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Abstract
Thegaugegroupof a principalG-bundle P over a space X is the groupofG-equivariant
homeomorphisms of P that cover the identity on X . We consider the gauge groups
of bundles over S4 with Spinc(n), the complex spin group, as structure group and
show how the study of their homotopy types reduces to that of Spin(n)-gauge groups
over S4. We then advance on what is known by providing a partial classification for
Spin(7)- and Spin(8)-gauge groups over S4.
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1 Introduction

Let G be a topological group and X a space. The gauge group G(P) of a principal
G-bundle P over X is defined as the group of G-equivariant bundle automorphisms
of P which cover the identity on X . A detailed introduction to the topology of gauge
groups of bundles can be found in [24, 42]. The study of gauge groups is important
for the classification of principal bundles, as well as understanding moduli spaces
of connections on principal bundles [7, 50, 52]. As is well known, Donaldson [12]
discovered a deep link between the gauge groups of certain SU(2)-bundles and the
differential topology of 4-manifolds.

Key properties of gauge groups are invariant under continuous deformation and so
studying their homotopy theory is important. Having fixed a topological group G and
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a space X , an interesting problem is that of classifying the possible homotopy types
of the gauge groups G(P) of principal G-bundles P over X .

Crabb and Sutherland showed [8, Theorem 1.1] that if G is a compact, connected,
Lie group and X is a connected, finite CW-complex, then the number of distinct
homotopy types of G(P), as P → X ranges over all principal G-bundles over X , is
finite. In fact, since isomorphic G-bundles give rise to homeomorphic gauge groups,
it will suffice to the let P → X range over the set of isomorphism classes of principal
G-bundles over X .

Explicit classification results have been obtained, especially for the case of gauge
groups of bundles with low rank, compact, Lie groups as structure groups and X =
S4 as base space. In particular, the first such result was obtained by Kono [31] in
1991. Using the fact that isomorphism classes of principal SU(2)-bundles over S4 are
classified by k ∈ Z ∼= π3(SU(2)) and denoting by Gk the gauge group of the principal
SU(2)-bundle Pk → S4 corresponding to the integer k, Kono showed that there is a
homotopy equivalence Gk � Gl if and only if (12, k) = (12, l), where (m, n) denotes
the greatest common divisor ofm and n. Since 12 has six divisors, it follows that there
are precisely six homotopy types of SU(2)-gauge groups over S4.

Results formally similar to that of Kono have been obtained for principal bun-
dles over S4 with different structure groups, among others, by: Hamanaka and Kono
[17] for SU(3)-gauge groups; Theriault [53, 54] for SU(n)-gauge groups, as well as
[48] for Sp(2)-gauge groups; Cutler [9, 10] for Sp(3)-gauge groups and U(n)-gauge
groups; Kishimoto and Kono [27] for Sp(n)-gauge groups; Kishimoto, Theriault and
Tsutaya [30] for G2-gauge groups; Kamiyama, Kishimoto, Kono and Tsukuda [25]
for SO(3)-gauge groups; Kishimoto, Membrillo-Solis and Theriault [29] for SO(4)-
gauge groups; Hasui, Kishimoto, Kono and Sato [20] for PU(3)- and PSp(2)-gauge
groups; and Hasui, Kishimoto, So and Theriault [21] for bundles with exceptional Lie
groups as structure groups.

There are also several classification results for gauge groups of bundles with base
spaces other than S4 [2, 16, 18, 20, 22, 23, 28, 32, 33, 35, 36, 39–41, 43, 45, 46, 51,
55, 57].

The complex spin group Spinc(n)was first introduced in 1964 in a paper of Atiyah,
Bott and Shapiro [4]. There has been an increasing interest in the Spinc(n) groups ever
since the publication of the Seiberg–Witten equations for 4-manifolds [58], whose
formulation requires the existence of Spinc(n)-structures, and more recently for the
role they play in string theory [6, 13, 44].

In this paper we examine Spinc(n)-gauge groups over S4. We begin by recalling
some basic properties of the complex spin group Spinc(n) and showing that it can be
expressed as a product of a circle and the real spin group Spin(n). For n � 6, we show
that this decomposition is reflected in the corresponding gauge groups.

Theorem 1.1 For n � 6 and any k ∈ Z, we have

Gk(Spin
c(n)) � S1×Gk(Spin(n)).

The homotopy theory of Spinc(n)-gauge groups over S4 therefore reduces to that of
the corresponding Spin(n)-gauge groups. We advance on what is known on Spin(n)-
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gauge groups by providing a partial classification for Spin(7)- and Spin(8)-gauge
groups over S4.

Theorem 1.2 (a) If (168, k) = (168, l), there is a homotopy equivalence

Gk(Spin(7)) � Gl(Spin(7))

after localising rationally or at any prime.
(b) If Gk(Spin(7)) � Gl(Spin(7)) then (84, k) = (84, l).

We note that the discrepancy by a factor of 2 between parts (a) and (b) is due to the
same discrepancy for G2-gauge groups.

Theorem 1.3 (a) If (168, k) = (168, l), there is a homotopy equivalence

Gk(Spin(8)) � Gl(Spin(8))

after localising rationally or at any prime.
(b) If Gk(Spin(8)) � Gl(Spin(8)) then (28, k) = (28, l).

For the Spin(8) case, in addition to the same 2-primary indeterminacy appearing
in the Spin(7) case, there are also known [26, 49] difficulties at the prime 3 due to the
non-vanishing of π10(Spin(8))(3).

2 Spinc(n) groups

For n � 1, the complex spin group Spinc(n) is defined as the quotient

Spin(n)×U(1)

Z/2Z

where Z/2Z ∼= {(1, 1), (−1,−1)} ⊆ Spin(n)×U(1) denotes the central subgroup of
order 2. The group Spinc(n) is a special case of the more general notion of Spink(n)

group introduced in [1].
The first low rank Spinc(n) groups can be identified as follows:

• Spinc(1) ∼= U(1) � S1;
• Spinc(2) ∼= U(1)×U(1) � S1× S1;
• Spinc(3) ∼= U(2) � S1× S3;
• Spinc(4) ∼= {(A, B) ∈ U(2)×U(2) | det A = det B}.

The group Spinc(n) fits into a commutative diagram

{±1} {(1, 1), (−1,−1)} {±1}

Spin(n) Spin(n)× S1 S1

SO(n) Spinc(n) S1,

pr1 pr2

λ

pr1 pr2

q 2
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whereq is the quotientmap,λ : Spin(n) → SO(n) denotes the double coveringmap of
the group SO(n) by Spin(n) and 2 : S1→ S1 denotes the degree 2 map. Furthermore,
we observe that the map

λ×2 : Spinc(n) → SO(n)× S1

is a double covering of SO(n)× S1 by Spinc(n).

3 Method of classification

A principal bundle isomorphism determines a homeomorphism of gauge groups
induced by conjugation [42]. We therefore begin by considering isomorphism classes
of principal Spinc(n)-bundles over S4. These are classified by the free homotopy
classes of maps S4→ BSpinc(n). Since Spinc(n) is connected, BSpinc(n) is simply-
connected and hence there are isomorphisms

[S4,BSpinc(n)]free ∼= π3(Spin
c(n)) ∼= π3(SO(n)) ∼=

⎧
⎪⎨

⎪⎩

0 n = 1, 2,

Z
2 n = 4,

Z n = 3, n � 5.

Remark 3.1 Note that for n = 3 we have Spinc(3) ∼= U(2), and the homotopy types
of U(2)-gauge groups over S4 have been studied by Cutler in [10].

For n � 5, letGk denote the gauge group of the Spinc(n)-bundle Pk → S4 classified
by k ∈ Z. By [3, 15], there is a homotopy equivalence

BGk � Mapk(S
4,BSpinc(n)),

the latter space being the k-th component of Map(S4,BSpinc(n)), meaning the con-
nected component containing the map classifying Pk → S4.

There is an evaluation fibration

Map∗
k(S

4,BSpinc(n)) −→ Mapk(S
4,BSpinc(n))

ev−−→ BSpinc(n),

where ev evaluates a map at the basepoint of S4 and the fibre is the k-th component of
the pointedmapping spaceMap∗(S4,BSpinc(n)). This fibration extends to a homotopy
fibration sequence

Gk −→ Spinc(n) −→ Map∗
k(S

4,BSpinc(n)) −→ BGk −→ BSpinc(n).

Furthermore, by [47] there is, for each k ∈ Z, a homotopy equivalence

Map∗
k(S

4,BSpinc(n)) � Map∗
0(S

4,BSpinc(n)).
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The space on the right-hand side is homotopy equivalent toMap∗
0(S

3,Spinc(n)) by the
pointed exponential law, and is more commonly denoted as�3

0Spin
c(n). We therefore

have the following homotopy fibration sequence:

Gk −→ Spinc(n)
∂k−−→ �3

0Spin
c(n) −→ BGk −→ BSpinc(n),

which exhibits the gauge group Gk as the homotopy fibre of the map ∂k . This is a key
observation, as it implies that the homotopy theory of the gauge groups Gk depends
on the maps ∂k .

Lemma 3.2 (Lang [34, Theorem 2.6]) The adjoint of ∂k : Spinc(n) → �3
0Spin

c(n)

is homotopic to the Samelson product 〈kε, 1〉 : S3∧Spinc(n) → Spinc(n), where
ε ∈ π3(Spinc(n)) is a generator and 1 denotes the identity map on Spinc(n).

As the Samelson product is bilinear, we have 〈kε, 1〉 � k〈ε, 1〉, and hence, taking
adjoints once more, ∂k � k∂1.

Lemma 3.3 (Theriault [48, Lemma 3.1]) Let X be a connected CW-complex and let
Y be an H-space with a homotopy inverse. Suppose that f ∈ [X ,Y ] has finite order
and let m ∈ N be such that m f � ∗. Then, for any integers k, l ∈ Z such that
(m, k) = (m, l), the homotopy fibres of k f and l f are homotopy equivalent when
localised rationally or at any prime.

Remark 3.4 The lemma of Theriault is the local analogue of a lemma used by
Hamanaka and Kono in their study [17] of SU(3)-gauge groups over S4.

Part (a) of Theorems 1.2 and 1.3 will follow as applications of Lemma 3.3, whereas
for part (b)wewill need to determine suitable homotopy invariants of the gauge groups.

4 Spinc(n)-gauge groups

We begin with a decomposition of Spinc(n) as a product of spaces which will be
reflected in an analogous decomposition of Spinc(n)-gauge groups.

From the definition of Spinc(n), we can construct the commutative diagram

Spin(n) Spin(n)× S1 S1

Spin(n) Spinc(n) S1.

q

pr2

2

There is, therefore, an exact sequence

1 −→ Spin(n) −→ Spinc(n) −→ S1 −→ 1,

and hence a fibration

Spin(n) −→ Spinc(n) −→ S1. (�)
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A section for (�) can be obtained as follows:

S1 S1× S1 Spin(n)× S1 S1

S1 Spinc(n) S1.

2

�

q

pr2

2

Hence (�) splits, and we have a homeomorphism

Spinc(n) ∼= Spin(n)× S1.

We are now ready to show that the decomposition

Gk(Spin
c(n)) � S1×Gk(Spin(n))

for n � 6 holds as stated in Theorem 1.1.

Proof of Theorem 1.1 Let 	 and g denote the maps in the fibration

Spin(n)
	−→ Spinc(n)

g−→ S1,

and let s : S1→ Spinc(n) denote a section of g.
As π4(Spinc(n)) ∼= 0 for n � 6, there is a lift in the diagram

S1

Gk(Spinc(n)) Spinc(n) �3
0Spin

c(n).

a
s

∗
∂k

Define the map b to be the composite

Gk(Spin
c(n)) −→ Spinc(n)

g−→ S1.

Since, in particular, s is a right homotopy inverse for g, the map a is a right homotopy
inverse for b. Therefore we have Gk(Spinc(n)) � S1×Fb, where Fb denotes the
homotopy fibre of b.

As the map 	 : Spin(n) → Spinc(n) is a group homomorphism, it classifies to a
map

B	 : BSpin(n) → BSpinc(n).
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Since 	 induces an isomorphism in π3, it respects path-components in Mapk(S4,−)

and Map∗
k(S

4,−) for any k ∈ Z. We therefore have a diagram of fibration sequences

· · · Map∗
k(S

4,BSpin(n)) Mapk(S4,BSpin(n)) BSpin(n)

· · · Map∗
k(S

4,BSpinc(n)) Mapk(S4,BSpinc(n)) BSpinc(n).

(B	)∗ (B	)∗ B	 (1)

Furthermore, observe that for all k ∈ Z we have

πm(Map∗
k(S

4,BSpin(n))) ∼= πm(�3
0Spin(n)) ∼= πm+3(Spin(n))

and, similarly, πm(Map∗
k(S

4,BSpinc(n))) ∼= πm+3(Spinc(n)). Since 	 induces iso-
morphisms on πm for m � 2, it follows that (B	)∗ induces isomorphisms

πm((B	)∗) : πm(Map∗
k(S

4,BSpin(n)))
∼=−−→ πm(Map∗

k(S
4,BSpinc(n)))

for all m and is therefore a homotopy equivalence by Whitehead’s theorem.
We can extend the fibration diagram (1) to the left as

Gk(Spin(n)) Spin(n) Map∗
k(S

4,BSpin(n)) · · ·

Gk(Spinc(n)) Spinc(n) Map∗
k(S

4,BSpinc(n)) · · ·
Gk (	) 	

∂ ′
k

(B	)∗�
∂k

where ∂ ′
k denotes the boundary map associated to Spin(n)-gauge groups over S4.

Since (B	)∗ is a homotopy equivalence, the leftmost square is a homotopy pull-
back. Since we know that there is a fibration

Spin(n)
	−→ Spinc(n)

g−→ S1,

it follows that we also have a fibration

Gk(Spin(n))
Gk (	)−−−−→ Gk(Spin

c(n))
b−→ S1.

In particular, the space Gk(Spin(n)) is seen to be the homotopy fibre Fb of the map
b : Gk(Spinc(n)) → S1 and hence we have

Gk(Spin
c(n)) � S1×Gk(Spin(n)). �

Remark 4.1 Alternatively, the referee suggested the following approach to
a proof of Lemma 1.1. Since the map B	 induces an isomorphism
[S4,BSpin(n)] ∼= [S4,BSpinc(n)], to any principal Spinc(n)-bundle P over S4 we can
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associate a principal Spin(n)-bundle P ′ over S4 such that P ∼= P ′×Spin(n)Spinc(n).
There exists then a fibrewise exact sequence of adjoint bundles

P ′×Ad Spin(n) −→ P ′×Ad Spin
c(n) ∼= P×Ad Spin

c(n)

−→ P ′×Ad S
1 = S4× S1.

Recalling [3, Section 2] that gauge groups can be defined as spaces of sections of
adjoint bundles, we obtain a diagram of fibration sequences

G(P ′) G(P) Map(S4, S1)

Spin(n) Spinc(n) S1.

ev ev ev�

Showing, as we have done, that G(P) → S1 admits a homotopy section then leads to
the statement of Lemma 1.1.

In light of Theorem 1.1, the homotopy theory of Spinc(n)-gauge groups over S4

for n � 6 is completely determined by that of Spin(n)-gauge groups over S4.

Remark 4.2 By a result of Cutler [10], there is a decomposition

Gk(U(2)) � S1×Gk(SU(2))

of U(2)-gauge groups over S4 whenever k is even. Given that Spinc(3) ∼= U(2) and
Spin(3) ∼= SU(2), the statement of Theorem 1.1 still holds true when n = 2 provided
that k is even. Cutler also shows that Gk(U(2)) � S1×Gk(PU(2)) for odd k, so
Theorem 1.1 does not hold for n = 2.

5 Spin(n)-gauge groups

We now shift our focus to principal Spin(n)-bundles over S4 and the classification
of their gauge groups. In the interest of completeness, we recall that, for n � 6, the
following exceptional isomorphisms hold.

The cases n = 1, 2 are trivial. Indeed, as π3(O(1)) ∼= π3(U(1)) ∼= 0, there is only
one isomorphism class of O(1)- and U(1)-bundles over S4 (namely, that of the trivial
bundle), and hence there is only one possible homotopy type for the corresponding
gauge groups. The case n = 3 was studied by Kono in [31]. The case n = 4 can be
reduced to the n = 3 case by [5, Theorem 5]. The case n = 5 was studied by Theriault
in [48]. Finally, the case n = 6 was studied by Cutler and Theriault in [11].

We shall now explore the n = 7 case. Recall that we have a fibration sequence

Gk(Spin(7)) −→ Spin(7)
k∂1−−→ �3

0Spin(7).
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Table 1 The exceptional isomorphisms

n Spin(n)

1 O(1)

2 U(1)

3 SU(2)

4 SU(2)×SU(2)

5 Sp(2)

6 SU(4)

Lemma 5.1 Localised away from the prime 2, the boundary map

Spin(7)
∂1−−→ �3

0Spin(7)

has order 21.

Proof Harris [19] showed that Spin(2m + 1) �(p) Sp(m) for odd primes p. This
result was later improved by Friedlander [14] to a p-local homotopy equivalence of
the corresponding classifying spaces. Then, in particular, localising at an odd prime
p, we have a commutative diagram

Spin(7) �3
0Spin(7) Map1(S4,BSpin(7)) BSpin(7)

Sp(3) �3
0Sp(3) Map1(S4,BSp(3)) BSp(3)

∂1

� � � �
∂ ′
1

where ∂ ′
1 : Sp(3) → �3

0Sp(3) denotes the boundary map associated to Sp(3)-gauge
groups over S4 studied in [9]. Hence the result follows from the calculation in [9,
Theorem 1.2] where it is shown that ∂ ′

1 has order 21 after localising away from the
prime 2. �

Lemma 5.2 Let F → X → Y be a homotopy fibration, where F is an H-space, and
let ∂ : �Y → F be the homotopy fibration connecting map. Let α : A → �Y and
β : B → �Y be maps such that

(1) μ◦(α×β) : A× B → �Y is a homotopy equivalence, where μ is the loop multi-
plication on �Y ;

(2) ∂ ◦β : B → F is nullhomotopic.

Then the orders of ∂ and ∂ ◦α coincide.
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Proof Let θ : �Y ×F → F denote the canonical homotopy action of the loopspace
�Y onto the homotopy fibre F , and let e = μ◦(α×β). Consider the diagram

A× B

A �Y ×�Y �Y

�Y �Y ×F F .

pr1 α×β
e

α id×∂

μ

∂

∂

θ

The left portion of the diagram commutes by the assumption that ∂ ◦β � ∗, while the
right and bottom portions commute by properties of the canonical action θ . Therefore

∂ � ∂ ◦α ◦pr1 ◦e−1,

and hence the orders of ∂ and ∂ ◦α coincide. �
Lemma 5.3 Localised at the prime 2, the order of the boundary map

Spin(7)
∂1−−→ �3

0Spin(7)

is at most 8.

Proof The strategy here will be to show that ∂8 is nullhomotopic. This will suffice as
we have ∂8 � 8∂1 by Lemma 3.2.

By a result of Mimura [37, Proposition 9.1], the fibration

G2
α−→ Spin(7) −→ S7

splits at the prime 2. Let β : S7 → Spin(7) denote a right homotopy inverse for
Spin(7) → S7. Then the composite

G2× S7
α×β−−−→ Spin(7)×Spin(7)

μ−→ Spin(7)

is a 2-local homotopy equivalence.
Observe that we have ∂8 ◦β � ∗ since π10(Spin(7)) ∼= Z/8Z and ∂8 ◦β � 8∂1 ◦β.

Therefore, by Lemma 5.2, the order of ∂8 equals the order of ∂8 ◦α.
As α is a group homomorphism, there is a diagram of evaluation fibrations

G2 �3
0G2

Spin(7) �3
0Spin(7).

∂ ′
8

α �3α

∂8
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Since ∂ ′
8 � 8∂ ′

1 � ∗ by [30, Theorem 1.1], we must have ∂8 � 8∂1 � ∗. �
Proof of Theorem 1.2 (a) Lemmas 5.1 and 5.3 imply that 168∂1 � ∗, so the result
follows from Lemma 3.3. �

We now move on to consider Spin(8)-gauge groups.

Lemma 5.4 Localised at the prime 2 (resp. 3), the order of the boundary map

Spin(8)
∂1−−→ �3

0Spin(8)

is at most 8 (resp. 3).

Proof There is a fibration

Spin(7)
α−→ Spin(8) −→ S7

which admits a section β : S7 → Spin(8), and hence splits integrally. Therefore, we
have a homeomorphism

Spin(7)× S7
α×β−−−→ Spin(8)×Spin(8)

μ−→ Spin(8).

Integrally, we have

π10(Spin(8)) ∼= Z/24Z⊕Z/8Z,

(see, e.g. the table in [38]). Hence the same argument presented in the proof of
Lemma 5.3 shows that 8∂1 � ∗ and 3∂1 � ∗ after localising at p = 2 and p = 3,
respectively. �
Lemma 5.5 Let p �= 3 be an odd prime. Then the p-primary order of the boundary
map ∂1 : Spin(8) → �3

0Spin(8) is bounded from above by that of ∂1 : Spin(7) →
�3

0Spin(7).

Proof As π10(Spin(8)) ∼= Z/24Z⊕Z/8Z, any map S7 → Spin(8) is nullhomotopic
after localisation at an odd prime p different from 3. Thus, decomposing Spin(8) as
Spin(7)× S7 and arguing as in the proof of Lemma 5.3 yields the statement. �
Proof of Theorem 1.3 (a) Lemmas 5.4 and 5.5 imply that 168∂1 � ∗, so the result
follows from Lemma 3.3. �

6 Homotopy invariants of Spin(n)-gauge groups

Lemma 6.1 If Gk(Spin(7)) � Gl(Spin(7)), then (21, k) = (21, l).
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Proof As in the proof of Lemma5.1, localising at an odd prime,we have an equivalence
BSpin(7) �(p) BSp(3). We therefore have a diagram of homotopy fibrations

Spin(7) �3
0Spin(7) BGk(Spin(7)) BSpin(7)

Sp(3) �3
0Sp(3) BGk(Sp(3)) BSp(3)

∂k

� � �
∂ ′
k

where ∂ ′
k : Sp(3) → �3

0Sp(3) denotes the boundary map studied in [9]. Thus, by the
five lemma, we have

π11(BGk(Spin(7))) ∼= π11(BGk(Sp(3))).

Hence the result now follows from the calculations in [9, Theorem 1.1] where it is
shown that, integrally,

π11(BGk(Sp(3))) ∼= Z/120(84, k)Z. �

In their study of the homotopy types ofG2-gauge groups over S4 in [30], Kishimoto,
Theriault and Tsutaya constructed a space Ck for which

H∗(Ck) ∼= H∗(Gk(G2))

inmod 2 cohomology in dimensions 1 through 6. The cohomology ofCk is then shown
to be as follows.

Lemma 6.2 ([30, Lemma 8.3]) We have

• if (4, k) = 1 then Ck � S3, so H∗(Ck) ∼= H∗(S3);
• if (4, k) = 2 or (4, k) = 4 then H∗(Ck) ∼= H∗(S3)⊕H∗(P5(2)) ⊕ H∗(P6(2)),
where Pn(p) denotes the nth dimensional mod p Moore space;

• if (4, k) = 2 then Sq2 is non-trivial on the degree 4 generator in H∗(Ck);
• if (4, k) = 4 then Sq2 is trivial on the degree 4 generator in H∗(Ck).

We make use of the same spaces Ck as follows.

Lemma 6.3 If Gk(Spin(7)) � Gl(Spin(7)), then we have (4, k) = (4, l).

Proof As in the proof of Lemma 5.3, recall that we have a 2-local homotopy equiva-
lence

G2× S7
α×β−−−→ Spin(7)×Spin(7)

μ−→ Spin(7).
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Since the map α : G2 → Spin(7) is a homomorphism, we have a commutative dia-
gram

G2 �3
0G2

Spin(7) �3
0Spin(7).

α

∂ ′
1

�3α

∂1

Furthermore, as π7(�
3
0G2) ∼= π10(G2) ∼= 0, we have

π7(�
3
0Spin(7)) ∼= π7(�

3
0G2)⊕π7(�

3S7) ∼= π7(�
3S7),

and thus there is a commutative diagram

S7 �3S7

Spin(7) �3
0Spin(7)

β

γ

�3β

∂1

for some γ representing a class in π7(�
3S7) ∼= π10(S7) ∼= Z/8Z.

We therefore have a commutative diagram

G2 ∨ S7 �3
0G2×�3S7

Spin(7) �3
0Spin(7)

k∂ ′
1∨kγ

α∨β �3α×�3β�
k∂1

which induces a map of fibres φ : M → Gk(Spin(7)), where M denotes the homotopy
fibre of the map k∂ ′

1∨kγ .
Since the lowest dimensional cell in G2× S7/(G2∨ S7) appears in dimension 10,

the canonical map G2∨ S7 → G2× S7 is a homotopy equivalence in dimensions
less than 9. It thus follows that M is homotopy equivalent to the homotopy fibre of
k∂ ′

1×kγ in dimensions up to 8. Since the homotopy fibre of k∂ ′
1×kγ is just the

product Gk(G2)×Fk , the zig-zag of maps

Ck×Fk −→ Gk(G2)×Fk ←− M
φ−→ Gk(Spin(7))

induces isomorphisms in mod-2 cohomology in dimensions 1 through 6, and therefore
we have

H∗(Gk(Spin(7))) ∼= H∗(Ck)⊗H∗(Fk), ∗ � 6.
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From the fibration sequence

�4S7 −→ Fk −→ S7

we see that H∗(Fk) ∼= H∗(�4S7) in dimensions 1 through 6 for dimensional reasons,
and hence we have

H∗(Fk) ∼= Z/2Z[y3, y6], ∗ � 6,

where |yi | = i , which, in turn, yields

H∗(Gk(Spin(7))) ∼= H∗(Ck)⊗Z/2Z[y3, y6], ∗ � 6.

Since H∗(Fk) does not contribute any generators in degree 4 to H∗(Gk(Spin(7))),
the result now follows from Lemma 6.2. Indeed, the presence of a degree 4 generator
allows us to distinguish between the (4, k) = 1 case and the 2 | k cases, whereas the
vanishing of the Steenrod square Sq2 on the degree 4 generator in H∗(Gk(Spin(7)))
coming from H∗(Ck) can be used to distinguish between the (4, k) = 2 and (4, k) = 4
cases. �
Proof of Theorem 1.2 (b) Combine Lemmas 6.1 and 6.3. �
Lemma 6.4 If Gk(Spin(8)) � Gl(Spin(8)), then (4, k) = (4, l).

Proof As in the proof of Lemma 5.3, the splitting of G2 → Spin(7) → S7 at the
prime 2 implies that there is a 2-local homotopy equivalence

μ◦(α×β) : G2× S7 −→ Spin(7).

Since the fibration Spin(7) → Spin(8) → S7 also splits after localising at any prime,
there is a decomposition

μ◦(
(ι◦α)×(ι◦β)×γ

) : G2× S7× S7 −→ Spin(8),

where ι : Spin(7) → Spin(8) is the inclusion homomorphism and γ is a homotopy
inverse for the map Spin(8) → S7.

Since the map ι◦α is a homomorphism, we have a commutative diagram

G2 �3
0G2

Spin(8) �3
0Spin(8).

ι◦α

∂ ′
1

�3(ι◦α)

∂1

Furthermore, as π7(�
3
0G2) ∼= π10(G2) ∼= 0, we have

π7(�
3
0Spin(8)) ∼= π7(�

3S7)⊕π7(�
3S7),
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and thus there are commutative diagrams

S7 �3S7×�3S7

Spin(8) �3
0Spin(8)

ι◦β

δ

�3(ι◦β)×�3γ

∂1

S7 �3S7×�3S7

Spin(8) �3
0Spin(8)

γ

δ′

�3(ι◦β)×�3γ

∂1

for some δ, δ′ representing classes in π7(�
3S7×�3S7) ∼= (Z/8Z)2. We therefore

have a commutative diagram

G2 ∨ (S7 ∨ S7) �3
0G2×(�3S7×�3S7)

Spin(8) �3
0Spin(8).

k∂ ′
1∨k(δ∨δ′)

ια∨(ιβ∨γ ) �3ια×(�3ιβ×�3γ )�
k∂1

Arguing as in the proof of Lemma 6.3, we conclude that

H∗(Gk(Spin(8))) ∼= H∗(Ck)⊗H∗(�4(S7× S7)), ∗ � 6.

Observing that H∗(�4(S7× S7)) does not contribute any generators in degree 4 to
H∗(Gk(Spin(8))) and arguing as in the proof of Lemma 6.3 yields the statement. �
Lemma 6.5 If Gk(Spin(8)) � Gl(Spin(8)), then (7, k) = (7, l).

Proof Localising at p = 7, we have

Spin(8) � Spin(7)× S7 � G2× S7× S7.

Applying the functor π11 and noting that

π10(S
7) ∼= π11(S

7) ∼= π14(S
7) ∼= 0

(see, e.g. [56]), we find that the evaluation fibration

Spin(8)
∂k−−→ �3

0Spin(8) −→ BGk(Spin(8)) −→ BSpin(8)

reduces to the exact sequence

π11(G2) −→ π11(�
3
0G2) −→ π11(BGk(Spin(8))) −→ 0.

Hence the result follows from [30]. �
Proof of Theorem 1.3 (b) Combine Lemmas 6.4 and 6.5. �
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