently has
some underlying mathematical relations. If data is fraudulent then the underlying pat-
terns would not be followed hence making it identifiable.

2.2.3 NAU and NMU

The NAU and NMU are sub-units for addition/subtraction and multiplication respec-
tively. The NAU and NMU definitions for calculating an output element indexed at o
are:

NAU : ao =
I

∑
i=1

(Wi,o · xi) , (2.13)

NMU : mo =
I

∏
i=1

(Wi,o · xi + 1−Wi,o) , (2.14)

where the W is unique for each sub-unit. Prior to applying the weights of a sub-unit to
the input vector, each element of W is clamped between [-1,1] if using the NAU, or [0,1]

2.2. Existing NALMs Architectures 35

NAU

FIGURE 2.5: NAU architecture. Example of a 3-feature input and 2-feature output
model.

NMU

FIGURE 2.6: NMU architecture. Example of a 3-feature input and 2-feature output
model.

if using the NMU. Therefore, considering discrete weights {−1, 0, 1}, Equation 2.13 will
do the summation of the inputs where each input is either added (Wi,o = 1), ignored
(Wi,o = 0), or subtracted (Wi,o = −1). When considering the discrete weight values
of the NMU {0, 1}, the result is the product of the inputs where each input is either
multiplied (Wi,o = 1) or not selected (Wi,o = 0). Rather than allowing the product of the
inputs to be multiplied by 0 whenever an irrelevant input (i.e., with a weight of 0) is
processed, Equation 2.14 will also convert the input to be 1 (the multiplicative identity
value) resulting in the irrelevant input not having any effect towards the final output.

Regularisation. To enforce the module weights to become discrete values, the follow-
ing regularisation loss term is also used,

Rsparse =
1

I ·O
O

∑
o=1

I

∑
i=1

min (|Wi,o|, 1− |Wi,o|) . (2.15)

A scaling factor for regularisation strength

λ = λ̂ max
(︃

min
(︃

iterationi − λstart

λend − λstart
, 1
)︃

, 0
)︃

, (2.16)

36 Chapter 2. Review of NALMs

is multiplied to Rsparse, where the regularisation strength is scaled by a predefined λ̂.
The regularisation will grow from 0 to λ̂, between iterations λstart and λend, after which
it plateaus and remains at λ̂.

Applications. As well as modelling physical equations, the NAU and NMU have been
integrated with Variational Autoencoders to model non-linear Ordinary Differential
Equations (ODEs) (Heim et al., 2019). Pei et al. (2021) uses the NAU as part of their
Stateformer architecture which learns to recover types from binaries. The NAU is used
to learn the data flow for assignment (e.g., ‘mov’) and arithmetic (e.g., ‘add’) instruc-
tions by representing their numerical values (in decimal or hexadecimal formats) as
embeddings. The NAU acts on a high dimensional embedding of a byte of the partial
data state resulting in aggregate data state embeddings. From visualising learnt NAU
representations via a t-SNE representation, they find that the NAU learns to represent
the embeddings in an ordered ring-shaped cluster (Pei et al., 2021, Appendix 1.7).

2.2.4 NPU and Real NPU

abs

NPU

clip

FIGURE 2.7: NPU architecture. Example of a 3-feature input and 2-feature output
model.

The NPU (Equation 2.17) focuses on improving the division ability of the NAC• by
applying a complex log transformation and using real and complex weight matrices
(WRE and W IM respectively).2

NPU based modules can model products of arbitrary powers (∏ xwi
i), therefore the

learnable weight parameters do not require to be discrete. For example, modelling the
square-root operation requires WRE

i,o = 0.5. The r (Equation 2.18) converts values close
to 0 into 1 to avoid the output multiplication becoming 0. To do this, a relevance gate
(g) is learnt representing if an input element is relevant and should be used as part of
an output expression (gi = 1) or not be selected (gi = 0). Furthermore, each element of

2See Appendix C.3 for the derivation of converting the NAC• to the NPU.

2.2. Existing NALMs Architectures 37

g is clipped between the range [0,1] (Equation 2.20).

NPU : yo = exp

(︄
I

∑
i=1

(WRE
i,o · ln(ri))−

I

∑
i=1

(WIM
i,o · ki)

)︄

· cos

(︄
I

∑
i=1

(WIM
i,o · ln(ri)) +

I

∑
i=1

(WRE
i,o · ki)

)︄ (2.17)

where

ri = gi ⊙ (|xi|+ ϵ) + (1− gi) , (2.18)

ki =

⎧⎨⎩0 xi ≥ 0

πgi xi < 0
, (2.19)

and

gi = min(max(gi, 0), 1) . (2.20)

Additionally a simplified version of the NPU exists, named the Real NPU, considering
only real values of Equation 2.17:

Real NPU := exp

(︄
I

∑
i=1

(WRE
i,o · ln(ri))

)︄
· cos

(︄
I

∑
i=1

(WRE
i,o · ki)

)︄
. (2.21)

As the NPU and Real NPU can express arbitrary powers, using a regulariser to enforce
discrete parameters like in the iNALU, NAU or NMU would restrict the expressive-
ness. Therefore, Heim et al. (2020) use a scaled L1 penalty, where the scaling value β

grows between predefined values βstart to βend and is increased every βstep = 10, 000
iterations by a growth factor βgrowth = 10.

2.2.5 G-NALU

The G-NALU replaces the exponent base in the tanh and sigmoid operations when
calculating NALU’s weight matrix with a golden ratio base value:

ϕ =
1 +
√

5
2

≈ 1.618 (2.22)

sigmoidgr =
1

(1 + ϕ−x)
(2.23)

tanhgr =
ϕ2x − 1
ϕ2x + 1

(2.24)

38 Chapter 2. Review of NALMs

abs

G-NALU

FIGURE 2.8: G-NALU architecture. Example of a 3-feature input and 2-feature output
model.

The use of a golden ratio base also requires the NAC• definition (Equation 2.3) to be
modified into Equation 2.25 to allow for the ln-exp transformation to work.

NAC• : mo = ϕ

(︃
∑I

i=1
(Wi,o ·ln(|xi |+ϵ))

ln(ϕ)

)︃
(2.25)

2.2.6 NLRL

NLRL

broadcasted elemwise prod how?
- repeat [X | X]
- hardamard product
x.reshape(-1,1).repeat(1,2)

abs

NEG

NEG

NEG

NEG

NEG

NEG

OUT OUT

check dims and ops - mixed up some

FIGURE 2.9: NLRL architecture. Example of a 3-feature input and 2-feature output
model.

The NLRL, Figure 2.9, is a module to express boolean logic rules via modelling AND
(conjunction), OR (disjunction) and NOT (negation). By stacking NLRLs together, it

2.2. Existing NALMs Architectures 39

is also possible to represent more complex relations including implication, exclusive
OR and equivalence. The architecture is designed under the assumption of modelling
the logic rules on booleans, therefore the input values must be booleans. The default
NLRL architecture consists of the following four parts in which the three base operators
(negation, conjunction and disjunction) are modelled:

• Negation gating, which models the negation operator. The (negation) gate deter-
mines if an input element should be negated (gate value of 1) or simply passed
along (gate value of 0).

x̂i,o = (1− sigmoid(GNEG
i,o)) · xi,o + sigmoid(GNEG

i,o) · (1− xi,o) (2.26)

• OR calculation, which applies disjunctions (weight value of 1) for the output of
the input gating.

zOR
o =

I⨂︂
i=2

(
[︂
1 −Ai,o · x̂i,o

]︂
⊗
[︂
−1 A1,o · x̂1,o

]︂
)1 + 1 (2.27)

• AND calculation, which applies conjunctions (weight value of 1) over the output
of the input gating. The definition is the same as the NAC• (Equation 2.3) used
in the NALU.

zAND
o = exp

(︄
I

∑
i=1

(Ai,o · ln(|x̂i,o|+ ϵ))

)︄
(2.28)

• Output gating, which determines whether an output value should use the OR
calculation (gate value 0) or AND calculation (gate value 1).

ŷo = (1− sigmoid(GOUT
i,o)) · zAND

o + sigmoid(GOUT
i,o) · zOR

o) (2.29)

Three parameter matrices require to be learnt. One for learning the gate values for
negation (GNEG), another for learning the (shared) weight values for the AND and OR
calculations (A) and one for learning the gate values for the output (GOUT).

Optionally, the application of the De-Morgan laws enables representing a conjunction
using only negation and disjunction and representing disjunction using only negation
and conjunction, making it possible to modify the architecture to only need either the
AND or OR calculation block. The changes require removing the unwanted calculation
block and replacing the output gate with a negation gate. Using only the negation and
conjunction operators is favoured as the implementation of disjunction requires using
the Kronecker product which scales poorly with input size.

40 Chapter 2. Review of NALMs

2.2.7 NSR

sign

NSR

zero

OP2

OP2

OP2OP2

OP2

OP2

OP1

OP1

OP1OP1

OP1

OP1

softmax
(dim=0)

softmax
(dim=0)

FIGURE 2.10: NSR architecture. Example of a 3-feature input and 2-feature output
model.

The NSR (inspired by physical status registers found in the Arithmetic Logic Unit’s of
computers), models comparison based control logic: <, >, ! =, =, >=, <=. Simply
put, the NSR does quantitative reasoning by learning what input elements to compare
and how to compare them. A NSR will output two elements. The first represents if
the comparison is true (or false) and the second is the negation of the first output (i.e.,
1− o1). The negation is given such that when the NSR is used in a downstream task,
the other layers can have access to either branch of the comparison.

The NSR architecture does the following:

1. Learns two matrices (VOP1 and VOP2) whose purpose is to select two inputs to be
operands (ˆ︃xOP1 and ˆ︃xOP2) of the comparison function.

ˆ︃xOP1
o =

I

∑
i
(xi · softmax(VOP1

i,o)) (2.30)

ˆ︃xOP2
o =

I

∑
i
(xi · softmax(VOP2

i,o)) (2.31)

2.2. Existing NALMs Architectures 41

2. Takes the difference of the two selected operands.

ˆ︁xo = ˆ︃xOP1
o − ˆ︃xOP2

o (2.32)

3. Scales the difference with a hyperparameter (λ) to avoid vanishing gradients. Au-
thors indicate an inverse relation between λ and the difference of the input values
which can be used to set the λ value (Faber and Wattenhofer, 2020, Figure 5).

ˆ︁xo = λ · ˆ︁xo (2.33)

4. Calculates the sign bit (ˆ︂x±) and zero bit (ˆ︁x0) of the difference value by using
smooth continuous functions.

ˆ︂x±o = tanh(ˆ︁xo) (2.34)ˆ︁x0
o = 1− 2 tanh(ˆ︁xo)

2 (2.35)

5. Learns a scale value (for each bit) and shared shift value.

6. Applies the scale and shift to the bit values, takes the sum of the results and passes
the result through a sigmoid. The resulting value represents the probability of the
comparison being true/false.

zo =
ˆ︂x±o ·W±i,o + ˆ︁x0

o ·W0
i,o + bo (2.36)

yo = sigmoid(zo) (2.37)

7. Returns as output the comparison value and its negation value (1− yo).

Given two inputs (relevant for the comparison), the NSR will compute the sign and
zero bit of the difference of the two operands. The sign and zero bit definitions are
continuous relaxations of the discrete definitions which rescale the bounds to avoid the
gradients of partial derivatives becoming zero. That is

ˆ︂x±o =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if ˆ︁xo > 0

0 if ˆ︁xo = 0

−1 if ˆ︁xo < 0

and ˆ︁x0
o =

⎧⎨⎩1 if ˆ︁xo = 0

−1 if ˆ︁xo ̸= 0
.

To improve robustness to different initialisations, the NSR also implements redun-
dancy which learns multiple independent operand pairs (ˆ︃xOP1

o , ˆ︃xOP2
o) in parallel for

each output element. Each pair will have its own sign and zero bit, hence learning its
own set of scale and shift values. These independent paths get aggregated together by
summing the different zo’s together.

42 Chapter 2. Review of NALMs

2.3 NALU’s Shortcomings and Existing Solutions

The development of NALMs after the NALU has focused on improving its various
shortcomings. In this section, we detail the weaknesses of NALU and explain existing
solutions. We focus on the arithmetic NALMs: iNALU, NAU, NMU and NPU when
looking at solutions. Table 2.2 summarises the discussed issues and proposed solu-
tions.

TABLE 2.2: Summarised NALU shortcomings and existing proposed solutions.

Short-
coming

NALM NAU/NMU iNALU NPU/Real
NPU

CalcNet
(G-NALU)

N AC• cannot have
negative inputs/tar-
gets

NMU: Re-
move log-
exponent
transforma-
tion

Sign correc-
tion (mixed
sign vector)

Sign re-
trieval

Convergence of
gate parameters

Stacking
instead of
gating

Independent
gating, sepa-
rate weights
per sub-unit
and regulari-
sation loss

- -

Fragile initialisa-
tion

Theoretically
valid initiali-
sation scheme

Reinitialise
model

- -

Weight inductive
bias of {-1,0,1} not
met (non-discrete
solutions)

Regularisation
loss term and
clipping

Regularisation
loss term

(see below)* -

Gradient propaga-
tion

Linear weight
matrix

NAC• clip
and gradient
clip

Relevance
gating

Replace
sigmoid
and tanh
expo-
nent’s with
golden
ratio

Singularity (values
close to 0)

NMU: Re-
move log-
exponent
transforma-
tion

NAC• clip Complex
space
transfor-
mation and
relevance
gating

-

Compositionality - - - Parsing
algorithm

* The NPU and Real NPU supports fractional weights (e.g., 0.5 representing square-
root) and therefore do not enforce discretisation.

2.3. NALU’s Shortcomings and Existing Solutions 43

2.3.1 Negative Inputs and Negative Outputs

The multiplicative module of the NALU (the NAC•) is unable to process negative in-
puts and produce negative outputs. The issue lies with Equation 2.3, which requires
converting negative inputs into their positive counterparts because the log transfor-
mation cannot evaluate negatives. The use of an exponent also causes the inability to
have negative outputs, as the range of an exponent is R>0. As the sign of the input is
ignored and never recovered, the NAC• is unable to have negative output values. To
allow for negative outputs, a module can incorporate logic to deal with assigning the
correct sign to the output such as the iNALU’s sign correction mechanism (Schlör et al.,
2020) or the NPU’s inherent sign retrieval (Heim et al., 2020).

The iNALU’s sign correction mechanism creates a mixed sign vector (msv) ∈ RO×1,
consisting of elements {−1, 1} (assuming W has converged to integers {−1, 0, 1}), where
each element represents the correct sign for each output element.3 The msv is element-
wise multiplied to Equation 2.3 resulting in applying the relevant sign to the outputs
of the multiplicative sub-unit. The +1− |Wi,o| means unselected inputs (Wi,o = 0) will
avoid affecting the final sign value, as they will only multiply the msvo value by 1.
Therefore, an alternate way to view the msv is as a gating mechanism, sign(xi)·|Wi,o|+
1·(1− |Wi,o|), where a on gate (Wi,o = −1/1) gives the sign and an off gate (Wi,o = 0)
returns 1.

In the case of the Real NPU, the latter half of its definition (in matrix form)⊙ cos(WREk)
can be interpreted as a sign retrieval mechanism. k represents positive inputs as 0 and
negative inputs as π assuming the gate value has converged to select the input. As-
suming this convergence, the WRE values are {1,−1} representing {×,÷}. Hence, the
two possible outcomes from evaluating the cosine expression for a single input value
are cos(±π) = −1 or cos(0) = 1 which represents the sign of the input value.

Alternatively, rather than requiring an additional step for recovering the signs, we can
rethink the multiplicative architecture. It is possible to remove the log-exponent trans-
formations from Equation 2.3 as Madsen and Johansen (2020) does for defining the
NMU (Equation 2.14). This means negative targets can be expressed because the sign
is no longer removed from the input but at the cost of no longer being able to model
division.

2.3.2 Gating Parameter Convergence

The NALU gate, responsible for selection between the NAC+ and NAC• modules, is
unable to converge reliably. For example, converging towards 1 when the true gate

3Notice the similarity in calculation between the NMU (Equation 2.14) and iNALU’s msv (Equa-
tion 2.9).

44 Chapter 2. Review of NALMs

value should be 0 and visa-versa. In cases where the correct gate is selected, the NALU
still fails to converge consistently to the expected discrete value (Madsen and Johansen,
2020, Appendix C.5). Another issue from partial convergence of gate (and weight) pa-
rameters is the leaky gate effect (Schlör et al., 2020), where non-discretised parameters
result in the network learning non-optimal solutions. Such solutions may perform well
on the interpolation data used during training but will not generalise to OOD data.
This issue is also amplified when additional NALU modules are stacked.

Even when using the improved NAU and NMU networks instead of the NAC+ and
NAC•, the NALU-style gating still leads to sub-optimal results. Therefore, Madsen
and Johansen (2020) replace module gating with module stacking. As NALMs can
learn selection logic, it is possible to stack two NALMs and have the output be the
result of only one of the NALMs, similar to how gating can only select one network.
Rather than removing the gating, Schlör et al. (2020) attempt to tackle the issue by
using separate weights for the iNALU sub-units (Equations 2.6 and 2.7) to improve
convergence, and independent gating (removing x from Equation 2.4) so learning g is
no longer influenced by the input (see Equation 2.11). Removing the dependence on the
input removes contradictory constraints on the gating that would lead to nonoptimal
solutions. Taking the example given by Schlör et al. (2020, Section 3.3.6), imagine two
different input samples x1 = [2, 2] and x2 = −x1 = [−2,−2] and the task of adding,
i.e., calculating 2+ 2 = 4 for the first input and −2− 2 = −4 for the second. Assuming
we use the NALU gating method, it implies that g = sigmoid(x1G) = sigmoid(x2G) =
sigmoid(−x1G). However, as x1 ̸= x2, the previous statement is invalid.

2.3.3 Bias Considerations

The NALU architecture assumes that exact arithmetic operations only occur when pa-
rameter values are either -1, 0 or 1. However, other than the sigmoid and tanh transfor-
mations which constrain the ranges to be either {0, 1} or {−1, 1} respectively there are
no biases put in place to enforce the weights to converge to the discrete values men-
tioned above.

The most common way of allowing these weight biases to be achieved is by adding
a regularisation term for sparsity and using weight clamping (Madsen and Johansen,
2020; Schlör et al., 2020). An illustrative example of the Madsen and Johansen (2020);
Schlör et al. (2020) regularisation functions are found in Figure 2.11. Madsen and Jo-
hansen (2020) use sparsity (discretisation) regularisation (Equation 2.15) to enforce the
relevant biases for both the NAU {−1, 0, 1} and the NMU {0, 1}. Note that the absolute
of Wi,o, is not necessary when using NMU. The regularisation activates and warms up
over a predefined period of time to avoid overpowering the main mean squared error
loss term (Equation 2.16). Clamping is also applied to the weights beforehand to the
ranges of the desired biases. The iNALU uses a piece-wise function (Equation 2.10) for

2.3. NALU’s Shortcomings and Existing Solutions 45

1.0 0.5 0.0 0.5 1.0
Wi, o

0.0
0.1
0.2
0.3
0.4
0.5

R s
pa

rs
e (

NA
U/

NM
U)

(A) NAU/NMU regu-
larisation

0 2 4 6 8 10
iterationi

0.00

0.25

0.50

0.75

1.00

(B) NMU/NMU
regularisation scaling

regime

20 0 200.00

0.25

0.50

0.75

1.00

R s
pa

rs
e (

iN
AL

U)

(C) iNALU regularisa-
tion

FIGURE 2.11: Regularisation functions used to induce sparsity in learnable parame-
ters. Left: Sparsity regularisation used on the NAU and NMU (see Equation 2.15),
forcing values towards {−1, 0, 1}. Middle: Scaling function (Equation 2.16) to control
the importance of the sparsity regularisation for the NAU and NMU. For this example,
λ̂ is set to 1 and the scale factor will grow between iterations 4 to 6. Right: Sparsity

regularisation for a single parameter used on the iNALU (see Equation 2.10).

regularisation on weight (ˆ︃WA, ˆ︃MA, ˆ︃WM, ˆ︃MM) and gate (g) parameters to encourage
discrete values that do not converge to near-zero values. Intuitively, this regularisation
penalises the parameter to encourage it to move towards -t or t. Therefore, by having a
large positive/negative value, when the parameter goes through a sigmoid or tanh ac-
tivation (see Equations 2.6, 2.7 and 2.11), the resulting value will be close to {−1, 0, 1}.
Rather than a warmup period, regularisation occurs only once the loss is under a pre-
defined threshold and stops once a discretisation threshold t = 20 is met.

The NALMs studied in this thesis are designed to compute precise arithmetic and have
been used in tasks requiring parameters to be discrete (and in many cases sparse) which
is encouraged via regularisation. However, this may be considered a harsh bias and
masking issues regarding robustness during learning. Relaxing the need for precise
calculations and introducing architectures which do not expect discrete weights may
provide a tradeoff between reducing precision of computation and improving robust-
ness of results to different training data and initialisations. Investigating this tradeoff
is left as future work.

2.3.4 Initialisation Considerations

Good initialisations are crucial for convergence. However, the NALU weight initial-
isations are unable to meet the desired criteria for typical neural networks as proven
by Madsen and Johansen (2020) who show both the NAC+ and NAC• are unable to
satisfy the guarantees of good learning.

Following Glorot and Bengio (2010), we want the expected output of the NALU’s sub-
unit ao at initialisation to be zero i.e., E[ao] = 0 in order to prevent exploding outputs/-
gradients. Taking the definition of the NAC+ : ao = ∑I

i=1 (Wi,o · xi), notice how in order
for E[ao] = 0 we must set the E[Wi,o] = 0. Since Wi,o = tanh(ˆ︃Wi,o)⊙ sigmoid(ˆ︃Mi,o), we

46 Chapter 2. Review of NALMs

want E[tanh(ˆ︃Wi,o)] = 0 so that E[Wi,o] = 0. Doing so has the additional benefit that the
selection of operations within a sub-unit is unbiased. In other words, there is no pref-
erence in selecting + and − or × and ÷. However, with such an initialisation scheme,
the expectation for the weight’s gradient becomes zero since

E

[︄
∂L

∂ˆ︃Mi,o

]︄
= E

[︃
∂L

∂Wi,o

]︃
E

[︄
∂Wi,o

∂ˆ︃Mi,o

]︄

= E
[︃

∂L
∂Wi,o

]︃
E
[︂
tanh(ˆ︃Wi,o)

]︂
E
[︂
σ′(ˆ︃Mi,o)

]︂
= E

[︃
∂L

∂Wi,o

]︃
× 0× E

[︂
σ′(ˆ︃Mi,o)

]︂
= 0 .

(2.38)

As for the NALU’s other sub-unit, the NAC•, begin by assuming that weights can
be initialised such that E[mo] = 0 (Glorot and Bengio, 2010) and that inputs are un-
correlated. Using the second order Taylor approximation the expectation of NAC• is
estimated as:

E[mo] ≈
(︃

1 +
1
2

Var[Wi,o] log(|E[xi]|+ ϵ)2
)︃I

⇒ E[mo] > 1 , (2.39)

implying that satisfying E[mo] = 0 and therefore well initialised weights cannot be
achieved for the NAC• (Madsen and Johansen, 2020, Appendix B.3.1).

Empirical results support these claims, showing difficulty in both optimisation and ro-
bustness for the NALU. In such cases, we assume the Madsen and Johansen (2020) im-
plementation of NALU is used for initialisation, where weight matrices are from a Uni-
form distribution with the range calculated from the fan values,4 and the gate matrix
from a Xavier Uniform initialisation with a sigmoid gain.5 Such fragility in optimisa-
tion results in convergence to the expected parameter value being difficult to achieve,
especially when redundant inputs that require sparse solutions exist. When such re-
dundancy exists, non-sparse solutions are not extrapolative, lacking transparency. In
contrast to the NALU’s sub-units, the NAU (which is a linear layer) can be initialised
using the Xavier Uniform initialisation (Glorot and Bengio, 2010) and the NMU can
be initialised such that E[mo] ≈ (1

2)
I which becomes zero as the number of inputs (I)

approaches infinity.

To ease optimisation, Madsen and Johansen (2020) use a linear weight matrix construc-
tion (removing the need for non-linear transformations), while Schlör et al. (2020) use
clipping on the NAC• calculation (see Equation 2.8). The minimum of the input is

4https://github.com/AndreasMadsen/stable-nalu/blob/2db888bf2dfcb1bba8d8065b94b7dab9d

d178332/stable_nalu/layer/nac.py#L22
5https://github.com/AndreasMadsen/stable-nalu/blob/2db888bf2dfcb1bba8d8065b94b7dab9d

d178332/stable_nalu/layer/_abstract_nalu.py#L90

https://github.com/AndreasMadsen/stable-nalu/blob/2db888bf2dfcb1bba8d8065b94b7dab9dd178332/stable_nalu/layer/nac.py#L22
https://github.com/AndreasMadsen/stable-nalu/blob/2db888bf2dfcb1bba8d8065b94b7dab9dd178332/stable_nalu/layer/nac.py#L22
https://github.com/AndreasMadsen/stable-nalu/blob/2db888bf2dfcb1bba8d8065b94b7dab9dd178332/stable_nalu/layer/_abstract_nalu.py#L90
https://github.com/AndreasMadsen/stable-nalu/blob/2db888bf2dfcb1bba8d8065b94b7dab9dd178332/stable_nalu/layer/_abstract_nalu.py#L90

2.3. NALU’s Shortcomings and Existing Solutions 47

W i, o

10.0
7.5

5.0
2.5

0.0
2.5

5.0
7.5

10.0

M
i, o

10.0
7.5

5.0
2.5

0.0
2.5

5.0
7.5

10.0

W
i,o

-1.00
-0.78
-0.56
-0.33
-0.11
0.11
0.33
0.56
0.78
1.00

W i, o

10.0
7.5

5.0
2.5

0.0
2.5

5.0
7.5

10.0

M
i, o

10.0
7.5

5.0
2.5

0.0
2.5

5.0
7.5

10.0

W
i,o

-1.00
-0.78
-0.56
-0.33
-0.11
0.11
0.33
0.56
0.78

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE 2.12: Adapted from Rana et al. (2019, Figure 2 and Figure 4) for showing the
values for W used in NALU calculated over the domain of ˆ︂W and ˆ︂M. Left: Using
NALU’s calculation of W where tanh and sigmoid are calculated with base e. Right:
G-NALU’s calculation of W where tanh and sigmoid are calculated with a golden ratio

base resulting in smoother value transition.

clipped to ϵ = 10−7 and the result of the ln operation is clipped to be at most ω = 20.
Using this clipping allows avoiding exploding intermediary results. Additionally, gra-
dient clipping is used to avoid exploding gradients.

Rana et al. (2019) modify the non-linear activations of the weight matrices in the NALU
for smoother gradient propagation, as shown by Figure 2.12, to try to avoid sub-optimal
convergence. In contrast, in attempts to avoid falling/remaining in a local optima, the
iNALU allows multiple reinitialisations of a model during training to counteract the
non-optimal initialisation in NALU which contribute to vanishing gradients and con-
vergence to local minima. Reinitialisation occurs every mth epoch if the following two
conditions are met: (1) the loss has not improved in the last n steps, (2) the loss is larger
than a pre-defined threshold. The main disadvantage with reinitialising multiple times
during training is that it can require running more iterations which may be infeasible.
For example, for a standalone NALM it is possible to keep reinitialising until a reason-
able solution is found, however if the NALM is used as a subcomponent in a larger
neural network then reinitialisation can be too costly. Through a grid search, they find
having the mean of the gate and NALU weight matrices ˆ︂M, ˆ︂W initialised to be 0, -1
and 1 respectively, results in the most stable modules. However, even when using such
initialisations, the stability problem remains for division (Schlör et al., 2020, Table 1).

2.3.5 Division

Division is the NALU’s weakest operation (Trask et al., 2018). Having both division
and multiplication in the same module causes optimisation difficulties. Madsen and
Johansen (2020) highlight the singularity issue (caused by division by 0 or values close
to 0 bounded by an epsilon value) in the NAC• which causes exploding outputs (see

48 Chapter 2. Review of NALMs

FIGURE 2.13: Taken from Madsen and Johansen (2020, Figure 2b). An example il-
lustration of the unstable optimisation issue arising when using a stacked NAC+

NAC• with ϵ = 0.1. The plot represents the root mean squared loss surface when
modelling (x1 + x2) · (x1 + x2 + x3 + x4) for the input [1, 1.2, 1.8, 2]. w1 and w2 rep-
resent the weight values to use for the NAC+ and NAC• weight matrices such that

W1 =
[︂

w1 w1 0 0
w1 w1 w1 w1

]︂
and W2 = [w2 w2] .

Figure 2.13). The NMU removes the use of log, therefore is not epsilon bound but is
only designed for multiplication. The NPU takes Madsen and Johansen (2020)’s in-
terpretation of multiplication (using products of power functions) but applies it in a
complex space enabling division and multiplication (Heim et al., 2020). Though the
NPU cannot fully solve the singularity issue as a log transformation is still applied to
the inputs, the relevance gating (see Equation 2.18) aids in smoothing the loss surface to

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
w1

0.00

0.25

0.50

0.75

1.00

w
2

NaiveNPU
Solution

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
w1

NPU g1 = g2 = 0.5
Solution

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
w1

NPU g1 = 1; g2 = 0
Solution

0.000

0.357

0.714

1.071

1.429

1.786

2.143

2.500

FIGURE 2.14: Taken from Heim et al. (2020, Figure 3). Gradient norm || ∂L
∂WRE || of the

NaiveNPU (NPU without relevance gating) and the NPU for the task of selecting the
first element of a two element input. The correct solution is w1 = 1 and w2 = 0. The
NaiveNPU has a large zero gradient region for w2 > 0.75 unlike the NPU. The gates
are initialised to g1 = g2 = 0.5 (middle plot) which after training converge to g1 = 1 and

g2 = 0 (right plot).

2.4. Applications of the NALU 49

provide better convergence (see Figure 2.14). Schlör et al. (2020) observe that reinitial-
ising modules numerous times during training can still lead to failure, implying that
the issue lies in unit architecture as well as initialisation. Hence, division remains an
open issue.

2.3.6 Compositionality

A single NALU is unable to output expressions whose operations are from both {+,−}
and {×,÷}, for example x1 + x2 × x3. Though it is possible to stack the NALUs to
increase the expressibility, having each module learn reliably remains a challenge as
currently even a one layer NALU cannot learn a single operation well. Rana et al.
(2019) develop CalcNet, a parsing algorithm, such that the expression to learn is de-
composed into its intermediary sub-expressions which obey the rules of precedence
(i.e., BIDMAS) and then is solved in a compositional manner. However, decomposi-
tion requires fixed rules and pre-trained sub-units which are undesirable because in
order to decompose, the input must also contain the operations used, meaning that the
model is exposed to a priori relating to the underlying function.

2.4 Applications of the NALU

This section describes the uses of NALU as a sub-component in architectures to tackle
practical problems outside the domain of solving arithmetic on numeric inputs. Suc-
cess and failure cases are mentioned. We choose to focus on NALU applications on the
basis that the improved modules discussed above can be applied in place of NALU to
provide additional performance gains to the mentioned applications.

2.4.1 Existing Applications

Xiao et al. (2020) insert a NALU layer between a two-layer Gated Recurrent Unit (GRU)
and dense layer to predict vehicle trajectory of complex road sections (containing con-
stantly changing directions). NALU improves extrapolation capabilities to deal with
abnormal input cases outside the range of the GRU hidden states output.

Xiao et al. (2021) use the NALU to improve the numerical extrapolation ability in pre-
dicting the aggregation of (stationary) private cars on weekends. During weekends the
patterns for car aggregation are much less predictable, therefore having the ability to
generalise out of the training range is useful. The input into the NALU is the com-
bined representations of the spatial, temporal and external features from which linear
relations can be inferred. Zhang et al. (2022) also use the NALU’s ability to capture lin-
ear relationships to help with extrapolation in predicting the stay time for private cars.

50 Chapter 2. Review of NALMs

Such predictions are useful in helping sales by recommending points of interest, predic-
tion of traffic conditions and road congestion. The full architecture is a MLP encoder,
a NALU ‘exception’ module and a MLP decoder (with dropout to avoid overfitting
from data imbalance). Stay locations are random and sparse which makes prediction
challenging, however some amount of linear relationship exists between a person’s
stay behaviour and their stay time implying the NALU can be useful. The features are
both temporal and spatial (since spatial alone is too sparse and random). They find
for the short-stay settings, the improvement from using their NALU based model is
small but for longer-stay prediction, where extrapolative abilities are required, the im-
provement is more substantial. Jiang et al. (2021) create a framework for location based
services for user destination prediction where they can trade-off between preserving
location privacy (by adding injected noise) and utility (usefulness of their prediction).
The framework combines the NALU, an MLP and GRUs to extract features to predict
the area under the curve (AUC) of the privacy and utility metrics/losses. In particular,
the NALU is used to capture linear relationships between the model and privacy AUC.

Raj et al. (2020) combine NAC+ modules before LSTM cells for fast training in the ex-
traction of temporal features to classify videos for badminton strokes. They further
experiment in using NAC+ modules with a dense layer to learn temporal transforma-
tions, finding better performance than the LSTM based module and the dense modules
being quicker to train. They justify the use of the NAC+ as a way to produce sparse
representations of frames, as non-relevant pixels would not be selected by the NAC+

resulting in 0 values, while relevant pixels accumulate.

Zhang et al. (2019a) use deep Reinforcement Learning (RL) to learn to schedule views
on content-delivery-networks (CDNs) for crowdsourced-live-streaming (CLS). NALU’s
extrapolative ability alleviates the issue of data bias (which is the failure of models out-
side the training range) by using the NALU to build an offline simulator to train the
agent when learning to choose actions. The simulator is composed of a two layer LSTM
with a NALU layer attached to the end. Zhang et al. (2019b) propose a novel framework
(named Livesmart) for cost-efficient CLS scheduling on CDNs with a quality-of-service
(QoS) guarantee. Both components required in Livesmart contain models using NALU.
The first component (named new viewer predictor) uses a stacked LSTM-NALU to pre-
dict workloads from new viewers. The second component (named QoS characterizer)
predicts the QoS of a CDN provider. This component uses a stack of CNNs, a LSTM
and a NALU. Both components use the NALU’s ability to capture OOD data to aid in
dealing with rare events/unexpected data.

Wu et al. (2020) combines layers of NAC+ to learn to do addition and subtraction on
vector embeddings to form novel compositions for creating analogies. Modules are ap-
plied to the output of an attention module (scoring candidate analogies) that is passed
through a MLP. The output of the NAC+ modules is passed to a LSTM producing the
final analogy encoding.

2.4. Applications of the NALU 51

The NALU has also been used with CNNs. Rajaa and Sahoo (2019) applies stacked
NALUs to the end of convolution units to predict future stock prices. Rana et al. (2020)
utilises the NAC+/NALU as residual connection modules to larger convolutional net-
works such as the U-Net and a fully convolutional regression network for cell counting
in images. Such connections enable better generalisation when transitioning to data
with higher cell counts to the training data. However, no observations are made to
what the units learn to cause an improvement in cell counting over the baseline mod-
els.

Chennupati et al. (2020) uses the NALU as part of a larger architecture to predict the
runtime of code on different hardware devices configured using hyperparameters. The
NALU predicts the reuse profile of the program, keeping track of the count of memory
references accessed in the execution trace. The NALU outperforms a genetic program-
ming approach for doing such a prediction.

Teitelman et al. (2020) explores the problem domain of cloning black-box functional-
ity in a generalisable and interpretable way. A decision tree is trained to differentiate
between different tasks of the black box. Each leaf of the tree is assigned a neural
network comprising of stacked dense layers with a NALU layer between them. Each
neural network is able to learn the black-box behaviour for a particular task. Like Xiao
et al. (2020), results showed that NALU is required to learn the more complex tasks.

Finally, Sestili et al. (2018) suggests the NALU has potential use in networks that predict
security defects in code. This is due to the module’s ability to work with numerical
inputs in a generalisable manner, instead of limiting the application to be bound to a
fixed token vocabulary requiring lookups.

2.4.2 Applications Where NALU Is Inferior

We now discuss examples of situations in which NALU modules are a sub-optimal ar-
chitecture choice for applicational settings. Madsen and Johansen (2020) show that the
NAU/NMU outperforms the NALU in the MNIST sequence task for both addition and
multiplication. Dai and Muggleton (2020) show the arithmetic ability (named back-
ground knowledge) of the NALU is incapable of performing the MNIST task for addi-
tion or products when combined with an LSTM. Instead, they show a neural model for
symbolic learning which learns logic programs using pre-defined rules as background
knowledge can perform with over 95% accuracy. However, we question whether the
failure is a result of the NALU or due to the misuse of its abilities by combining it with
an LSTM. For example, as the inputs are images, unless the LSTM converts each image
into a numerical value that can be processed by the NALU in an arithmetic way it can
be suggested that the LSTM is completing the task without the numerical capabilities of
the NALM. Jacovi et al. (2019) show that in black box cloning for the Trask et al. (2018)

52 Chapter 2. Review of NALMs

MNIST addition task, their EstiNet model which captures non-differentiable models
outperforms NALU. Though it can be argued that a more relevant comparison would
test the NAC+ or the NAU which are solely designed for addition. Joseph-Rivlin et al.
(2019) show that although the NAC• can learn the order for a polynomial transfor-
mation to high accuracy, it is still outperformed by a pre-defined order two polyno-
mial model. Results suggest that the NAC• may not have fully converged to express
integer orders. Dobbels et al. (2020) found the NALU was unable to extrapolate for
the task of predicting far-infrared radiation fluxes from ultraviolet-mid-infrared fluxes.
Though no clear reason was stated, the lack of extrapolation could be attributed to the
co-dependence of features because of applying fully connected layers prior to the mod-
ule. Jia et al. (2020) considers the NALU as a hardware component concluding that the
NALU has too high an area and power cost to be feasible for practical use. Implement-
ing for addition costs 17 times the area of a digital adder, and the memory requirements
for weight storage are energy inefficient for doing CPU operations.

2.5 Discussion: Remaining Gaps

This section discusses areas that remain to be fully addressed for NALMs. The identi-
fied areas are a compilation of current weaknesses in the field which we have observed
in this chapter. The areas include benchmarks, division, robustness, compositionality, and
interpretability of more complex architectures, which will become the focus of the remain-
ing chapters of this thesis.

Having benchmarks is important in allowing for reliable comparison between mod-
ules. Such benchmarks should include a simple synthetic dataset which we detail in
this work and a real-world data benchmark (which remains to be created) with a sys-
tematic evaluation.

One goal of these modules is to be able to extrapolate. To achieve this, a module should
be robust to being trained on any input range. Madsen and Johansen (2020) show that
modules are unable to achieve full success of all tested ranges (with the stacked NAU-
NMU failing on a training range of [1.1,1.2], being unable to obtain a single success).
Reinitialisation of weights (Schlör et al., 2020) during training could provide a solution,
however this seems to be unlikely given Madsen and Johansen (2020) tests against 100
model initialisations and using reinitalisation for a NALM that is part of a large end-
to-end network may not be economical.

Division remains a challenge. From reviewing existing NALMs, no module has been
able to reliably solve division. Currently, the NPU by Heim et al. (2020) is the best
module to use, though it would struggle with input values close to zero. Madsen and
Johansen (2020) argues modelling division is not possible due to the singularity issue.
One suggestion for dealing with the zero case is to take influence from Reimann and

2.5. Discussion: Remaining Gaps 53

Schwung (2019) which can have an option for showing an output that is invalid (or in
their case all off values).

Compositionality is desirable. A model should be flexible, having the option to select
different types of operations and model complex mathematical expressions. Currently,
the two popular approaches are gating and stacking. Gating has been found to not
work as expected and gives convergence issues. Stacking, though more reliable, has
fewer options in operation selection than gating. Deep stacking of modules (in a non-
recurrent fashion) remains untested.

Finally, it remains to be understood how modules influence learning of other mod-
ules (such as recurrent networks and CNNs) in their representations. Such architec-
tures which require combining NALMs with other families of neural networks can be
considered as another form of compositionality. This is an area for future work and is
not addressed as part of this thesis. For example, this can involve understanding if rep-
resentations are more interpretable because of being trained with a NALM, or whether
the emergence of any useful biases occurs in the encoding of the generic modules.

55

Chapter 3

Benchmarking Existing and Future
Models

Having access to well-defined benchmarks is an important step in unifying the NALM
field. Standardised benchmarks with consistent model implementations allow for reli-
able cross-comparisons of different works and improve the speed of progress in their
respective fields. For ML in general, the Hugging Face platform provides a plethora of
open source implementations with 60K models and 6K datasets1 for domains including
audio, text, vision and RL (HuggingFace, 2022). To encourage common knowledge for
models, they also provide model cards (Mitchell et al., 2019) which contain metadata
regarding the model, its uses, ethical considerations, reproducibility, and results. For
symbolic regression,2 there exists SRBench, a reproducible benchmark that encourages
cross-pollination from the ML and GP research fields that consist of 252 (122 black-box
and 130 synthetic) datasets (Cava et al., 2021). The SRBench is described as a “living
benchmark” (SRBench, 2023), encouraging new models to be evaluated on (Kamienny
et al., 2022) and ways to be evaluated (Dick, 2022).

In contrast, currently, no de facto method exists for measuring arithmetic extrapolation
performance on NALMs. Therefore, we dedicate this chapter to setting what we believe
is a good foundation for evaluating NALMs. We begin by focusing on a popular two-
layer arithmetic task setup. This task is used as a case study to understand the existing
evaluation techniques used in the field and to highlight the existing inconsistencies
across papers, hence encouraging the need for task standardisation. We end this section
by introducing our Single Module Arithmetic Task to act as a standardised benchmark
for NALMs. We provide empirical results, comparing existing arithmetic NALMs and
provide open source code (MIT license) at https://github.com/bmistry4/nalm-ben
chmark.

1https://huggingface.co/docs/hub/index
2Symbolic Regression is the task of discovering the underlying mathematical expression from data.

https://github.com/bmistry4/nalm-benchmark
https://github.com/bmistry4/nalm-benchmark
https://huggingface.co/docs/hub/index

56 Chapter 3. Benchmarking Existing and Future Models

As NALMs are arithmetic specialists which can extrapolate, we consider synthetic
arithmetic baselines allowing for control over the input data to easily create OOD data
sets for testing extrapolation. One example of a baseline task is a single-layer task
which determines how well a NALM can perform a single operation. To increase com-
plexity of the task, a two-layer task can be considered, which introduces redundant
inputs and multistep operations. The two-layer task tests the ability to select from a
large sized input containing multiple irrelevant inputs and apply exact operations in a
particular order to relevant data items. The chosen evaluation metrics take inspiration
from the NALM definition given in Chapter 2 which states NALM expressions extrapo-
late to OOD data when parameters are appropriately learnt whilst expressing an interpretable
solution. Specifically, the metrics are designed specifically to measure a NALMs success,
speed of convergence, and interpretability of the solution. The success metric measures
the NALMs ability to learn an extrapolative solution which is determined based on an
error threshold. As NALMs are specialised to learning arithmetic we expect finding the
expected solution to be fast. Therefore, we also evaluate NALMs based on their speed
to discover an extrapolative solution. Finally, as NALMs have transparent architec-
tures, we want to confirm that the solution is interpretable. As the proposed baselines
require exact arithmetic (without scaling coefficients) we know that the required pa-
rameters for extrapolative solutions have discrete weights. Therefore, we can measure
how discrete weights are via a sparsity error to measure interpretability.

3.1 Two Layer Arithmetic Task

A task consistently used to test NALMs is the ability of a module to learn a two-
operation function.3 This was first introduced as the ‘Static Simple Function Learning’
task by Trask et al. (2018) but has been developed since due to the lack of details to-
wards reproducing the experiment. Madsen and Johansen (2019) introduce their own
version of the experiment setup (including details for reproducibility) which they use
in their later work (Madsen and Johansen, 2020) under the name ‘Arithmetic Datasets’
task. Specifically, given an input vector of 100 floating-point numbers, the first (addi-
tion) layer should learn to output two values (denoted a and b) which are the sums
of two different partially overlapping slices (i.e., subsets) of the input, and the second
layer should perform an operation on a and b. Figure 3.1 illustrates such an exam-
ple, where the second operation is a multiplication. Solving this task requires stacking
NALMs to learn the compositional expression. Due to the rigorous setup, evaluation
metrics, and available code, we strongly suggest the Madsen and Johansen (2019) ex-
periment be used to test and compare new modules for the Two Layer Arithmetic task.

3An overview of other types of experiments are given in Appendix D.

3.2. Evaluation Metrics 57

FIGURE 3.1: Taken from Madsen and Johansen (2020, Figure 6). Illustration on how to
get from input vector to the target scalar for the Arithmetic Dataset Task. This setup is

solved using a stacked addition-multiplication module.

Other works such as the iNALU’s experiment 4 (‘Influence of Initalization’) and 5 (‘Simple
Function Learning Task’) also use this task but have a different setup to Madsen and
Johansen (2020). The experiments calculate a and b differently by not allowing for
overlap between a and b, and allowing a and b to be made up of random (instead
of consecutive) elements of the input. Also, the iNALU uses different interpolation
and extrapolation ranges. Heim et al. (2020)’s claims that their ‘Large Scale Arithmetic’
task is equivalent to the Arithmetic Dataset Task, however, there are critical distinctions
between the two meaning the results from the two papers are not directly comparable.
In Table 3.1 we highlight the differences between the three experiment setups.4

3.2 Evaluation Metrics

The purpose of evaluation metrics is to reflect whether a model solution is the true
solution and be able to rank different model solutions against each other. Trask et al.
(2018) calculates a score for each model using

MSE loss of the model
MSE loss of a randomly initialised model (with no training)

.

A score of 0 reflects perfect accuracy while a score larger than 1 means the solution is
worse than the baseline model. Though this method is good for relative rankings be-
tween different models, there is no indication to the relative performance against the
gold solution (Schlör et al., 2020). Furthermore, a randomly initialised model will most
likely have poor performance, so the scaled errors of the other models seem better than
they are. Heim et al. (2020) measures the median of the MSE with confidence intervals
using the median absolute deviation. Compared to the mean, the median is less sen-
sitive to outliers and skewed results, however as a result it discards information about
individual errors which can be helpful when considering factors such as the extent of

4We do not compare Trask et al. (2018) as no details on the experiment setup is given. We do not
compare Rana et al. (2019) as they do not include this experiment.

58 Chapter 3. Benchmarking Existing and Future Models

TABLE 3.1: Differences in the ‘Large Scale Arithmetic’ task used in the papers Madsen
and Johansen (2020) and Heim et al. (2020). ‘a’ and ‘b’ represent summed slices of
the input, and are the expected output values for the addition module. ∗U=Uniform,
S=Sobol and TN=Truncated Normal. (The Sobol generates a quasi-random sequence

of points which are distributed to approximate the Uniform distribution.)

Property Madsen and Jo-
hansen (2020)

Heim et al. (2020) Schlör et al. (2020)

Hidden size 2 100 2
Iterations for one
run

5,000,000 50,000 100,000

Number of seeds 100 10 10
Learning rates 10−3 10−2 for addition and

5 × 10−3 for all other
operations

10−3

Subset and over-
lap ratios

0.25 and 0.5 0.5 and 0.25 (for addi-
tion, subtraction, and
multiplication)

0.33̇ and 0

Division a/b 1/a a/b
Interpolation and
extrapolation
ranges∗

Train: U[1,2) for all
operations.
Test: U[2,6).

Train: S(-1,1) for addi-
tion, subtraction, and
multiplication, S(0,0.5)
for division.
Test: S(-4,4) for ad-
dition, subtraction
and multiplication,
S(-0.5,0.5) for division.

Train: U[-3,3] and
TN(µ=0,σ=1)[-3,3]
Test: U[-5,-5] and
TN(µ=3.5,σ= 1

6)
[3,4]

respectively.

Programming
framework

Pytorch (Python) Flux (Julia) Tensorflow (Python)

robustness against different initialisations. Both Madsen and Johansen (2019) and Schlör
et al. (2020) measure the MSE but also compare if the MSE is within a threshold value
representing the error of an ideal solution to a given precision. This threshold com-
parison produces a success metric in which each seed can be compared in a pass/fail
situation which is averaged to a success rate.

3.2.1 Evaluation metrics used on the Arithmetic Dataset Task

Madsen and Johansen (2019) extends the use of threshold-based success by using config-
uration-sensitive success thresholds, two additional metrics to measure the speed of
convergence and sparsity, and confidence intervals for each metric where each interval
calculated using a different distribution family to best match the metric. Specifically,
there are three evaluation metrics: (1) the success on the extrapolation dataset against a
near optimal solution (success rate), (2) the first iteration in which the task is considered

3.3. Single Module Arithmetic Task 59

solved (speed of convergence), and (3) the extent of discretisation towards the weights’
inductive biases (sparsity error).

A success means the MSE of the trained model is lower than a threshold value (i.e.,
the MSE of a near optimal solution). For the Arithmetic Dataset Task, the threshold
is a simulated MSE on 1,000,000 data samples using a model where each weight of
the addition is off the optimal weight value by ϵ = 10−5. A near optimal solution is
used over an optimal solution as it considers accumulated numerical precision errors
(a limitation of hardware rather than module architecture). The sparsity error calcu-
lated by max

i,o
(min(|Wi,o|, 1− |Wi,o|)), represents the NALM weight element which is

the furthest away from the acceptable discrete weights for a NALM. For example, for
the NMU, if a weight was at 0.7 it would get a sparsity error of 0.3.

Each metric is calculated over different seeds where the total number of seeds should
be enough to demonstrate issues on robustness while keeping computation time rea-
sonable. 95% confidence intervals are calculated for each metric. The success rate uses
a Binomial distribution because trials (i.e., run on a single seed) are either pass/fail sit-
uations. The convergence metric uses a Gamma distribution and sparsity error uses a
Beta distribution following the evaluation scheme in Madsen and Johansen (2019).

3.3 Single Module Arithmetic Task

Having a standardised benchmark is essential for fair comparison of modules. As
stated previously, so far, no such benchmark exists. Therefore, we provide results on
a Single Module Arithmetic Task, training modules on their respective operations over a
range of different interpolation distributions and testing over a range of extrapolation
distributions.

Why not use the two-layered Arithmetic Dataset Task? The Arithmetic Dataset Task
requires modules to perform three sub-tasks: selection, operation, stacking. Selection
is the ability to deal with input redundancy for both modules (though more-so for the
first layer addition module). Operation is the ability to carry out the correct operation/s
(i.e., addition and multiplication). Stacking sees if training can propagate through two
layers. Even with only two layers, there are already multiple components being as-
sessed in a single task, making it difficult to analyse where issues lie. Therefore, to gain
a better understanding of individual NALMs, we propose an experiment that evalu-
ates if the operation/s the module specialises in can be learned.

Setup. A single module is used. The input size is two and the output size is one,
hence there is no input redundancy. Hence, the objective is to model: y = x1 ◦ x2

where ◦ ∈ {+,−,×,÷}. We test the: NALU, iNALU, G-NALU, NAC+, NAC•, NAU,
NMU, NPU, and Real NPU. Each run trains for 50,000 iterations to allow for enough

60 Chapter 3. Benchmarking Existing and Future Models

iterations until convergence. A MSE loss is used with an Adam optimiser. Interpolation
(training/validation) and extrapolation (test) ranges are presented in Table 3.2. The
ranges are influenced by the ranges from Madsen and Johansen (2020) as they provide
good coverage. Early stopping is applied using a validation dataset sampled from
the interpolation range. A summary of experiment parameters is shown in Table 3.3.
Additional module specific hyper-parameters, hardware and runtimes are found in
Appendix E.1.

INTERPOLATION EXTRAPOLATION

[-20, -10) [-40, -20)
[-2, -1) [-6, -2)
[-1.2, -1.1) [-6.1, -1.2)
[-0.2, -0.1) [-2, -0.2)
[-2, 2) [-6, -2) ∪ [2, 6)
[0.1, 0.2) [0.2, 2)
[1, 2) [2, 6)
[1.1, 1.2) [1.2, 6)
[10, 20) [20, 40)

TABLE 3.2: Interpolation (train/validation) and extrapolation (test) ranges used for
the Single Module Arithmetic Task. Data (as floats) is drawn from a Uniform distribu-

tion with the range values as the lower and upper bounds.

TABLE 3.3: Parameters for the Single Module Task which are applied to all modules.
∗Validation and test datasets generate one batch of samples at the start which gets

used for evaluation for all iterations.

Parameter Single Module Task

Layers 1
Input size 2
Subset ratio 0.5
Overlap ratio 0
Total iterations 50000
Train samples 128 per batch
Validation samples∗ 10000
Test samples∗ 10000
Seeds 25
Optimiser Adam (betas=(0.9, 0.999))

3.3.1 Evaluation Metrics

We adopt the Madsen and Johansen (2019)’s evaluation scheme used for the Arithmetic
Dataset Task (explained in Section 3.2.1), but adapt the expression used to generate
the predictions of an ϵ-perfect model yϵ

o. To reiterate, the purpose of using an epsilon
based evaluation is to take into consideration the numerical precision errors which can

3.3. Single Module Arithmetic Task 61

occur as well as the effect of the input ranges on the magnitude of those errors. The
expression for yϵ

o varies per operation and is shown below:

Addition: yϵ
o = (x1 + x2)−

(︄
I

∑
i=1
|xi|
)︄

ϵ

Subtraction: yϵ
o = (x1 − x2)−

(︄
I

∑
i=1
|xi|
)︄

ϵ

Multiplication: yϵ
o = (x1x2)(1− ϵ)2 × ∏

xi∈Xirr

(1− |xi|ϵ)

Division: yϵ
o =

x1(1− ϵ)

x2(1 + ϵ)
× ∏

xi∈Xirr

(1− |xi|ϵ)

Assume x1 and x2 are the relevant operands for the operation. Any remaining features
(x3, ..., xn) are irrelevant to the calculation and part of the set Xirr. Let I denote the to-
tal number of input features. In each case, the ϵ for each feature will contribute some
error towards the prediction. A simulated MSE is then generated with an ϵ = 10−5

like in Madsen and Johansen (2019) and used as the threshold value to determine if
a NALM converges successfully for a particular range by comparing the NALMs ex-
trapolation error against the threshold value. The above expressions provide the most
tolerant scenario (assuming epsilon-feature error) of the error threshold to be consid-
ered a success, regardless of if the inputs are positive, negative or mixed-signs.

3.3.1.1 Alternative Options for Generating a Success Threshold

Though not used for this experiment, other methods can be used to generate the
ϵ-threshold. The factors which can be changed include:

• The ϵ-perfect model, e.g., we could use a ϵ-perfect NALU expression which uses
log space.

• The comparison metric against the perfect model. A MSE is used but other met-
rics such as PCC or MAPE are also valid.

• The value of ϵ to control the tolerance of the threshold. Larger values would be
more tolerant while smaller values are tighter.

All these can be modified and should be considered if creating a new threshold eval-
uation scheme. However, the three points to be consistent on no matter the chosen
evaluation method are:

1. Being task and range dependant.

62 Chapter 3. Benchmarking Existing and Future Models

2. Using the same threshold when comparing models on the same task.

3. Not making the generation of the threshold dependent on the benchmarked model.

3.3.2 Results

We present the NALMs’ performances on the four main arithmetic operations. Each
figure consists of plots for each evaluation metric (success rate, speed of convergence
and sparsity error), with confidence intervals calculated over 25 seeds.

Addition (Figure 3.2). The NAU has full success for all ranges correlating to the spar-
sity errors around 0 meaning that weights successfully converge to the expected value
of 1. The iNALU also has full success but takes longer to solve and has a slightly
larger sparsity error than the NAU. The NALU struggles with consistent performance
especially for the small positive range (U [0.1,0.2)), large positive range (U [10,20)) and
range with both positive and negative inputs (U [-2,2)). The low sparsity error implies
that discrete values are being converged to, though not to the correct ones. The NAC+

also struggles to obtain consistent results over different ranges like the NALU. The
G-NALU performs the worst of all the modules obtaining non-zero success on only 4
of the 9 ranges.

Subtraction (Figure 3.3). The NAU has full success for all ranges. The solved at itera-
tions does remain low, similar to addition, with perfect sparsity when converged. How-
ever, ranges U [-1.2,-1.1) and U [1.1,1.2) require over double the number of iterations to
be solved compared to the rest of the ranges implying that small ranges can cause more
challenging loss landscapes. The difficulty of these two ranges also holds for all other
modules which have near 0 success (except the iNALU which has at least 40% success).
The iNALU has full success on all ranges excluding U [-1.2,-1.1) and U [1.1,1.2). Like ad-
dition, the solve speed and sparsity error of iNALU remain larger than the NAU. The

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

● ●
●

● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●

● ● ● ● ● ● ● ● ●
● ●

●

●
● ●

●
●

●

●
●

● ● ● ● ●
●

● ●

●

●

●
● ●

●

● ●

●

● ● ● ● ● ● ● ● ●

●

●

●

●

●
●

●
●

●

●
●

●
● ● ●

●

● ● ● ●

●
● ●

●
●

● ●

●

● ● ● ● ● ● ● ● ●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0e+00

1e−05

2e−05

3e−05

0

10000

20000

30000

40000

50000

0.00

0.25

0.50

0.75

1.00

Interpolation range

model ● ● ● ● ●NAC+ G−NALU iNALU NALU NAU

FIGURE 3.2: Performance on Single Module Task for addition.

3.3. Single Module Arithmetic Task 63

● ●

●

●

●

●

●

●

●

● ● ● ●
●

● ● ●

●

●

●

● ● ● ● ●

●

●

● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ●

●
●

●
●

●●
●

●

●

● ● ● ● ●
●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●
●

●

●

● ●

● ● ● ● ● ● ● ● ●

●

●

● ●

● ● ● ● ● ● ● ● ●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0e+00

1e−05

2e−05

3e−05

0

10000

20000

30000

40000

50000

0.00

0.25

0.50

0.75

1.00

Interpolation range

model ● ● ● ● ●NAC+ G−NALU iNALU NALU NAU

FIGURE 3.3: Performance on Single Module Task for subtraction.

NALU struggles much more with subtraction than with addition (except for U [10,20)).
The NAC+ outperforms NALU on 4 of the 9 ranges. The G-NALU does not outper-
form the NALU on any ranges.

Multiplication (Figure 3.4). The NMU, iNALU, NPU and Real NPU have full success
on range U [1,2). The NMU struggles with some negative input ranges, i.e., U [-1.2,-1.1)
and U [-2, -1). Though NPUs can process negative inputs, empirical results suggest the
modules struggle to learn. The NPU and Real NPU perform the same for all ranges
except one, suggesting that the problem is not complex enough to require the use of
the imaginary weight matrix. However, U [-2,2) is an example in which Wim is utilised
(achieving 32% more success than the Real NPU). Even though this range allows ei-
ther of the input values to be positive or negative values, the learned weights should
be [1,1] for the real weights and [0,0] for the imaginary weights. The NALU can solve
some ranges but no range with full success. The NAC• outperforms the NALU on the
2 ranges it has success but fails to achieve any success on the remaining 7 ranges. The
iNALU outperforms the NALU on 7 ranges where it gains full success on 5 of those

● ● ● ●

●

● ● ●

●

● ● ● ●

●

●

● ●

●

●

●

●

●

●
●

● ● ●

● ●

●

●

●
●

●
●

●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

● ● ●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●

●
●

●

● ● ● ●
●

● ● ●●

●
●

●

●

●

●
●

●

●

● ●●

●

●
● ● ● ● ● ● ● ● ●

●

●

●

●

●● ● ● ● ● ● ● ● ●●

●

●
●

●●

●

●
●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0e+00

2e−05

4e−05

6e−05

0

10000

20000

30000

40000

50000

0.00

0.25

0.50

0.75

1.00

Interpolation range

model
●

●

●

●

●

●

●NAC•

G−NALU

iNALU

NALU

NMU

NPU

Real NPU

FIGURE 3.4: Performance on Single Module Task for multiplication.

64 Chapter 3. Benchmarking Existing and Future Models

● ●
●

●

●

●
●

●

●

● ● ● ● ● ● ● ● ●● ● ● ● ●

● ● ●

●

● ● ● ● ● ● ● ● ●● ● ● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ● ●

●
● ●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ● ● ●● ● ● ●●
●

● ● ● ● ● ●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0e+00

1e−05

2e−05

3e−05

4e−05

0

10000

20000

30000

40000

50000

0.00

0.25

0.50

0.75

1.00

Interpolation range

model
●

●

●

●

●

●

NAC•

G−NALU

iNALU

NALU

NPU

Real NPU

FIGURE 3.5: Performance on Single Module Task for division.

ranges. Similar to the addition and subtraction results, the G-NALU does not outper-
form the NALU on any ranges suggesting that golden ratio based tanh and sigmoid
are not effective for learning.

Division (Figure 3.5). No model solves division for all ranges. The iNALU is the only
module to have a success rate of 1 on any range, fully solving 3 of the 9 ranges. This
highlights the difficulty in modelling division even for the simplest case, aligning with
prior claims (Madsen and Johansen, 2020). The NPU and Real NPU perform perfectly
for U [1,2). The Real NPU has better performance than the NPU for negative input
ranges. The NAC• is able to achieve some success on 4 ranges while the NALU and
the G-NALU cannot achieve any success on all 9 ranges. The failure on U [-2,2) for
the NALU and G-NALU is expected due to the inability to process mixed sign inputs
caused by the modules’ log-exponent transformation.

Why is multiplication/division more challenging to learn than addition/subtraction?
A trend observed from our qualitative and quantitative analysis is that learning mul-
tiplication or division operations are significantly more difficult than addition or sub-
traction. As NALMs require gradient based learning, parameter updates are operator
dependant, therefore, if the partial derivatives of the operations are considered (see Ta-
ble 3.4) the following point becomes apparent. Addition and subtraction have constant
derivatives whereas multiplication and division derivatives are reliant on the inputs
(including elements you are not differentiating with respect to). This gives intuition

TABLE 3.4: Partial derivatives for a two-input single arithmetic operation task.

Expression ∂y
∂a

∂y
∂b

y = a + b 1 1
y = a− b 1 -1
y = a× b b a
y = a

b
1
b − a

b2

3.3. Single Module Arithmetic Task 65

as to why multiplication and division have difficulties in robustness to different train-
ing ranges. Even though architectures such as the NALU use a log-exponent trans-
formation to convert multiplication/division into addition/subtraction operations in
logarithmic space, the expression is still equivalent to a multiplication and division,
meaning the gradients will still be input dependent.

Testing limits of full success modules. Achieving full success on all the ranges for an
operation only occurred three times - the iNALU for addition and the NAU in addition
and subtraction. To determine to what extent this holds, we experiment with introduc-
ing redundant units to the input, resulting in an increase in the task difficulty.

The NAU fails at 10 inputs (8 redundant inputs) for addition (Figure 3.6) but remains
successful for subtraction. To discover failures for subtraction, we significantly increase
the number of inputs to 100 (98 redundant inputs) (Figure 3.7). This results in failure
cases for U [-1.2,-.1.1) and U [1.1,1.2) which match the failure ranges for addition. The

●

●

● ● ● ● ●

●

●● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

● ● ●

●

●

●

●

● ● ● ● ●

●

●●

●

● ● ● ● ●

●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0e+00

2e−05

4e−05

0

10000

20000

0.00

0.25

0.50

0.75

1.00

Interpolation range

model ● ●NAU (add) NAU (sub)

FIGURE 3.6: NAU failures on the Single Module Task for addition and subtraction
with 10 inputs (8 redundant inputs).

●

●

● ● ● ● ●

●

●

●

●

●
●

● ● ●

●

●

●

●

●
●

● ● ●

●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0e+00

1e−05

2e−05

3e−05

0

10000

20000

30000

0.00

0.25

0.50

0.75

1.00

Interpolation range

model ● NAU

FIGURE 3.7: NAU failures on the Single Module Task for subtraction with 100 inputs
(98 redundant inputs).

66 Chapter 3. Benchmarking Existing and Future Models

●
●

●
●

●

● ● ●

●

●

● ● ●

● ●

●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.0000

0.0005

0.0010

0.0015

0

5000

10000

15000

20000

0.00

0.25

0.50

0.75

1.00

Interpolation range

model ● iNALU

FIGURE 3.8: iNALU failures on the Single Module Task for addition with 10 inputs (8
redundant inputs).

iNALU (Figure 3.8) shows multiple failure ranges at 10 input units (8 redundant in-
puts), achieving reasonable success only on the larger ranges.

3.4 Summary

In this chapter, we have highlighted the need for standardised benchmarks and reliable
evaluation metrics for measuring the arithmetic extrapolation performance of NALMs.
To this end, we introduce the Single Module Arithmetic Task as a step towards such
benchmarks with metrics to measure success rate, convergence speeds and sparsity
errors. The Single Module Task assesses the stability of individual NALMs.

Our empirical findings show that NALMs are not robust in learning to extrapolate
on the simplest arithmetic setting, as they struggle to consistently learn over different
training ranges and seeds. NALMs which achieved full success on all ranges for an op-
eration on the two-input setup break when redundant inputs are introduced, however
the extent varies depending on the module. Division is the most challenging opera-
tion followed by multiplication, subtraction and addition. NALMs which specialise
in at most two operations are found to outperform the NALU in a majority of the
cases. Of the NALMs which can model the four operations, i.e., the NALU, iNALU
and G-NALU, the iNALU performs best on average over all operations, though the
performance gain is less significant for multiplication and division. We will now dive
further in and explore potential options to fix this lack of robustness in the upcoming
chapters.

67

Chapter 4

Multiplication - Improving
Robustness via Stochasticity

So far, by cross-comparing existing NALMs in Chapter 3, we have discovered that cur-
rent multiplicative modules are unable to be robust over different training ranges. In
other words, although modules have adequate representational power, they have dif-
ficulty in terms of learnability. We now begin to understand why. We choose to focus
on multiplication over the other elementary operations as the function’s scalar field
is more complex to learn than addition and subtraction, and is well defined for the
domain of interest unlike division which is undefined when dividing by zero. We dis-
cover that by introducing reversible stochasticity to a multiplication NALM, it is possible
to improve the robustness without compromising on performance even if the NALM
is a component in a DNN.

Using stochasticity to improve learning is a practice that the community has used in
many ways. Noise can be injected into the input or weights to improve generalisation
by implicitly inducing additional regularisation to the cost (An, 1996). Alternatively,
noise can be added to the gradients to encourage exploration giving the model the
opportunity to escape the local minima. Such noise is irreversible, meaning that the
convergence cannot reach zero, but if annealed throughout training then zero conver-
gence can occur (Neelakantan et al., 2015). In contrast to these methods, the input noise
method we propose to use is fully reversible allowing for better exploration during train-
ing, and the ability to get convergence to minimal loss. Stochasticity has also been used
to improve model robustness by reducing sensitivity to noisy inputs. For example in
adversarial training, data includes inputs perturbed with noise that would trick the
model to make incorrect classifications (Goodfellow et al., 2015). In other works, such
as denoising autoencoders, noise is added to the input which the network must learn
to denoise (Vincent et al., 2008). Our approach does not require any learning during
the denoising stage and is designed to be automatically reversible no matter the input.

68 Chapter 4. Multiplication - Improving Robustness via Stochasticity

General purpose neural networks which do not use specialist modules can also apply
data augmentation to perturb the input to teach the model to be more robust (Shorten
and Khoshgoftaar, 2019). However, as our module learns exact multiplication, aug-
menting the input will result in the output no longer being a function of the multiplica-
tion of the original inputs. Therefore, we reverse the effect of input noise in our model
at the output to retain the correct input-to-output relation. Code (MIT license) is avail-
able at https://github.com/bmistry4/nalm-robust-nmu.

4.1 Robustness Issues with Multiplication Modules

Previously in Figure 3.4, we highlight robustness issues when training on different in-
puts when training on a relatively simple task of multiplying two numbers. No module
has full success on all ranges, with all modules completely failing on small negative in-
put ranges such as U [-1.2,-1.1) and U [-2, -1). Next, we reason as to why such failures
occur. To do this, we focus on the best performing NALM, the NMU.

4.1.1 Problem: Inputs that Induce Local Optima

−1 −0.5 0 0.5 1−1

0

1
0

100

w1

w2

M
SE

lo
ss

FIGURE 4.1: Static loss landscape with a batch size of 1 for NMU weights in a Sin-
gle Module Task for learning −2×−1.8. Ideally, the weights should converge to the
global minima (1,1) (blue cross) which is the extrapolative solution. However, an al-
ternate minima at (- 1

6 ,-0.5) (red cross) exists which solves −2×−1.8 but will not ex-
trapolate. Furthermore, since the weights for this minima are < 0.5 the model will

stop at (0, 0) (black cross) due to weight clipping and regularisation.

The NMU fails to get 100% success for interpolation ranges U [-1.2,-1.1) and U [-2,-1).
Unlike the NALU, the NMU supports negative inputs. Unlike the (Real)NPU and

https://github.com/bmistry4/nalm-robust-nmu

4.2. A Stochastic Wrapper: The Stochastic NMU (sNMU) 69

iNALU, the NMU does not require a mechanism for recovering the sign of the out-
put. Unlike all of the three mentioned NALMs, the NMU does not require support-
ing division. Therefore, rather than an architectural limitation, there exists some is-
sue with the way weights are learned. Specifically, we find weights converge towards
non-extrapolative local optima. Such optima can be considered global for some inter-
polation cases (achieving a low enough train loss to be considered a solution), but are
local optima for extrapolation cases (with high test errors). Figure 4.1 illustrates this
issue. For expressing −2× −1.8 = 3.6, rather than learning W = [1 1]T which is an
extrapolative solution, the weights tend towards the solution [− 1

6 −0.5]T. Though this
solution does multiply to the correct output value i.e.,

NMU([−2 −1.8]) = ∏
[︁ −2
−1.8

]︁ [︂ − 1
6

−0.5

]︂
+ 1−

[︂
− 1

6
−0.5

]︂
=

(︃
−2×−1

6
+ 1−

(︃
−1

6

)︃)︃
× (−1.8×−0.5 + 1− (−0.5))

= 1.5× 2.4

= 3.6 ,

it will easily break with other inputs. Furthermore, due to the clipping and regularisa-
tion applied to the NMU the final weights become [0 0]T rather than [− 1

6 −0.5]T. This
failure indicates that the NMU’s architectural bias of cumulative multiplication, where
irrelevant inputs are converted to 1 via the +1−W, can cause local minima. As the
input range is an independent variable in our experiments, we believe that the input
data influences the weight learning towards the local minima which gets wrongly en-
forced by the model’s bias towards discrete weights (from regularisation and weight
clipping).

4.2 A Stochastic Wrapper: The Stochastic NMU (sNMU)

Noising Denoising
sNMU

FIGURE 4.2: Stochastic NMU architecture

As the observed issue is correlated with the input values, we ask if there is a way to
modify the learning pipeline such that the input has a less negative impact on module
learnability. In particular, we focus on solutions that do not modify the existing NMU

70 Chapter 4. Multiplication - Improving Robustness via Stochasticity

architecture as it already provides the relevant mechanics for cumulative multiplica-
tion. To this end, we propose the stochastic NMU (sNMU) illustrated in Figure 4.2 to
solve the issue.

The sNMU acts as a wrapper on the NMU. There are two stages to the sNMU: (1)
noising to apply noise to the inputs of the NMU and (2) denoising the output of the NMU
to cancel the effect of the introduced noise. The noising and denoising are applied with
the intention that the resulting output value is the same as using the NMU without
noisy inputs. The two stages are detailed below.

Noising: Noise ni is sampled from U [a, b] (where a and b are predetermined) and mul-
tiplied with each input, xi:

NMUnoisy : m̃o =
I

∏
i=1

(nixiWi,o + 1−Wi,o) . (4.1)

Denoising: Only dividing by the cumulative noise would not fully reverse the effects if
there are redundant inputs. To fully cancel the effect of the noise, the output is divided
by a denoising factor which induces a bias in the weights forcing them towards being
either 0 or 1:

sNMU : mo =
m̃o

∏I
i=1(niWi,o + 1−Wi,o)

. (4.2)

The denoising is only used during training; during inference, the module will act ex-
actly like a NMU. Denoising using only the product of the noise values, ∏I

i=1 ni, is
not valid for cases with redundant inputs (wi = 0) where not all inputs are selected
for multiplication. To alleviate the redundancy issue, the noise is multiplied with the
weight values (niWi,o). However this causes a division by 0 if weight/noise values are
0 or numeric precision errors if close to 0; therefore, the +1−Wi,o term is included in
the denoising. As the noise distribution is predefined, the lower bound of the noise can
be controlled avoiding issues with very small noise values. The denoising occurs at the
module output rather than the network output, because when the modules are used as
part of a larger end-to-end network the resulting feed-forward expression of the net-
work can become quite complex making it difficult to denoise. Therefore, if denoising
is completed at the module-level, the complexity is vastly reduced.

To the best of our knowledge, this work is the first in using reversible noise for NALMs.
Since the NMU architecture is not modified, the weight values remain interpretable
where 0 still refers to ignoring an input and 1 refers to multiplying the input. Hence, we
know with full confidence which inputs will be multiplied. In other words, if weights
converge correctly, the sNMU acts as an extrapolative multiplication module which
works on any valid input value.

4.3. Alternate Stochastic Methods 71

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
w1

w
2

0

2

4

6

MSE

NMU

(A) NMU; Avg. success: 0.76

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
w1

w
2

0

2

4

6

MSE

sNMU

(B) sNMU U(1,5); Avg. success: 0.94

FIGURE 4.3: Heatmap of the MSE for learning −2.1×−1.8. Colours depict the suc-
cess (green means success and red means failure), assuming that the NALM initial
weights are set to w1 and w2 respectively. Vectors are shown over the different mea-
sure starting points displaying the direction the learning takes. The decimals in the

sub-captions represent the average success rate (max=1).

To illustrate how the optimisation improves when using the sNMU, we take the toy ex-
ample to learn−2×−1.8 which displays the local optima issue from Figure 4.1 and em-
pirically measure the success. Multiple independent instances of a NALM are trained,
where the starting weights are initialised to some value between [0,1] which is the al-
lowed range of weights for the NMU/sNMU. Using a grid sweep method, all weight
initialisations between 0-1 with a step size of 0.05 are trained. The sNMU samples noise
from a U [1, 5] distribution, resulting in samples which will scale the input magnitude.
A model instance is trained without regularisation for 2500 epochs with a SGD opti-
mizer and a learning rate of 0.001. Figure 4.3 illustrates the success (green)/failure (red)
for each model instantiation over the grid. A vector field is overlaid on the grid show-
ing the direction the weights will travel from the starting point to the final weights.
The successes are shown to converge towards [1,1], while failures converge to [0,0] cor-
responding to the minima from Figure 4.1. The NMU is clearly more likely to fail over
a wider range of initialisations compared to the sNMU, suggesting that the reversible
stochasticity aids in escaping the local minima.

4.3 Alternate Stochastic Methods

As well as our reversible stochasticity, we consider how other forms of stochasticity
can affect the learning of a NALM. The two methods are explicit gradient noise and
stochastic gating.

72 Chapter 4. Multiplication - Improving Robustness via Stochasticity

4.3.1 Stochastic Gating

Rather than using stochasticity to modify the gradients of the weights, we reformulate
the NMU weights such that each weight learns using directly injected noise. To do
this, a NMU weight is viewed as a learnable stochastic gate (Yamada et al., 2020). We
name this architecture the stochastic gated NMU (stgNMU). A gate represents a con-
tinuous relaxation of a Bernoulli distribution by modelling a mean shifted Gaussian
random variable clipped between [0,1]. A learnable mean, µi, is initialised to 0.5 and
the NMU weight is obtained by transforming the gate weight using a hard sigmoid.
A NMU weight is defined as wi = max(0, min(1, µi + ϵi)) where ϵi is noise sampled
from N(0, σ2) and σ = 0.5. During training noise is used, however, during inference
no noise is added. L0 regularisation is applied by taking the probability that the gates
are active, which can be calculated using a standard Gaussian CDF i.e., ΣI

i=1Φ(µi
σ). To

balance the regularisation with the main loss objective, the regularisation is scaled by
a pre-defined hyperparameter λ.

4.3.2 Gradient Noise

Rather than implicitly altering the gradients by using reversible stochasticity, we see
if altering the gradients of a NALM explicitly can improve learning. Following (Nee-
lakantan et al., 2015), we add noise sampled from N(0, σ2

t) to the gradients every train-
ing step. The noise is annealed over epochs, therefore σ2

t = η
(1+e)0.55 where e is the epoch

and η is a scaling factor. In experiments, we name this model “NMU + grad noise”.

4.4 Single Layer Task

We begin by observing the effect of the stochastic approaches using the single-layer
setup from Section 3.3.

The sNMU achieves full success on the Single Module Task on all ranges (Figure 4.4)
without compromising the existing advantages of the NMU i.e., low parameter count,
fast solving speed and low sparsity error.

Using stochastic gates for the NMU weights (Figure 4.5) can be beneficial if the λ is
sufficiently small (0.1 or under). When small λs are used, the stgNMU can improve on
the remaining two ranges where the NMU fails to obtain full success.

Adding gradient noise (Figure 4.6) does not improve the success rate in comparison
to the NMU. The convergence speeds get slower with gradient noise and if a larger
gradient noise is used (i.e., η = 10) then the success can begin to degrade (see U [-0.2,
-0.1]). This suggests that naively applying noise is not suited for NALM learning.

4.5. Arithmetic Dataset Task 73

●

●

●

● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

● ● ● ●

●

● ● ●

●

● ● ● ●

●

● ● ●

● ● ● ● ● ● ●

●

●● ● ● ● ● ● ●

●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0e+00

1e−07

2e−07

3e−07

0

5000

10000

15000

20000

0.00

0.25

0.50

0.75

1.00

Interpolation range

model ● ●NMU sNMU [1,5]

FIGURE 4.4: Single Module Task for multiplication comparing the NMU to a stochastic
NMU (sNMU) with noise sampled from U [1,5].

●

●

●

● ● ● ● ● ●●
●

● ● ● ● ● ● ●●
●

● ● ● ● ● ● ●●
●

● ● ● ● ● ● ●●
●

● ● ● ● ● ● ●

●

●

● ● ●

●

●

●

● ●

● ● ●
●

●

● ● ●● ●
●

● ●
●

● ● ●

● ●
●

● ●
●

● ● ●

● ●
●

● ●
●

● ● ●

● ●
●

● ●
●

●
●

●

●

● ● ●

●

● ●
● ● ● ● ● ● ●

●

●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0e+00

1e−07

2e−07

3e−07

0

5000

10000

15000

20000

0.00

0.25

0.50

0.75

1.00

Interpolation range

model ● ● ● ● ● ●NMU stgNMU (0.005) stgNMU (0.01) stgNMU (0.05) stgNMU (0.1) stgNMU (0.5)

FIGURE 4.5: Single Layer Task results for using stochastic gating to learn the NMU
weights over different λ (regularisation scaling).

Extrapolation range success rate Solved at iteration step Sparsity error

U
[-0

.2
,-0

.1
)

U
[-1

.2
,-1

.1
)

U
[-2

,-1
)

U
[-2

,2
)

U
[-2

0,
-1

0)

U
[0

.1
,0

.2
)

U
[1

,2
)

U
[1

.1
,1

.2
)

U
[1

0,
20

)

U
[-0

.2
,-0

.1
)

U
[-1

.2
,-1

.1
)

U
[-2

,-1
)

U
[-2

,2
)

U
[-2

0,
-1

0)

U
[0

.1
,0

.2
)

U
[1

,2
)

U
[1

.1
,1

.2
)

U
[1

0,
20

)

U
[-0

.2
,-0

.1
)

U
[-1

.2
,-1

.1
)

U
[-2

,-1
)

U
[-2

,2
)

U
[-2

0,
-1

0)

U
[0

.1
,0

.2
)

U
[1

,2
)

U
[1

.1
,1

.2
)

U
[1

0,
20

)

0e+00

1e-07

2e-07

3e-07

0

5000

10000

15000

20000

0.00

0.25

0.50

0.75

1.00

Interpolation range

model NMU NMU + grad noise (η=1) NMU + grad noise (η=10)

FIGURE 4.6: Single Layer Task results for using additive stochastic noise to learn the
NMU weights over different η.

4.5 Arithmetic Dataset Task

We now evaluate against the Madsen and Johansen (2019) two-layer task setup de-
scribed in Section 3.1, presenting results for the stacked ADD-MUL module where the

74 Chapter 4. Multiplication - Improving Robustness via Stochasticity

ADD module is a NAU and the MUL module is a NMU/stochastic NMU variant. A
summary of the experiment parameters is shown in Table 4.1. Additional module spe-
cific hyper-parameters, hardware and runtimes are found in Appendix E.1.

TABLE 4.1: Parameters for the Arithmetic Dataset Task which are applied to all mod-
ules. ∗Validation and test datasets generate one batch of samples at the start which

gets used for evaluation for all iterations.

Parameter Arithmetic Dataset Task

Layers 2
Input size 100
Subset ratio 0.25
Overlap ratio 0.5
Total iterations 5 million
Train samples 128 per batch
Validation samples∗ 10000
Test samples∗ 10000
Seeds 20
Optimiser Adam (betas=(0.9, 0.999))

Taking the best hyperparameters from the single-layer task and training on the two-
layer Arithmetic Dataset Task results in Figure 4.7 which shows that compared to the
original NMU both the stgNMU and gradient noise hurt performance while the sNMU
can improve performance. By manipulating the input with the reversible noise dur-
ing training, the resulting gradients can in some cases be better equipped to escape
local optima and providing exploration; we further investigate this in Section 6.2. The
stacked NAU-NMU fails on multiple ranges. The sNMU shows improvement with
faster solve speeds and lower sparsity errors compared to the NMU. The sNMU fixes
all failures in U [-2, 2) and improves the success rate of U [-0.2,-0.1) from 0.75 to 0.9 and

Extrapolation range success rate Solved at iteration step Sparsity error

U
[-0

.2
,-0

.1
)

U
[-1

.2
,-1

.1
)

U
[-2

,-1
)

U
[-2

,2
)

U
[-2

0,
-1

0)

U
[0

.1
,0

.2
)

U
[1

,2
)

U
[1

.1
,1

.2
)

U
[1

0,
20

)

U
[-0

.2
,-0

.1
)

U
[-1

.2
,-1

.1
)

U
[-2

,-1
)

U
[-2

,2
)

U
[-2

0,
-1

0)

U
[0

.1
,0

.2
)

U
[1

,2
)

U
[1

.1
,1

.2
)

U
[1

0,
20

)

U
[-0

.2
,-0

.1
)

U
[-1

.2
,-1

.1
)

U
[-2

,-1
)

U
[-2

,2
)

U
[-2

0,
-1

0)

U
[0

.1
,0

.2
)

U
[1

,2
)

U
[1

.1
,1

.2
)

U
[1

0,
20

)

0.000

0.002

0.004

0.006

0

500000

1000000

1500000

2000000

0.00

0.25

0.50

0.75

1.00

Interpolation range

model NMU sNMU U[1,5] stgNMU (λ=0.01) NMU + grad noise (η=1)

FIGURE 4.7: Arithmetic Dataset Task comparing the NMU to NMUs trained with the
following types of stochastic methods: reversible stochasticity (sNMU), stochastic gate

weights (stgNMU) and gradient noise (NMU + grad noise).

4.5. Arithmetic Dataset Task 75

● ● ● ● ● ● ● ● ●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

●●

●

● ●

● ●

●

●

●●

●

● ● ●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

● ● ●

●

● ●

●

● ● ●

●

● ●

●

● ● ● ● ● ● ●● ● ●

●

● ●

●

● ● ●

●

● ●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.000

0.005

0.010

0.015

0

500000

1000000

1500000

2000000

0.00

0.25

0.50

0.75

1.00

parameter

● ● ● ● ● ● ●[0.01,0.05] [0.1,0.5] [1,2] [1,5] [5,10] [10,20] [1,1+1/sd(x)]

FIGURE 4.8: Arithmetic Dataset Task for multiplication over various Uniform noise
ranges for the NAU-sNMU.

U [0.1,0.2) from 0.8 to 0.9. However, ranges U [1.1,1.2) and U [-1.2,-1.1) remain at a suc-
cess rate of 0 for both models.

The reversible stochasticity’s only tunable parameter is the noise range. Figure 4.8
shows the effect of using different noise ranges for the sNMU. Smaller ranges less than
one perform worse for data generated with a Uniform distribution and too large a
range also shows degradation in the performance in success and sparsity on larger
training ranges. Using batch noise, which automates the noise range by using batch
statistics to sample from U [1, 1 + 1

σ(x)], where σ(x) is the standard deviation of the
sNMU input x, also achieves reasonable results. The lower bound is set to 1 so the
noise cannot scale down the gradient magnitude. The upper bound function (see Fig-
ure 4.9) models an exponential decay curve where data batches with larger standard
deviations result in smaller noise values while smaller standard deviations have much
larger values. The intuition behind this is when the data distribution has similar mag-
nitude samples (i.e., small standard deviations) it is easier for the module to confuse
the different input features therefore having more noise makes it easier to differentiate
between them. That being said, the range U [1,5] is found to be the best for this task in
regard to the three evaluation metrics.

1 2 3 4 5

2

4

6

8

10

σ(x)

f(
x)

=
1
+

1
σ
(x
)

FIGURE 4.9: Upper bounds for batch (statistic) noise.

76 Chapter 4. Multiplication - Improving Robustness via Stochasticity

4.6 MNIST Arithmetic

The findings from the previous synthetic number tasks show that from the different
noise methods, only the reversible stochasticity is effective and can provide improve-
ments over the NMU. We now take this a step further and focus our attention on image-
based tasks where multiplication is required. Monolithic networks have been found to
be unable to learn multiplication on image-based inputs (e.g., multiplying the num-
bers shown in two images) (Hoshen and Peleg, 2016). This section, therefore, explores
the effect of including specialist multiplication modules as a downstream layer for two
types of image tasks: static MNIST product and sequential MNIST product. The static
product task investigates learning to multiply images composed of two MNIST dig-
its, and two variations of this task are explored: isolated digit classification and colour
channel concatenated digit classification. The sequential product task investigates mul-
tiplying a sequence of MNIST images. Summaries of hardware/runtimes can be found
in Appendix E.2.

4.6.1 Static MNIST Product

We investigate learning to multiply images composed of two MNIST digits. Two vari-
ations of the task are explored: isolated digit classification and colour channel concate-
nated digit classification. Table 4.2 summarises the experiment parameters.

TABLE 4.2: Static MNIST Product experiment parameters.

Parameter Isolated Digits Colour Channel Concate-
nated

Epochs 1000 1000
Samples per permuta-
tion

1000 1100

Train:Val:Test 90:-:10 51:15:34
Batch Size 128 256
Train samples 90,000 61,710
Test samples 10,000 37,400
Folds/Seeds 10 3
Optimiser Adam (betas=(0.9, 0.999)) Adam (betas=(0.9, 0.999))
Criterion MSE MSE
Learning rate 10−3 10−3

λstart − λend epochs 30-40 30-40
λ̂ 100 100

4.6. MNIST Arithmetic 77

4.6.1.1 Isolated Digit Classification

Motivation. First, we determine if digit classification can be learned in upstream layers
in a simple setting where no image localisation is required.

Setup and network. Following Bloice et al. (2021)’s setup, the dataset contains permu-
tation pairs of MNIST digits side-by-side with the target label being the product of the
digits, e.g. input with output 4(= 4× 1). Importantly, although there is no overlap
between the permutation pairs in the train and test set, all individual digits (between
0-9) are seen during training. For example, the pair ‘54’ would exist in the test set and
not the train set but the digits ‘5’ and ‘4’ would exist in other pairs of the train set such
as ‘15’ or ‘47’.

The network learns a map from the input image to the labels of the two digits (digit
classifier), followed by a map from the two labels to their product (multiplication
layer). As the commutative property of multiplication can cause learning difficulties
for the digit classifier, we separate the two digits into single digits, classify per digit
(using softargmax which is defined in Chapter 7’s Equation 7.3) and then recombine
the two labels. The digit classifier is a convolutional network.1

The multiplication layer is done in three different ways: (1) solved multiplication base-
line model (MUL), (2) fully connected (FC) layer whose output is the product of the
learnable weights, and (3) NALM: NMU/sNMU. For a fair comparison, the fully con-
nected network uses the same initialisation scheme as the NMU. The FC layer uses
weighted product accumulators rather than linear layers as the latter does not have the
capacity to do multiplication. Additional details regarding the network architecture
are given in Appendix E.4.1.

Metrics and results. The network is trained using a MSE loss criterion between the
predicted multiplication and the target value, and a discretisation regularisation (if a
NALM is used as the multiplication layer). The MUL baseline only needs to learn
to classify the images to their respective labels and therefore is considered a strong
baseline. For a NALM to outperform the baseline would imply that the arithmetic
inductive bias can aid learning of downstream layers. The results in Figure 4.10 use
a strict criterion for measuring accuracy as the predictions are not processed in any
way (e.g. rounded/truncated). Hence a model must learn to apply the operation and
classify the digits exactly. Results show both the sNMUs with U [1,5] noise and batch
noise (96.6% and 85.6%) outperform the NMU (59.3%) for the test output metric, with
no overlap in confidence bounds.

1From the PyTorch MNIST example https://github.com/pytorch/examples/blob/master/mnist/

main.py.

https://github.com/pytorch/examples/blob/master/mnist/main.py
https://github.com/pytorch/examples/blob/master/mnist/main.py

78 Chapter 4. Multiplication - Improving Robustness via Stochasticity

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

25

50

75

100

mul fc nmu snmu [1,5] snmu [1,1+1/sd(x)]
Model

A
cc

ur
ac

y
(%

)

Metric Type:
●

●

●

●

●

●

label 1 (test)
label 1 (train)

label 2 (test)
label 2 (train)

output (test)
output (train)

FIGURE 4.10: Isolated Digits task accuracies for classifying each of the two digits (label
1 and label 2) and the final product (output) for training and testing.

The FC model learns to classify each label to a reasonable accuracy but does not learn
the multiplication weights robustly resulting in poor output accuracy. In contrast, the
specialised modules, the NMU and sNMU all have a similar label and output accu-
racies. This can be observed by plotting the trajectories for the two learnable weights
used when calculating the multiplication operation for each fold. We expect a correct
solution to converge to the weights of [1, 1]. The baseline, which uses a solved multi-
plier, has no learnable weights for multiplication and hence has no trajectory plot.

Figure 4.11 shows the FC models are unable to reliably converge to the true solution on
any run. The NMU gets close to the solution but only 70% of runs converge to weights
of 1 exactly, while 100% of the sNMU models converge. The U [1,5] sNMU outperforms
both the NMU and MUL model, suggesting that the reversible stochasticity not only

●

●
●

●●
●●●

●

●

●
●●●●

●

●

●
●●●●●●●
●●●●●●
●

●●
●

●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●
●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●
●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●

●●●●●●●
●

●
●●●●●●●●●●●●●●●●●●●●●

●
●●

●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●
●●●●●
●●●●●●●●●●●
●●●●●●●

●●●●●●
●

●●●
●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●●●●●●
●

●●
●●

●

●●●●●●
●●●
●●●

●
●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●

●

●
●●●●●●●
●●●●
●●●●●●●●●●●●●●
●●●

●
●●●
●●●●●

●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●

●
●●●●

●●
●●●●

●

●●●
●●●●●●●●●●
●

●●
●●

●●●●●●●●●
●●●●●●●●●

●
●

●
●●●

●

●

●

●
●

●
●

●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●
●

●●●●●●●●●●●
●●●●●●●●●●●●●
●

●●●●●●●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●
●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●

●●●●●●●●●●●
●●●●●
●●●●

●
●●●●●
●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●
●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●
●

●●●●●●●●●●●●●●●
●●

●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●
●●●●●

●●●●●●●●●●
●●

●●●●●
●

●●
●●●●●●●●●●●●●●●●
●●●●●

●
●●

●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●
●●●●●●●●

●

●●

●●
●●●●

●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●

●
●●●●●●●
●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●
●●

●●●
●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●

●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●

●●
●

●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●
●

●●●●●●
●●●●●●●●●
●●●●●●

●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●
●●●
●●●●●

●●●●●
●●●●

●●
●●●●●●●●●●
●

●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●

●
●●●
●●

●
●●●
●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●

●
●●●●●
●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●

●●●●●●●●●
●

●●
●●●●●

●●●●●●●●●●●●●●●●
●●

●●
●●

●
●

●
●●●●●●●●●●●
●

●●●
●●●●●●●●

●

●
●●●●
●●

●●
●●

●●●●●
●●●

●●●●
●

●●●
●●●●

●●●
●

●●●●●●●●●
●

●●●
●

●
●●

●●●
●

●
●●●●●
●●●●●●●●●●●●
●●

●●
●

●●
●●●●●●

●●
●

●●●●●
●●●●●●
●●●●●●●●
●

●●●
●●●●

●●●
●●

●
●

●
●

●
●●●●●

●

●
●●●●●●●●●●

●
●

●
●●●●●●●●●●●●●
●●
●●●●●

●
●●●
●●●●●
●

●●●●●●●●●●●●●●
●

●
●●●●●
●

●
●●●●●
●●●●●

●●●
●

●●●●●●●●●●●●●●●
●

●

●

●●
●●●●
●●

●
●

●●●●
●●●

●●
●●●
●●●●●●●

●●

●

●

●●●●

●
●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●
●●●●
●

●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●
●●●●●●●●●●

●●
●

●●●●●●●●●
●●●●●●
●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●
●●

●

●

●

●●●●
●

●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●
●●

●●
●●●●●●●
●

●
●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●
●

●●●●●●●●
●●●●●
●●●●●●●

●●
●●●●●●

●
●●●
●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●

●●●●●●●●●●●●●
●●●●●

●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●

●●●●●●●●●
●

●●●●●●●●
●

●
●

●
●●●●●●●

●●●●●●●●
●

●●●●
●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●
●●●●●●●●●●●●

●●●
●●

●
●●●●●●●●●

●
●●●●●
●●●●●●●●●
●

●●●●●
●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●

●
●●●●●

●●●●●●●●●●●●●●
●

●●●●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●
●

●●●●

●

●

●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●
●

●●●●●●●●●●●●●●
●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●
●●
●●●
●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●
●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●
●●●●●
●

●●●●●●
●●●●●●●
●●●●●

●●●●●
●●●

●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●
●●●●●●●●
●●●●●
●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●
●

●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●
●●●●●
●●●●●●●●
●

●
●

●
●

●●
●●●
●●●●●●●●●●●●●

●●●●●●●●
●

●●●
●●●●●●
●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●

●●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●
●

●●●
●●●●●●●●
●●●●●●●

●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●

●
●●●●●●●●
●●●●●●●●●●●
●●●●●

●●●●●●●●●●●
●●●

●
●●●●●●
●●●●●
●●●●●●●●●●

●●
●●●●●●
●●●●●●●

●
●●●●●●●
●●●●●●●●●

●
●

●●●●●●●
●●●●●
●

●●●
●●●●●●●●●●
●

●●●
●●●●●●●
●●●●●●
●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●
●

●
●●●
●●●

●
●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●
●

●
●●●●●
●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●
●●●●●

●●
●●

●
●

●●●●●
●●
●●●●●●●●●●●●
●●●●●

●●●
●●●●●●●●●●●●●●
●●●●●●●
●

●●●●●●
●

●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●

●
●●●●●●●●●
●●●●●●●●
●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●
●●

●
●●●●●●●●●●
●●●●●●
●●●●●●
●●●●●●

●
●

●●●●●●●●
●●●

●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●

●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●

●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●

●
●

●●●●●●●●●●

●

●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●●●●●
●

●●●
●●●●●●●●●
●

●●
●●●●
●●●●●●

●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●

●
●●●

●
●

●●●●●●●
●

●
●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●
●

●●●●●●●●●●●●●
●

●
●

●●●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●●
●●●

●●●●
●●●●●●●
●●●●●

●●●
●●●

●●●●
●

●

●●●●●●●●●
●●●●●●●●●●

●●●
●

●
●●●●●●●●

●●●●●●●●●●●●
●●

●
●

●●●
●

●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●

●

●●●●●●
●●●●

●
●●

●
●●●●●●●●

●
●●●●
●●●●●●
●

●
●●●●
●●●●●●●●●●●●●

●●●●●
●

●●●●●

●
●

●
●●●●

●●●●
●●●●●●

●●
●●

●
●●●●●●

●
●●●●●

●
●●

●●●
●●

●●●●●●●●●●
●

●●
●

●●●●
●●●●●●●

●●
●●●●●●●
●

●●●●●
●

●●●●●
●●●●●●●●●●●

●
●●●

●●●
●

●●●●●
●

●●●●●●●●●●●●●●●●●●●
●

●
●●

●●
●●

●●●●●●●●●●●
●

●●●
●

●●
●

●●●
●●

●●●●●●
●

●●●●●●●●●●●●●
●●●

●
●●●●

●●
●●
●●●

●
●

●
●

●

●

●●●
●●●●●●●

●●●
●

●●●●●●●●
●●

●●●●●●●●●●●●●●
●●

●●●
●

●●
●

●●●
●●

●
●●●●●●●●●●●●●●●●●

●●
●●

●●
●

●
●

●●●●
●●●

●
●●●

●
●

●
●●

●
●●
●●
●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●
●●●
●●●●●
●

●●●●●●●●
●

●●●●●
●

●●
●●

●●●●●●●●●●
●

●●●●
●

●
●●●●●●●●●
●

●
●●●●

●●●●
●

●●
●●●

●
●●●●●

●●●●●●●●
●●●●●
●●●●●●
●

●
●●●

●●
●●●●●●●
●●●●●●●●
●●●

●●
●●

●
●

●
●

●●●●●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●●
●

●●
●●

●

●

●

●●
●

●

●●●
●●●●●●●●

●●
●●●●●

●●
●●●●
●●●●●●●●●●●●●●
●●●●●●
●

●
●●●
●●●●●
●

●●●●●●●●●●●●●●●●
●●●●●●●●

●
●●●●
●●●●●●●●●
●●●●●
●●●●●●●●●●●●
●●●●
●

●●●●●●●●●●●●●●●
●

●●
●●●●●●●●●●●
●

●●●●●●●●●
●●●●

●●●●●●●●
●●●●●

●●●●
●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●

●●●
●●●●

●●
●●●

●●●●
●

●●●●
●

●●●
●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●
●●

●
●

●●●●
●

●●●●●
●●●●●
●●●●●●●
●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●●

●●●●●●●●●●●
●●●●
●

●
●●●●●

●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●
●●

●●●●
●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●

●

●

●
●

●
●●

●●●
●●
●

●●●●●●●●●
●●●●●●●●●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●
●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●●●●●

●
●●●●●●●●●●

●●●
●

●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●
●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●

●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●
●

●●●●●●●●●●●●
●●●●●

●●
●

●

●

●

●
●

●●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●

●●●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●

●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●
●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5
Weight 0

W
ei

gh
t 1

0

25
0

50
0

75
0

10
00epoch

(A) FC

●

●

●

●●

●●●●●●●●●●●●●●●●●●●
●

●●

●

●

●
●● ●

●●●

●

●

●

●
●

●
●●● ●●●●●●●●●●●

●
●●●●●●●●●●●
●●
●
●
●

●

● ● ● ●
●●●

●

●

●

●

●
●

●
●

●●●
●●●

●
●●
●●

●

●

●
●●●●●

●●

●

●

●

●

●

●

●

●●●●
●

●●●●●●●●●●
●●●

●

●

●
●

●

●
●

●
●●●

●●
●

●

●●

●

●

●

● ●

● ●●●
●

●●
●●●

●

●
●

●
●

●
●

●

● ●●

●

●

●

● ●●

●●●●
●●●

●

● ● ●
●

●
●

● ●●●

●

●●●

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5
Weight 0

W
ei

gh
t 1

0

25
0

50
0

75
0

10
00epoch

(B) NMU

4.6. MNIST Arithmetic 79

●

●

●

●

● ●●●●●●●●●●●●●●●●●●●●●●●●
●●

●
●●●

●

●

●

●

●● ●●●
●

●
●●●●
●

●●●●●●
●●●

●

●

●
●
●●●

●

●

●

●●
●● ●●●●●●● ●●

●
●●●●●●●●

●●●

●

●

●

●

●

●

●●●●●●●●●●
●●●●●●●●

●
●●●●●
●●
●●●

●

●

●

●●

●

●

●

●

●
●

●●
●●●
●
●●●●●
●●

●

●

●

● ●●●●●●●●
●●●●●●●●●●●●

●●
●
●●●●●
●●●

●

●

● ● ● ● ●
●
●●●●●●●

●
●

●
●●●

●●●
●●
●●●

●

●

●

●
●

●●●●
●●
●●●
●●
●

●●●●
●●●

●
●

●●●●●●
●●●

●

●

●

●
●● ●

●●
●●●

●
●●●
●●●
●●●●

●

●
●
●●●●●
●●

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5
Weight 0

W
ei

gh
t 1

0

25
0

50
0

75
0

10
00epoch

(C) sNMU U [1,5]

●

●

● ● ●
●● ●●

●●●●●●●
●

●●●●● ●●●●●●
●

●●●
●●●

●

●

●

●●●
●●●

●●●●●
●

●
●

●
●

● ●●●●●●●●●●●● ●●●

●

●
●

●
●

●
●●●●●●●●●●●

●●●●●●●●●●●● ●
●

●●

●

●

●

●

●

●
●

●
●●●

●●

●

●
●

●●
●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●

●

●

●

●

●

●
●

●●

●

●●●●●●●●
●●●●●●
●●●

●

●

●

● ●

●

●●●●
●●●●●●●●●●●●●●
●

●
●●●

●

● ● ●

●

●

●

●

●
●

●
●

●●
●

●●●
●

●

●●
●●●●
●●●

●

●

●

●●●●●●●●●●●●●●●
●

●
●

●
●●●●●●●●●●
●●●

●

● ●
● ●

●

● ●●
●

●●●●
●●●●●●●●●●●●●●●●●● ●●●

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5
Weight 0

W
ei

gh
t 1

0

25
0

50
0

75
0

10
00epoch

(D) sNMU U [1,1+1/sd(x)]

FIGURE 4.11: Path learned by the weights for the multiplication network for the Iso-
lated Digits task. Each path represents a different seed. Blue and red asterisks repre-

sent the starting and ending points respectively. The target to reach is (1,1).

improves robustness but can aid with learning upstream layers. For further analysis
regarding the classification accuracies of the digit classifier network see Appendix F.

4.6.1.2 Colour Channel Concatenated Digit Classification

Motivation. Confirming NALMs can be effective using simple digit classifiers, we now
ask if this remains the case if the difficulty for the classification network is increased.

Setup and network. Following Jaderberg et al. (2015), random rotation, scaling and
translation transforms are applied to the digits and the image classifier must learn to
localise digits as images now contain both digits separated by the colour channel.

FIGURE 4.12: Spatial Transformer Network (STN), taken from Jaderberg et al. (2015,
Figure 2.6).

80 Chapter 4. Multiplication - Improving Robustness via Stochasticity

FIGURE 4.13: Example of applying an STN with a Thin Plate Spline (TPS) transfor-
mation on a distorted MNIST digit. This image is a partial reproduction of Jaderberg

et al. (2015, Table 1).

The digit classifier uses the Spatial Transformer Network (STN) (Jaderberg et al., 2015)
shown in Figure 4.12, which is a differentiable layer that allows attention to a relevant
area of an image and transforms the area to a less distorted (canonical) pose (see Fig-
ure 4.13).

There are three parts to the STN - the localisation network, the grid generator and the
sampler. First, the localisation network is a regression network that outputs the param-
eters for the spatial transformation. We use a 16 control point Thin Plate Spline (TPS)
transformation for the digit localisation (Bookstein, 1989), but other possibilities would
include using an affine transformation or attention transformation. Since there are two
MNIST digits to classify, two different localisation networks are learnt; one for each
digit. Second, the grid generator creates a sampling grid that indicates where the input
should be sampled. In other words, by applying the spatial transformation parameters
to the target points, we can determine the set of coordinates (an interpolation sampling
grid) on the input (as floating-point values) which need to be sampled to generate
the output. Third, the sampler creates the output by applying the interpolation grid
to the input to sample the coordinates from the input via bilinear interpolation. The
resulting spatially transformed digits are processed by a convolutional network to ob-
tain the logits for digit classification (using softargmax). The multiplication layer uses
the same options as the Isolated Digits task from Section 4.6.1.1 (i.e., MUL, FC, NMU
and sNMU). Additional details regarding the network architecture are given in Ap-
pendix E.4.2.

Metrics and results. The network is trained using a MSE loss criterion between the
predicted multiplication and the target value, and discretisation regularisation (if a
NALM is used as the multiplication layer). For plotting results, the accuracies of each
digit label and the final output value are taken. Due to the increased difficulty of classi-
fication, the label and output predictions are rounded before calculating the accuracies.
Figure 4.14 shows that the sNMU with batch noise is able to get comparable test out-
put accuracy to the solved baseline (67.9% vs 68.9%) with tighter confidence bounds,
suggesting improved robustness for the digit classifier network. There is also an im-
provement (+13%) in classifying the first digit. Using a noise range of U [1,5] has a
weaker performance in comparison to using batch noise.

4.6. MNIST Arithmetic 81

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

25

50

75

mul fc nmu snmu [1,5] snmu [1,1+1/sd(x)]
Model

A
cc

ur
ac

y
(%

)

Metric Type:
●

●

●

●

●

●

label 1 (test)
label 1 (train)

label 2 (test)
label 2 (train)

output (test)
output (train)

FIGURE 4.14: Accuracies on the Colour Channel Concatenated MNIST task for clas-
sifying each of the two digits (label 1 and label 2) and the final product (output) for
training and testing. Accuracies are calculated after rounding the labels/output pre-

dictions.

The weight trajectories from Figure 4.15 show that the NMU fails to converge towards
the correct multiplication weights for a fold, unlike its stochastic versions, achieving
similar accuracies to the FC based network. Like the Isolated digits task, the FC models
are again unable to converge reliably to the true solution. For further analysis regarding
the classification accuracies of the digit classifier network see Appendix F.

●
●

●

●

●

●

●

●

●
●

●

●●●
●

●●

●●●
●

●●●
●

●●●
●●

●●●●
●●

●●●
●●●

●●
●●

●●●●●●
●●●
●●

●
●●●

●●●●●●●
●

●●●
●●

●●●
●●●●

●●●●●
●

●●●
●●●

●●●
●●●

●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●

●
●●●●●●●

●●●
●

●●●●●●●
●

●●

●

●●
●●●●●
●

●●●●●●
●●●
●●●●●●
●

●●●●●
●●
●●●●●●●●●●●●●●●●●

●
●●●●

●●●●
●

●●●
●●

●●●
●●

●●●●●●●
●●●●●●●●●●

●●●●●●●
●●●
●

●●●●●
●●●●●●●●●●

●
●●●●●
●●●●
●

●
●●●●●●●
●●

●●●●
●●●●●
●

●●●●●

●

●●●●
●●●●●●●●●●●
●

●●
●

●●
●●

●●●●
●●●

●●●●●●
●●●●●●●

●
●●

●
●

●●●●●●●●●●
●

●
●●

●
●●●●●●

●●
●

●
●●●

●●
●●●●●●●

●●●●
●●●●●●●
●●●

●●●
●●●●

●
●●
●

●
●

●●●
●●●●●●●
●●●
●●●●●●●
●

●●●●
●●●●●●●●●●●
●●●●●●●●●

●
●

●●
●●●●●●●●●
●●

●
●●

●
●●

●
●●●●●●●●

●●●●
●●●●

●●●
●

●
●

●●●●
●●●●●●●

●
●

●●
●●●●

●●
●●●●●●
●

●●●●●●●
●●●●●●●●

●●●●●●
●●●●●
●●●●●

●●●●●●●●●
●●●●●●●●●●

●
●●●●●

●
●●●●●●●●
●●●●●●●●●●

●
●

●
●

●●●●●●
●●●
●●●●●
●

●●●●●●●●
●●
●●

●
●●●●●●●●●●●●●●●
●●

●
●●●●
●●●●●●
●●

●●●●●●
●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●

●
●

●●●●●●●●●●
●●

●
●●●●●

●
●●●●

●●
●●●●

●
●

●
●●●●
●

●
●●

●
●

●●●●●●●●
●●●●●

●
●●●●●●●●●●
●●●●●

●
●●●●●
●

●●●
●

●●
●

●
●●●●●●
●

●●●●
●●●●●
●

●
●

●
●●●●

●
●●●
●

●●●●●●●●●●●
●

●●
●●●
●●●●●●●●●●

●

●●
●●●●●●●●●●

●●●●●●●●
●

●●
●

●
●

●●
●

●●
●

●●●●●●●●●●●
●●●●●●●●

●●●●●
●●●

●●
●

●
●

●●
●

●
●●●

●

●

●
●●●●●●●●●
●●●

●●●●
●

●●●●●●
●●

●●●●●●●●●●
●●●

●●
●●●●●●●●●
●

●●
●●●●●
●●●●●●●●●

●
●●●●●●●●●

●

●●●●●●
●

●
●●

●
●

●
●●●

●
●●●●●●●●●●

●●●●●●
●●
●●●

●
●●●
●●

●
●

●
●

●●●●●●●●●●●●●
●

●●●●●●
●●●

●●
●●●●●

●
●●●●●●●●●●●●●●●●●●
●●●

●●
●

●
●

●●●●
●●●

●
●●●●●
●●●●●
●●●●
●●

●●●●
●

●●
●●
●●●

●

●

●
●

●

●
●

●
●●

●●
●

●
●●●●

●
●●

●●
●●●

●
●●●●

●
●●●●●

●●●
●●●●●●●●
●

●●●●●●
●●●●●●●

●●
●

●●●
●

●●●
●

●●●●●●●●●●●
●●●●●●●

●●●
●

●●●●●●●●
●●●●●●

●●
●

●●●●●●●●●●●●
●●●

●●
●●●●●●●●●
●●●
●

●
●

●
●●●●●●●●●●
●●●●●

●●●●●●●
●

●●●●
●●●
●●

●
●●●
●

●●●●●
●●●●●●●●●●
●●

●●●●
●●

●●●●●●●●●●●
●●●●

●
●●●●●●●●●

●●●●
●●●

●●●
●●●
●

●●
●●●

●
●●●

●
●

●●●●●●●
●●●

●●
●●●●

●●●
●●●●

●
●●●●●●

●
●●●●●●●

●●●●
●●●

●●●●
●●
●●●●●

●●●●●
●●●

●●
●

●●
●

●●●●●●
●

●●●●●●
●●●

●
●●●

●●●●●●●●●●●
●●
●●●●●

●
●

●●
●●●●

●●●●●●●●
●●

●●
●●●●●

●

●
●●

●●
●●●●●

●
●●

●●●●
●●

●
●●●●

●
●●●●●●●●●●

●●●
●

●●●
●

●●●●
●

●●●●●●
●●●

●
●●
●●●
●●●●●●●●●●●●●●
●●

●

●
●

●●●●
●●●●

●
●●

●●
●●

●●●
●

●●●●
●

●
●●

●●●
●●
●●●●●●●
●

●●
●●●
●●●●●

●

●●●●●●
●●●●●●
●●●●●●
●

●●●●●●●●
●●

●●●●
●●

●●●●
●●

●●●●●●●
●

●●
●

●●●●●
●●

●●●●
●

●
●●●●

●
●●●●

●●●
●

●●●
●

●●
●

●●●●●
●

●
●●

●●
●●

●●
●●

●●●
●●●●●
●●

●●
●

●●●●●●
●●●●

●
●●●●●

●●
●●●●●

●
●

●
●●●

●

●●
●●

●
●●

●●●
●●●

●●●●●●●●●
●

●
●

●●●●●
●

●●
●●

●
●●●

●●
●●

●●
●●●●

●
●

●●●
●

●●●●●●

●●●●
●

●
●

●
●●●

●●●
●●

●
●●●●●

●●
●●●●●

●
●●

●
●●

●
●●●●●

●●●●●
●

●
●

●●●●●
●●●

●

●●
●●

●
●●

●●●●
●

●●
●

●●●●
●●

●
●●

●●●●●●●
●

●●●
●

●●
●●●●

●●
●●●

●●●●●●
●●●
●●

●

●
●●

●
●●●●

●●
●●●●

●
●●●●●●●●●●
●●●●●●●●●●●
●

●●●●●●●●●●
●

●●●●●●●●●
●

●●●●●●
●●●●●●●
●●●●●●●

●
●

●●●
●●●●●

●
●●●●●●●
●●●●●●
●

●●●
●●●●●●●●●●●●●●●
●●●●
●●●●
●●

●●
●●●●●
●●●●●●●●
●●●●●●●●●●●
●

●●●●
●

●●●●●
●

●
●

●●
●●●●●●●
●

●

●●
●●

●●●●●●●
●●●●
●

●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●
●●●●
●

●●●●●●●●●●●●●
●●●●●●●●
●●●
●●

●
●●●●●●
●●

●
●●●●●●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●●
●

●●
●

●●
●

●
●

●●

●
●

●
●●●

●
●●

●●
●●

●●●●
●

●●●

●●
●●●●●

●●●
●

●●●
●●●

●
●●

●●●●●
●

●●

●●●●●●
●●

●●
●

●●●●
●●

●
●

●
●

●●●
●●●●

●●
●

●●
●●●

●●
●●

●●
●

●●●
●●●●

●●●
●●

●
●●

●
●

●
●●

●●●
●●

●
●●●

●●
●●●
●●●●

●●●
●●●

●
●

●●●●
●●

●
●●●●●
●●●

●●
●●●
●●

●●●●
●

●●
●●

●●

●

●●
●

●

●
●●●
●●●●

●●●
●●

●●●●
●●●●●

●●●●●
●●●
●

●●●
●●●●●●●

●
●

●●
●●

●●●●
●

●
●

●●●●
●●●

●
●●●

●
●

●●●
●

●●
●●●●●●

●
●●●

●●
●●●

●
●●

●
●

●●
●●

●

●●
●

●●
●●
●●●●●●●

●
●●●●●●●●

●
●●●●●

●●●
●

●●●●●●●
●

●
●

●●●
●

●
●

●
●

●●●●●
●

●
●

●●
●

●●
●

●●●●●●
●●●●

●●●●
●●●●●●

●●●
●

●
●●

●
●●

●
●

●●
●●

●
●

●●
●●

●●●●●
●

●●●●
●●●●●●●●
●●

●
●

●
●

●
●●

●
●●●

●●
●

●
●●●

●●
●

●●●
●●●

●●
●●

●●●
●

●
●●●●

●
●●

●

●●●
●

●●
●

●●●
●

●
●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●●
●●●●●

●
●●

●●●●●●●●●●
●

●●●
●

●
●●●●●●●
●

●
●●●●

●
●●
●●
●●●●●●
●●●●●●

●
●

●
●

●●●●●●●●
●

●●●●
●

●
●

●●●●●●
●●●●

●
●●●●●
●

●
●●●●●●●●●●●●

●
●

●●●●●●
●●●●

●
●●●
●●●

●

●●●●●●●●●
●●●

●●
●●

●●●
●

●
●●●●●●●●
●●●●●●●

●●●●
●●●●●
●

●●●
●●

●●●●
●

●
●

●●●
●

●
●●●●●●●

●●
●●

●●
●●●
●●

●

●●
●●●●●●
●●●

●●
●●●●

●●●

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5
Weight 0

W
ei

gh
t 1

0

25
0

50
0

75
0

10
00epoch

(A) FC

●

●

●

●

●

●

●

●
●

●●●
●●

●●●

●●
●●
●●●

●
●
●

●
●
●
●●

●

●

●

●

●

●●

●

●●●●
●●

●

●
●●

●
●

●
●●●

●
●●●●●●●●●●

●●●●
●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●● ● ● ● ● ● ●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●● ●●●● ●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●● ●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●● ●●●●●●● ●●●●●●● ●●●●● ●●●●●●●● ●●●●●●●●●●●●●●● ●●●● ●●● ●●●●● ●●●●●●● ●●●● ●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●● ●●●●●●● ●●●●●●● ●●●●● ●●● ●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●● ●●●● ● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●●●● ●● ●●●● ●●● ●● ●●●● ●●●● ●●●●●●●●● ●●●●● ●●●●●●●●● ●●●● ●●●●● ●●●●●●● ● ●●●●●● ●●● ●●●●●●●● ●● ●●●● ●●● ●●● ●●●●●●● ●●●●●●●●●●●●● ●● ●●●● ●● ●●●● ●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●● ●●● ●●

●
●

●

●

●

●
●

●

●

●

●
● ● ● ●

● ●● ●
● ● ● ●

● ●●
●
●●●●

●

●

●

●●●
●

●●●

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5
Weight 0

W
ei

gh
t 1

0

25
0

50
0

75
0

10
00epoch

(B) NMU

82 Chapter 4. Multiplication - Improving Robustness via Stochasticity

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●●●
●●

●
●●●

●
●● ●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●●
●

●● ●●●●●
●

●●
●●

●●●

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5
Weight 0

W
ei

gh
t 1

0

25
0

50
0

75
0

10
00epoch

(C) sNMU U [1,5]

●

●

●
●

●

●

●

●
●

●

●
●
●●

●

●

●

●
●
●
●
●

●
●
●

●
●

●●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ●●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●●
●●●

●●
●●●

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5
Weight 0

W
ei

gh
t 1

0

25
0

50
0

75
0

10
00epoch

(D) sNMU U [1,1+1/sd(x)]

FIGURE 4.15: Path learnt by the weights for the multiplication network in the Colour
Channel Concatenated task. Each path represents a different seed. Blue and red aster-
isks represent the starting and ending points respectively. The target to reach is (1,1).

4.6.2 Sequential MNIST Product

A summary of the experiment parameters is given in Table 4.3. Additional details
regarding the network architecture are given in Appendix E.4.3.

TABLE 4.3: Sequential MNIST experiment parameters. The Validation digits are the
last 5000 images of the MNIST training set. Iterations are equivalent to the number of

image batches seen; it is a global count over the epochs.

Parameter Sequential MNIST

Epochs 1000
Batch Size 64
Train digits 55000
Validation digits 5000
Test digits 10000
Interpolation length 2
Extrapolation lengths Up to 20
Optimiser Adam (betas=(0.9, 0.999))
Criterion MSE
Learning rate 10−3

λstart − λend iterations 10000-100000
Seeds 10

Motivation. To test the effect of the modules in a different type of extrapolative setting,
a sequential task is adopted where the number of digits to multiply can be controlled.

4.6. MNIST Arithmetic 83

Mul net1

7 3

Mul net 21

Digit regression
net

Digit regression
net

FIGURE 4.16: Example of a Sequential MNIST network unrolled for two timesteps.
The Digit regression net is the image-to-value network and the Mul net is the multi-
plication network for multiplying the hidden state (i.e., the memory which stores the
accumulated multiplication value) with the input element. The starting hidden state

is 1 which is the identity value of multiplication.

Setup and network. Following Madsen and Johansen (2020), given a sequence of
MNIST digits (between 1-9), process one image at a time using a classification net-
work to regress an image to its label value, which gets passed into a recursive NALM
cell to calculate the cumulative result as shown in Figure 4.16. The NALM will take in
two inputs: the predicted label of the image at the current timestep and the predicted
accumulated value from the previous timesteps. A convolutional network is used to
regress the images to a scalar real number representing the digit. The multiplication
layer is either solved (baseline) or requires learning a NALM (NMU or sNMU).

Regularisation on the output of the digit regression network is applied to encourage
solutions which adhere to the bias that NMU weights of 1 result in multiplication, i.e.,

Rz =
1
I

I

∑
i

(︁
(1−Wi) · (1− zī)

2)︁ .

where I is the number of input features, O (=1) is the number of output features, Wi,o is
a NMU weight and zī is the average input values into the recurrent NALM cell (over
the batch and timesteps). If the NMU weight is 1 then there is no penalty. If the weight
is converging towards 0 then the penalty uses the (1− zī)

2 to penalise the inputs to the
cell from becoming too large which encourages sub-optimal solutions. On top of this,
for the NALM multiplication units, regularisation which encourages NMU discretisa-
tion (see Equations 2.15 and 2.16) is also applied.

84 Chapter 4. Multiplication - Improving Robustness via Stochasticity

Metrics and results. The training metric used is the MSE taken between the output
for each timestep and its corresponding cumulative target. Similar to the evaluation of
arithmetic tasks from Chapter 3, a success threshold is calculated to determine if the
MSE of the network should be considered a success. The success threshold is the 1%
one-sided upper confidence interval using a student-t distribution over the MSE of a
network where the cumulative multiplication layer is solved. Training uses two-digit
sequences while testing uses sequences up to 20 digits long.2 A validation set, made up
of two-digit sequences, is used for early stopping by taking the best-performing model
on the validation set and using it for testing. Figure 4.17 shows the results with both
sNMU networks outperforming the NMU over multiple extrapolation lengths while
retaining fast convergence similar to the NMU. The batch sNMU underperforms in
comparison to the NMU between sequence lengths 11-14, while the noise range U [1,5]
only underperforms on length 15.

●

●

●

● ●

● ●

●

● ● ●

●

●

● ● ● ●

●

●

●●

●

●

●

● ●

●

● ● ●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ●

Success rate Solved at iteration step Sparsity error

1 2 4 6 8 10 12 14 16 18 20 1 2 4 6 8 10 12 14 16 18 20 1 2 4 6 8 10 12 14 16 18 20
−5.00e−18

2.25e−17

5.00e−17

7.75e−17

1.05e−16

0

10000

20000

30000

40000

0.00

0.25

0.50

0.75

1.00

Extrapolation length

● ● ●NMU sNMU [1,5] sNMU [1,1+1/sd(X))]

FIGURE 4.17: Performance on Product of Sequential MNIST. Model names represent
the type of multiplication cell used. All models use the same CNN architecture to do

digit classification. Error bars represent the 95% confidence interval.

4.7 Summary

In this chapter, we have identified a cause of the lack of robustness in the NMU mul-
tiplication module. Specifically, the issue of local optima causes the NALM to attempt
to converge to weights outside of its allowed weight range. To begin to alleviate this
issue, we design a fully reversible stochastic wrapper on the NMU which improves the
NALM’s chances to escape local optima. The wrapper nature of this idea means that
the internal NALM dynamics do not need to be altered. We validate the idea empiri-
cally over arithmetic and MNIST experiments, finding in many cases the stochasticity
improves over the non-stochastic NMU.

There are three next steps that naturally follow this work. The first would be to under-
stand the effect different noise distributions have on learning. The second is to confirm
whether stochasticity can also aid other NALMs. As the stochasticity is fully reversible,

2Longer sequences can result in floating-point precision errors.

4.7. Summary 85

the definition of denoising would need to be altered for different NALMs since denois-
ing relies on the weight values of the module. The third is to explore how well stochas-
ticity works when used on more complex visual datasets such as SVHN (Netzer et al.,
2011) or handwritten digits e.g., HINT (Li et al., 2021).

87

Chapter 5

Division - Understanding the
Underlying Learning Mechanisms

Division is one of the four fundamental arithmetic operations and is necessary for ex-
pressing real-world dynamical systems (Sahoo et al., 2018; Li et al., 2019) and physics-
based formulas (Udrescu and Tegmark, 2020). However, the properties of division of
values around zero lead to undesirable gradients for training neural networks through
backpropagation, making it the hardest operation to learn. From reviewing the exist-
ing NALM literature in Chapter 2, we identified a constant agreement from all works
that division is difficult to learn. In Chapter 3 we empirically show this difficulty does
indeed exist, especially compared to the other arithmetic operations. We now break-
down the issue of learning division, investigating factors that cause learning issues and
mechanisms to alleviate the issues.

To set the scene for this chapter, imagine you must learn to divide 2 numbers from a
list of 10 numbers, but are only given the 10 numbers and the expected result. This
task requires finding the 2 relevant operands, the order to divide the operands, and
learning to divide. In ML, this is equivalent to a supervised regression task where
the aim is to learn the underlying function between the inputs and output such that
the solution is generalisable to any input. For neural networks, the main challenge
of this task comes from having to learn the selection and operations simultaneously,
which can lead to conflicting priorities when learning weights. The ability to do a
hard selection on relevant inputs/features is a desirable property for neural networks,
useful for improved interpretability, reduced preprocessing costs and greater generali-
sation (Chandrashekar and Sahin, 2014). As differentiable specialist modules, such as
those for arithmetic operations, can be integrated with overparametrised networks as
an intermediate module, being able to successfully select only the relevant inputs is
important (Madsen and Johansen, 2020).

88 Chapter 5. Division - Understanding the Underlying Learning Mechanisms

Can we build models which can learn division in the presence of its undesirable, yet
valid, properties? We aim to address this question in this chapter by optimising an
existing NALM, the Real NPU, and introducing two alternate division modules which
attempt to extend the NMU to do division. A desideratum for building a division
module is provided in Appendix G.1 and code (MIT license) is available at https:
//github.com/bmistry4/nalm-division.

5.1 Related Work

Learning to robustly divide provides a stepping stone for neural networks to achieve
symbolic regression. Compared to black-box neural network functions, expressing a
mathematical function is significantly easier to interpret. A fully differentiable neural
network approach can incorporate biases to improve the interpretability of the net-
work. Sahoo et al. (2018) sets activation functions in a layer to different symbolic oper-
ations rather than using a traditional non-linear activation like ReLU. They also encour-
age only using relevant weights through a sparsity regularisation scheme which varies
in strength depending on how much training has occurred. However, gaining the best
performance requires using selection strategies over many trained modules which is
costly and can be unreliable. In contrast, Udrescu and Tegmark (2020) exploits patterns
in the data by designing physics-related biases such as translational symmetry or mul-
tiplicative separability into their architecture. Due to the strong prior which assumes
the dataset contains underlying physics representations, the model performs poorly
when trained on datasets without such representations (Cava et al., 2021).

As we have seen, NALMs are another type of differentiable neural networks. Multi-
ple studies have shown using NALMs such as the NALU which ignores dealing with
the singularity in division is unstable in learning (Madsen and Johansen, 2020; Schlör
et al., 2020; Heim et al., 2020). Even with all the iNALU’s modifications on the NALU
including weight and gradient clipping, sign retrieval, regularisation, reinitialisation
and separating shared parameters, consistently learning division to high precision re-
mains unattainable (Schlör et al., 2020). The original empirical findings of the Real
NPU claim to outperform the iNALU for division (Heim et al., 2020) which we confirm
in our benchmark results of Figure 3.5, finding that the Real NPU has less complete
failures over more ranges.

5.2 Architectures

This section introduces the architectures for the Neural Reciprocal Unit (NRU), and the
Neural Multiplicative Reciprocal Unit (NMRU). Both NALMs are novel contributions

https://github.com/bmistry4/nalm-division
https://github.com/bmistry4/nalm-division

5.2. Architectures 89

which extend the existing NMU (see Section 2.2.3) to do division. Since these archi-
tectures are NALMs, they can be viewed as regression modules trained via supervised
learning. We assume the inputs are represented as a vector of features, where only
certain input features are relevant to the output. As with the earlier illustrations from
Chapter 2, we use Figure 5.1 as the key for the NRU and NMRU architecture illustra-
tions.

Element-wise addition

Element-wise subtraction

Element-wise multiplication

Element-wise 1-<value>

Element-wise reciprocal of input

Element-wise power

Input/output

Learnable parameter

Part of summative path calculation

Part of gating calculation

Part of multiplicative path calculation

Part of multiplicative sign retieval calculation

Matrix Multiplication

Data flow

Intermediary result

Transpose input

Concatenate input (column-wise)

Kronecker product

Concatenate input (row-wise)

FIGURE 5.1: Key of the symbols and colouring system for architecture illustrations.

5.2.1 NRU

abs

sign

NRU

FIGURE 5.2: NRU architecture. Example of a 3-feature input and 2-feature output
model.

We propose the NRU, which can model multiplication and division, by extending the
NMU, motivated by the fact that division is the multiplication of reciprocals. Compared to
the NMU, the allowed range for weight values is extended from [0,1] to [-1,1], where -1
represents applying the reciprocal on the corresponding input element. A NRU output
element zo is defined as

NRU : zo =
I

∏
i=1

(︂
sign(xi) · |xi|Wi,o · |Wi,o|+ 1− |Wi,o|

)︂
, (5.1)

where I is the number of inputs. Assuming weights are either 1 (multiply) or -1 (re-
ciprocal), |xi|Wi,o will apply the operation on an input element. The absolute value is

90 Chapter 5. Division - Understanding the Underlying Learning Mechanisms

used so that the module only operates in the space of real numbers, as xWi,o
i for a neg-

ative input (xi) when −1 < Wi,o < 1 results in a complex number. The use of absolute
means the sign of the input must be reapplied. For the no-selection case Wi,o = 0,
we want the input element to convert to 1 (the identity value), resulting in applying
·|Wi,o|+ 1− |Wi,o|. The derivative of the absolute function at 0 is undefined meaning
the gradients of Equation 5.1 can contain points of discontinuity. To alleviate this issue,
we approximate the absolute function using a scaled tanh (inspired by Faber and Wat-
tenhofer (2020)). More formally,

|Wi,o| =

⎧⎨⎩tanh(1000 ·Wi,o)
2 if training

|Wi,o| otherwise
.

The scale factor (1000), selected from tanh scaling experiments (see Appendix G.2),
controls how close to the absolute function the approximation is for -1, 0 and 1, where
larger scaling factors result in sharper approximation functions. For clipping and reg-
ularisation, the same scheme as the Neural Addition Unit (NAU) (see Equations 2.15
and 2.16) is used, forcing weight elements to converge to -1, 0 or 1.

5.2.2 NMRU

NMRU

abs

cos

FIGURE 5.3: NMRU architecture. Example of a 3-feature input and 2-feature output
model.

An alternate extension of the NMU, also motivated by division being a multiplication of
reciprocals is the NMRU (Equation 5.2). We concatenate the reciprocal of the input (plus
a small ϵ) to the input resulting in a module that only needs to learn selection. Hence,
weights can be in the range [0,1].

NMRU : zo =
2I

∏
i=1

(Wi,o · |xi|+ 1−Wi,o) · cos(
2I

∑
i=1

(Wi,o · ki)) , where ki =

⎧⎨⎩0 xi ≥ 0

π xi < 0
.

(5.2)

The iteration over 2I represents going through all inputs and their reciprocals. We cal-
culate the magnitude and sign separately, joining the result at the end. The magnitude

5.3. Single Module Arithmetic Experiment Setup 91

is calculated by passing the absolute of the concatenated input through an NMU archi-
tecture and the sign is calculated by using a cosine mechanism similar to the Real NPU
(see Section 2.3.1). However, unlike the Real NPU only the weight matrix is required.
The norm of the weight’s gradients is clipped to 1 prior to being updated by the op-
timiser. This is done to alleviate the issue of exploding gradients caused by including
the reciprocal to the inputs. For clipping and regularisation, the same scheme as the
NMU (see Equations 2.15 and 2.16) is used, forcing weights to converge to 0 or 1.

5.3 Single Module Arithmetic Experiment Setup

TABLE 5.1: Parameters which are applied to all modules. Parameters have been split
based on the experiment. ∗Validation and test datasets generate one batch of samples
at the start which gets used for evaluation for all iterations. † the Real NPU modules

use a value of 1.

Parameter Without redundancy With redundancy

Layers 1 1
Input size 2 10
Total iterations 50,000 100,000
Train samples 128 per batch 128 per batch
Validation samples∗ 10000 10000
Test samples∗ 10000 10000
Seeds 25 25
Optimiser Adam (betas=(0.9, 0.999)) Adam (betas=(0.9, 0.999))
λ̂

†
10 10

To evaluate the NALMs we will use our Single Module Arithmetic benchmark (see Sec-
tion 3.3), where the task evaluates the ability of a single module to divide two numbers
from an input vector in two settings: without redundancy (2 inputs) and with redundancy
(10 inputs with 8 redundant inputs).

Table 5.1 summarises the experiment parameters and additional experiment details
are found in Appendix E.3. All experiments use a MSE loss with an Adam optimiser
(Kingma and Ba, 2015) and 10,000 samples for the validation and test sets. The training
uses batch sizes of 128 and the best model for evaluation is taken using early stopping
on the validation set. All inputs are required in the without redundancy setting, i.e., in-
put size of 2. Training takes 50,000 iterations where each iteration consists of a different
batch. The Real NPU uses a learning rate of 5× 10−3 with sparsity regularisation scal-
ing during iterations 40,000 to 50,000. The NRU and NMRU use sparsity regularisation
scaling during iterations 20,000 to 35,000 and a learning rate of 1 and 10−2 respectively.
In contrast, the redundancy setting uses an input size of 10, where 8 input values are not
required for the final output. The total training iterations are extended to 100,000. The

92 Chapter 5. Division - Understanding the Underlying Learning Mechanisms

learning rates for the Real NPU, NRU and NMRU are 5× 10−3, 10−3 and 10−2 respec-
tively. Sparsity regularisation scaling occurs during iterations 50,000 to 75,000 for all
modules.

5.4 Improving the Real NPU’s Robustness

We first improve the robustness of the Real NPU against different training ranges. The
Single Module Task with no redundancy (see Section 5.3) is used to investigate the fol-
lowing: (1) Is L1 regularisation required, and if so, do the regularisation parameters
require tuning? (2) Does clipping the learnable parameters aid learning? (3) Does en-
forcing discretisation on parameters improve convergence? (4) Can the weight matrix
initialisation be improved?

To address each question, we apply incremental modifications to the Real NPU. Mod-
ifications include an ablation study on the L1 regularisation (including a sweep over
the scaling range hyperparameters), clipping, enforcing discretisation, and a more re-
strictive initialisation scheme. We assume that we are optimising the Real NPU to
perform multiplication or division Therefore, we trade-off the flexibility of having non-
discretised weights, which enables the success of modelling the SIR data in Heim et al.
(2020, Section 4.1), in favour of sparse models with discrete weight values. All the
modifications can also be generalised for the NPU architecture.

Is L1 regularisation required? (Yes.) L1 encourages sparsity (i.e., zero weights) in so-
lutions (Tibshirani, 1996). For the Real NPU, zero-valued weights mean not selecting
an input and returning the identity value 1. For the task, the optimal weight values
require selecting all inputs and therefore non-zero values, suggesting the application
of L1 could be damaging. Removing L1 regularisation (see Figure 5.4a) proves to be
detrimental in five of the nine cases shown and only shows minor improvements in
two of the nine ranges (i.e., U [-1.2,-1.1) and U [1.1,1.2)). Hence, we keep L1 regularisa-
tion.1 The L1 regularisation scaling (see Section 2.2.4 for details), requires setting the
hyperparameters for the start (βstart) and end (βend) scaling values. We run a sweep
over six different start and end values, denoted (<start>, <end>), displaying results
in Figure 5.4b. We find the configuration (10−9, 10−7) is the most successful when con-
sidering the performance on all the ranges, and larger scaling values perform worse.

Does clipping the learnable parameters help? (Yes.) Division and multiplication are
represented by weight values of -1 and 1 respectively. The current architecture does not
constrain the weights which can result in large weight values. Hence, we investigate
applying clipping directly to the weight and gate values after every optimisation step.
Figure 5.5a shows clipping is beneficial, with clipping on both weight and gate (or just

1Further experiments comparing L2 regularisation also found L1 to perform better (see Appendix G.3).

5.4. Improving the Real NPU’s Robustness 93

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

Extrapolation range success rate

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ●L1 off L1 on

(A) L1 regularisation

● ● ● ● ● ● ● ● ●

●

●

●

●
●

●

●

●

●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

Extrapolation range success rate

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ● ●

● ● ●

(1e−11,1e−9) (1e−9,1e−7) (1e−8,1e−6) (1e−7,1e−5)

(1e−5,1e−3) (1e−3,1e−1) (1e−1,10)

(B) Sweep over L1 (start,end) beta parameters

FIGURE 5.4: Exploring the effect and sensitivity of L1 regularisation on the Real NPU.

94 Chapter 5. Division - Understanding the Underlying Learning Mechanisms

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

Extrapolation range success rate

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ● ●None G W GW

(A) Clipping

●

●

●

●

●

● ● ●

●
●

● ●

●

●

● ● ●

●

●

●

●

●

●

● ● ●

●

Extrapolation range success rate

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ●None G GW

(B) Discretisation regularisation

●
● ●

●

●

● ● ●
●

● ● ●

●

● ● ● ● ●

Extrapolation range success rate

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.25

0.50

0.75

1.00

Interpolation range

●

●

Xavier−Uniform

Xavier−Uniform Constrained

(C) WRE initialisation schemes

FIGURE 5.5: Effect of clipping, discretisation, and the NAU initialisation scheme on
the Real NPU.

on the weights) to improve over the baseline on all ranges (excluding U [1,2) where the
baseline has already achieved full success and U [-2,2) where everything fails).

Does enforcing discretisation help? (Yes.) Modelling division in a generalisable man-
ner requires all learnable parameters to be discrete i.e., a value from {-1, 0, 1}. Using
Madsen and Johansen (2020)’s regularisation scaling scheme (see Section 2.2.3), we pe-
nalise weights for not being discrete. Gate parameters should be 0 or 1 and weight

5.5. Uniform Range Datasets 95

parameters should be -1 or 1. We modify the scaling factor to be λ̂ = 1 and the regu-
larisation to go from ‘off’ to ‘on’ between iterations 40,000 to 50,000. Figure 5.5b shows
discretising the gate improves over the baseline but also discretising the weights is ad-
ditionally beneficial.

Does using a more constrained initialisation help? (Yes.) WRE uses a Xavier-Uniform
initialisation (Glorot and Bengio, 2010), meaning weights can be initialised out of the
range [-1,1]. Therefore, we use the initialisation for the Neural Addition Unit (NAU)
which is a constrained form of the Xavier-Uniform that does not allow the fan values
of the Uniform distribution to go beyond 0.5, meaning that no weight value will be
out of the range [-1,1]. Figure 5.5c shows using the constrained initialisation provides
improvements, with a learning rate of 5 × 10−3 working best (see Figure G.3 in Ap-
pendix G.3).

5.5 Uniform Range Datasets

We now compare learning Uniform ranges (Table 3.2) on all modules including the
NRU and NMRU for the no redundancy and redundancy setups.

On the no redundancy setup (Figure 5.6) the NRU and NMRU achieve full success
while solving the problem consistently fast and with low sparsity error, while the base-
line Real NPU without modifications struggles with success on all ranges. Applying
the Real NPU modifications described in Section 5.4 improves the robustness such that
only range U [-2,2) struggles. The NRU was also found to be especially sensitive to the
learning rate when learning on negative ranges (see Appendix G.4).

Introducing redundancy (Figure 5.7) causes failure modes to arise on all modules. The
baseline Real NPU produces high sparsity errors relative to the other modules suggest-
ing a struggle with discretisation. The modified Real NPU improves over all ranges
of the baseline (which were not already at full success) in terms of success, speed and
sparsity (except for the sparsity in U [10,20)). To ensure that complex weights do not fix
the issue, we test the NPU module with all the modifications used on the real weight
matrix but find no significant improvements (see Figure G.5 in Appendix G.5). The re-
dundancy affects the NRU the most, resulting in full failures on all the negative ranges.
The NMRU is the only module with success on range U [-2,2) due to its sign mechanism
(see Figure G.6 in Appendix G.6). It performs well over all ranges but can be outper-
formed by the modified Real NPU for negative ranges.

96 Chapter 5. Division - Understanding the Underlying Learning Mechanisms

● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ● ● ● ●

●
●

● ●

●
● ● ●

●● ●
● ●

● ●
● ●

●
● ●

●

●

●

●

●

●

● ●

● ●

●

● ● ●

●

● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ●
●

● ● ●
●

● ● ● ● ●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0e+00

5e−06

1e−05

0

10000

20000

30000

40000

50000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ● ●Real NPU (baseline) Real NPU (modified) NRU NMRU

FIGURE 5.6: Division without redundancy (input size 2) on Uniform ranges.

●

●

●
●

●

● ● ● ●

● ● ● ● ●

● ● ● ●

●

●

●

●

●

● ●

●

●

● ● ●

●

●

● ● ● ●

● ●

●

● ● ●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
● ●

● ● ● ● ● ● ● ● ●● ● ● ●

●

●

●

●

●

●

●

●

● ●
● ●

● ● ●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.05

0.10

0.15

0

20000

40000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ● ●Real NPU (baseline) Real NPU (modified) NRU NMRU

FIGURE 5.7: Division with redundancy (input size 10) on Uniform ranges.

TABLE 5.2: Mixed-Sign Datasets: The interpolation and extrapolation ranges to sam-
ple the two input elements for a single data sample. The target expression to learn is:

input 1 ÷ input 2.

INTERPOLATION EXTRAPOLATION

DATASET INPUT 1 INPUT 2 INPUT 1 INPUT 2

1 U[-2, -0.1) U[0.1, 2) U[-6, -2) U[2, 6)
2 U[-2, -1) U[1, 2) U[-6, -2) U[2, 6)
3 U[-2, 2) U[-2, 2) U[-6, -2) U[2, 6)
4 U[0.1, 2) U[-2, -0.1) U[2, 6) U[-6, -2)
5 U[1, 2) U[-2, -1) U[2, 6) U[-6, -2)

5.6 Mixed-Sign Input Datasets

The Uniform ranges results showed that the Real NPU (modified) and NRU have diffi-
culty in learning when inputs can consist of arbitrary signed values (e.g. all positives,
all negatives, or a mixture of positive and negative values) such as U [-2,2).

5.6. Mixed-Sign Input Datasets 97

We question if the failure is due to the input samples in a batch having different signs from each
other, or if the problem is due to the fact data samples can be close to 0 (leading to singularity
issues). Five mixed-sign datasets which can control the range for each element in the
input are generated, with interpolation and extrapolation ranges found at Table 5.2.
Datasets 1, 2, 4 and 5 samples a positive value for one input element and a negative
value for the other element. Dataset 3 samples the signs randomly. Datasets 2 and 5
avoid sampling close to 0 values to mitigate the singularity issue.

Figure 5.8 shows the Real NPU struggles on all these ranges while the NRU and NMRU
do not. This implies that the underlying issue is most likely correlated to each element
in an input having different signs. When the denominator of the output is positive
(dataset 1 or 2), the solution is found faster than when the denominator is a negative
value (dataset 4 or 5). Learning with input redundancy (Figure 5.9), causes the Real
NPU and NRU to swap in performance. The Real NPU performs significantly better

● ● ● ● ●● ● ● ● ●

● ●

●

●
●

● ● ● ● ●● ●
●

● ●●

●

●

●
●

●
●

● ● ●● ● ● ● ●● ●

●

● ●

Extrapolation range success rate Solved at iteration step Sparsity error

U
[−

2,
−0

.1
) &

 U
[0

.1
,2

)
U

[−
2,

−1
) &

 U
[1

,2
)

U
[−

2,
2)

U
[0

.1
,2

) &
 U

[−
2,

−0
.1

)
U

[1
,2

) &
 U

[−
2,

−1
)

U
[−

2,
−0

.1
) &

 U
[0

.1
,2

)
U

[−
2,

−1
) &

 U
[1

,2
)

U
[−

2,
2)

U
[0

.1
,2

) &
 U

[−
2,

−0
.1

)
U

[1
,2

) &
 U

[−
2,

−1
)

U
[−

2,
−0

.1
) &

 U
[0

.1
,2

)
U

[−
2,

−1
) &

 U
[1

,2
)

U
[−

2,
2)

U
[0

.1
,2

) &
 U

[−
2,

−0
.1

)
U

[1
,2

) &
 U

[−
2,

−1
)

0e+00

2e−07

4e−07

6e−07

0

2500

5000

7500

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ●Real NPU (modified) NRU NMRU

FIGURE 5.8: Division without redundancy on the mixed-sign datasets that control the
sign of the input elements. The ranges are in order of the datasets (i.e. dataset 1 to 5).

● ● ● ● ●

● ● ● ● ●

● ●

●

● ●

●

●

●

●

●

● ● ● ●
● ● ● ● ●

●

●

●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U
[−

2,
−0

.1
) &

 U
[0

.1
,2

)
U

[−
2,

−1
) &

 U
[1

,2
)

U
[−

2,
2)

U
[0

.1
,2

) &
 U

[−
2,

−0
.1

)
U

[1
,2

) &
 U

[−
2,

−1
)

U
[−

2,
−0

.1
) &

 U
[0

.1
,2

)
U

[−
2,

−1
) &

 U
[1

,2
)

U
[−

2,
2)

U
[0

.1
,2

) &
 U

[−
2,

−0
.1

)
U

[1
,2

) &
 U

[−
2,

−1
)

U
[−

2,
−0

.1
) &

 U
[0

.1
,2

)
U

[−
2,

−1
) &

 U
[1

,2
)

U
[−

2,
2)

U
[0

.1
,2

) &
 U

[−
2,

−0
.1

)
U

[1
,2

) &
 U

[−
2,

−1
)

0.00

0.02

0.04

0.06

0

20000

40000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ●Real NPU (modified) NRU NMRU

FIGURE 5.9: Division with redundancy on the mixed-sign datasets that control the
sign of the input elements. The ranges are in order of the datasets (i.e. dataset 1 to 5).

98 Chapter 5. Division - Understanding the Underlying Learning Mechanisms

than the no redundancy task on all ranges except U [-2,2), while the NRU no longer
works on any range. The NMRU retains strong performance.

5.7 More Challenging Distributions: Larger Magnitudes and
Mixed-Signs

To further stress test the modules, we explore the effect of larger Uniform ranges and
different distributions (i.e., Benford and Truncated Normal). The ranges are found in
Table 5.3. The Uniform ranges test how a mixed-sign dataset is influenced by larger
ranges (with magnitudes of 50 and 100). The Benford distribution also tests learning
on large magnitude values. It follows a more natural distribution compared to the
Uniform, known to underlie real world data such as accounting data (Hill, 1995). The
Truncated Normal (TN) distributions also investigate mixed-sign datasets. A Normal
distribution allows setting biases via the mean value (and is set to either -1, 0 or 1),
while the truncation ensures the extrapolation range not to overlap with the interpola-
tion range. The results for the 2-input and 10-input settings are shown in Figures 5.10
and 5.11.

Uniform distributions: Larger ranges are found to be challenging when redundant in-
puts exist. On the 2-input setup, both NRU and NMRU have full success, while the Real
NPU (modified) has failure cases for both Uniform distributions (with success rates of
0.72 on U [-100,100) and 0.76 on U [-50,50)). On the 10-input size setup, all modules fail
for all runs for both ranges.

Benford distribution: All modules succeed on the 2-input setting but on the 10-input
setting, the NRU and modified Real NPU have full success implying the Uniform dis-
tributions failures are due to using mixed-signed inputs rather than the large ranges.
The NMRU shows the majority of failures (failure rate 0.84), suggesting that distribu-
tions with large ranges are challenging for learning when using the NMRU.

Truncated Normal distributions: On the 2-input setup, both NRU and NMRU have
full success but the Real NPU (modified) has failure cases for all three distributions
(with success rates 0.48, 0.08, 0.64 respectively). When trained using the 10-input setup,
both the NRU and Real NPU (modified) have no success. The NMRU’s success rate
greatly varies depending on the range (being 0.48, 0.04 and 0.92 for TN(-1, 3)[-5, 10),
TN(0,1)[-5, 5) and TN(1, 3)[-10, 5) respectively). This suggests the NMRU works better
when a majority of the inputs are likely to have the same sign and struggles with values
around zero.

5.7. More Challenging Distributions: Larger Magnitudes and Mixed-Signs 99

TABLE 5.3: Interpolation (train/validation) and extrapolation (test) ranges for differ-
ent distributions. Data is drawn with the lower and upper bounds. TN = Truncated
Normal in the form TN(mean, sd)[lower bound, upper bound). B = Benford. U= Uni-

form.

Interpolation TN(-1, 3)[-5, 10) TN(0,1)[-5, 5) TN(1, 3)[-10, 5)
Extrapolation TN(-10, 3)[-15, -5) TN(10,1)[5, 15) TN(10, 3)[5, 15)

Interpolation B[10, 100) U [-100, 100) U [-50, 50)
Extrapolation B[100, 1000) U [-200, -100) ∪ [100, 200)] U [[-100, -50) ∪ [50, 100)]

● ● ● ● ● ●● ● ● ● ● ●●

●

●

●
●

●

● ● ● ● ● ●

●

● ● ● ● ●

●

●

●

●

● ●

● ● ● ● ● ●● ● ● ● ● ●

●

● ● ● ● ●

Extrapolation range success rate Solved at iteration step Sparsity error

B:[1
0,

10
0)

TN(−
1,

3)
:[−

5,
10

)

TN(0
,1

):[
−5

,5
)

TN(1
,3

):[
−1

0,
5)

U:[−
10

0,
10

0)

U:[−
50

,5
0)

B:[1
0,

10
0)

TN(−
1,

3)
:[−

5,
10

)

TN(0
,1

):[
−5

,5
)

TN(1
,3

):[
−1

0,
5)

U:[−
10

0,
10

0)

U:[−
50

,5
0)

B:[1
0,

10
0)

TN(−
1,

3)
:[−

5,
10

)

TN(0
,1

):[
−5

,5
)

TN(1
,3

):[
−1

0,
5)

U:[−
10

0,
10

0)

U:[−
50

,5
0)

0.00

0.05

0.10

0.15

0.20

0

10000

20000

30000

40000

50000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ●Real NPU (modified) NRU NMRU

FIGURE 5.10: Division without redundancy on the Benford, Truncated Normal and
Uniform distribution.

●

●

●

●

● ●

●

● ● ● ● ●

●

● ● ● ● ●

●

●

●

●

●

●
● ● ● ●●

●

Extrapolation range success rate Solved at iteration step Sparsity error

B:[1
0,

10
0)

TN(−
1,

3)
:[−

5,
10

)

TN(0
,1

):[
−5

,5
)

TN(1
,3

):[
−1

0,
5)

U:[−
10

0,
10

0)

U:[−
50

,5
0)

B:[1
0,

10
0)

TN(−
1,

3)
:[−

5,
10

)

TN(0
,1

):[
−5

,5
)

TN(1
,3

):[
−1

0,
5)

U:[−
10

0,
10

0)

U:[−
50

,5
0)

B:[1
0,

10
0)

TN(−
1,

3)
:[−

5,
10

)

TN(0
,1

):[
−5

,5
)

TN(1
,3

):[
−1

0,
5)

U:[−
10

0,
10

0)

U:[−
50

,5
0)

0.00

0.05

0.10

0.15

0.20

0

10000

20000

30000

40000

50000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ●Real NPU (modified) NRU NMRU

FIGURE 5.11: Division with redundancy on the Benford, Truncated Normal and Uni-
form distribution.

100 Chapter 5. Division - Understanding the Underlying Learning Mechanisms

5.8 Division by Small Magnitudes

The discontinuous nature of division at zero results in the inability to provide a com-
putational value for the output/gradient and causes neighbouring values to have large
gradients. To understand the extent of this issue when learning, we explore learning to
divide by values close to zero using three tasks with increasing difficulty: 1) learning
to take the reciprocal of a single input, 2) taking the reciprocal of the first input given
two inputs, and 3) dividing the first input by the second given two inputs.

5.8.1 Impact of the Singularity Issue on Gold Solutions

Figure 5.12 plots the test error assuming the module weights are set to the ‘gold’ so-
lution for the three tasks. As the range values become closer to zero, the test error
thresholds become increasingly large. Therefore, even with the correct weights, rely-
ing on the test errors alone as an indicator becomes increasingly deceptive with values
close to zero. The Real NPU has larger test errors for all tasks and ranges, caused by
adding ϵ to the input (see Equation 2.18). Setting ϵ = 0 reduces the test error at the cost
of the ability to deal with zero-valued inputs. Below, we provide the corresponding ex-
perimental results finding that only modelling reciprocals can be learnt with extremely
small values.

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
●

●
●

● ● ● ● ● ● ● ● ●

● ●
●

●
●

●

●
●

●

Input: [a]; Output: 1/a Input: [a,b]; Output: 1/a Input: [a,b]; Output: a/b

U[0
,1

e−
8)

U[0
,1

e−
7)

U[0
,1

e−
6)

U[0
,1

e−
5)

U[0
,1

e−
4)

U[0
,1

e−
3)

U[0
,1

e−
2)

U[0
,1

e−
1)

U[0
,1

e+
0)

U[0
,1

e−
8)

U[0
,1

e−
7)

U[0
,1

e−
6)

U[0
,1

e−
5)

U[0
,1

e−
4)

U[0
,1

e−
3)

U[0
,1

e−
2)

U[0
,1

e−
1)

U[0
,1

e+
0)

U[0
,1

e−
8)

U[0
,1

e−
7)

U[0
,1

e−
6)

U[0
,1

e−
5)

U[0
,1

e−
4)

U[0
,1

e−
3)

U[0
,1

e−
2)

U[0
,1

e−
1)

U[0
,1

e+
0)

1e−07

1e+01

1e+09

1e+17

1e−07

1e+01

1e+09

1e+17

1e−07

1e+01

1e+09

1e+17

Data sample range

lo
g(

Te
st

 e
rr

or
)

● ● ● ●RealNPU RealNPU (eps=0) NRU NMRU

FIGURE 5.12: Effect of the singularity issue on the Real NPU, NRU and NMRU over
increasing input ranges. Left: Reciprocal for an input size of 1 (no redundancy). Mid-
dle: Reciprocal for an input size of 2 (with redundancy). Right: Division for an input

size of 2 (no redundancy).

5.8.2 Experimental Results

This section shows the results of trying to learn the reciprocal/division of values close
to zero using the Real NPU, NRU and NMRU. We train and test on the ranges where

5.8. Division by Small Magnitudes 101

the lowest bound is 0 and the upper bounds are 10−4, 10−3, 10−2, 10−1 and 1. Unless
stated otherwise, the hyperparameters of a model are set to what is used for the Single
Layer Task without redundancy (see Section 5.3). The first task runs for 5,000 iterations
with no regularisation for any module. The second and third tasks both run for 50,000
iterations. Due to precision errors, a solution with the ideal parameters will not evalu-
ate to a MSE of 0. Therefore, we calculate thresholds that the test MSE should be within.
A threshold value for a task is calculated from evaluating the MSE of each range’s test
dataset for each module, using the ‘golden’ weight values and adding an epsilon term2

to the resulting error which takes into account precision errors. All experiments are run
using 32-bit precision.

In general, successful runs take longer to solve as the input ranges become smaller. The
simplest task, of taking the reciprocal when the input size is 1 (Figure 5.13) is achieved
with ease for all modules, though for U [0,10−4), we find the NRU begins to struggle.

Introducing a redundant input (Figure 5.14) greatly impacts performance with only the
NMRU able to achieve reasonable success for the larger ranges. The successes shown
for the Real NPU at range U [0, 10−4) are false positives caused by the ϵ in the archi-
tecture used for stability. Test false positives can also be indicated by the high sparsity
error of the weights.

Modifying the task to division (Figure 5.15), meaning the redundant input is now rele-
vant, shows improvement for the NMRU and NRU for the larger ranges, but the small-
est ranges remain unsolved.

● ● ● ● ●
●

● ● ● ●● ● ● ● ●

● ● ● ● ●● ● ● ● ●● ● ● ●
●

● ● ● ● ●● ● ● ● ●● ● ● ● ●

Success rate Solved at iteration step Sparsity error

U[0
,0

.0
00

1)

U[0
,0

.0
01

)

U[0
,0

.0
1)

U[0
,0

.1
)

U[0
,1

)

U[0
,0

.0
00

1)

U[0
,0

.0
01

)

U[0
,0

.0
1)

U[0
,0

.1
)

U[0
,1

)

U[0
,0

.0
00

1)

U[0
,0

.0
01

)

U[0
,0

.0
1)

U[0
,0

.1
)

U[0
,1

)
−5.00e−18

2.25e−17

5.00e−17

7.75e−17

1.05e−16

0

300

600

900

1200

0.00

0.25

0.50

0.75

1.00

Interpolation range

model ● ● ●Real NPU NRU NMRU

FIGURE 5.13: Input: [a], output 1
a . Learns reciprocal when there is no input redun-

dancy.

2The term is the Pytorch default eps value for tensors of data type float32, torch.finfo().eps

102 Chapter 5. Division - Understanding the Underlying Learning Mechanisms

● ●

●
●

●

● ● ● ●

●

●

● ● ● ●

●

● ●

●

●

● ● ●●

●

Success rate Solved at iteration step Sparsity error

U[0
,0

.0
00

1)

U[0
,0

.0
01

)

U[0
,0

.0
1)

U[0
,0

.1
)

U[0
,1

)

U[0
,0

.0
00

1)

U[0
,0

.0
01

)

U[0
,0

.0
1)

U[0
,0

.1
)

U[0
,1

)

U[0
,0

.0
00

1)

U[0
,0

.0
01

)

U[0
,0

.0
1)

U[0
,0

.1
)

U[0
,1

)

0.00

0.03

0.06

0.09

0

5000

10000

15000

20000

25000

0.00

0.25

0.50

0.75

1.00

Interpolation range

model ● ● ●Real NPU NRU NMRU

FIGURE 5.14: Input: [a,b], output 1
a . Learns the reciprocal of the first input when there

is redundancy.

● ● ●

● ●

● ● ● ●

●

● ● ● ● ●

●

●

●

● ●

●

Success rate Solved at iteration step Sparsity error

U[0
,0

.0
00

1)

U[0
,0

.0
01

)

U[0
,0

.0
1)

U[0
,0

.1
)

U[0
,1

)

U[0
,0

.0
00

1)

U[0
,0

.0
01

)

U[0
,0

.0
1)

U[0
,0

.1
)

U[0
,1

)

U[0
,0

.0
00

1)

U[0
,0

.0
01

)

U[0
,0

.0
1)

U[0
,0

.1
)

U[0
,1

)

0e+00

1e−08

2e−08

3e−08

4e−08

5e−08

0

2500

5000

7500

10000

0.00

0.25

0.50

0.75

1.00

Interpolation range

model ● ● ●Real NPU NRU NMRU

FIGURE 5.15: Input: [a,b], output a
b . Learns division of the first and second value

when there is no redundancy.

5.9 Traits of Modules when Learning on the Redundancy Set-
ting

Gradient difficulties with the NRU. For insight into why the NRU performs poorly
with input redundancy, we look at the gradients with respect to the weights. The partial
derivative for the weights is,

∂ŷ
∂wi

= tanh(1000wi)(sign(xi)|xi|wi(tanh(1000wi) log(|xi|)+

2000 sech(1000wi)
2)− 2000 sech(1000wi)

2)×NRUx̃∈x\{xi}(x̃) .
(5.3)

The NRUx̃∈x\{xi}(x̃) term applies the NRU to all inputs excluding xi influencing the
gradient values between subsequent update steps. Factoring out this term, the follow-
ing observations are made: if xi ≈ 0 and wi ≈ 0 then gradients become increasingly

5.10. MNIST Arithmetic - Isolated Digit Classification 103

large; for −1 ≤ wi < 0, as wi → −1 all gradients for xi where |xi| >> 1 become in-
creasingly small; the gradients for xi = −1 and xi = 1 are 0 regardless of the value of
wi; if wi = 0 then the gradient is 0 for all xi, a result of using the tanh approximation;
and, even if the sign and magnitude are calculated separately and then combined (see
Appendix G.7) to try to control the gradient better, the problem remains. Therefore, we
conclude that extending the NMU to divide using a weight of -1 is a poor choice when
there are redundant inputs.

The NMRU’s and Real NPU’s exploitation of multiplicative rules. In the redundancy
setting, modules with extrapolative solutions learn to exploit rules for multiplication.
The NMRU exploits the inverse rule of division i.e., ai · 1

ai
= 1. Since the module’s input

contains the reciprocals numerous extrapolative solutions exist, however this comes at
the cost of finding a ‘simple’ solution containing non-zero weights only for relevant
inputs. The Real NPU exploits the rules ai · 0 = 0 and 1ai = 1 enabling non-zero
weights if the corresponding gate value is 0. However, this can be avoided by allowing
0 to not be penalised during the regularisation stage (see Figure 5.16); this alleviates
the exploitation issue with no cost to performance.

● ● ●

●

●

● ● ● ●

● ● ●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

● ● ●● ●
●

●
●

● ●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.000

0.025

0.050

0.075

0.100

0

10000

20000

30000

40000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ●{−1,1} {−1,0,1}

FIGURE 5.16: Comparing weight discretisation on the Real NPU weights which pe-
nalises not having a weight of {−1, 1} vs {−1, 0, 1}.

5.10 MNIST Arithmetic - Isolated Digit Classification

To determine and observe how division NALMs fare when attached to additional net-
works, we learn to divide the labels of an image composed of two MNIST digits. A
summary of the experiment setup is found in Table 5.4.

104 Chapter 5. Division - Understanding the Underlying Learning Mechanisms

TABLE 5.4: MNIST (Isolated Digit Classification) experiment parameters.

Parameter Two digit MNIST

Epochs 1000
Samples per permuta-
tion

1000

Train:Test 90:10
Batch Size 128
Train samples 72,000 (1 fold)/73,000 (9 folds)
Test samples 9,000 (1 fold)/8,000 (9 folds)
Folds/Seeds 10
Optimiser Adam (betas=(0.9, 0.999))
Criterion MSE
Learning rate 10−3

λstart − λend epochs 30-40
λ̂ 2
grad norm clip MLP = None; Real NPU = None; NRU = None; NMRU = 1

5.10.1 Setup and Network Architecture

Unless stated otherwise, assume the setup is the same as the Isolated Digit task from
Section 4.6.1.1. All instances of zero are removed from the datasets to avoid a division
by zero cases from occurring. The network learns a map from the input image to the
labels of the two digits (digit classifier), followed by a map from the two labels to their
divided value (division layer). There are three possibilities for the division layer: (1)
a solved division baseline model (DIV), (2) an MLP made of 2 hidden layers with 256
hidden units and ReLU activations and L2 regularisation, and (3) a NALM being either
the Real NPU (modified), NRU, or NMRU. As the DIV baseline only requires learn-
ing to classify the images to their respective labels, it is considered a strong baseline.
A NALM should perform similarly to the DIV baseline; if a NALM outperforms the
baseline it implies the NALM can also aid in learning downstream layers as well as
learning division.

5.10.2 Metrics and Results

The output accuracy is given based on the predicted and target values rounded to 5
decimal places (d.p.). Results are taken over a 10-fold cross validation setting and the
NALM’s initialisation is the same for each fold. Table 5.5 and Figure 5.17 displays the
results. The MLP is not used in the violin plot so the distributions of the other modules
can be better seen. The DIV baseline performs well as expected since only the classifi-
cation network requires to be learnt. The Real NPU (modified) has consistent accuracy
on par with the DIV results. The NRU can outperform even the DIV baseline. The

5.11. Discussion 105

NMRU performs the worst out of all NALMs struggling with robustness; we question
if this is a result of the gradient norm clip in Appendix G.8 but find it is not. The MLP
is the worst division layer showing nearly no success across all folds.

TABLE 5.5: Test accuracies of the output label for the MNIST task. The predictions
and targets are rounded to 5 d.p. before the accuracy is calculated. The mean accuracy

over 10-folds is given with the standard error.

DIV MLP Real NPU (mod.) NRU NMRU

Test Acc. (5 d.p.) 97.497±0.183 0.004±0.004 97.147±0.242 97.517±0.291 46.891±13.969

DIV

Real NPU (mod)

NRU

NMRU

0 25 50 75 100
accuracy (%)

m
od

el

FIGURE 5.17: MNIST Arithmetic Isolated Digit task test accuracies on the rounded 5
d.p. output values.

5.11 Discussion

Single layer division robustness. We summarise the key challenges for learning in-
dependent modules in Table 5.6 and give the ranges used to generate the values in
Appendix E.3.3. In the no redundancy setting (2-inputs), the Real NPU is challenged
when the training data consists of mixed-signed inputs even with our applied improve-
ments. Increasing the difficulty to have an input redundancy (with 8 redundant and
2 relevant input values) improves performance when the Uniform distribution is used
but magnifies the issue when ranges are samples from a Truncated Normal distribu-
tion. The NRU and NMRU have strong performance across the no redundancy tasks
but show failures when redundancy is included. In particular, the NRU loses its ability
to learn successfully on most of the input settings. Negative ranges also become an
issue for the NRU, in which we conclude it is not wise to use with MSE. The NMRU
drops most in performance on large magnitude datasets regardless of the distribution.
In the redundancy setup, the NMRU’s robustness comes at the cost of the simplicity
of the solution due to its exploitation of the identity rule; an issue the Real NPU does
not have. The Truncated Normal distribution causes the greatest learning difficulties

106 Chapter 5. Division - Understanding the Underlying Learning Mechanisms

TABLE 5.6: Summary of the types division tasks the models can/cannot solve. Using
redundancy means there are irrelevant inputs (10-input setup). The values are the
mean success rate (out of 1) for the specific input task, bold values are the best model

for the respective row.

Redun-
dancy?

Input type Distribution Real NPU
(modi-
fied)

NRU NMRU Figure

No

Mixed-signs Uniform 0.44 1 1 5.8
Mixed-signs Truncated Normal 0.61 1 1 5.10
Negative Uniform 1 1 1 5.6
Positive Uniform 1 1 1 5.6
Large magnitude Uniform 0.74 1 1 5.10
Large magnitude Benford 1 1 1 5.10
Close to 0 Truncated Normal 0.08 1 1 5.10; see TN(0,1)[-5, 5)
Close to 0 Uniform 0 0.17 0.4 5.15

Yes

Mixed-signs Uniform 0.77 0 0.99 5.9
Mixed-signs Truncated Normal 0 0 0.48 5.11
Negative Uniform 0.92 0 0.82 5.7
Positive Uniform 1 1 1 5.7
Large magnitude Uniform 0 0 0 5.11
Large magnitude Benford 1 1 0.16 5.11
Close to 0 Truncated Normal 0 0 0.04 5.11; see TN(0,1)[-5, 5)

for all the modules. Learning to divide values around zero remains challenging for all
modules, even on the no redundancy setup, implying an alternate method for dealing
with zero denominators should be open for exploration.

NALMs can be used as part of larger networks. The MNIST experiment shows NALMs
can act as downstream layers in a non-trivial regression experiment which requires an
intermediary classification network without a direct classification loss. This is promis-
ing as it implies the use of NALMs in more complex tasks, however two points of
caution should be considered. Firstly, the results show that there is not a direct correla-
tion between the performance of a NALM in the single layer tasks to their performance
if embedded in larger networks. For example, the NRU and NMRU which outperform
the Real NPU on the single layer tasks perform worse in the MNIST task. Secondly, if
such units are to be utilised in larger embedded networks, we encourage performing
tests in the target domain before employing NALMs in the wild. Therefore, a future
direction for this work and NALMs, in general, includes developing more challenging
experimental tasks with rigorous evaluations.

Number of learnable parameters. The NRU requires I ×O parameters, the Real NPU
requires I(O + 1) parameters and the NMRU requires 2I ×O parameters. Although
the NRU has the lowest parameter count, it performs the worst when redundancy is
involved. The doubling of the input dimensionality in the NMRU results in more pa-
rameters, especially if the output dimension is high. Additionally, as half the inputs
of the modules require being inverted (which includes the irrelevant elements), scaling
difficulties can arise.

5.12. Summary 107

Two-layer learning. Once robust modules are attainable in a single layer setting, the
next step would be to question performance when learning stacked modules, e.g. learn-
ing a stacked additive and multiplicative module. Madsen and Johansen (2020, Fig-
ure 2) illustrates the troubles for multiplicative models with the capacity for division.
They show how a stacked summative-multiplicative module can lead to an explod-
ing loss when the output of the summative module is close to 0 and the multiplicative
model tries to divide. We recreate their setup in Figure 5.18 to produce loss surfaces
for the NAU-Real NPU, NAU-NRU and NAU-NMRU, where the NAU is a summative
module (see Section 2.2.3). A similar issue exists with the Real NPU and NRU which
use a weight range of [-1,1], whereas the NMRU whose weight’s range is limited to
[0,1] does not have exploding losses.

5.12 Summary

In conclusion, division remains a challenge to learn using interpretable neural net-
works, even for the simplest tasks. Nevertheless, by identifying the specific areas caus-
ing difficulty (e.g., training ranges), and useful architecture properties (e.g., using a sign
retrieval mechanism), we hope the community has better intuition for dealing with di-
vision and developing more robust specialist modules.

(A) NAU-Real NPU (where ϵ = 10−5)

108 Chapter 5. Division - Understanding the Underlying Learning Mechanisms

(B) NAU-NRU

(C) NAU-NMRU

FIGURE 5.18: Root Mean Squared loss landscape for the NAU stacked with ei-
ther a RealNPU, NRU, or NMRU. “The weight matrices are constrained to W1 =[︂

w1 w1 0 0
w1 w1 w1 w1

]︂
, W2 = [w2 w2]. The problem is (x1 + x2) · (x1 + x2 + x3 + x4) for

x = (1, 1.2, 1.8, 2)” (Madsen and Johansen, 2020). The ideal solution is w1 = w2 = 1,
though other valid solutions do exist e.g., w1 = −1, w2 = 1. The NMRU’s weight

matrix would be W2 = [w2 w2 0 0], and the Real NPU’s g = [1 1].

109

Chapter 6

Factors to Consider when Learning
NALMs

Recent chapters have focused on architectural changes to NALMs in order to improve
robustness. Rather than architecture related traits, this chapter focuses on other parts
of the learning pipeline, namely the pre/post-processing of data and the loss criterion.

6.1 Feature Scaling

The earlier benchmarking experiments from Chapter 3 uncover a noticeable trait that
NALMs are sensitive to the training range. This is unsurprising considering the gra-
dient descent based approach to parameter learning, which causes the input values to
have a direct effect on gradients. Due to this, neural networks ideally want features to
be processed in some way to allow for the expectation of the input features to be ap-
proximately zero (LeCun et al., 2012). Doing so allows for parameters to update at the
same rate and have better tolerance with larger learning rates, enabling faster conver-
gence (Ioffe and Szegedy, 2015). A common technique for many ML workflows is the
use of feature scaling in the preprocessing step of data, which scales the features into a
common ‘dimensionless’ unit (Dick et al., 2020). The two common options for feature
scaling are standardisation and normalisation. Standardisation (or z-score normalisa-
tion) scales individual features to fit a standard normal distribution with a mean of 0
and a standard deviation of 1. Normalisation (or min-max-scaling) scales individual
features within a range of typically [0,1] or [-1,1]. Standardisation is most useful when
the data fits a Gaussian distribution, whereas normalisation is used when the underly-
ing distribution of the data is unknown.

110 Chapter 6. Factors to Consider when Learning NALMs

Recently, there has been a resurgence in using such techniques in the genetic program-
ming field for symbolic regression. For example, the Feyn Python library,1 developed
by the company Abzu2 use the following min-max normalisation technique

ˆ︁X =
2(X− Xtr)

max(X)−min(X)
⊙w(in) + b(in) ,

z = f (ˆ︁X) ,

ˆ︁y =(z⊙ w(out) + b(out))× max(ytr)−min(ytr)

2
,

(6.1)

where terms denoted with w’s and b’s are learnable weights for scaling and offsetting,
and max and min are the max of min for each feature.

Owen et al. (2018); Dick et al. (2020); and Dick (2022) all use linear scaling with feature
standardisation finding consistent improvements. The scale and offsets are calculated
based on training data statistics of both the input X and target ytr data resulting in

ˆ︁y = ytr + SD(ytr)× f
(︃

X− Xtr

SD(Xtr)

)︃
, (6.2)

where ytr and Xtr are feature means over the training targets and inputs respectively,
and SD(ytr) and SD(Xtr) are the sample standard deviations of the training data. Stan-
dardising helps reduce the effect of outliers and treats all features with equal impor-
tance. As f is applied on a standardised feature space, a reverse transformation using
the target data statistics is applied to convert the output back to the original space. The
combination of linear scaling and standardisation is viewed as allowing one to learn
the function shape and the placement of the function in the search space respectively.

Though, the results from such symbolic regression works suggest that normalisation is
possible for equation discovery, we find that such techniques are not highly compatible
with NALMs. Specifically, the normalisation causes the NALM weights to deviate from
their expected weights (see Table 6.1).

1https://docs.abzu.ai/
2https://www.abzu.ai/

https://docs.abzu.ai/
https://www.abzu.ai/

6.1. Feature Scaling 111

TABLE 6.1: Resulting weights learned from training a normalised NMU model using
the Feyn min-max normalisation. The fixed NMU fixes the NMU weights to

[︁
1 1

]︁T

and learnt NMU will learn the NMU weights. The output for these weights will model
x1 × x2.

Term Fixed NMU Learnt NMU

2
max(X)−min(X)

[︃
0.649115
0.261765

]︃ [︃
0.649115
0.261765

]︃
Xtr

[︃
2.15035
5.67394

]︃ [︃
2.15035
5.67394

]︃
w(in)

[︃
0.784557
0.669749

]︃ [︃
1.46126
2.13898

]︃
b(in)

[︃
1.09510

0.994739

]︃ [︃
0.631827
0.765059

]︃
NMU weights

[︃
1
1

]︃ [︃
0.415312
0.293096

]︃
max(ytr)−min(ytr)

2 11.9184 11.9184

w(out) 0.939748 1.29786

b(out) 1.46041e−8 -1.29726e−8

Training a NMU on a two-input multiplication task using a single batch of data with
the normalisation from Equation 6.1 can learn to multiply, as

ˆ︁X =

[︄
0.948526x1 − 1.40783
0.559912x2 − 2.41185

]︄
,

z = (0.393934x1 − 1.19209e−7)(0.164108x2 − 2.98023e−8)

= 0.0646477x1x2 − 1.17401e−8x1 − 1.95632e−8x2 − 3.55271e−15 ,

ˆ︁y = 15.4685(0.393934x1 − 1.19209e−7)(0.164108x2 − 2.98023e−8)− 1.54613e−7

= x1x2 − 1.81602e−7x1 − 3.02613e−7x2 − 1.54613e−7

≈ x1x2 ,

however, the resulting NMU weights would not converge to the expected
[︂
1 1

]︂T
but

to
[︂
0.415312 0.293096

]︂T
. We assume no discretisation is applied, otherwise, the re-

sulting NMU weights would become
[︂
0 0

]︂T
. In contrast, if the NMU weights were

112 Chapter 6. Factors to Consider when Learning NALMs

fixed to their expected solution then the learnt weights and biases would be quite dif-
ferent:

ˆ︁X =

[︄
0.509268x1 − 1.19209e−7

0.175317x2 − 1.19209e−7

]︄
,

z = (0.509268x1 + 1.19209e−7)(0.175317x2 + 1.19209e−8)

= 0.0892834x1x2 + 6.07095e−8x1 + 2.08994e−8x2 + 1.42109e−14 ,

ˆ︁y = 11.2003(0.509268x1 + 1.19209e−7)(0.175317x2 + 1.19209e−7) + 1.74057e−7

= x1x2 + 1.74057e−7x1 + 2.3408e−7x2 − 1.74057e−7

≈ x1x2 .

Using the Single Layer Task (see Chapter 3) for multiplication, we conduct empirical
studies on applying normalisation to the NMU, finding that both z-score normalisation
and Feyn normalisation resulted in no successes on all nine training ranges. Plotting
the errors in Figure 6.1 shows only the (no feature scaled) NMU can achieve errors
within the extrapolation thresholds and consistently low sparsity errors. Clearly, there
is little difference when regularisation is and is not used. Even with regularisation on,
the sparsity errors are never as low as the (no feature scaled) NMU suggesting that an
optimum solution is not achieved. The min-max based normalisation shows slightly
lower extrapolation errors over the z-score feature scaling for positive ranges but not
enough to have any extrapolative solutions. Furthermore, unlike the (no feature scaled)

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●
●

●
● ●

●

●

●
●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

● ●

●
● ●

●

●

●
●

●
●

●
● ●

●

●

●
●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

● ●

●

●

● ●●

●

●●

●

● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●
● ●

● ● ● ● ● ● ●

●

●

● ● ●

●

● ● ● ● ●● ● ●

●

● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●
● ●

● ● ● ● ● ● ●

●

●

● ● ●

●

● ● ● ● ●● ● ●

●

● ● ● ● ●

Interpolation range error Extrapolation range error Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

10−15

10−10

10−5

100

105

10−15

10−10

10−5

100

105

10−15

10−10

10−5

100

105

Interpolation range

●

●

●

●

●

●

Threshold

NMU

min−max (reg on)

min−max (reg off)

z−score (reg on)

z−score (reg off)

FIGURE 6.1: Learning multiplication on the two input Single Layer Task using nor-
malisation. Mix-max normalisation refers to Feyn normalisation (Equation 6.1) and
z-score refers to standardisation with linear scaling (Equation 6.2). The ‘Threshold’
refers to the minimum acceptable threshold for the extrapolation errors to be consid-
ered low enough for the NALM to succeed in the extrapolation range. The ‘reg off’

and ‘reg on’ refers to if discretisation regularisation is active on the NMU.

6.2. Uninformative MSE Loss 113

NMU which maintains a similar error magnitude for both interpolation and extrapo-
lation ranges, the normalisation methods have much larger errors when comparing
interpolation and extrapolation ranges.

6.2 Uninformative MSE Loss

In Chapter 4 we attributed the lack of robustness of NALMs (specifically the NMU) to
being stuck in local minima and suggested the use of stochasticity to alleviate the issue.
However, from the two-layer arithmetic task from Section 4.5 we found that certain
training ranges remained unsuccessful when using reversible stochasticity. We now
consider an additional factor that can lead to this behaviour, namely the loss. We shall
show how these failures can be due to the input range causing difficulty for the NAU’s
(addition module’s) weights to select the relevant inputs by causing uninformative loss
values. This is explained by the following scenario. Imagine the same task but with
input size four and overlap and a subset ratio of 0.5. Like before the aim is to select
and add two different subsets of the input and multiply them together. For this specific
case, we want the first subset to sum the 2nd and 3rd elements and the second subset to
sum the 3rd and 4th elements. Consider two inputs, one sampled from U [1,5] (i1 =[1,
2, 3, 4]) and another from U [1.1,1.2] (i2 =[1.11, 1.12, 1.13, 1.14]). Using i1 as input
and assuming weights select the correct inputs and converge as expected, we get the
following:

fNMU(fNAU(i1, W (NAU)), W (NMU)) = fNMU

⎛⎜⎜⎜⎜⎝ fNAU

⎛⎜⎜⎜⎜⎝
[︂
1 2 3 4

]︂
,

⎡⎢⎢⎢⎢⎣
0 0
1 0
1 1
0 1

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ ,

[︄
1
1

]︄⎞⎟⎟⎟⎟⎠
= fNMU

(︄[︂
5 7

]︂
,

[︄
1
1

]︄)︄
= 35

Now consider cases: 1) NAU selection is correct but one weight did not converge, and
2) NAU selection is incorrect for one element and that weight did not converge. For
each case a valid example of the NAU weight matrix (W (NAU)) is:

case 1:

⎡⎢⎢⎢⎢⎣
0 0

0.9 0
1 1
0 1

⎤⎥⎥⎥⎥⎦ ; case 2:

⎡⎢⎢⎢⎢⎣
0 0
0 0
1 1

0.9 1

⎤⎥⎥⎥⎥⎦ .

114 Chapter 6. Factors to Consider when Learning NALMs

TABLE 6.2: The output values and absolute errors for the simplified 2-layer task with
inputs i1 [1, 2, 3, 4] and i2 [1.11, 1.12, 1.13, 1.14]. Correct selection means the NAU
module selected the correct inputs. Correct weights mean the weights for the NAU

converged to the correct values.

CASE i1 OUT i1 AE i2 OUT i2 AE
SELECTION ✓
WEIGHTS ✓

35 0 5.1075 0

SELECTION ✓
WEIGHTS ✗

33.6 1.4 4.85326 0.25424

SELECTION ✗
WEIGHTS ✗

46.2 11.2 4.89412 0.21338

Calculating the output and the absolute error (from the ideal solution) of these cases
for both inputs (Table 6.2) shows that i2 ([1.11, 1.12, 1.13, 1.14]) has a much smaller
difference in error than i1 ([1, 2, 3, 4]). The model will struggle to differentiate between
the correct and incorrect selection of weights for the input drawn from the distribution
with a smaller range. This specific case also shows that for i2, the selection of an incor-
rect input and non-converged weight gives a lower error than the case with the correct
selection and non-converged weight, suggesting that the MSE calculation cannot dif-
ferentiate between a better and worse solution.

The gradients of the loss also contribute to the learning of sub-optimal NAU weights.
Considering the stacked NAU-NMU, the gradients of both the NAU and NMU weight
matrix are scaled by a residual factor (y− ŷ) since

MSE : L = (y− ŷ)2

∂L
∂ŷ

= −2ŷ′(y− ŷ) .

Input ranges with little variance can be trained to small training errors which give
the illusion of a solved model. Therefore, by multiplying the small residual, the gra-
dient gets scaled to very small values. If reversible stochasticity is used (e.g., the
NAU-sNMU) then the gradients of the weights can take a different trajectory to the
NAU-NMU’s gradients. The trajectory from the sNMU can therefore escape some lo-
cal minima which causes the NMU to get stuck. However, as there is no guarantee of
convergence to the global optima, the sNMU may still converge to other local minima.
Furthermore, as the residual term still remains, small gradients can still persist.3

3For full derivations see Appendix H (specifically H.3 and H.4).

6.3. Alternate Losses: PCC and MAPE 115

TABLE 6.3: The properties of different loss functions.

MSE PCC MAPE

Batch mean ✓ ✓ ✓

Difference of prediction from target ✓ ✓

Standardisation ✓ ✓

Mean centering ✓

6.3 Alternate Losses: PCC and MAPE

Intuitively, these failures can be interpreted as the loss function being unable to pro-
vide an informative signal to learn from. Different losses will inherently have different
properties which influence learning (Cherkassky and Ma, 2004; Chicco et al., 2021).
Therefore we consider training the NALMs with a different loss. We explore the effects
of two additional losses, the Pearson’s Correlation Coefficient (PCC) (Equation 6.4),
and the Mean Absolute Precision Error (MAPE) (Equation 6.5). The properties of each
loss are summarised in Table 6.3. Note that for a fair comparison between the losses,
the validation and testing will continue to use the MSE as a measure of performance.

We define the PCC loss as

vx,i = (ŷi − ȳ̂), sx =

⌜⃓⃓⎷clamp(
1
N

N

∑
i

v2
x,i, ϵ)

vy,i = (yi − ȳ), sy =

⌜⃓⃓⎷clamp(
1
N

N

∑
i

v2
y,i, ϵ)

r =
1
N

N

∑
i
(

vx,i

sx + ϵ
·

vy,i

sy + ϵ
)

(6.3)

pcc loss := 1− r (6.4)

where N is the batch size, and the means (ȳ̂ and ȳ) are taken over the batch. ϵ is used
to provide better numerical stability. The clamping function ensures that the minimum
value of the first argument of the clamp function is ϵ. The correlation value r will be in
the range [-1,1]. -1/1 is a perfect negative/positive correlation respectively and 0 is no
correlation between the predicted ŷ and target values y. Intuitively the numerator of r
enables translation invariance from the mean centering, and the denominator enables
scale invariance from the standardisation. Minimising the PCC loss enforces a positive
correlation between the predicted and target values.

The MAPE loss is defined as

mape loss :=
1
N

N

∑
i
(
|yi − ŷi|

yi
) . (6.5)

116 Chapter 6. Factors to Consider when Learning NALMs

This loss can be thought of as a weighted mean absolute error, where the weight for
each loss prediction is 1

yi
. Unlike the MSE, the MAPE loss is scaled by the target value,

meaning that the input magnitude has less influence over the gradients. However
unlike the PCC loss, there is no mean centering, hence the position of the target value
will have some impact.

For the remaining parts of this section, we will test the losses on the Arithmetic Dataset
Task which is the original task where we first observed the issue of the MSE loss. Then,
we extend the empirical studies to the Sequential MNIST Product task to see how well
losses perform on a task requiring an intermediary classification and end with also
studying the losses on the Single Layer Task with input redundancy for learning divi-
sion modules.

6.3.1 Arithmetic Dataset Task

● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

● ● ●● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ●

●

●

● ● ●

●

● ●

●

● ● ● ● ● ● ● ●

● ● ● ●

●

● ● ●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.0000

0.0005

0.0010

0.0015

0

500000

1000000

1500000

0.00

0.25

0.50

0.75

1.00

Interpolation range

model ● ● ● ●MAPE MSE PCC PCC−MSE

FIGURE 6.2: Two layered Arithmetic Dataset Task on the NMU for different losses.

● ● ● ● ● ● ● ● ●

●

●

● ● ●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ●

●

●

●
● ●

●

●
●

●

●
●

● ● ● ●
●

●

● ● ● ●

●

● ● ●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0e+00

2e−04

4e−04

6e−04

0

500000

1000000

1500000

0.00

0.25

0.50

0.75

1.00

Interpolation range

model ● ● ● ●MAPE MSE PCC PCC−MSE

FIGURE 6.3: Two layered Arithmetic Dataset Task on the sNMU for different losses.

Figures 6.2 and 6.3 display the results for the NMU and sNMU respectively. The MAPE
had no successes for either module. In contrast, the PCC based losses were effective for

6.3. Alternate Losses: PCC and MAPE 117

the NMU but not as much for the sNMU. Initial experiments indicated that the PCC
loss alone results in solutions where weights tend towards the correct discrete values
but the final weights are not discrete enough even with regularisation. In contrast, a
MSE loss can discretise well but does not select the correct values to discretise to. There-
fore, we also test the PCC-MSE loss which initially uses a PCC loss and then switches
to a MSE loss at 750,000 iterations. Using the PCC-MSE loss resulted in successes in all
the tested ranges, whereas all other losses have at least one range with no success.

6.3.2 Product of Sequential MNIST

Figures 6.4 and 6.5 show the results for calculating the cumulative product using dif-
ferent losses on the NMU and sNMU respectively. The low sparsity errors indicate
that the NALMs are able to converge to discrete values well for all losses for successful
runs. The MAPE shows little compatibility when stochasticity is used in the NALM,
whereas the MSE works well with stochasticity. Using the PCC-MSE loss on either
the NMU or sNMU degrades performance on most extrapolation lengths, only outper-
forming a MSE trained sNMU for sequence lengths 12 and 15.

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

● ● ●

●

●

●

● ● ● ● ●

●

●

●

● ●

● ●

●

● ● ● ●

●

● ●● ● ●

● ●

●

●

●

●
● ●

●
● ●

● ●
●

●

●

●●
●

●

●
● ●

●

●

● ●
●

●

● ●
●

●

● ●

●

●

● ● ●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ●

Success rate Solved at iteration step Sparsity error

1 2 4 6 8 10 12 14 16 18 20 1 2 4 6 8 10 12 14 16 18 20 1 2 4 6 8 10 12 14 16 18 20
−5.00e−18

2.25e−17

5.00e−17

7.75e−17

1.05e−16

0

20000

40000

60000

80000

0.00

0.25

0.50

0.75

1.00

Extrapolation length

model ● ● ●MAPE MSE PCC−MSE

FIGURE 6.4: Performance on Product of Sequential MNIST on different losses using a
NMU cell. All models use CNN architecture to convert the MNIST images into labels.

●

●

● ●

●

● ●

●

●

● ●

●

●● ●

●

●

●

● ●

●

●

●

●

● ●

●

● ● ●

●

●

●

● ●

● ●

●

●

●

●

●

● ●

● ● ●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

● ● ● ● ● ●
●

●
●

●

●
●

●

● ●
●

●
●

●

●

● ●
●

● ●
●

●

● ●

●

●

●
●

●

● ●
● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ●

Success rate Solved at iteration step Sparsity error

1 2 4 6 8 10 12 14 16 18 20 1 2 4 6 8 10 12 14 16 18 20 1 2 4 6 8 10 12 14 16 18 20
−5.00e−18

2.25e−17

5.00e−17

7.75e−17

1.05e−16

0e+00

5e+04

1e+05

0.00

0.25

0.50

0.75

1.00

Extrapolation length

model ● ● ●MAPE MSE PCC−MSE

FIGURE 6.5: Performance on Product of Sequential MNIST on different losses using a
sNMU cell. All models use CNN architecture to convert the MNIST images into labels.

118 Chapter 6. Factors to Consider when Learning NALMs

6.3.3 Division: Different Losses on the Single Module Task (with Redun-
dancy)

This section observes the effect of losses on the three division NALMs explored from
Chapter 5 - the Real NPU (with our modifications), the NRU, and the NMRU.

For the Real NPU (Figure 6.6), both PCC losses and MAPE are able to get success on
the U [-2,2) range, which the MSE completely fails on, implying that having a loss with
standardisation is useful. However, whilst gaining success in the mixed-sign range,
the other negative ranges have reduced success for both PCC and MAPE. Both speed
and sparsity retain similar performance to MSE in a majority of cases, with PCC solv-
ing especially fast for all tested ranges. There the PCC-MSE loss shows no significant
difference to PCC loss, suggesting that discretisation was not difficult to achieve.

For the NRU (Figure 6.7), the different losses have little effect. All three losses perform
well on the positive ranges but find negative ranges challenging. Compared to the
Real NPU, the PCC loss on the NRU takes longer to converge to a success for negative
ranges.

For the NMRU (Figure 6.8), all losses perform reasonably well, with the PCC-MSE
struggling the most. Unlike the other units, U [-20,-10) causes the most trouble, whereas
U [-2,2) gains near full success on three of the four losses.

●

●

●

●

●

●

● ● ●

● ● ●

●

●

● ● ● ●

● ● ●

●

●

● ● ● ●

● ● ●

●

●

● ● ● ● ●

● ●

● ●

●

●

●

●

●
●

●

●
● ●

●
●

● ●

●

● ●

●
●●

●

● ●

●

● ●

●
●

● ●

●

● ● ● ●● ●
● ●

● ● ●

●

● ● ●

●

●
●

● ●
●● ● ●

●
●

●
● ●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.05

0.10

0.15

0

20000

40000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ● ●MSE PCC PCC−MSE MAPE

FIGURE 6.6: Single Module Task with redundancy on the Real NPU, comparing dif-
ferent loss functions.

6.3. Alternate Losses: PCC and MAPE 119

● ● ● ● ●

● ● ● ●

● ● ● ● ●

● ● ● ●

● ● ● ●

●

● ● ● ●

● ● ● ● ●

● ● ● ●

●

● ●
●

●

●
●

●

●

● ●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00000

0.00005

0.00010

0.00015

0

20000

40000

60000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ● ●MSE PCC PCC−MSE MAPE

FIGURE 6.7: Single Module Task with redundancy on the NRU, comparing different
loss functions.

●

●

●

●
●

● ● ●

●●

●

●
●

●

● ● ● ●

●

●
●

●

●

● ● ● ●

●

●
●

●

●

● ● ● ● ●

●
●

●

● ●
●

●

●

● ●

●

● ● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

● ● ● ● ● ● ● ● ●● ● ● ● ● ●

● ●

●●

●
●

●

● ●

● ●

●● ● ●

●

● ●

● ●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.0e+00

5.0e−08

1.0e−07

1.5e−07

2.0e−07

0

20000

40000

60000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ● ●MSE PCC PCC−MSE MAPE

FIGURE 6.8: Single Module Task with redundancy on the NMRU, comparing different
loss functions.

6.3.4 Summary

In this chapter, we have looked into the effect of feature scaling and using alternate
losses when training. Both methods require adapting the training pipeline, but not the
NALM architecture. Feature scaling, which has been applied in symbolic regression to
improve convergence, was found to not work well with the arithmetic bias of NALM
weights.

In contrast, the choice of loss is significant for the task. There is no ‘one for all’ loss
which will work well for all modules/tasks and therefore should be set accordingly.
For example, the PCC loss can improve performance on pure arithmetic tasks but is
not much aid in the MNIST tasks. The MSE generally works well over different tasks
but can struggle with robustness on different training ranges. The MAPE is the most
volatile of the losses, with no success on the Arithmetic Dataset Task, but comparable
to the MSE on the Sequential MNIST task when using the NMU.

121

Chapter 7

Compositionality - Learning
Multi-Step Operations

Previous chapters have focused on considering NALMs as single units. However learn-
ing single operations in isolation is limited in terms of expressiveness and application.
Ideally, we want access to a range of operations which can be combined in different
ways. Therefore, in this chapter, we explore ways in which to combine NALMs to
achieve arithmetic composition.

For composition based tasks, networks must learn to select the relevant modules and
inputs in the correct order, all while learning the module parameters for specialisation.
In recent work, Mittal et al. (2022a) shows even with biases towards modular architec-
tures, learning specialisation for individual modules and selecting the relevant mod-
ules remain a challenge. A problem analogous to the ‘what came first - the chicken or
the egg?’ question occurs with choosing the order to learn the structure of the network
(i.e. input and module selection) and the module weights/coefficients. Some have sug-
gested using two separate steps in learning the two parts, learning the structure first
and then optimising the parameters (Kommenda et al., 2020; Chen, 2020; Li et al., 2022),
whereas others have suggested learning both at the same time (Martius and Lampert,
2017; Kamienny et al., 2022). Some even attempt to tackle the issue by creating two loss
functions; one for optimising the gates and the other for the weights (Makkuva et al.,
2020). Though recent studies indicate that separation of structure and weight parame-
ter learning is best for architectures which take a GP approach (Cava et al., 2021), the
most reliable approach when using an end-to-end gradient based approach remains an
open question.

The choice of specialists can heavily influence the architecture and training regime. For
example, Martius and Lampert (2017) who introduce the original Equation Learner
architecture (an end-to-end differentiable feed-forward network that uses arithmetic

122 Chapter 7. Compositionality - Learning Multi-Step Operations

operations as activation functions), had not included functions with singularities/re-
stricted domains such as division or logarithms due to their challenging learning prop-
erties. Though later works incorporated such operations, there were heavy assump-
tions made on the architectures such as assuming that division would occur only in the
last layer (Sahoo et al., 2018).

To increase chances of selecting the correct expression, methods can keep a reposi-
tory of candidates which represent promising expressions (Martius and Lampert, 2017;
Chen, 2020; Werner et al., 2021; Kamienny et al., 2022). Similarly, for Transformer based
methods, a decoder would create multiple candidates using beam search (Wiseman
and Rush, 2016). However, there is no guarantee that the correct expression will ex-
ist/be selected from these candidates. Furthermore, maintaining multiple candidates
can be expensive especially if a candidate is an entire network instance and therefore
relying on a repository would ideally be avoided.

The scope of this work considers compositionality from the viewpoint of building ar-
chitectures consisting of multiple NALMs. However, this is not the only type of compo-
sitionality. Another view of compositionality can also be considered where NALMs are
composed with neural networks of different architectures. Two such approaches are (1)
a stacked approach which connects the NALM to the input/output of other networks,
or (2) building NALMs into the networks. We have touched upon the first stacked ap-
proach. For example, in Section 2.4 we provide numerous applications where NALMs
are used alongside other neural architectures, mainly as part of more complex end-to-
end tasks. In Chapters 4 and 5 we also investigate such forms of composition through
the MNIST arithmetic tasks where a NALM is attached to the output of CNN/LSTMs
digit recognition networks. The second approach remains open for future work. Such
an approach includes building NALMs into Transformers. For example, replacing the
residual connection in the Transformer with a NALM. This would enable the Trans-
former to have a bias towards performing precise arithmetic operations while keeping
the overall architecture differentiable and retaining the flexibility of the Transformer’s
context-based routing.

7.1 Task

This task requires learning operations of the form op2(op1(a, b), c) given an input vec-
tor [a, b, c, d], where op1, op2 ∈ {+,−,×,÷} are cumulative operations. Therefore,
division represents the reciprocal operation e.g., div(x1, x2) = 1

x1x2
. Learning these mul-

tistep expressions can be thought of as a symbolic regression problem, which has been
proven to be an NP-hard (Virgolin and Pissis, 2022). There are 16 different combina-
tions to learn (see Table 7.1). The ability to do multi-step reasoning with a selection of
the relevant operations and input elements is required in order to complete this task

7.1. Task 123

TABLE 7.1: All 16 possible combinations of the two operation expressions written out
in the expanded form.

op1 op2 expanded expression

add

add a + b + c
sub −a− b− c
mul (a + b)c
div 1

(a+b)c

sub

add −a− b + c
sub a + b− c
mul (−a− b)c
div 1

(−a−b)c

mul

add ab + c
sub −ab− c
mul abc
div 1

abc

div

add 1
ab + c

sub − 1
ab − c

mul c
ab

div ab
c

successfully. Furthermore, some expressions can have multiple solutions meaning the
steps taken can be ambiguous. For example, (a + b)− c has associative properties and
therefore can also be learned as a + (b − c). The interpolation range for training and
validation is U [1,2) and the extrapolation range is U [2,6). If a method uses stochastic
techniques during training (e.g., Gumbel-Softmax), then during inference only a de-
terministic approach is used (e.g., Softmax). Hence, training can use different types of
categorical sampling methods but inference will always use maximum likelihood (for
module selection). A summary of the experiment parameters is given in Table 7.2.

TABLE 7.2: Experiment parameters used for the two-step compositionality task.

Parameter Value

Epochs 200000
Learning rate 0.001
Optimizer SGD
Batch size 128
Regularisation start epoch 100000
Regularisation end epoch 150000
NALM weights regularisation scale 10
Real NPU gate regularisation scale 5

124 Chapter 7. Compositionality - Learning Multi-Step Operations

7.2 Methods

This section will explain the architectures used for the experiment. As the layout of
modules can influence learning (Bahdanau et al., 2019), we explore using stacking, gat-
ing, and timestep dependant routing of NALMs. Illustrations of all NALM based com-
positional architectures are given in Figure 7.1.

7.2.1 MLP

A six-layered neural network with 16 hidden units per layer using ReLU activations.

7.2.2 Quadratic Network

A two-layered quadratic neuron architecture (Fan et al., 2018). A quadratic neuron
replaces the inner product of linear neurons with the quadratic function resulting in
increased expressiveness. A quadratic layer is expressed as

f (x) =
(︁
Σn

i=1Wi,jxi + bj
)︁
· (Σn

i=1Wi,kxi + bk) + Σn
i=1Wi,lx2

i + c . (7.1)

Assuming an identity activation function, the two-operation task for any combination
of addition, subtraction and multiplication operations can be accomplished with two
layers with two hidden units. To our knowledge, division cannot be expressed in a
generalisable manner using quadratic layers with such a configuration.

7.2.3 Stacked NALMs

A stack of individual NALMs in a sequence. We use four layers consisting of either
[iNAC, iMNAC, iNAC, iMNAC], [NAU, Real NPU, NAU, Real NPU], or [NAU, NMU,
NAU, NMU]. The Real NPU modules are the modified versions which we introduce in
Chapter 5 in Section 5.4. Even though the task requires a two-step operation, four layers
are used to avoid any assumptions on the type of operation to occur first. For example,
to do the mul-add tasks using the [NAU, NMU, NAU, NMU] setup requires having to
use the second (NMU) and third modules (NAU). If only a two-layered structure was
used then the network must have the order [NMU, NAU] meaning other compositions
such as add-mul can no longer be learned. Each intermediate layer contains five out-
puts.

7.2. Methods 125

stacked

(A) Stacked NALMs

gated

(B) Stacked Gated NALMs

recurrent selector -
no inp mask

(C) Recurrent Input Selector with Learnable NALMs

126 Chapter 7. Compositionality - Learning Multi-Step Operations

recurrent selector
- w/inp mask

(D) Recurrent Input Selector with Frozen NALMs

FIGURE 7.1: Example NALM based architectures for solving the two-step multi-
operation tasks assuming the two relevant modules (in order) are M1 and M4. All
architectures assume four element inputs (with two additional inputs for models al-
lowing for lines of working) and 1 output. θ means the block of calculation contains
learnable parameters. Mi are arithmetic modules, zj

i are module outputs where i is the
output neuron index and j is the module index, gi(.) are module selection modules,
and i(.) are input selection modules. The Recurrent Input architectures have been un-

rolled for two timesteps.

7.2.4 Stacked Gated NALMs

A two-layered stack of gated NALMs. A gated NALM can select between NALMs per
layer using the sigmoid gating technique from Schlör et al. (2020), i.e., σ(g) · mi(x) +
(1−σ(g)) ·mj(x). A two-layered stacking of two gated NALMs includes: [iNAC;iMNAC,
iNAC;iMNAC], [NAU;Real NPU, NAU;Real NPU], or [NAU;NMU, NAU;NMU] where
‘;’ represents a gated NALM. Similar to the Stacked NALMs, the output of the first layer
will have five outputs.

7.2.5 Recurrent Input Selector with Learnable NALMs

A key change to the input processing is made to this architecture compared to the previ-
ous NALM based architectures. The task is reconsidered as a recurrent problem where
the input is extended with a scratchpad containing intermediate calculations called
‘lines of working’. This means that at each timestep, the entire input will be accessible
along with an accessible memory of some intermediate calculations (i.e., lines of work-
ing). The number of lines of working in memory is equal to the number of timesteps
which is set to two as the tasks are two-step operations. Every timestep the memory
will be updated with a new line of working which will contain a module’s output. A
layer is represented by independent NALMs which are given the same (intermediary)
input and produces an output. The output for each module undergoes module selec-
tion where a single module’s output is set to the slot of the input corresponding to that
timestep’s memory meaning it can be accessible in the forthcoming timesteps. For the

7.2. Methods 127

final time step, the output of the selected module is given as the final output rather
than doing another selection on all the inputs and lines of working for two reasons: (1)
it enforces a weak bias to force the final timestep to contain the output and (2) to avoid
having to learn additional sparse selections which can impede gradient-based learning.

This architecture is inspired by the Global Workspace Theory (GWT) (Baars, 1993,
1997), where we consider the input (concatenated with the scratchpad) as the workspace.
To write to the scratchpad’s line of working segment the modules must engage in a
competition where only one module is selected and allowed to write. Once written,
that line of working (along with the rest of the input and scratchpad) is available to all
modules in the next timestep (i.e., the information is ‘broadcasted’).

Each timestep still requires the NALMs to learn to select the relevant inputs and ap-
ply the operation. For module selection, the straight-though estimator/trick (Bengio
et al., 2013) is used to select the output for a single module. The straight-through
trick is a biased estimator which allows learning approximates of naturally discrete
functions when using gradient-based backpropagation; a good alternative to the high-
variance unbiased estimates which can be gained when using REINFORCE (Havrylov
and Titov, 2017). The estimator creates gradients of the desired discrete function by
using a differentiable (continuous) proxy function in the backward pass while the for-
ward pass will use the discrete function. For example, if a hard gate was desired then
the forward pass can use a threshold such that the gate value is either 0 or 1 and
the backward pass would use the sigmoid function. Practically, the straight-through
trick can be expressed in a single line of code (hard - soft).detach() + soft, where
detach() represents detaching the gradient of the computation from the computation
graph and the soft/hard represents the type of outputs the function gives. For our pur-
poses, the straight-through trick allows the forward pass to use hard weights allowing
for an exact selection of modules, whereas the backward pass uses gradients calculated
using the soft weights, therefore, allowing for non-sparse gradient updates.

The module selection function also contains a learnable scalar logit (g ml), which once
transformed by a sigmoid operation, represents the probability of using a determin-
istic module selection. The probability is checked against a threshold of 0.5 to deter-
mine whether the hard selection will use the deterministic (p(gate) > 0.5) or stochas-
tic selection (p(gate) ≤ 0.5). A deterministic selection represents using a maximum
likelihood approach to selecting the most likely module by using a straight-through
Softmax, whereas the stochastic selection represents using an straight-through Gumbel
Softmax (Maddison et al., 2017; Jang et al., 2017).

The straight-through Softmax will use the straight-through trick to do a hard selection
of a module using argmax but uses the gradients generated from applying the Softmax
function to the logits. The Gumbel Softmax estimator is a reparameterisation which
allows one to sample a categorical (discrete) distribution (t ∼ Cat(p1, ..., pK) where

128 Chapter 7. Compositionality - Learning Multi-Step Operations

ΣK
i pi = 1) given logits x. Intuitively, the simplest way to sample a categorical dis-

tribution would require taking the probabilities of the classes and applying the max
function to get the most likely class as a one-hot vector. However, as the max function
is not differentiable, we instead use the Gumbel Softmax which is differentiable.

To understand the Gumbel Softmax means to first understand the Gumbel-max trick.
The Gumbel-max trick allows one to sample from the Gumbel distribution, where the
reparameterisation trick is used to convert the sampling of the class to a deterministic
function of parameters, with added noise sampled from variates of an independent
and identically distributed Gumbel(0,1) distribution zi ∼ − log(− log(U (0, 1))). That
is,

one hot(argmaxi∈{1,...,K}xi + zi) . (7.2)

The one hot creates a one-hot vector (∈ RK) of the returned index1 which can be
used to select the relevant element of x via a dot product. Rather than taking the
max, the argmax is used but this is still non-differentiable. To make it differentiable,
a softargmax is used as an approximation of the selected index:

softargmax(y) =
K

∑
i=1

(︄
eyi/τ

Σjeyj/τ

)︄
i (7.3)

resulting in the Gumbel Softmax. We can control how close the approximation is to the
discrete distribution by controlling a temperature parameter τ. A small τ(→ 0) results
in an approximation more similar to the discrete distribution and a larger τ(→ ∞) is
more relaxed and is similar to a Uniform distribution. This along with the straight-
through trick (resulting in the straight-through Gumbel Softmax) enables doing a hard
selection with usable gradients.

Intuitively, the network should initially want to explore and favour using the Gumbel
Softmax, whereas when an ideal module selection is found the selection should be ex-
ploited (in favour of maximum likelihood). To initially encourage exploration the gate
logit is initialised to -1 such that the p(maximum likelihood)=0.27 with a τ dampening
factor of 10. This procedure is used during training as shown in Algorithm 1; in in-
ference, we only use the maximum likelihood selection in order to get a deterministic
solution.

7.2.6 Recurrent Input Selector with Frozen NALMs

This further modifies the recurrent input selector architecture of the previous section.
Rather than allowing the module to learn input selection, a separate input mask is

1For example, if K=3 and the returned index was 2 then the corresponding one-hot vector is [0,1,0].

7.2. Methods 129

Algorithm 1: Pseudocode for Module selection in the Recurrent Input Selector.
Data: Scalar g ml representing the gate logit for using a deterministic router;

Module outputs x ∈ R[B,M]; Module selection logits w ∈ R[M,1]; τ = 10. B is
batch size and M is number of modules.

Result: Selection of the output of a single module.
/* Generate probability of using deterministic gating for the soft

and hard selections. */

1 p det soft← σ(g ml)
2 if p det soft > 0.5 then
3 p det hard← 1
4 else
5 p det hard← 0
6 end
/* Generate module selection probabilities for the

deterministic/stochastic routes. */

7 p m det← st softmax(w, τ)
8 p m stoch← st gumbel softmax(w, τ)
/* Apply module selection for the deterministic/stochastic routes.

*/

9 m det← x@p m det
10 m stoch← x@p m stoch

/* Apply gating to select between the deterministic and stochastic

routes. */

11 out soft = p det soft ∗m det + (1− p det soft) ∗m stoch
12 out hard = p det hard ∗m det + (1− p det hard) ∗m stoch

/* Apply straight-through trick. */

13 out← out hard− out soft.detach() + out soft
14 return out

learnt which masks out irrelevant inputs such that the modules only require to apply
their specialist operation. As a result, module parameters are not required to be learnt
and can be preset to the desired operation.

The input mask will be a tensor of shape [Timesteps, Inputs + Scratchpad, Modules] so
for each timestep, a different input selection for the modules can be learnt meaning the
same modules can be reused each timestep. The weights of the input mask are trans-
formed using a straight-through Softmax over the module dimension such that each
input element can only be available to a single module. The input mask is initialised to
zeros (since Softmax does not care about starting values; only the relative differences)
but the input elements corresponding to the relevant line of working for a timestep are
set to one to encourage the use of the relevant intermediary value at the relevant time
steps. For example, an input mask corresponding to two timesteps with four inputs
(and scratchpad with two lines of working) and 4 modules would be initialised to

130 Chapter 7. Compositionality - Learning Multi-Step Operations

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
1. 1. 1. 1.
0. 0. 0. 0.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The module selection strategy remains the same as before, using the straight-through
trick (see Algorithm 1) to select the output of a single module.

7.3 Results

TABLE 7.3: Results for learning multi-operation arithmetic. There are 16 combinations
in total. * indicates that division cannot be learnt so there are at most 9 combinations.
The average interpolation and extrapolation errors are given along with their standard
deviation. Types of architectures include non-modular networks, stacked NALMs,
stacked gated NALMs, recurrent input with learnable NALMs and recurrent inputs

with frozen NALMs.

Model Correct
(/16)

Interp. MSE Extrap. MSE

MLP (6L;16HU) 0 0.002 ± 0.00 233.012 ± 744.44
Quadratic (2L;5HU) 0 0.001 ± 0.00 724.276 ± 696.68
Quadratic (2L; 2HU) 0 0.001 ± 0.00 558.707 ± 707.69
4L Stacked
[iNAC,iMNAC, iNAC, iMNAC]

0 4.071 ± 7.57 140.695 ± 307.42

2L Stacked Gated
[iNAC;iMNAC]

0 0.148 ± 0.17 832.505 ± 2870.44

4L Stacked
[NAU,Real NPU,NAU,Real NPU]

0 0.39 ± 0.65 2320.03 ± 9072.02

2L Stacked Gated
[NAU;Real NPU]

0 0.031 ± 0.04 189.576 ± 601.80

4L Stacked
[NAU,NMU,NAU,NMU]

0* 2.815 ± 4.69 574.419 ± 1333.84

2L Stacked Gated
[NAU;NMU]

4* 0.067 ± 0.067 32.491 ± 55.22

Recurrent Input with
[iNAC, iMNAC, iNAC, iMNAC]

0 4.071 ± 7.58 416.987 ± 1054.30

Recurrent Input with
[NAU, Real NPU, NAU, Real NPU]

3 3.891 ± 6.71 396.292 ± 1172.17

Recurrent Input with
[NAU, NAU, NMU]

5* 0.196 ± 0.26 136.472 ± 220.06

Recurrent Input with Frozen NALMs 7 0.891 ± 2.03 99.76 ± 193.132

Results are shown in Table 7.3. We observe that the MLP and Quadratic architectures
both exhibit overfitting on the interpolation data but no form of generalisation to the
extrapolative data. In contrast, a majority of all the other architectures are found to not

7.3. Results 131

TABLE 7.4: 2 layer Gated NAU-NMU success and failure breakdown of the expres-
sions learnt. The oi values represent the selected intermediary output (starting with

index 1).

Success Task Target expression Layer 2 Learnt expression

TRUE

add-sub −a− b− c o1 −a− b− c
add-mul (a + b)× c o3 × o4 (a + b)× c
sub-add −a− b + c o1 −a− b + c
mul-mul abc o3 × o4 ab× c

FALSE

add-add a + b + c o2 + o3 + o4 + o5 1 + 1 + 1 + 1
sub-sub a + b− c o2 + o3 − o4 (b + ab)− (a− 0.5b + c)
sub-mul (−a− b)× c o1 × o4 (−a− b− c)× c
mul-sub −ab− c o1 0.88(−a− b− c)
mul-add ab + c o2 + o3 b + ab

have an average interpolation loss below 0.1 implying that the failures on the interpola-
tion range are harsher and can be better indicated without relying on the extrapolation
set. Using a deep stacking of singular NALMs also exhibits no success in any opera-
tion. Reasons can include the multiple ways of solving a combination that can result in
confusion for the model. For example, sub-sub which requires learning a+ b− c can be
learnt as (a+ b− c), or (a+ b)− c, or (a− c) + b, or (a+ b+ d)− (d+ c), etc. Addition-
ally, requiring discrete weights (of which many will be zeros) across multiple layers can
cause difficulty in acquiring good gradients for learning. For example, for the sub-sub
task using stacked NALMs containing NAUs and NMUs were found to have three of
the four modules all their weights collapsed to values around zero (< 10−4). A similar
case occurs for the iNALU modules where the transformed weights have an average
value of 0.17.

Reducing the depth by using gating to increase the breadth of a layer allows for replac-
ing two stacked layers with a single layer of two modules that are gated. This architec-
tural style can get successes, however, the choice of modules used matters. That is, the
gated iNALU and Real NPU based units have no success whereas the NAU and NMU
can learn mul-mul, add-mul, add-sub and sub-add. Observing the composition of the
learnt expressions (see Table 7.4) shows that multi-step operations can be learnt. For
example mul-mul requires both layers and add-mul does the addition of the sub-parts
(carrying the singleton c to the next layer) and then multiplies. The purely summative
tasks (add-sub and sub-add) learn the expression in the first layer instead of learn-
ing the expression in two parts and then combining. Looking at the remaining failure
shows that either input or module selection can cause failures, as well as partial gating
values. An interesting failure case is the add-add which learns to output 4. This is a
result of the first layer using multiplication for each selected intermediary of layer 2,
where each of the corresponding NMU weights is 0 resulting in the output being 1 (a
result of the NMU architecture). If in the first layer, the NAU would have been selected
instead then the output would have been 2a + 2b + c + d which is quite different to the

132 Chapter 7. Compositionality - Learning Multi-Step Operations

TABLE 7.5: Recurrent Input Selection NALM using learnable NAUs and NMU for
add-add, sub-sub and add-mul. The timestep columns are the output expressions

(i.e., the selected module’s output) for the corresponding timesteps.

Success Task Target expression Timestep 1 Timestep 2 Scratchpad
accessed

TRUE
add-add a + b + c 0 a + b + c
sub-sub a + b− c −c a + b− c ✓

FALSE add-mul (a + b)× c a + b + c a + b + c

desired a + b + c. What may be occurring is an example of a shortcut as the interpo-
lation range is U [1,2) meaning the average output value for the expression a + b + c is
4.5 which is close to 4. In other words, the network had taken advantage of the NMUs
bias of outputting the identity value of cumulative multiplication (i.e., any input with
weight 0 will be converted to 1). Similar phenomenons have been observed in Sec-
tion 5.9 where division modules would unexpectedly leverage division rules such as
the inverse rule or zero rule.

A gated architecture suggests there is an advantage in having all modules available
every layer. If recurrent inputs with scratchpads are used with learnable NALMs then
the NAU-NMU model can additionally learn the combinations add-add and sub-sub
but no longer succeeds on add-mul. The learnt expressions for these combinations
are found in Table 7.5 displaying examples of how the model can: (1) in add-add still
favour single multi-element calculations over multi-step, (2) in add-sub can use the
lines of working to store and access intermediate calculations and (3) in add-mul fail
in all ways by not using the scratchpad and applying the incorrect input and module
selection. The iNAC-iMNAC version of this model is still unable to learn any combi-
nation but the NAU-Real NPU version can learn three combinations.

Without loss of generality, we can separate the input selection from the NALMs such
that there is only a single weight per module. Furthermore, if multi-op modules are
separated into separate modules, such as a separate addition and subtraction module
from the NAU, then the weights can be preset to be specialists meaning only the input
mask (and module mask) requires to be learnt and not the NALM weights. Doing so
results in successes in division combinations as well, as shown in Table 7.6. For the
successes, the scratchpad can be used when required and when unused the scratchpad
would simply store identity values such as 0 or 1. Of the failures, tasks requiring sub-
traction were particularly challenging, failing on 6

7 possible combinations.

7.4. Summary 133

TABLE 7.6: Recurrent Input Selection using frozen arithmetic modules. The timestep
columns are the output expressions (i.e., the selected module’s output) for the corre-

sponding timesteps.

Success Task Target ex-
pression

Timestep 1 Timestep 2 Scratchpad
accessed?

TRUE

add-add a + b + c 1 a + b + c
add-sub −a− b− c 0 −a− b− c
mul-mul abc 0 abc
mul-div 1

abc
1

abcd
1

abc
div-add 1

ab + c 1
ab

1
ab + c ✓

div-mul c
ab

1
c

c
ab ✓

div-div ab
c

1
cd

abd
cd ✓

FALSE

add-mul (a + b)c −a− b− c −a− b− c + a + b + c ✓
add-div 1

(a+b)c
1

abcd
1

abc
sub-add −a− b + c 1

abcd −a− b
sub-sub a + b− c a

abcd
1
cd

sub-mul (−a− b)c 0 −a− b− c
sub-div 1

(−a−b)c 0 0× d ✓

mul-add ab + c 0 0× 1 ✓
mul-sub ab− c 1 −1− a− b− c
div-sub 1

ab − c 1
abcd

1
cd

7.4 Summary

This chapter has explored ways in which NALMs can be combined together to solve
compositional arithmetic tasks. We draw influence from concepts such as the GWT
(Baars, 1993), introducing a scratchpad which can only be written if a competition is
won, and globally accessible information that is broadcasted each time step. Using
such concepts results in our Recurrent Input Selection architecture which can build
compositional expressions over multiple timesteps. Furthermore, by having a separa-
tion of concerns between the input selection, module operation and module selection
we can remove the need for heavily engineered specialists, allowing for predefined
modules. In contrast to approaches such as stacking the Recurrent Input Selection are
able to build compositions with the use of its scratchpad. Though future work is re-
quired to improve the selection ability of the Recurrent Input Selection in being robust
to different combinations, the results suggest that using a Recurrent Input Selection
based architecture is a promising direction for combining NALMs.

135

Chapter 8

Conclusions

At the beginning of this thesis, we asked the question:

How can we learn to discover basic mathematics using ML models in a generalis-
able manner?

Throughout this thesis, we have set out to understand how to create neural networks
with the ability to learn extrapolative mathematics. In other words, networks that learn
an underlying mathematics relationship from an input distribution and still work when
applied to a different distribution where the data also contains the same underlying
pattern. To this end, we have focused on a specific family of interpretable architec-
tures, named NALMs, which have in-built biases to learn arithmetic/logic operations.
We have considered ways to evaluate and benchmark the networks under the assump-
tion that there is a goal for extrapolative models. Appreciating the challenges in learn-
ing single operations, we further explored multiplication and division by investigat-
ing techniques to improve robustness and factors which influence learning such as the
choice of loss. To finish, we considered ways to combine different specialist modules in
order to do compositional arithmetic. In this final chapter, we will briefly summarise
the key findings of this work and discuss the remaining directions for future work.

Chapter 3 introduced a benchmark for single-layered modules and an evaluation scheme,
both of which build on previous works of Madsen and Johansen (2019, 2020). With such
tools, we were able to evaluate a majority of arithmetic NALMs on the four key opera-
tions - addition, subtraction, multiplication and division over multiple training ranges.
Analysing these results, the following observations were made. Firstly, there exists a
challenge in robustness to learning on different training distributions. Secondly, of all
the operations, division was found to be the most challenging. Thirdly, in most cases,
NALMs with the capacity to do multiple operations were unable to perform well. This
chapter also answered our first research question regarding benchmarking.

136 Chapter 8. Conclusions

RQ 1.1: What evaluation strategies can be used to best analyse the different charac-
teristics of a NALM?

RQ 1.2: Which NALMs are robust to learning on different training distributions?

Answer: We conclude that a reasonable evaluation of NALMs can measure their abil-
ity to extrapolate, specialise fast and be interpretable. This results in our bench-
marks adopting three evaluation metrics - the configuration-sensitive success
rates, the speed of convergence and the sparsity errors. Although no NALM
is completely robust to different distributions, we are able to identify for a given
operation the best possible NALM to use.

Chapter 4 took a deeper look into the robustness issue for multiplication, using the
NMU as a case study. We found how the specialist architecture can result in biases
resulting in convergence to local optima during training. After which, we introduced a
form of reversible stochasticity to encourage escaping the local minima without affect-
ing the NMU’s inner mechanics. Our results showed that our approach to stochasticity
is more effective than other stochastic approaches. However, we discovered there exist
instances where the approach is not as successful as the NMU. This suggests that al-
though there is room for improvement, reversible stochasticity is a useful direction to
consider when tackling the robustness issue of NALMs.

Chapter 5 expanded on the analysis from Chapter 3 which identified that division is
an especially difficult operation to learn. We proposed simple yet intuitive alterations
to the Real NPU to improve robustness and introduced two novel division modules,
the NRU and NMRU. Both the NRU and NMRU questioned if one can extend the
multiplicative NMU for division under the intuition that division is the inverse opera-
tion of multiplication. Through a comprehensive set of studies, we discovered degra-
dation in extrapolative performance when redundancy or different distributions are
introduced. In particular, small values around zero and the Truncated Normal Distri-
bution were especially challenging. When integrated with larger end-to-end modules
for more challenging tasks, there was no direct correlation to the performance on the
synthetic arithmetic tasks, implying that only using synthetic tasks as a proxy for gen-
eralisation ability is not wise.

Chapter 6 took a step away from NALM architectures and instead focused on the ef-
fect of feature scaling and loss function on extrapolation performance. Feature scaling,
though known to be an effective method in symbolic regression, was found to only hin-
der NALMs. In particular, the arithmetic bias that the weights represent in a NALM
was found to contradict the type of solutions found when feature scaling was applied.
In contrast, using an alternative loss to MSE can have a positive impact on generalisa-
tion, but is task dependent. Therefore, if working with NALMs, experimenting with
different objective functions should be considered.

137

The findings from Chapters 3-6 answered our questions for RQ2:

RQ 2.1: What are significant architecture choices which influence the ability to learn?

RQ 2.2: Can modifying the ML pipeline provide performance gains in robust extrap-
olation?

Answer: Significant architecture choices include: (1) using a form of discretisation to
encourage weights to converge, (2) inducing well-behaved gradients through lin-
ear weights, clipping or relevance gating, (3) applying stochasticity for avoiding
local optima and (4) having additional mechanisms to calculate the sign of out-
puts (this is especially valuable for division based NALMs). Although modifying
the data via feature scaling was unable to find any empirical improvements, us-
ing different loss functions can (though this is task dependent).

With the objective of exploring the composition of NALMs, Chapter 7 experimented
with different methods for combining NALMs. Simple approaches such as stacking
were found to be ineffective. Instead, by taking inspiration from cognition, we inte-
grated ideas of the GWT into our recurrent input architectures. Using selective writing
to input memory and broadcasting information of intermediary calculations encour-
aged a scratchpad-like mechanism to build expressions. Furthermore, by employing
the use of the straight-through trick, we were able to do hard selection whilst still train-
ing on soft differentiable weights. The work of this chapter answered RQ 3:

RQ 3.1: To what extent does the way in which NALMs are combined affect their
ability to compose?

RQ 3.2: How can we build an architecture to compose NALMs for learning different
combinations?

Answer: The combination strategy of NALMs can have a significant effect. Strategies
such as stacking and gating are found to have little success, whereas our Recur-
rent Input Selector architecture can learn some combinations due to its ability
to remember relevant intermediate calculations in a differentiable manner and
broadcast them.

To conclude, our efforts have concentrated on teaching neural networks to do extrap-
olative mathematics as a means towards understanding how to build generalisable
mathematical reasoning models. Specifically, we focused on NALMs which consist of
specialised modules for extrapolative arithmetic. Our work has extended the NALM
field in multiple directions including evaluation, novel architectures and techniques
such as reversible stochasticity and compositionality. We have shown how our work
can further improve the robustness of NALMs to different training ranges and distri-
butions as well as areas where challenges still lie.

138 Chapter 8. Conclusions

8.1 Directions for Future Work

This thesis can be considered a first for the field of NALMs. Being the first means vari-
ous directions for future study remain open for exploration. Therefore, in this section,
we present examples of such directions for future work including:

• Alternative methods for generation of selection masks for selecting inputs and
modules for NALM composition

• Improving the expressiveness of NALMs by learning scaling coefficients

• Alternative input representations such as complex inputs and multitoken repre-
sentations of numbers

• A more versatile evaluation suite to measure NALMs performance with other in-
put modalities and compositionality with other families of neural networks (e.g.,
Transformers)

8.1.1 Input and Module Selection for Compositional NALMs

In Chapter 7, we explored some starting points in ways to combine NALMs for com-
positional arithmetic. We suggest that the Recurrent Input Selection architecture with
frozen modules should be extended in two ways. Firstly, consider alternate strategies
to generate the input and module selection masks. This can include exploring methods
used in Mixture of Experts models which learn many experts that specialise on a subset
of the input space and select the relevant expert via (input dependant) gating (Jacobs
et al., 1991; Hazimeh et al., 2021), or further improving the creation of selection masks
when using the straight-through (Gumbel) Softmax (Paulus et al., 2021; Huijben et al.,
2023). Secondly, learning strategies regarding the speed and order to learn the discrete
input and module selections. Investigating different speeds of learning can involve
having a nested optimisation of learning the parameters for the inputs and module se-
lection. Investigating the order to learn the selections would ask the question of if there
exists an advantage in learning either the inputs or modules first, or if learning both at
the same time is best. The question of the best order to learn remains an open question
and therefore we believe is worth exploring. More generally speaking, we empathise
with the need to research ways to do (discrete) routing/selection; a task critical to many
applications (Rosenbaum et al., 2019).

8.1.2 Learning Coefficients

The extrapolative nature of NALMs enables them to be a good candidate for symbolic
regression. This work focused on NALMs with discretisation regularisation applied in

8.1. Directions for Future Work 139

order to force values towards exact arithmetic operations (e.g, weighting coefficients
of 1 or -1). For NALMs to be used for applications such as equation discovery re-
quires also being able to learn weighting coefficients on the input variables. Therefore,
we suggest two approaches to consider. The first would be replacing discretisation
with sparsity regularisation (such as L0 or L1), allowing for weighting coefficients to
be learned through NALM weights (Louizos et al., 2018; Heim et al., 2020). However,
this can result in a degrading generalisation performance since NALMs are able to fall
into more local minima (because of the removal of the discretisation regularisation) es-
pecially if used in a compositional form (joining many NALMs together). The second
would be keeping the discretisation regularisation but integrating additional weight-
ing parameters to learn the coefficients (Schlör et al., 2020). The latter approach is also
open to exploring alternate discretisation methods of NALM parameters, such as net-
work compression regularisation in binary/ternary networks (Hubara et al., 2016; Zhu
et al., 2017).

8.1.3 Alternative Encoding of Numbers

NALMs assume that the input data should be in a real-valued form (e.g. 2.16, -1.43,
2, etc.) encoded using a floating point format. However, a question worth asking is
whether this is the best number representation in order to teach NALMs? Numbers
(such as [-23.1]) could be encoded in different bases such as base 10 ([-,2,3,1]) or in
decimal form ([-,20,3,0.1]). Multitoken input representations for numbers using a sci-
entific form could reduce the affect of input magnitudes when learning to multiply
and divide numbers. The resulting operations would require only multiplying/divid-
ing the coefficients and summing/subtracting the exponents. For example, to calculate
11× 120 using a scientific token notation (i.e., 11 as [+,1.1,1] and 120 as [+,1.2, 2]) results
in (+1.1× 101)× (+1.2× 102). The calculation can deal with the sign, coefficients and
exponents separately as sign(+,+) = + , 1.1× 1.2 = 1.32 and 1 + 2 = 3 resulting in
the output [+, 1.32, 3] which is +1.32× 103 = 1320. As NALMs currently assume a
floating-point format, having another form of numerical encoding would result in hav-
ing to adapt the NALM’s architecture. Using a different encoding may have inherent
learning advantages over other bases in regard to robustness to different distributions.
For example, for Transformers, it has been noted that the chosen embedding format can
influence performance (Charton, 2022a). However, unlike Transformers which learn
high-dimensional embeddings of the numeric encodings (that can be difficult to inter-
pret), NALMs which can systematically modify the encodings can be designed. Al-
though NALMs currently require inputs to be in real space, extending support to com-
plex inputs would allow NALMs to solve a wider range of arithmetic such as modular
arithmetic. Not only would the NALMs be more expressive, but learning expressions
for arithmetic which require multiple intricate steps in real space could be completed
in a few steps in complex space.

140 Chapter 8. Conclusions

8.1.4 Extension of the Evaluation Suite

Finally, we observed in Chapter 5 that good performance in synthetic arithmetic tasks
may not be reflected in the more complex tasks (such as MNIST division). Therefore,
we suggest a need for a more elaborate suite of extrapolation based arithmetic experi-
ments to be able to better evaluate a NALM’s ability to learn complex networks. This
can include working with alternative modalities such as speech (e.g., calculating the
result of someone asking to add two numbers) or being integrated with other well-
known architectures such as Transformers (e.g., in a symbolic regression task allowing
a Transformer to output skeleton structures and have NALMs find the coefficients).

141

Appendix A

Inductive Biases for System 2 -
Generalist Architectures with
Modularity

In the following, we explain examples of ML architectures which incorporate IBs for
System 2 processing including modularity, sparsity and composition.

Goyal et al. (2021c) introduces Recurrent Independent Mechanisms (RIMs) which as-
sume that the task can be decomposed into independent mechanisms which compete
against each other for access to information. The RIM architecture learns composable
reusable ‘modules’ (where each module is represented by a subset of a Long Term
Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) RNN’s weight ma-
trices) with representations where change can be localised. The architecture consists of
the following steps:

1. The RIMs will compete for access to the input, from which only a subset (the top-
k) will be selected.

2. The selected RIMs update their knowledge with respect to the input.

3. The RIMs undergo information sharing (i.e., communication). Only the top-k
RIMs are allowed to access information from the other RIMs. This is an example
of sparse interaction.

RIMs use a top-down attention (competition) process to select the relevant modules
for the input. Unlike RIMs, the GWT works with both bottom-up and top-down con-
nections. Mittal et al. (2020) introduce bidirectional and multilayered information flow

142 Appendix A. Inductive Biases for System 2

controlled via attention to allow for such two-way connections with hierarchy. How-
ever, unlike the GWT which assumes macro modules are competing (e.g., face recog-
nition, gait recognition, object recognition, etc.) their modules focus on smaller micro
models.

A limitation of the above architectures is the need for a predefined number of al-
lowed active modules (the k value for top-k) which can read an input/contribute to
the workspace. Ideally, we want the number of selected modules to be flexible and
context dependent. Rahaman et al. (2021b) proposes an alternative called Kernel Mod-
ulated Dot Product Attention (KMDPA) which removes the need for a predefined k.
Instead of a k, a threshold value for a distance metric is set and the distances of mod-
ules to inputs are learnt. If the distance is within the threshold the module is active.
In contrast to the RIM’s top-k communication between specialists, Goyal et al. (2022)
relaxes the elitism of specialists by using a shared workspace for communication like
what is found in the GWT. Specialists still compete to write to the workspace, but the
workspace would be broadcasted to all the specialists. By replacing the top-k com-
munication with a shared workspace, it is possible to create global coherence between
different specialists.

Greff et al. (2020) argue that the inability to flexibly bind information of a distributed
network leads to the gap between humans and Deep Neural Networks (DNNs). This
binding problem causes difficulty in the segregation of entities, representing the seg-
regation and the novel composition using these entities. This problem is also reflected
in the RIMs architectures as the dynamics are fixed. A RIM module’s parameters are
not shared with other modules and are specialised for a particular computation; hence
different modules operate according to different dynamics and are not interchange-
able. Goyal et al. (2021b) takes inspiration from the Object Orientated Programming
paradigm in which a class (schema) can be shared between different instances (object-
s/modules) with their own states. Taking this idea, it is possible to encode factorisa-
tion of both declarative (properties) and procedural (dynamics) knowledge, allowing
for interchangeable modules. This schema/object-file factorisation model is given the
acronym SCOFF. SCOFFs, like RIMS, use modularity but are far more flexible. For ex-
ample, imagine modelling a system with three uniquely coloured bouncy balls which
share the same underlying dynamics. A RIM would learn different dynamics for each
ball, but a SCOFF would learn to reuse the different module parameters even though
each ball refers to a different state. The balls would share the same underlying dynamic
but are treated as independent in each module.

Goyal et al. (2021a) furthers the SCOFF concept by introducing sparse interactions of
objects through the Neural Production System (NPS). Instead of having direct object-
to-object interactions using attention, the NPS makes the interaction between objects
sparse i.e., schemas (rules) are only applied to a subset of the objects. The sparsity is
more sample efficient, faster to train, and has better transfer capabilities in the face of

143

changes in distributions. These plug-and-play style compositions allow learning mod-
ular networks with interchangeable modules meaning the input dynamics do not need
to be fixed allowing for improved adaptability and transfer to changes in distributions.
Furthermore, such forms of factorisation do not require to be limited to the modules.
Mittal et al. (2022b) apply the discussed biases directly to the attention mechanism
to disentangle the search and retrieval. The result allows for compositional attention
which can have dynamic specialisation on the type of retrieval required. Unlike the
NPS, the compositional attention mechanism is not a niche architecture and can be
used as a direct replacement for attention heads found in common architectures such
as the Transformer (Vaswani et al., 2017).

Multiple regions in the brain use discrete encodings of variables such as objects, con-
cepts and actions; for example, the hippocampus (O’Reilly and Rudy, 2001; Zeithamova
et al., 2012), the prefrontal cortex and the sensory cortical areas (Tsao et al., 2006). Liu
et al. (2021) find that imposing discretisation in the communication between modules
encourages more robustness and independence between specialists. Communication
encodings are split into segments which get discretised using K-Nearest Neighbours
(KNN) against a learnable codebook of allowed vectors and recombined together for
the final discretised representation. Additionally, the discretisation can be made more
flexible by having a dynamic selection of the discretisation tightness (number of seg-
ments) conditioned on the input (Liu et al., 2022). Instead of a single fixed-size discreti-
sation function, a pool of discretisation functions with varying levels of coarseness can
be used. However, such discretisation methods rely heavily on the assumption that the
task to model requires communication between specialists.

Up to this point, architectures have focused on how to separate knowledge into com-
posable modules and share it. There is also the question of how the architecture itself
should learn. Goyal and Bengio (2022) suggest an IB for System 2 learning includes
having several speeds of learning, “with more stable aspects learned more slowly and
more non-stationary or novel ones learned faster” to allow for fast adaptation. Goyal
et al. (2021c) applies such learning to RIMs such that different parameters will learn at
different timescales; RIM modules undergo fast inner updates to capture the changing
dynamics from the task distribution, whereas the parameters for the input and module
communication have slow outer updates to learn stable connectivity structures. Simi-
larly, in SCOFFs, the OFs are allowed to change rapidly while the schemata change at
a slower stable rate over time (Goyal et al., 2021b).

Rahaman et al. (2021a) bring together many pieces of the above works to introduce a
novel self-attention architecture composed of differentiable components analogous to
common programming concepts such as functions, arguments, types etc. One can learn
reusable functions (modules) which can be selected without the need to predefine a
top-k value (using the KMDPA) and be dynamically combined depending on the input.
Dynamic adaptation enables the addition and removal of functions depending on the

144 Appendix A. Inductive Biases for System 2

task, allowing for on-fly and faster adaptation. Unlike SCOFF and NPS, this work uses
a differentiable interpreter which enables parameter sharing between functions.

145

Appendix B

Representation of Numbers in
Humans, Animals and Computers

In this section, we consider the different ways numerical information is encoded in
humans, animals and computers.

B.1 Humans

Numbers, in humans, can be represented in different ways. Two such ways described
by Nieder (2021) include symbolic and non-symbolic representations. Symbolic rep-
resentations such as number words (e.g., ‘three’) and numerals are unique to humans
and allow for arithmetic. Non-symbolic representations can be found in most species
(including humans) and allow for counting. The development of such a representation
can be associated with evolution and survival. Two mental systems come into play to
allow for non-symbolic representations – the (conscious) approximate number system
(ANS) and the (unconscious) object tracking system (OTS). The ANS enables the esti-
mation of quantities of elements without the reliance on language/symbols and results
in two characteristics called the numerical distance effect where the larger the distance
between two numbers the easier it is to discriminate between them and the number size
effect where it is harder to tell apart two numbers of the same distance the larger they
are (Dehaene et al., 1998). These two effects can activate regions in the inferior pari-
etal area of the brain. If quantified, these effects can be characterised by two laws –
Weber’s law and Fechner’s law. Weber’s law states that the just noticeable difference
(∆I) between two magnitudes is a constant (k) proportion of the reference stimulus’
magnitude (I), i.e., ∆I = kI (Kacelnik and Brito e Abreu, 1998; Kandel et al., 2013).
In other words, the error will increase linearly with numerosity. Fechner’s law states
that our sensation of magnitudes scales logarithmically to the stimulus (Dehaene and
Changeux, 1993). The OTS, unlike the ANS, can only represent a small set of numbers

146 Appendix B. Representation of Numbers in Humans, Animals and Computers

(between 1 and 3/4) and is associated with our subitizing ability, a fast, errorless pro-
cedure of being able to know a quantity without counting (Anobile et al., 2016).

B.1.1 How do Humans Process Numbers?

Humans have dedicated areas of the brain for processing numbers (Cohen and Da-
haene, 1995; Dehaene et al., 1999). Of the four cerebral cortex lobes, the frontal lobe
and parietal lobes have the most important roles regarding human number sense and
number manipulation. For example, the task of repeatedly subtracting the digit three
results in the bilateral activation of the two lobes (Dehaene, 1999, p. 249). The commu-
nication between the prefrontal and parietal cortices occurs via the superior longitudi-
nal fasciculus (Matejko and Ansari, 2015). The parietal cortex contains the intraparietal
sulcus (IPS) responsible for number sense such as “2 is less than 4” and “5 is before
6” (Nieder, 2021) and the dorsolateral prefrontal cortex (DLPFC) can manipulate infor-
mation in working memory (Barbey et al., 2013). The inferior parietal (IP) region of both
cerebral hemispheres contains neuronal circuits dedicated to the mental manipulation
of number quantities. The IP has been suggested to be subdivided into microregions
which specialise towards numbers, writing, space, and fingers (Dehaene, 1999, p. 190).
In particular, the inferior parietal cortex (IPC) containing the angular gyrus (AG) holds
mental number representations and number quantities.

One way of learning about what specific regions of the brain are responsible for is
through the study of cerebral lesions, where participants undergoing the task have
damage to a specific region of the brain. Such studies have indicated that the arithmetic
abilities of humans are based on many specialised neuronal networks (i.e., modules)
which communicate through parallel pathways (Dehaene, 1999, pp. 194–199). This
modular nature allows for a division of labour where each module can specialise in a
particular role such as recognising digits or accessing arithmetic facts from memory.
These lesion studies also find that algebraic knowledge such as the quadratic formula
is processed in a distinct part of the brain in comparison to number knowledge. Those
with damage to the left subcortical (in the basal ganglia) are unable to recall their addi-
tion or multiplication tables but can still do subtraction and algebra; although solutions
through arithmetic recall are not possible, solutions via counting (like how children ini-
tially learn to do) is possible (Hittmair-Delazer et al., 1994). Such studies suggest that
arithmetic circuitry is also separate from those for reading and writing in language.
For example, participants who suffer from pure alexia cannot read words but can read
number digits and do written calculations (Dejerine, 1892; Dehaene, 1999).

In the frontal lobe, the prefrontal areas contain multiple specialist networks related to
working memory, planning and error detection, which are all important to arithmetic.
Particularly, the prefrontal cortex acts like a working memory. Prefrontal lesions do

B.2. Animals 147

not affect elementary operations but can impair ordering in which operations are exe-
cuted, e.g., adding when one should multiply or mixing up intermediary results (De-
haene, 1999, pp. 199-201). In contrast, there are also those who have the opposite prob-
lem; they can complete multidigit calculations but could not learn the multiplication
table (Temple, 1991). In fact, when asked to multiply two digits, the participant was
found to take several seconds, giving incorrect answers for a majority of the trials.

To summarise, there is not a single dedicated calculation region in the brain for arith-
metic (unlike the arithmetic processors in computers) but a distribution of highly spe-
cialised modules which communicate through multiple pathways. Individually, these
modules cannot do much but together they can solve complex problems. Note that
even a task as simple as multiplying two numbers requires the connection of millions
of neurons distributed throughout multiple brain areas (Dehaene, 1999, p. 221).

B.2 Animals

Our sense of numerosity is an innate property for humans which can be detected even
in infants (Xu et al., 2005). Other animals have a weaker arithmetic ability than humans.
In most cases, the internal representations of numbers can only approximate simple
operations like addition, subtraction, and comparison (Dehaene et al., 1998). Many an-
imals including cats, dogs, birds, and fishes use an ANS to detect numerosity (Nieder,
2021). Unlike humans, animals do not use symbolic systems such as language but can
demonstrate basic numeric abilities such as the size or distance effect (Dehaene et al.,
1998). Such number perception abilities stem from survival advantages (Perona, 2020).
For example, animals which travel in groups such as schools of fish or flocks of birds
have advantages if travelling in larger groups to reduce chances of being targeted by
predictors. As for the predators, knowing if your group is at a quantity disadvantage
from another can avoid losing battles and injury e.g., territory battles between lion
prides. Newborn chicks can perceive numbers using a mental number line like how
young children have a mental representation of number magnitude which emerges
without the need for explicit teaching (Rugani et al., 2015). Ants can keep an inter-
nal counter of the number of steps taken (step integration) to calculate the distance to
their nest (Wittlinger et al., 2006). Evidence suggests that their distance mechanism can
adapt to factors such as changes in stride length implying generalisation abilities.

B.3 Computers

In contrast to the fuzzy number representations, computers represent data using digital
binary bits of 1’s and 0’s. To represent values larger than 1, several bits must be used.

148 Appendix B. Representation of Numbers in Humans, Animals and Computers

FIGURE B.1: Example of a 32-bit binary floating-point number (assuming a nor-
malised form) representing the value 0.15625(= −1S× 2(E−127) × (1+ Σ23

i=1b23−i2−i)).
Image sourced from https://upload.wikimedia.org/wikipedia/commons/thumb/d

/d2/Float_example.svg/2560px-Float_example.svg.png.

A collection of 8 bits, called a byte, can represent unsigned integer values from 0 to 255
or signed integer values from -127 to 127. The byte is the smallest unit which can be ad-
dressed in memory. Current computer architectures typically can have either 32-bit or
64-bit registers. To represent real numbers, a fixed-point number representation can be
used. This requires having a fixed number of digits after the radix point (e.g., the dec-
imal point if using a base 10 system). However, in modern software, a more common
choice is an (IEEE-754 32-bit standard) floating-point number representation (Group
et al., 2019). Unlike in fixed-point representations, the radix point is not fixed and can
‘float’ to either side depending on the magnitude of the number. The most common
encoding requires three parts – the sign bit (S) representing if the number is positive
or negative, the exponent (E), and the mantissa (F) representing the fraction. A floating-
point number can be represented as −1S × F× 2E using radix 2 which is a binary base.
The fractional part can be either in a normalised or denormalised form. A normalised
form assumes there is an implicit leading one for the fraction, of the form 1.F, meaning
there is only one non-zero digit before the radix point. A denormalised form only oc-
curs if E=0 with an implicit leading 0 for the fraction allowing to represent the number
0. For the 32-bit floating-point value the breakdown would be a 1-bit sign, a 8-bit ex-
ponent and a 23-bit fraction (as shown in Figure B.1). This allows for precise arithmetic
up to 6-7 digits (excluding accumulated rounding errors).

Real numbers can have an infinite number of digits (e.g., π), but numbers in com-
puters can only be stored up to a finite number of digits using a floating-point rep-
resentation. Such computational precision limitations result in rounding (round-off)
errors. Rounding errors can be accumulated throughout a calculation leading to large
rounding errors and a badly conditioned computation. In particular, applying floating-
point operations can result in losing the correct digits of the mantissa. For an example,
see Mørken (2013, p. 101, example 5.12). Two tricks can be used to avoid the accumula-
tion of rounding errors. The first is simply using more bits to represent a real number.
Converting from a 32-bit to a 64-bit floating-point representation can delay the magni-
tude of the rounding issue at the cost of increased memory for storing the number. The
second is to rewrite the formulas used in calculations to avoid rounding errors such as

1√
x2+1−x

into
√

x2 + 1 + x (Mørken, 2013, pp. 114-115).

https://upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Float_example.svg/2560px-Float_example.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Float_example.svg/2560px-Float_example.svg.png

149

Appendix C

Additional NALM Background
Information

C.1 Module Illustrations

Table C.1 displays, in chronological order, the module architecture illustrations given
in their respective papers.

TABLE C.1: Module architecture illustrations taken from the original papers. ∗Note
that we modified the NALU architecture from Trask et al. (2018, Figure 2b) as the
learned gate matrix (R3×4) represented as floating point numbers is mistakenly drawn

as a vector (R3) in the original figure.

Module Architecture

NALU∗ (Trask et al.,
2018)

150 Appendix C. Additional NALM Background Information

NLRL (Reimann and
Schwung, 2019)

G-NALU (Rajaa and
Sahoo, 2019)

(No figure exists)

NAU (Madsen and Jo-
hansen, 2020)

(No figure exists)

NMU (Madsen and Jo-
hansen, 2020)

NSR (Faber and Wat-
tenhofer, 2020)

iNALU (Schlör et al.,
2020)

C.1. Module Illustrations 151

NPU (Heim et al., 2020)

152 Appendix C. Additional NALM Background Information

C.2 Step-by-step Example using the NALU

To better understand how the internal process of a NALM, we provide a worked through
example for subtraction using the NALU with parameters that can extrapolate.

Task: Subtract the second input value from the first where the input is x = [2 3 4]. The output
value should be [−1] (i.e., 2-3=-1).

Steps:

1. Calculate tanh(ˆ︂W). The operation is +x1 − x2 so tanh(ˆ︂W) =
[︂ 1
−1
0

]︂
.

2. Calculate sigmoid(ˆ︂M). The first two input values are selected and the third is
ignored, so sigmoid(ˆ︂M) =

[︂
1
1
0

]︂
.

3. Calculate tanh(ˆ︂W)⊙ sigmoid(ˆ︂M) to obtain W =
[︂ 1
−1
0

]︂
.

4. Calculate the result of the summative path.

NAC+ = xW

= [2 3 4]
[︂ 1
−1
0

]︂
= [(2×1)+(3×−1)+(4×0)]

= [2−3+0]

= [−1] .

5. Calculate the result of the multiplicative path. (For simplicity, let us assume ϵ =

0.)

NAC• = exp(W ln(|x|+ ϵ)

= exp(
[︂ 1
−1
0

]︂
ln(| [2 3 4] |)

= exp(
[︂ 1
−1
0

]︂
[ln(2) ln(3) ln(4)])

= exp([ln(21)+ln(3−1)+ln(40)])

= exp(ln([21 × 3−1 × 40])

= exp(ln([2× 1
3×1]))

= exp(ln([2
3]))

= [2
3] .

6. The target expression requires the summative path (NAC+) and ignores the mul-
tiplicative path (NAC•), therefore gate is sigmoid(xG) = [1].

C.2. Step-by-step Example using the NALU 153

7. Combine all the pieces to get the output.

ŷ = g ⊙ a + (1− g)⊙m

= [1]⊙ [−1] + ([1]− [1])⊙ [2
3]

= [−1] + [0]

= [−1] .

154 Appendix C. Additional NALM Background Information

C.3 Naive NPU Derivation

Derivation 1 shows how the NAC• can be transformed into the NPU.

C.3. Naive NPU Derivation 155

NAC• : yo = exp

(︄
I

∑
i=1

(Wi,o · ln(|xi|+ ϵ))

)︄
Assume use of complex logarithm and separation of weights Wi,o to

WRE and WIM.

= exp

(︄
I

∑
i=1

((WRE
i,o + iWIM

i,o) · ln(xi))

)︄
Rewrite ln(xi) in polar form ln(xi) = ln(ri) + iki where ri is the
magnitude and ki (Equation 2.19) is the phase.

= exp

(︄
I

∑
i=1

((WRE
i,o + iWIM

i,o) · (ln(ri) + iki))

)︄
Expand the expression using FOIL (first, outer, inner and last).

= exp

(︄
I

∑
i=1

(WRE
i,o ln(ri) + iWRE

i,o ki + iWIM
i,o ln(ri) + i2WIM

i,o ki)

)︄
Collect real and imaginary terms.

= exp

(︄
I

∑
i=1

(WRE
i,o ln(ri) + i2WIM

i,o ki)

)︄
· exp

(︄
I

∑
i=1

iWIM
i,o ln(ri) + iWRE

i,o ki)

)︄
Rewrite using i2 = −1

= exp

(︄
I

∑
i=1

(WRE
i,o ln(ri)−WIM

i,o ki)

)︄
· exp

(︄
I

∑
i=1

i(WIM
i,o ln(ri) + WRE

i,o ki)

)︄
Use Euler’s formula eix = cos x + i sin x

= exp

(︄
I

∑
i=1

(WRE
i,o ln(ri)−WIM

i,o ki)

)︄

·
(︄

cos

(︄
I

∑
i=1

(WIM
i,o ln(ri) + WRE

i,o ki)

)︄
+ i sin

(︄
I

∑
i=1

(WIM
i,o ln(ri) + WRE

i,o ki)

)︄)︄
Remove the remaining imaginary terms as we only want real weights.

exp

(︄
I

∑
i=1

(WRE
i,o ln(ri)−WIM

i,o ki)

)︄

·

⎛⎝cos

(︄
I

∑
i=1

(WIM
i,o ln(ri) + WRE

i,o ki)

)︄
+

����������������

i sin

(︄
I

∑
i=1

(WIM
i,o ln(ri) + WRE

i,o ki)

)︄⎞⎠
The resulting expression is the NPU (Equation 2.17) assuming
ri is relevance gating (Equation 2.18).

NPU : yo = exp

(︄
I

∑
i=1

(WRE
i,o ln(ri)−WIM

i,o ki)

)︄
· cos

(︄
I

∑
i=1

(WIM
i,o ln(ri) + WRE

i,o ki)

)︄

DERIVATION 1: Deriving the NPU from the NALU’s NAC•.

157

Appendix D

NALM Benchmarking - Experiments
and Cross Module Comparisons of
Existing Works

This Appendix covers other types of experiments covered in previous NALM papers
and cross module comparison prior to running our benchmark experiments.

D.1 Additional Experiments

This section briefly summarises additional experiments given in the arithmetic NALM
papers. We do not cross-compare papers for each experiment as there is too little simi-
larity between experiments.

Trask et al. (2018) carries out a recurrent version of their static task experiment to test
the NAC+ where the subsets a and b are accumulated over multiple timesteps. The
purpose of this task is to generate much larger output values to test the NALU on.
Furthermore, as well as pure arithmetic tasks, Trask et al. (2018) tests NALU in other
settings such as: translating numbers in text form into the numerical form (for exam-
ple ‘two hundred and one’ to ‘201’), a block grid-world which requires travelling from
point A to B in exactly n timesteps, and program evaluation for programs with arith-
metic and control operations. However, the NALU is not utilised for its capabilities
as a NALM in the text-to-number task as the NALU is applied to a LSTM’s hidden
state vector; therefore it is questionable if the arithmetic capabilities of NALU are be-
ing used, as the NALU may also have to decode the numerical values from the LSTM
vector. The MNIST dataset is also used to evaluate NALU’s abilities in being part of
end-to-end applications. This includes exploring counting the occurrence of different
digits, the addition of a sequence of digits, and parity prediction.

158 Appendix D. NALM Benchmarking - Comparisons of Existing Works

Madsen and Johansen (2020) also uses MNIST for testing the module’s abilities to act as
a recurrent module for adding/multiplying the digits. Madsen and Johansen (2020) ad-
ditionally provide experiments to express the validity of their modules. This includes
modifying the number of redundant hidden units, different input training ranges, ab-
lation on multiplication, stress testing the stacked NAU-NMU against difference input
sizes, overlap ratios and subset ratios, showing the failure of gating in convergence,
and parameter tuning regularisation parameters.

Schlör et al. (2020) provide three additional experiments. Experiment 1 (‘Minimal
Arithmetic Task’) uses a single layer to do a single operation with no redundancy to see
the effect of different input distributions. Experiment 2 (‘Input Magnitude’) sees the ef-
fect of training data by controlling the magnitude of the interpolation data. The NALU
is found to fail on magnitudes greater than 1. The iNALU remains unaffected for ad-
dition and subtraction. Multiplication performance is coupled to magnitude where
extrapolation error increases with magnitude. Division is uncorrelated to the input
magnitude. To increase problem difficulty, experiment 3 (‘Simple Arithmetic Task’) in-
troduces redundancy where from 10 inputs only 2 are relevant. NALU improves per-
formance for exponentially distributed data when redundant inputs are introduced.
iNALU shows improvements for multiplication where the module is able to succeed
on previously failed training ranges such as an exponential distribution with a scale
parameter of 5 (i.e.λ=0.2) but worsens for division.

Heim et al. (2020) highlights the relevance gate’s use via a toy experiment to select
one of the two inputs. They show the relevance gate transforms regions away from
the solution which contains no gradient information into regions with more instructive
gradients (Heim et al., 2020, Figure 3). Additionally, they demonstrate an application
of a stacked NAU-NPU module for equation discovery for an epidemiological model.

D.2 Cross Module Comparison

Comparing the existing findings across modules, the NALU is no longer considered
state-of-the-art for neural arithmetic operation learning. For each operation the best
module is as follows - addition or subtraction: NAU, multiplication: NMU, division:
NPU (or Real NPU if the task is trivial).

The iNALU generally outperforms the NALU at the cost of additional parameters and
complexities to the model. The magnitude of iNALU’s improvement varies, as Schlör
et al. (2020) claims vast improvements, while Heim et al. (2020) claim minor. For
division both the iNALU and NALU performances remain comparable. Success on
multiplication is dependent on the input training range. Heim et al. (2020) states the
NMU outperforms the iNALU on multiplication (as expected), but also addition and

D.3. Experiments and Findings of Modules for Logic Tasks 159

subtraction. The reason lies in the architecture used. The model is a stacked NAU-
NMU meaning the addition/subtraction would be modelled by the NAU. Therefore,
the NMU would only be required to act as a selector, selecting the output of the sum-
mation (that is, have a single weight at 1 and the rest at 0). Therefore, if two NMUs are
stacked together we expect the failure in a pure addition/subtraction task as shown in
Madsen and Johansen (2020, Appendix C.7). Heim et al. (2020)’s results show that the
NPU outperforms the iNALU for multiplication and division. When stacked on top
of a NAU, the NPU performs similarly to the NMU for addition and subtraction. The
NPU is outperformed by the NMU for multiplication, however it is more consistent
in convergence against different runs. For addition and subtraction, the NAU-NMU
is the sparsest module (having the least number of non-zero weights). The NPU uses
L1 regularisation for arithmetic tasks, encouraging sparsity over discretisation due to
its ability to express fractional powers. However, the main influence causing sparsity
in the NPU modules is from using the relevance gating. If this gating is removed (de-
noted by the NaiveNPU in the experiments), models are consistently less sparse for all
operations (Heim et al., 2020, Figure 7).

D.3 Experiments and Findings of Modules for Logic Tasks

This section summarises the experiments provided in two existing logic based NALMs—
the NLRL and the NSR.

D.3.1 NLRL

Preliminary results are given which test basic logic and arithmetic operations: AND,
OR, NOT and XOR, multiplication, addition with division, identity and constant selec-
tion. Each model consists of a stacked NLRL. Different numbers of intermediary units
per layer are tested and the authors conclude increasing the units improves perfor-
mance until a saturation point (found to be 8) is reached. A multi-operation based task
requires stacking layers of NLRL which introduces redundancy as the stacked output
and input layers both use negation gating. Therefore, if stacking is required, it is sug-
gested to remove cases with consecutive negation gating layers and only have a single
layer. Using a module with both AND and OR results in faster convergence (fewer
iterations), compared to using a module only using AND operations, but has a longer
computation time to train each iteration.

160 Appendix D. NALM Benchmarking - Comparisons of Existing Works

D.3.2 NSR

Faber and Wattenhofer (2020) first check if the NSR can learn comparison operations
on both an integer and floating-point input setting. Results show that the NSR can
learn the comparison functions with both input types and can extrapolate well. Mod-
ules struggle with learning the = and ̸= operations, but performance can be improved
by introducing redundancy through additional sets of weights during training (Faber
and Wattenhofer, 2020, Section 4.4). The NSR can be attached to a NAU to learn piece-
wise functions. Findings suggest a simple continuous function (such as the absolute
difference between two inputs) can be learnt with extrapolation capabilities, but a non-
continuous function cannot. The NSR can be converted into a recurrent module to find
the minimum of a list and to count the occurrence of a number in a sequence. The
minimum task performs perfectly on all extrapolation settings however the counting
task’s performance reduces as sequence length increases. An additional task requires
finding the shortest paths in a Graph Neural Network where the network should learn
to imitate the Bellman-Ford algorithm. This is used to show that the recurrent NSR
can learn to aggregate numbers to a minimum. When extrapolating to larger graphs,
performance improved with larger edge weights. Finally, a MNIST digit comparison
task was tested to see if the NSR can be used as a downstream module for a CNN in an
end-to-end manner. Findings show that the NSR based network cannot outperform a
vanilla CNN but is comparable to a MLP based network, where the underperformance
was suggested to be a result of a weak learning signal.

161

Appendix E

Experiment Details

This appendix provides details regarding experiment setups used throughout the the-
sis including parameters, hardware and runtimes.

E.1 Benchmark Synthetic Arithmetic Tasks

This section presents additional experiment details used for the two layer Arithmetic
Dataset Task and single layer Single Module Arithmetic Task.

E.1.1 Experiment Parameters

The module specific hyperparameters for the NAU/NMU, (Real)NPU and iNALU can
be found in Tables E.1, E.2 and E.3 respectively.

TABLE E.1: Additional parameters for the NMU (and NAU) for the Single Module
and Arithmetic Dataset Task. The λ̂, λstart, λend.

Parameter Arithmetic
Dataset
Task

Single
Module
Task

λ̂ 10 10
λstart 1 million 20000
λend 2 million 35000
Learning rate 10−3 10−3

162 Appendix E. Experiment Details

TABLE E.2: Parameters specific to the NPU and Real NPU modules for the Single
Module Task.

Parameter Value

(βstart,βend) (10−7, 10−5)
βgrowth 10
βstep 10000
Learning rate 5× 10−3

TABLE E.3: Parameters specific to the iNALU for the Single Module Task.

Parameter Single Module Task

ω 20
t 20
Gradient clip range [-0.1,0.1]
Max stored losses (for reinitalisation check) 5000
Minimum number of epochs before regularisation starts 10000

E.1.2 Hardware and Runtimes

All experiments for the Single Module Task and the Arithmetic Dataset Tasks were
trained on the CPU, as training on GPUs takes considerably longer, using a 16 core/
32 thread CPU server with 128 GB memory and 2.4 GHz processors. For any model, a
single seed for a single training range can be completed within 5 minutes for the Single
Module Task and within 4.5 hours for the Arithmetic Dataset Task. Timings are based
on a single run rather than the runtime of the script execution because the queuing time
from jobs when executing scripts is not relevant to the experiment timings.

E.2. Multiplication MNIST Experiments 163

E.2 Multiplication MNIST Experiments

E.2.1 Experiment Parameters

For further details, refer to the Sequential MNIST Product experiment details from Mad-
sen and Johansen (2020).

E.2.2 Hardware and Runtimes

All experiments for the MNIST based tasks were trained using a single GeForce GTX
1080 GPU. For the Static MNIST experiments, a single fold can be completed in approx-
imately 5 hours for the Isolated Digit setup experiment and 10.5 hours for the Colour
Channel Concatenated Digit setup. The Sequential MNIST experiments runtimes and
memory usage are found in Table E.4.

TABLE E.4: Time taken and GPU memory required to run Sequential MNIST experi-
ments. Experiments are run over 10 seeds.

Experiment Model Criterion Device Epochs Approximate
time for com-
pleting 1 seed/-
fold (hh:mm:ss)

GPU
memory
(MiB)

Sequential
MNIST
Product

Reference

MSE GPU 1000

02:00:00

679
NMU 02:55:00
sNMU U [1,5] 03:00:00
sNMU U [1,1+1/sd(x)] 03:10:00

164 Appendix E. Experiment Details

E.3 Division Experiments

Table E.5 shows the Real NPU parameters are taken from Heim et al. (2020, Section 4.1)
which we confirm work empirically in Figure 5.4b.

TABLE E.5: Parameters specific to the Real NPU modules for the Single Module Tasks.

Parameter Value

(βstart,βend) (10−9, 10−7)
βgrowth 10
βstep 10000
λ̂ 1

E.3.1 Parameter Initialisation

We give the initialisations used on the different module parameters:

Real NPU: The real weight matrix uses Pytorch’s Xavier Uniform initialisation. The
gate vector initialises all values to 0.5. This is the same initialisation used in Heim et al.
(2020).

NPU: The imaginary weight matrix is initialised to 0. The rest of the parameters are
initialised the same as the Real NPU. This is the same initialisation used in Heim et al.
(2020).

NRU: The weight matrix uses a Xavier Uniform initialisation which can have a max-
imum range between -0.5 to 0.5 (depending on the network sizes). This is the same
initialisation the Neural Addition Unit uses (Madsen and Johansen, 2020).

NMRU: The weight matrix uses a Uniform initialisation which can have a maximum
range between 0.25 to 0.75 (depending on the network sizes). This is the same initiali-
sation the Neural Multiplication unit uses (Madsen and Johansen, 2020).

E.3.2 Hardware and Runtimes

All synthetic arithmetic experiments were trained on the CPU, as training on GPUs
takes considerably longer. All Real NPU experiments were run on Iridis 5 (the Univer-
sity of Southampton’s supercomputer), where a compute node has 40 CPUs with 192
GB of DDR4 memory which uses dual 2.0 GHz Intel Skylake processors. All NRU and
NMRU experiments were run on a 16 core CPU server with 125 GB memory 1.2 GHz
processors.

E.3. Division Experiments 165

Table E.6 displays the time taken for each experiment to run a single seed for a single
range. Timings are based on a single run rather than the runtime of a script execution
because the queuing time from jobs when executing scripts is not relevant to the ex-
periment timings. For a single model, a single experiment would have 225 runs (for 9
training ranges and 25 seeds).

TABLE E.6: Timings of experiments.

Experiment Model Approximate time for completing 1 seed (mm:ss)

No redundancy (size 2)
Real NPU 03:20
NRU 02:00
NMRU 03:00

With redundancy (size 10)
Real NPU 05:30
NRU 05:00
NMRU 05:15

166 Appendix E. Experiment Details

E.3.3 Summary Table of the Ranges Used for the Single Layer Task

Table E.7 shows the ranges used to generate the summary statistics. Note that even
though the interpolation ranges are given (to make it easier to compare against the
relevant Figures), it is the success rate on the extrapolation range which is used in the
table summary.

E.3.
D

ivision
Experim

ents
167

TABLE E.7: The relevant ranges used to calculate the summary statistics in Table 5.6.

Redun-
dancy?

Input type Distribution Figure Interpolation Ranges

No

Mixed-signs Uniform 5.8 All 5 ranges: U [-2,-0.1) & U [0.1,2), U [-2,-1) & U [1,2), U [-2,2), U [0.1,2) & U [-2,-0.1) and
U [1,2) & U [-2,-1)

Mixed-signs Truncated Normal 5.10 All 3 TN ranges: TN(-1,3): [-5,10), TN(0,1):[-5,5) and TN(1,3):[-10,5)

Negative Uniform 5.6 Only pure negative ranges: U [-0.2,-0.1), U [-1.2,-1.1), U [-2,-1) and U [-20,-10)

Positive Uniform 5.6 Only pure positive ranges: U [0.1,0.2), U [1,2), U [1.1,1.2) and U [10,20)

Large magnitude Uniform 5.10 U [-100,100) and U [-50,50)

Large magnitude Benford 5.10 B[10,100)

Close to 0 Uniform 5.15 All 5 ranges: U [0,0.0001), U [0,0.001), U [0,0.01), U [0,0.1) and U [0,1)

Close to 0 Truncated Normal 5.10 TN(0,1)[-5, 5)

Yes

Mixed-signs Uniform 5.9 All 5 ranges: U [-2,-0.1) & U [0.1,2), U [-2,-1) & U [1,2), U [-2,2), U [0.1,2) & U [-2,-0.1) and
U [1,2) & U [-2,-1)

Mixed-signs Truncated Normal 5.11 All 3 TN ranges: TN(-1,3): [-5,10), TN(0,1):[-5,5) and TN(1,3):[-10,5)

Negative Uniform 5.7 Only pure negative ranges: U [-0.2,-0.1), U [-1.2,-1.1), U [-2,-1) and U [-20,-10)

Positive Uniform 5.7 Only pure positive ranges: U [0.1,0.2), U [1,2), U [1.1,1.2) and U [10,20)

Large magnitude Uniform 5.11 U [-100,100) and U [-50,50)

Large magnitude Benford 5.11 B[10,100)

Close to 0 Truncated Normal 5.11 TN(0,1)[-5, 5)

168 Appendix E. Experiment Details

E.4 MNIST Product Tasks: Architecture Details

This section details the architectures used and further explores the learnt models from
the MNIST tasks.

E.4.1 Isolated Digits

The digit classification network can be found in Figure E.1. The application of the fc2
Linear layer will result in logits for each MNIST digit in the batch. At this point, the two
MNIST digits are still separated and treated as independent batch items. A softargmax
is applied to convert logits into a soft selection of the index for the most likely MNIST
digit value. This is used to select a digit value and then the two digits are recombined
into their original two-digit format. The output of the digit classifier (of shape [batch
size, 2]) is passed to a multiplication module which returns the final output predictions.

(A)

(B)

FIGURE E.1: Digit classification network structure and summary used in the Isolated
Digits MNIST task

E.4.2 Colour Channel Concatenated Digits

We use the rotated, translated, and scaled (RTS) dataset described in Jaderberg et al.
(2015, Appendix A.4). The RTS dataset is generated by randomly rotating an MNIST
digit by +45 and -45 degrees, randomly scaling the digit by a factor of between 0.7 and
1.2, and placing the digit in a random location in a 42×42 image.

E.4. MNIST Product Tasks: Architecture Details 169

Given an image which is distorted via random scaling, rotation and translation, the
Spatial Transformer Network can learn to locate the digit of interest and transform the
source image to produce a version of the digit more like its non-distorted form. First,
a localisation network learns a set of K control coordinates which are normalised be-
tween [-1,1]. These control points learn a grid around the point of interest which in this
case is the digit. As there are two digits, two localisations are learnt. A localisation net-
work consists of a convolutional network (see Figure E.2) with a tanh transformation
at the end so the output of the network is between [-1,1], making it bounded (Shi et al.,
2016). The Thin Plate Spline (TPS) transformation parameters are calculated using the
control points from a localisation network. The TPS transformation will transform the
target image’s pixel coordinates to the source image’s pixel coordinates. To generate the
TPS transformation matrix, we follow Shi et al. (2016, Section 3.1.2). Finally, a sampling
grid will take the source image and its pixel locations to produce the transformed im-
age. The transformed image is then passed to a classification network (see Figure E.3)
to produce logits for digit classification. The classified digits are then passed to the
relevant multiplication network.

(A)

(B)

FIGURE E.2: Localisation network structure and summary used in the Colour Channel
Concatenated Digits MNIST task.

170 Appendix E. Experiment Details

(A)

(B)

FIGURE E.3: Digit classification network structure and summary used in the Colour
Channel Concatenated Digits MNIST task.

E.4.3 Sequential MNIST

The network for the Sequential MNIST task can be found in Figure E.4. There are
two parts to the network - the regression network to convert MNIST image digits to
numbers and the NALM to do the calculation. Note that for the baseline the NALM
would represent a fixed operation so would not consist of any learnable parameters.

FIGURE E.4: Network structure used in the Sequential MNIST task, assuming the
regression network is a NALM.

171

Appendix F

Multiplication: Static MNIST
Analysis

F.1 Class Accuracies

This section plots the class accuracies of the models for a fold, evaluated on the test
dataset. Doing so helps assess the learnt representations of the digit classifier network.
The accuracy for classifying each digit over the test set is plotted with a further break-
down of the decisions over each digit using an unnormalised confusion matrix. The
distribution of digit labels will be non-uniform.

F.2 Isolated Digits

See Figures F.1 and F.2. The baseline is unable to classify zeros, mistaking all occur-
rences except 1 as the number 1. The FC model completely misclassifies digits 6, 7 and
8 as 7, 8 and 9 respectively. Both NMU and sNMU variants have strong classifiers with
each digit getting at least 96% success in classification.

F.3 Colour Channel Concatenated Digits.

See Figures F.3 and F.4. Results are shown for a fold which models found especially
challenging. Only the baseline and the sNMU using batch statistics are able to learn
classifiers which can provide a distinct diagonal over the confusion matrix. For this
fold, the batch sNMU can outperform the baseline’s classifier for every digit, implying

172 Appendix F. Multiplication: Static MNIST Analysis

the learnable multiplication layer provides a better optimisation landscape. The re-
maining multiplication models have no sign of convergence, with the FC model learn-
ing to have a high bias towards classifying the digit 3.

0 1 2 3 4 5 6 7 8 9

0.96

0.97

0.98

0.99

1.00

0 1 2 3 4 5 6 7 8 9

0.00

0.25

0.50

0.75

1.00

Digit

S
uc

ce
ss

 r
at

e

model mul fc nmu snmu snmu [1,1+1/sd(x)

FIGURE F.1: Success rates for classifying each digit in the test dataset for a single seed.
(Left) Zoom-in for success in range 0.95-1. (Right) The full plot from success rate 0-1.

0 1 2 3 4 5 6 7 8 9
Predicted label (digit_idx 0 and 1)

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l (
di

gi
t_

id
x

0
an

d
1)

0 1999 0 0 0 0 0 1 0 0

0 994 3 3 0 0 0 0 0 0

0 7 1984 0 0 0 3 4 2 0

0 0 9 1976 5 2 0 5 3 0

0 0 2 0 2979 0 0 0 6 13

0 2 2 10 136 832 4 1 6 7

0 33 0 0 9 13 2936 0 9 0

0 1 26 0 0 0 0 1953 16 4

0 1 3 1 0 0 0 0 1992 3

0 10 1 2 25 0 0 11 24 1927

0

500

1000

1500

2000

2500

(A) Baseline (MUL)

0 1 2 3 4 5 6 7 8 9
Predicted label (digit_idx 0 and 1)

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l (
di

gi
t_

id
x

0
an

d
1)

1996 0 0 1 0 0 0 0 3 0

0 994 1 5 0 0 0 0 0 0

0 3 1961 8 7 0 0 2 18 1

1 0 19 1943 23 3 0 0 5 6

0 0 12 0 2928 3 7 12 16 22

2 0 0 4 25 956 9 0 0 4

17 13 0 0 36 21 96 2811 0 6

0 1 8 6 2 2 0 6 1965 10

0 0 3 1 0 0 1 3 2 1990

0 0 0 0 5 4 16 0 24 1951

0

500

1000

1500

2000

2500

(B) FC

0 1 2 3 4 5 6 7 8 9
Predicted label (digit_idx 0 and 1)

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l (
di

gi
t_

id
x

0
an

d
1)

1996 0 0 0 0 0 3 0 0 1

0 995 0 3 0 2 0 0 0 0

3 7 1964 0 4 0 4 18 0 0

0 0 11 1960 2 15 4 3 5 0

0 0 2 6 2954 0 13 0 4 21

2 0 0 5 0 987 2 0 0 4

13 11 0 0 8 6 2954 5 3 0

0 0 13 8 0 0 0 1979 0 0

8 0 2 1 0 0 2 3 1973 11

0 0 0 2 4 10 0 17 10 1957

0

500

1000

1500

2000

2500

(C) NMU

0 1 2 3 4 5 6 7 8 9
Predicted label (digit_idx 0 and 1)

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l (
di

gi
t_

id
x

0
an

d
1)

1996 0 0 0 0 0 3 0 0 1

0 995 0 3 0 2 0 0 0 0

3 7 1964 0 4 0 4 18 0 0

0 0 11 1960 2 15 4 3 5 0

0 0 2 6 2954 0 13 0 4 21

2 0 0 5 0 987 2 0 0 4

13 11 0 0 8 6 2954 5 3 0

0 0 13 8 0 0 0 1979 0 0

8 0 2 1 0 0 2 3 1973 11

0 0 0 2 4 10 0 17 10 1957

0

500

1000

1500

2000

2500

(D) sNMU U [1,5]

0 1 2 3 4 5 6 7 8 9
Predicted label (digit_idx 0 and 1)

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l (
di

gi
t_

id
x

0
an

d
1)

1992 0 2 0 0 0 5 1 0 0

0 998 1 1 0 0 0 0 0 0

9 3 1963 2 0 0 3 20 0 0

0 0 8 1974 0 9 0 4 5 0

6 0 2 0 2887 18 28 4 34 21

2 0 0 2 0 980 9 1 2 4

12 6 0 0 2 7 2969 0 4 0

0 0 14 5 0 0 0 1976 1 4

7 5 8 1 0 1 7 8 1951 12

1 0 3 2 1 9 3 16 2 1963

0

500

1000

1500

2000

2500

(E) sNMU U [1,1+1/sd(x)]

FIGURE F.2: Confusion matrices for intermediate label classification

F.4. Digit Classification Accuracy over Epochs 173

0 1 2 3 4 5 6 7 8 9

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9

0.00

0.25

0.50

0.75

1.00

Digit

S
uc

ce
ss

 r
at

e

model mul fc nmu snmu snmu [1,1+1/sd(x)

FIGURE F.3: Success rates for classifying each digit (with rounding) in the test dataset
for a single seed. (Left) Zoom-in for success in range 0.95-1. (Right) The full plot from

success rate 0-1.

0 1 2 3 4 5 6 7 8 9
Predicted label (digit_idx 0 and 1)

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l (
di

gi
t_

id
x

0
an

d
1)

3173 53 23 10 13 17 8 3 0 0

0 5177 119 82 64 43 5 10 0 0

21 12 5149 944 204 155 54 56 5 0

7 6 967 2332 516 496 47 22 7 0

3 33 60 412 5012 3190 705 262 145 78

7 7 1 23 44 2854 323 35 3 3

15 21 17 39 67 848 6086 601 4 2

0 43 182 360 517 1380 4607 2277 455 79

71 63 63 121 225 964 1838 4948 1350 257

23 26 7 25 58 175 268 580 2134 8804

0

1000

2000

3000

4000

5000

6000

7000

8000

(A) Baseline (MUL)

0 1 2 3 4 5 6 7 8 9
Predicted label (digit_idx 0 and 1)

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l (
di

gi
t_

id
x

0
an

d
1)

1762 302 53 1135 26 15 7 0 0 0

448 1725 20 3303 4 0 0 0 0 0

404 818 464 4870 36 5 3 0 0 0

20 97 841 3406 31 5 0 0 0 0

71 1240 2261 5746 373 115 29 11 17 37

12 130 885 1593 644 36 0 0 0 0

12 46 740 5428 445 1024 2 2 0 1

42 901 2203 5296 1186 88 48 46 46 44

24 46 219 7521 977 993 56 24 26 14

977 939 1120 5118 716 1026 1188 383 287 346

0

1000

2000

3000

4000

5000

6000

7000

(B) FC

0 1 2 3 4 5 6 7 8 9
Predicted label (digit_idx 0 and 1)

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l (
di

gi
t_

id
x

0
an

d
1)

18 20 217 565 117 153 137 512 428 1133

38 20 1309 1506 280 162 210 389 267 1319

1071 2059 92 62 76 1128 103 495 369 1145

11 12 38 67 89 2102 172 308 259 1342

25 1012 124 1041 429 2743 663 1129 761 1973

27 26 217 600 144 178 796 1155 125 32

11 13 90 1496 620 2792 262 328 392 1696

1094 51 1179 712 499 1929 783 1608 986 1059

12 1107 84 2040 293 1601 1024 1121 593 2025

1077 1046 348 2151 784 2972 1258 1650 468 346

500

1000

1500

2000

2500

(C) NMU

0 1 2 3 4 5 6 7 8 9
Predicted label (digit_idx 0 and 1)

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l (
di

gi
t_

id
x

0
an

d
1)

13 15 430 517 73 114 116 900 60 1062

17 15 1515 569 1089 246 223 277 411 1138

1083 2077 75 88 69 1110 138 836 52 1072

1 18 24 43 94 487 1931 253 410 1139

8 991 143 283 1278 1292 2863 576 685 1781

12 15 455 481 59 166 873 1211 20 8

5 13 114 712 1497 2316 855 226 270 1692

1088 30 1194 728 439 1682 1910 1352 694 783

5 1101 69 1231 1137 1428 1021 1465 628 1815

895 1090 707 1268 1476 1583 2995 1538 418 130

500

1000

1500

2000

2500

(D) sNMU U [1,5]

0 1 2 3 4 5 6 7 8 9
Predicted label (digit_idx 0 and 1)

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l (
di

gi
t_

id
x

0
an

d
1)

3216 17 22 17 6 9 10 2 1 0

0 5410 49 22 13 4 0 2 0 0

17 5 6285 150 60 22 24 29 8 0

0 1 120 3983 166 84 18 24 4 0

2 5 47 94 8666 693 165 94 70 64

2 3 5 17 49 3088 114 11 11 0

17 17 16 31 36 187 7369 14 13 0

1 27 221 270 394 588 2311 5961 61 66

23 8 33 94 115 299 528 687 8023 90

4 4 9 15 47 204 135 174 548 10960

0

2000

4000

6000

8000

10000

(E) sNMU U [1,1+1/sd(x)]

FIGURE F.4: Confusion matrices for intermediate label classification.

F.4 Digit Classification Accuracy over Epochs

This section shows how accuracies for classifying each digit evolves over the epochs.
The average values over all folds are shown (with 95% confidence intervals).

Isolated digits. Figure F.5 shows similar learning for both digits, with the sNMU mod-
ules providing tight confidence bounds. The sNMU with range U [1,5] also shows better
accuracy over the baseline after approximately 600 epochs.

174 Appendix F. Multiplication: Static MNIST Analysis

0

25

50

75

100

0 250 500 750 1000
Epoch

Le
ft

La
be

l A
cc

ur
ac

y
(%

)

model mul fc nmu snmu [1,5] snmu [1,1+1/sd(x)]

(A) First digit

0

25

50

75

100

0 250 500 750 1000
Epoch

R
ig

ht
 L

ab
el

 A
cc

ur
ac

y
(%

)

model mul fc nmu snmu [1,5] snmu [1,1+1/sd(x)]

(B) Second digit

FIGURE F.5: Label accuracy vs epoch of the two digits for the Isolated digit variant of
the Static MNIST Product task.

Colour Channel Concatenated Digits. Figure F.6 shows a greater variation in perfor-
mance over the different models and folds in comparison to the isolated digits’ results.
The difference can be explained by the increased difficulty of this task, where local-
isation for each digit must be completed by the image classifier network. The solved
baseline model shows challenges in robustness from the large confidence bounds while
the batch sNMU provides much tighter bounds. The importance of having a reason-
able noise range is also reflected in this task, with the sNMU using U [1,5] noise unable
to learn any reasonable image classifiers. It is also clear even with a bad noise interval,
using stochasticity is better than not using stochasticity (i.e., sNMU vs NMU).

0

25

50

75

0 250 500 750 1000
Epoch

Le
ft

La
be

l A
cc

ur
ac

y
(%

)

model mul fc nmu snmu [1,5] snmu [1,1+1/sd(x)]

(A) First digit

25

50

75

0 250 500 750 1000
Epoch

R
ig

ht
 L

ab
el

 A
cc

ur
ac

y
(%

)

model mul fc nmu snmu [1,5] snmu [1,1+1/sd(x)]

(B) Second digit

FIGURE F.6: Label accuracy vs epoch of the two digits for the Colour channel concate-
nated digit variant of the Static MNIST Product task.

175

Appendix G

Division: Additional Analysis

G.1 Properties of a Division Module

When building a division module, the following properties should be included:

Ability to multiply: Without multiplication the module is limited to expressing recip-
rocals.

Interpretable weights: A good division module should produce generalisable solu-
tions to OOD data. Using interpretable weights to represent exact operations is one
way of doing so, e.g., -1 to divide, 1 to multiply, and 0 to not select. For the scope of
this paper, we focus on discrete weights, however fractional weights can also be con-
sidered interpretable. For example, the Real NPU can express 1√

xi
using a weight value

of -0.5.

Calculating the output: This can be decomposed into three tasks: magnitude calcula-
tion, sign calculation and input selection.

Magnitude calculation: Refers to calculating the output value for a calculation. This
is achieved using discrete weight parameters. For example, the Real NPU and NRU
use a weight value of -1 for calculating reciprocals of the selected input and 1 for mul-
tiplication, while the NMRU uses 1 for selecting an input element resulting in either a
multiplication or reciprocal depending on the weight’s position index.

Sign of the output: Calculating the sign value (1/-1) of the output can occur at an
element level in which the sign is calculated for each intermediary value as each input
element is being processed, or at the higher input level in which the sign is calculated
separately from the magnitude and then applied once the final output magnitude is
calculated. The NRU uses the prior method while the Real NPU and NMRU use the
latter method. If an input is 0 or considered irrelevant then the output sign will be 1.

176 Appendix G. Division: Additional Analysis

(Ablation studies on the NMRU, Figure G.6, suggest the latter option which separately
calculates the sign to be more beneficial).

The Real NPU and NMRU use the cosine function to calculate the final sign of the
module’s output neuron. Below shows the state diagram of how the sign value (i.e.,
the state) of the output would change depending on the inputs and relevant parameters
being processed. We only consider the discrete parameters for simplicity. Both the Real
NPU and NMRU use the same state diagram but have different conditions for a state
transition to occur.

s = −1 s = 1b(s) b(s)
a(s)

The conditions for the Real NPU transition functions a(s) = −s and b(s) = s, where s
is the state value -1, or 1, are defined as follows:

a(s) :xi < 0∧ wi,o ∈ {−1, 1} ∧ gi = 1 ,

b(s) :xi ≥ 0∨ wi,o = 0∨ gi = 0 .

Transitioning from one sign to another only occurs if the input element (xi) is negative
and is considered relevant i.e., the gate (gi) and weight value (wi,o) is non-0. In contrast,
to remain at a state requires either the input element to be ≥ 0 or not be considered
relevant.

The conditions for the NMRU transition functions a(s) = −s and b(s) = s, where s is
the state value -1, or 1, are defined as follows:

a(s) :xi < 0∧ wi,o = 1 ,

b(s) :xi ≥ 0∨ wi,o = 0 .

Transitioning from one sign to another only occurs if the input element (xi) is negative
and is considered relevant i.e., the weight value (wi,o) is 1. To remain at a state requires
either the input element to be ≥ 0 or the weight value to not select the input.

Selection: Not all inputs are relevant to the output value. To process any irrelevant
input elements can be interpreted as converting to the identity value of multiplica-
tion/division (=1). The identity property means that any value multiplied/divided by
the identity value remains at the original number. Hence, irrelevant inputs are con-
verted into 1 (rather than being masked out to 0). For the multiplication case, this stops
the output from becoming 0, and for division it avoids the divide by 0 case. For all the
explored modules, a weight value of 0 will deal with the irrelevant input case. How-
ever, the Real NPU goes a step further by also having an additional gate vector with

G.1. Properties of a Division Module 177

the purpose of learning to select relevant inputs. Such gating has been proven to be
helpful for an NPU based module (Heim et al., 2020), but may not be necessary when
dealing with weights between [0,1] like in the NRMU (see Appendix G.6).

178 Appendix G. Division: Additional Analysis

G.2 NRU; Single Module Task (without Redundancy): Tanh
Scale Factor

Figure G.1 shows the impact of changing the tanh scale factor. We find larger scale
factors work better with a factor of 1000 being the best. This correlates to the findings
in Faber and Wattenhofer (2020, Figure 5).

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●

●

●

● ●

●

●
●

●

● ●

● ●

●

●

●

● ●

●

●
● ●

●● ●

● ●

●
●

● ●

●

● ● ● ● ●● ● ● ● ● ● ●

●

●● ● ● ● ● ● ●

●

●● ● ● ● ● ● ●

●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0e+00

2e−08

4e−08

6e−08

8e−08

0

5000

10000

15000

20000

25000

0.00

0.25

0.50

0.75

1.00

Interpolation range

tanh scale ● ● ● ●1 10 100 1000

FIGURE G.1: Effect of the tanh scale factor for the NRU on the 2-input setting.

G.3. Real NPU; Single Module Task (without Redundancy) 179

G.3 Real NPU; Single Module Task (without Redundancy): Ad-
ditional Experiments

Figure G.2 shows the results of using the NPU for the 2-input task. Of the 9 tested
ranges, L2 has a lower success rate than L1 for 5 ranges and has the same success rate
for the remaining 4 ranges. If L2 regularisation is used instead of no regularisation, it
performs worse in 3 (of the 9) ranges, better in 3 ranges and the same in the remaining
3 ranges.

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●
●

● ●

●

●

Extrapolation range success rate

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ●No reg L1 L2

FIGURE G.2: Applying no regularisation, L1 regularisation and L2 regularisation on
the Real NPU for the 2 input tasks.

Figure G.3 displays the effect of different learning rates for the modified Real NPU. A
learning rate of 5× 10−3 has the best performance over all ranges.

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●● ● ●

●

● ● ● ● ●● ● ●

●

● ● ● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

● ●
●

●

● ●

●

●

●

● ●

●

●

● ● ● ● ●
●

● ● ● ●

●

● ● ●

●

● ●

●

●

●

● ● ●

●

● ● ●

●

● ● ●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0e+00

2e−07

4e−07

6e−07

0

10000

20000

30000

40000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ● ●5e−4 5e−3 5e−2 5e−1

FIGURE G.3: Different learning rates on the Real NPU (mod) for the Single Module
Task (no redundancy).

180 Appendix G. Division: Additional Analysis

G.4 NRU; the Single Module Task (without Redundancy): Ef-
fect of Learning Rate

Figure G.4 displays the effect of different learning rates for the NRU. A learning rate
of 1 gets full success on all ranges with performance deteriorating as the learning rate
reduces.

● ● ● ● ● ● ● ● ●
●

●
●

● ● ● ● ● ●

●

●

●

●

●

● ● ● ●

● ● ●
●

●

●

● ●
●

● ●
● ●

● ●
● ●

●●
●

● ●

●

● ● ● ●

● ●
● ●

●

●
● ●

●
●

●
●

●

● ●

●
●

●

● ● ● ● ● ● ●

●

●● ● ● ● ● ● ●

●

●● ● ● ● ● ● ●

●

●● ● ● ● ● ● ●

●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.0e+00

5.0e−08

1.0e−07

1.5e−07

2.0e−07

0

10000

20000

30000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ● ●1e−3 1e−2 1e−1 1

FIGURE G.4: Different learning rates on the NRU for the Single Module Task (no re-
dundancy)

G.5. Real NPU; Single Module Task (with Redundancy) 181

G.5 Real NPU; Single Module Task (with Redundancy): Addi-
tional Experiments

We test the NPU module with all the modifications used on the real weight matrix.
Also, assuming the global solution only uses the real weights, we enforce the complex
weights to be clipped between [-1,1] and to go to 0 during the regularisation stage
using a L1 penalty. Figure G.5 shows the complex weights without any constraints,
hindering success and convergence speeds of negative ranges. Applying clipping and
regularisation constraints does not result in any significant improvements against the
Real NPU results.

●

●

●

●

●

● ● ● ●

●

●

●

●

●

● ● ● ●

● ● ●

●

●

● ● ● ●

●

●

●

●

●

●
● ●

●

● ●

●

●
● ●

●

●

●
●

●

●
● ●

●
●

● ● ● ● ●

●

● ●

●

● ● ●

●

● ● ● ● ● ● ●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.05

0.10

0.15

0.20

0

20000

40000

60000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ●Real NPU (modified) NPU (no constraints) NPU (clip & reg)

FIGURE G.5: Adapting the Real NPU to use complex weights (NPU) on the Single
Module Task with redundancy. Compares the NPU architecture with the Real NPU
modifications (i.e. NPU (no constraints)) and the same model but with the imaginary
weights clipped to [-1,1] and L1 sparsity regularisation on the complex weights (i.e.

NPU (clip & reg)).

182 Appendix G. Division: Additional Analysis

G.6 NMRU; Single Module Task (with Redundancy): Addi-
tional Experiments

● ● ●

●

●

● ● ● ●

●

●

●
●

●

● ● ● ●

●

●

●

●

●

● ● ● ●

●

●

●

●
●

● ● ●

●

● ● ● ● ●

● ● ●

●

●

●

●

● ●● ●

●

● ● ●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

● ●

●
●

●● ● ● ● ● ●

●
●

●● ● ● ● ● ●

●

●

●

● ● ● ● ●

●
●

●●

●
●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.0e+00

2.5e−08

5.0e−08

7.5e−08

0

20000

40000

60000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ● ● ●vanilla gnc sign gnc+sign gnc+sign+gating

FIGURE G.6: Ablation study for the NMRU. gnc = Gradient norm clipping; sign = sign
retrieval mechanism; gating = NPU-style gating.

This section further explores the NMRU architecture.

Figure G.6 shows an ablation study on different components of the NMRU architec-
ture. Removing both the sign retrieval and grad norm clipping performs poorly over a
majority of ranges (including positive ranges). Gradient norm clipping alone is unable
to solve the issue of learning negative ranges, however, fully succeeds on the U [-2,2)
range. Using the sign retrieval without the gradient clipping gains successes for the
negative ranges, though performance on U [2,-2) is affected. However, including both
gradient clipping and sign retrieval results in separating the calculation of the magni-
tude of the output and its sign while having reasonable gradients, gaining the most
improvement over the vanilla NMRU. Further including a learnable gate vector (like
the Real NPU), which is applied to the input vector, hinders performance. The largest
solved at iteration step seems to be bounded at approximately 50,000 iterations which
correlates to the point at which the sparsity regularisation begins, which highlights the
importance of discretisation. Even with the different ablations, the sparsity errors of
the successful seeds remain extremely low.

Figure G.7 shows the effect of using different learning rates on the NMRU (with grad
norm clipping and sign retrieval) using an Adam optimiser. Too low a learning rate
struggles on the mixed-sign range U [-2,2). Too high a learning leads to no success on
multiple ranges.

Figure G.8 compares training the NMRU with either an Adam and SGD optimiser.
As expected, Adam outperforms SGD in all ranges (except two, where both perform
equally). This difference in performance can be accounted for by Adam’s ability to

G.6. NMRU; Single Module Task (with Redundancy): Additional Experiments 183

●

●

●

●

● ●

● ●

●

●

●

●
●

●

● ● ● ●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

Success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0e+00

2e−04

4e−04

6e−04

0

20000

40000

60000

0.00

0.25

0.50

0.75

1.00

Interpolation range

learning rate ● ● ●1e−3 1e−2 1e−1

FIGURE G.7: Effect of different learning rates on the NMRU

scale the step size of each weight, which can complement the clipped gradient norm of
the NMRU, in contrast to the SGD’s global step size.

●

●

●
●

●

● ● ● ●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

● ●● ● ●

●
●

● ● ●
●

● ● ● ● ● ● ● ● ●● ● ●

●

●

● ● ●

●

Success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0e+00

2e−05

4e−05

6e−05

8e−05

0

20000

40000

60000

0.00

0.25

0.50

0.75

1.00

Interpolation range

optimiser ● ●sgd adam

FIGURE G.8: Effect of optimiser on the NMRU. SGD = Stochastic Gradient Descent.

184 Appendix G. Division: Additional Analysis

G.7 NRU; Single Module Task (with Redundancy): Calculat-
ing the Sign Separately

The ‘separate NRU’ module calculates the magnitude and sign separately and then
combines them using multiplication together once all input elements are accounted
for. The following definition is used to calculate a NRU with separate magnitude and
sign calculation,

zo =
I

∏
i=1

(︂
|xi|Wi,o · |Wi,o|+ 1− |Wi,o|

)︂
·

I

∏
i=1

sign(xi)
round(Wi,o) . (G.1)

Figure G.9 shows results, where the separate sign method shows no difference in suc-
cess to the original NRU architecture.

● ● ● ● ●

● ● ● ●

● ● ● ● ●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0e+00

2e−05

4e−05

6e−05

8e−05

0

5000

10000

15000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ●together separate

FIGURE G.9: NRU on the redundancy experiment comparing a module which calcu-
lates the magnitude and sign together vs calculating the magnitude and sign sepa-

rately and then combining them.

G.8. Division MNIST Arithmetic Task: Effect of Gradient Norm Clip 185

G.8 Division MNIST Arithmetic Task: Effect of Gradient Norm
Clip

This section sees the effect of applying gradient norm clip (GNC) to the division NALMs
for the two-digit MNIST task. Results (see Table G.1 and Figure G.10) indicate that us-
ing GNC is detrimental for the NRU but is advantageous for the Real NPU and NMRU.

TABLE G.1: Test accuracies of the output label for the MNIST task. The predictions
and targets are rounded to 5 d.p. before the accuracy is calculated. The mean accuracy

over 10-folds is given with the standard error. ‘gnc’ stands for grand norm clip.

DIV Real NPU (mod.) NRU NMRU

No gnc 97.497±0.183 97.147±0.242 97.517±0.291 44.69±13.841
With gnc=1 - 97.982±0.092 94.215±3.627 46.891±13.969

DIV

Real NPU (mod)

Real NPU (mod) (gnc=1)

NRU

NRU (gnc=1)

NMRU

NMRU (gnc=1)

0 25 50 75 100
accuracy (%)

m
od

el

FIGURE G.10: Test accuracies on the 5 d.p. output values comparing the effect of
clipping the gradient norm on NALMs.

187

Appendix H

Gradients of the Arithmetic Dataset
Task

This section derives the generalised partial derivatives for the stacked NAU-NMU and
NAU-sNMU. To keep derivations as simple as possible, we assume formulations of
models without the use of regularisation or clipping.

Throughout this section, we assume the following notations:

• Superscript A (W A) = Weight matrix of a summative module (i.e. NAU)

• Superscript M (W M) = Weight matrix of a multiplicative module (i.e. NMU or
sNMU)

• Weight matrix indexing Wr,c where r = row index and c = column index (starting
at 1)

• I = total number of input elements for the respective module

• O = output size of the NAU weight matrix (or number of elements in the inter-
mediate vector)

• l = index for an output element

• i = index for an input element

H.1 MSE Loss for the Arithmetic Dataset Task

We define the MSE loss specific to the two-layer task below. N is the number of batch
items. Xn is the input vector for batch item n with target scalar yn and predicted scalar

188 Appendix H. Gradients of the Arithmetic Dataset Task

Key

Matrix Multiplication

Element-wise addition

Element-wise subtraction

Apply binary operation; A o B

Data flow (output data from applying an operation)

Reuse weights

A B
o

Element-wise multiplication

Apply unary operation on A; B := o(A)A B
o

Binary
operation

Unary
operation

Product over the columns of the input

FIGURE H.1: Illustration of the data flow of a NAU-NMU module. The annotation of
weights will be consistent with the gradient calculations.

ŷn. I is the number of input elements (=100) in the input vector.

L =
1
N

N

∑
n
(yn − ŷn)

2

L =
1
N

N

∑
n
(yn −NMU(NAU(Xn)))

2

z1 =
I

∑
i
(Xn,i ·WA

i,1)

z2 =
I

∑
i
(Xn,i ·WA

i,2)

L =
1
N

N

∑
n
[yn − ((1 + WM

1,1 · z1 −WM
1,1)(1 + WM

2,1 · z2 −WM
2,1))]

2

H.2 Explicit Gradients

To help improve familiarity with notation, we first work through an example using
predefined network sizes. For the following (simplified) two module example using
the baseline stacked NAU-NMU, we assume an input vector size 3, intermediate size
2, and output size 1. As a further simplification, we only consider the loss for a sin-
gle data-label pair (X1, y1). We annotate the weights and components explicitly in
Figure H.1. Matrix indexing follows the standard (row, column) convention, with in-
dexing starting from 1.

H.2. Explicit Gradients 189

H.2.1 MSE Loss Partial Derivatives:

Derivation 2 calculates the loss derivative with respect to (wrt) three different weights
values: WA

1,1, WA
1,2, and WM

1,1 indicated by colours (yellow, purple, and teal). Colours
red and blue are used to identify the parts of the derivative which are derived from
the original equation (i.e., the predicted value y1̂). Using the chain rule on the loss
requires calculating the partial derivative of the predicted value wrt the weight, which
is calculated via the product rule using the underlined red and blue terms as the parts.
To differentiate each part further also requires another application of the product rule.

L = (y1 − y1̂)
2

y1̂ = (WM
1,1 · (X1,1 ·WA

1,1 + X1,2 ·WA
2,1 + X1,3 ·WA

3,1) + 1−WM
1,1)·

(WM
2,1 · (X1,1 ·WA

1,2 + X1,2 ·WA
2,2 + X1,3 ·WA

3,2) + 1−WM
2,1)

∂L
∂WA

1,1
= −2 · ∂y1̂

∂WA
1,1
· (y1 − y1̂)

∂y1̂

∂WA
1,1

= WM
1,1 · X1,1 · (WM

2,1 · (X1,1 ·WA
1,2 + X1,2 ·WA

2,2 + X1,3 ·WA
3,2) + 1−WM

2,1)

= WM
1,1 · X1,1 · (WM

2,1 · (
I

∑
i

X1,i ·WA
i,2) + 1−WM

2,1)

∂L
∂WA

1,2
= −2 · ∂y1̂

∂WA
1,2
· (y1 − y1̂)

∂y1̂

∂WA
1,2

= (WM
1,1 · (X1,1 ·WA

1,1 + X1,2 ·WA
2,1 + X1,3 ·WA

3,1) + 1−WM
1,1) ·WM

2,1 · X1,1

= (WM
1,1 · (

I

∑
i

X1,i ·WA
i,1) + 1−WM

1,1) ·WM
2,1 · X1,1

∂L
∂WM

1,1
= −2 · ∂y1̂

∂WM
1,1
· (y1 − y1̂)

∂y1̂

∂WM
1,1

= ((X1,1 ·WA
1,1 + X1,2 ·WA

2,1 + X1,3 ·WA
3,1)− 1)·

(WM
2,1 · (X1,1 ·WA

1,2 + X1,2 ·WA
2,2 + X1,3 ·WA

3,2) + 1−WM
2,1)

= (
I

∑
i
(X1,i ·WA

i,1)− 1) · (WM
2,1 · (

I

∑
i
(X1,i ·WA

i,2) + 1−WM
2,1)

DERIVATION 2: Partial derivatives on the MSE Loss of the NAU-NMU wrt weight
elements WA

1,1, WA
1,2, and WM

1,1.

The partial derivative of the prediction wrt to a NAU weight is the product of two
terms: One term is the NMU weight (whose row index matches the column index of
the target NAU weight) multiplied with the input (whose column index corresponds
to the target NAU weight’s row index). The other term is the result of what would be
the output of the NMU if it is only applied to intermediate zi where i is the value which
is not the value of the column of the target NAU weight. E.g. WA

1,2 considers z1.

190 Appendix H. Gradients of the Arithmetic Dataset Task

The partial derivative of the prediction wrt to a NMU weight is the product of two
terms: One term is the intermediate element which corresponds to the row value of
the target NMU weight minus 1, e.g. WM

1,1 would have z1 − 1. The other term is the
result of what would be the output of the NMU if only applied to the intermediate zi

where i is the value which is not the value of the column of the target NAU weight.
E.g. WM

1,1 considers z2. This term also occurs in the partial derivative when the target
weight being derived to is a NAU weight.

H.3 Generalised NAU and NMU Partial Derivatives of the loss
for a NAU-NMU

The derivative of the loss wrt either a NAU or NMU weight can then be derived using
the chain rule. We formulate these gradients for the generalised case. The expression
is generalised such that it can be applied to any element in the NAU weight matrix
regardless of the matrix’s size, and the NMU weight matrix regardless of the matrix’s
row size. Like before, we assume derivatives for a single data-label pair (X1, y1).

To reiterate, the NAU weight matrix is denoted as WA
l,i where the A represents a sum-

mative module (for adding/subtracting), l is the output element index for the output
applying the NAU, and i is the index to select an element from the input.

∂L
∂WA

i,l
= −2(y1 − y1̂) ·WM

l,1 X1,i ·
{O\l}

∏
j

(WM
j,1(

I

∑
k=1

X1,kWA
k,j) + 1−WM

j,1)

∂L
∂WM

l,1
= −2(y1 − y1̂) · (

I

∑
i=1

X1,iWA
i,l − 1) ·

{O\l}

∏
j

(WM
j,1(

I

∑
k=1

X1,kWA
k,j) + 1−WM

j,1)

{O\l} represents the indices of all output elements from applying the module exclud-
ing the index corresponding to the output for the weight element you are calculating
the partial derivative of.

H.4 Generalised NAU and NMU Partial Derivatives for a NAU-
sNMU

We derive the generalised gradients as before but now using a sNMU rather than a
NMU. Gradients are derived using the quotient rule. Let N be the noise matrix (same
shape as input X).

H.4. Generalised NAU and NMU Partial Derivatives for a NAU-sNMU 191

H.4.1 MSE Loss Definition

L = (y1 − y1̂)
2

= (y1 − sNMU(NAU(X1)))
2

H.4.2 Loss derivatives wrt NAU and sNMU weights

Let

A =
{O\l}

∏
j

N1,jWM
j,1 · (

I

∑
k=1

X1,kWA
k,j) + 1−WM

j,1

be the result of the sNMU applied only to the output values of the NAU whose index
is not the value of the column of the target NAU weight. Let

D =
O

∏
i

N1,iWM
i,1 + 1−WM

i,1 ,

be the denoising term. Therefore,
∂L

∂WA
i,l

= −2(y1 − y1̂) ·
A
D
·WM

l,1 N1,iX1,i

∂L
∂WM

l,1
= −2(y1 − y1̂) ·

A
D2 · [D(N1,lzl − 1)

− (WM
l,1 N1,lzl + 1−WM

l,1)(N1,l − 1)(
{O\l}

∏
j

(N1,jWM
j,1 + 1−WM

j,1))]

Although the residual term (y1 − y1̂) remains, during training, the NAU-sNMU’s gra-
dients of the weights can take a different trajectory to the NAU-NMU. Hence, the use
of noise in the sNMU may aid in alleviating the local minima issues of the NMU.

193

References

Samira Abnar, Mostafa Dehghani, and Willem H. Zuidema. Transferring inductive
biases through knowledge distillation. CoRR, 2020. doi:10.48550/ARXIV.2006.00555.

Guozhong An. The Effects of Adding Noise During Backpropagation Training on a
Generalization Performance. Neural Computation, 8(3):643–674, 04 1996. ISSN 0899-
7667. doi:10.1162/neco.1996.8.3.643.

James A Anderson, Kathryn T Spoehr, and David J Bennett. A study in numerical
perversity: Teaching arithmetic to a neural network. In Neural networks for knowledge
representation and inference, pages 311–335. Lawrence Erlbaum Associates, Inc, 1994.
ISBN 0-8058-1158-3 (Hardcover); 0-8058-1159-1 (Paperback).

Cem Anil, Yuhuai Wu, Anders Johan Andreassen, Aitor Lewkowycz, Vedant
Misra, Vinay Venkatesh Ramasesh, Ambrose Slone, Guy Gur-Ari, Ethan Dyer,
and Behnam Neyshabur. Exploring length generalization in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, editors, Advances in Neural Information Processing Systems (NeurIPS), 2022.
doi:10.48550/ARXIV.2207.04901.

Giovanni Anobile, Guido Marco Cicchini, and David C Burr. Number as
a primary perceptual attribute: A review. Perception, 45(1-2):5–31, 2016.
doi:10.1177/0301006615602599.

Mark H Ashcraft. Cognitive arithmetic: A review of data and theory. Cognition, 44(1-2):
75–106, 1992. doi:10.1016/0010-0277(92)90051-I.

Bernard J Baars. A cognitive theory of consciousness. Cambridge University Press, 1993.

Bernard J Baars. In the theatre of consciousness. global workspace theory, a rigorous
scientific theory of consciousness. Journal of consciousness Studies, 4(4):292–309, 1997.

Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen, Harm
de Vries, and Aaron Courville. Systematic generalization: What is required and can
it be learned? In International Conference on Learning Representations (ICLR), 2019.
doi:10.48550/ARXIV.1811.12889.

https://doi.org/10.48550/ARXIV.2006.00555
https://doi.org/10.1162/neco.1996.8.3.643
https://doi.org/10.48550/ARXIV.2207.04901
https://doi.org/10.1177/0301006615602599
https://doi.org/10.1016/0010-0277(92)90051-I
https://doi.org/10.48550/ARXIV.1811.12889

194 REFERENCES

Aron K. Barbey, Michael Koenigs, and Jordan Grafman. Dorsolateral prefrontal contri-
butions to human working memory. Cortex, 49(5):1195–1205, 2013. ISSN 0010-9452.
doi:10.1016/j.cortex.2012.05.022.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vini-
cius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam San-
toro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer,
George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria Langston, Chris
Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals,
Yujia Li, and Razvan Pascanu. Relational inductive biases, deep learning, and graph
networks. CoRR, 2018. doi:10.48550/ARXIV.1806.01261.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagat-
ing gradients through stochastic neurons for conditional computation. CoRR, 2013.
doi:10.48550/ARXIV.1308.3432.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista
Parascandolo. Neural symbolic regression that scales. In International Conference on
Machine Learning (ICML), pages 936–945. PMLR, 2021. URL https://proceedings.

mlr.press/v139/biggio21a.html.

Marcus Bloice, Peter M. Roth, and Andreas Holzinger. Performing arithmetic using a
neural network trained on images of digit permutation pairs. Journal of Intelligent
Information Systems, 08 2021. doi:10.1007/s10844-021-00662-9.

Fred L. Bookstein. Principal warps: Thin-plate splines and the decomposition of defor-
mations. IEEE Transactions on pattern analysis and machine intelligence, 11(6):567–585,
1989. doi:10.1109/34.24792.

Matthew M Botvinick, Todd S Braver, Deanna M Barch, Cameron S Carter, and
Jonathan D Cohen. Conflict monitoring and cognitive control. Psychological review,
108(3):624, 2001. doi:10.1037/0033-295X.108.3.624.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christo-
pher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei.
Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pages 1877–1901, 2020. URL https://proceedings.neurip

s.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

https://doi.org/10.1016/j.cortex.2012.05.022
https://doi.org/10.48550/ARXIV.1806.01261
https://doi.org/10.48550/ARXIV.1308.3432
https://proceedings.mlr.press/v139/biggio21a.html
https://proceedings.mlr.press/v139/biggio21a.html
https://doi.org/10.1007/s10844-021-00662-9
https://doi.org/10.1109/34.24792
https://doi.org/10.1037/0033-295X.108.3.624
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

REFERENCES 195

Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering govern-
ing equations from data by sparse identification of nonlinear dynamical sys-
tems. Proceedings of the National Academy of Sciences, 113(15):3932–3937, 2016.
doi:10.1073/pnas.1517384113.

Sergio A. Cannas. Arithmetic Perceptrons. Neural Computation, 7(1):173–181, 01 1995.
ISSN 0899-7667. doi:10.1162/neco.1995.7.1.173.

William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio Olivetti de Franca,
Marco Virgolin, Ying Jin, Michael Kommenda, and Jason H. Moore. Contemporary
symbolic regression methods and their relative performance. In 35th Conference on
NeurIPS Track on Datasets and Benchmarks, 2021. URL https://openreview.net/for

um?id=xVQMrDLyGst.

Girish Chandrashekar and Ferat Sahin. A survey on feature selection meth-
ods. Computers & Electrical Engineering, 40(1):16–28, 2014. ISSN 0045-7906.
doi:10.1016/j.compeleceng.2013.11.024.

Francois Charton. Linear algebra with transformers. Transactions on Machine Learning
Research (TMLR), 2022a. URL https://openreview.net/forum?id=Hp4g7FAXXG.

Francois Charton. Leveraging maths to understand transformers, 2022b. URL https:

//neurips.cc/virtual/2022/workshop/50015#wse-detail-63846. Invited Talk at
the NeurIPS 2nd Workshop on MATH-AI.

Francois Charton, Amaury Hayat, and Guillaume Lample. Learning advanced math-
ematical computations from examples. In International Conference on Learning Repre-
sentations (ICLR), 2021. URL https://openreview.net/forum?id=-gfhS00XfKj.

Gang Chen. Learning symbolic expressions via gumbel-max equation learner network.
CoRR, 2020. doi:10.48550/ARXIV.2012.06921.

Gopinath Chennupati, Nandakishore Santhi, Phillip Romero, and Stephan J. Eiden-
benz. Machine learning enabled scalable performance prediction of scientific codes.
CoRR, 2020. doi:10.48550/ARXIV.2010.04212.

V. Cherkassky and Yunqian Ma. Comparison of loss functions for linear regression. In
2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541),
volume 1, pages 395–400, 2004. doi:10.1109/IJCNN.2004.1379938.

Davide Chicco, Matthijs J Warrens, and Giuseppe Jurman. The coefficient of determi-
nation r-squared is more informative than smape, mae, mape, mse and rmse in re-
gression analysis evaluation. PeerJ Computer Science, 7:e623, 2021. doi:10.7717/peerj-
cs.623.

https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1162/neco.1995.7.1.173
https://openreview.net/forum?id=xVQMrDLyGst
https://openreview.net/forum?id=xVQMrDLyGst
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://openreview.net/forum?id=Hp4g7FAXXG
https://neurips.cc/virtual/2022/workshop/50015#wse-detail-63846
https://neurips.cc/virtual/2022/workshop/50015#wse-detail-63846
https://openreview.net/forum?id=-gfhS00XfKj
https://doi.org/10.48550/ARXIV.2012.06921
https://doi.org/10.48550/ARXIV.2010.04212
https://doi.org/10.1109/IJCNN.2004.1379938
https://doi.org/10.7717/peerj-cs.623
https://doi.org/10.7717/peerj-cs.623

196 REFERENCES

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez,
Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran,
Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay
Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal,
Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pel-
lat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine
Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele
Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. Palm: Scaling language modeling with pathways. CoRR, 2022.
doi:10.48550/ARXIV.2204.02311.

Samuel Cognolato and Alberto Testolin. Transformers discover an elementary cal-
culation system exploiting local attention and grid-like problem representation. In
2022 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2022.
doi:10.1109/IJCNN55064.2022.9892619.

Laurent Cohen and S Dahaene. Towards an anatomical and functional model of num-
ber processing. Math. Cognit, 1:83–120, 1995.

Mark William Craven. Extracting comprehensible models from trained neural networks. PhD
thesis, The University of Wisconsin-Madison, 1996. URL https://pages.cs.wisc.

edu/~shavlik/abstracts/craven.thesis.abstract.html.

Róbert Csordás, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Are neural
nets modular? inspecting functional modularity through differentiable weight
masks. In International Conference on Learning Representations (ICLR), 2021.
doi:10.48550/ARXIV.2010.02066.

Wang-Zhou Dai and Stephen H. Muggleton. Abductive knowledge induction from
raw data. CoRR, 2020. doi:10.48550/ARXIV.2010.03514.

Stéphane D’Ascoli, Pierre-Alexandre Kamienny, Guillaume Lample, and Francois
Charton. Deep symbolic regression for recurrent sequences. In Kamalika Chaud-
huri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, ed-
itors, Proceedings of the 39th International Conference on Machine Learning (ICML), vol-
ume 162 of Proceedings of Machine Learning Research, pages 4520–4536. PMLR, 17–23
Jul 2022. URL https://proceedings.mlr.press/v162/d-ascoli22a.html.

Ernest Davis. The use of deep learning for symbolic integration: A review of (Lample
and Charton, 2019). CoRR, 2019. doi:10.48550/ARXIV.1912.05752.

https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.1109/IJCNN55064.2022.9892619
https://pages.cs.wisc.edu/~shavlik/abstracts/craven.thesis.abstract.html
https://pages.cs.wisc.edu/~shavlik/abstracts/craven.thesis.abstract.html
https://doi.org/10.48550/ARXIV.2010.02066
https://doi.org/10.48550/ARXIV.2010.03514
https://proceedings.mlr.press/v162/d-ascoli22a.html
https://doi.org/10.48550/ARXIV.1912.05752

REFERENCES 197

Stanislas Dehaene. Varieties of numerical abilities. Cognition, 44(1):1–42, 1992.
doi:https://doi.org/10.1016/0010-0277(92)90049-N.

Stanislas Dehaene. The number sense: How the mind creates mathematics. Oxford Univer-
sity Press, 1999.

Stanislas Dehaene. Consciousness and the brain: Deciphering how the brain codes our
thoughts. Penguin, 2014.

Stanislas Dehaene and Jean-Pierre Changeux. Development of elementary numeri-
cal abilities: A neuronal model. Journal of cognitive neuroscience, 5(4):390–407, 1993.
doi:10.1162/jocn.1993.5.4.390.

Stanislas Dehaene, Ghislaine Dehaene-Lambertz, and Laurent Cohen. Abstract repre-
sentations of numbers in the animal and human brain. Trends in neurosciences, 21(8):
355–361, 1998. doi:10.1016/S0166-2236(98)01263-6.

Stanislas Dehaene, Elizabeth Spelke, Philippe Pinel, Ruxandra Stanescu, and Sanna
Tsivkin. Sources of mathematical thinking: Behavioral and brain-imaging evidence.
Science, 284(5416):970–974, 1999. doi:10.1126/science.284.5416.970.

Jules Dejerine. Contribution à l’étude anatomopathologique et clinique des différents
variétés de cécité verbale. Mémoires de la Société de Biologie, 4:61–90, 1892.

Robert Desimone, John Duncan, et al. Neural mechanisms of selec-
tive visual attention. Annual review of neuroscience, 18(1):193–222, 1995.
doi:10.1146/annurev.ne.18.030195.001205.

Grant Dick. Genetic programming, standardisation, and stochastic gradient de-
scent revisited: Initial findings on srbench. In Proceedings of the Genetic and Evo-
lutionary Computation Conference Companion, GECCO ’22, pages 2265–2273, New
York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450392686.
doi:10.1145/3520304.3534040. URL https://doi.org/10.1145/3520304.3534040.

Grant Dick, Caitlin A. Owen, and Peter A. Whigham. Feature standardisation and coef-
ficient optimisation for effective symbolic regression. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), pages 306–314. Association for Com-
puting Machinery, 2020. ISBN 9781450371285. doi:10.1145/3377930.3390237.

Wouter Dobbels, Maarten Baes, Sébastien Viaene, S Bianchi, JI Davies, V Casasola, CJR
Clark, J Fritz, M Galametz, F Galliano, et al. Predicting the global far-infrared sed of
galaxies via machine learning techniques. Astronomy & Astrophysics, 634:A57, 2020.
doi:10.1051/0004-6361/201936695.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and
Noah A. Smith. Fine-tuning pretrained language models: Weight initializations, data
orders, and early stopping. CoRR, 2020. doi:10.48550/ARXIV.2002.06305.

https://doi.org/https://doi.org/10.1016/0010-0277(92)90049-N
https://doi.org/10.1162/jocn.1993.5.4.390
https://doi.org/10.1016/S0166-2236(98)01263-6
https://doi.org/10.1126/science.284.5416.970
https://doi.org/10.1146/annurev.ne.18.030195.001205
https://doi.org/10.1145/3520304.3534040
https://doi.org/10.1145/3520304.3534040
https://doi.org/10.1145/3377930.3390237
https://doi.org/10.1051/0004-6361/201936695
https://doi.org/10.48550/ARXIV.2002.06305

198 REFERENCES

Richard Durbin and David E. Rumelhart. Product units: A computationally powerful
and biologically plausible extension to backpropagation networks. Neural Computa-
tion, 1(1):133–142, 1989. doi:10.1162/neco.1989.1.1.133.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.
doi:10.1207/s15516709cog1402 1.

Jacques A. Esterhuizen, Bryan R. Goldsmith, and Suljo Linic. Theory-guided ma-
chine learning finds geometric structure-property relationships for chemisorp-
tion on subsurface alloys. Chem, 6(11):3100–3117, 2020. ISSN 2451-9294.
doi:https://doi.org/10.1016/j.chempr.2020.09.001.

Lukas Faber and Roger Wattenhofer. Neural status registers. CoRR, 2020.
doi:10.48550/ARXIV.2004.07085.

Fenglei Fan, Wenxiang Cong, and Ge Wang. Generalized backpropagation algorithm
for training second-order neural networks. International Journal for Numerical Methods
in Biomedical Engineering, 34(5):e2956, 2018. doi:https://doi.org/10.1002/cnm.2956.

Samuel G Finlayson. Learning Inductive Representations of Biomedical Data. PhD thesis,
Harvard University, 2020. URL https://dash.harvard.edu/handle/1/37368883.

Leonardo Franco and Sergio A. Cannas. Solving arithmetic problems using feed-
forward neural networks. Neurocomputing, 18(1):61–79, 1998. ISSN 0925-2312.
doi:https://doi.org/10.1016/S0925-2312(97)00069-6.

Karlis Freivalds and Renars Liepins. Improving the neural GPU architecture for algo-
rithm learning. CoRR, 2017. doi:10.48550/ARXIV.1702.08727.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the 13th International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 249–256. JMLR Workshop and Conference
Proceedings, 2010. URL http://proceedings.mlr.press/v9/glorot10a/glorot1

0a.pdf.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In Proceedings of the 3rd International Conference on Learning
Representations (ICLR), 2015. doi:10.48550/ARXIV.1412.6572.

Diana F Gordon and Marie Desjardins. Evaluation and selection of biases in machine
learning. Machine learning, 20(1):5–22, 1995. doi:10.1023/A:1022630017346.

Anirudh Goyal and Yoshua Bengio. Inductive biases for deep learning of higher-level
cognition. Proceedings of the Royal Society A, 2022. doi:10.1098/rspa.2021.0068.

Anirudh Goyal, Aniket Rajiv Didolkar, Nan Rosemary Ke, Charles Blundell, Philippe
Beaudoin, Nicolas Heess, Michael Curtis Mozer, and Yoshua Bengio. Neural

https://doi.org/10.1162/neco.1989.1.1.133
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/https://doi.org/10.1016/j.chempr.2020.09.001
https://doi.org/10.48550/ARXIV.2004.07085
https://doi.org/https://doi.org/10.1002/cnm.2956
https://dash.harvard.edu/handle/1/37368883
https://doi.org/https://doi.org/10.1016/S0925-2312(97)00069-6
https://doi.org/10.48550/ARXIV.1702.08727
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://doi.org/10.48550/ARXIV.1412.6572
https://doi.org/10.1023/A:1022630017346
https://doi.org/10.1098/rspa.2021.0068

REFERENCES 199

production systems. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems (NeurIPS), 2021a.
doi:10.48550/ARXIV.2103.01937.

Anirudh Goyal, Alex Lamb, Phanideep Gampa, Philippe Beaudoin, Charles Blundell,
Sergey Levine, Yoshua Bengio, and Michael Curtis Mozer. Factorizing declarative
and procedural knowledge in structured, dynamical environments. In International
Conference on Learning Representations (ICLR), 2021b. URL https://openreview.net

/forum?id=VVdmjgu7pKM.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua
Bengio, and Bernhard Schölkopf. Recurrent independent mechanisms. In Interna-
tional Conference on Learning Representations (ICLR), 2021c. URL https://openrevi

ew.net/forum?id=mLcmdlEUxy-.

Anirudh Goyal, Aniket Rajiv Didolkar, Alex Lamb, Kartikeya Badola, Nan Rose-
mary Ke, Nasim Rahaman, Jonathan Binas, Charles Blundell, Michael Curtis Mozer,
and Yoshua Bengio. Coordination among neural modules through a shared global
workspace. In International Conference on Learning Representations (ICLR), 2022.
doi:10.48550/ARXIV.2103.01197.

Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. On the binding problem
in artificial neural networks. CoRR, 2020. doi:10.48550/ARXIV.2012.05208.

IEEE 754 Working Group et al. Ieee standard for floating-point arith-
metic. IEEE Std 754-2019 (Revision of IEEE 754-2008), pages 1–84, 2019.
doi:10.1109/IEEESTD.2019.8766229.

Andras Hajnal, Wolfgang Maass, Pavel Pudlak, Mario Szegedy, and Gyorgy Turan.
Threshold circuits of bounded depth. In 28th Annual Symposium on Foundations of
Computer Science (SFCS), pages 99–110, 1987. doi:10.1109/SFCS.1987.59.

Serhii Havrylov and Ivan Titov. Emergence of language with multi-agent games:
Learning to communicate with sequences of symbols. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems (NIPS), pages 2146–2156,
2017. ISBN 9781510860964. URL https://proceedings.neurips.cc/paper/2017/

file/70222949cc0db89ab32c9969754d4758-Paper.pdf.

Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdhery, Maheswaran Sathiamoor-
thy, Yihua Chen, Rahul Mazumder, Lichan Hong, and Ed Chi. DSelect-k:
Differentiable selection in the mixture of experts with applications to multi-
task learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems (NeurIPS), 2021.
doi:10.48550/ARXIV.2106.03760.

https://doi.org/10.48550/ARXIV.2103.01937
https://openreview.net/forum?id=VVdmjgu7pKM
https://openreview.net/forum?id=VVdmjgu7pKM
https://openreview.net/forum?id=mLcmdlEUxy-
https://openreview.net/forum?id=mLcmdlEUxy-
https://doi.org/10.48550/ARXIV.2103.01197
https://doi.org/10.48550/ARXIV.2012.05208
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/SFCS.1987.59
https://proceedings.neurips.cc/paper/2017/file/70222949cc0db89ab32c9969754d4758-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/70222949cc0db89ab32c9969754d4758-Paper.pdf
https://doi.org/10.48550/ARXIV.2106.03760

200 REFERENCES

Niklas Heim, Václav Šmı́dl, and Tomáš Pevný. Rodent: Relevance determination in
differential equations. CoRR, 2019. doi:10.48550/ARXIV.1912.00656.

Niklas Heim, Tomas Pevny, and Vasek Smidl. Neural power units. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neu-
ral Information Processing Systems (NeurIPS), volume 33, pages 6573–6583, 2020.
doi:10.48550/ARXIV.2006.01681.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with
the MATH dataset. In Advances in Neural Information Processing Systems (NeurIPS)
Track on Datasets and Benchmarks, 2021. URL https://openreview.net/forum?id=

7Bywt2mQsCe.

Theodore P. Hill. A Statistical Derivation of the Significant-Digit Law. Statistical Science,
10(4):354 – 363, 1995. doi:10.1214/ss/1177009869.

M. Hittmair-Delazer, C. Semenza, and G. Denes. Concepts and facts in calculation.
Brain, 117(4):715–728, 08 1994. ISSN 0006-8950. doi:10.1093/brain/117.4.715.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997. doi:10.1162/neco.1997.9.8.1735.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2(5):359–366, 1989. ISSN 0893-
6080. doi:10.1016/0893-6080(89)90020-8.

Yedid Hoshen and Shmuel Peleg. Visual learning of arithmetic operations. In Proceed-
ings of the Thirtieth AAAI Conference on Artificial Intelligence, pages 3733–3739, 2016.
doi:10.1609/aaai.v30i1.9882.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Ben-
gio. Binarized neural networks. In Advances in Neural Information Processing Systems
(NeurIPS), volume 29, pages 4107–4115, 2016. URL http://papers.nips.cc/paper

/6573-binarized-neural-networks.

HuggingFace. Hugging face: The ai community building the future. https://huggin
gface.co, 2022. Accessed: 2022-10-26.

I. M. Huijben, W. Kool, M. B. Paulus, and R. G. van Sloun. A review of the gumbel-max
trick and its extensions for discrete stochasticity in machine learning. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 45(02):1353–1371, 2023. ISSN 1939-
3539. doi:10.1109/TPAMI.2022.3157042.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Francis Bach and David Blei, editors,
Proceedings of the 32nd International Conference on Machine Learning (ICML), volume 37

https://doi.org/10.48550/ARXIV.1912.00656
https://doi.org/10.48550/ARXIV.2006.01681
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://doi.org/10.1214/ss/1177009869
https://doi.org/10.1093/brain/117.4.715
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1609/aaai.v30i1.9882
http://papers.nips.cc/paper/6573-binarized-neural-networks
http://papers.nips.cc/paper/6573-binarized-neural-networks
https://huggingface.co
https://huggingface.co
https://doi.org/10.1109/TPAMI.2022.3157042

REFERENCES 201

of PMLR, pages 448–456. PMLR, 2015. URL https://proceedings.mlr.press/v3

7/ioffe15.html.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hin-
ton. Adaptive mixtures of local experts. Neural Computation, 3(1):79–87, 1991.
doi:10.1162/neco.1991.3.1.79.

Alon Jacovi, Guy Hadash, Einat Kermany, Boaz Carmeli, Ofer Lavi, George Kour,
and Jonathan Berant. Neural network gradient-based learning of black-box func-
tion interfaces. In International Conference on Learning Representations (ICLR), 2019.
doi:10.48550/ARXIV.1901.03995.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, and koray kavukcuoglu. Spatial
transformer networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems (NeurIPS), volume 28,
2015. URL https://proceedings.neurips.cc/paper/2015/file/33ceb07bf4eeb

3da587e268d663aba1a-Paper.pdf.

William James. The principles of psychology, Vol I. Henry Holt and Co, 1890.
doi:10.1037/10538-000.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
softmax. In International Conference on Learning Representations (ICLR), 2017.
doi:10.48550/ARXIV.1611.01144.

T. Jia, Y. Ju, R. Joseph, and J. Gu. Ncpu: An embedded neural cpu architecture on
resource-constrained low power devices for real-time end-to-end performance. In
53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
1097–1109, 2020. doi:10.1109/MICRO50266.2020.00091.

Hongbo Jiang, Mengyuan Wang, Ping Zhao, Zhu Xiao, and Schahram Dustdar. A
utility-aware general framework with quantifiable privacy preservation for destina-
tion prediction in lbss. IEEE/ACM Transactions on Networking, 29(5):2228–2241, 2021.
doi:10.1109/TNET.2021.3084251.

Michael I Jordan. Serial order: A parallel distributed processing approach. In Ad-
vances in psychology, volume 121, pages 471–495. Elsevier, 1997. doi:10.1016/S0166-
4115(97)80111-2.

M. Joseph-Rivlin, A. Zvirin, and R. Kimmel. Momenêt: Flavor the moments in learn-
ing to classify shapes. In IEEE/CVF Workshop on International Conference on Computer
Vision (ICCVW), pages 4085–4094, 2019. doi:10.1109/ICCVW.2019.00503.

Alex Kacelnik and Fausto Brito e Abreu. Risky choice and weber’s
law. Journal of Theoretical Biology, 194(2):289–298, 1998. ISSN 0022-5193.
doi:https://doi.org/10.1006/jtbi.1998.0763.

https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.48550/ARXIV.1901.03995
https://proceedings.neurips.cc/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf
https://doi.org/10.1037/10538-000
https://doi.org/10.48550/ARXIV.1611.01144
https://doi.org/10.1109/MICRO50266.2020.00091
https://doi.org/10.1109/TNET.2021.3084251
https://doi.org/10.1016/S0166-4115(97)80111-2
https://doi.org/10.1016/S0166-4115(97)80111-2
https://doi.org/10.1109/ICCVW.2019.00503
https://doi.org/https://doi.org/10.1006/jtbi.1998.0763

202 REFERENCES

Daniel Kahneman. Thinking, fast and slow. Macmillan, 2011.

Lukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. In Yoshua Bengio and
Yann LeCun, editors, 4th International Conference on Learning Representations (ICLR),
2016. doi:10.48550/ARXIV.1511.08228.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and Francois
Charton. End-to-end symbolic regression with transformers. In Alice H. Oh, Alekh
Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2022. URL https://openreview.net/forum?i

d=GoOuIrDHG_Y.

E.R. Kandel, J.H. Schwartz, T.M. Jessell, S.A. Siegelbaum, and A.J. Hudspeth. Principles
of Neural Science, Fifth Edition. McGraw-Hill’s AccessMedicine. McGraw-Hill Educa-
tion, 2013. ISBN 9780071390118.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
2015. doi:10.48550/ARXIV.1412.6980.

Michael Kommenda, Bogdan Burlacu, Gabriel Kronberger, and Michael Affenzeller.
Parameter identification for symbolic regression using nonlinear least squares. Ge-
netic Programming and Evolvable Machines, 21(3):471–501, 2020. doi:10.1007/s10710-
019-09371-3.

Neehar Kondapaneni and Pietro Perona. A number sense as an emergent property of
the manipulating brain. CoRR, 2020. doi:10.48550/ARXIV.2012.04132.

John R Koza. Genetic programming as a means for programming com-
puters by natural selection. Statistics and computing, 4(2):87–112, 1994.
doi:https://doi.org/10.1007/BF00175355.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In
International Conference on Learning Representations (ICLR), 2020. URL https://open

review.net/forum?id=S1eZYeHFDS.

Mikel Landajuela, Chak Lee, Jiachen Yang, Ruben Glatt, Claudio P. Santiago, Ignacio
Aravena, Terrell N. Mundhenk, Garrett Mulcahy, and Brenden K. Petersen. A unified
framework for deep symbolic regression. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Sys-
tems (NeurIPS), 2022. URL https://openreview.net/forum?id=2FNnBhwJsHK.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
doi:10.1109/5.726791.

https://doi.org/10.48550/ARXIV.1511.08228
https://openreview.net/forum?id=GoOuIrDHG_Y
https://openreview.net/forum?id=GoOuIrDHG_Y
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1007/s10710-019-09371-3
https://doi.org/10.1007/s10710-019-09371-3
https://doi.org/10.48550/ARXIV.2012.04132
https://doi.org/https://doi.org/10.1007/BF00175355
https://openreview.net/forum?id=S1eZYeHFDS
https://openreview.net/forum?id=S1eZYeHFDS
https://openreview.net/forum?id=2FNnBhwJsHK
https://doi.org/10.1109/5.726791

REFERENCES 203

Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Effi-
cient BackProp, pages 9–48. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.
doi:10.1007/978-3-642-35289-8 3.

Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. Multi-
layer feedforward networks with a nonpolynomial activation function can ap-
proximate any function. Neural Networks, 6(6):861–867, 1993. ISSN 0893-6080.
doi:https://doi.org/10.1016/S0893-6080(05)80131-5.

Aitor Lewkowycz, Anders Johan Andreassen, David Dohan, Ethan Dyer, Henryk
Michalewski, Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag,
Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant
Misra. Solving quantitative reasoning problems with language models. In Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in
Neural Information Processing Systems (NeurIPS), 2022. URL https://openreview.n

et/forum?id=IFXTZERXdM7.

Cathy Li, Jana Sotáková, Emily Wenger, Mohamed Malhou, Evrard Garcelon, Francois
Charton, and Kristin Lauter. Salsa picante: a machine learning attack on lwe with
binary secrets. CoRR, 2023. URL https://arxiv.org/abs/2303.04178.

Haoran Li, Yang Weng, and Hanghang Tong. CoNSole: Convex neural symbolic
learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, editors, Advances in Neural Information Processing Systems (NeurIPS), 2022.
doi:10.48550/ARXIV.2206.00257.

Li Li, Minjie Fan, Rishabh Singh, and Patrick Riley. Neural-guided symbolic regression
with asymptotic constraints. CoRR, 2019. doi:10.48550/ARXIV.1901.07714.

Qing Li, Siyuan Huang, Yining Hong, Yixin Zhu, Ying Nian Wu, and Song-Chun Zhu.
A hint from arithmetic: On systematic generalization of perception, syntax, and se-
mantics. In ICLR Workshop on the Role of Mathematical Reasoning in General Artificial
Intelligence (MATHAI), 2021. URL https://mathai-iclr.github.io/papers/pap

ers/MATHAI_1_paper.pdf.

Zachary Chase Lipton. The mythos of model interpretability. CoRR, 2016.
doi:10.48550/ARXIV.1606.03490.

Dianbo Liu, Alex M Lamb, Kenji Kawaguchi, Anirudh Goyal ALIAS PARTH GOYAL,
Chen Sun, Michael C Mozer, and Yoshua Bengio. Discrete-valued neural commu-
nication. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems (NeurIPS), vol-
ume 34, pages 2109–2121, 2021. URL https://proceedings.neurips.cc/paper/2

021/file/10907813b97e249163587e6246612e21-Paper.pdf.

https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/https://doi.org/10.1016/S0893-6080(05)80131-5
https://openreview.net/forum?id=IFXTZERXdM7
https://openreview.net/forum?id=IFXTZERXdM7
https://arxiv.org/abs/2303.04178
https://doi.org/10.48550/ARXIV.2206.00257
https://doi.org/10.48550/ARXIV.1901.07714
https://mathai-iclr.github.io/papers/papers/MATHAI_1_paper.pdf
https://mathai-iclr.github.io/papers/papers/MATHAI_1_paper.pdf
https://doi.org/10.48550/ARXIV.1606.03490
https://proceedings.neurips.cc/paper/2021/file/10907813b97e249163587e6246612e21-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/10907813b97e249163587e6246612e21-Paper.pdf

204 REFERENCES

Dianbo Liu, Alex Lamb, Xu Ji, Pascal Notsawo, Mike Mozer, Yoshua Bengio, and
Kenji Kawaguchi. Adaptive discrete communication bottlenecks with dynamic vec-
tor quantization. CoRR, 2022. doi:10.48550/ARXIV.2202.01334.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural net-
works through l0 regularization. In International Conference on Learning Representations
(ICLR), 2018. doi:10.48550/ARXIV.1712.01312.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A
continuous relaxation of discrete random variables. In International Conference on
Learning Representations (ICLR), 2017. URL https://openreview.net/forum?id=S1

jE5L5gl.

Andreas Madsen and Alexander Rosenberg Johansen. Measuring arithmetic extrapola-
tion performance. In NeurIPS Workshop on Science meets Engineering of Deep Learning,
October 2019. doi:10.48550/ARXIV.1910.01888.

Andreas Madsen and Alexander Rosenberg Johansen. Neural arithmetic
units. In International Conference on Learning Representations (ICLR), 2020.
doi:10.48550/ARXIV.2001.05016.

Ashok Makkuva, Sewoong Oh, Sreeram Kannan, and Pramod Viswanath. Learning in
gated neural networks. In Silvia Chiappa and Roberto Calandra, editors, Proceedings
of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS),
volume 108 of Proceedings of Machine Learning Research, pages 3338–3348. PMLR, 26–
28 Aug 2020. doi:10.48550/ARXIV.1906.02777.

Georg S Martius and Christoph Lampert. Extrapolation and learning equations. In 5th
International Conference on Learning Representations (ICLR) Workshop Track Proceedings,
2017. URL https://openreview.net/pdf?id=BkgRp0FYe.

F.J. Martı́nez-Estudillo, C. Hervás-Martı́nez, P.A. Gutiérrez, and A.C. Martı́nez-
Estudillo. Evolutionary product-unit neural networks classifiers. Neurocomputing,
72(1):548–561, 2008. ISSN 0925-2312. doi:10.1016/j.neucom.2007.11.019.

Anna A. Matejko and Daniel Ansari. Drawing connections between white matter and
numerical and mathematical cognition: A literature review. Neuroscience & Biobehav-
ioral Reviews, 48:35–52, 2015. ISSN 0149-7634. doi:10.1016/j.neubiorev.2014.11.006.

R. Thomas McCoy, Robert Frank, and Tal Linzen. Does syntax need to grow on
trees? sources of hierarchical inductive bias in sequence-to-sequence networks.
Transactions of the Association for Computational Linguistics (TACL), 8:125–140, 2020.
doi:10.1162/tacl a 00304.

Ryszard S. Michalski. A theory and methodology of inductive learning. Artificial In-
telligence, 20(2):111–161, 1983. ISSN 0004-3702. doi:https://doi.org/10.1016/0004-
3702(83)90016-4.

https://doi.org/10.48550/ARXIV.2202.01334
https://doi.org/10.48550/ARXIV.1712.01312
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://doi.org/10.48550/ARXIV.1910.01888
https://doi.org/10.48550/ARXIV.2001.05016
https://doi.org/10.48550/ARXIV.1906.02777
https://openreview.net/pdf?id=BkgRp0FYe
https://doi.org/10.1016/j.neucom.2007.11.019
https://doi.org/10.1016/j.neubiorev.2014.11.006
https://doi.org/10.1162/tacl_a_00304
https://doi.org/https://doi.org/10.1016/0004-3702(83)90016-4
https://doi.org/https://doi.org/10.1016/0004-3702(83)90016-4

REFERENCES 205

Matthias Michel, Stephen M Fleming, Hakwan Lau, Alan LF Lee, Susana Martinez-
Conde, Richard E Passingham, Megan AK Peters, Dobromir Rahnev, Claire Sergent,
and Kayuet Liu. An informal internet survey on the current state of consciousness
science. Frontiers in psychology, 9:2134, 2018. doi:10.3389/fpsyg.2018.02134.

Bhumika Mistry, Katayoun Farrahi, and Jonathon Hare. A primer for neural arith-
metic logic modules. Journal of Machine Learning Research (JMLR), 23(185):1–58, 2022a.
doi:10.48550/ARXIV.2101.09530.

Bhumika Mistry, Katayoun Farrahi, and Jonathon Hare. Exploring the learning mecha-
nisms of neural division modules. Transactions on Machine Learning Research (TMLR),
2022b. ISSN 2835-8856. URL https://openreview.net/forum?id=HjelcW6wio.

Bhumika Mistry, Katayoun Farrahi, and Jonathon Hare. Improving the robust-
ness of neural multiplication units with reversible stochasticity. CoRR, 2022c.
doi:10.48550/ARXIV.2211.05624.

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben
Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. Model cards
for model reporting. In Proceedings of the Conference on Fairness, Accountability, and
Transparency (FAccT), pages 220–229, New York, NY, USA, 2019. Association for Com-
puting Machinery. ISBN 9781450361255. doi:10.1145/3287560.3287596.

Tom M Mitchell. The need for biases in learning generalizations. Technical report, De-
partment of Computer Science, Laboratory for Computer Science Research, Rutgers
University, 1980.

Sarthak Mittal, Alex Lamb, Anirudh Goyal, Vikram Voleti, Murray Shanahan, Guil-
laume Lajoie, Michael Mozer, and Yoshua Bengio. Learning to combine top-down
and bottom-up signals in recurrent neural networks with attention over modules. In
International Conference on Machine Learning (ICML), pages 6972–6986. PMLR, 2020.
doi:10.48550/ARXIV.2006.16981.

Sarthak Mittal, Yoshua Bengio, and Guillaume Lajoie. Is a modular architecture
enough? In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho,
editors, Advances in Neural Information Processing Systems (NeurIPS), 2022a. URL
https://openreview.net/forum?id=3-3XMModtrx.

Sarthak Mittal, Sharath Chandra Raparthy, Irina Rish, Yoshua Bengio, and Guillaume
Lajoie. Compositional attention: Disentangling search and retrieval. In International
Conference on Learning Representations (ICLR), 2022b. URL https://openreview.net

/forum?id=IwJPj2MBcIa.

Knut Mørken. Numerical algorithms and digital representation, 2013. URL https:

//www.uio.no/studier/emner/matnat/math/MAT-INF1100/h13/kompendiet/mati

nf1100.pdf.

https://doi.org/10.3389/fpsyg.2018.02134
https://doi.org/10.48550/ARXIV.2101.09530
https://openreview.net/forum?id=HjelcW6wio
https://doi.org/10.48550/ARXIV.2211.05624
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.48550/ARXIV.2006.16981
https://openreview.net/forum?id=3-3XMModtrx
https://openreview.net/forum?id=IwJPj2MBcIa
https://openreview.net/forum?id=IwJPj2MBcIa
https://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h13/kompendiet/matinf1100.pdf
https://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h13/kompendiet/matinf1100.pdf
https://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h13/kompendiet/matinf1100.pdf

206 REFERENCES

Aakanksha Naik, Abhilasha Ravichander, Carolyn Rose, and Eduard Hovy. Exploring
numeracy in word embeddings. In Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages 3374–3380. Association for Compu-
tational Linguistics, July 2019. doi:10.18653/v1/P19-1329.

Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Ilya Sutskever, Lukasz Kaiser, Karol
Kurach, and James Martens. Adding gradient noise improves learning for very deep
networks. CoRR, 2015. doi:10.48550/ARXIV.1511.06807.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS Work-
shop on Deep Learning and Unsupervised Feature Learning, 01 2011.

Andreas Nieder. Neuroethology of number sense across the animal kingdom. Journal
of Experimental Biology, 224(6), 03 2021. ISSN 0022-0949. doi:10.1242/jeb.218289.

Michael A Nielsen. Neural networks and deep learning, volume 25. Determination press
San Francisco, CA, USA, 2015.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of
transformers with simple arithmetic tasks. In ICLR Workshop on the Role of Math-
ematical Reasoning in General Artificial Intelligence (MATHAI), 2021. URL https:

//mathai-iclr.github.io/papers/papers/MATHAI_11_paper.pdf.

Bastien Nollet, Mathieu Lefort, and Frédéric Armetta. Learning arithmetic operations
with a multistep deep learning. In International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2020. doi:10.1109/IJCNN48605.2020.9206963.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Ja-
cob Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena. Show your work:
Scratchpads for intermediate computation with language models. CoRR, 2021.
doi:10.48550/ARXIV.2112.00114.

Randall C O’Reilly and Jerry W Rudy. Conjunctive representations in learning and
memory: principles of cortical and hippocampal function. Psychological review, 108
(2):311, 2001. doi:10.1037/0033-295x.108.2.311.

Felipe Oviedo, Juan Lavista Ferres, Tonio Buonassisi, and Keith T. Butler. Interpretable
and explainable machine learning for materials science and chemistry. Accounts of
Materials Research, 3(6):597–607, 2022. doi:10.1021/accountsmr.1c00244.

Caitlin A. Owen, Grant Dick, and Peter A. Whigham. Feature standardisation in sym-
bolic regression. In Tanja Mitrovic, Bing Xue, and Xiaodong Li, editors, AI 2018:
Advances in Artificial Intelligence, pages 565–576. Springer International Publishing,
2018. doi:10.1007/978-3-030-03991-2 52.

https://doi.org/10.18653/v1/P19-1329
https://doi.org/10.48550/ARXIV.1511.06807
https://doi.org/10.1242/jeb.218289
https://mathai-iclr.github.io/papers/papers/MATHAI_11_paper.pdf
https://mathai-iclr.github.io/papers/papers/MATHAI_11_paper.pdf
https://doi.org/10.1109/IJCNN48605.2020.9206963
https://doi.org/10.48550/ARXIV.2112.00114
https://doi.org/10.1037/0033-295x.108.2.311
https://doi.org/10.1021/accountsmr.1c00244
https://doi.org/10.1007/978-3-030-03991-2_52

REFERENCES 207

Sejun Park, Chulhee Yun, Jaeho Lee, and Jinwoo Shin. Minimum width for universal
approximation. In International Conference on Learning Representations (ICLR), 2021.
URL https://openreview.net/forum?id=O-XJwyoIF-k.

Max B Paulus, Chris J. Maddison, and Andreas Krause. Rao-blackwellizing the
straight-through gumbel-softmax gradient estimator. In International Conference on
Learning Representations (ICLR), 2021. URL https://openreview.net/forum?id=Mk

6PZtgAgfq.

Kexin Pei, Jonas Guan, Matthew Broughton, Zhongtian Chen, Songchen Yao, David
Williams-King, Vikas Ummadisetty, Junfeng Yang, Baishakhi Ray, and Suman Jana.
Stateformer: Fine-grained type recovery from binaries using generative state mod-
eling. In Proceedings of the 29th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE),
pages 690–702. Association for Computing Machinery, 2021. ISBN 9781450385626.
doi:10.1145/3468264.3468607.

Charles Sanders Peirce. Reasoning and the logic of things: The Cambridge conferences lec-
tures of 1898. Harvard University Press, 1992.

Pietro Perona. How did you learn the natural numbers?, Dec. 2020. URL https:

//www.youtube.com/watch?v=TJRsqFovVmY.

Ellen Peters, Daniel Västfjäll, Paul Slovic, C.K. Mertz, Ketti Mazzocco, and Stephan
Dickert. Numeracy and decision making. Psychological Science, 17(5):407–413, 2006.
doi:10.1111/j.1467-9280.2006.01720.x.

Michael I Posner and Charles R R Snyder. Attention and Cognitive Control. Key readings
in cognition. Psychology Press, 2004. ISBN 1-84169-064-3.

Ravi Prakash, Om Prakash, Shashi Prakash, Priyadarshi Abhishek, and Sachin Gan-
dotra. Global workspace model of consciousness and its electromagnetic correlates.
Annals of Indian Academy of Neurology, 11(3):146, 2008. doi:10.4103/0972-2327.42933.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9,
2019. URL https://d4mucfpksywv.cloudfront.net/better-language-models/la

nguage_models_are_unsupervised_multitask_learners.pdf.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Fran-
cis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza
Rutherford, Tom Hennigan, Jacob Menick, Albin Cassirer, Richard Powell, George
van den Driessche, Lisa Anne Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia
Glaese, Johannes Welbl, Sumanth Dathathri, Saffron Huang, Jonathan Uesato, John

https://openreview.net/forum?id=O-XJwyoIF-k
https://openreview.net/forum?id=Mk6PZtgAgfq
https://openreview.net/forum?id=Mk6PZtgAgfq
https://doi.org/10.1145/3468264.3468607
https://www.youtube.com/watch?v=TJRsqFovVmY
https://www.youtube.com/watch?v=TJRsqFovVmY
https://doi.org/10.1111/j.1467-9280.2006.01720.x
https://doi.org/10.4103/0972-2327.42933
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

208 REFERENCES

Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu, Erich Elsen, Sid-
dhant Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen Si-
monyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhi-
guna Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki
Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grig-
orev, Doug Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong,
Daniel Toyama, Cyprien de Masson d’Autume, Yujia Li, Tayfun Terzi, Vladimir
Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas, Aurelia Guy, Chris
Jones, James Bradbury, Matthew Johnson, Blake Hechtman, Laura Weidinger, Ia-
son Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer,
Oriol Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Ko-
ray Kavukcuoglu, and Geoffrey Irving. Scaling language models: Methods, analysis
& insights from training gopher. CoRR, 2021. doi:10.48550/ARXIV.2112.11446.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal of Machine Learning Research (JMLR),
21(140):1–67, 2020. URL http://jmlr.org/papers/v21/20-074.html.

Nasim Rahaman, Muhammad Waleed Gondal, Shruti Joshi, Peter Vincent Gehler,
Yoshua Bengio, Francesco Locatello, and Bernhard Schölkopf. Dynamic inference
with neural interpreters. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems (NeurIPS), 2021a.
doi:10.48550/ARXIV.2110.06399.

Nasim Rahaman, Anirudh Goyal, Muhammad Waleed Gondal, Manuel Wuthrich,
Stefan Bauer, Yash Sharma, Yoshua Bengio, and Bernhard Schölkopf. Spatially
structured recurrent modules. In International Conference on Learning Representations
(ICLR), 2021b. URL https://openreview.net/forum?id=5l9zj5G7vDY.

Aditya Raj, Pooja Consul, and Sakar K Pal. Fast neural accumulator (NAC) based
badminton video action classification. In Kohei Arai, Supriya Kapoor, and Rahul
Bhatia, editors, Proceedings of Intelligent Systems and Applications (ISWA), pages 452–
467. Springer, 2020. doi:10.1007/978-3-030-55180-3 34.

Shangeth Rajaa and Jajati Keshari Sahoo. Convolutional feature extraction and neural
arithmetic logic units for stock prediction. In Mayank Singh, P.K. Gupta, Vipin Tyagi,
Jan Flusser, Tuncer Ören, and Rekha Kashyap, editors, Advances in Computing and
Data Sciences, pages 349–359, Singapore, 2019. Springer Singapore. doi:10.1007/978-
981-13-9939-8 31.

Ashish Rana, Avleen Malhi, and Kary Främling. Exploring numerical calculations
with calcnet. In 31st International Conference on Tools with Artificial Intelligence (IC-
TAI), pages 1374–1379. IEEE, 2019. doi:10.1109/ICTAI.2019.00192. URL https:

//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8995315.

https://doi.org/10.48550/ARXIV.2112.11446
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.48550/ARXIV.2110.06399
https://openreview.net/forum?id=5l9zj5G7vDY
https://doi.org/10.1007/978-3-030-55180-3_34
https://doi.org/10.1007/978-981-13-9939-8_31
https://doi.org/10.1007/978-981-13-9939-8_31
https://doi.org/10.1109/ICTAI.2019.00192
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8995315
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8995315

REFERENCES 209

Ashish Rana, Taranveer Singh, Harpreet Singh, Neeraj Kumar, and Prashant Singh
Rana. Systematically designing better instance counting models on cell images with
neural arithmetic logic units. CoRR, 2020. doi:10.48550/ARXIV.2004.06674.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. doi:10.1109/CVPR.2016.91.

Jan Niclas Reimann and Andreas Schwung. Neural logic rule layers. CoRR, 2019.
doi:10.13140/RG.2.2.10091.59687.

Larry Rendell. Similarity-based learning and its extensions. Computational Intelligence,
3(1):241–266, 1987. doi:10.1111/j.1467-8640.1987.tb00213.x.

Ribana Roscher, Bastian Bohn, Marco F. Duarte, and Jochen Garcke. Explainable ma-
chine learning for scientific insights and discoveries. IEEE Access, 8:42200–42216,
2020. doi:10.1109/ACCESS.2020.2976199.

Clemens Rosenbaum, Ignacio Cases, Matthew Riemer, and Tim Klinger. Routing net-
works and the challenges of modular and compositional computation. CoRR, 2019.
doi:10.48550/ARXIV.1904.12774.

Rosa Rugani, Giorgio Vallortigara, Konstantinos Priftis, and Lucia Regolin. Number-
space mapping in the newborn chick resembles humans’ mental number line. Science,
347(6221):534–536, 2015. doi:10.1126/science.aaa1379.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. Nature, 323(6088):533–536, 1986.
doi:10.1038/323533a0.

Jacob Russin, Roland Fernandez, Hamid Palangi, Eric Rosen, Nebojsa Jojic, Paul
Smolensky, and Jianfeng Gao. Compositional processing emerges in neural networks
solving math problems. In Proceedings of the Annual Meeting of the Cognitive Science
Society (CogSci), volume 2021, pages 1767–1773. NIH Public Access, 2021.

Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic routing between cap-
sules. In Proceedings of the 31st International Conference on Neural Information Processing
Systems (NIPS), pages 3859–3869, 2017. doi:10.48550/ARXIV.1710.09829.

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for
extrapolation and control. In Jennifer Dy and Andreas Krause, editors, Proceed-
ings of the 35th International Conference on Machine Learning (ICML), volume 80 of
Proceedings of Machine Learning Research, pages 4442–4450. PMLR, 10–15 Jul 2018.
doi:10.48550/ARXIV.1806.07259.

https://doi.org/10.48550/ARXIV.2004.06674
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.13140/RG.2.2.10091.59687
https://doi.org/10.1111/j.1467-8640.1987.tb00213.x
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.48550/ARXIV.1904.12774
https://doi.org/10.1126/science.aaa1379
https://doi.org/10.1038/323533a0
https://doi.org/10.48550/ARXIV.1710.09829
https://doi.org/10.48550/ARXIV.1806.07259

210 REFERENCES

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing math-
ematical reasoning abilities of neural models. In International Conference on Learning
Representations (ICLR), 2019. doi:10.48550/ARXIV.1904.01557.

Daniel Schlör, Markus Ring, Anna Krause, and Andreas Hotho. Financial fraud de-
tection with improved neural arithmetic logic units. In Mining Data for Financial
Applications: 5th European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD) Workshop on MIning DAta for finan-
cial applicationS (MIDAS), Revised Selected Papers, pages 40–54. Springer-Verlag, 2020.
ISBN 978-3-030-66980-5. doi:10.1007/978-3-030-66981-2 4.

Daniel Schlör, Markus Ring, and Andreas Hotho. iNALU: Improved neural arith-
metic logic unit. Frontiers in Artificial Intelligence, 3:71, 2020. ISSN 2624-8212.
doi:10.3389/frai.2020.00071.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental
data. science, 324(5923):81–85, 2009. doi:10.1126/science.1165893.

Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, and
Joris Mooij. On causal and anticausal learning. In Proceedings of the 29th Interna-
tional Conference on International Conference on Machine Learning (ICML), pages 459–
466, 2012. ISBN 9781450312851.

Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalch-
brenner, Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning.
Proceedings of the IEEE, 109(5):612–634, 2021. doi:10.1109/JPROC.2021.3058954.

Carson D. Sestili, William S. Snavely, and Nathan M. VanHoudnos. Towards security
defect prediction with AI. CoRR, 2018. doi:10.48550/ARXIV.1808.09897.

Baoguang Shi, Xinggang Wang, Pengyuan Lyu, Cong Yao, and Xiang Bai. Robust scene
text recognition with automatic rectification. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 4168–4176. IEEE Computer Society, 2016.
doi:10.1109/CVPR.2016.452.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for
deep learning. Journal of big data, 6(1):1–48, 2019. doi:10.1186/s40537-019-0197-0.

K.-Y. Siu and J. Bruck. Neural computation of arithmetic functions. Proceedings of the
IEEE, 78(10):1669–1675, 1990. doi:10.1109/5.58350.

K.-Y. Siu, J. Bruck, T. Kailath, and T. Hofmeister. Depth efficient neural networks for
division and related problems. IEEE Transactions on Information Theory, 39(3):946–956,
1993. doi:10.1109/18.256501.

SRBench. SRBench: A living benchmark for symbolic regression. https://cavalab.

org/srbench/, 2023. Accessed: 2023-01-19.

https://doi.org/10.48550/ARXIV.1904.01557
https://doi.org/10.1007/978-3-030-66981-2_4
https://doi.org/10.3389/frai.2020.00071
https://doi.org/10.1126/science.1165893
https://doi.org/10.1109/JPROC.2021.3058954
https://doi.org/10.48550/ARXIV.1808.09897
https://doi.org/10.1109/CVPR.2016.452
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1109/5.58350
https://doi.org/10.1109/18.256501
https://cavalab.org/srbench/
https://cavalab.org/srbench/

REFERENCES 211

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance
of initialization and momentum in deep learning. In Proceedings of the 30th Interna-
tional Conference on Machine Learning (ICML), volume 28, pages 1139–1147. PMLR,
2013. URL https://proceedings.mlr.press/v28/sutskever13.html.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on
learning. In Thirty-first AAAI Conference on Artificial Intelligence, 2017.
doi:10.5555/3298023.3298188.

Daniel Teitelman, Itay Naeh, and Shie Mannor. Stealing black-box functionality using
the deep neural tree architecture. CoRR, 2020. doi:10.48550/ARXIV.2002.09864.

Christine M Temple. Procedural dyscalculia and number fact dyscalculia: Double dis-
sociation in developmental dyscalculia. Cognitive neuropsychology, 8(2):155–176, 1991.
doi:10.1080/02643299108253370.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha,
Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, YaGuang Li, Hongrae
Lee, Huaixiu Steven Zheng, Amin Ghafouri, Marcelo Menegali, Yanping Huang,
Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao Chen, Yuanzhong Xu, Zhifeng
Chen, Adam Roberts, Maarten Bosma, Vincent Zhao, Yanqi Zhou, Chung-Ching
Chang, Igor Krivokon, Will Rusch, Marc Pickett, Pranesh Srinivasan, Laichee Man,
Kathleen Meier-Hellstern, Meredith Ringel Morris, Tulsee Doshi, Renelito Delos
Santos, Toju Duke, Johnny Soraker, Ben Zevenbergen, Vinodkumar Prabhakaran,
Mark Diaz, Ben Hutchinson, Kristen Olson, Alejandra Molina, Erin Hoffman-John,
Josh Lee, Lora Aroyo, Ravi Rajakumar, Alena Butryna, Matthew Lamm, Viktoriya
Kuzmina, Joe Fenton, Aaron Cohen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-
Arcas, Claire Cui, Marian Croak, Ed Chi, and Quoc Le. Lamda: Language models
for dialog applications. CoRR, 2022. doi:10.48550/ARXIV.2201.08239.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996. doi:10.1111/j.2517-
6161.1996.tb02080.x.

Andrew Trask, Felix Hill, Scott E Reed, Jack Rae, Chris Dyer, and Phil Blunsom. Neural
arithmetic logic units. In Advances in Neural Information Processing Systems (NeurIPS),
pages 8035–8044, 2018. URL https://openreview.net/pdf?id=H1gNOeHKPS.

Doris Y Tsao, Winrich A Freiwald, Roger BH Tootell, and Margaret S Livingstone. A
cortical region consisting entirely of face-selective cells. Science, 311(5761):670–674,
2006. doi:10.1126/science.1119983.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for
symbolic regression. Science Advances, 6(16), 2020. doi:10.1126/sciadv.aay2631.

https://proceedings.mlr.press/v28/sutskever13.html
https://doi.org/10.5555/3298023.3298188
https://doi.org/10.48550/ARXIV.2002.09864
https://doi.org/10.1080/02643299108253370
https://doi.org/10.48550/ARXIV.2201.08239
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://openreview.net/pdf?id=H1gNOeHKPS
https://doi.org/10.1126/science.1119983
https://doi.org/10.1126/sciadv.aay2631

212 REFERENCES

Paul E Utgoff. Shift of bias for inductive concept learning. Machine learning: An artificial
intelligence approach, 2:107–148, 1986.

Leen Van Beek, Pol Ghesquière, Lieven Lagae, and Bert De Smedt. Left fronto-parietal
white matter correlates with individual differences in children’s ability to solve addi-
tions and multiplications: A tractography study. NeuroImage, 90:117–127, 2014. ISSN
1053-8119. doi:10.1016/j.neuroimage.2013.12.030.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in Neural Information Processing Systems (NIPS), volume 30, pages 6000–6010, 2017.
doi:10.48550/ARXIV.1706.03762.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Ex-
tracting and composing robust features with denoising autoencoders. In Pro-
ceedings of the 25th International Conference on Machine Learning (ICML), page
1096–1103. Association for Computing Machinery, 2008. ISBN 9781605582054.
doi:10.1145/1390156.1390294.

Marco Virgolin and Solon P Pissis. Symbolic regression is NP-hard. Transactions on
Machine Learning Research (TMLR), 2022. ISSN 2835-8856. URL https://openreview

.net/forum?id=LTiaPxqe2e.

Digvijay Wadekar, Leander Thiele, Francisco Villaescusa-Navarro, J. Colin Hill, Miles
Cranmer, David N. Spergel, Nicholas Battaglia, Daniel Anglés-Alcázar, Lars Hern-
quist, and Shirley Ho. Augmenting astrophysical scaling relations with machine
learning: Application to reducing the sunyaev–zeldovich flux–mass scatter. Proceed-
ings of the National Academy of Sciences, 120(12), 2023. doi:10.1073/pnas.2202074120.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh, and Matt Gardner. Do NLP
models know numbers? probing numeracy in embeddings. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5307–5315.
Association for Computational Linguistics, 2019. doi:10.18653/v1/D19-1534.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of
thought reasoning in language models. In International Conference on Learning Rep-
resentations (ICLR), 2023. URL https://openreview.net/forum?id=1PL1NIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H.
Chi, Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reason-
ing in large language models. In Advances in Neural Information Processing Systems
(NeurIPS), 2022. URL https://openreview.net/forum?id=_VjQlMeSB_J.

https://doi.org/10.1016/j.neuroimage.2013.12.030
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.1145/1390156.1390294
https://openreview.net/forum?id=LTiaPxqe2e
https://openreview.net/forum?id=LTiaPxqe2e
https://doi.org/10.1073/pnas.2202074120
https://doi.org/10.18653/v1/D19-1534
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=_VjQlMeSB_J

REFERENCES 213

Sean Welleck, Peter West, Jize Cao, and Yejin Choi. Symbolic brittleness in sequence
models: on systematic generalization in symbolic mathematics. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36, pages 8629–8637, 2022.
doi:10.1609/aaai.v36i8.20841.

Emily Wenger, Mingjie Chen, Francois Charton, and Kristin Lauter. SALSA: Attacking
lattice cryptography with transformers. In Advances in Neural Information Processing
Systems (NeurIPS), 2022. URL https://openreview.net/forum?id=p4xLHcTLRwh.

Matthias Werner, Andrej Junginger, Philipp Hennig, and Georg Martius. Informed
equation learning. CoRR, 2021. doi:10.48550/ARXIV.2105.06331.

Sam Wiseman and Alexander M. Rush. Sequence-to-sequence learning as beam-search
optimization. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1296–1306. Association for Computational Lin-
guistics, November 2016. doi:10.18653/v1/D16-1137.

Matthias Wittlinger, Rüdiger Wehner, and Harald Wolf. The ant odometer: stepping on
stilts and stumps. Science, 312(5782):1965–1967, 2006. doi:10.1126/science.1126912.

D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, 1997. doi:10.1109/4235.585893.

Bo Wu, Haoyu Qin, Alireza Zareian, Carl Vondrick, and Shih-Fu Chang. Ana-
logical reasoning for visually grounded language acquisition. CoRR, 2020.
doi:10.48550/ARXIV.2007.11668.

Zhu Xiao, Fancheng Li, Ronghui Wu, Hongbo Jiang, Yupeng Hu, Ju Ren, Chenglin
Cai, and Arun Iyengar. Trajdata: On vehicle trajectory collection with commod-
ity plug-and-play obu devices. IEEE Internet of Things Journal, 7(9):9066–9079, 2020.
doi:10.1109/JIOT.2020.3001566.

Zhu Xiao, Hui Fang, Hongbo Jiang, Jing Bai, Vincent Havyarimana, Hongyang Chen,
and Licheng Jiao. Understanding private car aggregation effect via spatio-temporal
analysis of trajectory data. IEEE Transactions on Cybernetics, pages 1–12, 2021.
doi:10.1109/TCYB.2021.3117705.

Fei Xu, Elizabeth S Spelke, and Sydney Goddard. Number sense in human infants.
Developmental science, 8(1):88–101, 2005. doi:10.1111/j.1467-7687.2005.00395.x.

Keyulu Xu, Mozhi Zhang, Jingling Li, Simon Shaolei Du, Ken-Ichi Kawarabayashi,
and Stefanie Jegelka. How neural networks extrapolate: From feedforward to graph
neural networks. In International Conference on Learning Representations (ICLR), 2021.
URL https://openreview.net/forum?id=UH-cmocLJC.

https://doi.org/10.1609/aaai.v36i8.20841
https://openreview.net/forum?id=p4xLHcTLRwh
https://doi.org/10.48550/ARXIV.2105.06331
https://doi.org/10.18653/v1/D16-1137
https://doi.org/10.1126/science.1126912
https://doi.org/10.1109/4235.585893
https://doi.org/10.48550/ARXIV.2007.11668
https://doi.org/10.1109/JIOT.2020.3001566
https://doi.org/10.1109/TCYB.2021.3117705
https://doi.org/10.1111/j.1467-7687.2005.00395.x
https://openreview.net/forum?id=UH-cmocLJC

214 REFERENCES

Yutaro Yamada, Ofir Lindenbaum, Sahand Negahban, and Yuval Kluger. Feature se-
lection using stochastic gates. In Proceedings of the 37th International Conference on Ma-
chine Learning (ICML), volume 119 of Proceedings of Machine Learning Research, pages
10648–10659. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119

/yamada20a.html.

Yujun Yan, Kevin Swersky, Danai Koutra, Parthasarathy Ranganathan, and Mi-
lad Hashemi. Neural execution engines: Learning to execute subroutines. In
Advances in Neural Information Processing Systems (NeurIPS), volume 33, 2020.
doi:10.48550/ARXIV.2006.08084.

Dagmar Zeithamova, Margaret Schlichting, and Alison Preston. The hippocampus
and inferential reasoning: building memories to navigate future decisions. Frontiers
in Human Neuroscience, 6, 2012. ISSN 1662-5161. doi:10.3389/fnhum.2012.00070.

Qibo Zhang, Fanzi Zeng, Zhu Xiao, Hongbo Jiang, Amelia C. Regan, Kehua Yang,
and Yongdong Zhu. Toward predicting stay time for private car users: A rnn-
nalu approach. IEEE Transactions on Vehicular Technology, 71(6):6007–6018, 2022.
doi:10.1109/TVT.2022.3164978.

Rui-Xiao Zhang, Tianchi Huang, Ming Ma, Haitian Pang, Xin Yao, Chenglei Wu,
and Lifeng Sun. Enhancing the crowdsourced live streaming: A deep rein-
forcement learning approach. In Proceedings of the 29th ACM Workshop on Net-
work and Operating Systems Support for Digital Audio and Video, NOSSDAV ’19,
pages 55––60. Association for Computing Machinery, 2019a. ISBN 9781450362986.
doi:10.1145/3304112.3325607.

Rui-Xiao Zhang, Ming Ma, Tianchi Huang, Haitian Pang, Xin Yao, Chenglei Wu,
Jiangchuan Liu, and Lifeng Sun. Livesmart: A qos-guaranteed cost-minimum frame-
work of viewer scheduling for crowdsourced live streaming. In Proceedings of the 27th
ACM International Conference on Multimedia, MM ’19, pages 420––428. Association for
Computing Machinery, 2019b. ISBN 9781450368896. doi:10.1145/3343031.3351013.

Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron Courville, Behnam Neyshabur, and
Hanie Sedghi. Teaching algorithmic reasoning via in-context learning. CoRR, 2022.
doi:10.48550/ARXIV.2211.09066.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained ternary
quantization. In International Conference on Learning Representations (ICLR), 2017.
doi:10.48550/ARXIV.1612.01064.

https://proceedings.mlr.press/v119/yamada20a.html
https://proceedings.mlr.press/v119/yamada20a.html
https://doi.org/10.48550/ARXIV.2006.08084
https://doi.org/10.3389/fnhum.2012.00070
https://doi.org/10.1109/TVT.2022.3164978
https://doi.org/10.1145/3304112.3325607
https://doi.org/10.1145/3343031.3351013
https://doi.org/10.48550/ARXIV.2211.09066
https://doi.org/10.48550/ARXIV.1612.01064

	Contents
	Declaration of Authorship
	Acknowledgements
	Definitions and Abbreviations
	1 Introduction
	1.1 High-level Reasoning in Humans
	1.2 Inductive Biases
	1.3 Inductive Biases for System 2
	1.4 A Stepping Stone towards Human Reasoning: Learning Mathematics
	1.4.1 Motivating Specialist Modules over Generic MLPs
	1.4.1.1 Results

	1.4.2 Shortcomings in Mathematical Reasoning when using Transformers
	1.4.3 Representing Numbers in Machine Learning Models
	1.4.3.1 Static Encoding
	1.4.3.2 Learnable Embeddings

	1.5 Discovering Mathematical Expressions for Symbolic Regression
	1.6 Research Questions and Contributions
	1.6.1 Research Questions
	1.6.2 Contributions

	1.7 Thesis Structure

	2 Review of NALMs
	2.1 What are NALMs and Why use them?
	2.1.1 What is a NALM?
	2.1.2 What is the Aim of a NALM?
	2.1.3 Why is a NALM useful?

	2.2 Existing NALMs Architectures
	2.2.1 NALU
	2.2.2 iNALU
	2.2.3 NAU and NMU
	2.2.4 NPU and Real NPU
	2.2.5 G-NALU
	2.2.6 NLRL
	2.2.7 NSR

	2.3 NALU's Shortcomings and Existing Solutions
	2.3.1 Negative Inputs and Negative Outputs
	2.3.2 Gating Parameter Convergence
	2.3.3 Bias Considerations
	2.3.4 Initialisation Considerations
	2.3.5 Division
	2.3.6 Compositionality

	2.4 Applications of the NALU
	2.4.1 Existing Applications
	2.4.2 Applications Where NALU Is Inferior

	2.5 Discussion: Remaining Gaps

	3 Benchmarking Existing and Future Models
	3.1 Two Layer Arithmetic Task
	3.2 Evaluation Metrics
	3.2.1 Evaluation metrics used on the Arithmetic Dataset Task

	3.3 Single Module Arithmetic Task
	3.3.1 Evaluation Metrics
	3.3.1.1 Alternative Options for Generating a Success Threshold

	3.3.2 Results

	3.4 Summary

	4 Multiplication - Improving Robustness via Stochasticity
	4.1 Robustness Issues with Multiplication Modules
	4.1.1 Problem: Inputs that Induce Local Optima

	4.2 A Stochastic Wrapper: The Stochastic NMU (sNMU)
	4.3 Alternate Stochastic Methods
	4.3.1 Stochastic Gating
	4.3.2 Gradient Noise

	4.4 Single Layer Task
	4.5 Arithmetic Dataset Task
	4.6 MNIST Arithmetic
	4.6.1 Static MNIST Product
	4.6.1.1 Isolated Digit Classification
	4.6.1.2 Colour Channel Concatenated Digit Classification

	4.6.2 Sequential MNIST Product

	4.7 Summary

	5 Division - Understanding the Underlying Learning Mechanisms
	5.1 Related Work
	5.2 Architectures
	5.2.1 NRU
	5.2.2 NMRU

	5.3 Single Module Arithmetic Experiment Setup
	5.4 Improving the Real NPU's Robustness
	5.5 Uniform Range Datasets
	5.6 Mixed-Sign Input Datasets
	5.7 More Challenging Distributions: Larger Magnitudes and Mixed-Signs
	5.8 Division by Small Magnitudes
	5.8.1 Impact of the Singularity Issue on Gold Solutions
	5.8.2 Experimental Results

	5.9 Traits of Modules when Learning on the Redundancy Setting
	5.10 MNIST Arithmetic - Isolated Digit Classification
	5.10.1 Setup and Network Architecture
	5.10.2 Metrics and Results

	5.11 Discussion
	5.12 Summary

	6 Factors to Consider when Learning NALMs
	6.1 Feature Scaling
	6.2 Uninformative MSE Loss
	6.3 Alternate Losses: PCC and MAPE
	6.3.1 Arithmetic Dataset Task
	6.3.2 Product of Sequential MNIST
	6.3.3 Division: Different Losses on the Single Module Task (with Redundancy)
	6.3.4 Summary

	7 Compositionality - Learning Multi-Step Operations
	7.1 Task
	7.2 Methods
	7.2.1 MLP
	7.2.2 Quadratic Network
	7.2.3 Stacked NALMs
	7.2.4 Stacked Gated NALMs
	7.2.5 Recurrent Input Selector with Learnable NALMs
	7.2.6 Recurrent Input Selector with Frozen NALMs

	7.3 Results
	7.4 Summary

	8 Conclusions
	8.1 Directions for Future Work
	8.1.1 Input and Module Selection for Compositional NALMs
	8.1.2 Learning Coefficients
	8.1.3 Alternative Encoding of Numbers
	8.1.4 Extension of the Evaluation Suite

	Appendix A Inductive Biases for System 2
	Appendix B Representation of Numbers in Humans, Animals and Computers
	Appendix B.1 Humans
	Appendix B.1.1 How do Humans Process Numbers?

	Appendix B.2 Animals
	Appendix B.3 Computers

	Appendix C Additional NALM Background Information
	Appendix C.1 Module Illustrations
	Appendix C.2 Step-by-step Example using the NALU
	Appendix C.3 Naive NPU Derivation

	Appendix D NALM Benchmarking - Comparisons of Existing Works
	Appendix D.1 Additional Experiments
	Appendix D.2 Cross Module Comparison
	Appendix D.3 Experiments and Findings of Modules for Logic Tasks
	Appendix D.3.1 NLRL
	Appendix D.3.2 NSR

	Appendix E Experiment Details
	Appendix E.1 Benchmark Synthetic Arithmetic Tasks
	Appendix E.1.1 Experiment Parameters
	Appendix E.1.2 Hardware and Runtimes

	Appendix E.2 Multiplication MNIST Experiments
	Appendix E.2.1 Experiment Parameters
	Appendix E.2.2 Hardware and Runtimes

	Appendix E.3 Division Experiments
	Appendix E.3.1 Parameter Initialisation
	Appendix E.3.2 Hardware and Runtimes
	Appendix E.3.3 Summary Table of the Ranges Used for the Single Layer Task

	Appendix E.4 MNIST Product Tasks: Architecture Details
	Appendix E.4.1 Isolated Digits
	Appendix E.4.2 Colour Channel Concatenated Digits
	Appendix E.4.3 Sequential MNIST

	Appendix F Multiplication: Static MNIST Analysis
	Appendix F.1 Class Accuracies
	Appendix F.2 Isolated Digits
	Appendix F.3 Colour Channel Concatenated Digits.
	Appendix F.4 Digit Classification Accuracy over Epochs

	Appendix G Division: Additional Analysis
	Appendix G.1 Properties of a Division Module
	Appendix G.2 NRU; Single Module Task (without Redundancy): Tanh Scale Factor
	Appendix G.3 Real NPU; Single Module Task (without Redundancy)
	Appendix G.4 NRU; the Single Module Task (without Redundancy): Effect of Learning Rate
	Appendix G.5 Real NPU; Single Module Task (with Redundancy)
	Appendix G.6 NMRU; Single Module Task (with Redundancy): Additional Experiments
	Appendix G.7 NRU; Single Module Task (with Redundancy): Calculating the Sign Separately
	Appendix G.8 Division MNIST Arithmetic Task: Effect of Gradient Norm Clip

	Appendix H Gradients of the Arithmetic Dataset Task
	Appendix H.1 MSE Loss for the Arithmetic Dataset Task
	Appendix H.2 Explicit Gradients
	Appendix H.2.1 MSE Loss Partial Derivatives:

	Appendix H.3 Generalised NAU and NMU Partial Derivatives of the loss for a NAU-NMU
	Appendix H.4 Generalised NAU and NMU Partial Derivatives for a NAU-sNMU
	Appendix H.4.1 MSE Loss Definition
	Appendix H.4.2 Loss derivatives wrt NAU and sNMU weights

	References

