

A two stage Polynomial Chaos Expansion application for bound estimation of uncertain FRFs

Murat Kara^{1,2*} and Neil S Ferguson^{2*}

¹Department of Mechanical Engineering, Bolu Abant Izzet Baysal University, Turkey

²Institute of Sound and Vibration Research, University of Southampton, UK

*e-mail: kara.murat@ibu.edu.tr, nsf@isvr.soton.ac.uk

ABSTRACT

9 Polynomial Chaos Expansion (PCE) is a method for analysing uncertain vibratory structures
10 with lower computational effort. It may simply be described as a curve fitting method with
11 orthogonal basis terms, where the polynomial type, dimension and order are predefined for the
12 uncertain responses. However, the polynomial order in PCE must be very high to accurately
13 estimate statistical moments of the frequency response function in resonance regions of lightly
14 damped and uncertain structures. To solve this issue different transformation techniques are
15 reported in the literature, where implementations of PCE produce higher accuracy with a lower
16 order polynomial. However, these transformations lose the attraction for using PCE, since they
17 require some additional mathematical operations and, mostly, they present high accuracy if the
18 higher orders of polynomials are again of interest. In this study, an efficient approach is
19 presented for the upper bound estimation of the uncertain frequency response functions (FRFs)
20 via PCE with lower order terms without performing any transformation. Rather than one-stage
21 application of PCE for the desired response of an uncertain problem, the approach comprises a
22 two-stage application of the classical PCE, i.e. first for the natural frequencies and then for the
23 FRF calculations. As an example application of the approach, a thin beam for two different
24 uncertainty cases is considered, namely local and global uncertainty. The local and global input
25 uncertainties are generated by variability of lumped masses added at the boundary and Young's

1 modulus, respectively. The FRF bounds are compared with extensive experimental and
2 numerical Monte Carlo simulations, showing that low order polynomials are sufficient to
3 calculate the bounds accurately with the technique described.

4 **Keywords:** Polynomial Chaos Expansion, bound estimation, frequency response function,
5 uncertainty

6

7 **1 INTRODUCTION**

8 Uncertainties naturally arise in every field of engineering practice. However, disregarding
9 these uncertainties in the analyses may cause undesirable results with both time and cost losses.
10 To avoid these losses, uncertainty must be taken into account from the design stage. For this
11 reason, researchers continue to study uncertainty analysis.

12 Since uncertainty is very effective on the subsequent dynamic responses, studies are carried
13 out in this area as well. For this purpose, many different methods such as Monte Carlo
14 simulation [1], interval analysis [2,3], anti-optimization [4] and reliability analyses [5,6] have
15 been introduced and all these methods have their own advantages and disadvantages. Among
16 these methods, Polynomial Chaos Expansion (PCE) is one of the most frequently used methods
17 [7]. PCE can basically be defined as fitting a polynomial curve to the uncertain response. The
18 method has several advantages. The first of these is the modelling capability of different
19 distribution types such as normal, uniform, beta or gamma distributions. In this context, any
20 distribution of an uncertain parameter can be modelled with a desired polynomial type.
21 However, if the appropriate type of polynomial corresponding to the distribution type of the
22 uncertain parameter is selected, the uncertain parameter is expressed as a very low-order
23 polynomial and the computational time shortens and also the accuracy of the method increases.
24 In addition, the deterministic coefficients of the polynomial can be obtained with different
25 methods such as Galerkin projection, collocation, and a statistical moment approach. In simple

1 applications of PCE, the Galerkin projection approach can be used however it can be tedious
2 for uncertainty analysis of complex models. Therefore, the collocation point method is widely
3 used as a non-intrusive method in more complex models. There are studies on the selection of
4 the collocation points via Latin Hypercube sampling [8,9]. It is also convenient to use the roots
5 of the higher order polynomial basis to be adopted, as reported by Henneberg et al. [10].

6 Another advantage of PCE is the capability of using it together with either analytical or
7 numerical solution methods. Thus, its applicability to simple and complex models is increasing.
8 In this context, the success of the method with analytical calculations is demonstrated by
9 Henneberg et al. [10] and Jacquelain et al. [11,12]. Besides, Ghanem and Spanos described using
10 PCE with the finite element (FE) method, abbreviated as FE-PCE, in detail [7]. Since FE is
11 widely used in industry, the application of FE-PCE has become quite common [13–15]. On the
12 other hand, Manan and Cooper [8] obtained FE matrices of a bending beam and an airplane
13 wing and used them in the calculation of the bounds of the forced vibration response via PCE.
14 PCE has also been utilized in the analysis of uncertain structures together with different
15 numerical solvers. In this regard, Sarkar and Ghanem [16,17] examined the mid-frequency FRF
16 response of an uncertain structure by combining PCE together with numerical methods. The
17 structure is divided into substructures by a proper orthogonal decomposition, where the
18 uncertainty of the individual structures on the complex structure is taken into account at this
19 stage [16]. Sarsri et al. [18] used component mode synthesis to reduce the size of large FE
20 models and then solved the uncertain problem via PCE. Concerning wave approaches,
21 Sepahvand et al. [19] solved the one-dimensional uncertain wave equation by combining PCE
22 with the finite difference method. Also, Henneberg et al. [10] implemented PCE together with
23 the wave finite element method for the width and the centre frequency for the bandgaps of
24 periodic structures. More recently, Secgin et al. [20] showed that PCE can be reliably combined

1 with the discrete singular convolution for the probability density function (PDF) of the natural
2 frequency of uncertain non-uniform beams.

3 PCE is also used to mathematically express the uncertainty obtained from experimental data.
4 In this regard, Sepahvand and Marburg [21] calculated the uncertain material properties of
5 composite plates from experimental modal data and modelled them by PCE. In a later study,
6 Sepahvand [22] determined the uncertain damping ratios of the composite plates by
7 experimental modal analysis. Then, by calculating the PDF from the samples obtained, the
8 uncertain frequency response functions (FRFs) were calculated by FE-PCE [22].

9 The studies referred to in the above clearly demonstrates that PCE is successful for the
10 estimation of natural frequencies [13,20,23] and vibration amplitude at non-resonant
11 frequencies [12] of the structures and the frequency bandwidth and bandgap centre frequencies
12 [10].

13 In some uncertainty quantification problems via PCE, the polynomial order must be very
14 high to produce an accurate estimation. For this purpose, there are different procedures utilized
15 in PCE to reduce the order of the polynomial. In this regard, Blatman and Sudret [24] exploited
16 least angle regression to detect the most effective deterministic coefficients for PCE on the
17 desired response, which enable one to obtain an adaptive sparse polynomial. Keshavarzzadeh
18 et al. [25] examined two sequence transformations, namely Shank's and Levin transformations,
19 to accelerate the convergence of PCE. The requirement for a higher order polynomial expansion
20 is also encountered in estimating the FRF around the resonance of uncertain vibratory structures
21 having low damping. The classical implementation of PCE with low order polynomials is not
22 able to estimate the mean and variance of the response FRF at resonance frequencies for such
23 structures, as reported by Jacquelin et al. [12,26]. Therefore, different approaches must be
24 implemented to solve this issue. In this regard, Jacquelin et al. [11] implemented three different
25 transformations, i.e., Aitken's transformation, recursive Aitken's transformation and Shank's

1 transformation, for the statistical moments of the response. Similarly, Yaghoubi et al. [27] used
2 stochastic frequency transformation. Although these transformations produce reliable results in
3 uncertainty estimations of vibratory structures, PCE loses its attraction due to the need to use
4 some additional mathematical operations and expansion resulting in increased computational
5 time.

6 Here, an efficient approach is presented for the upper bound estimation of the uncertain FRFs
7 via the classical PCE with lower order terms without performing any transformation. The
8 method is tested for the beams having different uncertainty cases, i.e., local and global
9 uncertainty. Local uncertainty is generated by adding variable lumped mass at the free boundary
10 of a cantilever beam, whereas the global case is performed by considering the beam possessing
11 an uncertain Young's modulus. The first uncertainty case is also experimentally verified. Even
12 though two cases are examined, the application of the approach is the same. The approach
13 consists of a two-stage PCE application to determine the bounds, rather than the direct
14 application of PCE for the FRF as reported in the literature. At the first stage, PCE is utilized
15 to compute the PDF of the natural frequencies in the considered frequency range. The
16 subsequent stage is the estimation of the uncertain FRFs. Although a finite element model of
17 the beam is utilized as a numerical solver in the computations, one may construct the model by
18 any numerical method, but note that, it must be able to compute the natural frequency and FRF
19 for the considered structure. The results of the presented approach are compared with Monte
20 Carlo simulation. Besides, PCE is tested without using the introduced approach by calculating
21 the mean FRF and FRF bound together without implementing Shank's transformation, whereas
22 the mean FRF is also checked using Shank's transformation. It is seen that the proposed
23 approach has a good accuracy on the upper bound estimation, even in the cases where the mean
24 FRF estimations fail via the application of PCE with Shank's transformation, namely for the
25 global uncertain beam.

POLYNOMIAL CHAOS EXPANSION

Modelling of an uncertain variable

According to Polynomial Chaos Expansion (PCE), any uncertain input/output variable (X)

can be represented as follows [7]:

$$X = \sum_{j=0}^{\infty} x_j P_j(\xi) \approx \sum_{j=0}^N x_j P_j(\xi), \quad (1)$$

where ξ is an uncertain parameter, x_j is deterministic coefficient of the polynomial and $P_j(\cdot)$ is orthogonal polynomial by which the uncertain variable is to be represented. As shown in Eq. (1), PCE of an uncertain variable is theoretically extended up to infinity. However, it is truncated at a finite number (N) in numerical computations [13]:

$$N = \frac{(n+p)!}{n!p!} - 1. \quad (2)$$

Here, n and p denote the number of uncertain parameter and the order of the polynomial. In PCE, polynomial terms used to represent the uncertain variable are orthogonal to each other [7]:

$$\langle P_i \cdot P_j \rangle = \delta_{ij} \langle P_j^2 \rangle. \quad (3)$$

Here, $\langle \rangle$ represents the mean value and δ_{ij} denotes Kronecker delta function. Due to the orthogonality of the polynomials, it is easy to calculate the statistical moments of the uncertain variable. The mean and variance of the results may be calculated by,

$$\mu_X = x_0, \quad (4)$$

and

$$\sigma_x^2 = \sum_{j=1}^N x_j^2 \langle P_j^2 \rangle, \quad (5)$$

respectively.

1 In PCE, many types of orthogonal polynomials may be utilized, i.e., Hermite, Laguerre,
 2 Jacobi, Legendre, etc. As reported by Xiu and Karniadakis [28], each polynomial type
 3 efficiently models a certain type of probability distribution as the weighting functions of the
 4 polynomial basis coincide with mathematical expressions of the probability distribution types.
 5 Using the efficient polynomial basis-distribution type couple is called as optimal representation.
 6 For the optimal representation, one may utilize Hermite, Laguerre, Jacobi and Legendre
 7 polynomial bases for normal, gamma, beta and uniform distributions, respectively. For the
 8 optimal representation, a linear polynomial is enough to represent the uncertain variable. If an
 9 appropriate polynomial basis-distribution type is not used, it is called a “non-optimal
 10 representation” and higher order terms of polynomials are required [13]. In non-optimal cases,
 11 a space transformation is required to derive the uncertain variable, more terms are necessary in
 12 the expansion.

13 In Eq. (1), different types of polynomials can be used for the function set P , i.e., n th order
 14 Hermite and Legendre polynomial terms are respectively calculated by [13]:

$$15 \quad P_n(\xi) = (-1)^n e^{\frac{1}{2}\xi^T \xi} \frac{\partial^n}{\partial \xi_{i_1} \partial \xi_{i_2} \dots \partial \xi_{i_n}} e^{-\frac{1}{2}\xi^T \xi}, \quad (6)$$

$$16 \quad P_n(\xi) = \frac{(-1)^n}{n! 2^n} \frac{\partial^n}{\partial \xi_{i_1} \partial \xi_{i_2} \dots \partial \xi_{i_n}} (1 - \xi^T \xi)^n. \quad (7)$$

17 In PCE, there are types of approaches such as Galerkin projection, the collocation method
 18 to determine the unknown deterministic coefficients shown in Eq. (1). In the present study, the
 19 collocation method is utilized.

20

1 2.1.1 Space transformation for an uncertain input variable

If the uncertain parameter ξ is defined in the interval of $\xi \in [a, b]$ and uncertain input physical variable X is defined between $X \in [c, e]$, then a space transformation is required to derive the uncertain variable X in terms of uncertain parameter ξ [13]:

$$5 \quad \int_c^X d_1(\tau) d\tau = \int_a^\xi d_2(\tau) d\tau \Rightarrow X = f(\xi). \quad (8)$$

6 Here, d_1 and d_2 represent the PDF of the uncertain parameter and physical variable, respectively.
 7 For optimal representation, this procedure reduces to a simple shifting. A normally distributed
 8 uncertain variable (X) with the statistical properties, $N(\mu_X, \sigma_X)$, may be represented by a first
 9 order polynomial of an uncertain parameter, ξ , if the optimal polynomial basis i.e., Hermite
 10 polynomial basis is selected for the representation:

$$X = \sigma_X \xi + \mu_X, \quad (9)$$

12 where μ_x and σ_x are the mean and standard deviation of the uncertain variable and uncertain
 13 parameter has a standard normal distribution, $N(\mu_\xi, \sigma_\xi) = N(0,1)$. For non-optimal
 14 representation, it may be difficult to obtain a simple expression as Eq. (9) and therefore, one
 15 may also utilize different methods which will be mentioned in following subsection to calculate
 16 the deterministic coefficients of an input variable.

18 2.2 Calculation of the deterministic coefficients in PCE

19 In the literature, there are different methodologies to calculate the deterministic coefficients
20 [10,13,24]. In this study, the collocation method is utilized since it is a non-intrusive method
21 and convenient for complex problems.

1 In the collocation method, a set of uncertain parameters ($\xi = \{\xi^{(1)} \ \ \xi^{(2)} \ \ \dots \ \ \xi^{(N_{CP})}\}^T$) is
 2 sampled and corresponding uncertain variable realizations ($\mathbf{X} = \{X^{(1)} \ \ X^{(2)} \ \ \dots \ \ X^{(N_{CP})}\}^T$) is
 3 calculated. It should be mentioned that the number of collocation points (N_{CP}) should be equal
 4 or greater than number of the finite terms ($N+1$). Substituting the samples of the collocation
 5 points and realizations into Eq. (1) yields a set of linear equations with unknown deterministic
 6 coefficients [9,10]:

7 $\mathbf{P}\mathbf{x} = \mathbf{X} , \quad (10)$

8 where,

9
$$\mathbf{P} = \begin{bmatrix} P_0(\xi^{(1)}) & P_1(\xi^{(1)}) & \dots & P_N(\xi^{(1)}) \\ P_0(\xi^{(2)}) & P_1(\xi^{(2)}) & \dots & P_N(\xi^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ P_0(\xi^{(N_{CP})}) & P_1(\xi^{(N_{CP})}) & \dots & P_N(\xi^{(N_{CP})}) \end{bmatrix}_{N_{CP} \times (N+1)}, \quad (11)$$

10 and $\mathbf{x} = \{x_0 \ \ x_1 \ \ \dots \ \ x_N\}^T$ is the vector of deterministic coefficients. It is seen, Eq. (11) is a
 11 square matrix if number of collocation points equals to number of the terms in PCE. If a higher
 12 number of collocation points are utilized, the deterministic coefficients are calculated by [9],

13 $\mathbf{x} = (\mathbf{P}^T \mathbf{P})^{-1} \mathbf{P}^T \mathbf{X} . \quad (12)$

14 The selection of the collocation points is another issue for this method. One of the most
 15 efficient ways is selecting the roots of $(N+1)^{\text{th}}$ order of basis polynomial, i.e., roots of the 3rd
 16 order Legendre polynomial may be selected as the collocation points for the determination of
 17 the 2nd order of the same polynomial coefficients.

18

19 **2.3 Transformations for increasing the convergence of PCE**

20 The reason for the need of transformations in PCE was described in the introduction. In this
 21 study, Shank's transformation is utilized. For the brevity of the study, suppose that M_p is any

1 statistical moment (mean, variance and third order statistical moment) of the FRF at a certain
 2 frequency obtained using PCE with order p . The r th order Shank's transformation (e_r) is
 3 expressed as follows [11]:

$$4 \quad e_r = \begin{bmatrix} M_p & M_{p+1} & \cdots & M_{p+r} \\ M_{p+1} & M_{p+2} & \cdots & M_{p+r+1} \\ \vdots & \vdots & \cdots & \vdots \\ M_{p+r} & M_{p+r+1} & \cdots & M_{p+2r} \\ \hline \Delta^2 M_p & \Delta^2 M_{p+1} & \cdots & \Delta^2 M_{p+r-1} \\ \Delta^2 M_{p+1} & \Delta^2 M_{p+2} & \cdots & \Delta^2 M_{p+r} \\ \vdots & \vdots & \cdots & \vdots \\ \Delta^2 M_{p+r-1} & \Delta^2 M_{p+r} & \cdots & \Delta^2 M_{p+2r-2} \end{bmatrix}. \quad (13)$$

5 Here $\Delta^2 M_p = M_{p+2} - 2M_{p+1} + M_p$. The workflow of Shank's transformation is presented in Fig.
 6 1. It may be observed from Eq. (13) or the flow diagram presented in Fig. 1 that, this
 7 transformation requires the evaluation of M_i where $i=\{p, p+1, \dots, p+2r\}$. This procedure
 8 increases the computational load and hence loses the attraction for using PCE, since the
 9 procedure to calculate the coefficients is repeated for $2r+1$ times with an increasing order of
 10 terms.

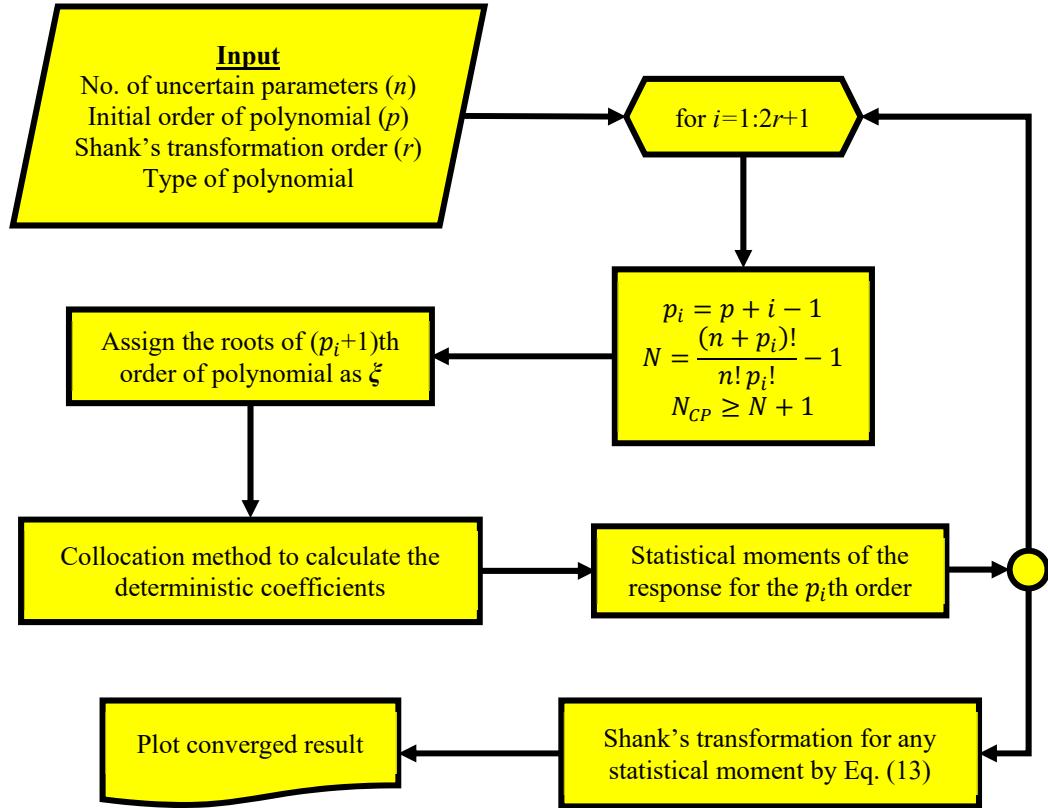


Figure 1. Workflow of Shank's transformation in PCE

2.4 Modal based PCE approach for the upper bound of frequency response function

In the literature, PCE is directly implemented for the desired statistical moment of the response, referred to here as a one-stage application of PCE in this paper. With the one-stage application of PCE, the statistical moments of the lightly damped and uncertain structures produce fluctuations at frequencies around the natural frequency, as reported by Jacquelin et al. [12]. In this section, an implementation of PCE for the upper bound estimation of frequency response function (FRF) over a certain frequency range, $[f_l, f_u]$, is described. The approach mainly determines the bounds by breaking down the whole frequency bandwidth into discrete bands (accordingly named as the resonance and non-resonance frequency bands) and progressively estimates the FRF bounds band by band. After breaking down into discrete bands, two scenarios exist. For the resonance frequency bands, a two-stage application of PCE is required, namely, for the natural frequency and FRF predictions whereas classical PCE can be

1 applied for frequencies in the latter non-resonance band. Therefore, one requirement of this
 2 approach is firstly eligibility by calculation of the natural frequencies and then subsequently
 3 FRF of the structure. In this regard, the finite element (FE) method is utilized. It should also be
 4 noted that collocation point method is used to evaluate the deterministic coefficients of PCE for
 5 the uncertain response. The steps of the approach are illustrated for a single mode of the
 6 structure as a flow diagram in Fig. 2 and details are presented with steps below:

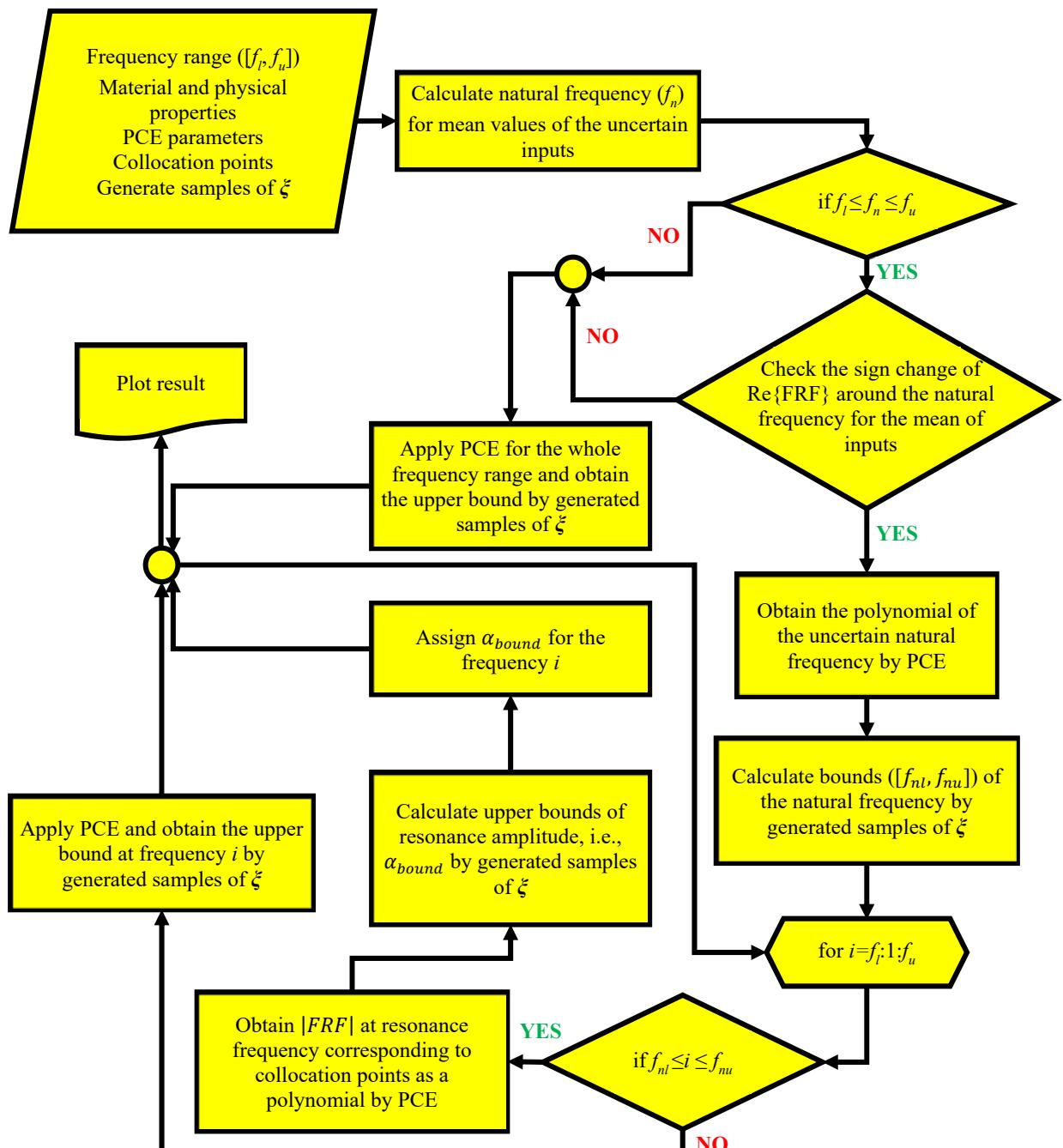


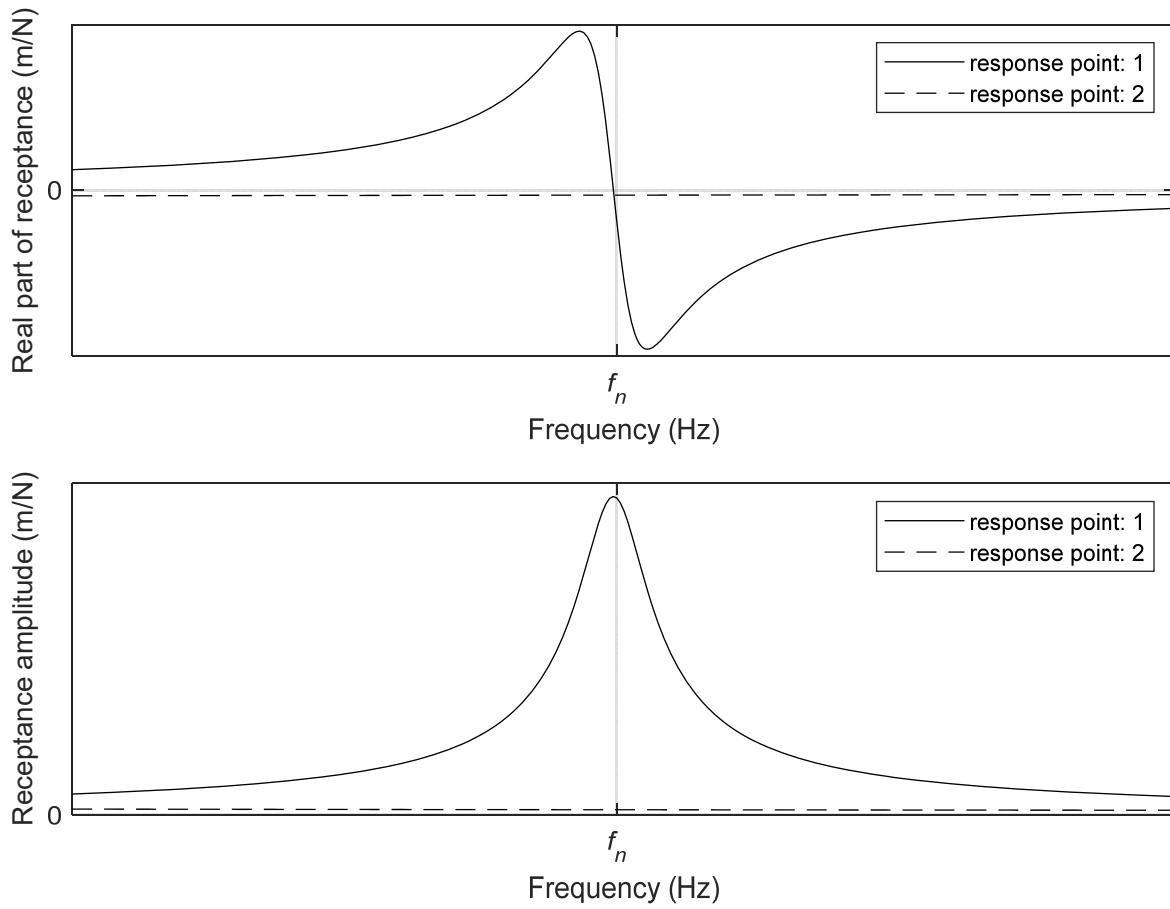
Figure 2. Flow diagram of the presented approach

1
2 1. Natural frequencies (\mathbf{f}_n) of the structure for the mean values of uncertain inputs are
3 determined to check the existence of a mode in the frequency range considered $[f_l, f_u]$.
4 2. For no modes in the considered frequency range, PCE technique may be applied for the FRF
5 at each frequency of whole frequency range to obtain the resulting polynomial.
6 3. To evaluate the bounds of the FRF, the samples of the uncertain parameters (ζ) generated
7 within a 99% confidence interval in accordance with the uncertain parameter distributions,
8 are fed to the resulting polynomial and the samples of the FRFs are evaluated. The
9 upper/lower bounds of the results are calculated by selecting the maximum/minimum of the
10 resulting samples or plotting the probability density function of the response. Even though
11 the bounds are determined by a sampling-based manner, the method is still quicker than
12 MCS.

13 Alternatively, one may also determine the bounds within a confidence interval of the
14 resulting distribution for the response by using the statistical moments of the resulting
15 polynomial and the Pearson model without sampling the uncertain parameters. However, for
16 this process, the distribution type should be verified by using higher order standardized
17 statistical moments for each frequency. It may be a tedious task to do this and will decrease
18 the efficiency of the approach. For the further information about the Pearson model, one may
19 refer to Ref. [29].

20 4. If there is a natural frequency in the frequency range considered $[f_l, f_u]$, the occurrence of the
21 resonance peak at a response point must be checked. Albeit there is a natural frequency
22 within the frequency range $[f_l, f_u]$, the natural frequency may not be observed as a resonance
23 peak in the FRF due to either the excitation or response point coinciding with a nodal point
24 (i.e., the second natural frequency a simply supported beam is not observed as a peak in the
25 FRF if the response is measured at the mid-point of the beam). The real part or imaginary

1 part of the FRF at the response point may be a good indicator of whether a resonance is
 2 likely and hence a resonance peak might occur in the response. Here, the real part of the FRF
 3 is utilized, by checking for a sign change of the real part of the FRF around the resonance
 4 frequency. Consider the real and amplitude receptances obtained from two different response
 5 points with respect to frequency of a structure having a natural frequency at the frequency
 6 f_n , presented in Fig. 3.

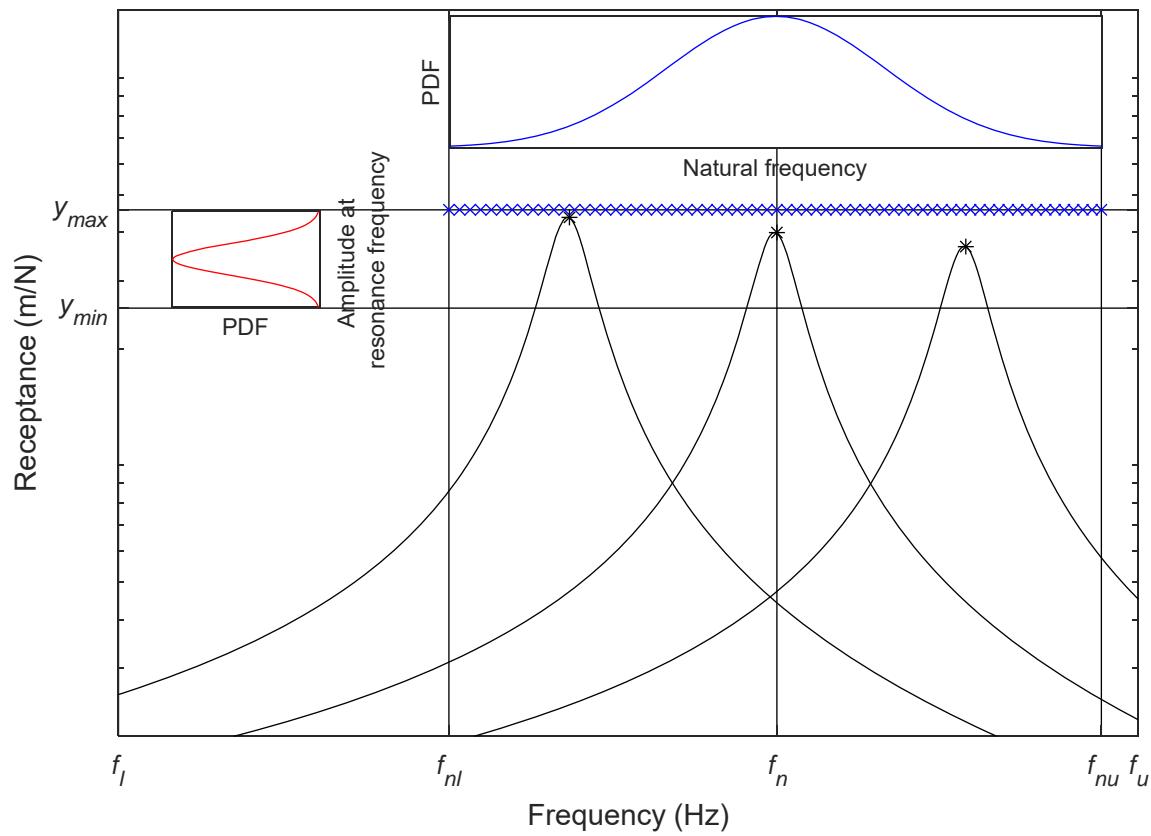


7
 8 **Figure 3. Real part (top) and amplitude (bottom) of displacement with respect to**
 9 **frequency of a structure obtained from two different response points**

10 As may be observed from Fig. 3, if the sign of the real part of the FRF changes in the vicinity
 11 of the natural frequency (f_n), it is observed as a peak in FRF-frequency plot. If the sign does
 12 not change around the natural frequency, it means the response point is a nodal point.

1 Therefore, only the natural frequencies with a sign change in the real part of the deterministic
2 FRF must be considered as the excited modes.

3 5. For the modes which are observed as peaks in the FRF at the response point, the uncertainty
4 in the natural frequency is analysed via PCE by utilizing the collocation points. Then, one
5 may easily determine the lower and upper limits of the natural frequencies, $[\mathbf{f}_{nl}, \mathbf{f}_{nu}]$ after
6 obtaining the PDF of natural frequencies as presented by a blue line in Fig. 4, by
7 implementing Step 3. These natural frequency bounds yielded are used to identify any
8 resonance bands for the uncertain structure.



9
10 **Figure 4. An idealised example of determining the bounds of the amplitude at a resonance**
11 **band with three collocation points (black: samples used in PCE, black *: resonance**
12 **amplitude of uncertain samples, blue line: probability density function estimated from**
13 **natural frequency samples obtained by PCE, red: PDF of the response amplitudes at the**
14 **resonance frequency obtained by PCE, blue x: estimated resulting bounds)**

1 6. For the frequencies outside of the resonance frequency band (called the non-resonant
2 frequency bands), steps 2-3 may be implemented to evaluate upper bounds whereas steps 7-
3 9 are implemented for the resonant band.

4 7. The natural frequencies corresponding to the collocation points are calculated.

5 8. The vibration amplitudes at the uncertain natural frequencies obtained corresponding to the
6 collocation points are determined via FE computations (black asterisks in Fig. 4).

7 9. Then, the vibration amplitudes obtained in step 8, are utilized as the realizations
8 corresponding to the collocation points in PCE for quantifying uncertain vibration
9 magnitudes at the resonance frequencies and the deterministic coefficients in PCE are
10 calculated for the uncertain vibration amplitude at the resonance frequencies. The PDF (red
11 line in Fig. 4) and upper bound of amplitude (blue ‘x’ mark in Fig. 4) corresponding to the
12 resonance frequencies are calculated and these are assigned for the frequencies between

13 $[\mathbf{f}_{nl}, \mathbf{f}_{nu}]$.

14 So, it is clear from Steps 7-9 that, for a whole resonance band, the amplitude bound is calculated
15 by the two-stage PCE implementation just once. Because the amplitude bound of the resonance
16 band is determined using of the amplitude at the uncertain natural frequency. The term “two-
17 stage PCE implementation” is used, because firstly the natural frequency bound corresponding
18 to the collocation point set is determined in the first stage and then, the natural frequencies
19 corresponding to collocation point set are utilized as inputs for the whole band for amplitude
20 bound determination in the second stage.

21

22 3 NUMERICAL STUDIES

23 In this study, uncertain free and forced vibration analyses of a thin beam are performed via
24 PCE. The numerical model of the structure is constructed via the Finite Element (FE) method.

1 The boundary condition of the structure is assumed to be fixed-free. Mechanical and physical
2 properties of the considered beam are presented in Table 1.

3

4 **3.1 Verification study**

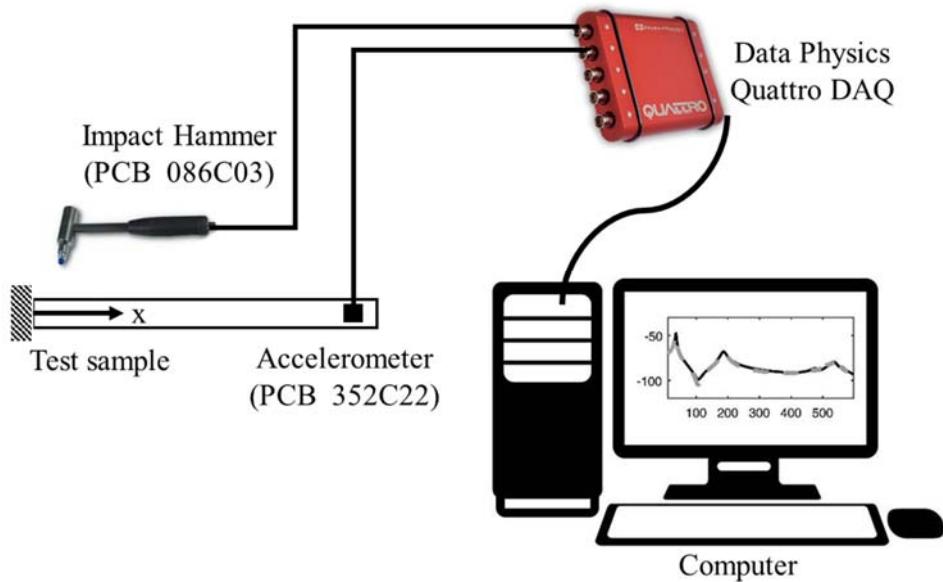
5 Before going through the details of the uncertainty analysis, firstly the numerical model of
6 the beam constructed by FE is verified with wave finite element (WFE) numerical simulations
7 and experiments. In this regard, the beam is excited by 1 N flexural point excitation in numerical
8 computations. In the experiments, the schematics shown in Fig. 5 are utilized and excitation is
9 applied at $x=0.05$ m and the measurements are taken at $x=0.4$ m between 1-1000 Hz. The length
10 of the elements is assumed to be 0.05 m in the FE and WFE. The calculated results are presented
11 in Fig. 6.

12

13 **Table 1. Physical and mechanical properties of the beam.**

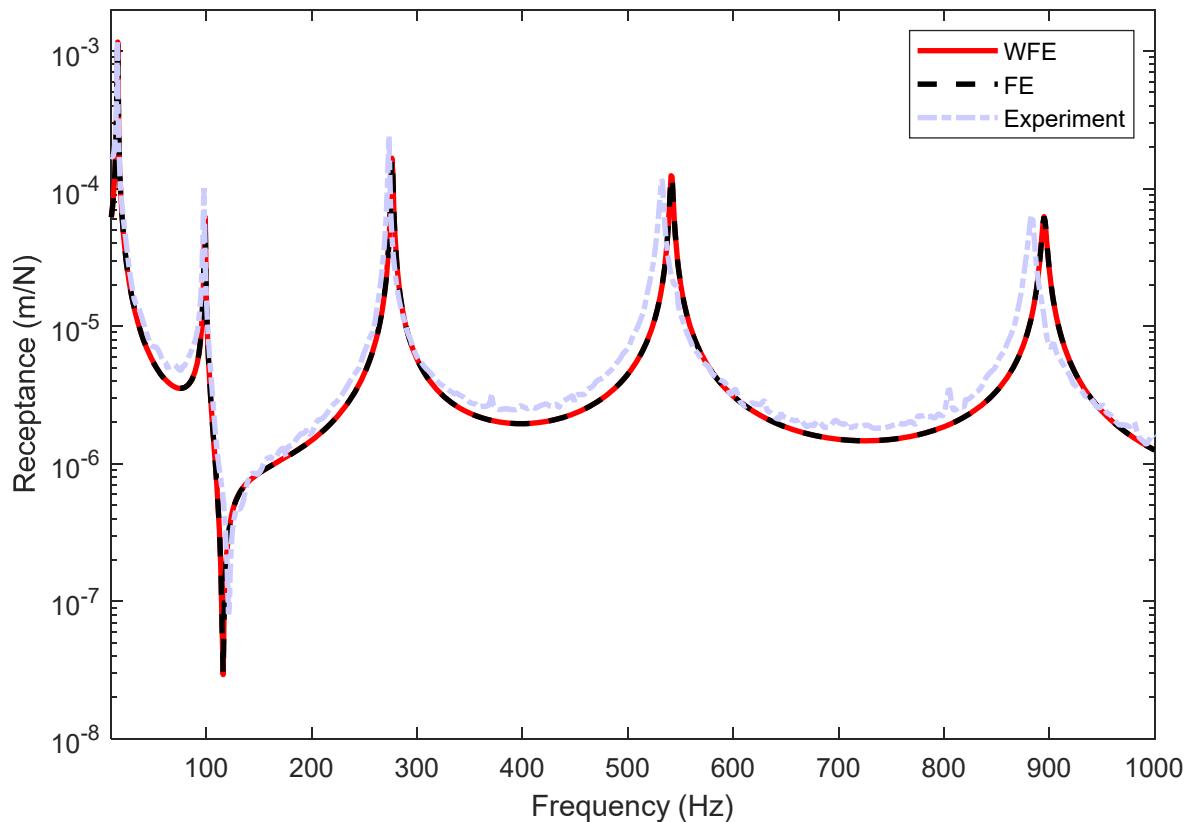
Property (unit)	Mean value
Cross-section (m x m)	0.02 x 0.02
Length (m)	0.5
Young modulus (GPa)	62
Density (kg/m³)	2600
Loss factor	0.005

14



1

2 **Figure 5. Experimental scheme for impact testing**



4 **Figure 6. Transfer receptance of the deterministic fixed-free beam**

5

1 One may infer from Fig. 6 that the FE results are very consistent with both the WFE
 2 computations and experimental measurements. However, the measured third to fifth peaks
 3 deviate from the numerical simulations, but these are fairly negligible differences due to the
 4 difficulty of realising a perfectly rigid or clamped boundary practically. Further calculations or
 5 FE model updating may be performed to have a better consistency in the results.

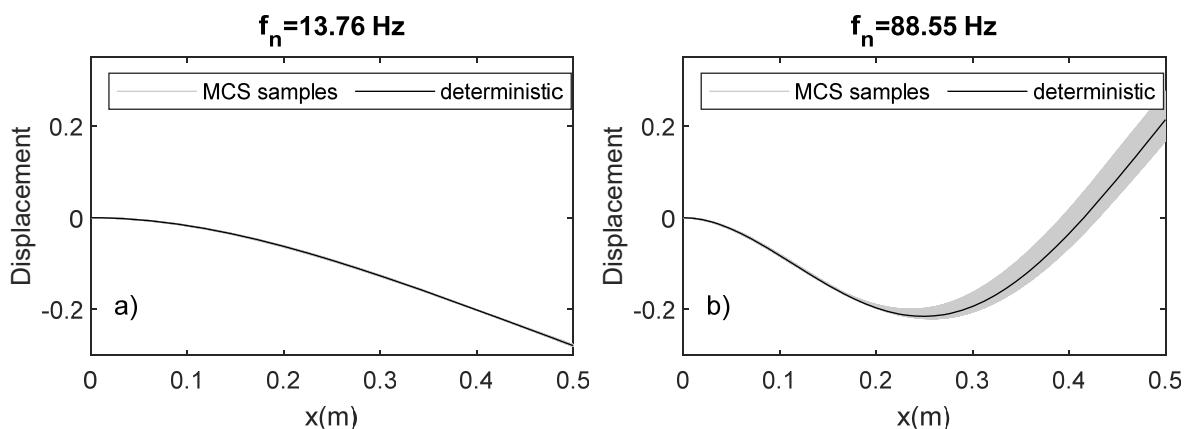
6

7 **3.2 Uncertainty analysis**

8 In the study, two uncertain cases are considered, i.e., i) a locally uncertain thin beam, and ii) a
 9 globally uncertain thin beam.

10 *3.2.1 Locally uncertain beam*

11 In this part of the study, the local uncertainty is created on the cantilever beam by adding
 12 variable lumped masses to the tip of the beam. The uncertainty of the lumped mass is assumed
 13 to be uniformly distributed between 0-0.020 kg, i.e., $U(0,0.02)$ kg. For the uncertain structure,
 14 firstly, the modal analysis was performed via FE-Monte Carlo Simulations with 200 samples
 15 for the natural frequency and mode shape samples for the first five modes. These are presented
 16 together with the deterministic mode shape and deterministic natural frequency in Fig. 7. The
 17 mode shapes have been normalized so that the scalar product of the mode shape vector with
 18 itself equals unity to avoid the usage of the deterministic/sample mass matrix.



19

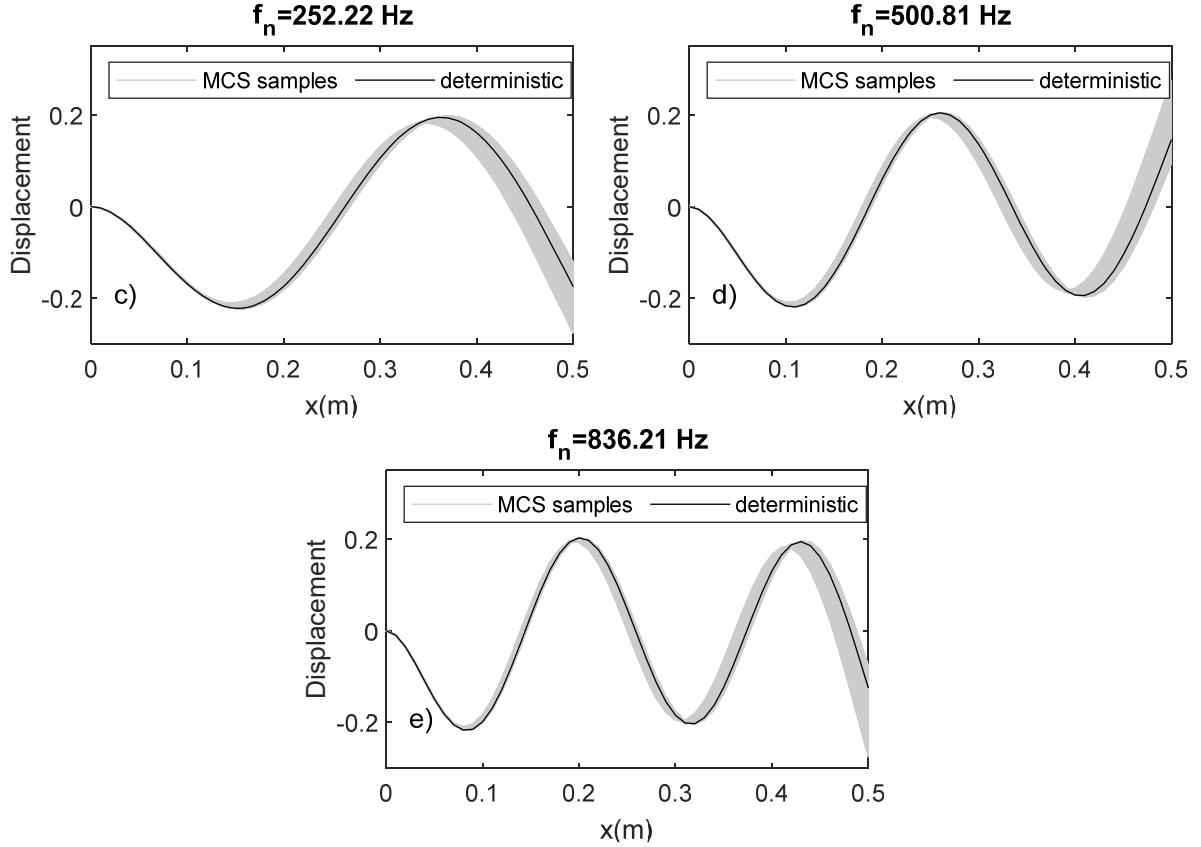


Figure 7. a) The first, b) the second, c) the third, d) the fourth and e) the fifth mode shape of the uncertain beam calculated by FE-MCS

It is observed from Fig. 7 that the change in the mass at the boundary results in increasingly higher uncertainty above the second mode. Besides, the uncertainty increases when the response position gets closer to free end of the structure where the local uncertainty was introduced.

In the natural frequency calculations, the parameters of PCE are selected as $n=1$ and $p=3$ in the natural frequency calculations, so $N=3$. Since the uncertain mass has the uniform distribution, the uncertain input parameter, ξ is also uniformly distributed between -1 and 1. The uncertain mass at the boundary, natural frequencies and FRF are described by using Legendre polynomials. The vector that contains the polynomial terms is $P = \{1 \ \ \xi \ \ 1.5\xi^2 - 0.5 \ \ 2.5\xi^3 - 1.5\xi\}$. The number of collocation point is selected as $N+1$ for whole calculations where they are selected by the roots of the fourth order Legendre polynomial

1 as $\xi = \{-0.34, -0.8611, 0.34, 0.8611\}$. The deterministic polynomial coefficients of the first
2 five natural frequencies are presented in Table 2.

3

4 **Table 2. Deterministic polynomial coefficients obtained for the first five natural**
5 **frequencies**

Mode Number	x_0	x_1	x_2	x_3
1	13.86	-1.67	0.20	-0.02
2	89.36	-7.23	1.67	-0.33
3	254.52	-15.24	4.82	-1.26
4	505.01	-23.21	8.97	-2.81
5	842.57	-30.82	13.67	-4.83

6

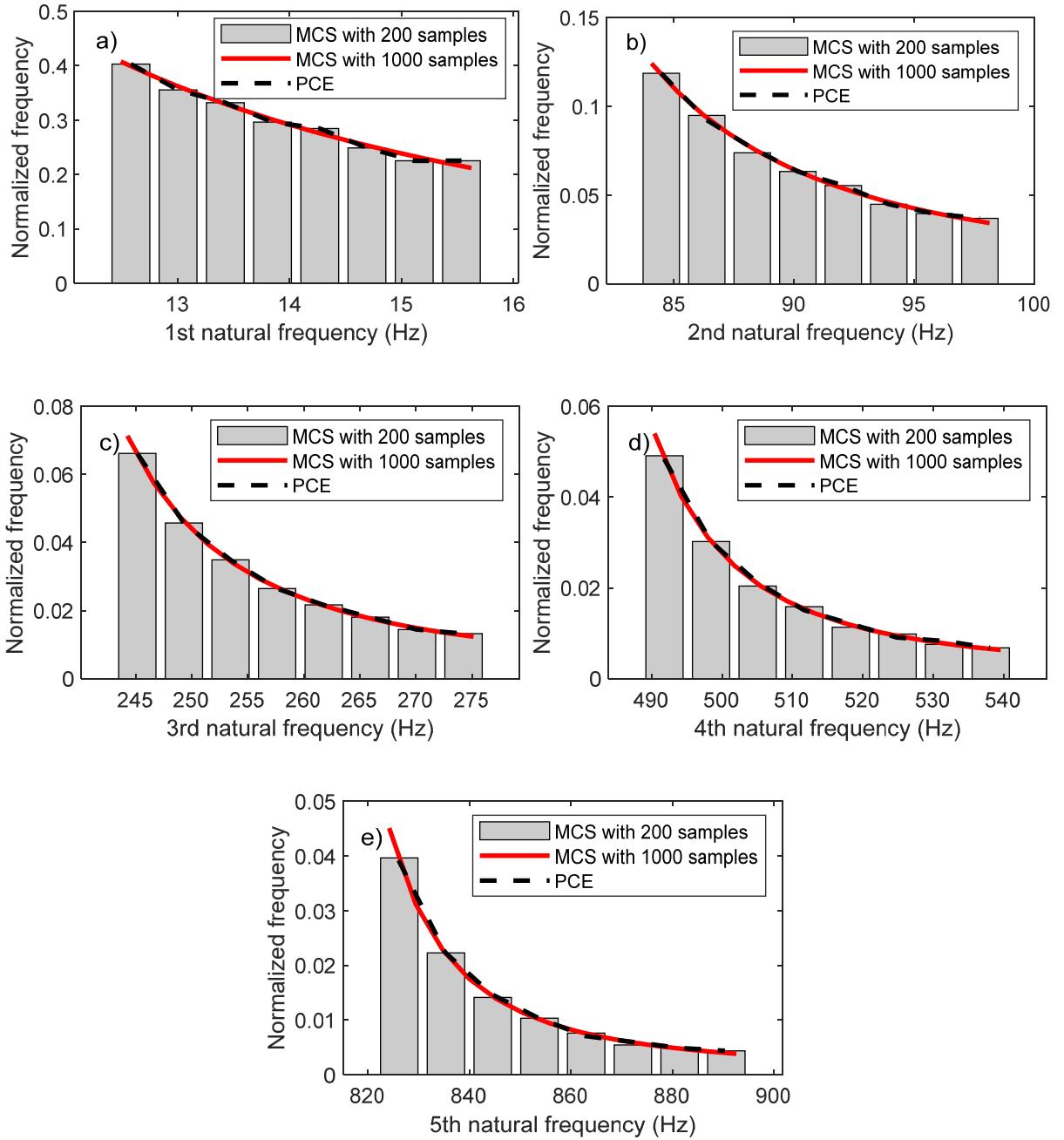
7 As observed from Table 2, the absolute value of the deterministic coefficients converges to
8 zero as the order of the terms increases. The normalized histograms of the resulting natural
9 frequencies for the first five modes are obtained by sampling the uncertain input parameter
10 using 200 samples for the assumed uniformly distributed point mass. The results are compared
11 with MCS for two different numbers of samples, i.e., 200 and 10000 samples. This was
12 performed and utilized to show the sampling size is sufficient in the uncertainty modelling. The
13 results are compared with MCS in Fig. 8. Note that, the normalization of histograms is
14 performed so that the area under the curve or sum of rectangular areas are equal to 1.

15

16

17

18



4 **Figure 8. Comparison of the normalized histograms for the five lowest order natural**
5 **frequencies**

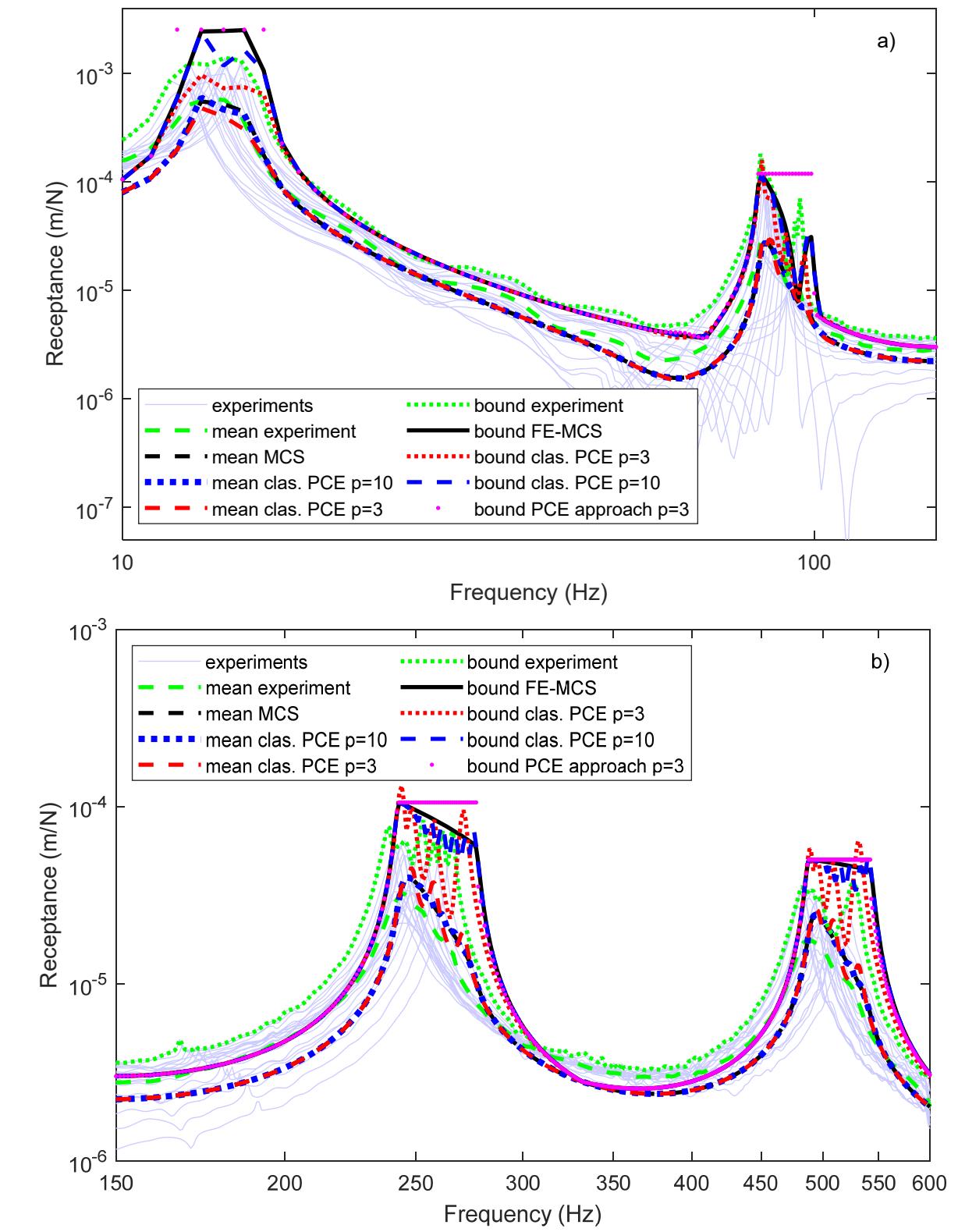
7 As seen from Fig. 8, the PCE and MCS results are consistent and in good agreement with each
8 other. On the other hand, MCS with 200 samples converged to MCS results using 10000
9 samples; therefore one may conclude that 200 samples are enough for the modelling of the
10 uniform distribution. Moreover, the form of the normalized histograms belonging to the first

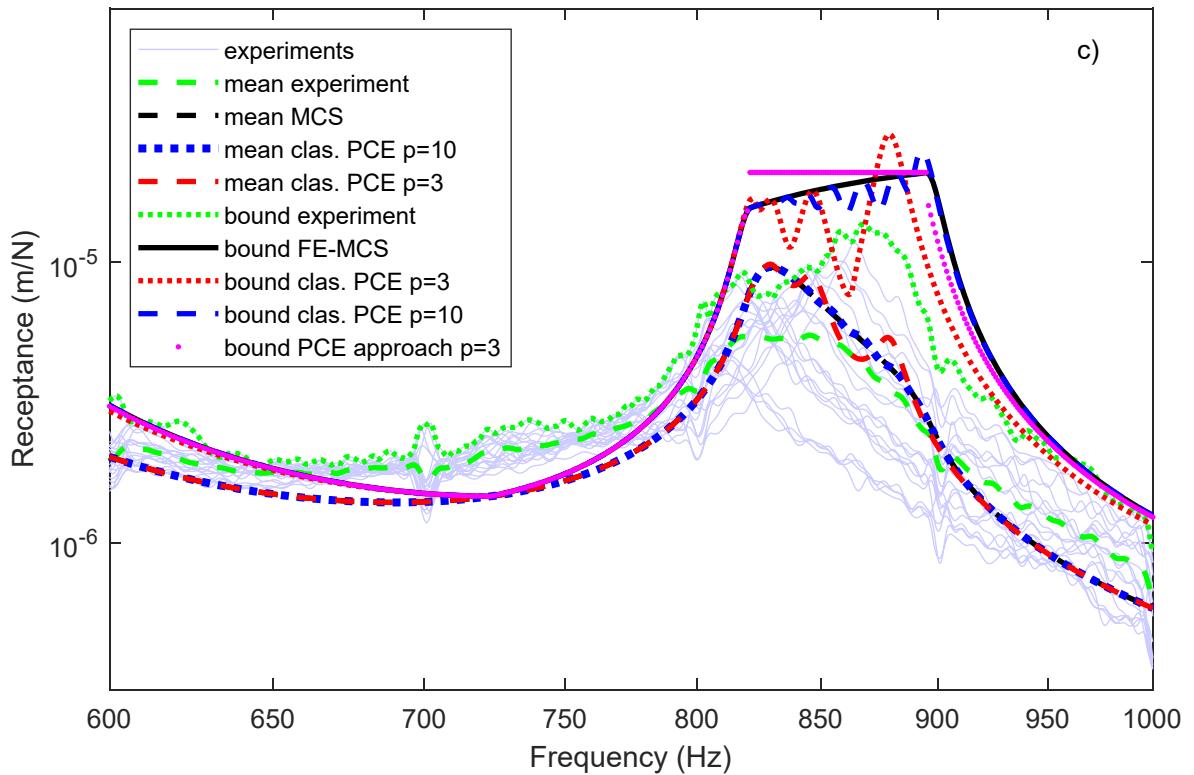
1 natural frequency is nearly linear, and the behaviour of the curves are changing slightly with
2 the increasing mode order. The histogram of the natural frequency appears to follow the form
3 of the reciprocal of the square root function due to the local addition of the uncertain tip mass.
4 From Fig. 8, one may also observe the bounds of the natural frequencies and resonance bands,
5 which is determined from the frequencies within these bounds. For these bands, the steps 7-9
6 in the introduced approach mentioned in Section 2.4 will be applied.

7

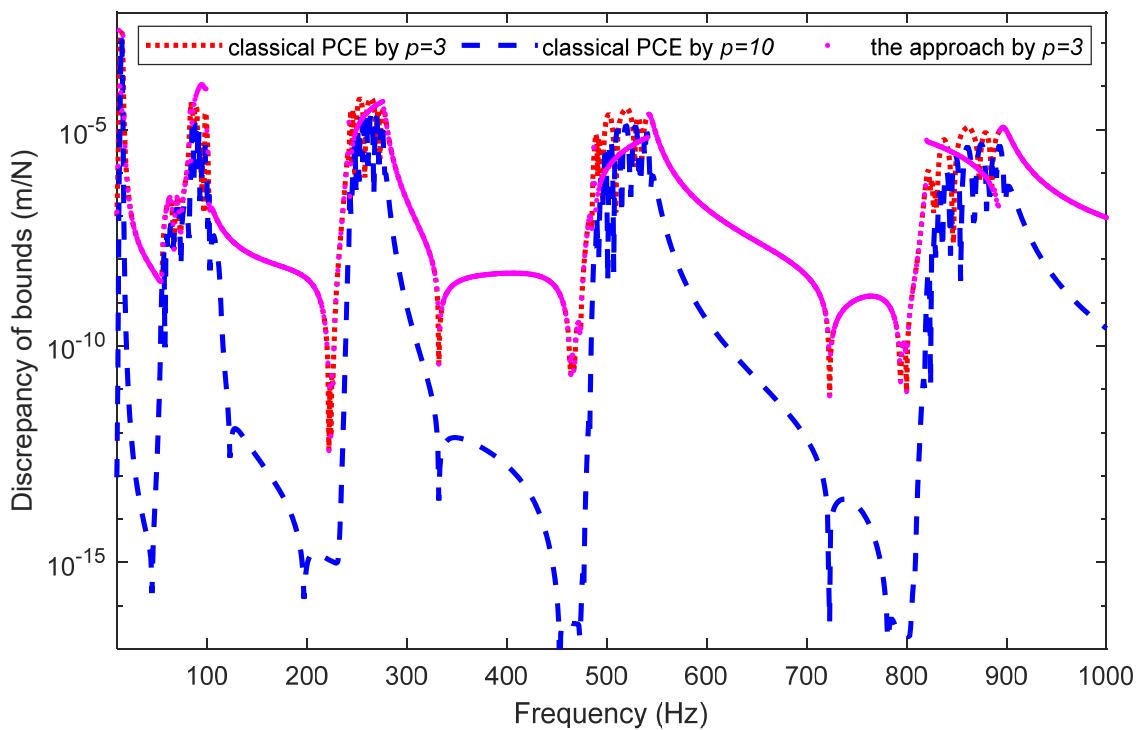
8 Next, the effect of structural uncertainty on the forced response spectra is examined. The bounds
9 of the uncertain FRF are calculated by the introduced approach with PCE parameters $n=1$ and
10 $p=3$. The results are compared with the experiments and numerical FE-MCS by 200 uncertain
11 samples of the additional lumped mass. In the experiments, the masses are attached to the free
12 end of the cantilever beam in accordance with a uniform distribution between 0-0.020 kg by
13 generating 20 samples by using adhesive sticky putty. It should be noted that this will also
14 introduce damping uncertainty seen in the subsequent measured response spectra. Due to
15 adding adhesive putty, the loss factor of the beam is assumed to be 0.015 in the simulations.
16 The experiments were performed twice to check the repeatability. Apart from the introduced
17 approach, the mean and the upper bounds of the response are also calculated by PCE
18 computations with $n=1, p=\{3, 10\}$. The uncertain transfer receptance at $x=0.4$ m corresponding
19 to the excitation at $x=0.05$ m is presented in Fig. 9. Note that, the upper bounds of the FE-MCS
20 are presented rather than the individual prediction response samples for clarity of the results
21 shown in Fig. 9. The relative discrepancy of the bounds calculated by proposed approach and
22 classical PCE compared to FE-MCS are calculated by $|W_{PCE}^{bound} - W_{MCS}^{bound}|$ and presented in Fig.
23 10.

24
25





1 **Figure 9. Transfer receptance at $x=0.4$ m, excitation at $x=0.05$ m, for the cantilever beam**
2 **possessing local mass uncertainty at the free end, between a) 10-150 Hz, b) 150-600 Hz**
3 **and b) 600-1000 Hz**



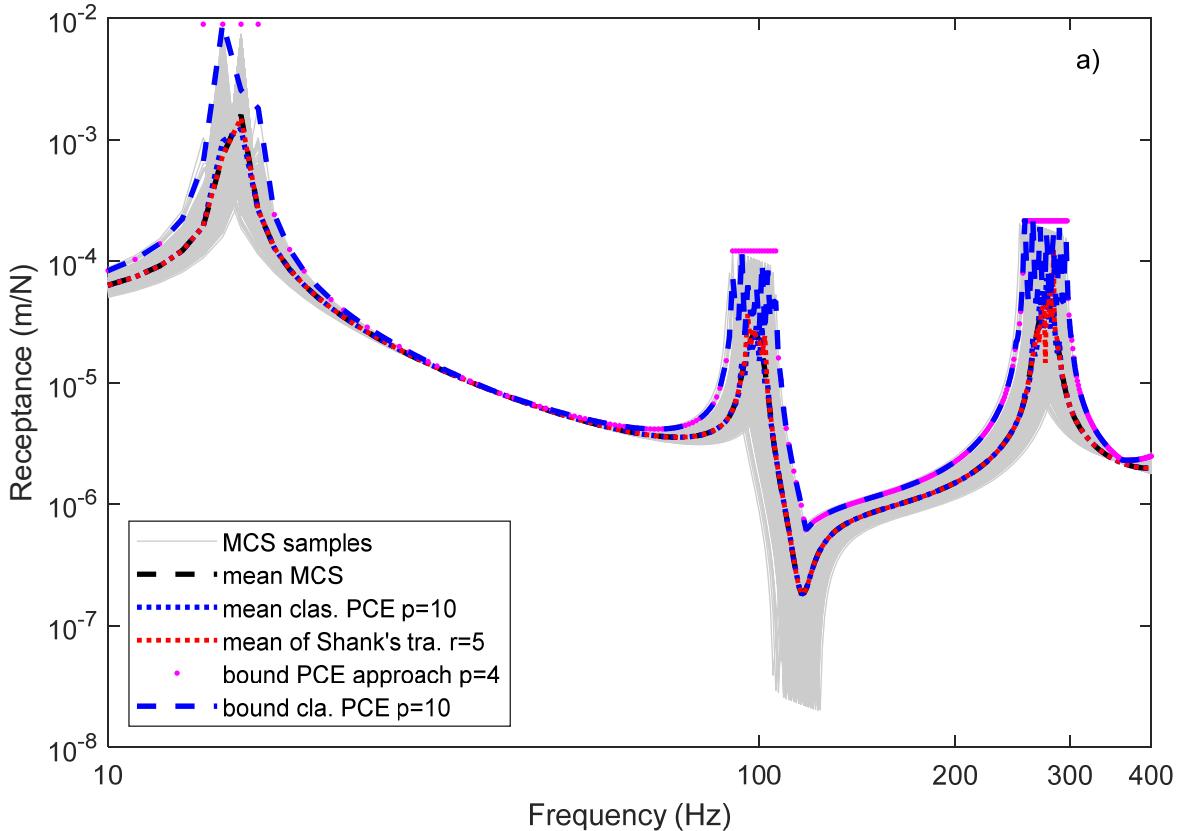
5 **Figure 10. Discrepancy of the classical PCE and the present approach compared to the**
6 **FE-MCS in terms of receptance bounds**

1
2 Fig. 9 shows that the experimental results are mostly consistent with numerical simulations.
3 The discrepancies in the experimental results, presented in Fig. 9, may be due to the number of
4 samples and/or additional damping of the adhesive putty. However, the mean FRF calculated
5 by FE-PCE with $p=3$ shows oscillations about the mean of FE-MCS in the resonance bands of
6 higher order modes, but these oscillations are not observed for FE-PCE with $p=10$ and it
7 converges to the FE-MCS and physical experiments. On the other hand, when the upper bounds
8 of the FRF is of interest, FE-MCS is clearly able to estimate the bounds of the response, as
9 expected. If the bounds of the FE-MCS is taken as a reference, FE-PCE with both $p=3$ and $p=10$
10 exhibit higher amplitude variations compared to the variations around the mean. These are most
11 likely because of the variation in the higher order central statistical moments (variance etc.) of
12 the response. Besides, the approach presented in the study is clearly able to estimate the upper
13 bounds with lower order PCE, i.e., $p=3$. As the discrepancy of the PCE results presented in Fig.
14 10 is of interest, it is clearly seen that the proposed approach has lower error than the classical
15 PCE with $p=3$ at most frequencies. The simulation time for the FE-MCS, the proposed PCE
16 approach with $p=3$, and the FE-PCE with $p=3$ and with $p=10$ are 39 s, 5.5 s, 4 s and 10 s,
17 respectively. These results indicate that FE-PCE with the higher order for the mean response
18 and the introduced approach with lower order polynomial for the bound calculation may be
19 suitable and acceptable alternative methods for dynamic predictions of structures possessing
20 local uncertainties.

21
22 *3.2.2 Globally uncertain beam*

23 The approach is now assessed for the beam possessing global uncertainty. In this regard, the
24 Young's modulus of the cantilever beam is assumed to be uncertain with a normal distribution
25 in GPa given by $N(70,3.5)$. The uncertain parameter (ξ) is assumed to have unit normal

1 distribution i.e. $N(0,1)$. The FRF is described using Hermite polynomials, whereas the Young's
 2 modulus is expressed in terms of the uncertain input variable as given in Eq. (9). The samples
 3 of the uncertain parameter (ζ) required to calculate the bounds are generated within the limits
 4 of $[-3,3]$ which corresponds to the 99% confidence interval. The uncertain FRF upper bounds
 5 are calculated with the proposed approach described in Section 2.4 with the PCE parameters of
 6 $n=1$ and $p=4$. Since $N=4$, the collocation points are selected by the roots of the fifth order
 7 Hermite polynomial as $\xi = \{-2.857, -1.3556, 0, 1.3556, 2.857\}$. The bounds and mean of
 8 FRF are determined via the FE-PCE with $p=10$, whereas only the mean FRF is calculated via
 9 FE-PCE with $p=10$ and the 5th order ($r=5$) Shank's transformation. The uncertain transfer
 10 receptance at $x=0.4$ m corresponding to the excitation at $x=0.05$ m is compared by FE-MCS
 11 using 10000 samples in Fig. 11. Since there is no adhesive putty addition in this case, the loss
 12 factor is again assumed to be as 0.005 as in the simulations.



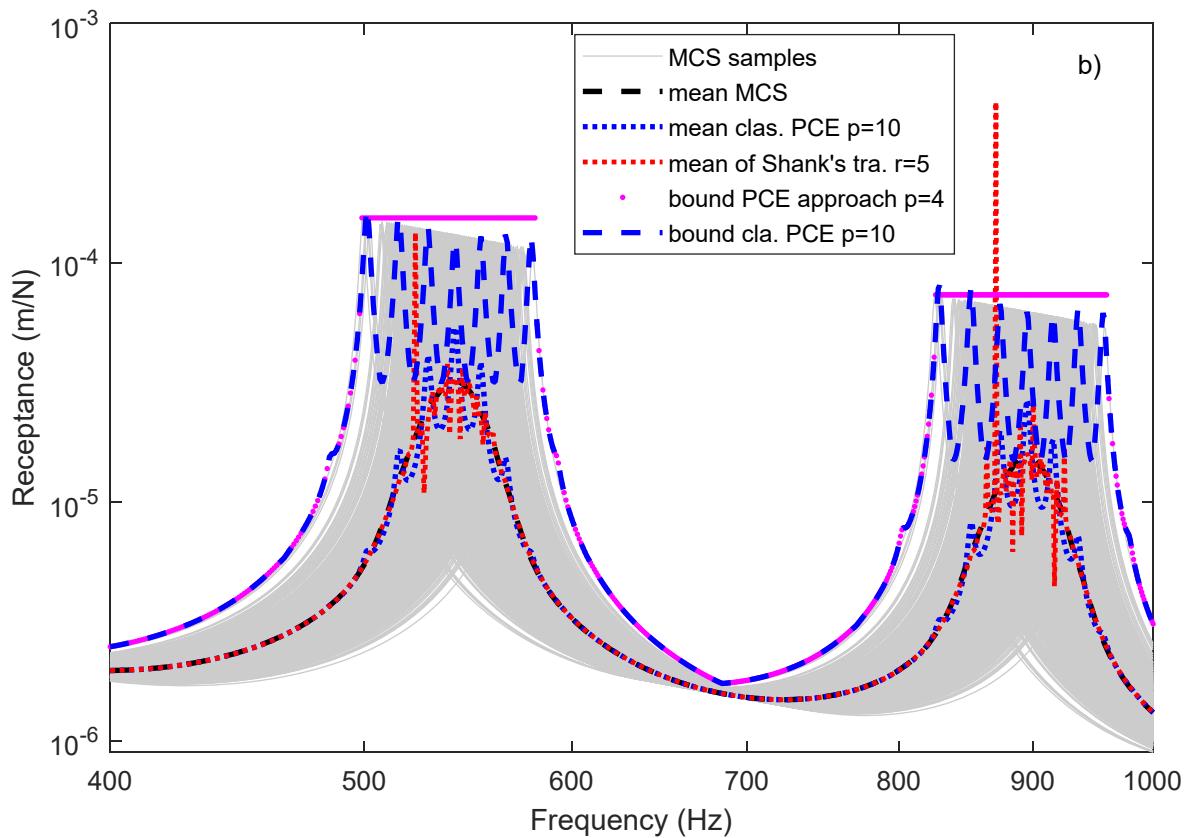


Figure 11. Transfer receptance at $x=0.4$ m, excitation at $x=0.05$ m, for the cantilever beam possessing global uncertainty between a) 10-400 Hz and b) 400-1000 Hz

The following conclusions may be inferred from Fig. 11:

1. The higher order PCE has oscillations around the desired response in the resonance bands

(mean FRF or FRF bounds) as depicted in the lower order PCE of local uncertainty problem in Fig. 9. Therefore, it may be concluded that, the optimum number of the polynomial order may change for the same structure corresponding to the different input uncertain parameter.

One other cause that affects the convergence of PCE is having lower damping of the globally uncertain problem than the local uncertain problem.

2. PCE with Shank's transformation increases the rate of the convergence to the mean value.

However, it also results in some problematic responses at certain frequencies in the resonance bands. The inaccuracy may be due to not having a slight change between the rows

1 of nominator or denominator in Eq. (13), which will yield a zero determinant for any of
2 them. Increasing the order of the polynomial and the transformation may be a solution to
3 this problem as reported by Jacquelin et al. [11].

4 3. The relative solution time for the problem is 13 s for PCE with $p=10$ without the
5 transformation, 7 s for the proposed PCE bound approach, approximately 2000 s for MCS
6 with 200 samples and 134 s for Shank's transformation.

7 4. PCE approach with/without the transformation could not estimate the uncertain response
8 successfully. On the other hand, the approach introduced with the utilized polynomial orders
9 is really successful. This makes the approach efficient compared to MCS and PCE
10 with/without transformation in terms of computational load. Hence, it may be used for more
11 complex problems.

12 13 4 CONCLUSION

14 In the literature there exists different transformations for the purpose of accelerating the
15 convergence in PCE aiming for the statistical moments of the response around resonance for
16 lightly damped and uncertain structures. However, these transformations work well if the order
17 of the polynomials and transformation are quite high. In this paper, an upper bound estimation
18 of the uncertain frequency response function (FRF) is performed with low order Polynomial
19 Chaos Expansion (PCE) without any transformation. In this regard, the approach breaks the
20 whole frequency range into bands, namely the resonance and non-resonance bands, by
21 calculating the natural frequency bounds of the uncertain structure and progressively
22 calculating the upper FRF bounds for those bands. For the non-resonance band, the FRF bounds
23 are calculated by classical PCE implementation at each frequency, whereas PCE is
24 implemented for FRF amplitudes at the uncertain natural frequencies. The approach is tested
25 for two cases i.e., the beams possessing local and global uncertainty, respectively. The results

1 are compared with experiments, Monte Carlo simulation and PCE with/without transformation.
2 It is observed that the approach is successful with the application of a lower order PCE, even
3 though the cases where PCE with/without transformation fails.

4

5 **ACKNOWLEDGEMENTS**

6 This study is supported by “The Scientific and Technological Research Council of Turkey,
7 TUBITAK” through the 2219-International Postdoctoral Research Fellowship Program for
8 Turkish citizens.

9

10 **REFERENCES**

11 [1] R.Y. Rubinstein, D.P. Kroese, *Simulation and the Monte Carlo Method*, 3th ed., John
12 Wiley & Sons, New Jersey, 2016.

13 [2] R.E. Moore, *Methods and applications of interval analysis*, Society for Industrial and
14 Applied Mathematics, Philadelphia, 1979.

15 [3] R. Santoro, G. Failla, G. Muscolino, Interval static analysis of multi-cracked beams with
16 uncertain size and position of cracks, *Appl Math Model.* 86 (2020) 92–114.
17 <https://doi.org/10.1016/j.apm.2020.03.049>.

18 [4] I. Elishakoff, R.T. Haftka, J. Fang, Structural design under bounded uncertainty—
19 Optimization with anti-optimization, *Comput Struct.* 53 (1994) 1401–1405.
20 [https://doi.org/10.1016/0045-7949\(94\)90405-7](https://doi.org/10.1016/0045-7949(94)90405-7).

21 [5] C.K. Choi, H.H. Yoo, Uncertainty analysis of nonlinear systems employing the first-
22 order reliability method, *Journal of Mechanical Science and Technology.* 26 (2012) 39–
23 44. <https://doi.org/10.1007/s12206-011-1011-x>.

1 [6] S.H. Lee, B.M. Kwak, Response surface augmented moment method for efficient
2 reliability analysis, Structural Safety. 28 (2006) 261–272.
3 <https://doi.org/10.1016/j.strusafe.2005.08.003>.

4 [7] R.G. Ghanem, P.D. Spanos, Stochastic finite elements: A spectral approach, Dover
5 Publications, New York, 2003.

6 [8] A. Manan, J.E. Cooper, Prediction of uncertain frequency response function bounds
7 using polynomial chaos expansion, J Sound Vib. 329 (2010) 3348–3358.
8 <https://doi.org/10.1016/J.JSV.2010.01.008>.

9 [9] S.K. Choi, R. v. Grandhi, R.A. Canfield, C.L. Pettit, Polynomial chaos expansion with
10 latin hypercube sampling for estimating response variability, AIAA Journal. 42 (2004)
11 1191–1198. <https://doi.org/10.2514/1.2220>.

12 [10] J. Henneberg, J.S. Gomez Nieto, K. Sepahvand, A. Gerlach, H. Cebulla, S. Marburg,
13 Periodically arranged acoustic metamaterial in industrial applications: The need for
14 uncertainty quantification, Applied Acoustics. 157 (2020) 107026.
15 <https://doi.org/10.1016/j.apacoust.2019.107026>.

16 [11] E. Jacquier, S. Adhikari, J.J. Sinou, M.I. Friswell, Polynomial chaos expansion in
17 structural dynamics: Accelerating the convergence of the first two statistical moment
18 sequences, J Sound Vib. 356 (2015) 144–154. <https://doi.org/10.1016/j.jsv.2015.06.039>.

19 [12] E. Jacquier, S. Adhikari, J.-J. Sinou, M.I. Friswell, Polynomial Chaos Expansion and
20 Steady-State Response of a Class of Random Dynamical Systems, J Eng Mech. 141
21 (2015) 04014145. [https://doi.org/10.1061/\(asce\)em.1943-7889.0000856](https://doi.org/10.1061/(asce)em.1943-7889.0000856).

22 [13] K. Sepahvand, S. Marburg, H.-J. Hardtke, Uncertainty quantification in stochastic
23 systems using polynomial chaos expansion, Int J Appl Mech. 02 (2010) 305–353.
24 <https://doi.org/10.1142/S1758825110000524>.

1 [14] K. Sepahvand, Spectral stochastic finite element vibration analysis of fiber-reinforced
2 composites with random fiber orientation, *Compos Struct.* 145 (2016) 119–128.
3 <https://doi.org/10.1016/j.compstruct.2016.02.069>.

4 [15] K. Dammak, S. Koubaa, A. el Hami, L. Walha, M. Haddar, Numerical modelling of
5 vibro-acoustic problem in presence of uncertainty: Application to a vehicle cabin,
6 *Applied Acoustics.* 144 (2019) 113–123.
7 <https://doi.org/10.1016/J.APACOUST.2017.06.001>.

8 [16] A. Sarkar, R. Ghanem, A substructure approach for the midfrequency vibration of
9 stochastic systems, *J Acoust Soc Am.* 113 (2003) 1922.
10 <https://doi.org/10.1121/1.1558374>.

11 [17] A. Sarkar, R. Ghanem, Mid-frequency structural dynamics with parameter uncertainty,
12 *Comput Methods Appl Mech Eng.* 191 (2002) 5499–5513.
13 [https://doi.org/10.1016/S0045-7825\(02\)00465-6](https://doi.org/10.1016/S0045-7825(02)00465-6).

14 [18] D. Sarsri, L. Azrar, A. Jebbouri, A. el Hami, Component mode synthesis and polynomial
15 chaos expansions for stochastic frequency functions of large linear FE models, *Comput
16 Struct.* 89 (2011) 346–356. <https://doi.org/10.1016/j.compstruc.2010.11.009>.

17 [19] K. Sepahvand, S. Marburg, H.-J. Hardtke, Numerical solution of one-dimensional wave
18 equation with stochastic parameters using generalized polynomial chaos expansion,
19 *Journal of Computational Acoustics.* 15 (2007) 579–593.
20 <https://doi.org/10.1142/S0218396X07003524>.

21 [20] A. Seçgin, M. Kara, N.S. Ferguson, Discrete singular convolution–polynomial chaos
22 expansion method for free vibration analysis of non-uniform uncertain beams,
23 *JVC/Journal of Vibration and Control.* 28 (2022) 1165–1175.
24 <https://doi.org/10.1177/1077546320988190>.

1 [21] K. Sepahvand, S. Marburg, Identification of composite uncertain material parameters
2 from experimental modal data, *Probabilistic Engineering Mechanics.* 37 (2014) 148–
3 153. <https://doi.org/10.1016/J.PROBENGMECH.2014.06.008>.

4 [22] K. Sepahvand, Stochastic finite element method for random harmonic analysis of
5 composite plates with uncertain modal damping parameters, *J Sound Vib.* 400 (2017) 1–
6 12. <https://doi.org/10.1016/j.jsv.2017.04.025>.

7 [23] K. Sepahvand, M. Scheffler, S. Marburg, Uncertainty quantification in natural
8 frequencies and radiated acoustic power of composite plates: Analytical and
9 experimental investigation, *Applied Acoustics.* 87 (2015) 23–29.
10 <https://doi.org/10.1016/j.apacoust.2014.06.008>.

11 [24] G. Blatman, B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle
12 regression, *J Comput Phys.* 230 (2011) 2345–2367.
13 <https://doi.org/10.1016/J.JCP.2010.12.021>.

14 [25] V. Keshavarzzadeh, R.G. Ghanem, S.F. Masri, O.J. Aldraihem, Convergence
15 acceleration of polynomial chaos solutions via sequence transformation, *Comput
16 Methods Appl Mech Eng.* 271 (2014) 167–184.
17 <https://doi.org/10.1016/j.cma.2013.12.003>.

18 [26] J.J. Sinou, E. Jacquelin, Influence of Polynomial Chaos expansion order on an uncertain
19 asymmetric rotor system response, *Mech Syst Signal Process.* 50–51 (2015) 718–731.
20 <https://doi.org/10.1016/j.ymssp.2014.05.046>.

21 [27] V. Yaghoubi, S. Marelli, B. Sudret, T. Abrahamsson, Sparse polynomial chaos
22 expansions of frequency response functions using stochastic frequency transformation,
23 *Probabilistic Engineering Mechanics.* 48 (2017) 39–58.
24 <https://doi.org/10.1016/j.probengmech.2017.04.003>.

1 [28] D. Xiu, G.E. Karniadakis, Modeling uncertainty in flow simulations via generalized
2 polynomial chaos, *J Comput Phys.* 187 (2003). [https://doi.org/10.1016/S0021-9991\(03\)00092-5](https://doi.org/10.1016/S0021-9991(03)00092-5).

3 [29] E.S. Pearson, Some Problems Arising in Approximating to Probability Distributions,
4 Using Moments, *Biometrika*. 50 (1963) 95. <https://doi.org/10.2307/2333751>.

5

6