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Abstract

We study Dehn twists along Lagrangian submanifolds that are finite free quotients of
spheres. We describe the induced auto-equivalences to the derived Fukaya category and
explain their relations to mirror symmetry.
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1 Introduction

In his early groundbreaking papers [Sei03], [Sei08], Seidel studied the Dehn twist along a La-
grangian sphere and its induced auto-equivalence on the derived Fukaya category. There are
often no automorphism of the mirror which induces such an auto-equivalence [ST01]. It turns
out that this auto-equivalence of the mirror, called a spherical twist, can be described purely
categorically and there are a lot of generalizations of spherical twists and spherical objects,
including P-twist, family twist [Hor05], etc.

Many of these generalizations are also motivated by the corresponding symplectomorphisms
associated to Lagrangian objects. For example, Lagrangian Dehn twists along spheres can be
easily generalized to submanifolds whose geodesics are all closed with the same period. When the
Lagrangian submanifold is a complex projective space, Huybrechts and Thomas conjectured that
the resulting symplectomorphism induces a P-twist in the Fukaya category [HT06]. However, in
most cases, this is still conjectural. Recently, the authors made progress on Huybrechtz-Thomas
conjecture by showing that Dehn twists along Lagrangian projective spaces yields a mapping
cone operation predicted in the form of P-twists on the Fukaya category. In general, it is still
very difficult to compute the auto-equivalence of a given symplectomorphism.

In this paper, we investigate a new type of Dehn twist and its associated auto-equivalences.

Question 1.1. On a Fukaya category, what is the induced auto-equivalence of the Dehn twist
along a spherical Lagrangian, i.e. a Lagrangian submanifold P whose universal cover is Sn?

A particularly interesting feature of these twist auto-equivalences, which distinguishes this
question from all previous twist auto-equivalences, is its sensitivity to the characteristic of the
ground field.

Consider the basic example of P “ RPn. In characteristic zero, P is a spherical object in the
Fukaya category. In Corollary 1.3 we show that the induced auto-equivalence is a composition of
two spherical twists. However, when char “ 2, P becomes a Pn-object and the auto-equivalence
is a P-twist as defined in [HT06]. Indeed, given a spherical Lagrangian that is a more complicated
quotient of a sphere, its twist auto-equivalence decomposes into a composition of spherical
twists in characteristic zero, but when one considers ground field of non-zero characteristics,
such twists yield an entire family of previously unknown auto-equivalences. We hope this result
contributes to the increasing interests in studying derived categories and Fukaya categories of
finite characteristics.

To explain our result, let K be a field of any characteristic and Γ Ă SOpn ` 1q be a finite
subgroup for which there exists rΓ Ă Spinpn`1q such that the covering homomorphism Spinpn`
1q Ñ SOpn ` 1q restricts to an isomorphism rΓ » Γ. Let P be a Lagrangian submanifold that
is diffeomorphic to Sn{Γ in a Liouville manifold pM,ωq with 2c1pM,ωq “ 0. Pick a Weinstein
neighborhood U of P and take the universal cover U of U . The preimage of P is a Lagrangian
sphere P in U. We can pick a parametrization to identify P with the unit sphere in Rn`1, and
the deck transformation with Γ Ă SOpn` 1q. Then we can define the Dehn twist τP along P in
U. Since τP is defined by geodesic flow with respect to the round metric on P and the antipodal
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map lies in the center of SOpn` 1q, τP is Γ-equivariant and descends to a symplectomorphism
τP in U . We call τP the Dehn twist along P .

We equip P with the induced spin structure from Sn and with the universal local system E
corresponding to the canonical representation of Γ :“ π1pP q to KrΓs. The pair pP,Eq defines an
object P in the compact Fukaya category F . For any Lagrangian brane (i.e. an exact Lagrangian
submanifold with a choice of grading, spin structure and local system) E in pM,ωq, we have a
left Γ-module structure on homF pE,Pq and a right Γ-module structure on homF pP,Eq. Our
main result is

Theorem 1.2. Let pM2n, ωq be a Liouville manifold with 2c1pMq “ 0 and n ě 3. For any exact
Lagrangian brane E P F , there is a quasi-isomorphism of the obejcts

τP pEq » ConephomF pP,Eq bΓ P
evΓ
ÝÝÑ Eq (1.1)

in Fperf , where evΓ is the equivariant evaluation map, Cone is the A8 mapping cone and Fperf

is the category of perfect A8 right F modules.

On cohomological level, Theorem 1.2 implies that for any Lagrangian branes E0,E1 P F ,
there is a long exact sequence between the Floer cohomology groups

HF ˚´1pE0, τP pE1qq Ñ H˚pCF pP,E1q bΓ CF pE0,Pqq Ñ HF ˚pE0,E1q Ñ HF ˚pE0, τP pE1qq

It is natural to speculate that (1.1) holds on the functor level, i.e. τP – ConepPbΓP
evΓ
ÝÝÑ Idq.

Theorem 1.2 only shows this is true on the object level but doesn’t contain information on the
morphisms or their compositions.

For the precise definition of P and the equivariant evaluation map evΓ, readers are referred
to Section 2.5. Roughly, P should be thought of as a homological-algebraic incarnation of the
immersed Lagrangian represented by the universal cover Sn Ñ P . The equivariant evaluation
is an adaption of the usual evaluation in this context. Our main theorem has the following
consequence when P “ RPn.

Corollary 1.3. If P is diffeomorphic to RPn for n “ 4k ´ 1 and charpKq ‰ 2, then there are
two orthogonal spherical objects P1, P2 P F coming from equipping P with different rank one
local systems, and τP pEq – τP1τP2pEq.

If P “ RPn for n odd and charpKq “ 2, then P is a P-object and τP pEq is quasi-isomorphic
to applying P-twist to E along P .

Remark 1.4. We would like to remark that Theorem 1.2 has the following reformulation. Under
the assumption of Theorem 1.2, there is a spherical functor (see [AL17] for more about spherical
functors)

S : KrΓsperf Ñ Fperf

given by V ÞÑ V bΓ P (see Section 2.5). Moreover, for any E P F , we have

τP pEq » TSpEq

in Fperf , where TS is the twist auto-equivalence of Fperf associated to S.

3



Examples and outlooks

The current paper is focused on the foundations of the theory of twist auto-equivalences as-
sociated to τP and is the starting point of a series of works investigating examples involving
Lagrangian spherical space forms. Although we will not discuss these examples in depth, we
give an overview of several forthcoming projects to give the readers an idea on the potential
applications of the twist formula and its relations to existing works.

• In an upcoming paper [MR], the first author and Ruddat construct Lagrangian embeddings
of graph manifolds (e.g. spherical space forms) systematically in some Calabi-Yau 3-folds
using toric degenerations and tropical curves. Previous constructions in smooth toric
varieties and open Calabi-Yau manifolds using tropical curves can be found in [Mik] and
[Mat], respectively.

Lagrangian spherical space forms have been studied in some physics literature (see e.g.
[HK09]) and Dehn twists along them can be realized as the monodromy around a special
point in the complex moduli. Our study in this paper can be viewed as the mirror-dual of
the intensive study of monodromy actions on the derived category of coherent sheaves in
the stringy Kähler moduli space ([AHK05], [Hor05], [DS14], [DW16], [HLS16], etc).

• Hong, Lau and the first author study the local mirror symmetry in all characteristics in a
subsequent paper [HLM] when two lens spaces P , P 1 are plumbed together. In this case,
the lens spaces can be identified with fat spherical objects in the sense of Toda [Tod07]
in certain characteristics. This shows that Dehn twists along lens spaces are mirror to fat
spherical twists in this case.

Independently, in the upcoming work [ESW], Evans, Smith and Wemyss relate Fukaya
categories of plumbings of 3-spheres along a circle with derived categories of sheaves on
local Calabi-Yau 3-folds containing two floppable curves. Both Lens space twists and fat
spherical twists naturally arise in specific characteristics in that setting.

• In principle, Theorem 1.2 can be deduced from the Lagrangian cobordism formalism
[BC13], [BC14], [BC17]. There are several additional ingredients that need to be tak-
en into account, though. In the most naive attempt, similar to [MWa], one needs to use an
immersed Lagrangian cobordism that does not have clean self-intersections, which would
not even have Gromov compactness on holomorphic disks. A fix could be to generalize
the bottleneck immersed cobordism [MWa] to the categorical level, which should yield the
desired mapping cone relation.

Note that this bottleneck immersed formalism is different from the ongoing work of Biran
and Cornea on the immersed Lagrangian cobordism, but their framework should also enter
the picture. We have not adopted this approach since the relevant tools are still under
construction, but such an alternative approach should be of independent interest and yields
a functor level statement mentioned below Theorem 1.2.

• Another possible approach to Theorem 1.2, explained to us by Ivan Smith, is to realize
the Dehn twists as the monodromy in certain symplectic fibrations and apply the Ma’u-
Wehrheim-Woodward quilt formalism [MWW18]. This point of view is particularly well-
adapted to the case of P “ RPn. In this case, τP can be realized as the monodromy
of a Morse-Bott Lefschetz fibration, and one could try using the techniques developed
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by Wehrheim and Woodward in [WW16]. When P is a general spherical space form,
the symplectic fibration is no longer Morse-Bott and more technicalities will be involved.
Carrying out this approach would be of independent interest, and it provides another
possible approach to the functor version of Theorem 1.2.

The examples mentioned above mostly involve lens spaces where the group Γ is a cyclic
group. The algebro geometric counterparts of Dehn twists along more general spherical space
forms such as Chiang Lagrangians will be investigated in future works.

Sketch of the proof

The proof of Theorem 1.2 occupies the rest of this paper. Here we give a roadmap of the proof,
along with a summary of each section in the paper.

In Section 2, we review Lagrangian objects with local systems in the Fukaya categories.
When the underlying Lagrangian has finite fundamental group, we introduced its universal local
system and regard it as the immersed object coming from the universal cover the the Lagrangian.
This gives the object P in Theorem 1.2 when the underlying Lagrangian is a finite quotient of
Sn. We also define the equivariant evaluation map in (1.1).

Section 3 contains most technical tools we will need from symplectic field theory and gradings,
where the main new ingredient is an adaption of [EES05, EES07, Dra04, CRGG15], which shows
the regularity of various holomorphic curves that we will encounter later.

In Section 4, we apply symplectic field theory to understand the holomorphic curves con-
tributing to the Floer differentials, and prove a cohomological version of Theorem 1.2, that is,
Proposition 4.1. To achieve this, we first give an identification of generators on both sides by
geometrically identifying the intersections, then apply neck-stretching around P to holomorphic
curves (triangles and strips) involved in both sides of (5.2). We prove, by studying the resulting
configuration, that the limiting curves in the complement of U are identical for the correspond-
ing differentials under our earlier identification of the generators. In other words, we show that
the two cochain complexes are indeed isomorphic when the neck is stretched long enough.

In Section 5, we prove the categorical version by constructing an appropriate degree zero
cocycle between the objects on the two sides of (1.1), which induces the quasi-isomorphism in
(1.1) (and hence finish the proof of Theorem 1.2). This cocycle cD lives in D, which is defined in
(5.3). Geometrically, we perturb the object L1 to a nearby copy L11 and consider its intersection
with the union of L1 and P , which consist the generators of D. There is an intersection between
L1 and L11 that represents that fundamental cycle eL, which is intact after the Dehn twist because
it is away from the support. We pursue the naive idea that, this intersection (denoted as tD when
considered as a cochain in D) should be the cocyle we are looking for in D. Unfortunately, tD is
not closed. However, we show that its differential has the form of an upper triangular matrix in
Proposition 5.8. To supplement this fact, we computed the differentials from degree zero cochains
that that supported at intersections between L11 X P . We then correct tD by considering the
multiplications of terms from the term CF pP,E1q bΓ CF pτP ppE

1q1q,Pq and prove that one can
find a cocycle cD in the form of Proposition 5.16. A further study in the multiplications involving
cD shows it indeed induces a quasi-isomorphism (1.1), hence proving Theorem 1.2. Again, the
study of relevant µk-multiplications are based on SFT and neck-stretching. The orientation is
discussed in the appendix.
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Some notations.

• Γ is a finite group.

• P is a Lagrangian submanifold diffeomorphic to Sn{Γ for some Γ Ă SOpn ` 1q and P is
spin (see Remark 2.9)

• L is the universal cover of L and π : L Ñ L (or π : T ˚L Ñ T ˚L) is the covering map. In
particular, P is the universal cover of P .

• p P L is a lift of p P L.

• cp,q is the geometric intersection πpT ˚pPX τPpT
˚
qPqq P T ˚P (see (4.5)).

• P denotes P equipped with the universal local system, and E is a Lagrangian equipped
with some local system.

Standing Assumption: pM,ωq is a Liouville manifold with 2c1pM,ωq “ 0, and a fixed choice
of a trivialization of pΛtopC T ˚Mqb2 is chosen. All Lagrangians are equipped with a Z-grading
and a spin structure.

2 Floer theory with local systems

In this section, we discuss the Floer theory for Lagrangians with local systems in the spirit of
[Abo12a]. In Section 2.1, we review the definition of the Fukaya category. Universal local systems
are introduced in Section 2.2 and 2.3, accompanied with some algebraic results surrounding this
notion. These results might be known to some very experts but were not found in the literature
to the best of the authors’ knowledge. We have intentionally spelled them out in the most
explicit way in our capability, with in mind its comparison with immersed Floer theory, from
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which some readers could find independent interest. These preliminary results enable us to
explain the object P in Section 2.4 and the evaluation map in Section 2.5. Discussions about
gradings can be found in [Sei00], [Sei08, Section 11,12].

2.1 Fukaya categories with local systems

Let L be a closed exact Lagrangian submanifold in pM,ωq with a base point oL P L. Let E be
a finite rank local system on L with a flat connection ∇. For a path c : r0, 1s Ñ L, we denote
the parallel transport from Ecp0q to Ecp1q along c with respect to the connection ∇.

Ic : Ecp0q Ñ Ecp1q.

We use the monodromy action from Γ :“ π1pLq to EoL to endow pE,∇q a right Γ-module
structure. More explicitly, for y P EoL and g P Γ, the right action is given by

ρ : Γ Ñ EndpEoLq (2.1)

g ÞÑ py ÞÑ Igyq. (2.2)

In particular, pygqh “ IhpIgyq “ Ig˚hy “ ypg ˚ hq, where ˚ stands for concatenation of paths
(i.e. g goes first). We use E to denote the triple pL,E,∇q. For a Hamiltonian diffeomorphism
φ P HampM,ωq, we define φpEq :“ pφpLq, φ˚E, φ˚∇q.

Let Ei :“ pLi, E
i,∇iq for i “ 0, 1. A family of compactly supported Hamiltonian functions

H “ pHtqtPr0,1s is called pL0, L1q-admissible if

φHpL0q&L1 (2.3)

where φH is the time one flow of the Hamiltonian vector field XH “ pXHtqtPr0,1s. Let X pL0, L1q

be the set of H-Hamiltonian chord from L0 to L1 (i.e. x : r0, 1s ÑM such that 9xptq “ XHpxptqq,
xp0q P L0 and xp1q P L1). The Floer cochain complex between E0 and E1 is defined by

CF pE0,E1q :“ ‘xPX pL0,L1qHomKpE
0
xp0q, E

1
xp1qq (2.4)

Now, we want to introduce some notations to define the differential for CF pE0,E1q as well
as the A8-structure for a collection of Lagrangians with local systems.

Let Rd`1 be the space of holomorphic disks with d ` 1 boundary punctures. For each
S P Rd`1, one of the boundary punctures is distinguished and it is denoted by ξ0. The other
boundary punctures are ordered counterclockwisely along the boundary and are denoted by
ξ1, . . . , ξd, respectively. We denote the boundary component of S from ξj to ξj`1 by BjS for j “
0, . . . , d´1. The boundary component from ξd to ξ0 is denoted by BdS. For j “ 1, . . . , d, we pick
an outgoing/positive strip-like end for ξj , which is a holomorphic embedding εj : Rě0ˆr0, 1s Ñ S
such that

$

&

%

εjps, 0q P Bj´1S
εjps, 1q P BjS
limsÑ8 εjps, tq “ ξj

(2.5)

We also pick an incoming/negative strip-like end for ξ0, which is a holomorphic embedding
ε0 : Rď0 ˆ r0, 1s Ñ S such that

$

&

%

ε0ps, 0q P B0S
ε0ps, 1q P BdS
limsÑ´8 ε0ps, tq “ ξ0

(2.6)
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The strip-like ends are assumed to have pairwise disjoint image and they vary smoothly with
respect to S in Rd`1.

Let tEjudj“0 be a finite collection of Lagrangians with local systems. For j “ 1, . . . , d,
let Hj be a pLj´1, Ljq-admissible Hamiltonian (see (2.3)). We also pick a pL0, Ldq-admissible
Hamiltonian H0. For each S P Rd`1 and each collection tHju

d
j“0, we pick a C8cptpMq-valued one-

form K P Ω1pS,C8cptpMqq. Let XK P Ω1pS,C8pM,TMqq be the corresponding Hamiltonian-
vector-field-valued one-form. We require that

"

ε˚jXK “ XHjdt

XK |BjS “ 0
(2.7)

When d “ 1, we assume that Kps, tq “ H0,t “ H1,t for all ps, tq P R ˆ r0, 1s. We also assume
that K varies smoothly with respect to S and is consistent with respect to gluing near boundary
strata of the Deligne-Mumford-Stasheff compactification of Rd`1.

Let JM be an ω-compatible almost complex structure that is cylindrical over the infinite end
of M (see Definition 3.1). Let J pM,ωq be the space of ω-compatible almost complex structures
J such that J “ JM outside a compact set. For j “ 0, . . . , d, let Jj “ pJj,tqtPr0,1s be a family

such that Jj,t P J pM,ωq for all t. For each S P Rd`1 and each collection tJju
d
j“0, we pick a

domain-dependent ω-compatible almost complex structure J “ pJzqzPS such that

"

Jz P J pM,ωq for all z
J ˝ εjps, tq “ Jj,t for all j, s, t

(2.8)

When d “ 1, we require that J “ pJs,tqps,tqPRˆr0,1s “ pJtqtPr0,1s is independent of the s-direction.

We assume that J varies smoothly with respect to S in Rd`1 and is consistent with respect to
gluing near boundary strata of the Deligne-Mumford-Stasheff compactification of Rd`1.

Let xj P X pLj´1, Ljq for j “ 1, . . . , d and x0 P X pL0, Ldq. For d ą 1, we define MK,Jpx0;xd, . . . , x1q

to be the space of smooth maps u : S ÑM such that
$

’

’

&

’

’

%

S P Rd`1

pdu´XKq
0,1 “ 0 with respect to pJzqupzq

upBjSq Ă Lj for all j
limsÑ˘8 upεjps, tqq “ xjptq for all j

(2.9)

When d “ 1, we define MK,Jpx0;x1q to be the corresponding space of maps after modulo the R
action by translation in the s-coordinate. For simplicity, we may use Mpx0;xd, . . . , x1q to denote
MK,Jpx0;xd, . . . , x1q for an appropriate choice of pK,Jq.

Remark 2.1. In Section 3, we will encounter situations where K ” 0 and J is a domain
independent almost complex structure. In these cases, J has to be chosen carefully to achieve
regularity, so we will emphasize J and denote the moduli by MJpx0;xd, . . . , x1q therein.

When every element in Mpx0;xd, . . . , x1q is transversally cut out, Mpx0;xd, . . . , x1q is a
smooth manifold of dimension |x0| ´

řd
j“1 |xj | ` pd´ 2q, where | ¨ | denotes the Maslov grading

(see Section 3.2).
For each transversally cut out rigid element u PMpx0;xd, . . . , x1q, we define

µu : HompEd´1
xdp0q

, Edxdp1qq ˆ ¨ ¨ ¨ ˆHompE
0
x1p0q

, E1
x1p1q

q Ñ HompE0
x0p0q

, Edx0p1q
q

µupψd, . . . , ψ1qpaq “ signpuqIBdu ˝ ψ
d ˝ ¨ ¨ ¨ ˝ ψ1 ˝ IB0upaq (2.10)
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where Bdu “ u|BdS for BdS being equipped with the counterclockwise orientation, and signpuq P
t˘1u is the sign determined by u (see Appendix A). Finally, we define the A8-operation by

µd : CF pEd´1,Edq ˆ ¨ ¨ ¨ ˆ CF pE0,E1q Ñ CF pE0,Edq

µdpψd, . . . , ψ1q “
ÿ

uPMpx0;xd,...,x1q,u rigid

µupψd, . . . , ψ1q (2.11)

The fact that the auxiliary structures can be chosen generically and consistently in the
sense of [Sei08], and that tµdudě1 gives rise to an A8 structure follows the argument in [Sei08]
line-by-line. This defines the Fukaya category FukpXq that we will use throughout.

2.2 Unwinding local systems

The goal of this subsection is to give a computable presentation of CF pE0,E1q, where Ei are
local systems of the same underlying Lagrangian. In particular, the identification (2.16) and
(2.27) will be used frequently later.

Let L be a closed exact Lagrangian and L be its universal cover with covering map π : L Ñ L.
Let oL P L be a base point of L and we pick a lift oL P L such that πpoLq “ oL. We assume
throughout that Γ :“ π1pL, oLq is a finite group so that L is compact. For each q P L, there
is a unique path cq (up to homotopy) from oL to q and we identify q with the homotopy class
rπ ˝ cqs. We have a left Γ-action on L given by

gq :“ g ˚ rpπ ˝ cqqs (2.12)

for g P π1pL, oLq, where g ˚ rpπ ˝cqqs is a homotopy class of path from oL to πpqq and we identify
it as a point in L. It is clear that hpgqq “ ph˚gqq. If we pick a Morse function and a Riemannian
metric on L to define a Morse cochain complex C˚pLq, we can lift the function and metric to L
to define a Morse cochain complex C˚pLq. The Γ-action on L induces a left Γ-action on C˚pLq.
The Γ-invariant part of C˚pLq can be identified with C˚pLq, in other words,

C˚pLq “ RhomKrΓs´modpK, C˚pLqq “ pC˚pLqqΓ (2.13)

We want to discuss the analog when L is equipped with local systems.
Given a local system E on L, we use E “ π˚E to denote the pull-back local system. For a

path c : r0, 1s Ñ L, we use Ic to denote the parallel transport with respect to the pull-back flat
connection on E.

Let Ei be local systems on L for i “ 0, 1. We have right actions (see (2.1))

ρi : Γ Ñ EndpEioLq (2.14)

for i “ 0, 1. It induces a left Γ-module structure on HomKpE
0
oL
, E1

oL
q by

ψ ÞÑ g ¨ ψ :“ ρ1pg´1q ˝ ψ ˝ ρ0pgq (2.15)

Lemma 2.2. Let Ei be local systems on L for i “ 0, 1. Then there is a DG left Γ-module
isomorphism

Φ : CF ppL,E0q, pL,E1qq » C˚pLq bK HomKpE
0
oL
, E1

oL
q (2.16)

where the differential on C˚pLq bK HomKpE
0
oL
, E1

oL
q is only the differential on the first factor,

and the Γ-action on it is given by g ¨ pxb ψq :“ gxb g ¨ ψ (see (2.12) and (2.15)).
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Proof. We use the Morse model to compute the Floer cochain complex. Let C˚pLq be a Morse
cochain complex and C˚pLq be its lift. We use BL and BL to denote the differential of C˚pLq
and C˚pLq, respectively.

For each q P L and both i “ 0, 1, there is a canonical identification

Ic´1
q

: Ei
q Ñ Ei

oL
(2.17)

where cq is the unique (up to homotopy) path from oL to q. Therefore, it induces a trivialization
of Ei. We can also trivialize HomKpE

0,E1q using the canonical isomorphism

HomKpE
0
q,E

1
qq Ñ HomKpE

0
oL
,E1

oL
q “ HomKpE

0
oL
, E1

oL
q (2.18)

ψ ÞÑ I1
c´1
q
˝ ψ ˝ I1

cq (2.19)

Using the trivialization (2.18), (2.19), we have a graded vector space isomorphism (2.16).
To compare the differential on both sides of (2.16), let u be a Morse trajectory from q0 to q1

contributing to BL and hence the differential of CF ppL,E0q, pL,E1qq. For q1 b ψ P C˚pLq bK
HomKpE

0
oL
, E1

oL
q,

ΦpµupΦ´1pq1 b ψqqq (2.20)

“ signpuqq0 b Ic´1
q0
IB1uIcq1

ψIc´1
q1
IB0uIcq0

(2.21)

“ signpuqq0 b ψ (2.22)

where the second equality uses the fact that π1pLq “ 1. Therefore, Φ is an isomorphism of
differential graded vector spaces if we define the differential on C˚pLq bK HomKpE

0
oL
, E1

oL
q to

be BL acting on the first factor.
Finally, we want to compare the left Γ-module structures. In CF ppL,E0q, pL,E1qq, the action

on ψ P HomKpE
0
q,E

1
qq “ HomKpE

0
q , E

1
q q is given by

ψ ÞÑ gψ “ ψ (2.23)

where the last ψ lies inHomKpE
0
gq,E

1
gqq “ HomKpE

0
q , E

1
q q. For qbψ P C˚pLqbKHomKpE

0
oL
, E1

oL
q,

ΦpgpΦ´1pqb ψqqq (2.24)

“gqb Ic´1
gq
IcqψIc´1

q
Icgq (2.25)

“gqb Ig´1ψIg (2.26)

which is exactly the one given in (2.12) and (2.15). It finishes the proof.

We have the following consequence of Lemma 2.2:

Lemma 2.3. Let Ei be local systems on L for i “ 0, 1. Then

CF pE0,E1q “ RhomKrΓs´modpK, C˚pLq bK HomKpE
0
oL
, E1

oL
qq (2.27)

Proof. We use the notation in the proof of Lemma 2.2. Let u be a Morse trajectory from q0 to
q1 contributing to BLpq1q. Let q0 P L be a lift of q0 and let q1 P L be the corresponding lift of
q1 such that u lifts to a Morse trajectory u from q0 to q1. Let ψ P HomKpE

0
q1 , E

1
q1q. By (2.10),

we have

µupψq “ signpuqIB1uψIB0u (2.28)
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In the above notation, we regard u as a degenerated holomorphic strip and have suppressed
the direction of parallel transport for brevity, since it should be clear from the context.

By definition, HomKpE
0
gqj ,E

1
gqj q – HomKpE

0
qj , E

1
qj q for j “ 0, 1 and for all g P Γ. Therefore,

for ψ P HomKpE
0
gq1
,E1

gq1
q Ă CF ppL,E0q, pL,E1qq,

µgupψq “ signpguqIB1guψIB0gu (2.29)

“ signpuqIB1uψIB0u (2.30)

where µgu is the term in the differential of CF ppL,E0q, pL,E1qq contributed by gu, and the
second equality uses HomKpE

0
gq1
,E1

gq1
q – HomKpE

0
q1 , E

1
q1q. The Γ action on the generators

(qbψ ÞÑ gqbψ) and differentials (µu ÞÑ µgu) of CF ppL,E0q, pL,E1qq are free and the invariant
part can be identified with CF pE0,E1q so

CF pE0,E1q “ RhomKrΓs´modpK, CF ppL,E0q, pL,E1qqq “ pCF ppL,E0q, pL,E1qqqΓ (2.31)

and the result follows from Lemma 2.2.

2.3 The universal local system

In this subsection, we introduce the universal local system and hence, in particular, the object
P in Theorem 1.2. Some elementary properties of the universal local system will also be given.
Let us start from a general discussion of universal local systems.

Definition 2.4 (Universal local system). The universal local system E on L is a local system
that is uniquely determined by the following conditions: As a vector space, Eq “ Kxπ´1pqqy for
q P L. For any y P π´1pqq and c : r0, 1s Ñ L such that cp0q “ q, the parallel transport of E
satisfies Icpyq “ cp1q, where c : r0, 1s Ñ L is the unique path such that π ˝ c “ c and cp0q “ y.

As usual, we have the monodromy right Γ-action ρ on EoL (2.1). On top of that, we can use
the left Γ action on L (2.12) to induce (by extending it linearly) a left Γ action on Eq for all
q P L. These two actions on EoL commute and in general, we have

Lemma 2.5. Let E be the universal local system on L. For q P L, y P Eq, g P Γ and c : r0, 1s Ñ
L such that cp0q “ q, we have

gpIcyq “ Icpgyq (2.32)

Proof. Without loss of generality, let y P π´1pqq. We can identify y with the homotopy class
rπ ˝ cys from oL to q. Then we have (see (2.12))

gpIcyq “ g ˚ rπ ˝ cys ˚ rcs “ Icpgyq (2.33)

where rcs is the homotopy class of path from cp0q to cp1q that c represents.

Let E “ pL,E,∇q. Since we have a left action on Eq for all q P L, it induces a left Γ action
on CF pE1,Eq

ψ ÞÑ gψ (2.34)

for any E1 P ObpFq. Similarly, for any E1 P ObpFq, we have the induced right Γ action on
CF pE,E1q

ψp¨q ÞÑ ψpg¨q (2.35)

As an immediate consequence of Lemma 2.5 and the definition of µu (see (2.10)), we have
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Corollary 2.6. Let E be the universal local system on L. Let L1 . . . ,Lr,K1, . . . ,Ks P ObpFq.
Let yj P CF pKj ,Kj`1q for j “ 1, . . . , s ´ 1, xj P CF pLj ,Lj`1q for j “ 1, . . . , r ´ 1, ψ2 P

CF pE,K1q and ψ1 P CF pLr,Eq, we have

µupys´1, . . . , y1, ψ2g, ψ1, xr´1, . . . , x1q “ µupys´1, . . . , y1, ψ2, gψ1, xr´1, . . . , x1q (2.36)

for all g P Γ, where u is an element in the appropriate moduli contributing to the A8-structural
maps of F . When s “ 0 (resp. r “ 0), we have

gµupψ1, xr´1, . . . , x1q “ µupgψ1, xr´1, . . . , x1q, respectively (2.37)

µupys´1, . . . , y1, ψ2gq “ µupys´1, . . . , y1, ψ2qg (2.38)

Remark 2.7. We offer an alternative way to understand (2.36) using L instead of E. For each
q P L and a lift q of q, we can view q as a point in L or as an element in Eq. Therefore, we
can identify the generators of CF pT ˚q L,Eq and the generators of CF pYgPΓT

˚
gqL,Lq by

Eq Q q ÞÑ q P T ˚qLX L (2.39)

Dually, CF pE, T ˚q Lq can be identified with CF pL,YgPΓT
˚
gqLq by

HomKpEq,Kq Q q_ ÞÑ q P LX T ˚qL (2.40)

The right action (2.35) on HomKpEq,Kq is given by q_g “ pg´1qq_, which corresponds to the
right action on L by qg “ g´1q.

Now, we want to make connection with Corollary 2.6. For simplicity, we assume that K1

and L1 are Lagrangians without local systems and ψ1 “ q1 P Eq1, ψ2 “ q_2 P HomKpEq2 ,Kq.
Let γ be Br`1S, which is the component of BS with label L.

Since the parallel transport of E can be identified with moving the points in L, for µu to be
non-zero and contribute to the RHS of (2.36), there is exactly one g P Γ and one lift of u|γ,
which is denoted by u : γ Ñ L, such that u goes from gq1 to q2. For each h P Γ, the maps
hu : γ Ñ L are the other lifts of u|γ and hu goes from hgq1 to hq2.

Roughly speaking, one can define a Floer theory by counting pu,uq, where u is as in Corollary
2.6 and u is a lift of u|γ. This definition is explained in details in [Dam12] and the outcome is the
same as Lagrangian Floer theory with local systems. In this setting, the pair pu, huq contributes
to

µpu,huqpys´1, . . . , y1, hq2, hgq1, xr´1, . . . , x1q (2.41)

and it equals to µpu,uqpys´1, . . . , y1,q2, gq1, xr´1, . . . , x1q. Under the identification (2.39), (2.40),
it means that (when h “ g´1)

µpu,uqpys´1, . . . , y1,q
_
2 , gq1, xr´1, . . . , x1q “ µpu,g

´1uqpys´1, . . . , y1, pg
´1q2q

_,q1, xr´1, . . . , x1q

which is exactly the same as (2.36)

The rest of this subsection is devoted to the self-Floer chain complex CF pE,Eq when E is
the universal local system of L. Let R :“ KrΓs and 1Γ be the unit of Γ. For h P Γ, we define
τh P HomKpR,Rq by

τhpgq “

"

1Γ if g “ h´1

0 if g P Γzth´1u
(2.42)
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Note that R – EoL so, by Lemma 2.3, we have

CF pE,Eq “ pC˚pLq bHomKpR,Rqq
Γ (2.43)

as a Γ-module.
In particular, we have µ1, µ2 on pC˚pLqbHomKpR,Rqq

Γ inherited from CF pE,Eq. In Lemma
2.2, we proved that µ1 coincides with the Morse differential BL on the first factor. The same
line of argument can prove that µ2 coincides with the Floer multipliciation on C˚pLq tensored
with the composition in HomKpR,Rq (i.e. µ2

Lp´,´q b ´ ˝ ´).
Let Φ2 : C˚pLq b R Ñ pC˚pLq b HomKpR,Rqq

Γ be the graded vector space isomorphism
given by

Φ2 : xb h ÞÑ
ÿ

gPΓ

gxb g ¨ τh “
ÿ

gPΓ

gxb Ig´1τhIg (2.44)

Lemma 2.8. We have the following equalities

Φ´1
2 ˝ µ1 ˝ Φ2pxb hq “ BLpxq b h (2.45)

Φ´1
2 ˝ µ2 ˝ pΦ2px2 b h2q,Φ2px1 b h1qq “ µ2

Lpx2, h2x1q b h2h1 (2.46)

As a consequence of (2.45), we have H˚pCF pE,Eqq “ H˚pLq bR as a vector space.

Proof. For xb h P C˚pLq bR,

Φ´1
2 ˝ µ1 ˝ Φ2pxb hq (2.47)

“Φ´1
2 p

ÿ

gPΓ

BLpgxq b Ig´1τhIgq (2.48)

“Φ´1
2 p

ÿ

gPΓ

gBLpxq b Ig´1τhIgq (2.49)

“BLpxq b h (2.50)

where the second equality uses Corollary 2.6.
For xi b hi P C

˚pLq bR, i “ 1, 2, we have

Φ´1
2 ˝ µ2 ˝ pΦ2px2 b h2q,Φ2px1 b h1qq (2.51)

“Φ´1
2 p

ÿ

g1,g2PΓ

µ2
Lpg2x2, g1x1q b Ig´1

2
τh2Ig2Ig´1

1
τh1Ig1q (2.52)

For τh2Ig2Ig´1
1
τh1 and hence Ig´1

2
τh2Ig2Ig´1

1
τh1Ig1 to be non-zero, we must have

1Γ ˚ g
´1
1 ˚ g2 “ h´1

2 (2.53)

and for any g2, there is a unique g1 (“ g2h2) such that g´1
1 g2 “ h´1

2 . Therefore, the sum becomes

Φ´1
2 p

ÿ

g2PΓ

µ2
Lpg2x2, g2h2x1q b Ig´1

2
τh2Ih´1

2
τh1Ig1Ig´1

2
Ig2q (2.54)

“Φ´1
2 p

ÿ

g2PΓ

g2µ
2
Lpx2, h2x1q b Ig´1

2
τh2Ih´1

2
τh1Ih2Ig2q (2.55)

“Φ´1
2 p

ÿ

g2PΓ

g2µ
2
Lpx2, h2x1q b Ig´1

2
τh2h1Ig2q (2.56)

“µ2
Lpx2, h2x1q b h2h1 (2.57)
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where the second equality uses that µ2
L is Γ-equivariant, and the third equality uses τh2Ih´1

2
τh1Ih2 “

τh1Ih2 “ τh2h1 .

2.4 Spherical Lagrangians

In this subsection, we apply the results from the previous subsections to the case that L “ P
such that

P is diffeomorphic to Sn{Γ for some Γ Ă SOpn` 1q, so that the Γ-action is free, and P is spin
(2.58)

Remark 2.9. A finite free quotient of a sphere Sn{Γ is spin if and only if there exists rΓ Ă

Spinpn ` 1q such that the covering homomorphism Spinpn ` 1q Ñ SOpn ` 1q restricts to an
isomorphism rΓ » Γ.

First, we apply the discussion from Section 2.2:

Lemma 2.10. Let Ei be local systems on P for i “ 0, 1. If charpKq does not divide |Γ|, then
HF pE0,E1q “ H˚pSnq bHomKrΓspE

0
oL
,E1

oL
q as a K-vector space.

Proof. We apply the Leray spectral sequence to Lemma 2.3. The E2-page is given by

Ep,q2 “ HppΓ, HqpSnq bK HomKpE
0
oL
,E1

oL
qq

where the Γ-action is given by xbψ ÞÑ xb g ¨ψ and g ¨ψ “ ρ1pg´1q ˝ψ ˝ ρ0pgq. As a result, we
have

Ep,q2 “ HqpSnq b ExtpΓpΓ, HomKpE
0
oL
,E1

oL
qq

When charpKq does not divide |Γ|, KrΓs is semi-simple by Maschke’s theorem. Therefore,
ExtpΓpΓ, HomKpE

0
oL
,E1

oL
qq ‰ 0 only if p “ 0. It implies that the spectral sequence degener-

ate at E2-page and the result follows from the fact that Ext0ΓpΓ, HomKpE
0
oL
,E1

oL
qq consists of

ψ P HomKpE
0
oL
,E1

oL
q such that g ¨ ψ “ ψ, which is clearly HomKrΓspE

0
oL
,E1

oL
q.

Corollary 2.11. Let E0 be any local system on P corresponding to an irreducible representation
of Γ. If charpKq does not divide |Γ|, then HF pE0,E0q “ H˚pSnq.

Proof. It follow from Lemma 2.10 and Schur’s lemma HomKrΓspE
0
oL
,E0

oL
q “ K. Notice that, the

ring structure is also determined uniquely by dimension and degree reason.

Now, we want to compute the cohomological endomorphism algebra structure of the universal
local system on P using Lemma 2.8. Since the universal local system on P plays a distinguished
role in the paper, we denote it by P. We define µ1, µ2 on C˚pPq b R by (2.45) and (2.46),
respectively. By (2.45), we know that H˚pC˚pPq bRq is given by H˚pPq bR. We are going to
determine the algebra structure in the next lemma. Before that, we recall a convention

Convention 2.12. If C is a differential graded algebra (eg. a K-algebra with no differential),
then C is viewed as an A8 algebra by

µ1paq “ p´1q|a|Bpaq (2.59)

µ2pa1, a0q “ p´1q|a0|a1a0 (2.60)

and µk “ 0 for k ě 3, where a, a0, a1 P C and B is the differential of C.
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Lemma 2.13. Let P be the universal local system on P and R :“ KrΓs. Then the Floer
cohomology HF pP,Pq “ H˚pSnq bK R as a K-algebra, where the ring structure on the right is
the product of the standard ring structure.

Proof. Pick a Morse model such that C˚pP q has only one degree 0 generator e and one degree n
generator f . The corresponding Morse complex C˚pPq has |Γ| degree 0 generator tgeugPΓ and
|Γ| degree n generator tgfugPΓ. It is clear that

ř

g ge represents the unit of H0pPq. Therefore,
tr
ř

g gesbhuhPΓ are the degree 0 generators of HpC˚pPqbRq (see the correspondence of (2.44)
(2.45)).

Similarly, if x represents a generator of HnpPq, then trxsbhuhPΓ are the degree n generators
of HpC˚pPq bRq. It follows from (2.46) that

µ2pr
ÿ

g

ges b h2, r
ÿ

g

ges b h1q “ r
ÿ

g

ges b h2h1 (2.61)

µ2prxs b h2, r
ÿ

g

ges b h1sq “ rxs b h2h1 (2.62)

µ2pr
ÿ

g

ges b h2, rxs b h1q “ p´1q|x|rh2xs b h2h1 “ p´1q|x|rxs b h2h1 (2.63)

Therefore, HpC˚pPqbRq “ H˚pSnqbKR as a K-algebra (see Convention 2.12). The result now
follows from Lemma 2.3, 2.8 (see (2.31), (2.44)).

Let θg “ 1H0pSnq b g P H0pSnq b R. By Lemma 2.13, we have a left Γ-action on HF pE,Pq
given by

x ÞÑ rµ2pθg, xqs (2.64)

for any E P F . On the other hand, we have another left Γ-action on CF pE,Pq given by (2.34),
which descends to a left Γ-action on the cohomology HF pE,Pq.

Lemma 2.14. When E “ P, the two left Γ-actions (2.64) and (2.34) on θ1Γ P HF pP,Pq
coincide.

Proof. We use the notations in the proof of Lemma 2.13. The element θh P H
0pSnq b R is

represented by
ř

g geb h P C
0pPq bR. We have (see (2.44))

Φ2p
ÿ

g

geb hq “
ÿ

g2,g1

g2g1eb Ig´1
2
τhIg2 (2.65)

“
ÿ

g

geb Ig´1p
ÿ

g1

Ig1τhIpg1q´1qIg (2.66)

Undoing the trivialization (2.16), we have

Φ´1pΦ2p
ÿ

g

geb hqq “
ÿ

g

geb Icep
ÿ

g1

Ig1τhIpg1q´1qIc´1
e

(2.67)

where ce : r0, 1s Ñ P is a path from oP to e. With respect to the identification pCF ppP,Eq, pP,EqqqΓ “
CF pP,Pq (see (2.31)),

Φ´1pΦ2p
ÿ

g

geb hqq “ Iπ˝cep
ÿ

g1

Ig1τhIpg1q´1qIpπ˝ceq´1 P HompEe, Eeq Ă CF pP,Pq (2.68)
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Without loss of generality, we can assume e “ oL so

ÿ

g1

Ig1τhIpg1q´1 P HompEoL , EoLq Ă CF pP,Pq (2.69)

represents θh under the isomorphism HF 0pP,Pq “ H0pSnq bR.
For each y P Γ Ă EoL , there is a unique g1(“ h ˚ y) such that τhIpg1q´1pyq ‰ 0. Therefore,

ř

g1 Ig1τhIpg1q´1pyq “ hy for all y P EoL . In particular, it means that

ÿ

g1

Ig1τhIpg1q´1 “ hp
ÿ

g1

Ig1τ1ΓIpg1q´1q (2.70)

so θh “ hθ1Γ and hence µ2pθh, θ1Γq “ p´1q|θ1Γ
|θh “ hθ1Γ as desired.

Remark 2.15. From the proof of Lemma 2.14, we see that the identity morphism at EoL rep-
resents the cohomological unit. It is in general true that if one picks a Morse cochain complex
for a Lagrangian submanifold L such that there is a unique degree 0 generator eL representing
the cohomological unit of C˚pLq, then the identity morphism of EoL is a cohomological unit of
CF pE,Eq, where E is a local system on L.

Corollary 2.16. The two left Γ-actions (2.64) and (2.34) on HF kpE,Pq coincide, up to p´1qk,
for all E P F .

Proof. Let x P HF pE,Pq. We have

rµ2pθg, xqs “ rµ
2pµ2pθg, θ1Γq, xqs (2.71)

“ rµ2pgθ1Γ , xqs (2.72)

“ rgµ2pθ1Γ , xqs (2.73)

“ p´1q|x|gx (2.74)

where the first equality uses Lemma 2.13, the second equality uses Lemma 2.14, the third equality
uses Corollary 2.6 and the last equality uses that θ1Γ is a cohomological unit.

Similarly, for any E P F , we have a right Γ-action on HF pP,Eq given by

x ÞÑ rµ2px, θgqs (2.75)

and another right action on HF pP,Eq given by (2.35). The analog of Corollary 2.16 holds, (i.e.
µ2pθ1Γ , θhq “ θh “ θ1Γh) and we leave the details to readers.

Corollary 2.17. The two right Γ-actions (2.75) and (2.35) on HF pP,Eq coincide (without
additional factor of ´1) for all E P F .

2.5 Equivariant evaluation

In this subsection, we want to give the definition of

TPpEq :“ ConephomF pP,Eq bΓ P
ev
ÝÑ Eq (2.76)

16



that arises in (1.1) in the context of Fukaya category. We will keep the exposition minimal and
self-contained here.

Let Fperf be the DG category of perfect A8 right modules over F . We have a cohomologically
full and faithful Yoneda embedding [Sei08, Section (2g)]

Y : F Ñ Fperf (2.77)

By abuse of notation, we use E to denote YpEq for E P ObpFq.
Let P be a Lagrangian brane such that π1pP q “ Γ, and P be the object with underlying

Lagrangian P equipped with the universal local system E. Let E P ObpFq. By Corollary 2.6,
we know that (see (2.35))

µ1
F pψqg “ µ1

F pψgq (2.78)

for ψ P homF pP,Eq so homF pP,Eq is a DG right Γ-module.
Given a DG right Γ-module V , we define an object V bΓ P P ObpFperf q as follows: For every

X P ObpFq, we have a cochain complex

pV bΓ PqpXq :“ V bΓ homF pX,Pq (2.79)

where the left Γ-actions on homF pX,Pq is given by (2.34). By Corollary 2.6, we have

"

µ1
V pvgq b ψ “ µ1

V pvqg b ψ
v b µ1

F pgψq “ v b gµ1
F pψq

(2.80)

for v b ψ P V bΓ homF pX,Pq so

µ1|0 : v b ψ ÞÑ p´1q|ψ|´1µ1
V pvq b ψ ` v b µ

1
F pψq (2.81)

is a well-defined differential on V bΓ homF pX,Pq.
The A8 right F module structure on V bΓ P is given by

µ1|d´1 : pv b ψ, xd´1, . . . , x1q ÞÑ v b µdF pψ, xd´1, . . . , x1q (2.82)

for v b ψ P V bΓ homF pXd,Pq and xj P homF pXj , Xj`1q. The morphism µ1|d´1 is well-defined
by Corollary 2.6 and we leave it to readers to check that tµ1|ju8j“0 satisfies A8 module relations
[Sei08, Equation (1.19)]. In particular, we have an A8 right F module homF pP,Eq bΓ P.

Now we want to define an A8 morphism

evΓ : homF pP,Eq bΓ PÑ E (2.83)

as follows. For ψ2 b ψ1 P homF pP,Eq bΓ homF pXd,Pq and xj P homF pXj , Xj`1q, we define

evdΓ : pψ2 b ψ1, xd´1, . . . , x1q ÞÑ µd`1
F pψ2, ψ1, xd´1, . . . , x1q (2.84)

The well-definedness follows from Corollary 2.6 again. The fact that evΓ “ tev
d
Γud“1 defines an

A8 morphism follows from the A8 relations of F . As a consequence, we can define

TPpEq :“ ConephomF pP,Eq bΓ P
evΓ
ÝÝÑ Eq (2.85)
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as the A8 mapping cone for the A8 morphism evΓ (see [Sei08, Section (3e)]). In particular, for
X P ObpFq, we have a cochain complex

TPpEqpXq “ phomF pP,Eq bΓ homF pX,Pqqr1s ‘ homF pX,Eq (2.86)

with differential and multiplication given by

µ1
TPpEq

pψ2 b ψ1, xq “ pp´1q|ψ
1|´1µ1

F pψ
2q b ψ1 ` ψ2 b µ1

F pψ
1q, µ1

F pxq ` µ
2
F pψ

2, ψ1qq (2.87)

µ2
TPpEq

ppψ2 b ψ1, xq, aq “ pψ2 b µ2
F pψ

1, aq, µ2
F px, aq ` µ

3
F pψ

2, ψ1, aqq (2.88)

Finally, we want to state a functorial property of TPpEq.

Corollary 2.18. Let F0,F1 be the Fukaya categories with respect to two different sets of choices
of auxiliary data. The Lagrangian branes P,E above will be denoted by Pj ,Ej, respectively, when
we regard them as objects in Fj, for j “ 0, 1. Let G : F0 Ñ F1 be a quasi-equivalence sending
P0 to P1 and E0 to E1. Then

GpTP0pE0qq » TP1pE1q

The proof is straightforward along the same line as [Sei08, Lemma 5.6] and is left to interested
readers.

Remark 2.19. A thorough discussion of the categorical notions can be found in [MWb], which
is the extended version of the current paper. The readers can also find an intrinsic proof of
Corollary 2.18, and an explanation of Remark 1.4, in [MWb].

3 Symplectic field theory package

The main goal of this section is to derived the regularity results (Proposition 3.27, 3.29 and
3.30) we need for the later sections. The main ingredient is a trick given in [EES07], combined
with many special features of our setup. For clarity, we reall and specialize some generalities
from symplectic field theory to our context, introducing notations that will be used specifically
in our proof. This consists the main contents from Section 3.1 to Section 3.5.

The regularity results in this section allow us to establish Proposition 3.32 in Section 3.7,
which gives us enough control on the bubbling of the moduli of maps we need in Section 4 and
5.

For more general backgrounds in symplectic field theory, readers are referred to [BEH`03],
[EES05], [EES07], [CEL10], [CRGG15] etc.

3.1 The set up

Let pY, αq be a contact manifold with a contact form α.

Definition 3.1. A cylindrical almost complex structure on the symplectization SY :“ pR ˆ
Y, dperαqq is an almost complex structure such that

• J is invariant under R action

• JpBrq “ Rα, where Rα is the Reeb vector field of α
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• Jpkerpαqq “ kerpαq

• dαp¨, J ¨q|kerpαq is a metric on kerpαq

The set of cylindrical almost complex structures is denoted by J cylpY, αq. If I Ă R is an
interval, we call J a cylindrical almost complex structure on pI ˆ Y, dperαqq if J “ J 1|IˆY for
some J 1 P J cylpY, αq. Let pM,ω, θq be a Liouville domain with a separating contact hypersurface
pY, α “ θ|Y q such that Y X BM “ H. By the neighborhood theorem, there is a neighborhood
NpY q ĂM of Y such that we have a symplectomorphism

ΦNpY q : pNpY q, ω|NpY qq » pp´ε, εq ˆ Y, dpe
tαqq (3.1)

for some ε ą 0.
Let J0 be a compatible almost complex structure on M such that pΦNpY qq˚pJ

0|NpY qq is
cylindrical. We say that a smooth family of compatible almost complex structure pJτ qτPr0,8q on
M is adjusted to NpY q if

"

Jτ |MzNpY q “ J0|MzNpY q for all τ

for each τ , we have Φτ
NpY q : pNpY q, Jτ |NpY qq » pp´pτ ` εq, τ ` εq ˆ Y, pJ

τ q1q
(3.2)

where Φτ
NpY q is an isomorphism of almost complex manifolds, the diffeomorphism Φτ

NpY q ˝

pΦNpY qq
´1 is the identity on the Y factor, and pJτ q1 is the unique cylindrical almost complex

structure such that pJτ q1|p´ε,εqˆY “ pΦNpY qq˚pJ
0|NpY qq.

Let M´ be the Liouville domain in M bounded by Y and M` “MzpM´zBM´q. Let SM´

and SM` be the positive and negative symplectic completion of M´ and M`, respectively.
Given pJτ qτPr0,8q, there is a unique almost complex structure J´, JY and J` on SM´, SY
and SM`, respectively, such that pM´, Jτ |M´q, pNpY q, Jτ |NpY qq and pM`, Jτ |M`q converges

to pSM´, J´q, pSY, JY q and pSM`, J`q, respectively, as τ goes to infinity. More details about
this splitting procedure can be found in [BEH`03, Section 3].

Remark 3.2. There is a variant for being adjusted to NpY q. For a fixed number R ě 0, we
call a smooth family of compatible almost complex structure pJτ qτPr3R,8q on M is R-adjusted to
NpY q if (3.2) is satisfied but the property of pJτ q1 is replaced by the following conditions.

$

’

’

&

’

’

%

pJτ q1|r´pτ`ε´2Rq,τ`ε´2RsˆY is cylindrical for all τ

pJτ q1|p´ε,εqˆY “ pΦNpY qq˚pJ
0|NpY qq for all τ

pJτ1q1|p´pτ1`εq,´pτ1`ε´2RqsˆY “ pφ
´
τ1,τ2q˚pJ

τ2q1|p´pτ2`εq,´pτ2`ε´2RqsˆY for all τ1, τ2

pJτ1q1|rτ1`ε´2R,τ1`εqˆY “ pφ
`
τ1,τ2q˚pJ

τ2q1|rτ2`ε´2R,τ2`εqˆY for all τ1, τ2

where φ´τ1,τ2 : p´pτ2 ` εq,´pτ2 ` ε ´ 2Rqs ˆ Y Ñ p´pτ1 ` εq,´pτ1 ` ε ´ 2Rqs ˆ Y and φ`τ1,τ2 :
rτ2 ` ε´ 2R, τ2 ` εq ˆ Y Ñ rτ1 ` ε´ 2R, τ1 ` εq ˆ Y are the r-translation.

When R “ 0, being R-adjusted to NpY q is the same as being adjusted to NpY q. For R ą 0,
we can also define J˘, JY accordingly. In this case, J` (resp. J´) are cylindrical over the end
p´8,´2Rs ˆ BM` Ă SM` (resp. r2R,8q ˆ BM´ Ă SM´).

Let L be a Lagrangian submanifold in M such that LXNpY q “ p´ε, εqˆΛ for some (possibly
empty) Legendrian submanifold Λ. Let L˘ :“ LXM˘. We define SL´ “ L´YpRě0ˆΛq Ă SM´

and SL` “ L` Y pRď0 ˆ Λq Ă SM` which are the cylindrical extensions of L´ and L` with
respect to the symplectic completion. We denote Rˆ Λ Ă SY by SΛ.

The main ingredient we needed from [BEH`03] is the following compactness result in sym-
plectic field theory.
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Theorem 3.3 ([BEH`03] Theorem 10.3 and Section 11.3; see also [CEL10]). Let Lj, j “ 0, . . . , d
be a collection of embedded exact Lagrangian submanifolds in M such that Li&Lj for all i ‰ j.
Let pY, αq Ă M be a contact type hypersurface and pNpY q, ω|NpY qq – pp´ε, εq ˆ Y, dperαqq be a
neighborhood of Y such that Li X NpY q “ p´ε, εq ˆ Λi for some (possibly empty) Legendrian
submanifold Λi of Y .

Let Jτ be a smooth family of almost complex structures R-adjusted to NpY q. Let x0 P

CF pL0, Ldq and xj P CF pLj´1, Ljq for j “ 1, . . . , d. If there exists a sequence tτku
8
k“1 such that

limkÑ8 τk “ 8, and a sequence uk P MJτk px0;xd, . . . , x1q, then uk converges to a holomorphic
building u8 “ tuvuvPV pTq in the sense of [BEH`03].

We remark that each Jτ above is a domain independent almost complex structure (see
Remark 2.1) and we do not need to assume uk to be transversally cut out to apply Theorem 3.3.

The rest of this subsection is devoted to the description/definition of u8 “ tuvuvPV pTq in
Theorem 3.3. The definition is quite well-known so we only give a quick review and introduce
necessary notations along the way.

First, T is a tree with d ` 1 semi-infinite edges and one of them is distinguished which is
called the root. The other semi-infinite edges are ordered from 1 to d and called the leaves.
Let V pTq be the set of vertices of T . For each v P V pTq, we have a punctured Riemannian
surface Σv. If BΣv ‰ H, there is a distinguished boundary puncture which is denoted by ξv0 .
After filling the punctures of Σv, it is a topological disk so we can label the other boundary
punctures of Σv by ξv1 , . . . ξ

v
dv

counterclockwise along the boundary, where dv ` 1 is the number
of boundary punctures of Σv. Let BjΣv be the component of BΣv that goes from ξvj to ξvj`1 for
j “ 0, . . . , dv ´ 1, and BdvΣv be the component of BΣv that goes from ξvdv to ξv0 . If BΣv “ H,
then Σv is a sphere after filling the punctures.

There is a bijection fv from the punctures of Σv to the edges in T adjacent to v. Moreover,
fvpξ

v
0q is the edge closest to the root of T among edges adjacent to v. If v, v1 are two distinct

vertices adjacent to e, then f´1
v peq and f´1

v1 peq are either both boundary punctures or both
interior punctures. We call e a boundary edge (resp. an interior edge) if f´1

v peq is a boundary
(resp. an interior) puncture. We can glue tΣvuvPV pTq along the punctures according to the

edges and tfvuvPV pTq (i.e. Σv is glued with Σv1 by identifying f´1
v peq with f´1

v1 peq if v, v1 are two
distinct vertices adjacent to e). After gluing, we will get back S, the domain of uk, topologically.
Therefore, there is a unique way to assign Lagrangian labels to BΣv such that it is compatible
with gluing and coincides with that on BS after gluing all Σv together. We denote the resulting
Lagrangian label on BjΣv by Lv,j .

There is a level function lT : V pTq Ñ t0, . . . , nTu for some positive integer nT. If lTpvq “ 0,
then uv : Σv Ñ SM´ is a J´-holomorphic curve such that uvpBjΣvq Ă SL´v,j . If lTpvq “

1, . . . , nT ´ 1, then uv : Σv Ñ SY is a JY -holomorphic curve such that uvpBjΣvq Ă SΛv,j . If
lTpvq “ nT, then uv : Σv Ñ SM` is a J`-holomorphic curve such that uvpBjΣvq Ă SL`v,j .

If v ‰ v1 are adjacent to the same edge e in T, then |lTpvq ´ lTpv
1q| ď 1. If lTpvq ` 1 “ lTpv

1q

and e is a boundary (resp. interior) edge, then there is a Reeb chord (resp. orbit) which is the
positive asymptote of uv at f´1

v peq, and the negative asymptote of uv1 at f´1
v1 peq (see Convention

3.6). If lTpvq “ lTpv
1q, then e is necessarily a boundary edge, lTpvq “ lTpv

1q P t0, nTu and uv, uv1

converges to the same Lagrangian intersection point at f´1
v peq, f´1

v1 peq, respectively. If e is the
jth semi-infinite edge adjacent to v, then uv is asymptotic to xj at f´1

v peq.
Finally, for each j “ 1, . . . , nT ´ 1, there is at least one v P V pTq such that lTpvq “ j and uv
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is not a trivial cylinder (i.e. uv is not a map Rˆ r0, 1s Ñ SY or Rˆ S1 Ñ SY ) such that

uvps, tq “ pfrpsq, fY ptqq P Rˆ Y (3.3)

for some fr, fY ). We use MJ8px0;xd, . . . , x1q to denote the set of such holomorphic buildings.

Remark 3.4. From this point on, Theorem 3.3 will play a major role in analyzing holomorphic
curves.

It is important to note that, the domain of a holomorphic building under our consideration
can always be glued up into a smooth disk with boundary, which is the domain for Jτ when
τ ă 8.

For our application, we assume every holomorphic disks u : Σ Ñ M which undergoes an
SFT-stretching process must have pairwisely distinct Lagrangian boundary conditions on different
components of BΣ when τ ă 8 throughout the rest of the paper. The reason we impose this
condition is because we use a perturbation scheme in defining the Fukaya category, therefore,
Lagrangian boundary conditions on two different connected components of BΣ are never the
same Lagrangian. This will play a key role in our configuration analysis of the buildings.

Let

• V core be the set of vertices v P V pTq such that more than one Lagrangian appears in the
Lagrangian labels of BΣv.

• V B be the set of vertices v P V pTq such that there is only one Lagrangian appears in the
Lagrangian labels of BΣv.

• V int be the set of vertices v P V pTq such that BΣv “ H.

In particular, we have V pTq “ V core\V B \V int. Let Tcore, TB and Tint be the subgraphs of
T, which consists of vertices V core, V B and V int, and edges adjacent to their respective vertices
(see Figure 1 for an example). Note that these three subtrees could have overlaps.

Lemma 3.5. The graphs Tp1q :“ TcorezTint and Tp2q :“ pTcore Y TBqzTint are planar trees. In
particular, they are connected.

Proof. Let G be a minimal subtree of T containing Tp1q. If there is a vertex v in G such that
v P V int, then it would imply that S, the domain of uk, is not a disk. If there is a vertice v in G
such that v P V B, then it would imply that there is a Lagrangian that appears more than once
in the Lagrangian label of BS. Both of these situations are not possible.

Similarly, let G1 be the smallest subtree of T containing Tp2q. If there is a vertice v in G1

such that v P V int, then it would imply that S is not a disk and we get a contradiction.
As a result, G “ Tp1q and G1 “ Tp2q so both Tp1q and Tp2q are trees.
The fact that Tp1q and Tp2q are planar follows from the fact that we can order the boundary

punctures of Σv, for v P V coreY V B, in a way that is compatible with the boundary orientation.

Convention 3.6. We need to explain the convention of strip-like ends and cylindrical ends we
use for punctures of Σv. Let e be an edge in T and v ‰ v1 are the vertices adjacent to e.

First assume that lTpvq`1 “ lTpv
1q. If e is a boundary (resp. interior) edge, we use an outgo-

ing/positive strip-like end (2.5) (resp. cylindrical end) for f´1
v peq, where an outgoing/positive
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L1

L1

L2

L2

L0

V ∂

V int

V core

Figure 1: A tree T with 2 leaves. Black dots: elements in V core; Green dots: elements in V B; Red
dots: elements in V int; Black tree: TcorezpTB Y Tintq; Green sugbraph: TBzTint; Red subgraph:
Tint

cylindrical end for f´1
v peq is a holomorphic embedding of εv,e : tz “ s expp

?
´1tq P C|s ě 1u Ñ

Σv such that lim|z|Ñ8 εv,epzq “ f´1
v peq. With respect to coordinates given by the strip-like (resp.

cylindrical) end εv,e, we have

"

limsÑ8 πY puvpεv,eps, tqqq “ xpTtq (resp. γpTtq)
limsÑ8 πRpuvpεv,eps, tqqq “ 8

(3.4)

for some Reeb chord x (resp. orbit γ) and some T ą 0, where πY , πR are the projection from
SY to the two factors. In this case, we call x (resp. γ) the positive asymptote of uv at f´1

v peq.
On the other hand, we use an incoming/negative strip-like end (2.6) (resp. cylindrical end)

for f´1
v1 peq, where an incoming/negative cylindrical end for f´1

v1 peq is a holomorphic em-
bedding of εv1,e : tz “ s expp

?
´1tq P C|0 ă s ď 1u Ñ Σv1 such that lim|z|Ñ0 εv1,epzq “ f´1

v1 peq.
With respect to coordinates given by the strip-like (resp. cylindrical) end εv1,e, we have

"

limsÑ0 πY puvpεv1,eps, tqqq “ xpTtq (resp. γpTtq)
limsÑ0 πRpuvpεv1,eps, tqqq “ ´8

(3.5)

or some Reeb chord x (resp. orbit γ) and some T ą 0. In this case, we call x (resp. γ) the
negative asymptote of uv1 at f´1

v1 peq.
If lTpvq “ lTpv

1q and, say v is closer to the root of T than v1, then we use an outgoing/positive
strip-like end for f´1

v peq and an incoming/negative strip-like end for f´1
v1 peq. Similarly, the

intersection point that they are asymptotic to is the positive asymptote of uv at f´1
v peq and the

negative asymptote of uv1 at f´1
v1 peq.

3.2 Gradings

Let P Ă pM,ω, θq be a Lagrangian submanifold which satisfies (2.58). In particular, H1pP,Rq “
0 and P is an exact Lagrangian. The round metric on Sn descends to a Riemannian metric on
P . Let U be a Weinstein neighborhood of P and we identify BU with the set of covectors of P
having a common small fixed norm. Without loss of generality, we can assume that θ|U “ θT˚P ,
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where θT˚P is the standard Liouville one-form on T ˚P . Let α0 :“ θ|BU be the standard contact
form on BU . Eventually, we will apply Theorem 3.3 along a perturbation pBUq1 of BU . Since
ppBUq1, θ|pBUq1q » pBU,α1q for a perturbation α1 of α0, we will need to understand the Reeb
dynamics of α1. Therefore, it is helpful to explain the Reeb dynamics of pBU,α0q first. We
assume Λi :“ Li X BU are (possibly empty) unions of cospheres at points of P . There are four
types of asymptotes that can appear for uv near the punctures.

1. Lagrangian intersection points between SL˘i and SL˘j in SM˘,

2. Reeb chords from Λi to Λj in Y for i ‰ j,

3. Reeb chords from Λi to itself in Y , and

4. Reeb orbits in Y

We want to discuss the grading for each of these types.

3.2.1 Type one

Let Ω be the nowhere-vanishing section of pΛtopC T ˚Mqb2 which equals to 1 with respect to the
chosen trivialization (see Standing Assumption). For a Lagrangian subspace V Ă TpM and a
choice of basis tX1, . . . , Xnu of V , we define

DetΩpV q :“
ΩpX1, . . . , Xnq

}ΩpX1, . . . , Xnq}
P S1 (3.6)

which is independent of the choice of basis. A Z-grading of Li is a continuous function
θLi : Li Ñ R such that e2π

?
´1θLi ppq “ DetΩpTpLiq for all p P Li.

At each transversal intersection point x P Li X Lj , we have two graded Lagrangian planes
TxLi, TxLj inside TxM . The grading of x as a generator of CF pLi, Ljq is given by the Maslov
grading from TxLi to TxLj which is

|x| “ ιpTxLi, TxLjq :“ n` θLj pxq ´ θLipxq ´ 2AnglepTxLi, TxLjq (3.7)

where AnglepTxLi, TxLjq “
řn
j“1 βj and βj P p0,

1
2q are such that there is a unitary basis

u1, . . . , un of TxLi satisfying TxLj “ SpanRte
2π
?
´1βjuju

n
j“1. If we regard x as an element in

CF pLj , Liq, then we have ιpTxLj , TxLiq “ n´ ιpTxLi, TxLjq.

Convention 3.7. For a generator x P CF pLi, Ljq, we use x_ to denote the generator of
CF pLj , Liq which represents the same intersection point as x. Therefore, we have |x| “ n´|x_|.

Since SM´ “ T ˚P and w2pP q “ 0 and c1pT
˚P q “ 0, there is a preferred choice of trivi-

alization of pΛtopC T ˚SM´qb2 such that the grading functions on cotangent fibers and the zero
section are constant functions (see [Sei00]). Without loss of generality, we can assume that the
restriction to M´ of the choice of trivialization of pΛtopC T ˚Mqb2 we picked coincides with that of

pΛtopC T ˚SM´qb2. We call that the cotangent fibers and the zero section are in canonical relative
grading if the following holds:

CF pP, T ˚q P q is concentrated at degree 0 (3.8)

for all q P P .
We refer readers to [Sei00], [Sei08, Section 11, 12] for more about Maslov gradings.
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3.2.2 Type two

In general, if we have a Reeb chord x “ pxptqqtPr0,1s from Λ0 to Λ1 in a contact manifold
pY, αq such that SΛi are graded Lagrangians in SY for both i, we will assign a grading to x by
regarding x as a Hamiltonian chord between graded Lagrangians SΛ0 and SΛ1 in the symplectic
manifold SY as follows: There is an appropriate Hamiltonian H in SY that depends only on
the radial coordinate r such that the Reeb vector field Rα in Y coincides with the restriction of
the Hamiltonian vector field XH to t0u ˆ Y . Let φH be the time-one flow of H. We identify
xptq P Y with p0, xptqq P SY so x is a H-Hamiltonian chord. We have graded Lagrangian
subspaces pφHq˚Txp0qSΛ0 and Txp1qSΛ1 in Txp1qSY . Let

Kx :“ pφHq˚pTxp0qSΛ0q X Txp1qSΛ1 (3.9)

The grading |x| of x is defined to be

|x| “ ιppφHq˚pTxp0qSΛ0q{Kx, Txp1qSΛ1{Kxq (3.10)

where the Maslov grading (see (3.7)) is computed in the symplectic vector space Txp1qM{pKx `

JpKxqq. More details about Maslov gradings assigned to non-transversally intersecting graded
Lagrangian subspaces can be found in [MWa, Section 4.1], for example.

Now, we go back to our situation and assume x is a Reeb chord from Λi to Λj in pBU,α0q.
Since Li is graded, SΛi has a grading function in SpBUq inherited from Li. The computation of
|x| is done in the literature (e.g. [AS10a] [Abo12b], where they indeed proved HW pTqiq – krus
for |u| “ ´pn´ 1q) and we recall it here.

Without loss of generality, we assume Λi and Λj are connected. Let qi, qj P P be such that
T ˚qiP X BU “ Λi and T ˚qjP X BU “ Λj . We equip the cotangent fibers and P with the canonical
relative grading (see (3.8)). The grading functions of Li and Lj differs from the grading functions
of T ˚qiP and T ˚qjP near Λi and Λj , respectively, by an integer. In the following, we will assume
the grading functions coincide and the actual |x| can be recovered by adding back the integral
differences of the grading functions.

Let qi P P be a lift of qi. Each Reeb chord x from Λi to Λj corresponds to a geodesic from
qi to qj , which can be lifted to a geodesic x from qi to a point qj P P such that πpqjq “ qj . If

qj is not the antipodal point of qi and qj ‰ qi (3.11)

then there is a unique closed geodesic (assumed to have length 2π) passing through qi and qj .
Therefore, for each interval Ik “ pkπ, pk ` 1πqq, k P N, there is a unique geodesic from qi to qj
with length lying inside Ik. If the length of x lies in Ik, then

|x| “ ´kpn´ 1q (3.12)

For generic qi, qj , every lifts qi,qj of qi, qj satisfies (3.11).

3.2.3 Type three

There are four kinds of Reeb chords from Λi to itself. First, if x is a Reeb chord from one
connected component of Λi to a different one, then the computation of |x| reduces to the Type
two (Section 3.2.2). For the remaining three kinds, we assume Λi “ T ˚qiPXBU , i.e. it has exactly
one connected component. Let qi be a lift of qi and x : r0, 1s Ñ P be the lift of the geodesic
such that xp0q “ qi, q1i :“ xp1q and πpq1iq “ qi. The three possibilities are
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1. qi,q
1
i satisfy (3.11) (with q1i replacing qj), or

2. q1i is the antipodal point of qi, or

3. qi “ q1i

For the first case, the computation of |x| reduces to the previous one again (Section 3.2.2). For
the second and the third cases, we have (see (3.9) for the meaning of Kx)

Kx “ Txp1qLi (3.13)

|x| “ ιppφHq˚Txp0qLi{Kx, Txp1qLj{Kxq “ ´kpn´ 1q (3.14)

where kπ is the length of x, and the term ´kpn ´ 1q is exactly the (integral) difference of the
values of the grading functions at pφHq˚Txp0qLi and Txp1qLi as graded Lagrangian planes.

We want to point out that in the second and third cases x lies in a Morse-Bott family Sx of
Reeb chords from Λi to itself and dimpSxq “ n´ 1.

3.2.4 Type four

Reeb orbits of BU are graded by the Robbin-Salamon index [RS93] (see also [Bou02, Section
5]), which is a generalization of the Conley-Zehnder index to the degenerated case. To de-
fine the Robbin-Salamon index of a Reeb orbit γ, we need to pick a symplectic trivialization
Φγ of ξ along γ subject to the following compatiblity condition: Together with the obvious
trivialization of RxBr, Rα0y, Φγ gives a symplectic trivialization of TM along γ, and hence a
trivialization of pΛtopC T ˚Mqb2 along γ. The compatiblity condition is that the induced trivial-

ization of pΛtopC T ˚Mqb2 along γ coincides with the trivialization of pΛtopC T ˚Mqb2 we picked in
the beginning of Section 2. One may show that there is Φγ satisfying the compatiblity condition.

We can now define a path of symplectic matrices pΦtqtPr0,1s given by Φt :“ pφRt q˚ : ξγp0q Ñ

ξγptq » ξγp0q, where φRt is the time-t flow generated by Rα0 and the last isomorphism is given by
Φγ . We can assign the Robbin-Salamon index for Φt as follows: First, we isotope (relative to
end points) Φt to a path of symplectic matrices Φ1t such that kerpΦ1t´Idq ‰ 0 happens at finitely
many times t “ t1, . . . , tk and for each tj , the crossing form J d

dt |t“tj pΦ
1
tq is non-degnerate on

kerpΦ1tj ´ Idq. The signature of J d
dt |t“tj pΦ

1
tq is denoted by σptjq and the Robbin-Salamon index

is defined by

µRSpΦtq :“
1

2
σp0q `

k
ÿ

j“1

σptjq `
1

2
σp1q (3.15)

where σp1q is defined to be zero if Φ1 is invertible. The index is independent of the choice of
Φ1tj . The Robbin-Salamon index of γ with respect to the trivialization Φγ is

µRSpγq :“ µRSpΦtq (3.16)

Any two choices of Φγ satisfying the compatiblity condition would give the same index.
There are two kinds of Reeb orbits γ in BU , namely, contractible in U or not. We are only

interested in the case that γ is contractible in U , which means that it can be lifted to a Reeb
orbit in BU that is contractible in U. The lifted Reeb orbit corresponds to a geodesic loop lγ in
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P. The Robbin-Salamon index µRSpγq is computed in [Hin04, Lemma 7] (the proof there can
be directly generalized to all n)

µRSpγq “ 2kpn´ 1q (3.17)

where k is the covering multiplicity of lγ with respect to the simple geodesic loop, or equivalently,
2kπ is the length of lγ .

We want to point out that γ lies in a Morse-Bott family Sγ of (unparametrized) Reeb orbits
and dimpSγq “ 2n´ 2.

3.3 Dimension formulae

In this section, we first review the virtual dimension formula from [Bou02], where the domain
of the pseudo-holomorphic map only has interior punctures. Then we consider the case that the
domain only has boundary punctures, and finally obtain the general formula by gluing.

Let pY ˘, α˘q be contact manifolds with contact forms α˘. We assume that every Reeb
orbit γ of Y ˘ lies in a Morse-Bott family Sγ of (unparametrized) Reeb orbits. Let pX,ωXq be
a symplectic manifold such that there exists a compact set KX Ă X and TX P Rą0 so that
pXzKX , ωX |XzKX q is the disjoint union of the ends prTX ,8qˆY

`, dperα`qq and pp´8,´TXsˆ
Y ´, dperα´qq. In this case, we have

Lemma 3.8 ([Bou02], Corollary 5.4). Let Σ be a punctured Riemannian surface of genus g
and BΣ “ H. Let J be a compatible almost complex structure on X that is cylindrical over the
ends. Let u : Σ Ñ X be a J-holomorphic map with positive asymptotes tγ`j u

s`
j“1 and negative

asymptotes tγ´j u
s´
j“1 (see Convention 3.6). Then the virtual dimension of u is given by

virdimpuq “pn´ 3qp2´ 2g ´ s` ´ s´q `
s`
ÿ

j“1

µRSpγ
`
j q ´

s´
ÿ

j“1

µRSpγ
´
j q `

1

2

s`
ÿ

j“1

dimpSγ`j
q

`
1

2

s´
ÿ

j“1

dimpSγ´j
q ` 2crel1 pTXqprusq (3.18)

where 2crel1 pTXqprusq is the relative first Chern class computed with respect to the fixed symplectic
trivializations along the Reeb orbits that we chose to compute µRS (see Section 3.2.4).

Sketch of proof. As explained in Section 3.2.4, the trivialization Φγ˘j
of ξ along γ˘j determines

a path of symplectic matrices Φ˘,jt . We can trivialize TX along γ˘j using Φγ˘j
by adding the

invariant directions Br, R
˘
α . The corresponding path of symplectic matrices become Φ

˘,j
t “

Φ˘,jt ‘ I2ˆ2, where I2ˆ2 is the 2 by 2 identity matrix. By additivity property of µRS , we have

µRSpΦ
˘,j
t q “ µRSpΦ

˘,j
t q ` µRSpI2ˆ2q “ µRSpΦ

˘,j
t q.

If kerpΦ
˘,j
1 ´ Idq “ 0 (which is never the case) for all γ˘j , then the index of u is given by

indpuq “np2´ 2g ´ s` ´ s´q `
s`
ÿ

j“1

µRSpγ
`
j q ´

s´
ÿ

j“1

µRSpγ
´
j q ` 2crel1 pTXqprusq (3.19)
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If kerpΦ
˘,j
1 ´Idq ‰ 0, then it contributes dimpkerpΦ

˘,j
1 ´Idqq “ dimpSγ˘j

q`2 (resp. 0) to indpuq

when γ˘j is a positive (resp. negative) asymptote. However, the definition of µRS already takes

into account 1
2 dimpkerpΦ

˘,j
1 ´ Idqq so we have

indpuq “np2´ 2g ´ s` ´ s´q `
s`
ÿ

j“1

pµRSpγ
`
j q `

1

2
pdimpSγ`j

q ` 2qq (3.20)

´

s´
ÿ

j“1

pµRSpγ
´
j q ´

1

2
pdimpSγ´j

q ` 2qq ` 2crel1 pTXqprusq (3.21)

“np2´ 2g ´ s` ´ s´q `
s`
ÿ

j“1

µRSpγ
`
j q ´

s´
ÿ

j“1

µRSpγ
´
j q `

1

2

s`
ÿ

j“1

dimpSγ`j
q

`
1

2

s´
ÿ

j“1

dimpSγ´j
q ` ps` ` s´q ` 2crel1 pTXqprusq (3.22)

Finally, to obtain the virtual dimension, we need to add the dimension of the Teichmüller space
that Σ lies, which is 6g ´ 6` 2ps` ` s´q. It gives the formula (3.18).

We note that Lemma 3.8 still holds when Y ˘ “ H, where the corresponding s˘ “ 0.

Example 3.9. The virtual dimension of u : C Ñ T ˚Sn with the puncture asymptotic to a
simple Reeb orbit is given by

virdimpuq “ pn´ 3qp2´ 2p0q ´ 1´ 0q ` 2pn´ 1q `
1

2
p2n´ 2q “ 4n´ 6 (3.23)

because crel1 pTT
˚Snq “ 0. When n “ 2, we have virdimpuq “ 2 which is obtained in [Hin04,

Lemma 7].

Now, we consider the relative setting. A Lagrangian cobordism L in X is a Lagrangian such
that there exists T ą TX so that LXp´8,´T sˆY ´ “ p´8,´T sˆΛ´ and LXrT,8qˆY ` “
rT,8q ˆ Λ` for some Legendrian submanifolds Λ˘ in Y ˘. Let L0, L1 be exact Lagrangian
cobordisms such that L0&L1. We assume that every Reeb chord x from Λ˘0 to Λ˘1 lies in a
Morse-Bott family Sx of Reeb chords. In this case, we define (see (3.9))

mbpxq “ dimpSxq ` 1 “ dimpKxq (3.24)

If x P L0 X L1, we define mbpxq “ 0. The reader should note that the discrepancy between
mbpxq and dimpSxq comes from the R-direction of symplectizations. As always, we assume that
L0, L1 are Z-graded so all elements in L0 X L1, and all Reeb chords from Λ˘0 to Λ˘1 are graded
(see Section 3.2).

Lemma 3.10. Let S P Rd`1 be equipped with Lagrangian labels Lj on BjS, where each Lj is a
Lagrangian cobordism. Let J be a compatible almost complex structure on X that is cylindrical
on the ends. Let u : S Ñ X be a J-holomorphic map with positive asymptotes tx`j u

r`
j“1 and

negative asymptotes tx´j u
r´
j“1 such that upBjSq Ă Lj. Assume all asymptotes are Morse-Bott,

then the virtual dimension of u is given by

virdimpuq “ np1´ r´q `
r´
ÿ

j“1

pιpx´j q `mbpx´j qq ´
r`
ÿ

j“1

ιpx`j q ` pr
´ ` r` ´ 3q (3.25)
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Sketch of proof. When all x˘j are Lagrangian intersection points, then the index of u is given by
(see [Sei08, Proposition 11.13])

indpuq “ np1´ r´q `
r´
ÿ

j“1

ιpx´j q ´
r`
ÿ

j“1

ιpx`j q (3.26)

If x˘j is a Reeb chord, then the intersection of the graded Lagrangian subspaces Kx˘j
is non-

zero. Similar to the proof of Lemma 3.8, there are extra contributions to virdimpuq from the
asymptotes. This time, x˘j contributes dimpKx˘j

q “ mbpx˘j q (resp. 0) to indpuq when x˘j
is a negative (resp. positive) asymptote. The reversing of the roles of positive and negative
asymptotes between here and the proof of Lemma 3.8 can be understood from the fact that in
(3.19), positive asymptotes contribute positively while in (3.26), positive asymptotes contribute
negatively, which in turn boils down to the reversing convention of the definition of indices
between orbits and chords.

After all, we have

indpuq “ np1´ r´q `
r´
ÿ

j“1

pιpx´j q `mbpx´j qq ´
r`
ÿ

j“1

ιpx`j q (3.27)

The last term of (3.25) comes from the dimension of Rd`1.

Again, Lemma 3.10 applies also in the case when Y ´ “ H or Y ` “ H.

Example 3.11. Let q0, q1 P S
n and Λi be the unit cospheres at qi, and assume T ˚qi and the zero

section are equipped with the canonical relative grading. Let x be the shortest Reeb chord from
Λ0 to Λ1 in the unit cotangent bundle of Sn. The virtual dimension of u : S Ñ T ˚Sn such that
S P R3, upB0Sq Ă Sn, upB1Sq Ă T ˚q0S

n, upB2Sq Ă T ˚q1S
n with positive asymptotes q0 and x at ξ1

and ξ2, respectively, and a negative asymptote q1 at ξ0 is given by

virdimpuq “ np1´ 1q ` 0´ 0´ 0 “ 0 (3.28)

Finally, note that the shifting on the gradings of T ˚qiS
n or Sn do not change this virtual dimension

(see Section 3.2).

Now, we combine Lemma 3.8 and 3.10.

Lemma 3.12. Let S be a disk with r``r´ boundary punctures and s``s´ interior punctures.
Let u : S Ñ X be a J-holomorphic map with positive asymptotes tx`j u

r`
j“1 and negative asymp-

totes tx´j u
r´
j“1 at boundary punctures, and positive asymptotes tγ`j u

s`
j“1 and negative asymptotes

tγ´j u
s´
j“1 at interior punctures such that upBSq lies in the corresponding Lagrangians determined

by the boundary asymptotes. Then the virtual dimension of u is given by

virdimpuq “pn´ 3qp1´ s` ´ s´q `
s`
ÿ

j“1

µRSpγ
`
j q ´

s´
ÿ

j“1

µRSpγ
´
j q `

1

2

s`
ÿ

j“1

dimpSγ`j
q

`
1

2

s´
ÿ

j“1

dimpSγ´j
q ` 2crel1 pTXqprusq

`

r´
ÿ

j“1

pιpx´j q `mbpx´j qq ´
r`
ÿ

j“1

ιpx`j q ´ pn´ 1qr´ ` r` (3.29)
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Proof. We follow the proof in [Sei08, Proposition 11.13]. The domain S is the connected sum of
a disk S1 with r` ` r´ boundary punctures and a sphere S2 with s` ` s´ interior punctures.
Let u1 : S1 Ñ X be a J-holomorphic map with positive asymptotes tx`j u

r`
j“1 and negative

asymptotes tx´j u
r´
j“1 such that u1pBS1q lies in the corresponding Lagrangians determined by the

boundary asymptotes. Let u2 : S2 Ñ X be a J-holomorphic map with positive asymptotes
tγ`j u

s`
j“1 and negative asymptotes tγ´j u

s´
j“1. Then, we have

indpuq “ indpu1q ` indpu2q ´ 2n (3.30)

which can be computed by (3.22) and (3.27). Finally, to get the virtual dimension, we need to
add the dimension of the Teichmüller space that S lies, which is pr´ ` r` ´ 3q ` 2ps` ` s´q. It
gives the formula (3.29).

We want to use Lemma 3.8 and 3.12 to derive some corollaries for the holomorphic buildings
u8 “ puvqvPV pTq obtained in Theorem 3.3. Let v ‰ v1 be adjacent to the edge e. If lTpvq ` 1 “
lTpv

1q, then there is a Reeb chord x (or orbit γ) which is the positive asymptote of uv at f´1
v peq

and the negative asymptote of uv1 at f´1
v1 peq. Let uv#xuv1 (resp uv#γuv1) be a pseudo-holomorpic

map with boundary and asymptotic conditions determined by gluing uv and uv1 along x (resp.
γ). By a direct application of Lemma 3.8 and 3.12, we get

"

virdimpuv#xuv1q “ virdimpuvq ` virdimpuv1q ´ dimpSxq
virdimpuv#γuv1q “ virdimpuvq ` virdimpuv1q ´ dimpSγq

(3.31)

On the other hand, if lTpvq “ lTpv
1q so that there is a Lagrangian intersection point x which is

the positive asymptote of uv at f´1
v peq and the negative asymptote of uv1 at f´1

v1 peq, then we
have

virdimpuv#xuv1q “ virdimpuvq ` virdimpuv1q ` 1 (3.32)

where uv#xuv1 is defined analogously.

3.4 Action

This subsection discuss the action of the generators. A similar discussion can be found in
[BEH`03] and [CRGG15, Section 3].

Let L0, L1 be exact Lagrangians in pM,ω, θq. It means that, for j “ 0, 1, there exists a
primitive function fj P C

8pLj ,Rq such that dfj “ θ|Lj . For a Lagrangian intersection point
p P CF pL0, L1q, the action is

Appq “ f0ppq ´ f1ppq (3.33)

so App_q “ ´Appq (see Convention 3.7). For a contact hypersurface pY, α “ θ|Y q Ă pM,ω, θq
and a Reeb chord x : r0, lxs Ñ Y from Λ0 “ L0 X Y to Λ1 “ L1 X Y . The length of x is

Lpxq “

ż

x˚α “ lx (3.34)

and the action is

Apxq “ Lpxq ` pf0pxp0qq ´ f1pxplxqq (3.35)
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Reeb orbits are special kinds of Reeb chords so the length and action of a Reeb orbit γ is

Lpγq “ Apγq “

ż

γ˚α (3.36)

We have the following action control

Lemma 3.13 (see [CRGG15](Lemma 3.3, Proposition 3.5)). Let u8 “ tuvuvPV pTq be a holo-

morphic building obtained in Theorem 3.3. If uv has positive asymptotes tx`j u
r`
j“1, tγ`j u

s`
j“1 and

negative asymptotes tx´j u
r´
j“1, tγ´j u

s´
j“1, then

Eωpuvq :“
r`
ÿ

j“1

Apx`j q `
s`
ÿ

j“1

Apγ`j q ´
r´
ÿ

j“1

Apx´j q ´
s´
ÿ

j“1

Apγ´j q ě 0 (3.37)

The equality holds if and only if uv is a trivial cylinder (see (3.3)).

Since Apγq ą 0 for any Reeb orbit γ and Apxq ą 0 if x is a non-constant Reeb chord such
that xp0q “ xplxq, a direct consequence of Lemma 3.13 is

Corollary 3.14. If uv : Σv Ñ SM` has only negative asymptotes, then at least one of the
asymptotes is not a Reeb orbit nor a Reeb chord x such that xp0q “ xplxq.

Lemma 3.15. Let u8 “ tuvuvPV pTq be a holomorphic building obtained in Theorem 3.3. Let xj

be the boundary punctures corresponding to the leaves and root edges of T If
řd
j“0 |Apxjq| ă T ,

then for every v P V pTq, the action of every asymptote of uv lies in r´T, T s.

Proof. Let us assume the contrary. Then there is an asymptote of uv with action lying outside
r´T, T s. We assume that this is a boundary asymptote and denote it by x. The case for interior
asymptote is identical. If Apxq ą T (resp. Apxq ă ´T ), we pick v1 P V pTq (which might be
v itself) such that x is a negative (resp. positive) asymptote of uv1 . Let e be the edge in T

corresponds to this asymptote. Let G be the subtree of Tzteu containing v1.
Denote xv,i by the asymptotes corresponding to the vertex v. Let sgnpxq “ 0 (resp. sgnpxq “

1) if x is a positive (resp. negative) asymptote. Then

0 ď
ÿ

vPG

Eωpuvq

“
ÿ

vPG

ÿ

i

p´1qsgnpxi,vqApxi,vq

ď p´1qsgnpxqApxq `
ÿ

j

|Apxjq| ă 0

(3.38)

Here xi,v runs over all asymptotes of uv, and j over all semi-infinite edges. The second
inequality holds because all finite edges are cancelled between the components they connect.
This concludes the lemma.

Lemma 3.16. Let u8 “ tuvuvPV pTq be a holomorphic building obtained in Theorem 3.3. If

v P V BYV int, then only the action of the asymptote of uv that corresponds to the edge ev closest
to the root of T contributes positively to Eωpuvq.
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Proof. Let Gv be the subtree of Tztevu containing v. We apply induction on the number of
vertices in Gv.

If Gv has only one vertex, then 0 ă Eωpuvq is only contributed by the asymptote corresponds
to ev so the base case is done.

Now we consider the general case. Let e be an edge in Gv (so e ‰ ev). Let v1 ‰ v be the
other vertex adjacent to e so v1 P V B Y V int by Lemma 3.5. By induction on Gv1 , we know
that the asymptote corresponding to e contributes positively to Eωpuv1q and hence negatively
to Eωpuvq. Finally, for Eωpuvq to be non-negative, we need to have at least one term which
contributes positively to Eωpuvq. This can only be contributed by the asymptote corresponding
to ev.

Lemma 3.17 (Distinguished asymptote). Let u8 “ tuvuvPV pTq be a holomorphic building ob-
tained in Theorem 3.3. If BΣv ‰ H and uv is not a trivial cylinder (see (3.3)), then there is a
boundary asymptote x of uv that appears only once among all the asymptotes tx˘i u of uv.

Proof. By Lemma 3.16, when v P V B, the asymptote of uv at ξv0 is the only asymptote that
contributes positively to energy and hence appears only once among the asymptotes of uv.

Now, we consider v P V core. If there are more than two Lagrangians appearing in the
Lagrangian labels of BΣv, say, BjS and Bj`1S are labelled by Lk1 and Lk2 , respectively, for
k1 ‰ k2, then the asymptote of uv at ξvj`1 can only appear once among the asymptotes of uv,
by Lagrangian boundary condition reason.

If there are exactly two Lagrangians appearing in the Lagrangian labels of BΣv, then there are
exactly two j such that the Lagrangian labels on BjS and Bj`1S are different. Let the two j be j1
and j2. It is clear that fvpξ

v
j1`1q and fvpξ

v
j2`1q are the only two edges in TcorezpTBYTintq that are

adjacent to v. Therefore, by our first observation, the action of the asymptotes corresponding
the other edges of v contributes negatively to Eωpuvq.

If uv converges to the same Reeb chord at ξvj1`1 and ξvj2`1, then one of it must be a positive
asymptote and the other is a negative asymptote by Lagrangian boundary condition. Therefore,
the contribution to Eωpuvq by this same asymptote cancels. Similarly, if uv converges to the
same Lagrangian intersection point at ξvj1`1 and ξvj2`1, then the contribution to Eωpuvq by this
same asymptote cancels because of the order of the Lagrangian boundary condition. As a result,
we have Eωpuvq ď 0 which happens only when uv is a trivial cylinder (see (3.3)), by Lemma
3.13.

Remark 3.18. Notice that, when uv maps to SY , the sum (3.37) becomes

r`
ÿ

j“1

Lpx`j q `
s`
ÿ

j“1

Lpγ`j q ´
r´
ÿ

j“1

Lpx´j q ´
s´
ÿ

j“1

Lpγ´j q (3.39)

because the terms involving the primitive functions on the Lagrangians add up to zero.

3.5 Morsification

We come back to our focus on U “ T ˚P , where P satisfies (2.58). We will need to use a
perturbation of the standard contact form α0 on BU to achieve transversality later. In this
section, we explain how the action and index of the Reeb chord/orbit are changed under such a
perturbation.
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As explained in Section 3.2, pBU,α0q is foliated by Reeb orbits. The quotient of BU by
the Reeb orbits is an orbifold, which is denoted by QBU . We can choose a Morse function
fQ : QBU Ñ R compatible with the strata of QBU and lifts fQ to a Rα0-invariant function
fB : BU Ñ R (see [Bou02, Section 2.2]). Let critppfQq be the set of critical points of fQ. Let
α “ p1`δfBqα0, which is a contact form for |δ| ! 1. Let LpBUq be the length of a generic simple
Reeb orbit of pBU,α0q.

Lemma 3.19 ([Bou02] Lemma 2.3). For all T ą LpBUq, there exists δ ą 0 such that every simple
α-Reeb orbit γ with Lpγq ă T is non-degenerate and is a simple α0-Reeb orbit. Moreover, the
set of simple α-Reeb orbits γ with Lpγq ă T is in bijection to critppfQq.

Furthermore, if γ is the m-fold cover of a simple α-Reeb orbit γs such that Lpγq ă T , then

µα0pγq `
1

2
dimpSγq ě µαRSpγq ě µα0

RSpγq ´
1

2
dimpSγq (3.40)

where µαRSpγq, µ
α0
RSpγq are the Robbin-Salamon index of γ with respect to α and α0, respectively,

and Sγ is the Morse-Bott family with respect to α0 that γ lies.

Proof. The first statement follows from [Bou02, Lemma 2.3].
For the second statement, we need to compare the path of symplectic matrices Φα

t , Φα0
t

corresponding to α and α0, respectively. We can isotope the Poincare return map Φα0
t relative

to end points, by changing the trivialization, to rΦα0
t such that kerprΦα0

t ´ Idq ‰ 0 only happens
at finitely many t P r0, 1s, where all such t contribute transversely. For a fixed T , we can choose
δ sufficiently small such that Φα

t and rΦα0
t are arbitrarily close but with kerprΦα

t p1q ´ Idq ‰ 0.
As a result, only the last contribution to µα0

RSpγq at t “ 1 may not persist (see (3.15)) and we
obtain the result.

Corollary 3.20. For all T ą LpBUq, there exists δ ą 0 such that every α-Reeb orbit γ with
Lpγq ă T and being contractible in U has µαRSpγq ě n´ 1. As a result, the virtual dimension of
u : CÑ SM´ with positive asymptote γ satisfies virdimpuq ě 2n´ 4.

Proof. The underlying simple Reeb orbit γs of γ must have Lpγsq ă T so it is also a α0-Reeb
orbit, by Lemma 3.19. Since γ is contractible in U , by the explanation in Section 3.2.4, we have
µα0
RSpγq “ 2kpn´1q for some k ą 0 and dimpSγq “ 2n´2. Therefore, µαRSpγq ě n´1 by Lemma

3.19 and virdimpuq “ pn´ 3q ` µαRSpγq ě 2n´ 4.

We have a similar index calculation for Reeb chords:

ιpx0q ´ dimpSx0q ď ιpxq ď ιpx0q ` dimpSx0q. (3.41)

The proof is identical to Lemma 3.19 hence omitted. Let Λq Ă BU be the cosphere at q.

Lemma 3.21. There exists fQ such that for all T ą LpBUq, there exists δ ą 0 such that every
α-Reeb chord x from Λq1 to Λq2 with Lpxq ă T has |x| ď 0 in the canonical relative grading.
Here, we allow q1 “ q2.

Moreover, if qi are in relatively generic position on P , for each lift qi of qi, there is exactly
one such chord xq1,q2 with |xq1,q2 | “ 0 in canonical relative grading such that xq1,q2 can be
lifted to a Reeb chord from Λq1 to Λq2.
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Proof. For the first statement, when δ ą 0 is sufficiently small, x is C1-close to a α0-Reeb chord
from Λq to itself. Recall from Section 3.2.3 that, a non-degenerate α0-Reeb chord x0 from Λq to
itself has ιpx0q ď 0. Therefore, if x is C1-close to x0, then ιpxq ď 0.

On the other hand, a degenerated α0-Reeb chord x0 from Λq to itself has ιpx0q “ ´kpn ´
1q ď ´pn ´ 1q for some k ą 0. We have dimpSx0q “ n ´ 1, so if x is C1-close to x0, then
ιpxq ď ιpx0q ` dimpSx0q ď ´pn´ 1q ` pn´ 1q “ 0. The first inequality comes from (3.41).

For the second statement, we only need to notice that |xq1,q2 | “ 0 if an only if the chord is
the lift of (a perturbation of) the unique geodesic between q1 and q2 with length less than π
from (3.12).

Note that, we do not need to assume x is non-degenerate in Lemma 3.21.
After choosing α in Lemma 3.19, there are only finitely many simple Reeb orbits of length

less than T . They correspond to finitely many geodesic loops in P . Therefore, for generic (on
the complement of the geodesic loops) q P P , Λq does not intersect with simple Reeb orbits of
length less than T . Moreover, for generic perturbation of fQ, we can achieve the following:

Lemma 3.22. We assume n ě 2. For generic C2-small perturbation of fQ away from critppfQq
(such that the set critppfQq is unchanged), every α-Reeb chord x from Λq to itself with Lpxq ă T
satisfies xptq R Λq for t P p0, Lpxqq. Moreover, we can assume every such x is non-degenerate.

Proof. Mike Usher has pointed out the following proof to the authors. Assume a chord x has
interior insection xptiq, i “ 1, ¨ ¨ ¨ , k with Λq, then we may now choose a contactomorphism
τ with small C2-norm supported near xptiq, which pushes xptiq off Λq for all i, and consider
the contact form τ˚α. Since we did not change the contact structure, Λq remains Legendrian
and the perturbation on the contact form is by a function f supported near xptiq. τpxptqq is
then a Reeb chord with no interior intersection with Λq, and from the transversality assumption
and argument above, there is no new chords created. The induction on the number of chords
concludes the lemma.

Corollary 3.23. We assume n ě 2. For all T ą LpBUq and k P N, there exists δ ą 0,
fB : BU Ñ R and pairwise distinct q1, . . . , qk P P such that α “ p1` δfBqα0 satisfies

(1) every simple α-Reeb orbit γ that is contractible in U and Lpγq ă T is non-degenerate and
µRSpγq ě n´ 1, and

(2) every α-Reeb chord x from Yki“1Λqi to Yki“1Λqi with Lpxq ă T is non-degenerate, satisfies
xptq R Yki“1Λqi for t P p0, Lpxqq and |x| ď 0 with respect to canonical relative grading.

As a consequence, the image of the α-Reeb chords x from Yki“1Λqi to Yki“1Λqi with Lpxq ă T
are pairwise disjoint, and they are disjoint from the image of simple α-Reeb orbits.

Proof. After choosing δ, fQ such that p1q is satisfied by Lemma 3.19 and Corollary 3.20, and
we can apply Lemma 3.22 to Yki“1Λqi . Since the perturbation is arbitrarily C2-small, we have
|x| ď 0 by Lemma 3.21 and (3.12).

In the rest of the paper, we always choose a contact form α on BU such that Corollary 3.23
holds, we denote the set of simple α-Reeb orbit γ with Lpγq ă T by X oT . Similarly, we denote
the set of α-Reeb chord x from Yki“1Λqi to Yki“1Λqi with Lpxq ă T by X cT .
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3.6 Regularity

In this section, we address the regularity of curves uv in the holomorphic buildings obtained
in Theorem 3.3 for v P V core Y V B. We adapt the techniques developed in [EES05], [EES07],
[Dra04] and [CRGG15]. We borrow the observation made in [EES05]: if there is an asymptote
that only appears once among the boundary asymptotes of a pseudo-holomorphic curve as proved
in Lemma 3.17, then one can achieve regularity by perturbing J near the asymptote.

The main difference of our situation is that, we do not work in a contact manifold that is a
contactization of an exact symplectic manifold, hence we don’t have a projection of holomorphic
curve as in [EES05][EES07]. We remedy the situation by localizing to a neighborhood of the
Reeb chord.

We first explain the space of almost complex structure we use. In what follows, we always
assume that a contact form α on BU is chosen such that Corollary 3.23 is satisfied.

Lemma 3.24 (Neighborhood Theorem). For any Reeb chord x P X cT , there exists a neighborhood
Nx of Impxq, an open ball Bx Ă R2n´2 containing the origin, an open interval Ix Ă R and a
diffeomorphism φNx : Nx Ñ Bx ˆ Ix such that

"

α “ φ˚Nxpdz `
řn´1
i“1 xidyiq

πBxpφNxpxptqqq “ 0
(3.42)

where pxi, yiq P Bx, z P Ix and πBx : Bx ˆ Ix Ñ Bx is the projection to the first factor.

Proof. It follows from a Moser’s argument. We give a sketch following [Gei08, Theorem 2.5.1].
Since dα is non-degnerate on TpY {TpImpxq for all p P Impxq, we can use exponential map with
respect to an appropriate metric to find coordinates px1, y1, . . . , xn´1, yn´1, zq near Impxq such
that Impxq “ txi “ yi “ 0u and on TY |Impxq,

"

αpBzq “ 1, ιBzdα “ 0

Bxi , Byi P kerpαq, dα “
řn´1
i“1 dxi ^ dyi

(3.43)

Let αR2n´1,std “ dz `
řn´1
i“1 xidyi and αt “ p1´ tqαR2n´1,std ` tα. It follows that on TY |Impxq,

αt “ α, dαt “ dα for all t (3.44)

In particular, αt is a family of contact forms in a sufficiently small neighborhood of Impxq. By
Moser trick, there exists a vector field Xt near Impxq such that the flow ψt satisfies ψ˚t αt “
αR2n´1,std for all t P r0, 1s and Xtppq “ 0 for all p P Impxq. We set φNx “ pψ1q

´1.

Remark 3.25. If we replace dz `
řn´1
i“1 xidyi by dz `

řn´1
i“1 xidyi ` dy1 in Lemma 3.24, the

lemma still holds.

Corollary 3.26. Let Bx be one chosen in Lemma 3.24 or Remark 3.25. If J 1 is a compatible
almost complex structure on Bx, then there is a cylindrical almost complex structure J on the
symplectization RˆNx such that pπBx ˝ πY q˚ ˝ Jpvq “ J 1 ˝ pπBx ˝ πY q˚pvq for all v P ξ.

Proof. We can use the symplectic decomposition Tpr,zqpRˆNxq “ RxBr, Rαy‘ξz and the isomor-
phism pπBxq˚ : ξz » TπBz pzqBx to define J such that JpBrq “ Rα and Jpvq “ ppπBx ˝ πY q˚q

´1 ˝

J 1˝pπBx ˝πY q˚pvq for v P ξz. One can check that J is a cylindrical almost complex structure.

34



Now we may address the regularity of neck-stretching limits along BU . We summarize various
auxiliary data chosen so far.

1) Let Y Ă pM,ω, θq be a perturbation of BU such that pY, θ|Y q – pBU,αq. By abuse of notation,
we denote θ|Y by α.

2) For the T chosen in Corollary 3.23, there are finitely many Reeb orbits or Reeb chord from
YjΛqj to YjΛqj with length less than T . Moreover, the simple Reeb orbits X oT and the Reeb
chords X cT have pairwise disjoint images.

3) For each x P X cT , we pick a neighborhood Nx of Impxq using Remark 3.25. We assume that
all these neighborhoods are pairwise disjoint and disjoint from the Reeb orbits of α.

4) Let x P X cT , xp0q P Λq0 and xpLpxqq P Λq1 . By Corollary 3.23, for sufficiently small Nx, we
can assume that

Di,x :“ Λqi XNx (3.45)

is a disk for i “ 0, 1. Moreover, by the fact that x is non-degenerate, we know that πBxpD0,xq

and πBxpD1,xq are transversally intersecting Lagrangians. There exists a compatible JBx on
Bx such that JBx is integrable near the origin. By possibly perturbing Λq,i, or equivalently
perturbing α, we can assume that πBxpDi,xq are real analytic submanifolds near origin for
all x. We fix a choice of JBx for each x P X cT .

5) Let J cylpBU ; tNxuxPX c
T
q be the space of J P J cylpBUq such that J is Rα-invariant in Nx and

there is a compatible almost complex structures J 1 on Bx so that J 1 “ JBx near the origin
and pπBx ˝ πY q˚ ˝ Jpvq “ J 1 ˝ pπBx ˝ πY q˚pvq for all v P ξ. By Corollary 3.26, we know that
J cylpBU ; tNxuxPX c

T
q ‰ H.

6) We defineNpY q as in (3.1). We can pick J0 such that pΦNpY qq˚J
0|NpY q P J cylpBU ; tNxuxPX c

T
q.

Let tJτuτPr3R,8q be a smooth family R-adjusted to pY, αq as explained in Section 3 (see
Remark 3.2).

7) Let tLju
d
j“0 be a collection of Lagrangians satisfying the assumptions of Theorem 3.3. More-

over, we assume that Λj “ Y
cj
i“1Λqkj,i for some qkj,i in Corollary 3.23. If T was chosen

sufficiently large, there exists 0 ă T adj ă T (depending only on the primitives of tLju, see
Section 3.4) such that

for all Reeb chords x from Λi to Λj , |Apxq| ă T adj implies |Lpxq| ă T (3.46)

Without loss of generality, we can assume T adj exists and
řd
j“0 |Apxjq| ă T adj . Applying

Theorem 3.3 and Lemma 3.15, we get a holomorphic building u8 “ tuvuvPV pTq such that all
the asymptotes of uv are either Lagrangian intersection points, Reeb chords in X cT or multiple
cover of Reeb orbits in X oT .

For u8, we have the following regularity result.

Proposition 3.27 (Regularity for intermediate level components). There is a residual set
J cyl,reg Ă J cylpBU ; tNxuxPX c

T
q such that if (the cylindrical extension of) pΦNpY qq˚J

0|NpY q lies

in J cyl,reg, then for v P V core Y V B and lTpvq P t1, . . . , nT ´ 1u, the JY -holomorphic curve uv is
transversally cut out.
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Proof. By Lemma 3.17, uv has a boundary asymptote x that appears only once among its
asymptotes. We want to show that transversality can be achieved by considering variation of
almost complex structures in SNx :“ RˆNx.

Let Λtot “ YiΛqi and SΛ “ YiSΛqi where Λqi are obtained in Corollary 3.23. There is a
Banach manifold B consisting of maps

u : pΣv, BΣvq Ñ pSY, SΛtotq (3.47)

in an appropriate Sobolev class with positive weight (see [Abb04], [Dra04]). Let U∆ be an
appropriate Banach manifold that is dense inside J cylpBU ; tNxuxPX c

T
q. The map

pu, Jq ÞÑ BJu (3.48)

defines a section F of a bundle E0,1 Ñ B ˆ U∆ with differential

DFpu, Jq : TuB ˆ TJU∆ Ñ E0,1
u (3.49)

pη,Yq ÞÑ Dupηq `Ypuq ˝ du ˝ jΣv (3.50)

where jΣv is the complex structure on Σv. By a choice of metric, we identify

TuB » Γpu˚TSY, u|˚BΣvSΛtotq (3.51)

where the right hand side is the completion of the space of smooth sections in u˚TSY , which
takes value in u|˚BΣvSΛtot along the boundary, with respect to an appropriate Sobolev norm. On

the other hand, we have E
0,1
u “ Ω0,1pu˚TSY q, where the right hand side is the completion of

the space of smooth u˚TSY -valued p0, 1q-form with respect to an appropriate Sobolev norm.
We want to argue DFpu, Jq is surjective at pu, Jq using that fact that there exists a boundary
asymptote x P X cT of u that appears only once among its asymptotes and BJu “ 0.

Suppose not, then there exists 0 ‰ l P E0,1
u such that

xl,DFpu, Jqpη,YqyL2,Σv “ 0 (3.52)

for all η P TuB and Y P TJU∆. By unique continuation principle, it suffices to show that l “ 0
on some non-discrete set of Σv to get a contradiction.

Let R “ u´1pNxq Ă Σv and we will show that for η supported in R and Y supported in SNx,
it is sufficient to get l|R “ 0. By Lemma 3.24, we can identify SNx with Rr ˆ pBxqxi,yi ˆ pIxqz.
Let u “ πBx ˝ πY ˝ uv|R. In the coordinates ppr, zq, ptxiu, tyiuqq, we can write l|R “ pl1, l2q. For
η “ 0 and Y supported in SNx

1, (3.52) implies

xl2,Ypuq ˝ du ˝ jΣvyL2,R “ 0 (3.53)

where Y is r, z-invariant in SNx by the definition of J cylpBU ; tNxuxPX c
T
q so Ypuq is well-defined.

Lemma 3.28. It follows from (3.53) that l2 “ 0.

Assuming Lemma 3.28, it suffices to show that l1 “ 0. Similarly, l1 admits the unique
continuation property (see [Dra04, page 754]) so we only need to show that l1 “ 0 on some
non-discrete set of R. For Y “ 0 and η supported in R, (3.52) becomes

xl1, Dpπr,zq ˝DuηyL2,R “ 0 (3.54)

1Y vanishes along Br, Bz and takes values in Bxi , Byi
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γ0

γ1

U1U2

Figure 2: Green region: U1; Blue region: U2; Red region: Bpx1, εq; Purple region: Bpx2, εq. Only
u0pE0q hits U1 but not U2 among ujpEjq because unlike pj (for 1 ď j ď s), ξjx is a boundary
puncture.

where πr,z : SNx Ñ Rr ˆ pIxqz is the projection. Notice that J |T pRrˆpIxqzq is the standard
complex structure, and η depends on the domain R rather than the target SNx. Therefore, we
can find an interior point p of R and construct η appropriately supported near p to show that
l1 “ 0. The details of the construction of η can be found in [Dra04, page 754].

As a result, l|R “ 0 and hence l ” 0. The existence of J cyl,reg follows from applying
Sard’s-Smale theorem to the projection F´1p0q Ñ U∆.

Proof of Lemma 3.28. The proof is the same as [EES07, Lemma 4.5p1q]. For readers’ conve-
nience, we will recall the proof using our notation.

By the definition of J cylpBU ; tNxuxPX c
T
q, u is a J 1-holomorphic curve for some compatible

almost complex structure J 1 on Bx such that J 1 “ JBx near origin. Moreover, exactly one
boundary puncture, denoted by ξjx , of R is mapped to the origin by our choice of x.

By the asymptotic behavior of holomorphic disks, we can assume that for sufficently small
δ ą 0, there exists a neighborhood pE0, BE0q Ă pR, BRq of ξjx such that

(i) pupE0q, upBE0qq Ă pBp0, 2δq, πBxpD0,x YD1,xq Y BBp0, 2δqq,

(ii) πBxpD0,x YD1,xq X BBp0, 2δq are two real analytic disjoint branches,

(iii) upBE0q contains two regular oriented curves γ0 Ă D0,x, γ1 Ă D1,x in Bp0, 2δq, respectively.

Here Bp0, 2δq is a 2δ-ball centered at the origin and Di,x are defined in (3.45).
To prove l2 is zero we consider the variation of J 1 near a point on γ0. To this end, we need

to keep track of other parts of R that map onto γ0.
Let p1 . . . , pr P BR be the preimages under u of 0 with the property that one of the compo-

nents of the punctured neighborhood of pj in BR maps to γ0. This set is finite and is identified
with the set of boundary intersections between u and Rˆ x.

Let pr`1, . . . ps P RzBR be the preimages under u of 0 with the property that the preimage of
γ0 under u intersects some neighborhood of pj in a 1-dimensional subset. By monotonicity lemma
and maximum principle, this set is also finite, and is identified with the interior intersections
between u and Rˆ x.

For 1 ď j ď s, let Ej Ă R denote the connected coordinate neighborhood of u´1pBp0, 2δqq
near pj . Let U1 “ upE0q and U2 be the Schwartz reflection of U1 through γ1 (see Figure 2).
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By monotonicity lemma and maximum principle, for i “ 1, 2 we can find a point xi P
UizpBp0, δq Y πBxpD0,x YD1,xqq and small neighborhoods Bpxi, εq, ε ! r, such that

u´1pBpxi, εqq Ă Y
s
j“0Ej (3.55)

When a certain branch of ūpEjq Č ūpE0q, then xiūpEjq for i “ 1, 2 We exclude from our list
any such j ě 1. Note that for j ě 1, x1 P upEjq if and only if x2 P upEjq. To simplify notation,
we continue to index this possibly shortened list by 1 ď j ď s.

For 1 ď j ď r, we double the domain Ej through its real analytic boundary BEj . We also
double the local map u|Ej . We continue to denote the open disk by Ej . For 0 ď j ď s, let
uj “ u|Ej . We can also double (for 1 ď j ď r) the cokernel element l2 (which is anti-holomorphic)
locally and define (for 0 ď j ď s) pl2qj “ l2|Ej .

There exists a disk E Ă C and a map fE defined on E such that for 1 ď j ď s, there exists
positive integers kj and bi-holomorphic identifications φj of E with Ej such that pl2qjpφjpzqq “
fEpz

kj q for z P E.
Via our choice of perturbation of the complex structure, we can choose Y to be supported

in Bpx2, εq. We get

x

s
ÿ

j“1

pl2qjpφjpzqq,Ypuj ˝ φjq ˝ dpuj ˝ φjq ˝ jEyL2,E “ 0 (3.56)

where jE is the complex structure on E. Varying Y, this implies

s
ÿ

j“1

pl2qjpφjpzqq “ 0 (3.57)

We can also choose Y to be supported in Bpx1, εq. We get

x

s
ÿ

j“1

pl2qjpφjpzqq,Ypuj ˝ φjq ˝ dpuj ˝ φjq ˝ jEyL2,E ` xpl2q0pzq,Ypu0q ˝ du0 ˝ jE0yL2,E0
“ 0

Since the first term is 0 by (3.57), by varying Y, it implies l2|E0 “ pl2q0 “ 0 and hence l2 ” 0.

Next, we need to address the regularity when uv lies in the top/bottom level of u8. We will
explain the case that lTpvq “ nT (i.e. top level) in details and the other case is similar.

Let JM` be a compatible almost complex structure of SM` such that it is integrable near
SL`i &SL`j , i ‰ j. We assume that SL`i , SL

`
j are real analytic near SL`i &SL`j .

For JY P J cylpY, αq, we let J `pSM`q to be the set of compatible almost complex structure
J such that J “ JM` near

Ť

i‰j SL
`
i X SL

`
j and there exists R ą 0 so that J`|p´8,´RsˆBM` “

JY |p´8,´RsˆY .

Proposition 3.29 (Regularity forM`-components). There is a residual set J `,reg Ă J `pSM`q

such that if J` P J `,reg, then for v P V core Y V B and lTpvq “ nT, the J`-holomorphic curve uv
is transversally cut out.

Proof. By Lemma 3.17, uv has a boundary asymptote x that appears only once among its
asymptotes. If the distinguished asymptote of uv is a Lagrangian intersection point, then we
can apply the argument in [EES07, Lemma 4.5p1q] or Lemma 3.28 again to achieve the regularity
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of uv. If the distinguished asymptote of uv is a Reeb chord, we denote the corresponding puncture
by ξvjx . By the asymptotic behavior of uv, for a sufficiently large R, the preimage of a small
neighborhood of p´8,´Rsˆ Impxq under uv is a neighborhood of ξvjx . Therefore, we can find a
somewhere injectivity point near ξvjx . Similar to the situation in SY , we can perturb J in SM`

as long as J is cylindrical outside a compact set. Therefore, we can use the somewhere injectivity
point to achieve regularity (see [CRGG15, Proposition 4.19] for exactly the same argument).

Similarly, one define J ´pSM´q analogously and we have

Proposition 3.30. There is a residue set J ´,reg Ă J ´pSM´q such that if J´ P J ´,reg, then
for v P V core Y V B and lTpvq “ 0, the J´-holomorphic curve uv is transversally cut out.

Remark 3.31. There is a possible alternative approach to the above regularity results if one
could generalize the work of Lazzarini [Laz00] [Laz11] and Perrier [Per] to the SFT settings.
This seems promising at least for SM˘, but the general regularity of SY might be more difficult.

3.7 No side bubbling

We can now summarize the previous discussion on u8 and draw geometric conclusions in this
section.

Let Lj , j “ 0, . . . , d be a collection of embedded exact Lagrangian submanifolds in pM,ω, θq
such that Li&Lj for all i ‰ j. Let P be a Lagrangian such that (2.58) is satisfied (P can be one
of the Lj). Let U be a Weinstein neighborhood of P and we assume that θ|U coincides with the
canonical Liouville one form on T ˚P . For T " 1, we pick α satisfying Corollary 3.23 and T adj

satisfying (3.46).
Let Y be a perturbation of BU such that pY, θ|Y q – pBU,αq. We denote θ|Y by α. We

have a neighborhood ΦNpY q : pNpY q, ω|NpY qq – pp´ε, εq ˆ Y, dperαqq of Y . We assume that
Lj XNpY q “ p´ε, εq ˆΛj where Λj “

Ů

Λqjm “ T ˚qjmP X Y for some qjm P P in Corollary 3.23.
Let Jτ be a smooth family of almost complex structures R-adjusted to NpY q, such that

JY P J cyl,reg, where J cyl,reg is obtained in Proposition 3.27. We also assume that J˘ P J ˘,reg,
where J ˘,reg is obtained in Proposition 3.29, 3.30.

Let x0 P CF pL0, Ldq and xj P CF pLj´1, Ljq for j “ 1, . . . , d. When T is large enough, w
maye assume that

d
ÿ

j“0

|Apxjq| ă T adj (3.58)

Suppose that there exists a sequence tτku
8
k“1 such that limkÑ8 τk “ 8, and a sequence

uk P MJτk px0;xd, . . . , x1q. We assume that virdimpukq “ 0. Let u8 “ tuvuvPV pTq be the
holomorphic building obtained in Theorem 3.3. Then we have

Proposition 3.32 (No side bubbling). If n ě 3, then V int “ H and nT “ 1. Moreover, if
v P V B, then uv is a rigid J`-holomorphic map with exactly one boundary asymptote which is
negative and goes to a Reeb chord.

Proof. For a subtree G Ă T, we use virdimpGq to denote the virtual dimension of the map
#vPGuv, where #vPGuv refers to the map obtained by gluing all uv such that v P G along the
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asymptotes determined by the edges. By (3.31), (3.32) and the fact that all Reeb chords/orbits
arising as asymptotes of uv are non-degnerate, we have

virdimpGq “
ÿ

vPG

virdimpuvq ` kG (3.59)

where kG is the number of edges that correspond to Lagrangian intersections points and connect
two distinct vertices in G. By assumption, virdimpTq “ 0. Since uv are transversally cut out for
v P V core Y V B (Proposition 3.27, 3.29, 3.30), we have virdimpuvq ě 0. For v P V int, we cannot
address the regularity but we have the following.

Lemma 3.33. For each connected component G of Tint, we have virdimpGq ą 0.

Proof. Let v P G be the vertex closest to the root. By 3.16, we have a distinguished interior
puncture η0 P Σv which contributes positively to Eαpuvq. Let γ0 be the Reeb orbit that uv is
asymptotic to at η0. Since Apγ0q “ Lpγ0q ą 0, γ0 must be a positive asymptote of uv.

Notice that, by Corollary 3.14, there is no v P G such that uv maps to SM`. There-
fore, #vPGuv is a topological disk in SM´ so γ0 is contractible in U . Moreover, virdimpGq is
determined by γ0 and it is given by 2n´ 4 ą 0 (see Corollary 3.20).

By combining (3.59), virdimpTq “ 0, virdimpuvq ě 0 for v P V coreYV B and Lemma 3.33, we
conclude that V int “ H, kG “ 0 and virdimpuvq “ 0 for all v.

Notice that if uv is not a trivial cylinder but lTpvq R t0, nTu, then virdimpuvq ě 1 because
one can translate uv along the r-direction. Therefore, all intermediate level curves are trivial
cylinders so nT “ 1. The last thing to show is that if v P V B, then lTpvq “ 1 and uv has only
one boundary asymptote.

We argue by contradiction. Suppose lTpvq “ 0. Due to the boundary condition, all asymp-
totes of uv are Reeb chords y0, . . . , ydv . Inside SM´, we can compute the index of Reeb chords
using the canonical relative grading. By Corollary 3.23, we have ιpyjq ď 0 for all j. It means

that virdimpuvq “ n ´
řdv
j“0 ιpyjq ´ p2 ´ dvq ě n ´ 2 ą 0. This is a contradiction so lTpvq “ 1

for all v P V B.
Finally, if there exists v P V B such that uv has more than one boundary asymptote, then by

the fact that T is a tree, we must have v P V B such that lTpvq “ 0. This is a contradiction so we
finish the proof of Proposition 3.32.

3.8 Gluings in SFT

To conclude our discussion on generalities of neck-stretching, we recall the following gluing
theorem for SFT, which will play an important role in our proof.

Theorem 3.34. Let u8 “ puvqvPV pTq PM
J8px0;xd, . . . , x1q be a holomorphic building such that

uv is transversally cut out for all v and virdimpu8q “ 0. Assume also that all asymptotic Reeb
chords are non-degenerate.

Then for any small neighborhood Nu8 of u8 in an appropriate topology, there exists Υ ą 0
sufficienly large such that for each τ ą Υ, there is a unique uτ PMJτ px0;xd, . . . , x1q lying inside
Nu8. Moreover, uτ is regular and tuτuτPrΥ,8q converges in SFT sense to u8 as τ goes to infinity.
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A nice account for the SFT gluing results can be found in Appendix A of [Lip06]. In the
presence of conical Lagrangian boundary conditions as in above, see also [EES07, Proposition
4.6] and [EES05, Section 8]. Theorem 3.34 is essentially the same as Proposition 4.6 in [EES07],
except our contact manifold is not P ˆ R. But this is not a concern for the gluing argument
because the argument involves local analysis on a neighborhood of the holomorphic building,
which is not affected by the global topology.

The typical application of Proposition 3.32 and Theorem 3.34 goes as follows. Given a
collection of Lagrangians such that the assumption of Theorem 3.3 is satisfied, we want to
determine the signed count of rigid elements in MJτ px0;xd, . . . , x1q for some large τ . When d “ 1
(resp. d “ 2), the signed count is responsible to the Floer differential (resp. Floer multiplication).
If we pick uk PM

Jτk px0;xd, . . . , x1q such that limkÑ8 τk “ 8, we get a holomorphic building u8
by Theorem 3.3. By Proposition 3.32, u8 satisfies the assumption of Theorem 3.34. Therefore,
for sufficently large τ , MJτ px0;xd, . . . , x1q is in bijection to MJ8px0;xd, . . . , x1q. Moreover, all
elements in MJτ px0;xd, . . . , x1q are transversally cut out. It means that the Floer differential
(resp. Floer multiplication) can be computed by determining MJ8px0;xd, . . . , x1q, which is
exactly what we will do in the following section.

4 Cohomological identification

Let P be a Lagrangian such that (2.58) is satisfied and P be the universal local system on P .
We pick a parametrization of P so that τP can be defined. In this section, we want to prove
that

Proposition 4.1. For E0,E1 P ObpFq, we have cohomological level isomorphism

HphomFperf pE0, TPpE
1qqq » HphomF pE0, τP pE

1qqq (4.1)

We will only consider the case that Ei “ Li are Lagrangians without local system. The proof
of the general case is identical except that the notations become more involved. In slightly more
geometric terms, we would like to directly construct a chain map ι from

C0 :“ ConepCF pP, L1q bΓ CF pL0,Pq
evΓ
ÝÝÑ CF pL0, L1qq (4.2)

to
C1 :“ CF pL0, τPL1q (4.3)

which induces isomorphism on cohomology.
By applying a Hamiltonian perturbation, we assume L0&L1, and that each connected com-

ponent of Li X U is a cotangent fiber in U . The cotangent fiber T ˚q P X U has |Γ| different lifts
tT ˚gqPugPΓ XU in U, where U Ă T ˚P is the universal cover of U . We assume the Dehn twist
τP is supported inside U and we have a commutative diagram:

U U

U U

τP

π π

τP

where π : U Ñ U is the covering map. As always, we assume that L0, L1 are equipped with
Z´gradings and spin structures.
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Our strategy is to study directly the Floer cochain complexes from both sides of (4.1).
Section 4.1 gives a geometric correspondence between the generators from the two sides, and
Section 4.3 will study the SFT limits of involved holomorphic strips and triangles. Section 4.4
use a local model to compute several key contribution of moduli spaces in the SFT limits, which
eventually leads to the matching of differentials of (4.1) in Section 4.5. Due to the heaviness
of notation and length of our proof, we also included a more technical guide in Section 4.2, in
hope of keeping the readers on board.

4.1 Correspondence of intersections

We denote the set of generators in C0 by X pC0q, which is divided into two types XapC0q and
XbpC0q:

• XapC0q: generators in hompP, L1q bΓ hompL0,Pqr1s

• XbpC0q: generators in hompL0, L1q

More precisely, XbpC0q “ L0XL1 and XapC0q is the set of elements of the form rq_b gps „
rq_g b ps „ rpg´1qq_ b ps, where we are using the correspondence (2.39) and (2.40). On the
other hand, we denote L0 X τPL1 by X pC1q which is a set of generators for C1.

Let p P L0 X P , q P L1 X P and p,q P P be a lift of p and q, respectively. We also introduce
the following notation

cp,q : the unique intersection T ˚pPX τPpT
˚
qPq

cp,q :“ πpcp,qq, which is an intersection of L0 X τPL1

(4.4)

Lemma 4.2. There is a grading-preserving bijection ι : X pC0q Ñ X pC1q.

Proof. First, there is an obvious graded identification between XbpC0q and the intersections of
L0 X τPL1 outside U , so we only need to explain how to define ι|XapC0q.

We define ι|XapC0q by
ι|XapC0q : q_ b p ÞÑ cp,q (4.5)

This map is well-defined because

ιpq_g´1 b gpq “ ιppgqq_ b gpq “ πpcgp,gqq “ cp,q (4.6)

The last equality comes from the equivariance of τP. It is clear that ι|XapC0q is a bijection from
XapC0q to the intersections of L0 X τPL1 inside U .

To see that ι|XapC0q preserves the grading, we only need to observe that π interwines the

canonical trivialization of pΛbtopC pT ˚Uqqb2 and pΛbtopC pT ˚Uqqb2 so the computation reduces to
the case that P “ Sn, which is well-known (see e.g. [Sei03]).

Using Lemma 4.2, we define XapC1q “ ιpXapC0qq and XbpC1q “ ιpXbpC0qq. We summarize
our notation in Figure 3.
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T ∗
hqP

T ∗
pP

p

hq

gp

q T ∗
qP

T ∗
gpP

cgp,hq

P

U U

τP (T
∗
q P )

cgp,hq

π

P

q

= π(cgp,hq)

T ∗
pP

T ∗
q P

Figure 3: Generator correspondence between C0 and C1

4.2 Overall strategy

The differentials in C0 can be divided into four types.

• Type (A1): differentials in hompL0,Pq, i.e. pseudo-holomorphic strips in Mpp1; pq

• Type (A2): differentials in hompP, L1q, i.e. pseudo-holomorphic strips in Mppq1q_; q_q

• Type (B): differentials in hompL0, L1q, i.e. pseudo-holomorphic strips in Mpx0;x1q

• Type (C): differentials from the evaluation map, i.e. pseudo-holomorphic triangles in
Mpx; q_,pq

For C1, we divide the differentials similarly, using correspondence of generators ι. Concretely,
we have:

• Type (A1’): pseudo-holomorphic strips in Mpcp1,q; cp,qq;

• Type (A2’): pseudo-holomorphic strips in Mpcp,q1 ; cp,qq;

• Type (A3’): pseudo-holomorphic strips in Mpcp1,q1 ; cp,qq that are not in Type(A1’) and
(A2’);

• Type (B’): pseudo-holomorphic strips in Mpx0;x1q;

• Type (C’): pseudo-holomorphic strips in Mpx; cp,qq;

• Type (D’): pseudo-holomorphic strips in Mpcp,q;xq;

where x, x0, x1 P XbpC1q.
By the discussion in Section 3.8, we know that for an appropriate choice of tJτu and τ " 1,

all the rigid Jτ -holomorphic polygons in the moduli above are transversally cut out and they are
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p p′

L0

P

Type (A1)

(q′)∨ q∨

L1

P

Type (A2)

p q∨

L0

P

Type (C)

L1

x

Figure 4: Types of holomorphic curves in C0

bijective to the corresponding holomorphic buildings. By studying the holomorphic buildings,
we will show that there are bijective correspondences

MJτ pp1; pq »MJτ pcp1,q; cp,qq for all q; (4.7)

MJτ ppq1q_; q_q »MJτ pcp,q1 ; cp,qq for all p; (4.8)

MJτ px0;x1q »MJτ px0;x1q; (4.9)

MJτ px; q_,pq »MJτ px; cp,qq; (4.10)

Type (A3’) and (D’) are empty with respect to Jτ . (4.11)

where the two sides of (4.9) are with respect to boundary conditions pL0, L1q and pL0, τP pL1qq,
respectively. In other words, for τ " 1, ι : C0 Ñ C1 is an isomorphism which clearly implies
Proposition 4.1.

In the following subsections, we ignore the sign and only conisder the case that charpKq “ 2.
The complete proof of Proposition 4.1, where orientation of moduli is taken into account, will
be given in Appendix A.

4.3 Neck-stretching limits of holomorphic strips and triangles

In this section, we will list all possible holomorphic buildings u8 “ tuvuvPV pTq that arises as the
limit (when τ Ñ 8) of curves in the moduli discussed in Section 4.2. By Proposition 3.32, we
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cp,q
cp′,q

L0

P

Type (A1’)
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Type (A2’)
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L0

L1
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x

P

Type (C’)

τPL1

L0
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Figure 5: Types of holomorphic curves in C1

know that u8 satisfies the following conditions

piq The total level nT “ 1,
piiq virdimpuvq “ 0 for all v.
piiiq All compact edges in T correspond to Reeb chords.
pivq If v P V B, then lTpvq “ 1 and uv has exactly one boundary asymptote.

(4.12)

Therefore, we assume (4.12) hold throughout this section. Recall also that Corollary 3.23 holds
for our choice of pBU,αq, hence the asymptotes under consideration are non-degenerate and
mbpxq “ 1 (cylindrical direction).

Lemma 4.3. In the case (iv) of (4.12), let v P V B and x be the negative asymptote of uv. Then
|x| “ 1.

Proof. By Lemma 3.10 and virdimpuvq “ 0, we have

0 “ virdimpuvq “ |x| `mbpxq ´ 2 “ |x| ´ 1 (4.13)

Therefore, |x| “ 1.

Lemma 4.4. If lTpvq “ 0, then uv has at least one asymptote that is not a Reeb chord.

Proof. Suppose not. Let y1, . . . , yk be the asymptotes of uv which are all positive Reeb chord.
Notice that the shift of gradings for any individual boundary condition does not affect the virtual
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dimension of uv. Therefore we can use the canonical relative grading to compute the virtual
dimension of uv. By Lemma 3.10 and Corollary 3.23, we have

virdimpuvq “ n´
k
ÿ

j“1

|yj | ´ p3´ kq ě n´ 3` k ě n´ 2 ą 0 (4.14)

which contradicts the assumption (4.12) that virdimpuvq “ 0.

Lemma 4.5. Every generator cp,q P CF pT
˚
p P, τP pT

˚
q P qq satisfies |cp,q| “ n´ 1 with respect to

the canonical relative grading. Moreover, if cp,q is the only asymptote of a non-constant J´-
holomorphic map uv : Σv Ñ SM´ “ T ˚P that is not a Reeb chord, then cp,q must be positive
as an asymptote of uv.

Proof. To see that |cp,q| “ n ´ 1, it suffices to show that |cp,q| “ n ´ 1. One can compute it
directly by noting that τPpT

˚
qPq “ Pr1s#T ˚qP, where Pr1s is the grading shift of P by 1 and

# denotes the graded Lagrangian surgery at the point q (see [Sei00] or [MWa]). Alternatively,
one can see it using the Dehn twist exact sequence [Sei03]

0 Ñ HF kpT ˚pP, τPpT
˚
qPqq Ñ ‘a`b´1“kHF

apP, T ˚qPq bHF bpT ˚pP,Pq Ñ 0 (4.15)

and the fact that the second non-trivial term is non-zero only when a “ 0 and b “ n.
On the other hand, if cp,q is a negative asymptote and the remaining asymptotes are denoted

by y1, . . . , yk, we would have (computed in canonical relative grading)

virdimpuvq “ |cp,q| ´
k
ÿ

i“1

|yi| ´ p2´ kq ě n´ 2 ą 0 (4.16)

which contradicts to the assumption (4.12) that virdimpuvq “ 0.

Now, we can describe the SFT limits of various moduli.

Lemma 4.6 (Type (A1)). Let u8 “ puvqvPV pTq be a non-empty SFT limit of curves in MJτ pp1; pq.
Then T consists of exactly two vertices v1, v2 and

• uv1 is a J´-holomorphic triangle with negative asymptote p1 :“ πpp1q and positive asymp-
totes x, p where x is a Reeb chord with |x| “ 0 in the canonical relative grading;

• v2 P V
B so, by Lemma 4.3, uv2 is a J`-holomorphic curve with one negative asymptote x

such that |x| “ 1 in the actual grading.

Proof. Notice that, by the boundary condition P , p and p1 must be asymptotes of the same uv.
We call it uv1 . We label the other vertices of T by v2, . . . , vk for some k ě 0. By boundary
condition again, we know that vj P V

B for j ą 1. By (4.12), we have lTpvjq “ 1 for j ą 1.
Moreover, all vj are adjacent to v1 because uvj has a negative asymptote (see Figure 6). By
Lemma 3.10 and Corollary 3.23 again,

0 “ virdimpuv1q “ |p
1| ´ |p| ´

k
ÿ

j“1

|yj | ´ p1´ kq ě k ´ 1 (4.17)

so k “ 0, 1. However, k ‰ 0 by boundary condition. As a result, k “ 1 and we denote y1 by x.
Finally, to compute |x| in the canonical relative grading, we just need to make a grading

shift so that |p1| ´ |p| “ 1 on T ˚p1P . It gives |x| “ 0 in the canonical relative grading.
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Figure 6: Multiple side bubbles

Similarly, we have

Lemma 4.7 (Type (A1’)). Let u8 “ puvqvPV pTq be a non-empty SFT limit of curves in MJτ pcp1,q; cp,qq.
Then T consists of exactly two vertices v1, v2 and

• uv1 is a J´-holomorphic triangle with negative asymptote cp1,q and positive asymptotes
x, cp,q where x is a Reeb chord with |x| “ 0 in the canonical relative grading;

• v2 P V
B so uv2 is a J`-holomorphic curve with one negative asymptote x such that |x| “ 1

in the actual grading.

We omit the corresponding statements for type (A2) and (A2’) because of the similarity.
Next we consider

Lemma 4.8 (Type (B), (B’)). Let u8 “ puvqvPV pTq be a non-empty SFT limit of curves in

MJτ px0;x1q. Then T consists of exactly one vertex v and lTpvq “ 1.

Proof. If T has a vertex v such that lTpvq “ 0, then all the asymptotes of v are Reeb chords
which contradicts to Lemma 4.4. Therefore, lTpvq “ 1 for all v P V pTq and it holds only when
T consists of exactly one vertex.

Lemma 4.9 (Type (C)). Let u8 “ puvqvPV pTq be a non-empty SFT limit of curves in MJτ px; q_,pq.
Then T consists of exactly two vertices v1, v2 and

• uv1 is a J´-holomorphic triangle with positive asymptotes y,q_,p, where y is a Reeb chord
with |y| “ 0 in the canonical relative grading;

• uv2 is a J`-holomorphic curve with two negative asymptotes x and y.

Proof. Again, we use the same argument as in the proof of Lemma 4.6. There is v1 P T such that
uv1 is a holomorphic polygon and q_, p are asymptotes of uv1 . All other vertices are adjacent
to v1: otherwise, there will be components in T ˚P with only Reeb asymptotes, contradicting
Lemma 4.4. Denote these vertices by v2, . . . , vk. There is exactly one j ą 1 (say j “ 2) such
that vj R V

B and x is an asymptote of uvj . For T to be a tree, uv2 has exactly one negative Reeb
chord asymptote, which is denoted by y2. Let the negative asymptote for uvj (for j ą 2) be yj .
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For uv1 to be rigid, we have

0 “ n´ |p| ´ |q_| ´
k
ÿ

j“2

|yj | ´ p2´ kq ě n´ n´ 0` k ´ 2

so k ď 2. However, we have k ě 2 so we get k “ 2. Moreover, the canonical relative grading of
y2 is 0.

Remark 4.10. Later on, we will also make use of the moduli space MJτ pp_;x_,q_q. The shape
of neck-stretching limit will remain the same as Type (C), because this is simply a modification
of some of the strip-like ends (from outgoing to incoming, and vice versa) and does not change
the behavior of the underlying curve.

Lemma 4.11 (Type (C’)). Let u8 “ puvqvPV pTq be a non-empty SFT limit of curves in

MJτ px; cp,qq. Then T consists of exactly two vertices v1, v2 and

• uv1 is a J´-holomorphic bigon with positive asymptotes y, cp,q, where y is a Reeb chord
with |y| “ 0 in the canonical relative grading;

• uv2 is a J`-holomorphic curve with two negative asymptotes x and y.

Proof. The argument is entirely parallel to Lemma 4.9. Let uv1 be the J´-holomorphic curve
such that cp,q is an asymptote of it. Let the other asymptotes of uv1 be y1, . . . , yk. For uv1 to
be rigid, by Lemma 4.5,

0 “ virdimpuv1q “ n´ |cp,q| ´
k
ÿ

j“1

|yj | ´ p2´ kq ě n´ pn´ 1q ´ 2` k “ k ´ 1 (4.18)

so k “ 1 because uv1 has at least one positive Reeb chord asymptote.

Our final task is to show that type (A3’) and (D’) are empty for τ " 1.

Lemma 4.12 (Type (A3’)). Let u8 “ puvqvPV pTq be a SFT limit of curves in MJτ pcp1,q1 ; cp,qq
that are not in Type(A1’) and (A2’). Then u8 is empty.

Proof. There is v P V pTq such that cp1,q1 is a negative asymptote of uv. By boundary condition,
cp,q cannot be an asymptote of uv. The existence of uv violates Lemma 4.5.

By Lemma 4.5 again, we have

Lemma 4.13 (Type (D’)). Let u8 “ puvqvPV pTq be a SFT limit of curves in MJτ pcp,q;xq. Then
u8 is empty.

4.4 Local contribution

In this section, we will determine the algebraic count of some moduli of rigid J´-holomorphic
curves in SM´ “ T ˚P , using a cohomological counting argument.

Let q1, q2, q3 P P be three generic points such that YiΛqi satisfies Corollary 3.23. Let qi P P
be a lift of qi for i “ 1, 2, 3. Let J´ be the almost complex structure on T ˚P that is lifted
from J´. Since the contact form θ|BU equals to the lift of α “ θ|BU , by Lemma 3.21, there is
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Figure 7: Six moduli spaces in Theorem 4.14

a unique Reeb chord xi,j from Λqi to Λqj such that |xi,j | “ 0 in the canonical relative grading.
Let qi P CF pT

˚
qiP,Pq and ci,j P CF pT

˚
qiP, τPpT

˚
qjPqq be the chains represented by the unique

geometric intersection in the respective chain complexes.
We are interested in the algebaic counts of the following moduli spaces

(1) MJ´pq1; q2, x1,2q, M
J´pq_2 ;x1,2,q

_
1 q and MJ´pH; q2, x1,2,q

_
1 q,

(2) MJ´pc3,2;x1,2, c3,1q,

(3) MJ´pc1,3; c2,3, x1,2q,

(4) MJ´pH; c2,1, x1,2q.

Theorem 4.14. The algebraic count of the above moduli spaces are all ˘1.

Proof of Theorem 4.14. We will apply SFT stretching on the the following “big local model”.
Consider an A3 Milnor fiber consisting of the plumbing of three copies of T ˚Sn. We denote

the Lagrangian spheres by S1, P and S3, respectively, where S1 X S3 “ H. We can identify a
neighborhood of P with U. By Hamiltonian isotopy if necessary, we assume that U X Sj is a
pair of disjoint cotangent fibers for j “ 1, 3. We perturb S1 to S2 by a perfect Morse function,
so that UX S2 is another cotangent fiber.

It will be clear that we should, for j “ 1, 2, 3, naturally abuse the notation to denote
qj P CF pSj ,Pq, which is the only generator in the corresponding cochain complex. Let
e, pt P CF pS1, S2q be the minimum and maximum of the Morse function, respectively, where e
represents the identity in cohomology. On the cohomological level, it is clear that rq2sres “ ˘rq1s

and resrq_1 s “ ˘rq
_
2 s. This implies the algebraic count

#Mpq1; q2, eq “ ˘1

#Mpq_2 ; e,q_1 q “ ˘1.
(4.19)
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We now apply the same argument to other cochain complexes. For i ‰ j, let ci,j P
CF ˚pSi, τPpSjqq. be the only generator in their corresponding complex. Again, the multi-
plication by res on rc1,3s and rc3,1s yields

#Mpc1,3; c2,3, eq “ ˘1, (4.20)

#Mpc3,2; e, c3,1q “ ˘1. (4.21)

For the case of c2,1 P CF pS2, τPpS1qq, it is immediate from Seidel’s exact sequence that
rankHF pS2, τPpS1qq “ 1, concentrated on degree 0. CF pS2, τSS1q has two additional generators
|c2,1| “ n´ 1 and |pt| “ n, which cancel each other. Therefore, one has

#Mppt; c2,1q “ ˘1 (4.22)

To deduce Theorem 4.14, we perform a neck-stretching along BU. It means that we choose
a family of almost complex structure Jτ adapted to BU and see how the Jτ -holomorphic curves
converge as τ goes to infinity. We require that the limiting almost complex structure on SU
coincides with J´ and we denote the limiting almost complex structure outside U by J`. S1

and S2 give two fibers in U, and every holomorphic curve in MJτ pq1; q2, eq will converge, in
the U part, to a curve in MJ´pq1; q2, x1,2q (see Lemma 4.9, where the direction of the strip-like
ends are switched). This implies

p#MJ´pq1; q2, x1,2qq ¨ p#MJ`px1,2; eqq “ #MJτ pq1; q2, eq “ ˘1.

Since all counts are integers, it follows that #MJ´pq1; q2, x1,2q “ ˘1 which implies the same is

true for #MJ´pq_2 ;x1,2,q
_
1 q and #MJ´pH; q2, x1,2,q

_
1 q.

The same stretching argument, along with (4.20)(4.21)(4.22) yields
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p#MJ´pc1,3; c2,3, x1,2qq ¨ p#MJ`px1,2; eqq “ #MJτ pc1,3; c2,3, eq “ ˘1, (4.23)

p#MJ´pc3,2;x1,2, c31qq ¨ p#MJ`px1,2; eqq “ #MJτ pc3,2; e, c3,1q “ ˘1, (4.24)

p#MJ´pH; c2,1, x1,2qq ¨ p#MJ`px1,2, pt;Hqq “ #MJτ ppt; c2,1q “ ˘1. (4.25)

which give the remaining algebraic counts.
Finally, notice that even though S2 is obtained by a perturbation of S1, we can actually

Hamiltonian isotope S2 so that S2 X P is the preassigned q2 and there is no new intersection
between S2 and S1, S3 being created during the isotopy. With this choice of S2 and the stretching
argument explained above, Theorem 4.14 follows.

One may define the analogous moduli spaces similarly on T ˚P for cotangent fibers T ˚qiP . By
equivariance, every rigid J´-holomorphic curve lifts to |Γ| many rigid J´-holomorphic curves
and every rigid J´-holomorphic curve descends to a rigid J´-holomorphic curve.

With this understood, we have

Corollary 4.15. The algebraic count of the following moduli spaces are ˘1.

(1) MJ´pp1; p, xp1,pq, M
J´pq1_;xq,q1 , q

_q and MJ´pH; p, xq,p, q
_q,

(2) MJ´pcp,q1 ;xq,q1 , cp,qq

(3) MJ´pcp1,q; cp,q, xp1,pq

(4) MJ´pH; cp,q, xq,pq

where xp1,p is the unqiue Reeb chord of canonical relative grading 0 from Λp1 to Λp which can
be lifted to a Reeb chord from Λp1 to Λp. The definition of xq,q1 and xq,p are similar.

4.5 Matching differentials

We now are ready to prove Proposition 4.1. The first lemma relates algebraic counts of differ-
entials of Type (A1) and (A1’).

Lemma 4.16. For τ " 1, the algebraic count of following moduli spaces are equal

• MJτ pcp1,q; cp,qq, differentials in hompL0, τP pL1qq from cp,q to cp1,q,

• MJτ pp1; pq, differentials in hompL0,Pq from p to p1

Proof. To prove the lemma, we look at the SFT limit of these moduli when τ goes to infin-
ity. Let u1

8 and u2
8 be a limiting holomorphic building from curves in MJτ pcp1,q; cp,qq and

MJτ pp1; pq, respectively. Lemma 4.6 and 4.7, ui8 consist of a J´-holomorphic curve uiv1
and a

J`-holomorphic curve uiv2
. Moreover, uiv2

lies in MJ`pxp,p1 ;Hq for both i. On the other hand,

u1
v1

lies in MJ´pcp1,q; cp,q, xp1,pq and u2
v1

lies in MJ´pp1; p, xp1,pq.
Therefore, for τ " 1,
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#MJτ pp1,pq

“#MJ`pxp,p1 ;Hq ¨#MJ´pp1; p, xp1,pq

“#MJ`pxp,p1 ;Hq ¨#MJ´pcp1,q; cp,q, xp1,pq

“#MJτ pcp1,q; cp,qq

where the second equality uses Corollary 4.15 (1) and (3).

Similarly, we compare the differentials of Type (A2) and (A2’).

Lemma 4.17. For τ " 1, the algebraic count of following moduli spaces are equal

• MJτ pcp,q1 ; cp,qq,

• MJτ pq1_; q_q.

Proof. The proof is almost word-by-word taken from Lemma 4.16. Lemma 4.6, 4.7 and Corollary
4.15 (1) and (2) implies

#MJτ pq1_; q_q

“#MJ`pxq,q1q ¨#MJ´pq1_;xq,q1 , q
_q

“#MJ`pxq,q1q ¨#MJ´pcp,q1 ;xq,q1 , cp,qq

“#MJτ pcp,q1 ; cp,qq

The last lemma addresses differentials of Type (C) and (C’).

Lemma 4.18. For τ " 1, the algebraic count of following moduli spaces are equal

• MJτ px; q_,pq, for some x P CF ˚pL0, L1q represented by an intersection outside U ,

• MJτ px; cp,qq.

Proof. The strategy is still similar. Apply the same neck-stretching as in Lemma 4.16 and 4.17,
one obtains a building consisting of a triangle and a bigon for MJτ px; q_,pq, thanks to Lemma
4.9; and a building consisting of two bigons for MJτ px; cp,qq from Lemma 4.11. Therefore

#MJτ px; q_,pq

“#MJ`px, xq,p;Hq ¨#MJ´pH; p, xq,p, q
_q

“#MJ`px, xq,p;Hq ¨#MJ´pH; cp,q, xq,pq

“#MJτ px; cp,qq

where the second equality uses Corollary 4.15 (1) and (4).

As the end product of this section, we have

Proof of Proposition 4.1 when charpKq “ 2. For τ " 1, the differential on C0 and C1 can be
identified by Lemma 4.16, 4.17, 4.8, 4.18 and 4.5.

The proof of Proposition 4.1 when charpKq ‰ 2 is given in Appendix A.
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5 Categorical level identification

In this section, we want to prove Theorem 1.2 by showing the following:

Theorem 5.1. For any object E1 P ObpFq, we can perform a Hamiltonian perturbation for E1 to
obtain another object pE1q1 of F such that there is a degree zero cochain cD P hom

0
Fperf pτP ppE

1q1q, TPpE
1qq

so that cD is a cocycle, and

µ2pcD, ¨q : hom0
Fperf pE

0, τP ppE
1q1qq Ñ hom0

Fperf pE
0, TPpE

1qq (5.1)

is a quasi-isomorphism for all E0 P ObpFq
In particular, τP pE

1q » τP ppE
1q1q » TPpE

1q as perfect A8 right F-modules.

The overall strategy goes as follows. By Proposition 4.1, Corollary 2.18 and the fact that
Hamiltonian isotopic objects are quasi-isomorphic, we know that

HphomFperf pτP ppE
1q1q, TPpE

1qqq “ HF pτP pE
1q, τP pE

1qq (5.2)

Our goal is to pick an appropriate non-exact degree zero cocycle cD P hom
0
Fperf pτP ppE

1q1q, TPpE
1qq,

and check that µ2pcD,´q is a quasi-isomorphism for all E0 P ObpFq (see (5.1)). By a Hamiltoni-
an perturbation if necessary, it suffices to check the equality for those E0 such that L0 intersects
L1, pL1q

1 and P transversally. This allows us to apply neck-stretching along BU to compute
µ2pcD, ¨q for τ " 1 (see Section 3.8).

The discussion in this section works for fields K of arbitrary characteristics, even though we
didn’t pay exclusive attention to signs.

Again, let us give a sketch of this section in hope of rescuing discouraged readers from
the daunting details and notations. As pointed out in the introduction, we will pursue the
generator that comes from L and the Dehn twist of a perturbation of L, which represents the
fundamental class of CF pL,Lq before the Dehn twist. This is not a cocycle in D, and we
computed its differential in 5.1.1. To offset them, we use the tensor product component in D,
whose differential, as a product in the Fukaya category, is computed in 5.1.2, which eventually
yields the desired cocycle cD. After studying more of the A8-structure, we verify cD gives the
desired quasi-isomorphism (1.1).

The reader should note that we postpone all issues of orientations to the appendix, but as
it turns out, the content in this section depends on analysis of signs minimally.

5.1 Hunting for degree zero cocycles

To find a degree zero cocycle, we need to first analyze the differential of homFperf pτP ppE
1q1q, TPpE

1qq

by neck-stretching. The discussion in this section works for field K of arbitrary characteristics.
Let L11 be a C2-small Hamiltonian push-off of L1 such that L11 X U is a union of cotangent

fibers. Let q1, . . . , qdL1
P CF pL1, P q and q11, . . . , q

1
dL1

P CF pL11, P q be the cochain representatives

of the geometric intersection points, where dL1 “ #pP XL1q “ #pP XL11q. We also number the
intersection points so that dP pqi, q

1
iq ! ε in the standard quotient round metric. Let Λqi ,Λq1j Ă

BU be the cospheres at qi and q1j , respectively. We assume qi, q
1
j satisfy Corollary 3.23. Fix qi,q

1
j

be a lift of qi, q
1
j , respectively, for all i, j. Our focus will be the cochain complex

D :“ homFperf pτP ppE
1q1q, TPpE

1qq “ pCF pP,E1q bΓ CF pτP ppE
1q1q,Pqqr1s ‘ CF pτppE1q1q,E1q

(5.3)
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which is generated by elements supported at the intersection points

$

’

&

’

%

q_i b τP pq
1
jq, for i, j “ 1, . . . , dL1

c_i,g,j :“ c_qi,gq1j
, for g P Γ, i, j “ 1, . . . , dL1

wk, for k “ 1, . . . ,#pL11 X L1q

(5.4)

The first two kinds of intersection points are inside U while twku are outside U . Elements
supported at c_i,g,j and wk are given by

HomKpτP ppE
1q1qcqi,gq1j

,E1
cqi,gq1j

q and HomKpτP ppE
1q1qwk ,E

1
wk
q (5.5)

respectively. On the other hand, the elements supported at q_i b τP pq
1
jq are generated by

pψ2 b q_i q b pgτPpq
1
jq b ψ

1q, for ψ2 P E1
qi , ψ

1 P HomKpτP ppE
1q1qτP pq1jq

,Kq, g P Γ (5.6)

Here we use the commutativity πpτPpq
1
jqq “ τP pπpq

1
jqq “ τP pq

1
jq.

Lemma 5.2. With respect to canonical relative grading, we have

$

’

&

’

%

|q_i | “ 0, for q_i P hompP, T
˚
qiP q

|τP pq
1
jq| “ 1, for τP pq

1
jq P hompτP pT

˚
q1j
P q, P q

|c_i,g,j | “ 1, for c_i,g,j “ πpτPpT
˚
gq1j

Pq X T ˚qiPq P hompτP pT
˚
q1j
P q, T ˚qiP q

(5.7)

Proof. The fact that |q_i | “ 0 follows from the definition of canonical relative grading (3.8).
|c_i,g,j | “ 1 follows from |ci,g,j | “ n´ 1 (see Lemma 4.5). Finally, from the long exact sequence

HF kpP, T ˚q1j
P q Ñ HF kpP, τP pT

˚
q1j
P qq Ñ HF k`1pP, P q Ñ HF k`1pP, T ˚q1j

P q (5.8)

and the fact that HF pP, τP pT
˚
q1j
P qq has rank 1, we know that HF 0pP, P q » HF 0pP, T ˚q1j

P q, and

HF kpP, τP pT
˚
q1j
P qq Ñ HF k`1pP, P q is an isomorphism when k “ n´ 1. Therefore, |τP pq

1
jq
_| “

n´ 1 and |τP pq
1
jq| “ n´ |τP pq

1
jq
_| “ 1.

Without loss of generality, we assume that there is a unique wk with degree 0 and we denote
it by eL. All other wk has |wk| ą 0. With generators understood, we now recall that the
differential for element ψx supported at x “ c_i,g,j or x “ wk is given by µ1pψxq “ µ1

F pψxq, and
for element supported at q_i b τP pq

1
jq is given by (see (2.87))

µ1
Dpψ

2 b q_i b gτPpq
1
jq b ψ

1q “p´1q|gτPpq
1
jq|µ1

F pψ
2 b q_i q b pgτPpq

1
jq b ψ

1q

` pψ2 b q_i q b µ
1
F pgτPpq

1
jq b ψ

1q

` µ2
F pψ

2 b q_i , gτPpq
1
jq b ψ

1q (5.9)

Our focus will be put on µ1
F pψeLq and µ2

F pψ
2 b q_i , gτPpq

1
jq b ψ

1q.
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5.1.1 Computing µ1
F pψeLq

Let h : L1 Ñ R be a smooth function such that dh “ θ|L1 . We define hi :“ h|Λqi which are
constants because L1 is cylindrical near Λqi . Hamiltonian push-off induces h1 : L11 Ñ R such
that dh1 “ θ|L11 and h1i :“ h1|Λq1

i
are constants. By possibly reordering the index set of i, we

assume that h1 ď h2 ď ¨ ¨ ¨ ď hd. For each i, by relabelling if necessary, we also assume that q1i
is the closest to qi among points in tq1ju

dL1
j“1, and q1i is the closest to qi among points in tgq1iugPΓ.

We recall from (3.35) that the action of a Reeb chord x from Λq1j to Λqi is given by

Apxq :“ Lpxq ` h1j ´ hi (5.10)

Lemma 5.3. There is a constant ε ą 0 depending only on tqiu
dL1
i“1 and L1 such that when L11 is

a sufficiently small Hamiltonian push-off of L1,

• Apxq ą ε if x is a Reed chord from Λq1j to Λqi and j ą i, and

• Apxq ą ε if x is a Reed chord from Λq1i to Λqi but not the shortest one.

Proof. There is a constant ε ą 0 depending only on tqiu
dL1
i“1 and L1 such that Lpxq ą 3ε if x is

either a Reeb chord from Λqj to Λqi and i ‰ j, or it is a non-constant Reeb chord from Λqi
to itself. We can choose a small Hamiltonian perturbation such that Lpxq ą 2ε if either x is a
Reeb chord from Λq1j to Λqi , or a non-shortest Reeb chord from Λq1i to Λqi . If j ě i, we have

hj ě hi so we can assume the Hamiltonian chosen is small enough such that h1j ´ hi ą ´ε and
therefore Apxq “ Lpxq ` h1j ´ hi ą ε in both cases listed in the lemma.

For each i, we denote the shortest Reeb chord from Λq1i to Λqi by xi1,i. In regards to the
canonical relative grading, we have |xi1,i| “ 0. Since q1i is the closest to qi among points in
tgq1iugPΓ, if we lift the Reeb chord xi1,i to a Reeb chord starting from Λq1i

, then it ends on Λqi .
The following lemmata (5.4, 5.5 and 5.6) concern some moduli of rigid bigon with input

being eL. We start with the case when the output lies outside U .

Lemma 5.4. For τ " 1, rigid elements in MJτ pwk; eLq with respect to boundary condition-
s pτP pL

1
1q, L1q and pL11, L1q (i.e. they contribute to the differential in CF pτP pL

1
1q, L1q and

CF pL11, L1q), respectively, can be canonically identified.

Proof. By the same reasoning as in Lemma 4.8, as τ goes to infinity, the holomorphic building
u8 “ puvqvPV pTq consists of exactly one vertex v and uv maps to SM`. The result follows.

In Lemma 5.3, the ε is independent of perturbation. Therefore, we can choose a perturbation
such that the action of eL in hompL11, L1q (and hence in hompτpL11q, L1q) is less than ε. In this
case, we have

Lemma 5.5. Let ε satisfy Lemma 5.3. If ApeLq ă ε, then for all j ą i and g P Γ (or j “ i and
g ‰ 1Γ), there is no rigid element in MJτ pc_i,g,j ; eLq for τ " 1.

Proof. Suppose not, then we will have a holomorphic building u8 “ puvqvPV pTq as τ goes to
infinity. Let uv1 be the J´-holomorphic curve such that c_i,g,j is an asymptote of uv1 . One can
argue as in Lemma 4.11 to show that uv1 has exactly one positive Reeb chord asymptote x.
Moreover, x can be lifted to a Reeb chord from Λgq1j to Λqi by boundary condition. When

j ą i and g P Γ (or j “ i and g ‰ 1Γ), we have Apxq ą ε by Lemma 5.3. Since ApeLq ă ε by
assumption, we get a contradiction by Lemma 3.15.
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Lemma 5.6. For L11 sufficently close to L1 and τ " 1, the algebraic count of rigid elements in
MJτ pc_i,1Γ,i

; eLq is ˘1.

Proof. Similar to previous discussions, every limiting holomorphic building u8 “ puvqvPV pTq
from strips in MJτ pc_i,1Γ,i

; eLq consists of two vertices (see Lemma 4.11). By boundary condition,

the bottom level curve uv1 lies in MJ´pc_i,1Γ,i
;xi1,iq, which has algebraic count ˘1 by Corollary

4.15(4). Therefore, it suffices to determine the algebraic count of MJ`pxi1,i; eLq.
We consider the rigid elements in the moduli Mpq_i ; eL, pq

1
iq
_q for a compatible almost com-

plex structure J , which is responsible to the q_i -coefficient of µ2peL, pq
1
iq
_q for the operation

µ2p¨, ¨q : hompL11, L1q ˆ hompP,L11q Ñ hompP,L1q. Therefore, it has algebraic count ˘1 with
respect to J when L11 is C2-close to L1.

Next, we will use a cascade (homotopy) type argument which goes back to Floer and argue
that the algebraic count of MJτ pq_i ; eL, pq

1
iq
_q is ˘1 for all τ ă 8. The difficulty lies in that

neither q_i or pq1iq
_ is a cocycle, so the cohomological arguments would not work here. A detailed

account for a cascade (homotopy) type argument involving higher multiplications can be found
in, for example, [AS10b] (see also [Sei08, Section 10e], [Aur10]).

Let us recall the overall strategy of the cascade argument tailored for our situation. Pick
a path of compatible almost complex structures pJtqtPr0,8q from J to Jτ for some finite time
τ . For a generic path of almost complex structure pJtqtPr0,8q, there are finitely many 0 ă
t1 ă ¨ ¨ ¨ ă tk ă 1 such that there exists Jtl stable maps with input eL, pq

1
iq
_, output q_i and

consisting of two components. In our case, they consist of a Jtl-holomorphic triangle and a
bigon, respectively. Moreover, one of the components must be of virtual dimension 0, and the
other one is of dimension ´1. In this case, we say a bifurcation occurs at tl, and denote the
component of virtual dimension ´1 as u.

If a bifurcation occurs at tl, then MJtpq_i ; eL, pq
1
iq
_q has the same diffeomorphism type when

t P pt ´ ε, tlq for some small ε ą 0. The birth-death bifurcation cancels a pair of Jtl´ε-triangles
at time tl; and the death-birth bifurcation creates a pair of Jtl`ε-triangles at the time tl. In
either case, there is a pair of stable Jtl-stable triangles. When t approaches tl from the right, we
get the cooresponding cobordisms. The change of algebraic count from MJtl´εpq_i ; eL, pq

1
iq
_q to

MJtl`εpq_i ; eL, pq
1
iq
_q is called the contribution to MJtpq_i ; eL, pq

1
iq
_q by the bifuration at time tl.

Therefore, to show that the algebraic count persists to be ˘1 crossing tl, we will analyze
each bifurcation moment tl below and prove the contribution to MJtpq_i ; eL, pq

1
iq
_q is zero. For

simplicity we let l “ 1. Since there are exactly two irreducible components at t “ t1, one of
them has to has virtual dimension 0 and the other one has dimension ´1. Let u denote the
component of virtual dimension ´1 (it can be either a strip or a triangle), and we divide the
possible stable Jt1-holomorphic triangles into three cases:

(i) both q_i and pq1iq
_ are asymptotes of u;

(ii) exactly one of q_i and pq1iq
_ is an asymptote of u;

(iii) neither of q_i nor pq1iq
_ is an asymptote of u.

Case (i): If both q_i and pq1iq
_ are asymptotes of u, then the last asymptote x of u must be a gen-

erator of CF pL11, L1q by boundary condition. Moreover, x is a degree 1 element of CF pL11, L1q

because virdimpuq “ ´1 and |eL| “ 0. This bifurcation contributes to a change in the algebraic
count of MJtpq_i ; eL, pq

1
iq
_q by the algebraic count of rigid elmements from MJt1 px; eLq (when

t ą t1, the moduli MJt1 px; eLq and MJt1 pq_i ;x, pq1iq
_q glue together to give a change). However,
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the algebraic count of rigid elmements from MJt1 px; eLq is zero because eL is a cocycle.

Case (ii): If exactly one of q_i and pq1iq
_ is an asymptote of u, then P is a Lagrangian boundary

condition of one of the component of BΣu, where Σu is the domain of u. By this boundary
component, there is another point qj or q1j for some j ‰ i which is an asymptote of u. Since
there is a lower bound between the distance from qi (or q1i) to qj (or q1j) for j ‰ i, we can apply
monotonicity Lemma at an appropriate point in Impuq X P to get a constant δ ą 0 depending

only on tqiu
dL1
i“1 but not L11 such that the energy Eωpuq ą δ. If we chose L11 to be sufficently

close to L1 such that ApeLq ` Appq1iq
_q ´ Apq_i q ă δ, then for u to contribute to a change of

algebraic count of MJtpq_i ; eL, pq
1
iq
_q, u has to be glued with a rigid Jt1-holomorphic curve of

negative energy, which does not exist.

Case (iii): If none of q_i and pq1iq
_ are asymptotes of u, then u is a bigon with one asymptote

being eL and the other asymptote, denoted by x, being a generator of CF pL11, L1q. Moreover,
|x| “ 0 because virdimpuq “ ´1. It is a contradiction because eL is the only generator of
CF pL11, L1q with degree 0 and constant maps have virtual dimension 0.

As a result, no bifurcation can possibly contribute to a change to the algebraic count and
#MJτ pq_i ; eL, pq

1
iq
_q “ ˘1 for all τ . By letting τ go to infinity, the argument in Lemma 4.9

implies that the limiting holomorphic building u8 “ puvqvPV pTq consist of two vertices. Moreover,

we have uv1 P MJ´pq_i ;xi1,i, pq
1
iq
_q and uv2 P MJ`pxi1,i; eLq. It implies that the algebraic count

of rigid element in MJ`pxi1,i; eLq is ˘1. The proof finishes.

Remark 5.7. The fact that the algebraic count of MJ`pxi1,i; eLq is ˘1 will be used in Proposition
5.8 again.

Let us take local systems on the Lagrangians into account. Let E1, pE1q1 be local systems
supported on L1, L11, respectively. Using the Hamiltonian push-off, we have the identifications

τP ppE
1q1qwk » pE

1q1wk » E1
wk
, and τP ppE

1q1qcqi,gq1j
» E1

cqi,gq1j
(5.11)

for all wk and cqi,gqj . In particular, we can define tD to be the identity morphism supported at
the intersection underlying eL, but as a morphism, it is written as:

tD :“ id P HomKpτP ppE
1q1qeL ,E

1
eL
q Ă homFperf pτP ppE

1q1q, TPpE
1qq “ D (5.12)

We also denote eE as
eE :“ id P Hom

`

pE1q1,E1
˘

. (5.13)

Geometrically, both tD and eE are supported at the same intersection point and represents
the same identity morphism between the stalks. tD can be regarded as a chain-level preimage
of the E under the (Poincaré) dualized Seidel’s exact sequence, hence has no guarantee to be
closed.

Let us take local systems on the Lagrangians into account. Since π1pU X L1q “ 1, we can
identify stalks of the local system E1

p over each p P UXL1 using the flat connection (equivalently,
assume the connection is trivial in U X L1). Similary, identify all pE1q1p1 for p1 P U X L11. This
also induces an identification of stalks on τP pT

˚
q P q, since local systems therein are pushforwards

of the ones over a fiber.
We can now summarize the previous lemmata.
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Proposition 5.8. For L11 sufficiently close to L1 and τ " 1, we have

µ1ptDq “
ÿ

i,j,g

ψc_i,g,j (5.14)

where ψc_i,g,j P HomKpτP ppE
1q1qcqi,gq1j

,E1
cqi,gq1j

q and

#

ψc_i,g,j “ 0 if j ą i and g P Γ (or j “ i and g ‰ 1Γ)

ψc_i,1Γ,i
“ ˘id P HomKpτP ppE

1q1qcqi,q1i
,E1

cqi,q1i
q

(5.15)

Proof. By Lemma 5.4 and the fact that eE is a cocyle in CF ppE1q1,E1q, we know that µ1ptDq “
ř

i,j,g ψc_i,g,j . The fact that ψc_i,g,j “ 0 if j ą i and g P Γ (or j “ i and g ‰ 1Γ) follows from

Lemma 5.5. Finally, to see that ψc_i,1Γ,i
“ id we need to understand the moduli MJτ pc_i,1Γ,i

; eLq

and the parallel transport maps given by the rigid elements in it.
Consider the holomorphic building when τ “ 8, we have two components u1 PM

J´pq_i ;xi1,i, pq
1
iq
_q

and u2 PM
J`pxi1,i; eLq by Lemma 4.9 and Remark 4.10. When L11 is sufficiently C2-close to L1,

the action of u1, u2 can be as small as we want. It implies that, by monotonicity lemma, u2 lies
in a Weinstein neigborhood of L1.

It in turn implies that, for each strip u2 in the limit, the associated output is ψi1,i “ ˘id
when the input at the point eL is tD (the sign of ψi1,i supported on xi1,i depends on the sign
of u2). This is because we have identified the stalks of E1 and pE1q1 at the point eL, and the
associated parallel transports IB0u and IB1u on their respective boundary conditions are inverse
to each other (in fact, the strip itself provides an isotopy after projecting to L1 in the Weinstein
neighborhood). Since we have proved that the algebraic count of MJ`pxi1,i; eLq is ˘1 (see

Remark 5.7), the associated output by all elements in MJ`pxi1,i; eLq is ˘id, when the input at
eL is tD.

To get the proposition, we now replace u1 by u11 P MJτ pc_i,1Γ,i
;xi1,iq. As explained earlier,

we have identified the fibers of the local systems of E1 and τP pE
1q1 at cqi,q1i . Since the parallel

transports of E1 and τP pE
1q1 inside U are trivial, if the input at xi1,i is ˘id, so is the output. By

Lemma 5.6, the algebraic count of MJτ pc_i,1Γ,i
;xi1,iq is ˘1 and each strip contributes ˘id (and

the sign of ˘id only depends on the sign of the strip), therefore, the total countribution is ˘id,
as desired.

Remark 5.9. In summary, when L11 is sufficently close to L1, eL being a cohomological unit is
responsible for the algebraic count of MJτ pq_i ; eL, pq

1
iq
_q being ˘1 and hence the q_i -coefficient

of µ2peL, pq
1
iq
_q being ˘1. On the other hand, eE being a cohomological unit is reponsible for the

q_i -coefficient of µ2peE, pq
1
iq
_q being 1. Lemma 5.6 and Proposition 5.8 are obtained by replacing

the bottom level curves at the SFT limit.

5.1.2 Computing µ2
F pψ

2 b q_i , gτPpq
1
jq b ψ

1q

Next, we want to study µ1
Dppψ

2bq_i qbpgτPpq
1
jqbψ

1qq (see (5.6), (5.9)). In particular, we want to

focus on the term µ2
F pψ

2bq_i , gτPpq
1
jqbψ

1q so we need to discuss the moduli Mpc_i,g,j ; q
_
i , τP pq

1
jqq

and Mpwk; q
_
i , τP pq

1
jqq.

Lemma 5.10. For τ " 1, there is no rigid element in MJτ pwk; q
_
i , τP pq

1
jqq.
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P

L1 L1

τP (L
′
1)

c∨i,g,jgτP(q
′
j)

q∨
i

(same branch)

c∨i,h,j

τP (L
′
1)

q∨
j

tD

Figure 9: Holomorphic triangles in U

Proof. We argue by contradiction as before. Let u8 “ puvqvPV pTq be a limiting holomorphic
building. By boundary condition, there is v1 P V pTq such that q_i , τP pq

1
jq are asymptotes of uv1 .

The other asymptotes of uv1 are positive Reeb chords y1, . . . , yk. The virtual dimension of uv1

can be computed using canonical relative grading (Lemma 5.2), and is given by

virdimpuv1q “ np1´ 0q ´ |q_i | ´ |τP pq
1
jq| ´

k
ÿ

s“1

|ys| ´ p1´ kq ě n´ 0´ 1´ p1´ kq ą 0

because n ě 3. It contradicts to virdimpuv1q “ 0.

Lemma 5.11. For τ " 1, there is no rigid element in MJτ pc_
ī,ḡ,j̄

; q_i , τP pq
1
jqq unless cī,ḡ,j̄ “ ci,g,j

for some g P Γ.

Proof. Assume u8 “ puvqvPV pTq be a limiting holomorphic building. If cī,ḡ,j̄ ‰ ci,g,j for all g P Γ,
then cī,ḡ,j̄ R T

˚
qiP X τP pT

˚
q1j
P q. By boundary condition, there is v1 P V pTq such that q_i , τP pq

1
jq

are asymptotes of uv1 but c_
ī,ḡ,j̄

is not an asymptote of uv1 . Therefore, all other asymptotes of
uv1 are positive Reeb chords and we get a contradiction as in Lemma 5.10.

The following lemma computes the µ2 map with trivial local systems on L1 and L11.

Lemma 5.12. For τ " 1, the c_i,h,j-coefficient of µ2pq_i , gτP pq
1
jqq is ˘1 when h “ g and is 0

when h ‰ g. Here µ2 : hompP, L1q ˆ hompτP pL
1
1q,Pq Ñ hompτP pL

1
1q, L1q is the multiplication.

Proof. First, we want to argue that any u PMJτ pc_i,h,j ; q
_
i , τP pq

1
jqq contributing to µ2pq_i , gτP pq

1
jqq

has image completely lying inside U when τ " 1. We argue as before. Let u8 “ puvqvPV pTq be a
limiting holomorphic building. By boundary condition, there is v1 P V pTq such that q_i , τP pq

1
jq

are asymptotes of uv1 . If c_i,h,j is not an asymptote of uv1 , then we get a contradiction as in Lem-
ma 5.11. Therefore, uv1 has asymptotes c_i,h,j , q

_
i , τP pq

1
jq and positive Reeb chords y1, . . . , yk.

The virtual dimension of uv1 is given by

virdimpuv1q “ |c
_
i,h,j | ´ |q

_
i | ´ |τP pq

1
jq| ´

k
ÿ

s“1

|ys| ` k ě 1´ 0´ 1` k “ k

It means that k “ 0 so uv1 has no positive Reeb chord and the claim follows.
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In particular, we can lift u PMJτ pc_i,h,j ; q
_
i , τP pq

1
jqq to the universal cover U. By considering

the boundary condition, it is clear that we must have h “ g for u to exist. Now, to compute the
c_i,g,j-coefficient of µ2pq_i , gτP pq

1
jqq, we use the following model.

We consider an A3-Milnor fiber as in the proof of Theorem 4.14 but rename the objects to
keep the notation aligned with the current situation. For example, we denote the Lagrangian
spheres by S1 ,S and S2 such that S1XS2 “ H. Let τ be the Dehn twist along S, q_ P CF pS, S1q,
q1 P CF pS2, Sq, τpq

1q P CF pτpS2q, Sq, c
_ P CF pτpS2q, S1q and e, f P CF pS, Sq. We have

|q_| “ 0, |q1| “ n, |τpq1q| “ 1, |c_| “ 1, |e| “ 0 and |f | “ n. Consider the following commutative
diagram (up to sign)

HF pτpS2q, Sq ˆHF pS1, τpS2qq ˆHF pS, S1q

µ2pτpq1q,¨qˆId
��

Idˆµ2
// HF pτpS2q, Sq ˆHF pS, τpS2qq

µ2pτpp1q,¨q
��

HF pS1, Sq ˆHF pS, S1q
µ2

// HF pS, Sq

All the Floer cohomology has rank 1 except that HF pS, Sq has rank 2. The bottom arrow gives
µ2pq, q_q “ f . By the long exact sequence

HF kpS1, S2q Ñ HF kpS1, τpS2qq Ñ HF k`1pS1, Sq Ñ HF k`1pS1, S2q (5.16)

and the fact that HF pS1, S2q “ 0, we know that HFn´1pS1, τpS2qq Ñ HFnpS1, Sq is an i-
somorphism. Since τpq1q represents the unique (up to multiplications by a unit) non-zero
class in HF pτpS2q, Sq, we know that µ2pτpq1q, ¨q induces the isomorphism HFn´1pS1, τpS2qq »

HFnpS1, Sq. Therefore, we must have µ2pτpq1q, cq “ ˘q.
By the associativity of cohomological multiplication, we have µ2pτpq1q, µ2pc, q_qq “ ˘f . It

implies that µ2pc, q_q “ ˘τpq1q_. Dually, we have µ2pq_, τpq1qq “ ˘c_ (it amounts to changing
the asymptote c from outgoing end to incoming end, and τpq1q from incoming end to outgoing
end).

Since each u P MJτ pc_i,h,j ; q
_
i , τP pq

1
jqq can be lifted to U, there is a sign preserving bijective

correspondence MJτ pc_i,h,j ; q
_
i , τP pq

1
jqq »Mpc_; q_, τpq1qq so we get the result.

Remark 5.13. There is an alternative geometric argument as follows. When the fibers cor-
responding S1 and S2 in the proof of Lemma 5.12 are fibers of antipodal points. The moduli
computing c_-coefficient of µ2pq_, τpq1qq is the constant map to the point S1XS. One can check
that this constant map is regular so the algebraic count is ˘1. In the more general case, where
SXS2 is not the antipodal point of S1XS, one can apply a homotopy type argument to conclude
Lemma 5.12.

Now we enrich the statement of Lemma 5.12 by adding the local system on L1 and L11
into consideration. Take the universal cover U of the neighborhood of P , there is a unique
path (up to homotopy) in τPpT

˚
gq1j

Pq from cqi,gq1j to gτPpq
1
jq. It descends to the unique path

(up to homotopy) in τP pT
˚
q1j
P q from cqi,gq1j to τP pq

1
jq, which we denote by rcqi,gq1j Ñ τP pq

1
jqs.

Similarly, there is a unique path (up to homotopy) in T ˚qiP from qi to cqi,gq1j , which we denote

by rqi Ñ cqi,gq1j s. Then we have
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Proposition 5.14. For τ " 1, we have (see (5.6)), up to sign,

µ2pψ2 b q_i , gτPpq
1
jq b ψ

1q “ IrqiÑcqi,gq1j
spψ

2q b pψ1 ˝ Ircqi,gq1j
ÑτP pq

1
jqs
q

P HomKpτP ppE
1q1qcqi,gq1j

,E1
cqi,gq1j

q (5.17)

for ψ2 P E1
qi and ψ1 P HomKpτP ppE

1q1qτP pq1jq
,Kq. In particular, the right hand side is supported

at the intersection point c_i,g,j only and the morphism Φbi,g,j :“ µ2p´ b q_i , gτPpq
1
jq b ´q

Φbi,g,j : E1
qi bHomKpτP ppE

1q1qτP pq1jq
,Kq Ñ HomKpτP ppE

1q1qcqi,gq1j
,E1

cqi,gq1j
q (5.18)

is an isomorphism.

Note that the parallel transport from τP pq
1
jq to qi in the statement was omitted for a reason

that will become clear from the proof.

Proof. By Lemma 5.10, 5.11 and 5.12, we already know that µ2pψ2 b q_i , gτPpq
1
jq b ψ1q is

supported at the intersection point c_i,g,j . Moreover, as explained in the proof of Lemma 5.12,

the rigid elements contributing to µ2pq_i , gτP pq
1
jqq lie completely inside U .

To obtain the result, it suffices to understand the parallel transport maps. Let u PMJτ pc_i,g,j ; q
_
i , τP pq

1
jqq.

The contribution to µ2pψ2 b q_i , gτPpq
1
jq b ψ

1q by u is given by (up to sign)

pIB2u ˝ ψ
2q b pq_i ˝ IB1u ˝ gτPpq

1
jqq b pψ

1 ˝ IB0uq (5.19)

Since the domain of u is contractible, u can be lifted to the universal cover and therefore
the generator c_i,g,j uniquely determine the homotopy class of the path B1u on P (and also
B0u on τP pL

1
1q and B2u on L1, which is why the parallel transport of B1u is omitted in the

statement), which is exactly the path such that q_i ˝ IB1u ˝ gτPpq
1
jq “ 1, where gτPpq

1
jq is

regarded as an element of the universal local system at q1j and q_i is regarded as an element
of the dual of the universal local system at qi. In other words, we have IB1upgτPpq

1
jqq “ qi.

On ther other hand, we have IB0u “ Ircqi,gq1j
ÑτP pq

1
jqs

and IB2u “ IrqiÑcqi,gq1j
s so (5.19) reduces to

IrqiÑcqi,gq1j
spψ

2q b pψ1 ˝ Ircqi,gq1j
ÑτP pq

1
jqs
q. Now, (5.17) follows immediately from Lemma 5.12.

On the other hand, since IrqiÑcqi,gq1j
s and Ircqi,gq1j

ÑτP pq
1
jqs

are isomorphisms from E1
qi to E1

cqi,gq1j

and from τP ppE
1q1qcqi,gq1j

to τP ppE
1q1qτP pq1jq

, respectively, (5.17) clear induces the isomorphism

E1
qi bHomKpτP ppE

1q1qτP pq1jq
,Kq Ñ E1

cqi,gq1j
bHomKpτP ppE

1q1qcqi,gq1j
,Kq (5.20)

as desired

With these preparation, we go back to the study of the degree zero cocycles of D.

Corollary 5.15. For L11 sufficiently close to L1 and τ " 1, every degree 0 class in H0pDq admits
a cochain representative β which is a sum of elements supported at eL and tq_i b τpq

1
jqui,j only.

Moreover, the term of β supported at eL cannot be zero unless β “ 0.
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Proof. Every degree 0 cocycle in D is a sum of elements supported at eL, tc_i,g,jui,j,g and tq_i b
τpq1jqui,j because |wk| ‰ 0 for wk ‰ eL. Let β be a degree 0 cocycle which represents a class
rβs. By Proposition 5.14, we can eliminate the terms of β supported at c_i,g,j by adding the

µ1
D-differentials of certain cochains supported at q_i b τpq

1
jq. Note that the term of β supported

at c_i,g,j themselves might not be exact because µ1ppψ2 b q_i q b pgτPpq
1
jq b ψ1qq involves more

than just µ2
F pψ

2 b q_i , gτPpq
1
jq b ψ1q (see (5.9)), but the remainder terms cannot have c_i,g,j-

components. Therefore, we have a cochain β1 cohomologous to β such that β1 is a sum of
elements supported at eL and tq_i b τpq

1
jqui,j only.

Now, suppose the term of β1 supported at eL is 0. We write β1 “
ř

pi,jq ψ
i,j , where, for all i, j,

ψi,j is an element supported at q_i bτP pq
1
jq. If ψi0,j0 ‰ 0 for some i0, j0, then by the isomorphism

statement in Proposition 5.14, the terms of µ1pβ1q must contain a non-trivial element supported
at c_i0,g,j0 for some g. Because all other µ1pψi,jq do not have non-zero element supported at
c_i0,g,j0 , this draws a contradiction.

By Corollary 5.15, we can write every degree 0 cocyle β of D as

β “ ψeL `
ÿ

i,j

ψq_i bτP pq1jq (5.21)

where ψx is an element supported at x. Moreover, by (5.6), we can further decompose ψq_i bτP pq1jq
as

ψq_i bτP pq1jq “
ÿ

gPΓ

ni,g,j
ÿ

k“1

ψ2
i,g,j,k b q_i b gτPpq

1
jq b ψ

1
i,g,j,k (5.22)

for some ψ2
i,g,j,k P E

1
qi , ψ

1
i,g,j,k P HomKpτP ppE

1q1qτP pq1jq
,Kq and ni,g,j P N.

Proposition 5.16 (Cocycle elements). For L11 sufficienly close to L1 and τ " 1, there is a
non-exact degree 0 cocycle cD in D of the form

cD “ tD `
ÿ

g,k,i,j

ψ2
i,g,j,k b q_i b gτPpq

1
jq b ψ

1
i,g,j,k (5.23)

where ψ2
i,g,j,k “ ψ1

i,g,j,k “ 0 if either j ą i or (j “ i and g ‰ 1Γ), and (see (5.18))

Φbi,1Γ,i
p
ÿ

k

pψ2
i,1Γ,i,k

b q_i b τPpq
1
iq b ψ

1
i,1Γ,i,k

qq “ ˘id (5.24)

where ˘id P HomKpτP ppE
1q1qcqi,q1i

,E1
cqi,q1i

q.

Proof. Let β be a non-exact degree 0 cocycle of D (which exists from (5.2)). We write β in
the form (5.21). Note that ψeL can be geometrically identified as an element of homppE1q1,E1q.
Lemma 5.4 implies that, for µ1

Dpβq “ 0, we must have µ1
homppE1q1,E1q

pψeLq “ 0.
Also, Corollary 5.15 implies that the degree zero cocycle β is uniquely determined by its ψeL

component (or, as a cochain of D, µ1
DpψeLq has no wk-components). Therefore,

rankpH0pDqq ď rankpH0phomppE1q1,E1qqq (5.25)
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However, as explained in (5.2), we have

rankpH0pDqq “ rankpHF 0ppE1q1,E1qq (5.26)

It implies that for each degree 0 cocycle ψeL P homppE
1q1,E1q, there exists ψq_i bτP pq1jq such that

ψeL `
ř

i,j ψq_i bτP pq1jq is a degree 0 cocycle in D.

In particular, we can take ψeL “ tD. For µ1ptD `
ř

i,j ψq_i bτP pq1jqqq to be zero, the terms of

it supported at c_i,g,j must be zero for all i, j, g. Therefore, we obtain the result by Proposition
5.8 and 5.14 (see (5.9)).

5.2 Quasi-isomorphisms

Let cD be the degree 0 cocycle obtained from Proposition 5.16. In this section, we are going to
study the map (5.1) for E0 P ObpFq.

We assume that L0&L1, L0&τP pL
1
1q, and that L0XU is a union of cotangent fibers Y

dL0
i“1T

˚
piP ,

where dL0 “ #pL0 X P q. Let pi be a choice of lift of pi in P. Let C0 :“ hompE0, τP ppE
1q1qq and

C1 :“ hompE0, TPpE
1qq. We know from Lemma 4.13 that, when τ is large enough, there is a

subcomplex Cs0 Ă C0 generated by generators of C0 outside U . Let Cq0 :“ C0{C
s
0 be the quotient

complex, which is generated by generators of C0 inside U . Similarly, Cs1 :“ hompE0,E1q Ă C1 is
a subcomplex and Cq1 :“ C1{C

s
1 is the quotient complex. By definition (see (2.88)), for ψ P C0,

µ2pcD, ψq “µ
2
F ptD, ψq `

ÿ

i,j,g,k

pψ2
i,g,j,k b q_i q b µ

2
F pgτPpq

1
jq b ψ

1
i,g,j,k, ψq

`
ÿ

i,j,g,k

µ3
F pψ

2
i,g,j,k b q_i , gτPpq

1
jq b ψ

1
i,g,j,k, ψq (5.27)

We define µ2
spcD,´q :“ µ2pcD,´q|Cs0 : Cs0 Ñ C1.

Lemma 5.17. For τ " 1, the image of µ2
spcD,´q is contained in Cs1. Therefore, µ2

spcD,´q :
Cs0 Ñ Cs1 is a chain map.

Proof. Note that the first and last term on the right hand side of (5.27) lie inside Cs1 as a
consequence of Lemma 4.5. Therefore, it suffices to show that µ2

F pgτPpq
1
jq b ψ1

i,g,j,k, ψq “ 0 for

ψ P Cs0 . We consider the moduli MJτ pps; τP pq
1
jq, yq where y P pL0X τP pL

1
1qqzU and ps P L0XP .

Let u8 “ puvqvPV pTq be a holomorphic building converging from curves in MJτ pps; τP pq
1
jq, yq.

From the boundary condition, there exists v1 P V pTq such that ps and τP pq
1
jq are asymptotes of

uv1 . The other asymptotes of uv1 are positive Reeb chords y1, . . . , ym. We have

virdimpuv1q “ |ps| ´ |τP pq
1
jq| ´

m
ÿ

l“1

|yl| ´ p1´mq ě n´ 1´ p1´mq ě n´ 2 ą 0, (5.28)

contradiction. Therefore, MJτ pps; τP pq
1
jq, yq “ H for τ " 1.

Lemma 5.18. For τ " 1, µ2
spcD,´q “ µ2

F ptD,´q.

Proof. By Lemma 5.17, the second term in (5.27) vanishes, so it suffices to prove that MJτ px; q_i , τP pq
1
jq, yq “

H for τ " 1, where y P pL0XτP pL
1
1qqzU and x P L0XL1. Let u8 “ puvqvPV pTq be a holomorphic

building converging from curves in MJτ px; q_i , τP pq
1
jq, yq. From the boundary condition, there
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exists v1 P V pTq such that q_i and τP pq
1
jq are asymptotes of uv1 . The other asymptotes of uv1

are positive Reeb chords y1, . . . , ym. We have

virdimpuv1q “ n´ |q_i | ´ |τP pq
1
jq| ´

m
ÿ

l“1

|yl| ´ p1´mq ě n´ 1´ p1´mq ě n´ 2 ą 0 (5.29)

Therefore, MJτ px; q_i , τP pq
1
jq, yq “ H for τ " 1,

Proposition 5.19. For τ " 1, µ2
spcD,´q is a quasi-isomorphism.

Proof. For y P pL0 X τP pL
1
1qqzU and x P L0 X L1, the proof of Lemma 4.8 implies that all rigid

elements in MJτ px; eL, yq have their image completely outside U .
As a result, the computation of µ2

spcD,´q “ µ2
F ptD,´q picks up exactly the same holomorphic

triangles that contributes to µ2
F peE ,´q : Cs0 – hompE0, pE1q1q Ñ hompE0,E1q – Cs1 via the

tautological identification between eE and tD (see (5.12) and the paragraph after it). Since eE
is the cohomological unit, µ2

spcD,´q is also a quasi-isomorphism.

By Lemma 5.17, we know that µ2pcD,´q induces a chain map on the quotient complexes
µ2
qpcD,´q : Cq0 Ñ Cq1 . Since the first and last term on the right hand side of (5.27) are, by

definition, lying inside Cs1 , the map µ2
qpcD,´q is given by

µ2
qpcD, ψq “

ÿ

i,j,g,k

pψ2
i,g,j,k b q_i q b µ

2
F pgτPpq

1
jq b ψ

1
i,g,j,k, ψq (5.30)

By Proposition 5.19 and the five lemma, to show that µ2pcD,´q is a quasi-isomorphism, it
suffices to show that µ2

qpcD,´q is a quasi-isomorphism.
We recall from Lemma 4.2 that there is a bijective correspondence

ι : hompP, L11q bΓ hompL0,Pq Ñ pL0 X τP pL
1
1qq X U (5.31)

so we can write a point y P pL0X τP pL
1
1qqXU as chps,q1l :“ ιpq1_l bhpsq for some h P Γ and some

s, l. We want to understand the moduli MJτ ppm; τP pq
1
jq, chps,q1lq for various j, s, l,m, which is

responsible for (part of) the operation

hompτP pL
1
1q,Pq ˆ hompL0, τP pL

1
1qq Ñ hompL0,Pq (5.32)

Notice that, by switching the appropriate strip-like ends from incoming to outgoing (and vice
versa) for the same holomorphic triangles, (5.32) can be dualized to

hompP, L0q ˆ hompτP pL
1
1q,Pq Ñ hompτP pL

1
1q, L0q (5.33)

If we replace L0 by L1 (both of them are union of cotangent fibers in U), then we see that (5.33)
has already been studied in Lemma 5.11 and 5.12. The outcome is the following:

Lemma 5.20. For τ " 1, for ψchps,q1l
P C0 supported at chps,q1l

µ2
F pgτPpq

1
jq b ψ

1
i,g,j,k, ψchps,q1l

q (5.34)

is 0 if l ‰ j. When l “ j, (5.34) becomes

ghps b pIrτP pq1jqÑpss ˝ ψ
1
i,g,j,k ˝ Irchps,q1j

ÑτP pq
1
jqs
˝ ψchps,q1j

˝ IrpsÑchps,q1j
sq (5.35)

where all the parallel transport maps are the unique one determined by the boundary condition
inside U (cf. Proposition 5.14).
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Proof. The argument largely resembles the proof of Lemma 5.11, 5.12 and Proposition 5.14. A
neck-stretching argument as in Lemma 5.11 deduces that MJτ ppm; τP pq

1
jq, chps,q1lq is not empty

only if j “ l and m “ s. The same dimension count implies that when j “ l, m “ s and
τ " 1, every rigid element of MJτ ppm; τP pq

1
jq, chps,q1lq has image inside U . The local count

and the chasing of local systems from Lemma 5.12 and Proposition 5.14 applies directly to the
current case because it is a computation in U about cotangent fibers and their Dehn twists. In
particular, if we remove the local systems on L0 and τP pL

1
1q, we get

µ2
F pgτPpq

1
jq, chps,q1j q “ µ2

F pgτPpq
1
jq, cghps,gq1j q “ ghps P hompL0,Pq (5.36)

The parallel transport maps are uniquely determined by boundary conditions, and after chasing
all of them, we get the result.

Let V “ hompP, pE1q1q bΓ hompE
0,Pq which is generated by elements of the form

pΥ2 b pq1rq
_q b phpt bΥ1q (5.37)

for h P Γ, r “ 1, . . . , dL1 , t “ 1, . . . , dL0 , Υ2 P pE1q1q1r
and Υ1 P HomKpE

0
pt ,Kq (cf. (5.6)).

• For s “ 1, . . . , dL0 , let Vs be the subspace generated by elements in (5.37) such that t “ s.

• For s “ 1, . . . , dL0 and l “ 1, . . . , dL1 , let Vs,l be the subspace of Vs generated by elements
in (5.37) such that r “ l.

• For s “ 1, . . . , dL0 , l “ 1, . . . , dL1 and g P Γ, let Vs,l,g be the subspace of Vs,l generated by
elements in (5.37) such that h “ g.

Therefore, we have direct sum decompositions

V “ ‘sVs, Vs “ ‘lVs,l, Vs,l “ ‘gVs,l,g (5.38)

The bijective correspondence ι (5.31) extends to an isomorphism, also denoted by ι, from V
to Cq0 by keeping track of the (uniquely determined) parallel transport maps along Lagrangians
inside U . On the other hand, there is an obvious isomorphism F : hompP,E1qbΓhompE

0,Pq Ñ V
given by

pΥ2 b q_l q b phps bΥ1q ÞÑ pΥ2 b pq1lq
_q b phps bΥ1q (5.39)

where we used the identification E1
ql
» pE1q1ql by the Hamiltonian push-off. As a result, we have

a composition map

Θ : V
ι
ÝÑ pL0 X τP pL

1
1qq X U

µ2
qpcD,´q
ÝÝÝÝÝÝÑ Cq1

F
ÝÑ V (5.40)

which respects a filtration on V in the following sense.

Lemma 5.21. We have
$

&

%

ΘpVsq Ă Vs for all s
ΘpVs,lq Ă ‘tělVs,t for all s, l
ΘpVs,l,hq Ă Vs,l,h ` p‘tąlVs,tq for all s, l, h

(5.41)
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Proof. Explicitly, Θ is given by (see (5.30) and Lemma 5.20 )

pΥ2 b pq1lq
_q b phps bΥ1q (5.42)

ÞÑ
ÿ

i,g,k

pψ2
i,g,l,k b pq

1
iq
_q b pghps bRpψ

1
i,g,l,k,Υ

2,Υ1qq (5.43)

where Rpψ1
i,g,l,k,Υ

2,Υ1q is a term depending on ψ1
i,g,l,k,Υ

2,Υ1 given by composing parallel trans-
port maps. It is therefore clear that ΘpVsq Ă Vs. By Proposition 5.16 and (5.27), we know that
ψ2
i,g,l,k “ 0 unless j ď i so ΘpVs,lq Ă ‘tělVs,t.

When i “ l, ψ2
i,g,l,k ‰ 0 only if g “ 1Γ (by Proposition 5.16). Therefore, ΘpVs,l,hq Ă

Vs,l,h ` p‘tąlVs,tq

Proposition 5.22. µ2
q is a quasi-isomorphism.

Proof. Since µ2
q is a chain map, it suffices to show that µ2

q is bijective. We know that ι and F
are isomorphisms so it suffices to show that Θ is surjective (see (5.40)). By (5.38) and Lemma
5.21, it suffices to show that

Θ|Vs,l,h : Vs,l,h Ñ pVs,l,h ` p‘tąlVs,tqq{p‘tąlVs,tq (5.44)

is bijective for all s, l, h. For fixed s, l, h, the map (5.44) can be identified with the map

pE1q1q1l
bHomKpE

0
ps ,Kq Ñ pE1q1q1l

bHomKpE
0
ps ,Kq

Υ2 bΥ1 ÞÑ
ÿ

k

pψ2
l,1Γ,l,k

bRpψ1
l,1Γ,l,k

,Υ2,Υ1qq (5.45)

By (5.24) and keeping track of the uniquely determined parallel transport maps, it is clear that
(5.45) is an isomorphism.

Concluing the proof of Theorem 1.2, 5.1. For each E1 P ObpFq, we apply Proposition 5.16 to
find a degree 0 cocycle cD P hom0

Fperf pτP ppE
1q1q, TPpE

1qq. Given any object pE0q1 P ObpFq,
we consider a quasi-isomorphic E0, which is a Hamiltonian isotopic copy and the underlying
Lagrangian L0 intersects transversally with L1, τP pL

1
1q and L0 X U .

Proposition 5.19 and 5.22, together with the five lemma, then conclude that (5.1) is a quasi-
isomorphism.

Proof of Corollary 1.3. When P is diffeomorphic to RPn and n “ 4k ´ 1, P is spin and can be
equipped with the spin structure descended from Sn. When charpKq ‰ 2, the universal local
system P is a direct sum of two rank 1 local systems E1 and E2. This is because KrZ2s splits
when charpKq ‰ 2. Moreover, by Lemma 2.10 and Corollary 2.11, we have

HF ˚pEi,Ejq “

"

0 if i ‰ j
H˚pSnq if i “ j

(5.46)

so E1 and E2 are orthogonal spherical objects. In this case,

TPpEq »Conep‘i“1,2phomF pEi,Eq b Eiq
ev
ÝÑ Eq (5.47)
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where ev is the evaluation map. The spherical twist to E along Ei is defined to be ConephomF pEi,Eqb
Ei

ev
ÝÑ Eq. A direct verification shows that (5.47) is the same as applying the spherical twist to

E along E1 and then E2. It is the same as first applying spherical twist along E2 and then E1

because E1 and E2 are orthogonal objects.
When P is diffeomorphic to RPn and charpKq “ 2, then H˚pP q “ H˚pRPn,Z2q. In this

case, one can define a P-twist along P (see [HT06], [Har11]) which is an auto-equivalence on
Fperf . More precisely, the algebra H˚pRPn,Z2q is generated by a degree 1 element instead of
a degree 2 element so the P-twist along P is not exactly, but a simple variant of, the P-twist
defined in [HT06]. To compare (1.1) with the P-twist, we note that KrZ2s fits into a non-split
exact sequence

0 Ñ KÑ KrZ2s Ñ KÑ 0 (5.48)

it implies that P “ ConepP r´1s Ñ P q and the morphism in the cone is the unique non-trivial
one. In this case, the fact that TPpEq is the P-twist of E along P is explained in [Seg18, Remark
4.4].

A Orientations

In this appendix, we will discuss the orientations of various moduli spaces appeared in this
paper. Our goal is to prove Proposition 4.1 when charpKq ‰ 2. We follow the sign convention
in [Sei08]. For basic definitions, readers are referred to [Sei08, Section 11,12] ,which we follow
largely in the expositions.

A.1 Orientation operator

A linear Lagrangian brane Λ# “ pΛ, α#, P#q consists of

• a Lagrangian subspace Λ Ă Cn

• a phase α# P R such that e2π
?
´1α#

“ DetΩpΛq

• a Pinn-space P# together with an isomorphism P# ˆPinn Rn – Λ.

Here, DetΩ is the square of the standard complex volume form on Cn. The k-fold shift
Λ#rks of Λ# is given by pΛ, α# ´ k, P# b λtoppΛqbkq, where λtop is the top exterior power. For

every pair of linear Lagrangian branes pΛ#
0 ,Λ

#
1 q, one can define the index ιpΛ#

0 ,Λ
#
1 q and an

orientation line (i.e. a rank one R-vector space) opΛ#
0 ,Λ

#
1 q.

Now, we explain how the indices and orientation lines are related to Fredholm operators. Let
S P Rd`1, and E “ SˆCn be regarded as a trivial symplectic vector bundle over S. Let F Ă E
be a Lagrangian subbundle over BS. For each strip-like end εi, we assume F |εips,jq is independent

of s for j “ 0, 1,. On top of that, we pick a continuous function α# : BS Ñ R and a Pin-structure
P# on F such that e2π

?
´1α#pxq “ DetΩpFxq for all x P BS. In this case, we get a pair of linear

Lagrangian branes pΛ#
ξi,0

,Λ#
ξi,1
q for each puncture ξi, where Λ#

ξi,j
“ pF |εips,jq, α

#pεips, jqq, P#
εips,jq

q

for j “ 0, 1. We can associate a Fredholm operator DS,F to these data and we have [Sei08,
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Proposition 11.13]

indpDS,F q “ιpΛ
#
ξ0,0

,Λ#
ξ0,1
q ´

d
ÿ

i“1

ιpΛ#
ξi,0

,Λ#
ξi,1
q (A.1)

opΛ#
ξ0,0

,Λ#
ξ0,1
q –detpDS,F q b opΛ

#
ξd,0

,Λ#
ξd,1
q b ¨ ¨ ¨ b opΛ#

ξ1,0
,Λ#

ξ1,1
q (A.2)

where indpDS,F q and detpDS,F q are the index and determinant line of the operator, respectively.

In the reverse direction, given pΛ#
0 ,Λ

#
1 q, one can pick S to be the upper half plane H

and pF, α, P q such that the pair of linear Lagrangian branes at the puncture of S is pΛ#
0 ,Λ

#
1 q.

In this special case, the operator DH,F has the property that indpDH,F q “ ιpΛ#
0 ,Λ

#
1 q and

detpDH,F q – opΛ#
0 ,Λ

#
1 q. We call DH,F an orientation operator of pΛ#

0 ,Λ
#
1 q.

Let ρ be a path of Lagrangian branes from Λ#
1 to Λ#

1 r1s. Let S be the closed unit disk D and

pF, α#, P#q be given by ρpθq at the point e2π
?
´1θ P BS. We denote the corresponding operator

by DD,ρ and call it a shift operator. There are gluing theorems concerning how indices and
determinant lines are related before and after gluing two operators at a puncture or a boundary
point [Sei08, p11.9q, p11.11q]. In particular, we can glue an orientation operator of pΛ#

0 ,Λ
#
1 q

with DD,ρ at boundary points that both fibers are Λ#
1 and obtain

opΛ#
0 ,Λ

#
1 q b detpDD,ρq – opΛ#

0 ,Λ
#
1 r1sq b λ

toppΛ1q (A.3)

By [Sei08, Lemma 11.17], there is a canonical isomorphism detpDD,ρq – λtoppΛ1q so we have a
canonical isomorphism

σ : opΛ#
0 ,Λ

#
1 q – opΛ#

0 ,Λ
#
1 r1sq (A.4)

Therefore, there is a canonical isomorphism between opΛ#
0 ,Λ

#
1 q and opΛ#

0 ,Λ
#
1 rksq for all k P Z.

Similarly, we can consider a path of Lagrangian branes τ from Λ#
0 r1s to Λ#

0 . We can use
S “ D and τ to define an operator DD,τ which we call a front-shift operator. In this case,

we can glue an orientation operator of pΛ#
0 ,Λ

#
1 q with DD,τ at boundary points that both fibers

are Λ#
0 and obtain

opΛ#
0 ,Λ

#
1 q b detpDD,τ q – opΛ#

0 r1s,Λ
#
1 q b λ

toppΛ0q (A.5)

By [Sei08, Lemma 11.17], there is a canonical isomorphism detpDD,τ q – λtoppΛ0q so we have a
canonical isomorphism

η : opΛ#
0 ,Λ

#
1 q – opΛ#

0 r1s,Λ
#
1 q (A.6)

A.2 Floer differential and product

Let Li, i “ 0, 1, be closed Lagrangian submanifolds equipped with a grading function θLi :
Li Ñ R (see Section 3.2) and a spin structure. We assume that L0&L1. At each point x P Li,

we have a Lagrangian brane TxL
#
i “ pTxLi, θLipxq, P inxq inside TxM where Pinx is the Pinn-

space determined by the spin structure on Li. The k-fold shift Lirks of Li is given by applying

k-fold shift to TxL
#
i for all x P Li. For each x P L0 X L1, we have a pair of Lagrangian

branes pTxL
#
0 , TxL

#
1 q inside TxM . Therefore, we have the grading |x| :“ ιpTxL

#
0 , TxL

#
1 q and the
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orientation line opxq :“ opTxL
#
0 , TxL

#
1 q. We define |opxq|K to be the one dimensional K-vector

space generated by the two orientations of opxq modulo the relation that their sum is zero.
An isomorphism c : opxq Ñ opx1q between two orientation lines can induces an isomorphism
|c|K : |opxq|K Ñ |opx1q|K.

Let x0, x1 P L0 X L1 and u : S “ Rˆ r0, 1s ÑM be a rigid element in Mpx0;x1q. Using the
trivialization of ΛtopC pM,ωq together with the grading functions and spin structures on Li, we
get a trivial bundle E “ u˚TM “ SˆC and a Lagrangian subbundle F together with pα#, P#q

over BS. By (A.2), we get a canonical isomorphism

detpDuq – opx0q b opx1q
_ (A.7)

On the other hand, the s-translation R-action on u induces a short exact sequence

RÑ Tu rMpx0;x1q Ñ TuMpx0;x1q (A.8)

where rMpx0;x1q is the moduli space of strips before modulo the R-action. Therefore, we have

an identifcation of the top exterior power of Tu rMpx0;x1q and TuMpx0;x1q, respectively. As a
result, an orientation of Mpx0;x1q gives an isomorphism (see (A.2))

cu : opx1q Ñ opx0q (A.9)

Therefore, we can define the Floer cochain complex by

CF pL0, L1q “ ‘xPL0XL1 |opxq|K (A.10)

and the differential B on |opxq|K is given by summing

Bx
1,x “

ÿ

uPMpx1;xq

|cu|K : |opxq| Ñ |opx1q| (A.11)

over all x1 such that |x1| “ |x| ` 1. We have B2 “ 0 [Sei08, Section (12f)]. Similarly, given a
collection of pairwisely transversally intersecting Lagrangian branes tLju

d
j“0, xj P Lj´1 X Lj ,

j “ 1, . . . , d, and x0 P L0 X Ld, we get an isomorphism (after an orientation of Rd`1 is chosen)

cu : opxdq b ¨ ¨ ¨ b opx1q Ñ opx0q (A.12)

for each rigid element u PMpx0;xd, . . . , x1q, and hence a multilinear map between the relevant
Floer cochain complexes. Assuming the convention of orientations in [Sei08]. The actual A8
structural map µdpxd, . . . , x1q is given by summing over all |cu|K with a sign twist given by p´1q:

(see [Sei08, Section (12g)]), where

: “

d
ÿ

k“1

k|xk| (A.13)

In particular, µ1pxq “ p´1q|x|Bpxq.
We are interested in how Floer differentials and µ2-products (i.e. d “ 1, 2) behave under

shifts (A.4), (A.6). Let x P L0XL1 be equipped with a pair of Lagrangian branes pTxL
#
0 , TxL

#
1 q.

We use x̃ (resp. x̄) to denote the same intersection x being equipped with the pair of Lagrangian

branes pTxL
#
0 , TxL

#
1 r1sq (resp. pTxL

#
0 r1s, TxL

#
1 q). We denote the canonical isomorphism (A.4)
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(resp. (A.6)) at x by σx : opxq Ñ opx̃q (resp. ηx : opxq Ñ opx̄q). For x0, x1 P L0XL1 and a rigid
element u PMpx0;x1q, we denote u by ũ (resp. ū) when we regard it as an element in Mpx̃0; x̃1q

(resp. Mpx̄0; x̄1q). It is explained in [Sei08, Section 12h] that

σx0 ˝ cu “ cũ ˝ σx1 (A.14)

It is instructive to recall the reasoning behind (A.14). Consider orientation operators DH,xi ,
DH,x̃i , the shift operators DD,ρ,xi at xi and the linearized operator Du defining the Floer dif-
ferential. The left hand side of (A.14) σx0 ˝ cu is obtained by first gluing Du with DH,x1 , then
Du#DH,x1 with DD,ρ,x0 ; the right hand side cũ ˝σx1 is obtained from gluing DH,x1 with DD,ρ,x1

first, and then Du with DH,x1#DD,ρ,x1 .
Since the operators pDu#DH,x1q#DD,ρ,x0 and Du#pDH,x1#DD,ρ,x1q are homotopic (mean-

ing the underlying path of Lagrangian subspace on the boundary are homotopic), the associa-
tivity of determinant line under gluing implies (A.14).

Similarly, we have

ηx0 ˝ cu “ cū ˝ ηx1 (A.15)

so (A.14) and (A.15) implies that

σ ˝ B “ B ˝ σ, η ˝ B “ B ˝ η (A.16)

Now, we consider the Floer product. Let u PMpx0;x2, x1q where x0 P L0XL2 and xj P Lj´1XLj
for j “ 1, 2. We use u1 to denote u when we regard it as an element in Mpx0; x̄2, x̃1q. We continue
to use DH,˚ to denote an orientation operator of a Lagrangian intersection point ˚ (equipped
with pair of Lagrangian branes). The gluings of DD,ρ,x1 and DD,τ,x2 induce the σ-operator
at x1 and η-operator at x2, respectively. The operator pDu#DH,x2q#DH,x1 is homotopic to
pDu1#DH,x̄2q#DH,x̃1 , and DH,x̄2 „ DH,x2#DD,τ,x2 , DH,x̃1 „ DH,x1#DD,ρ,x1 are homotopies of
operators. It implies that there is an equality

cu “ p´1q|x1|cu1 ˝ pηx2 b σx1q (A.17)

where the sign p´1q|x1| comes from (A.14) when moving DD,τ,x2 pass DH,x1 .
We abuse the notation and denote the canonical isomorphism from CF pL0, L1q to CF pL0, L1r1sq

(resp. CF pL0r1s, L1q) by σ (resp. η). Denote the operator

p´1qdeg : a ÞÑ p´1q|a|paq (A.18)

for elements of pure degree |a| (and extend linearly), then µ1 “ B ˝ p´1qdeg. Combining (A.13),
(A.16), (A.17) we have

µ1 ˝ pp´1qdeg ˝ σq “ pp´1qdeg ˝ σq ˝ µ1 (A.19)

µ1 ˝ η “ ´η ˝ µ1 (A.20)

µ2 “ µ2 ˝ pη b pp´1qdeg ˝ σqq (A.21)

Note that (A.19) is equivalent to µ1 ˝σ “ ´σ ˝µ1 but p´1qdeg ˝σ will be used later so we prefer
to write in this form.
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A.3 Matching orientations

We use the notations in Section 4. In Section 4.5, we proved that there are bijective identifica-
tions between the moduli

MJτ pp1; pq »MJτ pcp1,q; cp,qq (A.22)

MJτ px; q_,pq »MJτ px; cp,qq (A.23)

MJτ pq1_; q_q »MJτ pcp,q1 ; cp,qq (A.24)

Let µ1,1, µ1,2 and µ1,3 be the terms of the differential of CF pL0, τP pL1qq contributed by the
moduli on the right hand side of (A.22), (A.23) and (A.24), respectively. In particular, we have

µ1 “ µ1,1 ` µ1,2 ` µ1,3 (A.25)

and (after modulo signs)

ι ˝ pidb µ1q “ µ1,1 ˝ ι (A.26)

ι ˝ µ2 “ µ1,2 ˝ ι (A.27)

ι ˝ pµ1 b idq “ µ1,3 ˝ ι (A.28)

To finish the proof of Proposition 4.1, it suffices to find a collection of isomorphisms

Ip,q : opq_q b oppq Ñ opcp,qq (A.29)

for all q_ b p P XapC0q such that

|I|K ˝ pidb µ
1q “ µ1,1 ˝ |I|K (A.30)

|I|K ˝ µ
2 “ µ1,2 ˝ |I|K (A.31)

|I|K ˝ pµ
1 b p´1qdeg´1q “ µ1,3 ˝ |I|K (A.32)

where I “ p‘q_bpPXapC0qIp,qq‘ p‘xPXbpC0qidopxqq, and idopxq is the identity morphism from opxq
to opιpxqq “ opxq for x P XbpC0q. Notice that, the sign in (A.32) (and the absence of signs in
(A.30), (A.31)) comes from the fact that (see Section 2.5)

µ1pq_ b pq “ p´1q|p|´1µ1pq_q b p` q_ b µ1ppq ` µ2pq_,pq (A.33)

In this section, we give the definition of Ip,q and check that (A.30), (A.31), (A.32) hold. Since
the sign computation is local in nature and it is preserved under the covering map T ˚U Ñ T ˚U ,
we assume that E “ P “ Sn.

First, we consider the case when |q_| “ 1 for any q_ b p P CF pP, L1q b CF pL0,Pq. In
this case, we can perform a graded Lagrangian surgery (see [Sei00] or [MWa]) P#qT

˚
qP, which

means that P#qT
˚
qP can be equipped with a grading function so that its restriction to Pztqu

and T ˚qPztqu are the same as the grading functions on Pztqu and on T ˚qPztqu, respectively.
Moreover, all P, T ˚qP and P#qT

˚
qP are spin and the (unique) spin structure on P#qT

˚
qP

restricts to the (unique) spin structure on Pztqu and on T ˚qPztqu, respectively.
In this case, we have a canonical identification of oppq, viewed as a subspace of CF pT ˚pP,Pq

and of CF pT ˚pP,P#qT
˚
qPq, respectively. Moreover, P#qT

˚
qP is Hamiltonian isotopic to τPpT

˚
qPq,

71



which sends p to cp,q, and the Hamiltonian interwines the brane structures (i.e. grading func-
tions and spin structures on the Lagrangians). Therefore, we have an isomorphism

ΦHam : oppq – opcp,qq (A.34)

from oppq Ă CF pT ˚pP,Pq to opcp,qq Ă CF pT ˚pP, τPpT
˚
qPqq. Any choice of an isomorphism

Φsur : opq_q Ñ R (A.35)

will give us an isomorphism

Φ :“ Φsur b ΦHam : opq_q b oppq Ñ Rb opcp,qq “ opcp,qq (A.36)

for every q_ b p such that |q_| “ 1. We assume that a choice of Φsur is made for the moment
(the actual choice will be uniquely determined by Lemma A.1).

Now, for general q_ b p, we consider the isomorphism (see Section A.2)

φ :“ η b pp´1qdeg ˝ σq : CF pP, L1q b CF pL0,Pq Ñ CF pPr1s, L1q b CF pL0,Pr1sq (A.37)

and we define Ip,q by

Ip,q :“ Φ ˝ φ1´|q_| : opq_q b oppq Ñ opcp,qq (A.38)

Notice that |σ1´|q_|ppq| “ |p|` |q_|´1 “ |cp,q|, and one should view this isomorphism as iden-
tifying oppq with oppσq1´|q

_|ppqq by a sign-twisted shift followed by identifying oppσq1´|q
_|ppqq

and opcp,qq by a Hamiltonian isotopy. Readers should be convinced from (A.19) that it is sensible
to use the sign-twisted shift p´1qdeg ˝ σ.

Lemma A.1. There is a choice of Φsur such that (A.31) holds.

Proof. To prove (A.31), we start with the case that |q_| “ 1. The bijection (A.23) is obtained
by the bijection MJ´pH; q_,p, xq,pq » MJ´pH; cp,q, xq,pq. As before, we identify opcp,qq with
oppq by the Hamiltonian isotopy defining ΦHam. In this case, the linearized operator Dcp,q,xq,p

corresponding to the latter moduli is homotopic to Dq_,p,xq,p#DH,q_ , where Dq_,p,xq,p is the
linearized operator corresponding to the former moduli and DH,q_ is an orientation operator
of q_. The fact that these two operators are homotopic is a reflection of the fact that we
can perform a graded Lagrangian surgery P#qT

˚
qP compatible with the spin structures when

|q_| “ 1. As a result, there is a choice of Φsur such that

cu “ cu1 ˝ pΦsur b ΦHamq : opq_q b oppq Ñ opxq (A.39)

where u P MJτ px; q_,pq and u1 P MJτ px; cp,qq is the element corresponding to u under the
bijection (A.23) for τ " 1, where the bijection of moduli spaces persists. We use such a choice
of Φsur from now on. In particular, it means that

µ2 “ µ1,2 ˝ |Φ|K (A.40)

for q_ b p such that |q_| “ 1. For general q_ b p, we use (A.21) and (A.40) to deduce that

|I|K ˝ µ
2 “ |Φ|K ˝ µ

2 ˝ |φ1´|q_||K “ µ1,2 ˝ |I|K (A.41)

which is exactly the desired (A.31).
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With the choice of Φsur chosen in Lemma A.1, we can now proceed and prove (A.30), (A.32).

Lemma A.2. The equation (A.30) holds.

Proof. To show (A.30), we again first consider q_ b p such that |q_| “ 1. Let p1 P L0 X P
such that |p1| “ |p| ` 1. The bijection (A.22) is obtained from the bijection MJ´pp1; p, xp1,pq »

MJ´pcp1,q; cp,q, xp1,pq. By the Hamiltonian isotopy defining ΦHam, we see that the linearized op-
erator corresponding to the former moduli is homotopic to the linearized operator corresponding
to the latter moduli. It implies that

ΦHam ˝ cu “ cu1 ˝ ΦHam : oppq Ñ opcp1,qq (A.42)

where u P MJτ pp1; pq and u1 P MJτ pcp1,q; cp,qq is the element corresponding to u under the
bijection (A.22). It implies that (note that |p| “ |cp,q| and µ1paq “ p´1q|a|Bpaq, see (A.13))

|ΦHam|K ˝ µ
1 “ µ1,1 ˝ |ΦHam|K (A.43)

for q_ b p such that |q_| “ 1. It also means that, whatever isomorphism we choose for Φsur,
we have

|Φ|K ˝ pidb µ
1q “ µ1,1 ˝ |Φ|K (A.44)

For general q_ b p, we use (A.19) and (A.44) to deduce that

|I|K ˝ pidb µ
1q “ |Φsur ˝ η

1´|q_||K b |ΦHam ˝ pp´1qdeg ˝ σq1´|q
_||K ˝ µ

1 (A.45)

“ |Φsur ˝ η
1´|q_||K b pµ

1,1 ˝ |ΦHam ˝ pp´1qdeg ˝ σq1´|q
_||Kq (A.46)

“ µ1,1 b |I|K (A.47)

which is exactly the desired (A.30).

Lemma A.3. The equation (A.32) holds.

Proof. To prove (A.32), we appeal to an algebraic argument instead of identifying the moduli
directly. Let Vm,n be the subspace of CF pP, L1q b CF pL0,Pq generated by opq_q b oppq such

that |q_| “ m and |p| “ n. The bijection (A.24) comes from the bijection MJ´pq1_;xq,q1 ,q
_q »

MJ´pcp,q1 ;xq,q1 , cp,qq. Therefore, for each a P Z, there is fpaq P t0, 1u such that

|Φ|K ˝ pµ
1 b idq|V1,a “ p´1qfpaqµ1,3 ˝ |Φ|K|V1,a (A.48)

We remark that the existence of f follows from the fact that the sign only depends on |p| and |q_|
(because once |p| and |q_| are determined, the local model computing the sign is determined).

By (A.20), we have φ ˝ pµ1 b idq “ ´pµ1 b idq ˝ φ so we get

p´1q1´k|Φ ˝ φ1´k|K ˝ pµ
1 b idq|Vk,a`1´k

“ p´1qfpaqµ1,3 ˝ |Φ ˝ φ1´k|K|Vk,a`1´k
(A.49)

by precomposing (A.48) by |φ1´k|K. By relabelling the subscripts, we have

|I|K ˝ pµ
1 b idq|Vm,n “ p´1qfpm`n´1q`1´mµ1,3 ˝ |I|K (A.50)

The A8-relations on CF pP, L1q b CF pL0,Pq give

µ1 ˝ µ2 ` µ2 ˝ pidb µ1q ` µ2 ˝ pµ1 b p´1qdeg´1q “ 0 (A.51)
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On the other hand, CF pL0, τP pL1qq is a cochain complex so by considering the square of differ-
ential with input in XapC1q and output in XbpC1q (Section 4.1), we get

µ1 ˝ µ1,2 ` µ1,2 ˝ µ1,1 ` µ1,2 ˝ µ1,3 “ 0 (A.52)

Since we have already proved (A.30) and (A.31), when we apply |I|K to the left of (A.51) and
on the right of (A.52), we get (after cancellation)

µ1,2 ˝ |I|K ˝ pµ
1 b p´1qdeg´1q “ µ1,2 ˝ µ1,3 ˝ |I|K (A.53)

Applying it to Vm,n and plugging in (A.50), we have

p´1qpfpm`n´1q`1´mq`pn´1qµ1,2 ˝ µ1,3 ˝ |I|K “ µ1,2 ˝ µ1,3 ˝ |I|K (A.54)

When µ1,2 ˝ µ1,3 ˝ |I|K ‰ 0, it is possible only when pfpm ` n ´ 1q ` 1 ´mq ` pn ´ 1q is even.
In particular, we have fpaq “ a´ 1 modulo 2. Put it back to (A.50), we get (A.32).

Proof of Proposition 4.1. It follows from Lemma A.2, A.1 and A.3.
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