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Abstract
Background Chronic sputum production impacts on quality of life and is a feature of many respiratory
diseases. Identification of the genetic variants associated with chronic sputum production in a disease
agnostic sample could improve understanding of its causes and identify new molecular targets for treatment.
Methods We conducted a genome-wide association study (GWAS) of chronic sputum production in UK
Biobank. Signals meeting genome-wide significance (p<5×10−8) were investigated in additional
independent studies, were fine-mapped and putative causal genes identified by gene expression analysis.
GWASs of respiratory traits were interrogated to identify whether the signals were driven by existing
respiratory disease among the cases and variants were further investigated for wider pleiotropic effects
using phenome-wide association studies (PheWASs).
Results From a GWAS of 9714 cases and 48 471 controls, we identified six novel genome-wide
significant signals for chronic sputum production including signals in the human leukocyte antigen (HLA)
locus, chromosome 11 mucin locus (containing MUC2, MUC5AC and MUC5B) and FUT2 locus. The four
common variant associations were supported by independent studies with a combined sample size of up to
2203 cases and 17 627 controls. The mucin locus signal had previously been reported for association with
moderate-to-severe asthma. The HLA signal was fine-mapped to an amino acid change of threonine to
arginine (frequency 36.8%) in HLA-DRB1 (HLA-DRB1*03:147). The signal near FUT2 was associated
with expression of several genes including FUT2, for which the direction of effect was tissue dependent.
Our PheWAS identified a wide range of associations including blood cell traits, liver biomarkers,
infections, gastrointestinal and thyroid-associated diseases, and respiratory disease.
Conclusions Novel signals at the FUT2 and mucin loci suggest that mucin fucosylation may be a driver of
chronic sputum production even in the absence of diagnosed respiratory disease and provide genetic
support for this pathway as a target for therapeutic intervention.

Introduction
Increased sputum production impacts on daily activities and quality of life, and is a shared feature of many
respiratory diseases. Worldwide, 545 million people have chronic respiratory conditions, with those
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associated with chronic sputum production including COPD, asthma, bronchiectasis, chronic bronchitis and
cystic fibrosis. Chronic respiratory disease is the third leading cause of death worldwide, with 3.91 million
deaths in 2017 [1].

The determinants of chronic sputum production in disease are not completely understood [2]. Most studies
of excess sputum production have been in subjects with chronic bronchitis and COPD where it has been
associated with lower lung function [3, 4] and higher risk of both exacerbation and respiratory symptoms [5].
Risk factors for excess sputum production include smoking and occupational and environmental pollutants
[4, 6–8]. Currently available drug treatments for those with chronic sputum production do not generally
affect the rate of production of sputum, but act as mucolytics and expectorants [9–11].

Genome-wide association studies (GWASs) have highlighted pathways underlying a range of respiratory
traits and diseases, and highlighted potentially relevant drug targets [12, 13]. Previous GWASs of sputum
production [14–17] have not identified any genome-wide significant findings.

We hypothesised that identifying genetic variants that are associated with chronic sputum production in a
large general population sample could improve understanding of its causes and identify new molecular
targets for treatment. To test this hypothesis, we undertook a GWAS of risk of chronic sputum production
in 9714 cases and 48 471 controls from UK Biobank, and sought replication of the association signals in
five additional independent studies totalling 2203 cases and 17 627 controls. We performed phenome-wide
association studies (PheWASs) and interrogation of gene expression data to characterise the association
signals and determine which genes may be driving these signals.

Methods
Study population
Information about chronic sputum production was obtained from the online lifetime occupation survey that
was e-mailed to 324 653 UK Biobank participants with existing e-mail addresses between June and
September 2015 and achieved a response rate of 38% (31% of all of those contacted provided a full
completion of the questionnaire [18]). For this study, we defined cases as those who answered “Yes” to the
question “Do you bring up phlegm/sputum/mucus daily?” (UK Biobank data-field 22504; a total of 121
283 participants provided a “Yes” or “No” response). Controls were defined as those who answered “No”
to this question. Cases and controls were further restricted to those of genetically determined European
ancestry, as previously defined [19], with available smoking data (UK Biobank data-field 20160). Related
individuals were removed, with cases preserved over controls when excluding one of a pair (or more) of
related individuals (UK Biobank data-field 22021; “related” defined as a KING kinship coefficient
⩾0.0884, equivalent to second-degree relatedness or closer). For related pairs within the cases or controls,
the individual with the lowest genotype missingness (UK Biobank data-field 22005) was retained. From all
available controls, we defined a subset of controls with a similar age (UK Biobank data-field 34) and sex
(UK Biobank data-field 31) distribution to the cases at a 1:5 ratio with the cases.

Demographics and respiratory characteristics of the case and controls were derived using the following
definitions: doctor-diagnosed asthma (UK Biobank data-field 22127), moderate-to-severe asthma (as
previously described [20]), doctor-diagnosed chronic bronchitis (UK Biobank data-field 22129), cough on
most days (UK Biobank data-field 22502), smoking status (UK Biobank data-field 20160), COPD Global
Initiative for Chronic Obstructive Lung Disease (GOLD) stage 1–4 and stage 2–4 (defined using baseline
spirometry as previously described [19, 21]), and bronchiectasis and cystic fibrosis (supplementary tables
S1 and S2).

UK Biobank has ethical approval from North West – Haydock Research Ethics Committee (21/NW/0157).
Written informed consent was provided by all participants.

GWAS of chronic sputum production
Genetic data from the v3 March 2018 UK Biobank data release, imputed to the Haplotype Reference
Consortium panel r1.1 2016, were used for the GWAS, giving 27 317 434 variants for analysis.

Association testing was performed using logistic regression under an additive genetic model in PLINK 2.0
[22] with age, sex, array version, never/ever-smoking status and the first 10 principal components of
ancestry as covariates. Variants were excluded if they had an imputation quality INFO score <0.5 or a
minor allele count (MAC) <20. Association signals were considered genome-wide significant at p<5×10−8.
Independent signals were initially defined using a 1-Mb window (500 kb each side of the sentinel variant)
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and then using conditional analyses implemented in GCTA-COJO [23]. All variant coordinates are for
genome build GRCh37. Region plots were created using LocusZoom [24].

Replication
We sought replication in five general population cohorts which surveyed participants for chronic sputum
production: Generation Scotland [25], EXCEED Study [26], LifeLines 1, LifeLines 2 and
Vlagtwedde-Vlaardingen [17]. Further details are provided in the supplementary material.

In addition, the overlap of primary care sputum codes with the chronic sputum production question (UK
Biobank data-field 22504) was evaluated to identify whether primary care codes could be used to define
an additional independent case–control dataset from those in UK Biobank who did not respond to the
online lifetime occupation survey (supplementary material).

Fine-mapping
We undertook Bayesian fine-mapping for all genome-wide significant signals that were not in the human
leukocyte antigen (HLA) region to define 99% credible sets of variants, i.e. sets of variants that are 99%
probable to contain the true causal variant (assuming that it has been measured).

To fine-map signals within the HLA region (chromosome 6:29 607 078–33 267 103 (b37)) to a specific
HLA gene allele or amino acid change, we re-imputed our discovery samples using IMPUTE2 v2.3.1 with
a reference panel that enabled imputation of 424 classical HLA alleles and 1276 amino acid changes as
described in JIA et al. [27]. We then repeated the association testing as described earlier.

Mapping association signals to putative causal genes
We used functional annotation and colocalisation with expression quantitative trait loci (eQTL) signals to
identify putative causal genes at each signal.

Annotation of the variants in each credible set was performed using SIFT [28], PolyPhen-2 and CADD, all
implemented using the Ensemble GRCh37 Variant Effect Predictor (VEP) [29], alongside FATHMM [30].
Variants were annotated as deleterious if they were labelled deleterious by SIFT, probably damaging or
possibly damaging by PolyPhen-2, damaging by FATHMM (specifying the “Inherited Disease” option of
the “Coding Variants” method and using the “Unweighted” prediction algorithm), or had a CADD scaled
score ⩾20.

We queried the sentinel variants in GTEx V8 [31] and BLUEPRINT [32] (see supplementary table S3 for
list of tissues). We tested for colocalisation of GWAS and eQTL signals using coloc [33]; H4 >80% was
used to define a shared causal variant for eQTL and GWAS signals.

Associations with other phenotypes
To investigate whether the signals of association with sputum production were driven by underlying
respiratory phenotypes of the cases, a look-up for each signal was undertaken for 14 respiratory or
respiratory-related traits from GWAS results: moderate-to-severe asthma (ncases=5135, ncontrols=25 675)
[20], lung function (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC and
peak expiratory flow (PEF)) (n=400 102) [19], respiratory infection (ncases=19 459, ncontrols=101 438) [34],
chronic cough (ncases=15 213, ncontrols=94 731), chronic bronchitis (ncases=977, ncontrols=108 967), idiopathic
pulmonary fibrosis (IPF) (ncases=2668, ncontrols=8591) [35], smoking traits (smoking age of onset
(n=124 590), smoking cessation (ncases=141 649, ncontrols=27 321), smoking cigarettes per day (n=120 744)
and smoking initiation (ncases=170 772, ncontrols=212 859)) and asthma (ncases=23 948, ncontrols=118 538) [36].
Smoking trait results were from the UK Biobank component of JIANG et al. [37]; chronic cough and chronic
bronchitis were defined for this study using UK Biobank data (supplementary material). Where the sentinel
variant was not available in the look-up dataset, we utilised an alternative variant from the credible set with
the highest posterior probability of being causal. A Bonferroni adjustment for 84 association tests was
applied requiring a p<5.95×10−4 for association to be classified as statistically significant. Imputed HLA
gene allele or amino acid changes were used for signals in the HLA region.

To investigate associations of the chronic sputum-associated variants with a wider range of phenotypes, we
performed a PheWAS for 2172 traits in UK Biobank (false discovery rate <0.01; supplementary material)
and searched the Open Targets Genetics Portal (p<5×10−8, version 0.4.0 (bd664ca); accessed 16 April
2021 [38]). PheWAS for imputed HLA alleles was performed using DeepPheWAS (supplementary
material) [39].
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Sensitivity analyses
To further investigate whether the effects of the variants associated with risk of chronic sputum production
differ between ever- and never-smokers, or between individuals with and without a history of chronic
respiratory disease (spirometry-defined COPD GOLD 1–4, doctor-diagnosed asthma or doctor-diagnosed
chronic bronchitis), we tested the association of sentinel variants in ever- and never-smokers and those
with and without evidence of chronic respiratory disease separately. We additionally evaluated whether the
associations differed between males and females or by the time of year of the survey (UK Biobank
data-field 22500). Finally, we evaluated whether adjusting for current smoking (UK Biobank data-field
22506) (rather than ever- versus never-smoker status) affected the results.

Results
A total of 10 481 participants answered “Yes” to the question “Do you bring up phlegm/sputum/mucus
daily?” and 110 802 answered “No” (supplementary table S4). After excluding those with missing
genotype and essential covariate data, and those of genetically determined European ancestry, a total of
9714 cases and 48 471 controls (figure 1) were included in the GWAS. Ever-smoking and respiratory
disease were more common in the cases than in the controls (table 1). The genomic control inflation factor
(λ) was 1.026, so no adjustments to the test statistics were applied (supplementary figure S1). Six
independent novel signals met the genome-wide significance threshold of p<5×10−8 (table 2 and
supplementary figure S2). These were four common variant signals (minor allele frequency >5%) in or
near MUC2, FUT2, HLA-DRB1 and NKX3-1, and two intronic rare variant signals (minor allele frequency
<1%) in OCIAD1 and NELL1 (figure 2).

No systematic differences were seen in effect sizes when stratifying by smoking status, by history of
chronic respiratory disease, by sex, by time of year of survey or when including current smoking status as
a covariate (supplementary table S5 and supplementary figures S3–S8) for the six sentinel variants.
Through comparison of survey responses and linked primary care data we showed that primary care codes

Original sample

    n  121 284

    ncases  10 481

    ncontrols  110 803

Available genetic data

    n  117 116

    ncases  10 134

    ncontrols  106 932

Participants with no genetic 

    data (n=4168)

Participants with missing 

    covariates (n=4419)

Participants of non-European

    ancestry (n=2730)

Available genetic/covariate data

    n  112 697

    ncases  9737

    ncontrols  102 960

European with genetic/covariate

    data

    n  109 967

    ncases  9714

    ncontrols  100 253

Excess controls (n=51 782)

Controls matched age+sex 5:1

    control–case

    n  58 185

    ncases  9714

    ncontrols  48 471

FIGURE 1 Study flowchart detailing case–control selection from the UK Biobank cohort.
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were not adequate proxies for the survey responses (supplementary material). We sought replication in five
independent cohorts with a combined sample size of 1977 cases and 17 627 controls; data from all five
replication cohorts were only available for the FUT2 locus. Although none of the signals met criteria for
significance in a meta-analysis of the replication cohorts, the directions of effect were consistent with the
discovery results for the signals in or near MUC2, FUT2, OCIAD1, HLA-DRB1 and NKX3-1, and all
except the signals at NELL1 and HLA-DRB1 also increased in significance when the replication and
discovery results were meta-analysed (table 2, supplementary table S13 and supplementary figure S9).

Novel associations with chronic sputum production
HLA locus
The HLA signal was fine-mapped to an amino acid change of threonine to arginine (frequency 36.8%) at
codon 233 of exon 5 of HLA-DRB1 (HLA-DRB1*03:147) that was associated with decreased risk (OR

TABLE 1 Demographics and characteristics of cases and controls included in the genome-wide association
study of chronic sputum production

Cases (n=9714) Controls (n=48 471)

Mean age (years) 57.7 57.7
Female (%) 42.5 42.5
Smoking status
Ever-smoker 5306 (54.6) 20 912 (43.1)
Current smoker 983 (10.2) 1569 (3.2)

Doctor-diagnosed chronic bronchitis 407 (4.2) 416 (0.86)
Doctor-diagnosed asthma 2630 (27.1) 5251 (10.8)
Cough on most days 7022 (72.3) 3999 (8.3)
Moderate-to-severe asthma 520 (5.4) 521 (1.1)
Self-reported chronic sinusitis 181 (1.9) 1057 (2.2)
Meets spirometry criteria for GOLD 1–4 1511 (21.8)# 4766 (13.1)#

Data are presented as n (%), unless otherwise stated. COPD: Global Initiative for Chronic Obstructive Lung
Disease. #: ncases=6942 and ncontrols=36 321 with available spirometry that passed quality control.

TABLE 2 Novel genome-wide significant signals of association with chronic sputum production

Chromosome:
position
(GRCh37)

rsID Locus
(distance
from gene
(bp))#

Coded/
noncoded

Coded allele
frequency

(% (count))¶

OR (95 CI) p-value INFO+ Variants in 99%
credible set
(n (highest
posterior

probability))

4:48 854 355 rs79998532 OCIAD1
(intronic)

A/G 0.2 (233) Discovery 2.36 (1.76–3.16) 8.00×10−09 0.92 3 (0.86)
Replication 3.3 (0.11–98.6) 0.49
Meta-analysis 2.37 (1.77–3.17) 6.36×10−09

6:32 496 534 rs374248993 HLA-DRB1§ G/C 57 (66 355) Discovery 1.12 (1.08–1.16) 7.30×10−11 0.87 HLA-DRB1*03:147§

Replication 1.01 (0.84–1.21) 0.93
Meta-analysis 1.11 (1.08–1.15) 1.31×10−10

8:23 480 686 rs79401075 NKX3-1
(59 765)

A/G 10 (11 620) Discovery 1.18 (1.12–1.24) 8.90×10−11 0.98 30 (0.32)
Replication 1.20 (0.95–1.52) 0.12
Meta-analysis 1.18 (1.12–1.24) 2.65×10−11

11:1 116 931 rs779167905 MUC2
(12 513)

T/TTCTA 67 (78 158) Discovery 1.12 (1.08–1.16) 1.20×10−10 0.98 30 (0.15)
Replication 1.09 (0.93–1.28) 0.29
Meta-analysis 1.12 (1.08–1.15) 6.99×10−11

11:20 887 601 rs529240826 NELL1
(intronic)

GC/G 0.51 (588) Discovery 1.91 (1.52–2.4) 2.50×10−08 0.67 2 (0.83)
Replication 0.83 (0.38–1.78) 0.63
Meta-analysis 1.79 (1.44–2.22) 1.99×10−07

19:49 206 417 rs492602 FUT2
(exonic)

G/A 51 (58 803) Discovery 1.11 (1.08–1.15) 3.20×10−11 1 32 (0.07)
Replication 1.06 (1–1.14) 0.07
Meta-analysis 1.10 (1.07–1.13) 1.21×10−11

#: start or end of nearest gene; ¶: values for discovery single nucleotide polymorphisms; +: INFO score (imputation quality) taken from discovery;
§: amino acid change of threonine to arginine at codon 233 of exon 5 of HLA-DRB1 (HLA gene allele HLA-DRB1*03:147).
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0.91 (95% CI 0.88–0.94)) of chronic sputum production (p=3.43×10−9). The amino acid change was in
linkage disequilibrium with the GWAS sentinel variant rs374248993 (linkage disequilibrium r2=0.74 with
HLA-DRB1*03:147) and the signal for rs374248993 was attenuated when conditioned on the amino acid
change (supplementary figures S10 and S11).
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HLA-DRB1*03:147 was significantly associated with FEV1, FEV1/FVC and PEF at genome-wide
significance (p<5×10−8) (figure 3 and supplementary table S6). The amino acid associated with increased
risk of chronic sputum production (threonine) was associated with increased lung function; this had not
been previously reported. The HLA PheWAS identified multiple significant associations for the HLA
allele associated with increased risk of chronic sputum production with a wide range of quantitative traits
(e.g. blood cell traits and liver biomarkers) and diseases (including decreased risk of gastrointestinal and
thyroid-associated diseases, and increased risk of bronchiectasis and asthma) (supplementary table S7).

MUC2 locus
For the mucin locus signal (rs779167905 allele T), the allele associated with risk of chronic sputum
production was also significantly associated with increased risk of asthma (OR 1.06; p=0.0027) and
moderate-to-severe asthma (OR 1.13; p=6.3×10−7), increased FVC (β=0.0087; p=6×10−4) and decreased
risk of IPF (OR 0.84; p=7.5×10−6) (figure 3 and supplementary table S6). There were no associations with
gene expression for rs779167905 in GTEx or BLUEPRINT. However, we have previously shown that a
proxy of rs779167905 (rs11602802, r2=0.94) was associated with mRNA levels of MUC5AC in bronchial
epithelial brush samples collected from asthma patients, with the risk allele being associated with elevated
MUC5AC expression [20].

Genome-wide significant associations with IPF [40] and moderate-to-severe asthma [20] have previously
been reported at this chromosome 11 locus, so we undertook a conditional analysis to identify whether the
chronic sputum production signal was independent of these previous signals. Repeating the association
testing for this variant conditioning on the previously reported variants (rs35705950 [40] and rs11603634
[20]) identified that the chronic sputum production GWAS signal was independent of the IPF signal
(rs779167905, conditional p=1.18×10−10) but was not independent of the previously reported
moderate-to-severe asthma signal (rs779167905, conditional p=0.0039) (supplementary figures S12 and
S13). Furthermore, the IPF association for rs779167905 (using proxy single nucleotide polymorphism
(SNP) rs10902094) was also attenuated when conditioned on rs35705950 (OR 0.99; p=0.784).
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Our PheWAS and Open Targets Genetics Portal analysis identified that the MUC2 locus signal
(rs779167905) allele that was associated with increased risk of chronic sputum production (allele T) was
associated with higher risk of asthma and asthma-related traits in other studies [41–43] and with lower risk
of gall bladder disease (supplementary tables S7 and S8).

FUT2 locus
The FUT2 credible set included two variants that were annotated as functional using VEP. This included a
stop-gain variant in FUT2 (rs601338, linkage disequilibrium r2=0.992 with sentinel rs492602) and a
nearby missense variant (rs602662, r2=0.882 with sentinel rs492602) that resulted in a glycine to serine
amino acid change for the allele positively correlated with the chronic sputum production risk allele
(supplementary tables S9 and S10).

Sentinel variant rs492602 at the FUT2 locus was associated with gene expression for FUT2, NTN5,
RASIP1, SEC1P and MAMSTR, for which there was support for colocalisation of eQTL and GWAS signals
in multiple tissues from GTEx V8 (figure 4 and supplementary table S11). Increased risk of chronic
sputum production was consistently correlated with increased expression of NTN5 and MAMSTR across a
range of tissues. In contrast, the direction of the FUT2 expression signal varied by tissue, with increased
risk of chronic sputum production correlated with decreased expression of FUT2 in brain tissues and with
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increased expression in gastrointestinal tissue. There were no associations in lung tissue and upper airway
tissues were not available.

The sentinel variant for the FUT2 region signal on chromosome 19 (rs492602) was associated with lung
function measures FEV1/FVC and PEF (p=2.2×10−6 and p=1.1×10−6, respectively), with the chronic
sputum production risk allele (G) associated with decreased lung function (figure 3 and supplementary
table S6).

Our PheWAS and Open Targets Genetics Portal analysis for this variant identified 141 associations
spanning multiple disease areas, phenotypes and biomarkers (supplementary tables S7 and S8). In
summary, the allele associated with increased risk of chronic sputum production was associated with
increased risk of gallstones [42, 44, 45], type 1 diabetes [46] and Crohn’s disease [47–50], elevated
vitamin B12 [51–54] and cholesterol and fat metabolites [41, 42, 55–59], hypertension/cardiovascular
disease [41, 42, 44], excess alcohol with associated sequelae [44, 60–62], and increased risk of mumps
and lower risk of childhood ear infections [63]. Higher risk of chronic sputum production was also
associated with higher levels of γ-glutamyl transferase, total bilirubin and aspartate amino transferase, and
lower levels of alanine aminotransferase and alkaline phosphatase.

Other novel loci
Using functional annotation of variants and eQTL analysis, no putative causal genes could be assigned to
the signals in or near OCIAD1 and NELL1. There was a single colocalising eQTL for SLC25A37 in the
NKX3-1 locus with increased risk of chronic sputum production associated with a reduced expression of
SLC25A37 in brain cortex (supplementary table S11 and supplementary figure S14).

Discussion
We describe a GWAS of chronic sputum production to identify genome-wide significant signals, and our
novel findings implicate genes involved in mucin production and fucosylation, as well as the HLA class II
histocompatibility antigen, HLA-DRB1. We provide functional evidence that the SNP signals we identify
are associated with gene expression of FUT2, MUC5AC and SLC5A37.

Smoking is believed to be the main cause of excess sputum production, and is also associated with chronic
infections, reduced lung function and susceptibility to chronic respiratory disease. Through identification of
genetic association signals that are independent of smoking and history of chronic respiratory disease, our
study demonstrates the value in studying a disease-relevant phenotype in a very large population that is
agnostic to respiratory disease or smoking status.

The most significant signal implicated the gene FUT2 which has been widely studied for its role in blood
group antigen expression and association with gastric and respiratory infection. FUT2 encodes
fucosyltransferase 2 which mediates the transfer of fucose to the terminal galactose on glycan chains of
cell surface glycoproteins and glycolipids. FUT2 creates a soluble precursor oligosaccharide called the H
antigen, FuC-α((1,2)Galβ-), which is an essential substrate for the final step in the soluble ABO blood
group antigen synthesis pathway. The FUT2 locus allele associated with increased risk of chronic sputum
production in this study is correlated with a nonsense allele that leads to inactivated FUT2 which results in
a nonsecretory phenotype of ABO(H) blood group antigens [64] for homozygous carriers. This nonsense
allele (rs601338 allele A) has frequencies of 25–50% in South Asian, European and African populations,
but is rare (<1%) in East Asian populations [65]. Candidate gene studies of this locus have identified that
nonsecretors (at increased risk of chronic sputum production according to our study) have a lower risk of
Helicobacter pylori infection [66], rotavirus A infection [67, 68], norovirus infection [69–71], infant
(12–24 months) respiratory illness [72], asthma exacerbations [73], otitis media [74], exacerbation in
non-cystic fibrosis bronchiectasis and Pseudomonas aeruginosa airway infection in the same group [75], some
evidence of slower HIV progression [71], and a higher risk of pneumococcal and meningococcal infection
[76]. The T allele of another variant in high linkage disequilibrium at this locus (rs681343, r2=0.996 with
rs492602), associated with increased risk of chronic sputum production in our study, was recently reported
to be associated with increased risk of human polyomavirus 1 (BKV) virus infection, as measured by
antibody response [77]. A recent GWAS of critically ill cases of coronavirus disease 2019 (COVID-19)
(ncases=7491) showed that the risk allele for chronic mucus production (G) of rs492602 was protective
against life-threating COVID-19 (OR 0.88 (95% CI 0.87–0.90); p=4.55×10−9) [78]. However, this finding
was not replicated in the latest COVID-19 Host Genetics Initiative results for a similar phenotype [79]. The
differing directions of effect of this signal on different phenotypes may be explained by the SNP effects on
FUT2 expression which differ across cell and tissue types. Further targeted experiments in relevant cell
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and tissue types would be needed to elucidate this and define the likely effects of targeting FUT2 directly
or indirectly.

Epitopes that are fucosylated by FUT2 play a role in cell–cell interaction, including host–microbe
interaction [80, 81], and mediate interaction with intestinal microbiota, thereby influencing its composition
[82–85]. While there has been no direct evidence of host–pathogen binding on the FUT2 generated
epitopes for nongastrointestinal infection, there is evidence that FUT2 can influence nonbinding ligands
such as sialic acid [86]. Sialic acid binding has been shown to be important for adenovirus binding in cell
models [87] and modulating this binding has been implicated as a possible mechanism for increasing risk
of mumps infection [63].

FUT2 may also be key to the function of mucins, including those encoded by genes at our other
significant locus (i.e. MUC2, MUC5AC and MUC5B). Mucins are a major constituent of airway mucus
and MUC5AC is major gel-forming mucin secreted by airway epithelial cells. FUT2 may play a key role in
MUC5AC regulation leading to excess mucus production or its increased viscosity, a common
characteristic observed in patients with airway obstructive diseases including asthma, bronchitis and
COPD. Analysis of oligosaccharides released from insoluble colonic mucins, largely Muc2, by mass
spectrometry shows complete lack of terminal fucosylation of O-linked oligosaccharides in Fut2-LacZ-null
mice [88]. FUT2 has also been shown to determine the O-glycosylation pattern of Muc5ac in mice [89].
The significant signal at MUC2 in our analysis was not independent of the previously reported
moderate-to-severe asthma signal [20] for which MUC5AC was implicated as the most likely causal gene
using gene expression data from bronchial epithelial cells. In that study we went on to show that the signal
(rs11602802 used as proxy) was associated with mRNA levels of MUC5AC in bronchial epithelial brush
samples collected from asthma patients, with the risk allele being associated with elevated MUC5AC.
There was also a nonsignificant trend for MUC5B to have a reduced mRNA level in the presence of the
moderate-to-severe asthma risk allele. These ex vivo observations have recently been replicated in nasal
epithelial cell brush samples in an independent cohort and extended to show this signal (rs12788104
within the credible set of MUC2 signal) regulates MUC5AC protein levels in vitro using nasal epithelial
cells from genotyped subjects in the air–liquid interface model [90]. Although our analysis did not identify
an association at the MUC2 locus with COPD-related traits (FEV1 and FEV1/FVC), a recent study has also
highlighted MUC5AC as a potential biomarker for COPD prognosis [91].

The particular allele that was found to explain the association signal in the HLA region
(HLA-DRB1*03:147 [92]) has only recently been reported and so there is limited information about
functionality. Associations of this allele with other GWAS traits should be interpreted with caution given
the high linkage disequilibrium across the region. Furthermore, the association of this allele with increased
sputum production and increased lung function reminds us that increased sputum production is part of the
adaptive immune response to environmental insult and approaches to target mucus production must also
consider potential negative effects of reducing sputum production.

We only report overlap of chronic sputum production association signals with association signals for gene
expression regulation where there is statistical support that these signals share a causal variant. In addition
to a comprehensive PheWAS, we provide a deeper assessment of associations with relevant respiratory
phenotypes that highlights previously unreported associations with lung function for the HLA-DRB1 and
FUT2 signals.

As only a subset of UK Biobank participants provided answers to the sputum production question, we
expected that we might be able to define a replication case–control dataset from the remaining >300 000
participants using primary care data. However, evaluation of the positive predictive value of primary care
codes for sputum production, when compared with the questionnaire data, was very low (supplementary
material). This could reflect a low utilisation of sputum codes in primary care or that participants have not
reported this symptom to their general practitioner. We obtained supportive evidence for four of the signals
utilising data from five general population cohorts. The limited sample size (the case sample size for
replication was 23% of the size available for discovery) impacted our ability to show statistically
significant replication. Furthermore, we note that, for three of the replication cohorts (LifeLines 1,
LifeLines 2 and Vlagtwedde-Vlaardingen), the sputum production question asked specifically about winter
symptoms, while the UK Biobank survey did not restrict to any specific season. However, given the strong
evidence summarised earlier for the involvement of the probable causal genes in control of pathways
relevant to mucus production, we believe the associations identified are highly likely to be real. Due to
very low numbers, we were unable to evaluate the effects of these signals in individuals of non-European
ancestry, thereby limiting the generalisability of our findings to non-European ancestry groups. Efforts are
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urgently needed to improve diversity in genomics research [93] such as the planned Our Future Health
initiative in the UK. In summary, the HLA, MUC2 and FUT2 loci show strong candidacy for a role in
sputum production, with overlap with infection and related phenotypes and known mechanistic interactions
between the genes at the FUT2 and MUC2 loci, suggesting that these signals are likely to be robust. The
large number of associations of the FUT2 locus with a broad array of phenotypes, tissue-dependent
expression of FUT2 and association with expression of other genes in the region may have implications for
drug targeting guided by this locus. Experimental studies to characterise the specific interplay between
FUT2 activity and mucin genes expressed in the airways are warranted.

Conclusions
Chronic sputum production is a phenotype characteristic of several respiratory diseases, as well as being a
common cause for referrals in the absence of overt disease, and is of interest for pharmaceutical
intervention. We report novel genetic factors which influence chronic sputum production and these signals
highlight fucosylation of mucin as a driving factor of chronic sputum production. These signals could
provide insight into the molecular pathways of sputum production and represent potential future targets for
drug development [94].

Data availability: Genome-wide association statistics from the case–control analysis of chronic sputum production
will be made available via GWAS Catalog (GCP000629).
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