The University of Southampton
University of Southampton Institutional Repository

Modelling of H2 production via sorption enhanced steam methane reforming at reduced pressures for small scale applications

Modelling of H2 production via sorption enhanced steam methane reforming at reduced pressures for small scale applications
Modelling of H2 production via sorption enhanced steam methane reforming at reduced pressures for small scale applications
The production of H2 via sorption enhanced steam reforming (SE-SMR) of CH4 using 18 wt % Ni/Al2O3 catalyst and CaO as a CO2-sorbent was simulated for an adiabatic packed bed reactor at the reduced pressures typical of small and medium scale gas producers and H2 end users. To investigate the behaviour of reactor model along the axial direction, the mass, energy and momentum balance equations were incorporated in the gPROMS modelbuilder®. The effect of operating conditions such as temperature, pressure, steam to carbon ration (S/C) and gas mass flow velocity (Gs) was studied under the low-pressure conditions (2–7 bar). Independent equilibrium based software, chemical equilibrium with application (CEA), was used to compare the simulation results with the equilibrium data. A good agreement was obtained in terms of CH4 conversion, H2 yield (wt. % of CH4 feed), purity of H2 and CO2 capture for the lowest (Gs) representing conditions close to equilibrium under a range of operating temperatures pressures, feed steam to carbon ratio. At Gs of 3.5 kg m−2s−1, 3 bar, 923 K and S/C of 3, CH4 conversion and H2 purity were up to 89% and 86% respectively compared to 44% and 63% in the conventional reforming process.
0360-3199
1505
Abbas, Syed Zaheer
3b02900e-fef6-40e1-acf7-96f26bfde4a8
Dupont, V.
ed7d2d70-b6a3-4b52-9ca9-faec8cace4bf
Mahmud, T.
4eb0b46f-1c51-43e6-a97e-e9a75cb06689
Abbas, Syed Zaheer
3b02900e-fef6-40e1-acf7-96f26bfde4a8
Dupont, V.
ed7d2d70-b6a3-4b52-9ca9-faec8cace4bf
Mahmud, T.
4eb0b46f-1c51-43e6-a97e-e9a75cb06689

Abbas, Syed Zaheer, Dupont, V. and Mahmud, T. (2019) Modelling of H2 production via sorption enhanced steam methane reforming at reduced pressures for small scale applications. International Journal of Hydrogen Energy, 44 (3), 1505.

Record type: Article

Abstract

The production of H2 via sorption enhanced steam reforming (SE-SMR) of CH4 using 18 wt % Ni/Al2O3 catalyst and CaO as a CO2-sorbent was simulated for an adiabatic packed bed reactor at the reduced pressures typical of small and medium scale gas producers and H2 end users. To investigate the behaviour of reactor model along the axial direction, the mass, energy and momentum balance equations were incorporated in the gPROMS modelbuilder®. The effect of operating conditions such as temperature, pressure, steam to carbon ration (S/C) and gas mass flow velocity (Gs) was studied under the low-pressure conditions (2–7 bar). Independent equilibrium based software, chemical equilibrium with application (CEA), was used to compare the simulation results with the equilibrium data. A good agreement was obtained in terms of CH4 conversion, H2 yield (wt. % of CH4 feed), purity of H2 and CO2 capture for the lowest (Gs) representing conditions close to equilibrium under a range of operating temperatures pressures, feed steam to carbon ratio. At Gs of 3.5 kg m−2s−1, 3 bar, 923 K and S/C of 3, CH4 conversion and H2 purity were up to 89% and 86% respectively compared to 44% and 63% in the conventional reforming process.

This record has no associated files available for download.

More information

Published date: 15 January 2019

Identifiers

Local EPrints ID: 479088
URI: http://eprints.soton.ac.uk/id/eprint/479088
ISSN: 0360-3199
PURE UUID: 5fe6a093-91fe-4bdf-be90-d98e27d23a4e
ORCID for Syed Zaheer Abbas: ORCID iD orcid.org/0000-0002-8783-8572

Catalogue record

Date deposited: 20 Jul 2023 16:32
Last modified: 21 Jul 2023 02:01

Export record

Contributors

Author: Syed Zaheer Abbas ORCID iD
Author: V. Dupont
Author: T. Mahmud

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×