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ABSTRACT

Polynomial Chaos Expansion (PCE) is a method for analysing uncertain vibratory structures
with lower computational effort. It may simply be described as a curve fitting method with
orthogonal basis terms, where the polynomial type, dimension and order are predefined for the
uncertain responses. However, the polynomial order in PCE must be very high to accurately
estimate statistical moments of the frequency response function in resonance regions of lightly
damped and uncertain structures. To solve this issue different transformation techniques are
reported in the literature, where implementations of PCE produce higher accuracy with a lower
order polynomial. However, these transformations lose the attraction for using PCE, since they
require some additional mathematical operations and, mostly, they present high accuracy if the
higher orders of polynomials are again of interest. In this study, an efficient approach is
presented for the upper bound estimation of the uncertain frequency response functions (FRFs)
via PCE with lower order terms without performing any transformation. Rather than one-stage
application of PCE for the desired response of an uncertain problem, the approach comprises a
two-stage application of the classical PCE, i.e. first for the natural frequencies and then for the
FRF calculations. As an example application of the approach, a thin beam for two different
uncertainty cases is considered, namely local and global uncertainty. The local and global input

uncertainties are generated by variability of lumped masses added at the boundary and Young’s
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modulus, respectively. The FRF bounds are compared with extensive experimental and
numerical Monte Carlo simulations, showing that low order polynomials are sufficient to
calculate the bounds accurately with the technique described.

Keywords: Polynomial Chaos Expansion, bound estimation, frequency response function,

uncertainty

1 INTRODUCTION

Uncertainties naturally arise in every field of engineering practice. However, disregarding
these uncertainties in the analyses may cause undesirable results with both time and cost losses.
To avoid these losses, uncertainty must be taken into account from the design stage. For this
reason, researchers continue to study uncertainty analysis.

Since uncertainty is very effective on the subsequent dynamic responses, studies are carried
out in this area as well. For this purpose, many different methods such as Monte Carlo
simulation [1], interval analysis [2,3], anti-optimization [4] and reliability analyses [5,6] have
been introduced and all these methods have their own advantages and disadvantages. Among
these methods, Polynomial Chaos Expansion (PCE) is one of the most frequently used methods
[7]. PCE can basically be defined as fitting a polynomial curve to the uncertain response. The
method has several advantages. The first of these is the modelling capability of different
distribution types such as normal, uniform, beta or gamma distributions. In this context, any
distribution of an uncertain parameter can be modelled with a desired polynomial type.
However, if the appropriate type of polynomial corresponding to the distribution type of the
uncertain parameter is selected, the uncertain parameter is expressed as a very low-order
polynomial and the computational time shortens and also the accuracy of the method increases.
In addition, the deterministic coefficients of the polynomial can be obtained with different

methods such as Galerkin projection, collocation, and a statistical moment approach. In simple
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applications of PCE, the Galerkin projection approach can be used however it can be tedious
for uncertainty analysis of complex models. Therefore, the collocation point method is widely
used as a non-intrusive method in more complex models. There are studies on the selection of
the collocation points via Latin Hypercube sampling [8,9]. It is also convenient to use the roots
of the higher order polynomial basis to be adopted, as reported by Henneberg et al. [10].
Another advantage of PCE is the capability of using it together with either analytical or
numerical solution methods. Thus, its applicability to simple and complex models is increasing.
In this context, the success of the method with analytical calculations is demonstrated by
Henneberg et al. [10] and Jacquelin et al. [11,12]. Besides, Ghanem and Spanos described using
PCE with the finite element (FE) method, abbreviated as FE-PCE, in detail [7]. Since FE is
widely used in industry, the application of FE-PCE has become quite common [13—15]. On the
other hand, Manan and Cooper [8] obtained FE matrices of a bending beam and an airplane
wing and used them in the calculation of the bounds of the forced vibration response via PCE.
PCE has also been utilized in the analysis of uncertain structures together with different
numerical solvers. In this regard, Sarkar and Ghanem [16,17] examined the mid-frequency FRF
response of an uncertain structure by combining PCE together with numerical methods. The
structure is divided into substructures by a proper orthogonal decomposition, where the
uncertainty of the individual structures on the complex structure is taken into account at this
stage [16]. Sarsri et al. [18] used component mode synthesis to reduce the size of large FE
models and then solved the uncertain problem via PCE. Concerning wave approaches,
Sepahvand et al. [19] solved the one-dimensional uncertain wave equation by combining PCE
with the finite difference method. Also, Henneberg et al. [10] implemented PCE together with
the wave finite element method for the width and the centre frequency for the bandgaps of

periodic structures. More recently, Secgin et al. [20] showed that PCE can be reliably combined
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with the discrete singular convolution for the probability density function (PDF) of the natural
frequency of uncertain non-uniform beams.

PCE is also used to mathematically express the uncertainty obtained from experimental data.
In this regard, Sepahvand and Marburg [21] calculated the uncertain material properties of
composite plates from experimental modal data and modelled them by PCE. In a later study,
Sepahvand [22] determined the uncertain damping ratios of the composite plates by
experimental modal analysis. Then, by calculating the PDF from the samples obtained, the
uncertain frequency response functions (FRFs) were calculated by FE-PCE [22].

The studies referred to in the above clearly demonstrates that PCE is successful for the
estimation of natural frequencies [13,20,23] and vibration amplitude at non-resonant
frequencies [12] of the structures and the frequency bandwidth and bandgap centre frequencies
[10].

In some uncertainty quantification problems via PCE, the polynomial order must be very
high to produce an accurate estimation. For this purpose, there are different procedures utilized
in PCE to reduce the order of the polynomial. In this regard, Blatman and Sudret [24] exploited
least angle regression to detect the most effective deterministic coefficients for PCE on the
desired response, which enable one to obtain an adaptive sparse polynomial. Keshavarzzadeh
et al. [25] examined two sequence transformations, namely Shank’s and Levin transformations,
to accelerate the convergence of PCE. The requirement for a higher order polynomial expansion
is also encountered in estimating the FRF around the resonance of uncertain vibratory structures
having low damping. The classical implementation of PCE with low order polynomials is not
able to estimate the mean and variance of the response FRF at resonance frequencies for such
structures, as reported by Jacquelin et al. [12,26]. Therefore, different approaches must be
implemented to solve this issue. In this regard, Jacquelin et al. [11] implemented three different

transformations, i.e., Aitken’s transformation, recursive Aitken’s transformation and Shank’s



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

transformation, for the statistical moments of the response. Similarly, Yaghoubi et al. [27] used
stochastic frequency transformation. Although these transformations produce reliable results in
uncertainty estimations of vibratory structures, PCE loses its attraction due to the need to use
some additional mathematical operations and expansion resulting in increased computational
time.

Here, an efficient approach is presented for the upper bound estimation of the uncertain FRFs
via the classical PCE with lower order terms without performing any transformation. The
method is tested for the beams having different uncertainty cases, i.e., local and global
uncertainty. Local uncertainty is generated by adding variable lumped mass at the free boundary
of a cantilever beam, whereas the global case is performed by considering the beam possessing
an uncertain Young’s modulus. The first uncertainty case is also experimentally verified. Even
though two cases are examined, the application of the approach is the same. The approach
consists of a two-stage PCE application to determine the bounds, rather than the direct
application of PCE for the FRF as reported in the literature. At the first stage, PCE is utilized
to compute the PDF of the natural frequencies in the considered frequency range. The
subsequent stage is the estimation of the uncertain FRFs. Although a finite element model of
the beam is utilized as a numerical solver in the computations, one may construct the model by
any numerical method, but note that, it must be able to compute the natural frequency and FRF
for the considered structure. The results of the presented approach are compared with Monte
Carlo simulation. Besides, PCE is tested without using the introduced approach by calculating
the mean FRF and FRF bound together without implementing Shank’s transformation, whereas
the mean FRF is also checked using Shank’s transformation. It is seen that the proposed
approach has a good accuracy on the upper bound estimation, even in the cases where the mean
FRF estimations fail via the application of PCE with Shank’s transformation, namely for the

global uncertain beam.
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2 POLYNOMIAL CHAOS EXPANSION
2.1 Modelling of an uncertain variable
According to Polynomial Chaos Expansion (PCE), any uncertain input/output variable (X)

can be represented as follows [7]:
) N
X=3xP(5)=2 5P (&), (1)
j=0 =0

where ¢ is an uncertain parameter, x; is deterministic coefficient of the polynomial and P; (.) is
orthogonal polynomial by which the uncertain variable is to be represented. As shown in Eq.
(1), PCE of an uncertain variable is theoretically extended up to infinity. However, it is

truncated at a finite number (N) in numerical computations [13]:

nolmep) oy 2)

n!p!

Here, n and p denote the number of uncertain parameter and the order of the polynomial. In

PCE, polynomial terms used to represent the uncertain variable are orthogonal to each other
[7]:

(8-p)=5,(77) o
Here, ( ) represents the mean value and &, denotes Kronecker delta function. Due to the

orthogonality of the polynomials, it is easy to calculate the statistical moments of the uncertain

variable. The mean and variance of the results may be calculated by,

Hy =Xy, )
and
2 = 2 2
oy =le.,- (P). (%)
=
respectively.
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In PCE, many types of orthogonal polynomials may be utilized, i.e., Hermite, Laguerre,
Jacobi, Legendre, etc. As reported by Xiu and Karniadakis [28], each polynomial type
efficiently models a certain type of probability distribution as the weighting functions of the
polynomial basis coincide with mathematical expressions of the probability distribution types.
Using the efficient polynomial basis-distribution type couple is called as optimal representation.
For the optimal representation, one may utilize Hermite, Laguerre, Jacobi and Legendre
polynomial bases for normal, gamma, beta and uniform distributions, respectively. For the
optimal representation, a linear polynomial is enough to represent the uncertain variable. If an
appropriate polynomial basis-distribution type is not used, it is called a ‘“non-optimal
representation” and higher order terms of polynomials are required [13]. In non-optimal cases,
a space transformation is required to derive the uncertain variable, more terms are necessary in
the expansion.

In Eq. (1), different types of polynomials can be used for the function set P, i.e., nth order

Hermite and Legendre polynomial terms are respectively calculated by [13]:

n Loy
0 SE'e

. %Eé—
P(&)=(-1)"e 0& 0L, ..0&, ‘

; (6)

(_1)” an
n12" 8¢ 08, .0¢,

n

P, (&)= (1-g7¢)

(7

In PCE, there are types of approaches such as Galerkin projection, the collocation method
to determine the unknown deterministic coefficients shown in Eq. (1). In the present study, the

collocation method is utilized.



10

11

12

13

14

15

16

17

18

19

20

21

2.1.1 Space transformation for an uncertain input variable

If the uncertain parameter ¢ is defined in the interval of £ €[a,b] and uncertain input physical

variable X is defined between X €[c,e], then a space transformation is required to derive the

uncertain variable X in terms of uncertain parameter ¢ [13]:

)jdl(r)dr=jd2(r)dr:>)(=f(§). (8)

Here, di and d> represent the PDF of the uncertain parameter and physical variable, respectively.

For optimal representation, this procedure reduces to a simple shifting. A normally distributed
uncertain variable (X) with the statistical properties, N ( My Oy ) , may be represented by a first

order polynomial of an uncertain parameter, &, if the optimal polynomial basis i.e., Hermite

polynomial basis is selected for the representation:

X=0,+u,, )
where £, and o are the mean and standard deviation of the uncertain variable and uncertain
parameter has a standard normal distribution, N ( He o-g) =N(0,1). For non-optimal

representation, it may be difficult to obtain a simple expression as Eq. (9) and therefore, one
may also utilize different methods which will be mentioned in following subsection to calculate

the deterministic coefficients of an input variable.

2.2 Calculation of the deterministic coefficients in PCE
In the literature, there are different methodologies to calculate the deterministic coefficients
[10,13,24]. In this study, the collocation method is utilized since it is a non-intrusive method

and convenient for complex problems.
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In the collocation method, a set of uncertain parameters (&z{f(l) AN f(N"”)} ) is

T
sampled and corresponding uncertain variable realizations (X={X O x® ox (N”)} ) is

calculated. It should be mentioned that the number of collocation points (Ncp) should be equal
or greater than number of the finite terms (N+1). Substituting the samples of the collocation
points and realizations into Eq. (1) yields a set of linear equations with unknown deterministic

coefficients [9,10]:

Px=X, (10)
where,
B(")  R(M) - R(&Y)
P= £ (é(Z) h (5(2) £y & (11)
(NCP) (N(,'P) (NCP)
A7) R(E) o m(E )]
and x={x, x .. xN}T is the vector of deterministic coefficients. It is seen, Eq. (11) is a

square matrix if number of collocation points equals to number of the terms in PCE. If a higher

number of collocation points are utilized, the deterministic coefficients are calculated by [9],

X

(P’P) P'X. (12)
The selection of the collocation points is another issue for this method. One of the most
efficient ways is selecting the roots of (N+1)™ order of basis polynomial, i.e., roots of the 3™

order Legendre polynomial may be selected as the collocation points for the determination of

the 2" order of the same polynomial coefficients.

2.3 Transformations for increasing the convergence of PCE
The reason for the need of transformations in PCE was described in the introduction. In this

study, Shank’s transformation is utilized. For the brevity of the study, suppose that M) is any
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statistical moment (mean, variance and third order statistical moment) of the FRF at a certain
frequency obtained using PCE with order p. The rth order Shank’s transformation (er) is

expressed as follows [11]:

M, b M,
MpH p+2 o Mp+r‘+1
e = Mpﬂ‘ Mp+r+1 t Mp+2r (13)
r 2 2 2 :
AMp AMpH A‘Alerrfl
2 2 2
A'M,, AM,, - AM,
A22‘41)-%—;”—1 A2Mp+r e A2j\4p+2r—2

Here A’M , =M ,.,-2M,, + M ,. The workflow of Shank’s transformation is presented in Fig.

1. It may be observed from Eq. (13) or the flow diagram presented in Fig. 1 that, this
transformation requires the evaluation of M; where i={p, p+1, ..., p+2r}. This procedure
increases the computational load and hence loses the attraction for using PCE, since the
procedure to calculate the coefficients is repeated for 27+1 times with an increasing order of

terms.

10
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Figure 1. Workflow of Shank’s transformation in PCE

24 Modal based PCE approach for the upper bound of frequency response function
In the literature, PCE is directly implemented for the desired statistical moment of the
response, referred to here as a one-stage application of PCE in this paper. With the one-stage
application of PCE, the statistical moments of the lightly damped and uncertain structures
produce fluctuations at frequencies around the natural frequency, as reported by Jacquelin et al.
[12]. In this section, an implementation of PCE for the upper bound estimation of frequency
response function (FRF) over a certain frequency range, [fi, fu], is described. The approach
mainly determines the bounds by breaking down the whole frequency bandwidth into discrete
bands (accordingly named as the resonance and non-resonance frequency bands) and
progressively estimates the FRF bounds band by band. After breaking down into discrete bands,
two scenarios exist. For the resonance frequency bands, a two-stage application of PCE is

required, namely, for the natural frequency and FRF predictions whereas classical PCE can be

11



applied for frequencies in the latter non-resonance band. Therefore, one requirement of this
approach is firstly eligibility by calculation of the natural frequencies and then subsequently
FREF of the structure. In this regard, the finite element (FE) method is utilized. It should also be
noted that collocation point method is used to evaluate the deterministic coefficients of PCE for
the uncertain response. The steps of the approach are illustrated for a single mode of the

structure as a flow diagram in Fig. 2 and details are presented with steps below:

Frequency range ([, /1)

Material and physical Calculate natural frequency (f,)
properties for mean values of the uncertain
PCE parameters inouls
Collocation points P

Generate samples of &

Check the sign change of
Re{FRF} around the natural
frequency for the mean of
inputs

Plot result

\ 4

Apply PCE for the whole
frequency range and obtain
the upper bound by generated
samples of &

Obtain the polynomial of
Assign apyung for the the uncertain natural
frequency i frequency by PCE

a

\ 4

Calculate bounds ([ f;,;, fru]) of
the natural frequency by
generated samples of &

. Calculate upper bounds of
Apply PCE and obtain the upper resonance amplitude, i.e.,

bound at frequency i by Qpouna by generated samples
generated samples of & of &

I_t —>< for i=f:1:f, >

Obtain |FRF| at resonance
frequency corresponding to
collocation points as a
polynomial by PCE

a

NO

Figure 2. Flow diagram of the presented approach

12



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1. Natural frequencies (f,) of the structure for the mean values of uncertain inputs are

determined to check the existence of a mode in the frequency range considered [/, fu].

. For no modes in the considered frequency range, PCE technique may be applied for the FRF

at each frequency of whole frequency range to obtain the resulting polynomial.

. To evaluate the bounds of the FRF, the samples of the uncertain parameters (¢) generated

within a 99% confidence interval in accordance with the uncertain parameter distributions,
are fed to the resulting polynomial and the samples of the FRFs are evaluated. The
uppet/lower bounds of the results are calculated by selecting the maximum/minimum of the
resulting samples or plotting the probability density function of the response. Even though
the bounds are determined by a sampling-based manner, the method is still quicker than
MCS.

Alternatively, one may also determine the bounds within a confidence interval of the
resulting distribution for the response by using the statistical moments of the resulting
polynomial and the Pearson model without sampling the uncertain parameters. However, for
this process, the distribution type should be verified by using higher order standardized
statistical moments for each frequency. It may be a tedious task to do this and will decrease
the efficiency of the approach. For the further information about the Pearson model, one may

refer to Ref. [29].

. If there is a natural frequency in the frequency range considered [fi, fu], the occurrence of the

resonance peak at a response point must be checked. Albeit there is a natural frequency
within the frequency range [f1, f.], the natural frequency may not be observed as a resonance
peak in the FRF due to either the excitation or response point coinciding with a nodal point
(i.e., the second natural frequency a simply supported beam is not observed as a peak in the

FREF if the response is measured at the mid-point of the beam). The real part or imaginary

13



1 part of the FRF at the response point may be a good indicator of whether a resonance is

2 likely and hence a resonance peak might occur in the response. Here, the real part of the FRF
3 is utilized, by checking for a sign change of the real part of the FRF around the resonance
4 frequency. Consider the real and amplitude receptances obtained from two different response
5 points with respect to frequency of a structure having a natural frequency at the frequency

6 fa, presented in Fig. 3.

response point: 1
— — —response point: 2

Real part of receptance (m/N)

Frequency (Hz)

response point: 1
— — —response point: 2

Receptance amplitude (m/N)

Frequency (Hz)

7
8  Figure 3. Real part (top) and amplitude (bottom) of displacement with respect to

9  frequency of a structure obtained from two different response points

10 As may be observed from Fig. 3, if the sign of the real part of the FRF changes in the vicinity
11 of the natural frequency (f»), it is observed as a peak in FRF-frequency plot. If the sign does
12 not change around the natural frequency, it means the response point is a nodal point.

14
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Therefore, only the natural frequencies with a sign change in the real part of the deterministic
FRF must be considered as the excited modes.
5. For the modes which are observed as peaks in the FRF at the response point, the uncertainty

in the natural frequency is analysed via PCE by utilizing the collocation points. Then, one

may easily determine the lower and upper limits of the natural frequencies, [f

s nu] after
obtaining the PDF of natural frequencies as presented by a blue line in Fig. 4, by

implementing Step 3. These natural frequency bounds yielded are used to identify any

resonance bands for the uncertain structure.

L
@)
o
>
i % Natural fiequency ]
ymax I :;U é‘ T |
~ 5
< 52
E y . E ©
< “min PDF < s
() L 7]
2 o
c
@©
=
o
(O]
O
0]
o
f, f f f o f
nl n nu u

Frequency (Hz)
Figure 4. An idealised example of determining the bounds of the amplitude at a resonance
band with three collocation points (black: samples used in PCE, black *: resonance
amplitude of uncertain samples, blue line: probability density function estimated from
natural frequency samples obtained by PCE, red: PDF of the response amplitudes at the

resonance frequency obtained by PCE, blue x: estimated resulting bounds)
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6. For the frequencies outside of the resonance frequency band (called the non-resonant
frequency bands), steps 2-3 may be implemented to evaluate upper bounds whereas steps 7-
9 are implemented for the resonant band.

7. The natural frequencies corresponding to the collocation points are calculated.

8. The vibration amplitudes at the uncertain natural frequencies obtained corresponding to the
collocation points are determined via FE computations (black asterisks in Fig. 4).

9. Then, the vibration amplitudes obtained in step 8, are utilized as the realizations
corresponding to the collocation points in PCE for quantifying uncertain vibration
magnitudes at the resonance frequencies and the deterministic coefficients in PCE are
calculated for the uncertain vibration amplitude at the resonance frequencies. The PDF (red
line in Fig. 4) and upper bound of amplitude (blue ‘x’ mark in Fig. 4) corresponding to the

resonance frequencies are calculated and these are assigned for the frequencies between

[fnl H fnu ] .

So, it is clear from Steps 7-9 that, for a whole resonance band, the amplitude bound is calculated
by the two-stage PCE implementation just once. Because the amplitude bound of the resonance
band is determined using of the amplitude at the uncertain natural frequency. The term “two-
stage PCE implementation” is used, because firstly the natural frequency bound corresponding
to the collocation point set is determined in the first stage and then, the natural frequencies
corresponding to collocation point set are utilized as inputs for the whole band for amplitude

bound determination in the second stage.
3 NUMERICAL STUDIES

In this study, uncertain free and forced vibration analyses of a thin beam are performed via

PCE. The numerical model of the structure is constructed via the Finite Element (FE) method.
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The boundary condition of the structure is assumed to be fixed-free. Mechanical and physical

properties of the considered beam are presented in Table 1.

3.1 Verification study

Before going through the details of the uncertainty analysis, firstly the numerical model of
the beam constructed by FE is verified with wave finite element (WFE) numerical simulations
and experiments. In this regard, the beam is excited by 1 N flexural point excitation in numerical
computations. In the experiments, the schematics shown in Fig. 5 are utilized and excitation is
applied at x=0.05 m and the measurements are taken at x=0.4 m between 1-1000 Hz. The length
of the elements is assumed to be 0.05 m in the FE and WFE. The calculated results are presented

in Fig. 6.

Table 1. Physical and mechanical properties of the beam.

Property (unit) Mean value
Cross-section (m x m) 0.02 x 0.02
Length (m) 0.5
Young modulus (GPa) 62
Density (kg/m?) 2600
Loss factor 0.005

17
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One may infer from Fig. 6 that the FE results are very consistent with both the WFE
computations and experimental measurements. However, the measured third to fifth peaks
deviate from the numerical simulations, but these are fairly negligible differences due to the
difficulty of realising a perfectly rigid or clamped boundary practically. Further calculations or

FE model updating may be performed to have a better consistency in the results.

3.2 Uncertainty analysis
In the study, two uncertain cases are considered, i.e., 1) a locally uncertain thin beam, and i1) a
globally uncertain thin beam.
3.2.1 Locally uncertain beam

In this part of the study, the local uncertainty is created on the cantilever beam by adding
variable lumped masses to the tip of the beam. The uncertainty of the lumped mass is assumed
to be uniformly distributed between 0-0.020 kg, i.e., U(0,0.02) kg. For the uncertain structure,
firstly, the modal analysis was performed via FE-Monte Carlo Simulations with 200 samples
for the natural frequency and mode shape samples for the first five modes. These are presented
together with the deterministic mode shape and deterministic natural frequency in Fig. 7. The
mode shapes have been normalized so that the scalar product of the mode shape vector with

itself equals unity to avoid the usage of the deterministic/sample mass matrix.

fn=13.76 Hz fn=88.55 Hz
| MCS samples deterministic | MCS samples deterministic
= 0.2 = 0.2
[0} [}
IS IS
3 3
© 0 & O
[=% [=%
L L
o o

o
N
QO
~
1
o
N

x(m) x(m)

19
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Figure 7. a) The first, b) the second, c¢) the third, d) the fourth and e) the fifth mode shape

of the uncertain beam calculated by FE-MCS

It is observed from Fig. 7 that the change in the mass at the boundary results in increasingly
higher uncertainty above the second mode. Besides, the uncertainty increases when the response
position gets closer to free end of the structure where the local uncertainty was introduced.

In the natural frequency calculations, the parameters of PCE are selected as n=1 and p=3 in
the natural frequency calculations, so N=3. Since the uncertain mass has the uniform
distribution, the uncertain input parameter, ¢ is also uniformly distributed between -1 and 1.
The uncertain mass at the boundary, natural frequencies and FRF are described by using

Legendre polynomials. The vector that contains the polynomial terms is

Pz{l E 158 -05 258 —1.55}. The number of collocation point is selected as N+1 for

whole calculations where they are selected by the roots of the fourth order Legendre polynomial
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as £ = {—0.34,—-0.8611,0.34,0.8611}. The deterministic polynomial coefficients of the first

five natural frequencies are presented in Table 2.

Table 2. Deterministic polynomial coefficients obtained for the first five natural

frequencies
Mode Number X0 X1 X2 X3
1 13.86 -1.67 0.20 -0.02
2 89.36 -7.23 1.67 -0.33
3 254.52 -15.24 4.82 -1.26
4 505.01 -23.21 8.97 -2.81
5 842.57 -30.82 13.67 -4.83

As observed from Table 2, the absolute value of the deterministic coefficients converges to
zero as the order of the terms increases. The normalized histograms of the resulting natural
frequencies for the first five modes are obtained by sampling the uncertain input parameter
using 200 samples for the assumed uniformly distributed point mass. The results are compared
with MCS for two different numbers of samples, i.e., 200 and 10000 samples. This was
performed and utilized to show the sampling size is sufficient in the uncertainty modelling. The
results are compared with MCS in Fig. 8. Note that, the normalization of histograms is

performed so that the area under the curve or sum of rectangular areas are equal to 1.
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Figure 8. Comparison of the normalized histograms for the five lowest order natural

frequencies

As seen from Fig. 8, the PCE and MCS results are consistent and in good agreement with each
other. On the other hand, MCS with 200 samples converged to MCS results using 10000
samples; therefore one may conclude that 200 samples are enough for the modelling of the

uniform distribution. Moreover, the form of the normalized histograms belonging to the first
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natural frequency is nearly linear, and the behaviour of the curves are changing slightly with
the increasing mode order. The histogram of the natural frequency appears to follow the form
of the reciprocal of the square root function due to the local addition of the uncertain tip mass.
From Fig. 8, one may also observe the bounds of the natural frequencies and resonance bands,
which is determined from the frequencies within these bounds. For these bands, the steps 7-9

in the introduced approach mentioned in Section 2.4 will be applied.

Next, the effect of structural uncertainty on the forced response spectra is examined. The bounds
of the uncertain FRF are calculated by the introduced approach with PCE parameters n=1 and
p=3. The results are compared with the experiments and numerical FE-MCS by 200 uncertain
samples of the additional lumped mass. In the experiments, the masses are attached to the free
end of the cantilever beam in accordance with a uniform distribution between 0-0.020 kg by
generating 20 samples by using adhesive sticky putty. It should be noted that this will also
introduce damping uncertainty seen in the subsequent measured response spectra. Due to
adding adhesive putty, the loss factor of the beam is assumed to be 0.015 in the simulations.
The experiments were performed twice to check the repeatability. Apart from the introduced
approach, the mean and the upper bounds of the response are also calculated by PCE
computations with n=1, p={3, 10}. The uncertain transfer receptance at x=0.4 m corresponding
to the excitation at x=0.05 m is presented in Fig. 9. Note that, the upper bounds of the FE-MCS
are presented rather than the individual prediction response samples for clarity of the results

shown in Fig. 9. The relative discrepancy of the bounds calculated by proposed approach and

classical PCE compared to FE-MCS are calculated by |V o'’ — W | and presented in Fig.

10.

23



—_
e
w

404
Z 10
E
()
2
© -5
= 10
()
)
o)
e
10 - experiments ~ seereses bound experiment 7
= = :mean experiment bound FE-MCS
= = mean MCS = = = |srreemm bound clas. PCE p=3
=mmmm mean clas. PCE p=10 = == +bound clas. PCE p=10
10'7 ~|== == r'mean clas. PCE p=3 *  bound PCE approach p=3 .
|
10 100
Frequency (Hz)
1073 I T T T I
experiments ~ seeeeees bound experiment b)
== == :mean experiment = hound FE-MCS
= = 'mean MCS = = ‘=ssremem: bound clas. PCE p=3
=smmm mean clas. PCE p=10 = == :bound clas. PCE p=10
= == :'mean clas. PCE p=3 * bound PCE approach p=3
— 404 | 5
Z 10 -
E
)
O
c
S
o
)
)
)
X 405
: -: uen = )\
10-6 1 | | ] | | |
150 200 250 300 350 400 450 500 550 600
Frequency (Hz)

24



experiments
= = :mean experiment
*mean MCS
== mmm mean clas. PCE p=10
= = :'mean clas. PCE p=3

bound experiment

z 105k bound FE-MCS i
é --------- bound clas. PCE p=3
[0) = == +hound clas. PCE p=10
% bound PCE approach p=3
o
[
O
0
o
N
SN
|
1 I | | 1 1 | |
600 650 700 750 800 850 900 950 1000
Frequency (Hz)

DO —

Figure 9. Transfer receptance at x=0.4 m, excitation at x=0.05 m, for the cantilever beam

3 possessing local mass uncertainty at the free end, between a) 10-150 Hz, b) 150-600 Hz

4 andb) 600-1000 Hz
T T T T T T T T T
| """"" classical PCE by p=3 = == ‘classical PCE by p=10 the approach by p=3 | A
5 1 4
. 10 ; e
z ; : W\
E  Eom : \
4] :
8 | E '_‘ il \
S | 1 :ll \
8 i | H| N
S 4010 1 1 i ]
> 10 I =:l
&) 1 1 31
c 1 :
o | ’'S
9 ] | 1 !
S 1 : \ 1
-l v\
10-15 — ' ~ -
1 1
| |
100 200 300 400 500 600 700 800 900 1000
5 Frequency (Hz)

6  Figure 10. Discrepancy of the classical PCE and the present approach compared to the

7  FE-MCS in terms of receptance bounds

25



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Fig. 9 shows that the experimental results are mostly consistent with numerical simulations.
The discrepancies in the experimental results, presented in Fig. 9, may be due to the number of
samples and/or additional damping of the adhesive putty. However, the mean FRF calculated
by FE-PCE with p=3 shows oscillations about the mean of FE-MCS in the resonance bands of
higher order modes, but these oscillations are not observed for FE-PCE with p=10 and it
converges to the FE-MCS and physical experiments. On the other hand, when the upper bounds
of the FRF is of interest, FE-MCS is clearly able to estimate the bounds of the response, as
expected. If the bounds of the FE-MCS is taken as a reference, FE-PCE with both p=3 and p=10
exhibit higher amplitude variations compared to the variations around the mean. These are most
likely because of the variation in the higher order central statistical moments (variance etc.) of
the response. Besides, the approach presented in the study is clearly able to estimate the upper
bounds with lower order PCE, i.e., p=3. As the discrepancy of the PCE results presented in Fig.
10 is of interest, it is clearly seen that the proposed approach has lower error than the classical
PCE with p=3 at most frequencies. The simulation time for the FE-MCS, the proposed PCE
approach with p=3, and the FE-PCE with p=3 and with p=10 are 39 s, 5.5 s, 4 s and 10 s,
respectively. These results indicate that FE-PCE with the higher order for the mean response
and the introduced approach with lower order polynomial for the bound calculation may be
suitable and acceptable alternative methods for dynamic predictions of structures possessing

local uncertainties.

3.2.2 Globally uncertain beam
The approach is now assessed for the beam possessing global uncertainty. In this regard, the
Young’s modulus of the cantilever beam is assumed to be uncertain with a normal distribution

in GPa given by N(70,3.5). The uncertain parameter (¢) is assumed to have unit normal
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distribution i.e. N(0,1). The FRF is described using Hermite polynomials, whereas the Young’s
modulus is expressed in terms of the uncertain input variable as given in Eq. (9). The samples
of the uncertain parameter (¢) required to calculate the bounds are generated within the limits
of [-3,3] which corresponds to the 99% confidence interval. The uncertain FRF upper bounds
are calculated with the proposed approach described in Section 2.4 with the PCE parameters of
n=1 and p=4. Since N=4, the collocation points are selected by the roots of the fifth order
Hermite polynomial as ¢ = {—2.857,—1.3556,0, 1.3556,2.857}. The bounds and mean of
FRF are determined via the FE-PCE with p=10, whereas only the mean FRF is calculated via
FE-PCE with p=10 and the 5" order (»=5) Shank’s transformation. The uncertain transfer
receptance at x=0.4 m corresponding to the excitation at x=0.05 m is compared by FE-MCS
using 10000 samples in Fig. 11. Since there is no adhesive putty addition in this case, the loss

factor is again assumed to be as 0.005 as in the simulations.
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Figure 11. Transfer receptance at x=0.4 m, excitation at x=0.05 m, for the cantilever beam

possessing global uncertainty between a) 10-400 Hz and b) 400-1000 Hz

The following conclusions may be inferred from Fig. 11:

1. The higher order PCE has oscillations around the desired response in the resonance bands

(mean FRF or FRF bounds) as depicted in the lower order PCE of local uncertainty problem

in Fig. 9. Therefore, it may be concluded that, the optimum number of the polynomial order

may change for the same structure corresponding to the different input uncertain parameter.

One other cause that affects the convergence of PCE is having lower damping of the globally

uncertain problem than the local uncertain problem.

PCE with Shank’s transformation increases the rate of the convergence to the mean value.

However, it also results in some problematic responses at certain frequencies in the

resonance bands. The inaccuracy may be due to not having a slight change between the rows
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of nominator or denominator in Eq. (13), which will yield a zero determinant for any of
them. Increasing the order of the polynomial and the transformation may be a solution to
this problem as reported by Jacquelin et al. [11].

3. The relative solution time for the problem is 13 s for PCE with p=10 without the
transformation, 7 s for the proposed PCE bound approach, approximately 2000 s for MCS
with 200 samples and 134 s for Shank’s transformation.

4. PCE approach with/without the transformation could not estimate the uncertain response
successfully. On the other hand, the approach introduced with the utilized polynomial orders
is really successful. This makes the approach efficient compared to MCS and PCE
with/without transformation in terms of computational load. Hence, it may be used for more

complex problems.

4 CONCLUSION

In the literature there exists different transformations for the purpose of accelerating the
convergence in PCE aiming for the statistical moments of the response around resonance for
lightly damped and uncertain structures. However, these transformations work well if the order
of the polynomials and transformation are quite high. In this paper, an upper bound estimation
of the uncertain frequency response function (FRF) is performed with low order Polynomial
Chaos Expansion (PCE) without any transformation. In this regard, the approach breaks the
whole frequency range into bands, namely the resonance and non-resonance bands, by
calculating the natural frequency bounds of the uncertain structure and progressively
calculating the upper FRF bounds for those bands. For the non-resonance band, the FRF bounds
are calculated by classical PCE implementation at each frequency, whereas PCE is
implemented for FRF amplitudes at the uncertain natural frequencies. The approach is tested

for two cases i.e., the beams possessing local and global uncertainty, respectively. The results
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are compared with experiments, Monte Carlo simulation and PCE with/without transformation.
It is observed that the approach is successful with the application of a lower order PCE, even

though the cases where PCE with/without transformation fails.
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