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Abstract The nonlinear modes of a non-conservative
nonlinear system are sometimes referred to as damped
nonlinear normalmodes (dNNMs).Because of the non-
conservative characteristics, the dNNMs are no longer
periodic. To compute non-periodic dNNMs using clas-
sic methods for periodic problems, two concepts have
been developed in the last two decades: complex non-
linear mode (CNM) and extended periodic motion con-
cept (EPMC). A critical assessment of these two con-
cepts applied to different types of non-conservative
nonlinearities and industrial full-scale structures has
not been thoroughly investigated yet. Furthermore,
there exist two emerging techniques which aim at pre-
dicting the resonant solutions of a nonlinear forced
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response using the dNNMs: extended energy bal-
ance method (E-EBM) and nonlinear modal synthe-
sis (NMS). A detailed assessment between these two
techniques has been rarely attempted in the literature.
Therefore, in this work, a comprehensive comparison
between CNM and EPMC is provided through two
illustrative systems and one engineering application.
The EPMC with an alternative damping assumption is
also derived and comparedwith the original EPMC and
CNM. The advantages and limitations of the CNM and
EPMCare critically discussed. In addition, the resonant
solutions are predicted based on the dNNMs using both
E-EBM and NMS. The accuracies of the predicted res-
onances are also discussed in detail.

Keywords Nonlinear damping · Damped nonlinear
normal modes · Nonlinear modal analysis · Nonlinear
vibration

1 Introduction

To improve the structural design of a future engineering
component, various nonlinear characteristics have to be
taken into consideration in the dynamic analysis. The
inclusion of nonlinearities makes the dynamic analysis
of structural components exceptionally complicated,
especially in the case of non-conservative nonlinear-
ities. Non-conservative nonlinear forces are a class of
nonlinear forces that either dissipate or provide energy
to the structure, i.e. introduce nonlinear damping in the
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system. Frictional contact, for instance, can be con-
sidered as a nonlinear damping term with non-smooth
characteristics. The existence of nonlinear damping
termsmakes the autonomous system non-conservative,
therefore classic nonlinear modal analysis methods for
conservative systems cannot be applied [13].

Nonlinear modal analysis has become a popular
method to investigate the dynamic response of nonlin-
ear systems in the literature. Unlike in a linear system,
the superposition principle and orthogonality condi-
tions are no longer valid in a nonlinear system. Nonlin-
ear normal mode (NNM) has been developed to extend
the concept of linearmodes to nonlinear systems. There
are two definitions for nonlinear modes: (1) the peri-
odic motion definition and (2) the invariant manifold
definition. The periodic motion definition can be traced
back to the works by Rosenberg [23]. In [23], the NNM
is defined as a vibration in unison, where all points in a
structure reach their equilibrium position and extreme
position simultaneously. However, the definition (1)
does not apply to non-conservative systems, because
the autonomous solutions are not typically in a peri-
odic form. In definition (2), only one periodic orbit
needs to be calculated for one computation. The whole
NNM can be then computed as a family of periodic
orbits by applying a continuation algorithm. Methods
such as Harmonic balance method (HBM) [3], shoot-
ing method [10] and collocation method [2], to name a
few, are common numerical tools to compute a family
of periodic orbits. The second definition of the NNM
was proposed by Shaw and Pierre [28]. In this defi-
nition, the NNM is defined as an invariant manifold
tangent to a linear eigenspace of the system at the equi-
librium position. In definition (2), the NNM is geomet-
rically governed by a hypersurface in the phase space,
which is tangent to the equilibrium point of the cor-
responding linear mode. Theoretically, the definition
(2) can be extended to the non-conservative nonlin-
ear systems as the assumption of a periodic orbit is no
longer included. Both analytical and numerical meth-
ods can be used to compute the NNM based on the
definition (2), where analytical methods are usually
based on polynomial series expansions to parametrise
the geometry of the manifold [28], whereas numerical
methods rely on computing the solution of the partial
differential equations that govern the manifold [22].

To extend the periodic motion definition of the
NNM in a non-conservative nonlinear system, two
main strategies have been proposed in the literature:

(1) complex nonlinear mode (CNM) and (2) extended
periodic motion concept (EPMC). The NNM in such a
non-conservative nonlinear system is named as damped
nonlinear normal mode (dNNM) [26]. Laxalde and
Thouverez [18] used the concept of the CNM to
describe the dNNM as a damped solution. According
to CNM, the dNNM is formulated using a series of
harmonic periodic functions with exponential decay.
Thus, only the frequency domain methods (i.e. HBM)
can be applied, see, e.g. [17,37]. The second concept
was proposed by Krack [11]. In EPMC, artificial vis-
cous damping with an unknown damping ratio is intro-
duced into the system to compensate the energy loss by
the non-conservative nonlinearities leading to a peri-
odic dNNM. Thanks to the artificial viscous damping,
the dNNM can be treated as periodic solutions, and
both HBM, as well as the shooting method, can be
applied [11]. Jahn et al. [8] compares both concepts
using two illustrative test cases. Furthermore, there is
no justificationwhy viscous damping is preferred in the
EPMC. In this work, a variant of EPMC with artificial
hysteretic damping is first attempted. From the author’s
knowledge, it still is an open question in the literature
which damping mechanism is preferred in EPMC. For
the sake of clarity, in the following EPMC with arti-
ficial viscous damping as proposed by Krack [11] is
called EPMC-V and the one with hysteretic damping
is named as EPMC-H. In this work, the CNM and the
two variants of EPMC (EPMC-V and EPMC-H) are
compared in detail using four illustrative test cases and
one engineering application.

The use of the nonlinear modal analysis is usually
limited by the disadvantage that the relation between
the NNM and resonant solutions in forced response
cannot be directly accessed. Thus, a direct relation-
ship between the NNM and the resonant solutions in
forced response has great practical importance in that
the response amplitude at resonance is the informa-
tion of most interest for engineers. The energy balance
method (EBM) is a tool that relates the NNM solu-
tions to the resonant solutions of the forced response in
conservative nonlinear systems and can predict where
the crossing between the forced response and the
underlying NNM would occur. This crossing point is
called “resonant shared solution” in [7]. Cenedese and
Haller [4] provide a systematic mathematical analysis
based on the Melnikov function, to identify the condi-
tions under which conservative periodic orbits perturb
into resonances of the forced response, thus defining the
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conditions of applicability of methods like the EBM.
The EBMmethod in its original definition is applicable
only to conservative nonlinear forces. In previous work
from the authors [29], the EBM has been successfully
extended to systems with non-conservative nonlinear
characteristics by using their dNNMs. This extended
EBM (E-EBM) was derived based on the EPMC [29].
E-EBM has been proven to be an efficient method to
identify the direct relation between the dNNM and the
resonant solutions in the nonlinear forced response for
systems with frictional contact. In addition to the E-
EBM, the nonlinear modal synthesis (NMS) is another
method to establish a relation between the NNMs and
the resonant solutions in forced response. The modal
synthesis can be simply applied in a linear system,
because of the superposition principle and orthogo-
nality conditions between the linear normal modes.
However, these relationships are invalid in a nonlin-
ear system, so further assumptions are required. Krack
et al. [14] described the NMS using CNM based on the
single-nonlinear-mode theory [34]. In the presentwork,
both E-EBM and NMS will be derived based on CNM
and two variants of EPMC. Furthermore, E-EBM and
NMS will be used to predict the resonant solutions for
various systems with non-conservative nonlinearities.

In the present study, a comprehensive comparison is
achieved for: (a) two concepts for dNNM computation
including CNM and two variants of EPMC; (b) two
numerical methods for resonant prediction including
E-EBM and NMS. Two one Degree of Freedom (1-
DoF) systems and an industrial application are tested:
a 1-DoF system with frictional contact, a 1-DoF sys-
tem with quadratic nonlinear damping and a full-scale
bliskwith friction ring damper. Then, the resonant solu-
tions in forced responses are predicted using the dNNM
and two numerical methods (E-EBM and NMS). This
paper is organised as follows: the numerical formula-
tions used to compute the dNNM are given in Sect. 2
followed by a detailed discussion of the advantages and
limitations of CNM and two variants of EPMC; then,
the E-EBM is introduced and explained in Sect. 3.2;
after that, the formula used for the NMS is derived in
Sect. 3.3; a detailed evaluation between E-EBM and
NMS is also provided in Sect. 3. Section 4 shows the
results from two illustrative 1-DoF systems. Then, a
blisk with friction ring damper, as an industrial appli-
cation, is described and results are given in Sect. 5 fol-
lowed by the conclusions.

2 Damped nonlinear normal mode

In this section, two different concepts (CNM and
EPMC) used to extend the periodic motion defini-
tion of the nonlinear modes in a non-conservative sys-
tem will be described. Thanks to both concepts, the
dNNMs in a system with non-conservative nonlinear-
ities can be computed using the classic HBM in fre-
quency domain [11,12,25]. In a nonlinear Equation of
Motion (EoM), the nonlinear forces in the frequency
domain are computed in an iterative scheme using the
alternating frequency/time method (AFT) [3,12,25].
In addition, the well-known continuation technique is
used to track the evolution of the dNNM with respect
to the energy of the system.

In classic HBM, the EoM is solved in the fre-
quency domain and solutions in the time domain are
discretised by the Fourier series. The general EoM
for the computation of the dNNM is given in the
first, as Eq. (1). The dNNMs are usually considered
as solutions of a system, where the linear damp-
ing and the external excitation force are not taken
into account. M is the mass matrix; K is the stiff-
ness matrix. Q(t) is the solution of the autonomous
system. The double underline of the symbol repre-
sents matrices and the single underline of the sym-
bol is used to represent vectors, and variable t does
not appear explicitly in the following equations in
this work. Fnl is the non-conservative nonlinear force
within the autonomous system. The basic assumptions
and formulations are explained for different concepts,
respectively.

M Q̈ + K Q + Fnl(Q, Q̇) = 0. (1)

2.1 Complex nonlinear mode

In a dynamic system with non-conservative nonlinear
forces, solutions in Eq. (1) are not periodic any more.
In CNM, the dNNMs are formulated by damped solu-
tions, using multi-harmonic periodic function with an
exponential decay, as shown in Eq. (2). n is the order
of harmonics up to Nh and j represents the imaginary
parts. ωd is the damped resonant frequency and β is
the loss factor, where ωd = ω0

√
1 − ζ 2 and β = ζω0.

ω0 is the resonant frequency and ζ is the modal damp-
ing ratio. Q̃

n
is the Fourier coefficients for nth order of

harmonic.
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Q(t) = �
⎧
⎨

⎩

Nh∑

n=0

Q̃
n
e(−nβ+ jnωd )t

⎫
⎬

⎭
; Q̃

n
= Q̃

c

n
− j Q̃

s

n
.

(2)

Substitute Eq. (2) into Eq. (1), then the EoM can
be rewritten as Eq. (3). F̃nl, n is the nonlinear force
in frequency domain for the nth order of harmonic.
Then, Eq. (3) governs the dynamic equilibrium in fre-
quency domain for the nth order of harmonic. Zcnm

is the complex dynamic stiffness for CNM and is
assembled as represented in Eqs. (5, 7). The super-
script cnm represents the CNM. Q̃ is a collection of

Fourier coefficients representing the solutions: Q̃ =
[Q̃

n=0
, Q̃

n=1
, . . . , Q̃

n=Nh
]T. F̃nl is a collection of

Fourier coefficients representing the nonlinear force:
F̃nl = [F̃nl, n=0, F̃nl, n=1, . . . , F̃nl, n=Nh

]T. R is the
residual of the EoM in frequency domain.

Rn = (−nβ + jnωd)
2M Q̃

n
+ K Q̃

n
+ F̃nl, n(Q̃)

(3)

R = Zcnm Q̃ + F̃nl(Q̃) (4)

Zcnm =

⎡

⎢⎢⎢⎢⎢
⎣

Zcnm
n=0

0 . . . 0

0 Zcnm
n=1

. . . 0
...

...
. . .

...

0 0 . . . Zcnm
n=Nh

⎤

⎥⎥⎥⎥⎥
⎦

(5)

Zcnm
n

= K − n2ω2
0M − C̄

cnm

n
(6)

C̄
cnm

n
= −2n2ω2

0ζ
2M + 2 jn2ω2

0ζ
√
1 − ζ 2M. (7)

In CNM, both damped and undamped solutions can
be reconstructed using the Fourier coefficients. To build
an undamped solution, the resonant frequency ω0 and
a zero loss factor β are considered for Eq. (2), whereas
the damped frequencyωd and the actual loss factor ζω0

govern the damped solution.

2.2 Extended periodic motion concept

In a system with non-conservative nonlinearities, the
dNNMs are not periodic due to the energy exchanged
by the non-conservative nonlinear force. In EPMC, an
artificial damping term is introduced to balance the
energy loss [11]. Thanks to this artificial damping, the
energy loss is compensated and solutions of such a sys-
tem become periodic. The damping ratio of the artifi-
cial damping is a free variable and will be determined

in the computation of the dNNM. For example, in a
system with friction damping, the energy dissipated
because of the rubbing motion within the contact inter-
face results in negative artificial damping. Then, energy
dissipated by frictional contact is made up by this neg-
ative artificial damping effect. Finally, a periodically
based dNNM can be obtained.

Two different types of artificial damping terms are
explained: artificial viscous damping originally pro-
posed by Krack [11] and artificial hysteretic damp-
ing firstly attempted by authors. In practice, there are
two types of common damping mechanisms in both
physical and mathematical concept: viscous damping
and hysteretic (structural damping). Viscous damp-
ing mechanism usually denotes the fact that, in a
microscopic view, the energy dissipation is caused by
the resistive force while molecules of fluids are rub-
bing together. This resistive force opposes the veloc-
ity of molecules within fluids. Mathematically, vis-
cous damping refers to a velocity proportional force
as a product of a general damping matrix and a veloc-
ity vector, whereas hysteretic damping can be con-
sidered as the friction force between molecular lay-
ers within solids. Thus, the hysteretic damping force
is proportional to the displacement from its equilib-
rium position. The hysteretic damping effect is math-
ematically achieved by using an imaginary stiffness,
which guarantees a 90-degree phase shift relative to
its original stiffness component. Compared to viscous
damping, hysteretic damping is independent of the fre-
quency. Both types of damping can be used in EPMC
as an artificial damping term to balance the energy
exchanged caused by the non-conservative nonlinear
force. The EPMC with artificial viscous damping is
named EPMC-V and the one with artificial hysteretic
damping is named EPMC-H.

Thanks to the artificial damping term, a periodic
solution can be assumed for Eq. (1) and similarly
solved by classic HBM with CNM. Besides the HBM
method, other methods can be used in EPMC to solve
the EoM, i.e. shooting method, which is not applicable
in CNM due to the aperiodicity. The periodic solutions
expressed using multi-harmonics are shown in Eq. (8),
where ω0 is the resonant frequency of the nonlinear
autonomous system.

Q(t) = �
⎧
⎨

⎩

Nh∑

n=0

Q̃
n
e jnω0t

⎫
⎬

⎭
; Q̃

n
= Q̃

c

n
− j Q̃

s

n
. (8)
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2.2.1 Artificial viscous damping

Anegative artificial viscous damping is introduced into
Eq. (1) and the EoM becomes Eq. (9). ζ is the modal
damping ratio. By substituting Eq. (8) into Eq. (9) for
each harmonic order, the EoM in frequency domain is
obtained as Eqs. (12, 13). Zev is the complex dynamic
stiffness matrix and in the similar form with Eq. (5),
and the superscript ev represents the EPMC-V.

M Q̈ − 2ζω0M Q̇ + K Q + Fnl(Q) = 0 (9)

Rn = ( jnω0)
2M Q̃

n
− 2 jnζω2

0M Q̃
n

+ K Q̃
n

+ F̃nl, n(Q̃) (10)

R = Zev Q̃ + F̃nl(Q̃) (11)

Zev
n

= K − n2ω2
0M − C̄

ev

n
(12)

C̄
ev

n
= 2 jnω2

0ζM. (13)

2.2.2 Artificial hysteretic damping

A negative artificial hysteretic damping is introduced
into the system to balance the energy dissipated by
the non-conservative nonlinear force. The hysteretic
damping is related to the linear stiffness and defined
as 2 jζ K Q. The hysteretic can be only defined in the
frequency domain, therefore, the EoM for EPMC-H is
directly shown in the frequency domain as Eqs. (14,
15). The superscript eh represents the EPMC-H. Zeh

has a similar form with Eq. (5).

Rn = ( jnω0)
2M Q̃

n
+ (1 − 2 jζ ) K Q̃

n

+ F̃nl, n(Q̃) (14)

R = Zeh Q̃ + F̃nl(Q̃) (15)

Zeh
n

= K − n2ω2
0M − C̄

eh

n
(16)

C̄
eh

n
= 2 jζK. (17)

2.3 Energy dependency and normalisation

Unlike linear normalmodes, the nonlinearmode and its
modal properties are highly modal energy-dependent.
The dNNM Q and the resonant frequencyω0 vary with
the level of energy within the nonlinear system. To cap-
ture this modal energy dependence, a new parameter,
modal amplitude α, is introduced into the system to
quantify the modal energy. Then, modal displacement
can be expressed as: Q = α ·Q

m
, where Q

m
is themass

normalised modal displacement. The modal amplitude
is the chasing parameter used in the continuation tech-
nique [1] to track the evolution of a specific dNNMwith
respect to the modal energy. The EoM for the compu-
tation of dNNM in the frequency domain is provided
as Eq. (18). Z is the general dynamic stiffness matrix
for both CNM and EPMC. Themass normalised modal
displacement is achieved by applying Eq. (19) as a con-
straint. Besides, the absolute phase of the dNNM is
arbitrary. Therefore, a phase normalisation is required
and shown in Eq. (20).

α · Z Q̃
m

+ F̃nl(α, Q̃
m
) = 0 (18)

Q̃
T

m
· (INh ⊗ M) · Q̃

m
= 1 (19)

imag(Q̃1
m,n=1) = 0. (20)

2.4 Alternating frequency/time method

The classic HBM is used to solve dynamic equations
in frequency domain referring to Eqs. (4, 11, 15). The
nonlinear force in frequency domain is represented by
F̃nl(Q̃). It is complicated and expensive to directly
compute the nonlinear force in the frequency domain,
especially for frictional contact. Therefore, instead of a
direct computation of the nonlinear force in frequency
domain, the classic AFT method is used to calculate
F̃nl(Q̃) [3,12]. In the AFT method, F̃nl(Q̃) is calcu-
lated in an iterative scheme, alternating between the
frequency and time domain, as demonstrated in Fig.
1. Different calculations are performed in different
domains within the AFT scheme. AFT method can be
only applied based on the fact that the solutions Q(t)
and nonlinear force Fnl(t) are all in a periodic form.
The computation of the Jacobianmatrices can be found
in [24].

In EPMC, artificial damping is introduced to com-
pensate for the energy exchanged leading to a periodic
dNNM. Therefore, the AFT method can be directly
applied to EPMC without any further assumption,
whereas in CNM, the solutions of dNNM are assumed
to be a sinusoidal solution with exponential decay lead-
ing to a damped solution instead of a periodic one.
In the classic AFT process, the discrete Fourier trans-
form is applied, whereas the exponential decay term
cannot be specifically addressed. The non-conservative
terms cannot be included in the nonlinear force by
using the AFT method. Therefore, to adopt the clas-
sic AFT method into CNM, the terms that represent
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Fig. 1 Alternating
frequency/time method

the exponential decay are simply eliminated leading to
a periodic solution as described in [17]. In [8], a phase
correction of the nonlinear force is applied to capture
the decay term in CNM, whereas this phase correction
can only be applied to a single DoF system analyti-
cally. In this work, the damped solutions from CNM
are assumed to be periodic in the AFT procedure and
terms representing the exponential decay are simply
removed.

2.5 Continuation technique

For each value of the modal amplitude α, the dNNM
and its modal properties, i.e. the resonant frequency ω0

and the modal damping ratio ζ can be computed by
solving Eqs. (18–20) using Newton’s method. In the
nonlinear modal analysis, the evolution of the dNNM
and its modal properties along themodal amplitude has
great importance to understand the dynamics of such
a nonlinear system. Therefore, the continuation tech-
nique [1] is used to track the evolution of dNNM and
its modal properties along with the modal amplitude α.
This continuation technique is also used in the compu-
tation of the nonlinear forced response with respect to
the excitation frequency.

In a classic continuation process, each step consists
of twoparts: a predictor and a corrector. In the predictor,
the initial solutions are predicted based on a certain
algorithm. Then, this predicted solution is iteratively
converged to the actual solution following a correction

constrain. In the present study, a secant predictor and
an arclength corrector is used [1].

2.6 Discussion

To extend the periodic motion concept of the NNM for
a nonlinear system with non-conservative nonlineari-
ties, there are two concepts in the literature, namely
CNM and EPMC. The former one used the concept of
the complex mode and the dNNM is represented by
a harmonic periodic solution with exponential decay.
The latter one introduces an artificial damping term to
balance the energy dissipated by the non-conservative
nonlinear forces. Artificial viscous damping is used in
the original EPMC (it is named EPMC-V) and artificial
hysteretic damping is firstly attempted in the present
work (referred EPMC-H). The numerical formulations
for CNM and two variants of EPMC are derived in
detail in this section. From the numerical perspective,
several points are listed in Table 1.

The dynamic stiffnessmatrices in frequency domain
for both concepts can be represented by:K−n2ω2

0M−
C̄
n
. The only difference is the C̄

n
matrix, which has

been derived in Eqs. (7, 13, 17) and is shown in Table
1. The C̄

n
represents the dissipative term in the nonlin-

ear EoM in frequency domain. The analytical Jacobian
matrices of the δC̄

n
/δω0 and δC̄

n
/δζ are also provided

in the table. One can always notice that EPMC-H has
the simplest formulations for Jacobian matrices com-
paringwithCNMandEPMC-V leading to a lower com-
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Table 1 Comparison between complex nonlinear mode and two variants of extended periodic motion concept

Complex nonlin-
ear mode

EPMC with vis-
cous damping

EPMC with hys-
teretic damping

Assumption Harmonic solu-
tions with an
exponential
decay

Adding artificial
damping

Adding artificial
damping

Periodic solution? No Yes Yes

Time domain? Only in frequency
domain

Yes, shooting
method can be
used as well

Only in frequency
domain

AFT method? Based on the
assumption that
the decay terms
are not consid-
ered

Yes Yes

Artificial damping Not applicable Viscous damp-
ing, velocity
dependent

Hysteretic damp-
ing, displacement
dependent

Dependent on frequency? Yes Yes No

Dependent on harmonic order? Yes Yes No

C̄
n

−2n2ω2
0ζ

2M +
j2n2ω2

0ζ
√
1 − ζ 2M

2 jnω2
0ζM 2 jζK

δC̄
n
/δζ −4n2ω2

0ζM +
2 jn2ω2

0(
√
1 − ζ 2+

ζ 2/
√
1 − ζ 2)M

2 jnω2
0M 2 jK

δC̄
n
/δω0 −4n2ω0ζ

2M +
4 jn2ω0ζ

√
1 − ζ 2M

4 jnω0ζM 0

putational costs, this statementwill be further discussed
in Sect. 5.

In CNM, the solutions are assumed as the harmonic
solution with exponential decay. To solve the EoM in
the frequency domain, theAFT is awidely usedmethod
if the nonlinear forces cannot be explicitly defined in
the frequency domain, whereas in the AFT procedure,
it is complicated to treat the exponential decay terms.
Mostworks of literature directly ignore the decay terms
in AFT [18]. This treatment of the decay terms might
raise the error if the system shows a large damping
ratio.

As described in Sect. 2.2, there are two common
dampingmodels in physical andmathematical perspec-
tive: viscous damping and hysteretic damping. Both
damping models can be used as an artificial damp-
ing term in the EPMC to study the dNNM for a sys-
tem with a non-conservative nonlinear force. From the
numerical formulations of the EPMC-V and EPMC-

H [see Eqs. (12, 16)], the modal damping ratio from
both EPMC-V and EPMC-H can be computed. There
is a constant ratio between modal damping ratios com-
puted from EPMC-V and EPMC-H if only the funda-
mental harmonic is present (or the solutions are dom-
inated by the fundamental harmonic). In more detail,
if the modal damping ratio from EPMC-H is ζh and
ζv represents the modal damping ratio from EPMC-V.
Then, the relation between ζh and ζv is governed by
ζh = ζv(ω0/ωn)

2, where ω0 is the resonant frequency
of the dNNM and ωn is the natural frequency of the
linear mode. If a higher-order harmonic is responded,
the artificial damping terms with different damping
assumptions might affect the solutions. This statement
will be further discussed in Sect. 4.2.2.

In EPMC, an artificial damping term is introduced to
balance the energy dissipated by the non-conservative
nonlinear force. Therefore, using the classic numerical
methods to solve the EoM is achievable. If artificial vis-
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cous damping is introduced, both time domainmethods
(i.e. shooting method) and frequency domain methods
(i.e.HBM) can be used,whereas for EPMC-H, theEoM
can only be solved in the frequency domain. Further-
more, the application of the classic Floquet theorem to
analyse the asymptotic stability of the periodicmotions
is possible for EPMC-V but not for EPMC-H, whereas
Hill’s method can be used to investigate the stability of
solutions in the frequency domain for EPMC-H [21].

The use of dNNM for experimental testing is also
an important topic in the field of nonlinear dynamics.
Although the experimental testing is clearly out of the
scope of the present work, some comments about the
application of CNM and EPMC in the experimental
testing are briefly discussed. As for EPMC, in [35,36],
the complex stiffness was measured to determine the
frequency and damping of the forced system. There-
fore, using EPMC-H can provide a straightforward rep-
resentation of the complex stiffness measured from the
experiment, whereas the EPMC-V can be used for non-
linearmodal testing by adding a velocity feedback [27].

3 Predicting resonant solution

In Sect. 2, the numerical methods used for the com-
putation of dNNMs based on two concepts, CNM and
EPMC, have been derived in detail. In this section, two
numerical methods, E-EBM and NMS, for predicting
the resonant solutions using dNNM are introduced and
described. Then, a detailed evaluation is also provided
in the last part of this section.

3.1 Computation of forced response

The general EoM in a forced system with non-
conservative nonlinear forces is given in Eq. (21). C
is the known symmetric damping matrix of the system.
Q

f
is the dynamic response of the forced system. Fe is

the external excitation force, F̂e is a real unit vector of
the excitation force and γ is the excitation forcing level.
� is the excitation frequency; ϕ is the absolute phase of
the excitation force. In this work, the external excita-
tion force is considered as a simple harmonic excitation
and the solution of the system is represented by multi-
harmonics. After applying the HBM, the EoM can be
transferred into the frequency domain and the residual
of the EoM is given in Eq. (23). Z f is the complex

dynamic stiffness matrix and the superscript f repre-
sents the forced response. Z f has a similar form with
Eq. (5). The nonlinear forced response can be simply
solved using the classic HBM, the AFT method and
the continuation technique. In the continuation tech-
nique, the excitation frequency� is used as the chasing
parameter in the computation of forced response.

M Q̈
f
+ C Q̇

f
+ K Q

f
+ Fnl(Q f

, Q̇
f
)

= Fe(γ,�, ϕ, t) (21)

Q
f
(t) = �

⎧
⎨

⎩

Nh∑

n=0

Q̃
f, n

e jn�t

⎫
⎬

⎭
; Fe = �{γ F̂ee

j (�t+ϕ)}

(22)

R f
n = ( jn�)2M Q̃

f, n
+ jn� C Q̃

f, n
+ K Q̃

f, n

+F̃nl, n(Q̃ f
) −

{
γ e jϕ F̂e if n = 1

0 if n �= 1
(23)

R f = Z f Q̃
f
+ F̃nl(Q̃ f

) − [0, γ e jϕ F̂e, . . . , 0]T (24)

Z f
n

= K − n2�2M + jn� C. (25)

3.2 Extended energy balance method

Resonant solutions of forced responses have great sig-
nificance inmany engineeringproblems.TheE-EBMis
a tool to predict the resonant solution in a forced system
with non-conservative nonlinearities using its dNNM.
E-EBM is based on the assumption that the resonant
solution shows a high similarity with the dNNM. The
numerical formulations of the E-EBM based on differ-
ent concepts of the dNNM, includingCNMandEPMC,
are described in this section. The residual of the EoM
in frequency domain for the computation of dNNMs
is provided in Eq. (26), where C̄

n
has been defined in

Eqs. (7, 13, 17) and Table 1 for CNM and EPMC.
The E-EBM assumes that the resonant solution of

nonlinear forced response and that of the dNNM are
similar for small enough levels of damping and force.
Therefore, these solutions can be assumed to be iden-
tical, and have been named as “resonant shared solu-
tions”. The solution of an autonomous system bears
resemblance to that of the nonlinear forced response
at resonance. As shown in Eq. (27), when the excita-
tion frequency � equals to the resonant frequency ω0.
The dNNM and the resonant solutions are represented
by the resonant shared solutions ψ . Figure 2 shows an
example of a resonant shared solution. Each solution
points along the dNNMcan be considered as a resonant
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Fig. 2 Demonstration of resonant shared solution between
damped nonlinear normal mode and nonlinear forced response

shared solutionwith the nonlinear forced responsewith
a certain excitation forcing level.

Rdnnm
n = −n2ω2

0M Q̃
n

− C̄
n
Q̃

n

+ K Q̃
n

+ F̃nl n(Q̃) (26)

When� = ω0 :

⎧
⎪⎪⎨

⎪⎪⎩

ψ = Q ≈ Q
f

ψ̃ = α · Q̃
m

≈ Q̃
f

(27)

ψ = �
⎧
⎨

⎩

Nh∑

n=0

ψ̃
n
e jnω0t

⎫
⎬

⎭
;

Q = α �
⎧
⎨

⎩

Nh∑

n=0

Q̃
m, n

e jnω0t

⎫
⎬

⎭
;

Q
f

= �
⎧
⎨

⎩

Nh∑

n=0

Q̃
f, n

e jn�t

⎫
⎬

⎭
.

(28)

For each level of the modal amplitude α, the reso-
nant shared solution ψ , the resonant frequency ω0 and
the modal damping ratio ζ are calculated using accord-
ing to CNM or EPMC. The excitation forcing level γ

and the absolute phase of the excitation force ϕ can
be determined using the E-EBM if the damping matrix
C and the vector of the excitation force F̂e is given.
Recalling Eqs. (24, 26) and assuming that the solution
of the nonlinear forced response equals the resonant
shared solution ψ , the subtraction of Eqs. (26)–(24)
must hold in itsweak form.Then, the energy exchanged
caused by the damping terms Ed (or the forcing term
E f (γ, ϕ)) can be calculated by integrating the damp-
ing force (or the excitation force) times the velocity
over one vibrational period 2π/ω0. The calculation of

E f (γ, ϕ) is given in Eq. (29) and it is same for both
CNM and EPMC. Equations used for calculation of Ed

are described Eqs. (30–31). It is worth mentioning that
Ed includes two parts: the energy dissipated by the vis-
cous damping C and dissipative term C̄

n
. C̄

n
has been

defined in Eqs. (7, 13, 17) and Table 1 for CNM and
EPMC.

E f (γ, ϕ) = E f
n=1(γ, ϕ)

=
∫ 2π

ω0

0
( jω0ψ̃1

e jω0t ) · (γ e jϕ F̂e,e
jω0t ) δt

=
∫ 2π

ω0

0
( jω0ψ̃1

e jω0t ) · (γ e jϕ F̂e,e
jω0t ) δt

= π�{γ e jϕψ̃
H

1
F̂e}

(29)

Ed
n =

∫ 2π
ω0

0

Nh∑

n=0

( jnω0ψ̃n
e jnω0t ) · ( jnω0 C + C̄

n
)

· ψ̃
n
e jnω0t δt

=
Nh∑

n=0

π �{n2ω0 ψ̃
H

n
C ψ̃

n
+ nψ̃

H

n
C̄
n
ψ̃

n
}

(30)

γ = �{e jϕψ̃
H

1
F̂e}

∑Nh
n=0 �{n2ω0 ψ̃

H

n
C ψ̃

n
+ n ψ̃

H

n
C̄
n
ψ̃

n
}
. (31)

In Sect. 2, the dNNM Q, the resonant frequency
ω0 and the modal damping ratio ζ are computed for a
rangeofmodal amplitudeα using the formula inSect. 2.
For each particular value of α, the dNNM can be seen
as the resonant shared solution of a nonlinear forced
response with a certain excitation forcing level γ . The
energy exchanged by the damping terms Ed and the
forcing term E f (γ, ϕ) are computed for each value of
α using Eqs. (29–31). Ed is a constant value for a given
resonant shared solution, whereas E f depends on the
value of forcing level γ and forcing phase ϕ [see Eq.
(29)].

Figure 3 demonstrates the relation between the
energy exchanged by the damping terms Ed and the
forcing term E f (γ, ϕ). As shown in Fig. 3, the energy
transfer caused by damping terms Ed is constant for a
certain level of modal amplitude α, whereas the energy
exchanged by the external excitation E f (γ, ϕ) varies
with the forcing phaseϕ and the excitation forcing level
γ . To determineϕ and γ is to find the single intersection
between the curve of E f (γ, ϕ) and the constant value
of Ed that will occur at the maximum (if Ed > 0)
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Fig. 3 The energy transferred by the damping term (Ed ) for a
fixedmodal amplitudeα and the energy transferred by the forcing
terms (E f (γ, ϕ)) for different excitation levels γ with respect to
the forcing phase ϕ

or the minimum (if Ed < 0) of E f (γ, ϕ). Thus, a
classic force amplitude curve can be built, if this oper-
ation is carried out for each value of modal amplitude
α. In a system with non-conservative nonlinear force,
the modal damping ratio ζ can be either positive (like
systems with nonlinear damping) or negative (systems
with self-excited solutions). Based on the value of Ed

and ζ , there are four situations in total. Readers are
invited to refer to [29] for a detailed description. This
work only focuses on the system with nonlinear damp-
ing, where Ed > 0 and ζ > 0.

3.3 Nonlinear modal synthesis

The forced response of a linear system can be recon-
structed from its linear normal modes. The synthe-
sis of linear normal modes is very efficient thanks to
the orthogonality condition and superposition princi-
ple [14], whereas in a nonlinear system, both orthog-
onality conditions and superposition principle are not
valid anymore. Therefore, to achieve theNMS in a non-
linear system, a single-nonlinear-resonant-mode the-
ory is applied [9]. According to this theory, the general
dynamic response of a nonlinear system can be seen
as a combination of a single nonlinear mode and a col-
lection of linearised modes. The internal resonance is
not considered under this assumption. The NMS can
be used to construct the full nonlinear forced response
using the nonlinear modes. This work aims to provide a
detailed evaluation between NMS and E-EBM. There-
fore, only the resonant solutions in the nonlinear forced
responses are of interest. Readers are invited to refer

to [14] for a detailed description of NMS. In [14], the
NMS is applied on the dNNM computed using CNM
with only the fundamental harmonic, whereas in the
present work, the formula of NMS is derived from both
CNMbased dNNMsandEPMCbased dNNMswith the
consideration of multi-harmonics.

The EoM for nonlinear forced response in the fre-
quency domain is provided as Eqs. (23, 24). The non-
linear force F̃nl(Q̃ f

) is treated as a combination of an

equivalent stiffness matrix K
eq

(Q̃
f
) and an equivalent

damping force D̃(Q̃
f
). The equivalent stiffness matrix

is used to represent the stiffening or softening effects
caused by the nonlinear force, whereas the equiva-
lent damping force indicates the dissipative effect from
this non-conservative nonlinear force. Thus, the total
nonlinear stiffness of the system is represented by
K

nl
(Q̃

f
), which can be seen as a summation of the

linear stiffness matrix K and the equivalent stiffness

matrix K
eq

(Q̃
f
), K

nl
(Q̃

f
) = K + K

eq
(Q̃

f
). For a

better readability, the dependence of the K
nl

and D̃

on Q̃
f
does not shown in the following equations.

The equivalent damping force D̃ can be either vis-
cous damping (D̃n = 2 jnDω2

0M Q̃
f
) or hysteretic

damping (D̃n = 2 j DK Q̃
f
), where D is the actual

damping ratio raised from the nonlinear force. Thus,
the EoM motion for computation of forced response
can be represented by Eq. (32). The similar treatment
is also applied to the residual of the dNNM as shown
in Eq. (33), where C̄

n
has been defined in Eqs. (7, 13,

17) and is shown in Table 1.

R f
n = −n2�2M Q̃

f, n
+ jn� C Q̃

f, n
+ K

nl
Q̃

f, n

+D̃n −
{
γ e jϕ F̂e if n = 1

0 if n �= 1
(32)

Rdnnm
n = −n2ω2

0M Q̃
n

− C̄
n
Q̃

n
+ K

nl
Q̃

n
+ D̃n

(33)

According to [14], the full forced response is synthe-
sised by a single nonlinear mode and other linearised
modes,whereas the present study focuses on the predic-
tion of the resonant solution. At resonance, the resonant
solution of the forced system is represented by a spe-
cific dNNM ψ . Actually, under resonance, the contri-
bution of other linearised modes has already been con-
sidered in this dNNM. For easy comparison between
E-EBM, this specific dNNM is represented by the same
symbol ψ with the “resonant shared solution” in E-
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EBM. ψ can be obtained using either CNM or EPMC.
When the excitation frequency � equals the resonant
frequency ω0 of dNNM ψ , the resonant solution is
dominated by this specific dNNM ψ as shown in Eq.
(34). At this situation, the damping ratio D of the equiv-
alent damping force D̃ equals the modal damping ratio
ζ of this specific dNNM ψ . If the CNM and EPMC-V
are used in the computation of the dNNM, the equiva-
lent viscous damping (2 jnDω2

0M Q̃) is included [14],
whereas in the case of EPMC-H, the equivalent hys-
teretic damping (2 j DK Q̃) is considered.

When � = ω0 : ψ̃ = α · Q̃
m

≈ Q̃
f
; D = ζ.

(34)

To determine the excitation forcing level γ in
NMS, Eq. (32) is formally projected onto each har-
monic ψ̃

n
e jnω0t . It is important to emphasise that the

ψ̃
H

n
(−n2ω2

0M + K
nl
) ψ̃

n
= 0, which is inherently ful-

filled in accordance with the residual of dNNM given
by Eq. (33).
For the 1st harmonic order with equivalent viscous
damping:

| − ω2
0ψ̃

H

1
M ψ̃

1
+ jω0 ψ̃

H

n
C ψ̃

1
+ ψ̃

H

1
K

nl
ψ̃

1

+ 2 jω2
0ζ ψ̃

H

1
M ψ̃

1
| = γ �{e jϕψ̃

H

1
F̂e} (35)

| jω0 ψ̃
H

1
C ψ̃

1
+ 2 jω2

0ζ ψ̃
H

1
M ψ̃

1
|

= γ �{e jϕψ̃
H

1
F̂e} (36)

γn=1 = �{e jϕψ̃
H

1
F̂e}

| jω0ψ̃
H

1
C ψ̃

1
+ 2 jω2

0ζ ψ̃
H

1
M ψ̃

1
|

(37)

For multi-harmonics:

γ = �{e jϕψ̃
H

1
F̂e}

∑Nh
n=0 | jnω0ψ̃

H

n
C ψ̃

n
+ 2 jnω2

0ζ ψ̃
H

n
M ψ̃

n
|
(38)

For the 1st harmonic order with equivalent hysteretic
damping:

| − ω2
0ψ̃

H

1
M Q̃

1
+ jω0 ψ̃

H

1
C Q̃

1

+ ψ̃
H

1
K

nl
Q̃

1
+ 2 jζ ψ̃

H

1
K Q̃

1
| = γ �{e jϕψ̃

H

1
F̂e}
(39)

| − α2ω2
0 + jω0 ψ̃

H

1
C ψ̃

1
+ α2ω2

0 + 2 jζ ψ̃
H

1
K ψ̃

1
|

= γ �{e jϕψ̃
H

1
F̂e} (40)

γn=1 = γ �{e jϕψ̃
H

1
F̂e}

| jω0ψ̃
H

1
C ψ̃

1
+ 2 jζ ψ̃

H

1
K ψ̃

1
|

(41)

For multi-harmonics:

γ = γ �{e jϕψ̃
H

1
F̂e}

∑Nh
n=0 | jnω0ψ̃

H

n
C ψ̃

n
+ 2 jζ ψ̃

H

n
K ψ̃

n
|
. (42)

3.4 Discussion

E-EBM and NMS are only valid when the solution
in forced response has a similar shape with a similar
amplitude at a similar frequency to the solution with
a specific amplitude of the studied dNNM. Therefore,
the crossing solution between the forced response and
the underlying dNNM can be effectively predicted. A
situation with multiple crossing solutions might also
happen in the emergence of the isola [4,6], the exis-
tence of isola is not considered in this work. Predict-
ing the isola is also achievable for E-EBM [29]. To
achieve a comprehensive comparison between NMS
and E-EBM, the formula used for computation of γ

for the 1st harmonic and multi-harmonics is provided
in Table 2. Generally, NMS is based on projecting the
EoM for the computation of the forced response for-
mally onto each harmonic of the dNNM [14], whereas
E-EBM is based on a fact that the net energy transfer
between the dNNM and the resonant solution in forced
response equals zero [29]. These two numerical meth-
ods start from different considerations and arrive at a
similar formulation.

By looking at the formulation for the 1st harmonic
(first two rows of Table 2), one can always notice that
the formula for EPMC-H and EPMC-V is mathemati-
cally the same between the NMS and E-EBM, whereas
for CNM, the denominator is different. In NMS, the
conservative nonlinear force is treated as a joint effect
from an equivalent nonlinear stiffness matrix K

nl
and

an equivalent damping force D̃. The determination of
the damping models (viscous or hysteretic damping)
for the equivalent damping force D̃ has a great impact
on the accuracy of the NMS. If the dNNM is computed
using EPMC, the same damping model as the artificial
damping can be used for this equivalent damping force
D̃, i.e. an equivalent viscous damping force can be used
if the dNNM is computed using EPMC-V, whereas in
CNM, the damping ratio is obtained from the decaying
solutions.An additional assumption has to bemade: the
equivalent viscous damping force D̃ is approximated
using a viscous damping model or a hysteretic damp-
ing model with a damping ratio ζ . In E-EBM, the total
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Table 2 Comparison
between nonlinear modal
synthesis and extended
energy balance method

Formula for the computation of γ

NMS, 1st harmonic

CNM
�{e jϕψ̃

H
1
F̂e}

| jω0ψ̃
H
1

C ψ̃
1
+2 jζω2

0ψ̃
H
1

M ψ̃
1
|

EPMC-V
�{e jϕψ̃

H
1
F̂e}

| jω0ψ̃
H
1

C ψ̃
1
+2 jζω2

0ψ̃
H
1

M ψ̃
1
|

EPMC-H
�{e jϕψ̃

H
1
F̂e}

| jω0ψ̃
H
1

C ψ̃
1
+2 jζ ψ̃

H
1

K ψ̃
1
|

E-EBM, 1st harmonic

CNM
�{e jϕψ̃

H
1
F̂e}

�{ω0 ψ̃
H
1

C ψ̃
1
−(2ω2

0ζ
2−2 jω2

0ζ
√

1−ζ 2) ψ̃
H
1

M ψ̃
1
}

EPMC-V
�{e jϕψ̃

H
1
F̂e}

�{ω0 ψ̃
H
1

C ψ̃
1
+2 jω2

0ζ ψ̃
H
1

M ψ̃
1
}

EPMC-H
�{e jϕψ̃

H
1
F̂e}

�{ω0 ψ̃
H
1

C ψ̃
1
+2 jζ ψ̃

H
1

K ψ̃
1
}

NMS, Multi-harmonics

CNM
|e jϕψ̃

H
1
F̂e |

∑Nh
n=0 | jnω0ψ̃

H
n

C ψ̃
n

+2 jnζω2
0ψ̃

H
n

M ψ̃
n
|

EPMC-V
|e jϕψ̃

H
1
F̂e |

∑Nh
n=0 | jnω0ψ̃

H
n

C ψ̃
n

+2 jnζω2
0ψ̃

H
n

M ψ̃
n
|

EPMC-H
|e jϕψ̃

H
1
F̂e |

∑Nh
n=0 | jnω0ψ̃

H
n

C ψ̃
n

+2 jζ ψ̃
H
n

K ψ̃
n
|

E-EBM, Multi-harmonics

CNM
�{e jϕψ̃

H
1
F̂e}

∑Nh
n=0 �{n2ω0 ψ̃

H
n

C ψ̃
n

+(−2n3ω2
0ζ

2+2 jn3ω2
0ζ

√
1−ζ 2) ψ̃

H
n

M ψ̃
n
}

EPMC-V
�{e jϕψ̃

H
1
F̂e}

∑Nh
n=0 �{n2ω0 ψ̃

H
n

C ψ̃
n

+2 jn2ω2
0ζ ψ̃

H
n

M ψ̃
n
}

EPMC-H
�{e jϕψ̃

H
1
F̂e}

∑Nh
n=0 �{n2ω0 ψ̃

H
n

C ψ̃
n

+2 jnζ ψ̃
H
n

K ψ̃
n
}

energy transferred is numerically calculated regardless
of the damping assumption. Therefore, if only the 1st
harmonic, is considered, theNMS andE-EBMhave the
same representation of the γ if the dNNM is computed
using EPMC.

If multi-harmonics are considered in the computa-
tion of dNNMs and used to predict the resonant solu-
tions, the formula is provided in the last two rows of
Table 2. The formula for EPMC in NMS and E-EBM
handles the high order harmonics differently. The dis-
crepancy between the NMS and the E-EBM will be
discussed in Sect. 4.2.2 in together with the numerical
results.

4 Illustrative test cases: 1-DoF systems

In this section, two illustrative 1-DoF systems are
tested: a 1-DoF system with frictional contact and a
1-DoF system with quadratic nonlinear damping. The
1-DoF system with frictional contact with two differ-
ent sets of parameters are investigated, the first one
shows significant friction damping effects (named as
Testcase I) and the second one has a low friction damp-
ing (named as Testcase II). Testcase III and Testcase
IV refer to the 1-DoF system with quadratic nonlinear
damping (Testcase IV has a greater damping ratio than
Testcase III). In each test case, the dNNMs are com-
puted using CNM and two variants of EPMC with the
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first 15th harmonics. In addition, the resonant solutions
are predicted using E-EBM and NMS.

4.1 1-DoF system with frictional contact

The first illustrative 1-DoF system consists of a single
pointmass oscillatorwith a Jenkins element as shown in
Fig. 4. The Jenkins element is used to model frictional
contact between the mass oscillator and the ground.
The maximum static friction is defined as fmax and kt
is the tangential contact stiffness. There are two contact
conditions in the present Jenkins element, which are
sticking and sliding. The detailed formulations for the
computation of the friction forcing f

nl
can be found in

Eqs. (A.1–A.3). The EoMs used for the computation of
the dNNM and the forced responses are shown in Eq.
(43). The present 1-DoF system with frictional contact
is tested for two different sets of parameters as shown
in Table 3. γ is the excitation forcing level and ϕ is
the absolute phase of the excitation. The value of γ is
expected to be predicted using dNNM coupled with E-
EBMorNMS.The forced responsewill be computed to
validate the resonant frequency and excitation forcing
level predicted using the dNNM coupled with E-EBM
or NMS.

dNNM: m q̈ + k q + f
nl

= 0

Forced response: m q̈ + c q̇ + k q + f
nl

= γ e j (�t+ϕ).

(43)

4.1.1 Testcase I

The parameters used for Testcase I are given in Table 3.
The linear natural frequency ωn of Testcase I is 1 rad/s
and the linear sticking frequency is 2 rad/s. The lin-
ear sticking frequency refers to the natural frequency

γej(Ωt+ϕ)k

c

m

kt

Fig. 4 1-DoF system with frictional contact

Table 3 Parameters for Testcase I and Testcase II

Testcase I Testcase II

k 1N/m 3.55e4N/m

m 1 kg 1 kg

c 0.2Ns/m 0.01Ns/m

kt 3N/m 1e4N/m

fmax 1 N 50N

Natural frequency 1 rad/s 188.4 rad/s

Sticking frequency 3 rad/s 213.3 rad/s

when the Jenkins element is replaced by a linear spring
with the same stiffness as the contact stiffness. The
dNNMs for Testcase I are calculated using CNM and
two variants of EPMC. The results are shown in the
form of ω0 − qmax curves and ζ − qmax curves (see
Fig. 5a, b). ω0 is the resonant frequency, ζ is the modal
damping ratio, qmax is the vibration amplitude. Then,
the resonances are predicted using the dNNMs and two
numerical methods (E-EBM and NMS). From E-EBM
and NMS, the γ − qmax curves can be built to demon-
strate the relation between the excitation forcing level
and the resonant amplitude (see Fig. 5c). The q̇ − q
envelopes, q̇− q̈ envelopes and invariant manifolds are
shown in Fig. 7. Then, four different cases with differ-
ent values of qmax are highlighted in Fig. 5 (Case A
qmax = 1, Case B qmax = 2, Case C qmax = 4, Case D
qmax = 6,). These four cases are selected for a further
detailed explanation. The resonant solutions, nonlin-
ear forces and the hysteresis loops are shown in Fig. 6.
In addition, the critical information for the four cases
is listed in Table 4(a). To validate the resonant solu-
tions predicted from the dNNM, the forced responses
are computed using the γ values predicted from the
dNNM. The ω0 − qmax curves and γ − qmax curves
are shown in together with the full forced responses in
Fig. 5d–f. The accuracy of the predicted ω0 and γ can
be directly observed in Fig. 5d–f.

By looking at Fig. 5a, the evolution of the ω0 with
respect to the qmax is a typical phenomenon for systems
with frictional contact [32]. At a low level of qmax, the
mass is stuck to the ground and the ω0 equals the linear
sticking frequency. Increasing qmax leads to a sliding
contact condition resulting in a softening effect. The
ω0 starts to decrease and asymptotically reaches the
natural frequency. By evaluating the ω0 obtained from
CNM and two variants of EPMC, the ω0 computed
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Testcase I: a–c Numerical results from the damped
nonlinear normal mode within a range of modal amplitude; a
ω0 − qmax plot; b ζ − qmax plot; c γ − qmax plot using extended
energy balance method (circles) and nonlinear modal synthe-
sis (diamonds); d–f Using nonlinear forced response to validate
ω0 − qmax curves and γ − qmax curves; d Complex nonlinear
mode; e Extended periodic motion concept with artificial vis-

cous damping; fExtended periodicmotion concept with artificial
hysteretic damping; Left: γ −qmax curves from nonlinear modal
synthesis (Purple solid curves), γ − qmax curves from extended
energy balance method (Grey dashed curves); Right: ω0 − qmax
(Black curves) and nonlinear forced response in different colours.
(Color figure online)

using CNM is slightly different from the one obtained
from EPMC (EPMC-V and EPMC-H show the same
results). The accuracy of the ω0 is demonstrated in
Fig. 5d–f and Table 4 using the four cases. The pre-
dicted ω0 is provided in the third column in Table 4(a)
and the resonant frequency obtained from the forced
responses is provided in Table 4(b). By comparing the
values in Table 4, the ω0 obtained from CNM is less

accurate than the one obtained from the EPMC. This
inaccuracy can be directly observed in Fig. 5d–f, and
it will be discussed in Sect. 4.1.2.

As for the evolution of the ζ , the discrepancy
between values from the CNM and two variants of
EPMC cannot be ignored. As explained in Sect. 2.6,
the hysteretic damping is independent on ω0, whereas
viscous damping relates to ω0. If the solutions of the
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 6 Testcase I: Predicted resonant solutions using the damped
nonlinear normal modes and resonant solutions from the forced
response for four different cases (shown in Fig. 5); Case A
qmax = 1, Case B qmax = 2, Case C qmax = 4, Case D qmax = 6;

a–d q(t) − t plots; e–h fnl − t plots; i–l fnl − q(t) plots; grey
curves: obtained from the resonant solutions in forced response.
(Color figure online)
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Table 4 Resonances for Testcase I

(a) Resonances predicted from dNNM
Cases Strategies ω0 (rad/s) ζ (%) γ from E-EBM γ from NMS

Case A qmax = 1 CNM 1.44 0.21 0.880 0.893

EPMC-V 1.37 0.23 0.884 0.882

EPMC-H 1.37 0.43 0.886 0.886

Case B qmax = 2 CNM 1.20 0.19 1.123 1.136

EPMC-V 1.15 0.21 1.124 1.122

EPMC-H 1.15 0.27 1.125 1.124

Case C qmax = 4 CNM 1.07 0.13 1.266 1.271

EPMC-V 1.06 0.13 1.264 1.263

EPMC-H 1.06 0.15 1.264 1.264

Case D qmax = 6 CNM 1.04 0.09 1.336 1.339

EPMC-V 1.03 0.10 1.335 1.334

EPMC-H 1.03 0.10 1.335 1.334

(b) Resonances obtained from forced response

Excitation forcing level Resonant frequency (rad/s) Resonant amplitude

0.886 1.37 1.00

1.125 1.15 2.00

1.264 1.06 3.99

1.335 1.03 6.00

studied system are dominated by the fundamental har-
monic, there is a constant ratio between the ζ com-
puted from the EPMC-V and EPMC-H, (ω0/ωn)

2.
This can be simply proved by looking at any case in
Table 4(a). Taking Case A as an example, the ζ from
the EPMC-H is 0.43% and ζ from the EPMC-V is
0.23%. If the ζ from EPMC-V is multiplied by a fac-
tor of (ω0/ωn)

2 = (1.37/1)2, then it equals the value
obtained from the EPMC-H. From the author’s under-
standing, the damping ratio is an indicator to describe
the damping effect and it highly depends on the damp-
ing assumption. Artificial damping is introduced in the
EPMC to compensate for the energy loss in a period
average. Therefore, all that truly matters is the peri-
odic solutions and the actual energy loss. The periodic
solutions, nonlinear hysteresis loops for four cases are
shown in Fig. 6. From Fig. 6, the results from EPMC-V
andEPMC-H show a great agreementwith the resonant
solutions from the forced response. Therefore, we can
safely conclude that for Testcase I, both EPMC-V and
EPMC-H can provide an equally good accuracy. By
looking at the hysteresis loops, the energy dissipated
(area under hysteresis loops) from CNM and EPMC is

almost identical, even the predicted ω0 from CNM is
less accurate.

The γ values predicted from two concepts and two
numerical methods show an excellent agreement, as
shown inFig. 5c. By looking at Figs. 5d–f and 6, the res-
onant solutions predicted from the dNNM corresponds
to the resonant solutions from the forced response. For
E-EBM, the γ is determined by a balance of energy
between the non-conservative nonlinear force and exci-
tation force. From Fig. 6i–l, the energy dissipated com-
puted from the CNM and two variants of EPMC is
almost identical. Thus, the γ calculated from the E-
EBM for three strategies shows a negligible discrep-
ancy. The accuracy of the NMS can be guaranteed
because Testcase I is a simple 1-DoF system governed
by the fundamental harmonic without the presence of
modal interaction.

The invariant manifolds for CNM and two variants
of EPMC are constructed using a finite number of peri-
odic solutions, as shown in Fig. 7. It is difficult to iden-
tify the differences between the manifolds. Therefore,
we can conclude that for Testcase I, both EPMC-V and
EPMC-H can provide an accurate computation of the
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Fig. 7 Testcase I: Invariant manifold; a–c q̇(t) − q(t) plot; d–f q̇(t) − q̈(t) plot; g–i Invariant manifolds

dNNM.ForCNM, the resonant frequency slightly devi-
ates from the actual value.

4.1.2 Testcase II

This 1-DoF system with another set of parame-
ters is tested as Testcase II. The input parameters
for the same model [Eq. (43) and Fig. 4] are pro-
vided in Table 3. The linear natural frequency ωn

of Testcase II is 188.4 rad/s and linear sticking
frequency is 213.3 rad/s. The similar ω0 − qmax

curves, ζ − qmax curves and γ − qmax curves are
shown in Fig. 8a–c. The full forced response, ω0 −
qmax curves and γ − qmax curves are provided in
Fig. 8d–f.

It is worth noticing that the maximum ζ achieved
for Testcase II is 4.5%, which is much smaller than

one from Testcase I (maximum ζ is around 45%).
By considering ω0 − qmax curves and Fig. 8d–f, the
ω0 computed from the CNM shows higher accuracy
than Testcase I. This can be explained by the fact
that the accuracy of the CNM highly depends on the
modal damping ratio. Because in CNM, the solutions
are assumed as damped solutions in a periodic form
with exponential decay, whereas in the AFT proce-
dure, the decay terms are directly ignored and the
damped solutions are treated as undamped periodic
solutions. If a system with a large damping ratio (like
Testcase I), the damped solutions are different from
the undamped periodic solutions, especially the dif-
ference in the frequency. Thus, the periodic assump-
tion in the AFT procedure can make non-negligible
impacts on the accuracy of the CNM. On the other
hand, for a system with lower damping ratio (like Test-
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(a) (b) (c)

(d) (e) (f)

Fig. 8 Testcase II: a–c Numerical results from the damped
nonlinear normal mode within a range of modal amplitude; a
ω0 − qmax plot; b ζ − qmax plot; c γ − qmax plot using extended
energy balance method (circles) and nonlinear modal synthe-
sis (diamonds); d–f Using nonlinear forced response to validate
ω0 − qmax curves and γ − qmax curves; d Complex nonlinear
mode; e Extended periodic motion concept with artificial vis-

cous damping; fExtended periodicmotion concept with artificial
hysteretic damping; Left: γ −qmax curves from nonlinear modal
synthesis (Purple solid curves), γ − qmax curves from extended
energy balance method (Grey dashed curves); Right: ω0 − qmax
(Black curves) and nonlinear forced response in different colours.
(Color figure online)

case II), the damped frequency ωd is very close to
the resonant frequency ω0 (ωd = ω0

√
1 − ζ 2). There-

fore, treatment of the damped solutions in the AFT
procedure does not have a significant influence on the
accuracy of the CNM for systems with lower frictional
damping.

4.2 1-DoF system with quadratic nonlinear damping

A 1-DoF system with quadratic nonlinear damping is
investigated as the second illustrative system in this
work. This system has been studied in [11]. The EoMs
used for the computation of the dNNM and the forced
responses are shown in Eq. (43). There is quadratic
nonlinear v q2 q̇ in the EoMs. Two different values of
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v are considered: v = 0.02 for Testcase III and v = 0.1
for Testcase IV. γ is the excitation forcing level and ϕ

is the absolute phase of the excitation. The value of γ is
expected to be predicted using dNNM coupled with E-
EBMorNMS.The forced responsewill be computed to
validate the resonant frequency and excitation forcing
level predicted using the dNNM coupled with E-EBM
or NMS.

dNNM: q̈ + q + v q2 q̇ = 0

Forced response: q̈ + 0.02 q̇ + q + v q2 q̇ = γ e j (�t+ϕ)
(44)

4.2.1 Testcase III

The value of v = 0.02 is used in Testcase III. The
dNNMs for Testcase III are calculated using CNM and
two variants of EPMC. The results are shown simi-
larly with Testcase I. The evolution of the resonant fre-
quency ω0 and the modal damping ratio ζ are plotted
with respect to the vibration amplitude qmax curves, as
shown in Fig. 9a, b. Then, the excitation forcing level
γ for the solutions of the dNNM are predicted using
the dNNMs and two numerical methods (E-EBM and
NMS). The γ − qmax curves are displayed in Fig. 9c.
The q̇−q envelopes, q̇−q̈ envelopes and invariantman-
ifolds are shown in Fig. 7. To validate the resonant solu-
tions predicted from the dNNM, the forced responses
are computed using the γ values predicted from the
dNNM. The ω0 − qmax curves and γ − qmax curves
are shown in together with the full forced responses in
Fig. 9d–f.

By looking Fig. 9, the ζ −qmax curves and γ −qmax

curves are almost identical, whereas for ω − qmax

curves, the one computed from the CNM shows a
hardening effect and the other two show a softening
effect. Similar findings can be also found in [8,11].
The full forced responses of the present system are cal-
culated using Eq. (44) and are shown in Fig. 9d–f. From
Sect. 4.1, we have concluded that the accuracy of the
CNM can be affected by the value of the nonlinear
damping, i.e. a system with large nonlinear damping
has lower accuracy. However, in Testcase III, the ω0

computed from CNM starts to increase at a low damp-
ing level when qmax = 0.57 and ζ = 0.08%. From the
author’s understanding, it is not rigorous to conclude
that this evident inaccuracy comes from the periodic
assumption in the AFT procedure. Further works are
required to improve the accuracy of theCNM.Toobtain
a comprehensive comparison of dNNMs, the q̇ − q

envelopes, q̇ − q̈ envelopes and invariant manifolds of
the studied mode are provided in Fig. 10. From the fig-
ure, it is difficult to identify any obvious differences
between CNM and two variants of EPMC.

4.2.2 Testcase IV

The same 1-DoF system with quadratic nonlinear
damping is tested with a different value of v = 0.1
(named as Testcase IV). A similar nonlinear modal
analysis is applied using the first 13 harmonics (Nh =
13) and results are shown in this section. The ζ − qmax

curves, ω0 − qmax curves and γ − qmax curves are
shown in Fig. 11a–c. From the figure, one can notice
that there is a more observable discrepancy between
the dNNM predicted from CNM and two variants of
EPMC. First of all, from theCNM,Testcase IV exhibits
a strong hardening effect, whereas the one from EPMC
shows a softening effect. The initial findings ofTestcase
IV share a great similarity with Testcase III, but with
remarkable features. It is worth noticing that the ω0

predicted using two variants of EPMC exhibits a slight
discrepancy when the amplitude exceeds 6. This obser-
vation is different from thefirst three test cases.Asmen-
tioned in Sect. 2.6, if the dNNM of the studied system
is dominated by the fundamental harmonic, the same
dNNM can be obtained from EPMC-V and EPMC-
H, whereas in Testcase IV, the discrepancy between
the dNNM computed from EPMC-V and EPMC-H
comes from the existence of higher-order harmonics.
This statement will be further discussed in this section
with the help of convincing results.

By looking at the forced response in Fig. 11e–g,
the crossing solutions can be still identified using the
dNNMwith E-EBM even the ω0 computed from CNM
and EPMC is very different. However, the crossing
solutions predicted using NMS show a great discrep-
ancy with the actual crossing solutions between the
forced response and theCNMbaseddNNMas shown in
Fig. 11h. EPMC-Hprovides an almost equallywell pre-
dictionof the crossing solutionbetween theE-EBMand
NMS. To further demonstrate the results, the predicted
resonant frequencyω0 and the resonant amplitude qmax

in the case of γ = 8 are listed in Table 5. The dNNM is
computed using CNM and two variants of EPMC, and
the resonant solutions are predicted using two numer-
ical methods, namely E-EBM and NMS. Therefore,
with a given value of γ , there are six predicted solu-
tions as shown in Table 5. In addition, the values of ω0
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(a) (b) (c)

(d) (e) (f)

Fig. 9 Testcase III: a–c Numerical results from the damped
nonlinear normal mode within a range of modal amplitude; a
ω0 − qmax plot; b ζ − qmax plot; c γ − qmax plot using extended
energy balance method (circles) and nonlinear modal synthe-
sis (diamonds); d–f Using nonlinear forced response to validate
ω0 − qmax curves and γ − qmax curves; d Complex nonlinear
mode; e Extended periodic motion concept with artificial vis-

cous damping; fExtended periodicmotion concept with artificial
hysteretic damping; Left: γ −qmax curves from nonlinear modal
synthesis (Purple solid curves), γ − qmax curves from extended
energy balance method (Grey dashed curves); Right: ω0 − qmax
(Black curves) and nonlinear forced response in different colours.
(Color figure online)

and qmax for the crossing solutions are also provided in
the second column of Table 5. The crossing solutions
are taken at where the forced response (γ = 8) inter-
sects with the underlying dNNM. From Table 5, one
can notice that the error caused by E-EBM is always
smaller thanNMS. If the dNNM is computed according
to CNM, the error in the prediction of ω0 and qmax is
4.7% and 8.96%. From the table, one can always notice

that EPMC-H provides a better prediction than CNM
andEPMC-Veither usingNMSorE-EBM.These inac-
curacies might from the combining effect between the
dNNM computation and resonance prediction due to
the presence of higher-order harmonics. Therefore, it
is not rigorous to claim that EPMC-Hcan provide better
results.
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Fig. 10 Testcase III: Invariant manifold; a–c q̇(t) − q(t) plot; d–f q̇(t) − q̈(t) plot; g–i invariant manifolds

To further investigate the influences caused by the
higher-order harmonics, theq(t)−t plots, q̇(t)−t plots,
fnl − t plots, q̇ − q plots and fnl − q plots in the case
of γ = 8 are shown in Fig. 12, where grey curves rep-
resent the crossing solutions in forced response; blue
dash-dot curves for the prediction from E-EBM; red
dashed curves for the prediction from NMS. The first
row of Fig. 12 shows the results from CNM; the results
from EPMC-V are provided in the second row; the
third row for EPMC-H. By looking at the results in
Fig. 12, the initial findings correspond to the obser-
vation from Table 5. For a close look at Fig. 12a, b,
the differences between the results from E-EBM and
NMS are mainly from higher-order harmonics. There-
fore, we can safely confirm that the presence of higher-
order harmonics makes a great impact on the accuracy
of NMS and E-EBM. The contribution of the 1st har-

monic, the 3rd harmonic and the 5th harmonic is also
provided in Fig. 13. As mentioned above, the dNNMs
are computed using the first 13 harmonics (Nh = 13);
the formula with multi-harmonics is applied in E-EBM
andNMS. The qn=1,3,5 is calculated using the formula:
qn = �{q̃ne jnω0t }. From Fig. 13a, d, g, it is obvious to
see that there are no significant differences for the 1st
harmonic, whereas the NMS overestimated the con-
tribution of the 3rd harmonic and the 5th harmonic.
These findings correspond to the results in Table 5:
NMS shows +8.98% error in the resonant amplitude if
the dNNM is computed using CNM and +3.34% for
EPMC-V.

The results shown above are computed using the first
13 harmonics (Nh = 13). The total order of harmonics
Nh used in theHBMmethod can influence the accuracy
of the results. In Fig. 14a–c, the ω0 − qmax curves for
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(a)

(e) (f) (g)

(h) (i) (j)

(b) (c) (d)

Fig. 11 Testcase IV: a–c Numerical results from the damped
nonlinear normal mode within a range of modal amplitude;
a ω0 − qmax plot; b ζ − qmax plot; c γ − qmax plot using
extended energy balancemethod; d γ −qmax plot using nonlinear
modal synthesis; e–gUsing nonlinear forced response to validate
ω0 − qmax curves and γ − qmax curves from extended energy
balance method; h–j Using nonlinear forced response to validate

ω0 − qmax curves and γ − qmax curves from nonlinear modal
synthesis; e, h Complex nonlinear mode; f, i Extended periodic
motion concept with artificial viscous damping; g, j Extended
periodic motion concept with artificial hysteretic damping; Left:
γ − qmax curves; Right: ω0 − qmax (Black curves) and nonlinear
forced response in different colours. (Color figure online)
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Table 5 Resonances for Testcase IV in the case of γ = 8

Crossing solution Prediction from E-EBM Prediction from NMS

(a) Resonant frequency ω0

CNM 1.145 1.149, Error: +0.36% 1.193, Error: +4.17%

EPMC-V 0.930 0.934, Error: +0.42% 0.921, Error: −0.91%

EPMC-H 0.940 0.940, Error: +0.06% 0.938, Error: −0.15%

(b) Resonant amplitude qmax

CNM 6.261 6.308, Error: +0.74% 6.822, Error: +8.96%

EPMC-V 6.734 6.622, Error: −1.66% 6.959, Error: +3.34%

EPMC-H 6.717 6.684, Error: −0.49% 6.756, Error: +0.57%

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m (n) (o)

Fig. 12 Testcase IV: predicted resonant solutions using the
damped nonlinear normal modes and resonant solutions from
the forced response in the case of γ = 8; a–e Complex nonlin-
ear mode; f–j Extended periodic motion concept with artificial
viscous damping; k–o Extended periodic motion concept with
artificial hysteretic damping; a, f, k q(t)− t plots; b, g, l q̇(t)− t

plots; c, h, m fnl − t plots; d, i, n q̇ − q plots; e, j, o fnl − q
plots; grey curves: obtained from the crossing solutions in forced
response; Blue dash-dot curves: prediction from extended energy
balance method; Red dashed curves: prediction from nonlinear
modal synthesis. (Color figure online)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 13 Testcase IV: the contribution of the 1st harmonic, the 3rd
harmonic and the 5th harmonic in the case of γ = 8; a–c Com-
plex nonlinearmode;d–fExtended periodicmotion conceptwith
artificial viscous damping; g–i Extended periodic motion con-
cept with artificial hysteretic damping; a, d, g The 1st harmonic,
qn=1(t)−t plots; b, e, hThe 3rd harmonic, qn=3(t)−t plots; c, h,

i The 5th harmonic, qn=5(t)− t plots; grey curves: obtained from
the crossing solutions in forced response; Blue dash-dot curves:
prediction from extended energy balance method; Red dashed
curves: prediction from nonlinear modal synthesis. (Color figure
online)

different values of Nh are shown. The green dash-dot
curves represent for Nh = 1; the purple dashed curves
for Nh = 3; the orange solid curves for Nh = 13. For
EPMC, if only the 1st harmonic is considered, the ω0

computed for the studied system is a constant value
at 1. It is not accurate based on the observation in
Fig. 11. In this 1-DoF system with quadratic nonlin-
ear damping, the 3rd harmonic and the 5th harmonic
are excited because of the nonlinear coupling effects.

Therefore, the total order of harmonics Nh has to be
determined carefully to provide accurate results. For
γ − qmax curves, if only the 1st harmonic is consid-
ered in the EPMC, the predicted values of γ from the
E-EBM and NMS are expected to be mathematically
the same (refer Table 2). Because the E-EBMandNMS
only handle the higher-order harmonics differently. For
CNM, the results from the E-EBM and NMS are dif-
ferent (see Fig. 14d, g). This difference between the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 14 Testcase IV: influence of the total order of harmonics using Nh = 1, Nh = 3 and Nh = 13; a–c ω0 − qmax plots for different
values of Nh ; d–f γ − qmax plots for Nh = 1; g–i γ − qmax plots for Nh = 13
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E-EBM and NMS can be seen as the consequence of
the damping assumption used in the NMS, this state-
ment has already been discussed in Sect. 3.4.

5 An industrial application: blisk with ring
damper

Integrally bladed discs (or blisks) are important struc-
tural components within gas turbine engines. Blisks
are highly loaded during the operation of gas turbine
engines. Friction ring damper is an emerging damp-
ing technique for blisks to reduce vibration amplitude,
which is located within the groove and underneath of
the blisk. The dynamic response of ring dampers has
been investigated by many researchers [15,16,19,20].
Nonlinear modal analysis for friction ring damper has
also been attempted in the literature, for lumped param-
eter model [33] and full-scale structure [17,30,31]. In
this section, a full-scale blisk with friction ring damper
is considered as an industrial test case to assess the
dNNM computed from the CNM and two variants of
EPMC.

5.1 Model description

A three-dimensional finite element (FE) model is used
to represent the blisk with friction ring damper. This
full-scale FE model is studied as an industrial appli-
cation. The full annulus and a sector of the model are
shown in Fig. 15. There are 30 sectors in total. A sec-
tor of the blisk and ring damper with cyclic symmet-
ric boundary is used to model the full annulus. This
FE model contains 1544 elements, where 1184 for the
blisk sector and 360 for the ring sector. The model is
made by homogenous titanium material. There is one
contact interface between the underneath of the blisk
and the upper surface of the ring damper. There are 143
contact nodes within the contact interface. The blisk is
assumed as a perfectly tuned structure that exhibits a
cyclic symmetry for the full annulus. The kinematic
nonlinearity is ignored in the nonlinear vibration anal-
ysis.

A linear modal analysis is applied to the blisk struc-
ture and a disc-dominated mode with nodal diameter 3
is selected and used for the following study. The mode
shape of this selected mode is shown in Fig. 16. Then,
a classical Campbell diagram is calculated through a

rotor dynamic analysis.When the engine rotating speed
is 2081 rpm and 27th engine order excitation is applied,
the selected mode with a natural frequency of 2.195
frequency unit (FU) is excited. The value of the lowest
natural frequency of the blisk is defined as 1 FU. Then,
a nonlinear static analysis is used to obtain the contact
pressure/gap distributionwithin contact interfaces. The
pressure/gap is considered as the initial contact status
in nonlinear modal analysis. A three-dimensional con-
tact element is used to model the friction contact force
[38]. Readers can refer [30] for detailed description.

5.2 Nonlinear modal analysis

The sector of blisk and ring damper is reduced using the
classic Craig–Bampton method in the nonlinear modal
analysis [5,39]. Thevibrational amplitude is taken from
the displacement of the response node (see Fig. 15) in
Z-axis. The numerical results from dNNM are shown
in Fig. 17. The dNNMs are computed using the first
three harmonics. The modal properties resonant fre-
quency ω0, modal damping ratio ζ and excitation forc-
ing level γ are plotted against the vibrational amplitude
of response DoF qdmax. It was verified that the results
for the CNM and two variants of the EPMC show very
high similarity, so that only the results from EPMC-H
and E-EBM are shown in the following. The natural
frequency of the studied mode for blisk is 2.195 FU.
At low amplitude, the contact nodes within the contact
interface are either separated or sticking depending on
the initial contact condition from the nonlinear static
analysis. The resonant frequency is around 2.201 FU
at a low amplitude.When the structure is vibratingwith
a large amplitude, some contact nodes start to slide and
energy is dissipated by those sliding nodes leading to
a decreasing ω0. When the amplitude exceeds 0.1mm,
those separated nodes are in contact and lead to a stiffer
structure and an increasing ω0.

In Fig. 17b, a zero value of ζ can be observed at
a low amplitude, when the contact nodes are either
separated or sticking. When sliding contact condition
occurs, ζ becomes positive representing the dissipative
effect generated by frictional contact. The maximum
value of ζ achieved is around 0.192%. From the design
point of view, if the ring damper can be designedwithin
the “valley” of ζ , the efficiency and robustness of the
damper can be guaranteed.
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Fig. 15 A three-
dimensional blisk with ring
damper: a a full annulus; b
a sector

Fig. 16 The mode shape of
first disc-dominated mode
with nodal diameter 3: a A
full annulus; b a sector

The γ −qmax curves computed from dNNMcoupled
with E-EBM and NMS are shown in Fig. 17c. The γ

predicted using E-EBM are represented by circles and
diamonds for NMS. Generally, there is very difficult
to identify the differences between γ − qmax curves
from E-EBM and NMS. To validate that, the nonlinear
forced response of the system is computed with several
values of γ (10.13 N, 20.63 N, 41.85 N, 59.70 N and
70.91N, see Fig. 17d. The excitation force is applied on
the same DoF where the vibrational response is taken
as shown in Fig. 15. The nonlinear forced responses

are calculated using classic HBMwith the continuation
technique. By assessing the resonant amplitude qmax in
Fig. 17d, the results show a great agreement between
the predicted resonances using E-EBM and NMS and
resonant solutions in nonlinear forced response.

5.3 Computational efficiency

For an engineering design problem, the resonant ampli-
tude is usually considered as one of the most impor-
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(a) (b) (c)

(d)

Fig. 17 Blisk with friction ring damper: a–c Numerical results
from the damped nonlinear normalmodewithin a range ofmodal
amplitude; a ω0−qmax plot; b ζ −qmax plot; c γ −qmax plot using
extended energy balance method (circles) and nonlinear modal
synthesis (diamonds); d Using nonlinear forced response to val-

idate ω0 − qmax curves and γ − qmax curves; Left: γ − qmax
curves from nonlinear modal synthesis (Purple solid curves),
γ − qmax curves from extended energy balance method (Grey
dashed curves); Right: ω0 − qmax (Black curves) and nonlinear
forced response in different colours. (Color figure online)

tant factors. Using dNNMs with E-EBM or NMS can
instantly provide resonant information from dNNMs.
The resonant information can be also obtained from
another modelling strategy, by computing the nonlin-
ear forced response. Therefore, in an industrial prob-

lem, computational efficiency remains important. The
elapsed time used for the computation of dNNM by
CNM and two variants of EPMC is given in Table 6
and the time used for computation of nonlinear forced
response is given in Table 7.
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Table 6 Comparison of computational time for nonlinear modal analysis

Elapsed time (s) Total steps (s) Time per step (s) Compute Z (s) Compute δZ/δω0 (s) Compute δZ/δζ (s)

CNM 6248 102 61.3 0.76 1.5 0.4

EPMC-V 6037 102 59.2 0.76 1.0 0.3

EPMC-H 5816 102 57.0 0.63 0.4 0.3

The extra computational time for E-EBM or NMS
is less than 3s, which is much less than the time
used for the computation of dNNM. The average time
per step for CNM is 61.3 s, 59.2 s for EPMC-V and
57.0 s for EPMC-H. Both CNM and EPMC are solved
using the same numerical methodology (HBM, AFT
method and continuation technique) and same solver
(scipy.optimize.fsolve in Python). Therefore, the differ-
ences in the computational time come from the com-
putation of linear dynamic stiffness matrices Z and
its analytical Jacobian matrices δZ/δω0, δZ/δζ . As
described in Sect. 2.6 and Table 1, the linear dynamic
stiffness matrices are in a similar form between CNM
and EPMC: Z

n
= K − n2ω2

0M − C̄
n
. The only dif-

ference is the C̄
n
matrices and its analytical Jacobian

matrices of the δC̄
n
/δω0 and δC̄

n
/δζ are also provided

in Table 1. The differences in the computational time
for linear matrices can be simply explained by that
EPMC-H has the simplest formula for δC̄

n
/δω0. In

summary, CNM needs more computational time than
EPMC. EPMC-H is the most time efficient method,
which improves the modelling efficiency around 7%
than CNM.

In a forced response analysis, the computation of
forced response has to be repeated for different values
of excitation forcing level γ to obtain an evolution of
resonant solutions with respect to the resonant ampli-
tude. Thus, using nonlinear forced response results in
a heavy computational burden. Using the same config-
uration in the continuation technique and same solver
(scipy.optimize.fsolve in Python), the time used for non-
linear forced response is given in Table 7. The min-
imum computational time is 5573s for the case of
γ = 10.13N. The computational time increases with
the value of γ . Since an increasing excitation forcing

level can lead to a great relative displacementwithin the
contact interface leading tomore sliding contact nodes.
Therefore, the more computational time is required for
the computation of the nonlinear forced response with
a larger value of γ . In summary, using dNNM with E-
EBM and NMS has shown great accuracy with much
lower computational cost to investigate the resonance,
especially for large structures.

6 Conclusion

In this work, two different concepts, namely CNM and
EPMC, used to compute dNNMs for dynamic sys-
tems with non-conservative nonlinearities have been
compared. An alternative damping assumption in the
EPMC is introduced using artificial hysteretic damp-
ing. The CNM and two variants of the EPMC are
derived in the frequency domain. In addition, two
numerical methods, namely E-EBM andNMS, for pre-
dicting the resonances in the forced response using
damped nonlinear normal modes are also assessed.
A thorough comparison: (a) two concepts for dNNM
computation including CNM and two variants of
EPMC; (b) two numerical methods for resonant pre-
diction including E-EBM and NMS, is achieved using
two illustrative 1-DoF systems and a full-scale blisk
with friction ring damper.

By assessing the dNNMs from CNM and two vari-
ants of EPMC, several useful statements can be con-
cluded. Firstly, the accuracy of the CNM can be sig-
nificantly affected by the presence of large nonlinear
damping and higher-order harmonics. Then, both hys-
teretic damping and viscous damping can be used as
artificial damping in EPMC. The two variants of EPMC
are mathematically equivalent if only the 1st harmonic

Table 7 Comparison of
computational time for
nonlinear forced response

Excitation forcing level 10.13N 20.63N 41.85N 59.70N 70.91N

Elapsed time 5573s 5638s 6285s 6573s 6946s
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is considered in the computation of dNNM and per-
form equally well. Furthermore, if higher-order non-
linear damping is present with a large damping ratio,
the accuracy of EPMC can be slightly reduced. Finally,
for a full-scale structure with friction dampers, similar
results are obtained from CNM and two variants of
EPMC. The EPMC with artificial hysteretic damping
can improve the computational efficiency by 3% than
the original EPMC because of the simple formula of
the analytical Jacobian matrices.

The resonant solutions are predicted using dNNMs
coupled with E-EBM and NMS. E-EBM and NMS
are based on a similar assumption that the solutions
in forced response share a great similarity with the
dNNM. E-EBM and NMS are mathematically equiva-
lent in the formula with only the 1st harmonic, whereas
the existence of higher-order harmonics has an impact
on the accuracy of NMS. In addition, E-EBM is lim-
ited to predicting the resonant solutions, whereas NMS
makes the synthesis of the full forced response possi-
ble.
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Appendix A: Jenkins element

The Jenkins element is used to model the friction force.
kt is the tangential contact stiffness; themaximumstatic
friction force is fmax. x(t) is periodic tangential dis-
placement; w(t) is an internal variable that represents
the relative displacement of contact point. The friction
force Fnl is calculated iteratively in time domain. For
a current time step i , the displacement of contact point
w(ti ) and the friction force Fnl(ti ) are calculated using
equations below. The tangential friction forces are pre-
dicted in the first place using Eq. (A.1), then corrected
in Eq. (A.2).

fpre = kt (x(ti ) − w(ti−1)) (A.1)

Fnl(ti ) =
{

fpre if fpre < fmax Sticking
fmax · fpre/

∣∣ fpre
∣∣ if fpre ≥ fmax Sliding

(A.2)

w(ti ) =
{

w(ti−1) if fpre < fmax Sticking
x(ti ) − Fnl(ti )/kt if fpre ≥ fmax Sliding.

(A.3)
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