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Abstract

We study Dehn twists along Lagrangian submanifolds that are finite free quotients of
spheres. We describe the induced auto-equivalences to the derived Fukaya category and
explain their relations to mirror symmetry.
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1 Introduction

In his early groundbreaking papers [Sei03], [Sei08], Seidel studied the Dehn twist along a La-
grangian sphere and its induced auto-equivalence on the derived Fukaya category. There are
often no automorphism of the mirror which induces such an auto-equivalence [STO0I]. It turns
out that this auto-equivalence of the mirror, called a spherical twist, can be described purely
categorically and there are a lot of generalizations of spherical twists and spherical objects,
including P-twist, family twist [Hor05], etc.

Many of these generalizations are also motivated by the corresponding symplectomorphisms
associated to Lagrangian objects. For example, Lagrangian Dehn twists along spheres can be
easily generalized to submanifolds whose geodesics are all closed with the same period. When the
Lagrangian submanifold is a complex projective space, Huybrechts and Thomas conjectured that
the resulting symplectomorphism induces a P-twist in the Fukaya category [HT06]. However, in
most cases, this is still conjectural. Recently, the authors made progress on Huybrechtz-Thomas
conjecture by showing that Dehn twists along Lagrangian projective spaces yields a mapping
cone operation predicted in the form of P-twists on the Fukaya category. In general, it is still
very difficult to compute the auto-equivalence of a given symplectomorphism.

In this paper, we investigate a new type of Dehn twist and its associated auto-equivalences.

Question 1.1. On a Fukaya category, what is the induced auto-equivalence of the Dehn twist
along a spherical Lagrangian, i.e. a Lagrangian submanifold P whose universal cover is S™?¢

A particularly interesting feature of these twist auto-equivalences, which distinguishes this
question from all previous twist auto-equivalences, is its sensitivity to the characteristic of the
ground field.

Consider the basic example of P = RP". In characteristic zero, P is a spherical object in the
Fukaya category. In Corollary we show that the induced auto-equivalence is a composition of
two spherical twists. However, when char = 2, P becomes a P™"-object and the auto-equivalence
is a P-twist as defined in [HT06]. Indeed, given a spherical Lagrangian that is a more complicated
quotient of a sphere, its twist auto-equivalence decomposes into a composition of spherical
twists in characteristic zero, but when one considers ground field of non-zero characteristics,
such twists yield an entire family of previously unknown auto-equivalences. We hope this result
contributes to the increasing interests in studying derived categories and Fukaya categories of
finite characteristics.

To explain our result, let K be a field of any characteristic and I' = SO(n + 1) be a finite
subgroup for which there exists [ c Spin(n+1) such that the covering homomorphism Spin(n-+
1) — SO(n + 1) restricts to an isomorphism I' ~ T'. Let P be a Lagrangian submanifold that
is diffeomorphic to S™/T" in a Liouville manifold (M,w) with 2¢;(M,w) = 0. Pick a Weinstein
neighborhood U of P and take the universal cover U of U. The preimage of P is a Lagrangian
sphere P in U. We can pick a parametrization to identify P with the unit sphere in R**!, and
the deck transformation with I' © SO(n +1). Then we can define the Dehn twist 7p along P in
U. Since 7p is defined by geodesic flow with respect to the round metric on P and the antipodal



map lies in the center of SO(n + 1), 7p is I'-equivariant and descends to a symplectomorphism
7p in U. We call 7p the Dehn twist along P.

We equip P with the induced spin structure from S™ and with the universal local system F
corresponding to the canonical representation of I' := 71 (P) to K[I']. The pair (P, E') defines an
object P in the compact Fukaya category F. For any Lagrangian brane (i.e. an exact Lagrangian
submanifold with a choice of grading, spin structure and local system) &€ in (M,w), we have a
left T-module structure on homx(&€,P) and a right I-module structure on homxz(P,&). Our
main result is

Theorem 1.2. Let (M*", w) be a Liouville manifold with 2c;(M) = 0 and n > 3. For any exact
Lagrangian brane € € F, there is a quasi-isomorphism of the obejcts

7p(&) =~ Cone(homz (P, &) @r P =5 &) (1.1)

in FPet where evr is the equivariant evaluation map, Cone is the Ay mapping cone and FPT
is the category of perfect Ay right F modules.

On cohomological level, Theorem [1.2| implies that for any Lagrangian branes &g, &1 € F,
there is a long exact sequence between the Floer cohomology groups

HF* (&9, 7p(€1)) = H*(CF(P,&1) @ CF(&,P)) — HF*(€0,&1) — HF*(€o,7p(€1))

It is natural to speculate that holds on the functor level, i.e. 7p = Cone(PRrP =5 Id).
Theorem only shows this is true on the object level but doesn’t contain information on the
morphisms or their compositions.

For the precise definition of P and the equivariant evaluation map evr, readers are referred
to Section 2.5 Roughly, P should be thought of as a homological-algebraic incarnation of the
immersed Lagrangian represented by the universal cover S™ — P. The equivariant evaluation
is an adaption of the usual evaluation in this context. Our main theorem has the following
consequence when P = RP"™.

Corollary 1.3. If P is diffeomorphic to RP" for n = 4k — 1 and char(K) # 2, then there are
two orthogonal spherical objects Py, Py € F coming from equipping P with different rank one
local systems, and Tp(€) = 7p,7p,(E).

If P = RP" for n odd and char(K) = 2, then P is a P-object and 7p(€) is quasi-isomorphic
to applying P-twist to € along P.

Remark 1.4. We would like to remark that Theorem[1.9 has the following reformulation. Under
the assumption of Theorem there is a spherical functor (see [AL17] for more about spherical
functors)

S K[F]perf N ]_-perf
given by V — V ®p P (see Section . Moreover, for any € € F, we have
p(€) =~ Ts(€)

in FPe where Ts is the twist auto-equivalence of FPt associated to S.



Examples and outlooks

The current paper is focused on the foundations of the theory of twist auto-equivalences as-
sociated to 7p and is the starting point of a series of works investigating examples involving
Lagrangian spherical space forms. Although we will not discuss these examples in depth, we
give an overview of several forthcoming projects to give the readers an idea on the potential
applications of the twist formula and its relations to existing works.

e In an upcoming paper [MR], the first author and Ruddat construct Lagrangian embeddings
of graph manifolds (e.g. spherical space forms) systematically in some Calabi-Yau 3-folds
using toric degenerations and tropical curves. Previous constructions in smooth toric
varieties and open Calabi-Yau manifolds using tropical curves can be found in [Mik] and
[Mat], respectively.

Lagrangian spherical space forms have been studied in some physics literature (see e.g.
[HK09]) and Dehn twists along them can be realized as the monodromy around a special
point in the complex moduli. Our study in this paper can be viewed as the mirror-dual of
the intensive study of monodromy actions on the derived category of coherent sheaves in
the stringy Kéhler moduli space (JAHKO5], [Hor05], [DS14], [DW16], [HLS16], etc).

e Hong, Lau and the first author study the local mirror symmetry in all characteristics in a
subsequent paper [HLM] when two lens spaces P, P’ are plumbed together. In this case,
the lens spaces can be identified with fat spherical objects in the sense of Toda [Tod07]
in certain characteristics. This shows that Dehn twists along lens spaces are mirror to fat
spherical twists in this case.

Independently, in the upcoming work [ESW], Evans, Smith and Wemyss relate Fukaya
categories of plumbings of 3-spheres along a circle with derived categories of sheaves on
local Calabi-Yau 3-folds containing two floppable curves. Both Lens space twists and fat
spherical twists naturally arise in specific characteristics in that setting.

e In principle, Theorem can be deduced from the Lagrangian cobordism formalism
[BC13], [BC14], [BC17]. There are several additional ingredients that need to be tak-
en into account, though. In the most naive attempt, similar to [MWal, one needs to use an
immersed Lagrangian cobordism that does not have clean self-intersections, which would
not even have Gromov compactness on holomorphic disks. A fix could be to generalize
the bottleneck immersed cobordism [MWa] to the categorical level, which should yield the
desired mapping cone relation.

Note that this bottleneck immersed formalism is different from the ongoing work of Biran
and Cornea on the immersed Lagrangian cobordism, but their framework should also enter
the picture. We have not adopted this approach since the relevant tools are still under
construction, but such an alternative approach should be of independent interest and yields
a functor level statement mentioned below Theorem

e Another possible approach to Theorem explained to us by Ivan Smith, is to realize
the Dehn twists as the monodromy in certain symplectic fibrations and apply the Ma’u-
Wehrheim-Woodward quilt formalism [MWWI1S§|. This point of view is particularly well-
adapted to the case of P = RP™. In this case, 7p can be realized as the monodromy
of a Morse-Bott Lefschetz fibration, and one could try using the techniques developed



by Wehrheim and Woodward in [WW16]. When P is a general spherical space form,
the symplectic fibration is no longer Morse-Bott and more technicalities will be involved.
Carrying out this approach would be of independent interest, and it provides another
possible approach to the functor version of Theorem

The examples mentioned above mostly involve lens spaces where the group I' is a cyclic
group. The algebro geometric counterparts of Dehn twists along more general spherical space
forms such as Chiang Lagrangians will be investigated in future works.

Sketch of the proof

The proof of Theorem [T.2] occupies the rest of this paper. Here we give a roadmap of the proof,
along with a summary of each section in the paper.

In Section [2] we review Lagrangian objects with local systems in the Fukaya categories.
When the underlying Lagrangian has finite fundamental group, we introduced its universal local
system and regard it as the immersed object coming from the universal cover the the Lagrangian.
This gives the object P in Theorem when the underlying Lagrangian is a finite quotient of
S™. We also define the equivariant evaluation map in .

Section [3|contains most technical tools we will need from symplectic field theory and gradings,
where the main new ingredient is an adaption of [EES05, [EES07, Dra04, [CRGGI15], which shows
the regularity of various holomorphic curves that we will encounter later.

In Section [4] we apply symplectic field theory to understand the holomorphic curves con-
tributing to the Floer differentials, and prove a cohomological version of Theorem that is,
Proposition [4.1] To achieve this, we first give an identification of generators on both sides by
geometrically identifying the intersections, then apply neck-stretching around P to holomorphic
curves (triangles and strips) involved in both sides of . We prove, by studying the resulting
configuration, that the limiting curves in the complement of U are identical for the correspond-
ing differentials under our earlier identification of the generators. In other words, we show that
the two cochain complexes are indeed isomorphic when the neck is stretched long enough.

In Section |5, we prove the categorical version by constructing an appropriate degree zero
cocycle between the objects on the two sides of , which induces the quasi-isomorphism in
(1.1) (and hence finish the proof of Theorem |1.2]). This cocycle ¢p lives in D, which is defined in
. Geometrically, we perturb the object Ly to a nearby copy L)} and consider its intersection
with the union of L1 and P, which consist the generators of D. There is an intersection between
Ly and L) that represents that fundamental cycle ey, which is intact after the Dehn twist because
it is away from the support. We pursue the naive idea that, this intersection (denoted as tp when
considered as a cochain in D) should be the cocyle we are looking for in D. Unfortunately, ¢p is
not closed. However, we show that its differential has the form of an upper triangular matrix in
Proposition[5.8] To supplement this fact, we computed the differentials from degree zero cochains
that that supported at intersections between L] n P. We then correct ¢35 by considering the
multiplications of terms from the term CF (P, &) ®r CF(rp((€')’),P) and prove that one can
find a cocycle ¢p in the form of Proposition[5.16] A further study in the multiplications involving
cp shows it indeed induces a quasi-isomorphism , hence proving Theorem Again, the
study of relevant p*-multiplications are based on SFT and neck-stretching. The orientation is
discussed in the appendix.
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Some notations.

e [' is a finite group.

e P is a Lagrangian submanifold diffeomorphic to S™/I" for some I' = SO(n + 1) and P is
spin (see Remark

L is the universal cover of L and 7 : L » L (or m : T*L — T*L) is the covering map. In
particular, P is the universal cover of P.

e peLisalift of pe L.

Cp.q is the geometric intersection 7(T5P n 7p(T5P)) € T*P (see (4.5)).

P denotes P equipped with the universal local system, and € is a Lagrangian equipped
with some local system.

Standing Assumption: (M,w) is a Liouville manifold with 2¢; (M, w) = 0, and a fixed choice
of a trivialization of (AfCOp T*M)®? is chosen. All Lagrangians are equipped with a Z-grading
and a spin structure.

2 Floer theory with local systems

In this section, we discuss the Floer theory for Lagrangians with local systems in the spirit of
[Abol2a]. In Section we review the definition of the Fukaya category. Universal local systems
are introduced in Section [2.2 and accompanied with some algebraic results surrounding this
notion. These results might be known to some very experts but were not found in the literature
to the best of the authors’ knowledge. We have intentionally spelled them out in the most
explicit way in our capability, with in mind its comparison with immersed Floer theory, from



which some readers could find independent interest. These preliminary results enable us to
explain the object P in Section and the evaluation map in Section [2.5] Discussions about
gradings can be found in [Sei00], [Sei08| Section 11,12].

2.1 Fukaya categories with local systems

Let L be a closed exact Lagrangian submanifold in (M, w) with a base point of, € L. Let E be
a finite rank local system on L with a flat connection V. For a path c: [0,1] — L, we denote
the parallel transport from E ) to E(;) along ¢ with respect to the connection V.

IC : Ec(O) — Ec(l)'

We use the monodromy action from I' := 71(L) to E,, to endow (E,V) a right I'-module
structure. More explicitly, for y € E,, and g € I, the right action is given by

p:T — End(E,,) (2.1)
g (y—Igy). (2:2)

In particular, (yg)h = In(I4y) = Ig«ny = y(g * h), where = stands for concatenation of paths
(i.e. g goes first). We use € to denote the triple (L, £, V). For a Hamiltonian diffeomorphism
¢ € Ham(M,w), we define ¢(E€) := (¢(L), ¢+ E, 9+ V).

Let & := (L;, E', V") for i = 0,1. A family of compactly supported Hamiltonian functions
H = (Hy)seqo,1 is called (Lo, L1)-admissible if

o™ (Lo) MLy (2.3)
)

where ¢ is the time one flow of the Hamiltonian vector field Xy = (Xg, )teo1]- Let X (Lo, L1
be the set of H-Hamiltonian chord from Lo to L; (i.e.  : [0,1] — M such that @(t) = Xg(x(t)),
2(0) € Lo and z(1) € Ly). The Floer cochain complex between €% and ! is defined by

Now, we want to introduce some notations to define the differential for CF (€Y, &) as well
as the Ay -structure for a collection of Lagrangians with local systems.
Let R4 be the space of holomorphic disks with d + 1 boundary punctures. For each
S e R, one of the boundary punctures is distinguished and it is denoted by &. The other
boundary punctures are ordered counterclockwisely along the boundary and are denoted by
&1,...,&q, respectively. We denote the boundary component of S from §; to &;41 by 0;5 for j =
0,...,d—1. The boundary component from &; to &y is denoted by 04S. For j = 1,...,d, we pick
an outgoing/positive strip-like end for §;, which is a holomorphic embedding €; : R>¢x[0,1] — S
such that
Ej(S,O) € 6j,15
ej(s, 1) € (9]5 (25)
im0 €5(5, 1) = &;
We also pick an incoming/negative strip-like end for &), which is a holomorphic embedding
€0 : Rgo x [0,1] — S such that
60(8, O) € 605
€o(s,1) € 045 (2.6)
limSH,OO 60(5, t) = f(]



The strip-like ends are assumed to have pairwise disjoint image and they vary smoothly with
respect to S in R4+!,

Let {8j};-1:0 be a finite collection of Lagrangians with local systems. For j = 1,...,d,
let Hj be a (L;-1,L;j)-admissible Hamiltonian (see (2.3)). We also pick a (Lo, Lq)-admissible
Hamiltonian Hy. For each S € R%*! and each collection {H, }3-1:0, we pick a C (M )-valued one-
form K € Q'(S,C%,(M)). Let Xg € Q1(S,C®(M,TM)) be the corresponding Hamiltonian-
vector-field-valued one-form. We require that

* —
{ EjXK—XH].dt (27)

Xklo,s =0

When d = 1, we assume that K(s,t) = Ho; = Hi for all (s,t) € R x [0,1]. We also assume
that K varies smoothly with respect to S and is consistent with respect to gluing near boundary
strata of the Deligne-Mumford-Stasheff compactification of R4

Let JM be an w-compatible almost complex structure that is cylindrical over the infinite end
of M (see Definition . Let J(M,w) be the space of w-compatible almost complex structures
J such that J = JM outside a compact set. For j = 0,...,d, let J; = (Jjt)ie[0,1] be a family
such that J;; € J(M,w) for all t. For each S € R%*! and each collection {Jj}?zo, we pick a
domain-dependent w-compatible almost complex structure J = (J,),es such that

{ J, € J(M,w) for all z (2.8)

Joej(s,t) = Jj, for all j,s,t

When d = 1, we require that J = (Jst)(s,erx[0,1] = (Jt)te[o,1] is independent of the s-direction.
We assume that J varies smoothly with respect to S in R%*t! and is consistent with respect to
gluing near boundary strata of the Deligne-Mumford-Stasheff compactification of R4*1.

Let x; € X(L;j—1,L;)forj=1,...,dand zg € X (Lo, Ly). For d > 1, we define M/ (zg; 24, . ..

to be the space of smooth maps u : § — M such that

S e RA+1

(du — X )%t = 0 with respect to (J2)y(2)
u(0;5) < Lj for all j

limg—,+00 u(€;(s,t)) = x;(t) for all j

(2.9)

When d = 1, we define M*+/(xq; z1) to be the corresponding space of maps after modulo the R
action by translation in the s-coordinate. For simplicity, we may use M(zo; g4, ..., x1) to denote
MES (29524, . .., w1) for an appropriate choice of (K, .J).

Remark 2.1. In Section [J, we will encounter situations where K = 0 and J is a domain
independent almost complex structure. In these cases, J has to be chosen carefully to achieve

regularity, so we will emphasize J and denote the moduli by MY (xo; 24, ..., x1) therein.

When every element in M(zo;z4,...,21) is transversally cut out, M(xzg;xg,...,21) is a
smooth manifold of dimension |zg| — 2?21 || + (d — 2), where | - | denotes the Maslov grading
(see Section [3.2)).

For each transversally cut out rigid element u € M(xg; x4, ..., 21), we define

iR Hom(Ed*(})), Egd(l)) X e X Hom(Egl(o), Eil(l)) — Hom(Ego(O), Ego(l))

Zd

p (..t (a) = sign(u) I, 0 o -+ ol o In,u(a) (2.10)



where dqu = ulg,s for 45 being equipped with the counterclockwise orientation, and sign(u) €
{£1} is the sign determined by u (see Appendix [A). Finally, we define the A-operation by

pdCF(ESL el x .. x CF(E%, Y — CF(EY, &%)
ph?, .t = > T CILNR ) (2.11)

ueM(zo;xg,...,x1),u rigid

The fact that the auxiliary structures can be chosen generically and consistently in the
sense of [Sei08], and that {u?}4>1 gives rise to an Ay, structure follows the argument in [Sei0S]
line-by-line. This defines the Fukaya category Fuk(X) that we will use throughout.

2.2 Unwinding local systems

The goal of this subsection is to give a computable presentation of CF(E°, &), where &' are
local systems of the same underlying Lagrangian. In particular, the identification and
will be used frequently later.

Let L be a closed exact Lagrangian and L be its universal cover with covering map = : L — L.
Let or, € L be a base point of L and we pick a lift o, € L such that m(or,) = or. We assume
throughout that I" := m(L,0r) is a finite group so that L is compact. For each q € L, there
is a unique path c¢q (up to homotopy) from or, to q and we identify q with the homotopy class
[T 0 cq]. We have a left I'-action on L given by

99 := g * [(7 o cq)] (2.12)

for g € m1 (L, 0r), where g [(mocq)] is a homotopy class of path from oy, to 7(q) and we identify
it as a point in L. It is clear that h(gq) = (h*g)q. If we pick a Morse function and a Riemannian
metric on L to define a Morse cochain complex C*(L), we can lift the function and metric to L
to define a Morse cochain complex C*(L). The I'-action on L induces a left I'-action on C*(L).
The I'-invariant part of C*(L) can be identified with C*(L), in other words,

C*(L) = Rhomgri—moa(K, C*(L)) = (C*(L))" (2.13)

We want to discuss the analog when L is equipped with local systems.

Given a local system F on L, we use E = 7*FE to denote the pull-back local system. For a
path ¢ : [0,1] — L, we use I. to denote the parallel transport with respect to the pull-back flat
connection on E.

Let E be local systems on L for i = 0,1. We have right actions (see (2.1]))

p':T — End(E.) (2.14)

for i = 0,1. It induces a left -module structure on Homy (E? ElL) by

or,’ o

b g-i=p(g ) oyop(y) (2.15)
Lemma 2.2. Let E' be local systems on L for i = 0,1. Then there is a DG left T'-module
isomorphism

$: CF((L,E"),(L,E")) ~ C*(L) ® Homxk (E) ,E;,) (2.16)

or,”’

where the differential on C*(L) @k Homg (ES , Ey ) is only the differential on the first factor,

oL

and the I'-action on it is given by g- (r®vY) = gr ® g -1 (see (2.12)) and (2.15))).



Proof. We use the Morse model to compute the Floer cochain complex. Let C*(L) be a Morse
cochain complex and C*(L) be its lift. We use dr, and J1, to denote the differential of C*(L)
and C*(L), respectively.

For each q € L and both i = 0, 1, there is a canonical identification

I E, > E (2.17)

where cq is the unique (up to homotopy) path from oy, to q. Therefore, it induces a trivialization
of E’. We can also trivialize Homg(E?, E') using the canonical isomorphism
Homg(EY,Ey) — Homg (E) ,E, ) = Homg(Ej ,E} ) (2.18)

Y I{}al ool (2.19)

Using the trivialization (2.18)), (2.19), we have a graded vector space isomorphism (2.16]).
To compare the differential on both sides of (2.16)), let u be a Morse trajectory from qg to q1

contributing to d, and hence the differential of CF((L,E°), (L, E!)). For q1 ® ¥ € C*(L) ®x
Homg(EY ,El ),

or,? oy,
(27 a1 ®))) (2.20)
= sign(u)qo ®Icgollalujcqlwlcglllaoulcqo (2.21)
=sign(u)qo ® ¥ (2.22)

where the second equality uses the fact that 7 (L) = 1. Therefore, ® is an isomorphism of
differential graded vector spaces if we define the differential on C*(L) @k Homg(EY, , E} ) to
be 0L, acting on the first factor.

Finally, we want to compare the left I'-module structures. In CF((L, E?), (L, E')), the action
on ¢ € Homg (EY, EY) = Homg(EY, E}) is given by

Vg =1 (2.23)
where the last ¢ lies in Homg (Ej, Eyq) = Homx (EY, E}). For q®y € C*(L)@xHomx (EJ, , E}, ),
(9@ (q® ) (2.24)
=9q® Icgi}ICq¢Ic;1[ng (2.25)
—9a® I, 191, (2.26)
which is exactly the one given in and . It finishes the proof. O

We have the following consequence of Lemma [2.2

Lemma 2.3. Let E' be local systems on L for i =0,1. Then
CF(€°% ) = Rhomg(r)—moa(K, C*(L) ®x Homx (EY, , E, ) (2.27)

or,”? oy,

Proof. We use the notation in the proof of Lemma [2.2] Let u be a Morse trajectory from ¢y to
q1 contributing to d1,(q1). Let qg € L be a lift of gy and let q; € L be the corresponding lift of
g1 such that w lifts to a Morse trajectory u from qqg to q;. Let ¢ € HomK(Egl,Eél). By (2.10)),
we have

pt(¥) = sign(u)louthlogu (2.28)
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In the above notation, we regard u as a degenerated holomorphic strip and have suppressed
the direction of parallel transport for brevity, since it should be clear from the context.
By definition, Homg (EY, ,El, ) =~ HomK(Egj,quj) for 7 = 0,1 and for all g € I". Therefore,

94d;’ 4949,
for ¢ € Homg (E)y,, Eyq,) € CF((L,EY), (L,E")),
p* (1) = sign(gu) o, gutloygu (2.29)
= sign(u)lo,u¥1o5u (2.30)

where 9" is the term in the differential of CF((L,E°), (L, E!)) contributed by gu, and the

second equality uses H omK(qul,E;ql) ~ H omK(Egl,E1 ). The T" action on the generators

(qQ®1 — gq®4) and differentials (u* — p9%) of CF((L, EY), (L, E!)) are free and the invariant
part can be identified with CF(€°, &) so

CF(EOa 81) = RhomK[F]—modGKa CF((L7 E0)7 (La El))) = (CF((L7 EO)? (L7 El))>r (231)
and the result follows from Lemma O

2.3 The universal local system

In this subsection we introduce the universal local system and hence, in particular, the object
P in Theorem [1.2l Some elementary properties of the universal local system will also be given.
Let us start from a general discussion of universal local systems.

Definition 2.4 (Universal local system). The universal local system E on L is a local system
that is uniquely determined by the following conditions: As a vector space, E, = K(m1(q)) for
qe L. For anyy € n'(q) and ¢ : [0,1] — L such that c(0) = q, the parallel transport of E
satisfies I.(y) = c(1), where ¢ : [0,1] — L is the unique path such that woc = ¢ and c(0) = y.

As usual, we have the monodromy right I'-action p on E,, (2.1). On top of that, we can use
the left I" action on L (2.12)) to induce (by extending it linearly) a left I' action on E, for all
g € L. These two actions on F,, commute and in general, we have

Lemma 2.5. Let E be the universal local system on L. Forqe L, ye E;, ge T and c: [0,1] —
L such that ¢(0) = q, we have

g(Ley) = Ie(gy) (2.32)

Proof. Without loss of generality, let y € 7 1(q) We can identify y with the homotopy class
[7 o cy] from o, to g. Then we have (see ([2.12))

9(ley) = g = [wocy] = [c] = Le(gy) (2.33)
where [c] is the homotopy class of path from ¢(0) to ¢(1) that ¢ represents. O

Let € = (L, E, V). Since we have a left action on E, for all ¢ € L, it induces a left I" action
on CF(&,¢€)

e (2.34)

for any & € Ob(F). Similarly, for any & € Ob(F), we have the induced right I" action on
CF(E, &)

¥() = (g) (2.35)
As an immediate consequence of Lemma and the definition of u* (see (2.10)), we have

11



Corollary 2.6. Let E be the universal local system on L. Let Ly...,L,,Kq,...,Ks € Ob(F).
Let Yy; € CF(KJ',K]'JFI) fO’l“j = 1,...,8 - 1, x; € CF(LJ',LJ'+1) f07”j = 1,...,’/“— 1, wg €
CF(&,%1) and ¢y € CF(L,, &), we have

P Ys—15 -+ Y1, V29, V1, Trety oo, 1) = L (Ys—1, - - > Y1, V2, U1, Tty - - ., T1) (2.36)

for all g € I, where u is an element in the appropriate moduli contributing to the A -structural
maps of F. When s =0 (resp. r =0), we have

gt (Y1, xr—1, ... 1) = p (g1, Tp—1, ..., 21), TEspectively (2.37)
Mu(ys—h - Y1, 1/)29) = :u’u(ys—lv -y Y1, ¢2)9 (238)

Remark 2.7. We offer an alternative way to understand (2.36)) using L instead of . For each
q € L and a lift q of g, we can view q as a point in L or as an element in E,;. Therefore, we
can identify the generators of CF(Ty L, &) and the generators of CF(uUgerTy L, L) by

E,2q—qeT,LnL (2.39)
Dually, CF(E, Ty L) can be identified with CF(L, UgerT,qL) by
Homg(Ey,K)3q" —qeLnTJL (2.40)

The right action on Homg(E,,K) is given by q¥g = (97'q)V, which corresponds to the
right action on L by qg = ¢ 'q.

Now, we want to make connection with Corollary [2.6. For simplicity, we assume that K
and Ly are Lagrangians without local systems and Y1 = qi € Eq, V2 = qf € Homg(Ey,,K).
Let v be 0,415, which is the component of 0S with label L.

Since the parallel transport of E can be identified with moving the points in L, for u* to be
non-zero and contribute to the RHS of , there is exactly one g € I' and one lift of ul,
which is denoted by u : v — L, such that u goes from gqi to q2. For each h € I, the maps
hu:~ — L are the other lifts of u|, and hu goes from hgq; to hqs.

Roughly speaking, one can define a Floer theory by counting (u,u), where u is as in Corollary
andu is a lift of u|,. This definition is explained in details in [Dami12] and the outcome is the
same as Lagrangian Floer theory with local systems. In this setting, the pair (u, hu) contributes
to

/L(%hU) (ysfla < Y1, hOIZ» hgqh Lr—1y--- 73:1) (241)

and it equals to p(*" (Ys—1y- -+, Y1,92, 91, Tr—1, - - -, x1). Under the identification (2.39)), (2.40)),
it means that (when h = g=1)

1 _
/’L(U7U)<y$—17--'7y17q§/7.qq17377’—17...;ml) :M(uyg U)(ys—h'"’yl?(g 1q2>v’q17x7"_1""’x1)
which is exactly the same as (2.306))

The rest of this subsection is devoted to the self-Floer chain complex CF(€, ) when E is
the universal local system of L. Let R := K[I'] and 1p be the unit of I". For h € T, we define
T € Homg(R, R) by

.
l9) = { (1)F g? e_I}‘l\{h_l} (2.42)

12



Note that R = E,, so, by Lemma [2.3, we have
CF(&,&) = (C*(L)®@ Homk (R, R))" (2.43)

as a ['-module.

In particular, we have p', 2 on (C*(L)®@ Homxk (R, R))" inherited from CF(€, €). In Lemma
we proved that p! coincides with the Morse differential dy, on the first factor. The same
line of argument can prove that u? coincides with the Floer multipliciation on C*(L) tensored
with the composition in Homg (R, R) (i.e. 3 (—,—)® —o —).

Let & : C*(L) ® R — (C*(L) ® Homk (R, R))" be the graded vector space isomorphism
given by

<I>2:$®h»—>Zg:U®g~Th=Zgw@Ig_lThIg (2.44)
gel’ gel’

Lemma 2.8. We have the following equalities
Oyl opl o ®y(z®@h) = dL(x) @M (2.45)
<I>2_1 o uz o (Po(x2 ® ha), Po(x1 ® hy)) = ,u%(xg, hax1) ® hahy (2.46)
As a consequence of (2.45)), we have H*(CF(E,€)) = H*(L)® R as a vector space.
Proof. For x ® h € C*(L) ® R,

Oyt opl o By(z @) (2.47)
=0, ()] dulgr) ® Iy-17hly) (2.48)
gel
=8, () 90L(z) ® Iy-17iI,) (2.49)
gel’
=0p(z)®h (2.50)

where the second equality uses Corollary [2.6]
For z; ® h; € C*(L)® R, i = 1,2, we have

@;1 Ou2 o (<I>2($2®h2),<1>2(:c1®h1)) (2.51)
=0, (D) wi(gew2 g11) © LTy LoD iy Ig,) (2.52)
91,926l

For Th2I92Ig;17'h1 and hence IgnghQIQZIg;1 Th, 19, to be non-zero, we must have
Ir=gyt#go=hy' (2.53)

and for any go, there is a unique g (= g2h2) such that g;° lgy = hsy 1 Therefore, the sum becomes

@2—1( Z #%(gzx% g2hax1) ® IgnghQIh;”—fuIg1Ig;1[gz) (2.54)
g2€l’
:(1)2—1( Z 92/1%(952’ haz1) ® IgnghQIhnghll—h2Ig2) (2.55)
go€l’
=051 (] 920, (w2, howr) © I 1Thoy Igy) (2.56)
go€l’
=M%($2,h2$1) ®h2h1 (2.57)
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where the second equality uses that u% is I'-equivariant, and the third equality uses 1p,, I 17, Ip, =
2

Thidhy = Thoh, -
O

2.4 Spherical Lagrangians

In this subsection, we apply the results from the previous subsections to the case that L = P
such that

P is diffeomorphic to S™/T" for some I' € SO(n + 1), so that the I'-action is free, and P is spin
(2.58)

Remark 2.9. A finite free quotient of a sphere S™/T is spin if and only if there exists I c
Spin(n + 1) such that the covering homomorphism Spin(n + 1) — SO(n + 1) restricts to an
isomorphism I' ~ T'.

First, we apply the discussion from Section [2.2}

Lemma 2.10. Let E* be local systems on P for i = 0,1. If char(K) does not divide ||, then
HF(EY, &Y = H*(S™) ®HomK[p](80 &l,) as a K-vector space.

or?

Proof. We apply the Leray spectral sequence to Lemma The Es-page is given by
EP" = HP(T, HI(S™) ®x Homi (&g, , €5, )

where the I'-action is given by t® v — x®g -1 and g-¢ = p'(g7 ) oo p°(g). As a result, we
have

ES? = HY(S™) @ Ext (T, Homg (€3, €}.))
When char(K) does not divide |I'|, K[I'] is semi-simple by Maschke’s theorem. Therefore,
Ext? (T, Homg (€9 8(1,L)) # 0 only if p = 0. It implies that the spectral sequence degener-

or,?
ate at Ey-page and the result follows from the fact that Ext (I, Homg(€S, , &} )) consists of
¢ € Homg (€Y , &L ) such that g -+ = 1, which is clearly Homgr(€J , €} ). O

Corollary 2.11. Let £° be any local system on P corresponding to an irreducible representation
of T'. If char(K) does not divide |I'|, then HF(EY, %) = H*(S™).

Proof. 1t follow from Lemma and Schur’s lemma HomK[F](EO EOL) = K. Notice that, the

or,’ ~o
ring structure is also determined uniquely by dimension and degree reason. O

Now, we want to compute the cohomological endomorphism algebra structure of the universal
local system on P using Lemma[2.8] Since the universal local system on P plays a distinguished

role in the paper, we denote it by P. We define u', 4> on C*(P) ® R by (2.45)) and (2.46)),
respectively. By (2.45)), we know that H*(C*(P)® R) is given by H*(P) ® R. We are going to
determine the algebra structure in the next lemma. Before that, we recall a convention

Convention 2.12. If C is a differential graded algebra (eg. a K-algebra with no differential),
then C is viewed as an Ay algebra by

p(a) = (~1)llo(a) (2.50)
12 (ay, ag) = (=1)1%la aq (2.60)

and pF =0 for k = 3, where a,ag,a1 € C and 0 is the differential of C.
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Lemma 2.13. Let P be the universal local system on P and R := K[I'|. Then the Floer
cohomology HF (P, P) = H*(S™) ®k R as a K-algebra, where the ring structure on the right is
the product of the standard ring structure.

Proof. Pick a Morse model such that C*(P) has only one degree 0 generator e and one degree n
generator f. The corresponding Morse complex C*(P) has |I'| degree 0 generator {ge}ger and
II'| degree n generator {gf}ger. It is clear that }, ge represents the unit of H O(P). Therefore,
{[>, 9e] ® h}per are the degree 0 generators of H(C*(P)® R) (see the correspondence of
[2.45)).

Similarly, if x represents a generator of H"(P), then {[x]® h}per are the degree n generators
of H(C*(P)® R). It follows from that

P[> gel ® ha, Y gel ® h1) = [ ge] ® hahy (2.61)
p2([2] ® ha, [ ge] ® 1)) = [] ® hahy (2.62)
121D 9el ® ha, [2] ® ) = (1) [hga] ® hohy = (—1)1"[2] @ hoh (2.63)

Therefore, H(C*(P)® R) = H*(S™) ®x R as a K-algebra (see Convention [2.12). The result now
follows from Lemma (see (2.31)), (2.44). O

Let 0y = 1po(gny) ® g € H*(S™) ® R. By Lemma we have a left T'-action on HF'(&,P)
given by
7 [0, 2)] (2.64)

for any € € F. On the other hand, we have another left I'-action on CF(€,P) given by (2.34]),
which descends to a left I-action on the cohomology HF'(E,P).

Lemma 2.14. When & = P, the two left T'-actions (2.64) and (2.34) on 61, € HF(P,P)
coincide.

Proof. We use the notations in the proof of Lemma 2.13L The element 6, € HY(S") ® R is
represented by >, ge®@h € C°(P) ® R. We have (see ([2.44)))

@2(2 ge®h) = Z 9291€ @ I 171y, (2.65)
g 92,91
= > 9e @I, (Y Iyl (yy-1)I, (2.66)
g g

Undoing the trivialization (2.16)), we have

(D) ge®@h)) = > ge ® I, (O Ty7nI(gry-1)I 1 (2.67)
g g g

where ce : [0,1] — P is a path from op to e. With respect to the identification (CF((P,E), (P,E)))l =
CF(2,7) (see (231)),

o (D2) g ® 1) = Inoce O Iy ThI(gr)-1)I(oce)-1 € Hom(Ee, E.) = CF(P,P) (2.68)
g I
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Without loss of generality, we can assume e = o, so

Y Iymliyy-1 € Hom(E,,, B, )  CF(P,P) (2.69)

represents 6, under the isomorphism HF°(P,P) = H°(S") ® R.
For each y € I' c E,,, there is a unique g'(= h * y) such that 7,1-1(y) # 0. Therefore,
Yo Lyl (gn-1(y) = hy for all y € E,, . In particular, it means that

Zlg"rh[(g')*l = h(Z Ig/’]‘lrf(g/)—l) (270)
gl gl

s0 0, = h#1,. and hence p2(0y,601.) = (—1)1%v19), = ho,,. as desired.
O

Remark 2.15. From the proof of Lemma we see that the identity morphism at E,, rep-
resents the cohomological unit. It is in general true that if one picks a Morse cochain complex
for a Lagrangian submanifold L such that there is a unique degree 0 generator ey, representing
the cohomological unit of C*(L), then the identity morphism of E,, is a cohomological unit of
CF(E,E), where € is a local system on L.

Corollary 2.16. The two left T-actions [2.64) and [2.34) on HF*(E,P) coincide, up to (—1)F,
for all € € F.

Proof. Let x € HF(E,P). We have

[12(8g, )] = [1*(4* (8, 617), )] (2.71)
= [1*(gb1y., 2)] (2.72)
= [91* (1., )] (2.73)
= (—1)l*lgg (2.74)

where the first equality uses Lemma the second equality uses Lemma[2.14] the third equality
uses Corollary and the last equality uses that 61 is a cohomological unit. O

Similarly, for any € € F, we have a right I'-action on HF(P, ) given by
v s [, 6,) (2.75)

and another right action on HF (P, ) given by (2.35). The analog of Corollary holds, (i.e.
p2(01,,05) = 05, = 61.h) and we leave the details to readers.

Corollary 2.17. The two right I'-actions (2.75) and (2.35) on HF(P,E) coincide (without
additional factor of —1) for all € € F.

2.5 Equivariant evaluation

In this subsection, we want to give the definition of

Ty(&) := Cone(homx(P, &) @r P =5 €) (2.76)
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that arises in in the context of Fukaya category. We will keep the exposition minimal and
self-contained here.

Let FP°™f be the DG category of perfect Ay right modules over . We have a cohomologically
full and faithful Yoneda embedding [Sei08], Section (2g)]

V:F — Fret (2.77)

By abuse of notation, we use € to denote V(&) for € € Ob(F).
Let P be a Lagrangian brane such that 7;(P) = I', and P be the object with underlying
Lagrangian P equipped with the universal local system E. Let & € Ob(F). By Corollary

we know that (see (2.35)))

(W) g = pr(g) (2.78)

for ¢ € homz (P, €) so homg(P, €) is a DG right I'-module.
Given a DG right T-module V, we define an object V ®r P € Ob(FPe"f) as follows: For every
X € Ob(F), we have a cochain complex

(V @r P)(X) :=V & homz(X,P) (2.79)
where the left T'-actions on homx(X,P) is given by (2.34). By Corollary we have

i (vg) @ = pi (v)g 1
{ U‘é@ pr(gy) = v‘é@ gul(v) (2.80)

forv®1y e V®r homr(X,P) so
p0 0@y (DT (0) @ Y + 0 @ i (v) (2.81)

is a well-defined differential on V ®r hom (X, P).
The Ay right F module structure on V ®r P is given by

=t (0@, g1, T) — V@ HE(Y, Ta-1, -, 71) (2.82)

for v®1 € V. ®r homz (X4, P) and x; € homz(X;, Xj41). The morphism p!l?=! is well-defined
by Corollary and we leave it to readers to check that {,u”j }?O:o satisfies Ao, module relations
[Sei08, Equation (1.19)]. In particular, we have an A, right 7 module homz(P, £) ®r P.

Now we want to define an A, morphism

evr : homg(P, €)@ P — & (2.83)
as follows. For 9?2 @ ¢! € homz(P, &) ®r homx(X4,P) and x; € homz(Xj, Xj+1), we define
evi'i‘ : (¢2 ®1/11,.’13d_1, s 7'1"1) = M.C;—'+1(1/}27¢17xd—17 L) 1"1) (284)

The well-definedness follows from Corollary again. The fact that evpr = {evl‘i}dzl defines an
Ao, morphism follows from the Ay, relations of F. As a consequence, we can define

Tp(€) := Cone(homr(P, &) @r P =5 &) (2.85)
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as the Ay mapping cone for the A, morphism evr (see [Sei08| Section (3e)]). In particular, for
X € Ob(F), we have a cochain complex

Tp(E)(X) = (homz(P, E) ®r homr(X,P))[1] ® homr(X, E) (2.86)
with differential and multiplication given by

o) @2 @9, 2) = ()17 k() @ 0! + 02 @ pk (v, () + p3 (%, 0Y) (2.87)
Ky (W2 @Y 2),a) = (W @ pE(W', a), pi(z, a) + p (¥, 01, a)) (2.88)

Finally, we want to state a functorial property of Tip(&).

Corollary 2.18. Let Fy, F1 be the Fukaya categories with respect to two different sets of choices
of auziliary data. The Lagrangian branes P, & above will be denoted by P;, E;, respectively, when
we regard them as objects in Fj, for j = 0,1. Let G : Fo — F1 be a quasi-equivalence sending
Py to P1 and Eg to E1. Then

G(Tpy(E0)) ~ Ty, (1)

The proof is straightforward along the same line as [Sei08, Lemma 5.6] and is left to interested
readers.

Remark 2.19. A thorough discussion of the categorical notions can be found in [MWH], which
is the extended version of the current paper. The readers can also find an intrinsic proof of

C’orollary and an explanation of Remark in [MWD].

3 Symplectic field theory package

The main goal of this section is to derived the regularity results (Proposition , and
3.30) we need for the later sections. The main ingredient is a trick given in [EESQT7], combined
with many special features of our setup. For clarity, we reall and specialize some generalities
from symplectic field theory to our context, introducing notations that will be used specifically
in our proof. This consists the main contents from Section to Section

The regularity results in this section allow us to establish Proposition [3.32] in Section [3.7]
which gives us enough control on the bubbling of the moduli of maps we need in Section |4 and

Bl

For more general backgrounds in symplectic field theory, readers are referred to [BEHT 03],
[EES05], [EES07], [CEL10], [CRGG15] etc.

3.1 The set up

Let (Y, a) be a contact manifold with a contact form a.

Definition 3.1. A cylindrical almost complex structure on the symplectization SY := (R x
Y,d(e"a)) is an almost complex structure such that

e J is invariant under R action

e J(0,) = Ry, where R, is the Reeb vector field of o
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o J(ker(a)) = ker(a)
e da(,J)|ker(a) 78 @ metric on ker(a)

The set of cylindrical almost complex structures is denoted by J%¥ (Y, ). If I — R is an
interval, we call J a cylindrical almost complex structure on (I x Y,d(e")) if J = J'|;xy for
some J' € J Cyl(Y, a). Let (M,w, @) be a Liouville domain with a separating contact hypersurface
(Y,a = 0|y) such that Y n 0M = ¢J. By the neighborhood theorem, there is a neighborhood
N(Y) © M of Y such that we have a symplectomorphism

Pyt (N(Y),wln)) = (=€ €) x Y, d(e'a)) (3.1)

for some € > 0.

Let J” be a compatible almost complex structure on M such that (®yy))«(J%n(y)) is
cylindrical. We say that a smooth family of compatible almost complex structure (J7 )’TE[0,00) on
M is adjusted to N(Y') if

{ JT|M\N(y) = J0|M\N(Y) for all 7 (3 2)

for each 7, we have ® 4y« (N(Y), J7|n(y)) = ((=(7 +€),7+€) x Y, (J7))

where <I>JTV(Y) is an isomorphism of almost complex manifolds, the diffeomorphism @;V(Y) )

(P N(y))_l is the identity on the Y factor, and (J7)’ is the unique cylindrical almost complex
structure such that (J7)'|_cxy = (Pny))« (I ny))-

Let M~ be the Liouville domain in M bounded by Y and M* = M\(M~\0M~). Let SM~
and SM™ be the positive and negative symplectic completion of M~ and M™, respectively.
Given (J7);e[0,00), there is a unique almost complex structure J~, JY and Jt on SM~—, SY
and SM™*, respectively, such that (M~,J7|y-), (N(Y),J |n(yy) and (M*, J7|js+) converges
o (SM~,J7), (SY,JY) and (SM ™, J"), respectively, as 7 goes to infinity. More details about
this splitting procedure can be found in [BEHT03, Section 3].

Remark 3.2. There is a variant for being adjusted to N(Y'). For a fired number R > 0, we
call a smooth family of compatible almost complex structure (JT)Te[ng) on M is R-adjusted to
Y) if (3.2) is satisfied but the property of (J7)' is replaced by the following conditions.

(JT)|[=(r+e—2R),r+e—2R]xY 15 cylindrical for all T

(J7) |( )XY = (q>N(Y)) (JO|N )) for all T

(Jﬁ) | (T1+e),—(T1+e—2R)|xY = (¢7Tl77'2)*(JTQ)/‘(—(T2+6)7—(7'2+6—2R)]><Y fO’I’ all T, 72
(JTl) ’ [T1+e—2R,m1+e)xY = (¢71,72)*(J72)/’[7'2+6—2R,7'2+5)><Y fOT all 71,72

where ¢, ., (—(m2 +€),—(ma + € =2R)| x Y — (=(11 + €),—(11 + € = 2R)] x Y and ¢}, ., :
[+ €—2R, 7o +¢€) xY — |1 +€—2R, 71 +¢€) xY are the r-translation.
When R = 0, being R-adjusted to N(Y') is the same as being adjusted to N(Y'). For R > 0,

we can also define J*,JY accordingly. In this case, J* (resp. J~) are cylindrical over the end
(—0, —2R] x M < SM™ (resp. [2R,0) x OM~ < SM~).

Let L be a Lagrangian submanifold in M such that Ln N (Y) = (—¢, €) x A for some (possibly
empty) Legendrian submanifold A. Let L* := LnM=*. We define SL™ = L~ U(RsoxA) € SM~
and SLT = LT U (Rgg x A) € SM™ which are the cylindrical extensions of L™ and Lt with
respect to the symplectic completion. We denote R x A < SY by SA.

The main ingredient we needed from [BEHT03] is the following compactness result in sym-
plectic field theory.
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Theorem 3.3 (|[BEH 03] Theorem 10.3 and Section 11.3; see also [CEL10]). Let Lj, j = 0,...,d
be a collection of embedded exact Lagrangian submanifolds in M such that L;hL; for all i # j.
Let (Y,a) € M be a contact type hypersurface and (N(Y),w|ny)) = ((—€,€) x Y, d(e"a)) be a
neighborhood of Y such that L; n N(Y) = (—¢,¢€) x A; for some (possibly empty) Legendrian
submanifold A; of Y.

Let J™ be a smooth family of almost complex structures R-adjusted to N(Y). Let xy €
CF(Lo, Lq) and xj € CF(Lj_1,Lj) forj =1,...,d. If there exists a sequence {1y}, such that
limy o 7 = 0, and a sequence uy, € M7 ¥ (xo; 24, ..., 1), then uy converges to a holomorphic
building ue = {uy}vev () in the sense of [BEH03].

We remark that each J7 above is a domain independent almost complex structure (see
Remark and we do not need to assume uy to be transversally cut out to apply Theorem

The rest of this subsection is devoted to the description/definition of ux = {uy}yey () in
Theorem [3.3] The definition is quite well-known so we only give a quick review and introduce
necessary notations along the way.

First, T is a tree with d + 1 semi-infinite edges and one of them is distinguished which is
called the root. The other semi-infinite edges are ordered from 1 to d and called the leaves.
Let V(T) be the set of vertices of T. For each v € V(T), we have a punctured Riemannian
surface ¥,. If 0¥, # &, there is a distinguished boundary puncture which is denoted by &;.
After filling the punctures of X, it is a topological disk so we can label the other boundary
punctures of X, by &7, ...&; counterclockwise along the boundary, where d, + 1 is the number
of boundary punctures of ¥,. Let 0;3, be the component of 0%, that goes from & to &y for
j=0,...,d, — 1, and J4,%, be the component of 0%, that goes from £q, 10 &5 If 0%, = &,
then 3, is a sphere after filling the punctures.

There is a bijection f, from the punctures of ¥, to the edges in T adjacent to v. Moreover,
fv(&Y) is the edge closest to the root of T among edges adjacent to v. If v,v" are two distinct
vertices adjacent to e, then f,!(e) and f,,'(e) are either both boundary punctures or both
interior punctures. We call e a boundary edge (resp. an interior edge) if f;!(e) is a boundary
(resp. an interior) puncture. We can glue {Zv}vevm along the punctures according to the
edges and {fy}yev () (i-e. Xy is glued with X,/ by identifying f. Y (e) with fv_,l(e) if v, v are two
distinct vertices adjacent to e). After gluing, we will get back S, the domain of wuy, topologically.
Therefore, there is a unique way to assign Lagrangian labels to 0%, such that it is compatible
with gluing and coincides with that on 05 after gluing all X, together. We denote the resulting
Lagrangian label on 0;%, by L, ;.

There is a level function Iy : V/(T) — {0,...,ng} for some positive integer ng. If ly(v) = 0,
then u, : ¥, — SM~ is a J -holomorphic curve such that u,(d;%y) < SL, ;. If I(v) =
1,...,ny — 1, then uy : £, — SY is a J¥ -holomorphic curve such that Uy(0;5,) < SAy ;. If
l7(v) = ng, then u, : ¥, > SM* is a J"-holomorphic curve such that u,(d;3,) = SL; ..

If v # o' are adjacent to the same edge e in T, then |lg(v) — ly(v/)| < 1. If Ix(v) + 1 = lg(v')
and e is a boundary (resp. interior) edge, then there is a Reeb chord (resp. orbit) which is the
positive asymptote of u, at f,!(e), and the negative asymptote of u,s at fv_,l(e) (see Convention
3.6). If ly(v) = I7(v'), then e is necessarily a boundary edge, ly(v) = ly(v') € {0, n7} and uy, uy
converges to the same Lagrangian intersection point at f,!(e), fv_,l(e), respectively. If e is the
j" semi-infinite edge adjacent to v, then u, is asymptotic to z; at f, *(e).

Finally, for each j = 1,...,ng — 1, there is at least one v € V(7T) such that ly(v) = j and wu,
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is not a trivial cylinder (i.e. u, is not a map R x [0,1] — SY or R x S* — SY') such that
uy(s,t) = (fr(s), fr(t) eRxY (3.3)

for some f,, fy). We use M?” (zg; 24, ..., x1) to denote the set of such holomorphic buildings.

Remark 3.4. From this point on, Theorem [3.3 will play a major role in analyzing holomorphic
curves.

It is important to note that, the domain of a holomorphic building under our consideration
can always be glued up into a smooth disk with boundary, which is the domain for J™ when
T < 0.

For our application, we assume every holomorphic disks v : X — M which undergoes an
SFT-stretching process must have pairwisely distinct Lagrangian boundary conditions on different
components of 0¥ when T < oo throughout the rest of the paper. The reason we impose this
condition is because we use a perturbation scheme in defining the Fukaya category, therefore,
Lagrangian boundary conditions on two different connected components of 0¥ are mever the
same Lagrangian. This will play a key role in our configuration analysis of the buildings.

Let

e /"¢ be the set of vertices v € V(T) such that more than one Lagrangian appears in the
Lagrangian labels of 0%,,.

e V7 be the set of vertices v € V(T) such that there is only one Lagrangian appears in the
Lagrangian labels of 0%,.

e V" be the set of vertices v € V(T) such that 0%, = .

In particular, we have V(T) = Vre L VI L Vnt, Let T, 79 and T be the subgraphs of
T, which consists of vertices V¢, V9 and V™, and edges adjacent to their respective vertices
(see Figure [1] for an example). Note that these three subtrees could have overlaps.

Lemma 3.5. The graphs T := Jeore\Tmt gnd T2 .= (Teore  TONT™ qre planar trees. In
particular, they are connected.

Proof. Let G be a minimal subtree of T containing T(1). If there is a vertex v in G such that
v e Vi then it would imply that S, the domain of wuy, is not a disk. If there is a vertice v in G
such that v € V7, then it would imply that there is a Lagrangian that appears more than once
in the Lagrangian label of 0S5. Both of these situations are not possible.

Similarly, let G’ be the smallest subtree of T containing 7). If there is a vertice v in G’
such that v e V™ then it would imply that S is not a disk and we get a contradiction.

As a result, G = TW and G’ = T@ so both T®) and T are trees.

The fact that T and T3 are planar follows from the fact that we can order the boundary
punctures of ¥, for v € V¢ U V7, in a way that is compatible with the boundary orientation.

O

Convention 3.6. We need to explain the convention of strip-like ends and cylindrical ends we
use for punctures of ¥,. Let e be an edge in T and v # v' are the vertices adjacent to e.

First assume that ly(v)+1 = lg(v'). If e is a boundary (resp. interior) edge, we use an outgo-
ing/positive strip-like end (resp. cylindrical end) for f,1(e), where an outgoing/positive
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Figure 1: A tree T with 2 leaves. Black dots: elements in V"¢; Green dots: elements in V7; Red
dots: elements in V?; Black tree: T¢7¢\(T¢ U T™); Green sugbraph: T9\T**; Red subgraph:
f‘]‘int

cylindrical end for f, ' (e) is a holomorphic embedding of €,¢ : {z = sexp(v/—1t) € C|s = 1} —
Yy such that limy,|_,q €y0(2) = It (e). With respect to coordinates given by the strip-like (Tesp.
cylindrical) end €, ., we have

x(Tt) (resp. v(T't))

{ hms_,oc FY(U'U(€'U,6($7 t)))
o0

limg_, o TR (Uv (Ev,e(sa t)))

(3.4)

for some Reeb chord = (resp. orbit v) and some T > 0, where wy,mr are the projection from
SY to the two factors. In this case, we call x (resp. 7y) the positive asymptote of u, at f, 1(e).

On the other hand, we use an incoming/negative strip-like end (2.6) (resp. cylindrical end)
for fv_,l(e), where an incoming/negative cylindrical end for f,"(e) is a holomorphic em-
bedding of €y : {z = sexp(v/—1t) € C|0 < s < 1} — Xy such that lim g€y o(2) = £ l(e).
With respect to coordinates given by the strip-like (resp. cylindrical) end €y ., we have

{ limg o Ty (s (€vr e(s,1))) = 2(Tt) (resp. (Tt))

limg o 7 (ty (€0t o (5, 1)) = —00 (3:5)

or some Reeb chord x (resp. orbit v) and some T > 0. In this case, we call x (resp. ) the
negative asymptote of u, at fv_,l(e).

Ifly(v) = l3(v") and, say v is closer to the root of T than v', then we use an outgoing/positive
strip-like end for f,;l(e) and an incoming/negative strip-like end for fv_,l(e). Similarly, the
intersection point that they are asymptotic to is the positive asymptote of u, at f; '(e) and the
negative asymptote of u, at fv_,l(e).

3.2 Gradings

Let P < (M,w,0) be a Lagrangian submanifold which satisfies . In particular, H!(P,R) =
0 and P is an exact Lagrangian. The round metric on S™ descends to a Riemannian metric on
P. Let U be a Weinstein neighborhood of P and we identify 0U with the set of covectors of P
having a common small fixed norm. Without loss of generality, we can assume that 0|y = 07« p,
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where O+ p is the standard Liouville one-form on T*P. Let « := 0|5y be the standard contact
form on 0U. Eventually, we will apply Theorem along a perturbation (0U)" of 0U. Since
(U, 0)(ouy) =~ (0U,a') for a perturbation o’ of ag, we will need to understand the Reeb
dynamics of /. Therefore, it is helpful to explain the Reeb dynamics of (U, ) first. We
assume A; := L; n 0U are (possibly empty) unions of cospheres at points of P. There are four
types of asymptotes that can appear for u, near the punctures.

1. Lagrangian intersection points between SL;L and SL;L in SM*,
2. Reeb chords from A; to A; in Y for i # j,

3. Reeb chords from A; to itself in Y, and

4. Reeb orbits in Y

We want to discuss the grading for each of these types.

3.2.1 Type one

Let © be the nowhere-vanishing section of (Agp T*M)®? which equals to 1 with respect to the
chosen trivialization (see Standing Assumption). For a Lagrangian subspace V < T,M and a
choice of basis {X1,...,X,,} of V, we define

Xy, Xy)
190X1, ..., Xn)

Detq(V) : € St (3.6)

which is independent of the choice of basis. A Z-grading of L; is a continuous function
01, : Ly — R such that 2™V =101,(p) — Detq(T,L;) for all p e L;.

At each transversal intersection point x € L; n Lj;, we have two graded Lagrangian planes
TyL;, T, L; inside T, M. The grading of = as a generator of CF(L;, L;) is given by the Maslov
grading from T, L; to T, L; which is

|z| = (T Li, T Lj) :=n + 0, (z) — 0, (z) — 2Angle(T, Li, T;: Lj) (3.7)

where Angle(T,L;, T,Lj) = Z?:l Bj and B; € (0,%) are such that there is a unitary basis
Ui, ..., uy of TpL; satisfying T, L; = SpanR{eQW\/jlﬁjuj}?:l. If we regard x as an element in
CF(Lj, L;), then we have o(T,L;, Ty L;) = n — o(TyLi, Ty Lj).

Convention 3.7. For a generator x € CF(L;,L;), we use xV to denote the generator of
CF(Lj, L;) which represents the same intersection point as x. Therefore, we have |x| = n—|zV|.

Since SM~ = T*P and we(P) = 0 and ¢;(T*P) = 0, there is a preferred choice of trivi-
alization of (Ag’p T*SM~)®? such that the grading functions on cotangent fibers and the zero
section are constant functions (see [Sei00]). Without loss of generality, we can assume that the
restriction to M~ of the choice of trivialization of (AfCOp T* M)®? we picked coincides with that of
(Agp T*SM~)®2. We call that the cotangent fibers and the zero section are in canonical relative
grading if the following holds:

CF(P, T, P) is concentrated at degree 0 (3.8)

for all g € P.
We refer readers to [Sei00], [Sei08|, Section 11, 12] for more about Maslov gradings.
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3.2.2 Type two

In general, if we have a Reeb chord z = (%(t))s[0,1] from Ag to A1 in a contact manifold
(Y, @) such that SA; are graded Lagrangians in SY for both 4, we will assign a grading to x by
regarding x as a Hamiltonian chord between graded Lagrangians SAy and SA; in the symplectic
manifold SY as follows: There is an appropriate Hamiltonian H in SY that depends only on
the radial coordinate r such that the Reeb vector field R, in Y coincides with the restriction of
the Hamiltonian vector field X to {0} x Y. Let ¢ be the time-one flow of H. We identify
z(t) € Y with (0,z(t)) € SY so x is a H-Hamiltonian chord. We have graded Lagrangian
subspaces (QZ)H)*Tx(O)SAO and Tx(l)SAl in Tm(l)SY. Let

Ko = (™) «(Ty(0)S o) N Ty1ySAL (3.9)
The grading |z| of z is defined to be
] = t((6™)s(Ta(0)SM0)/ Ko, To1)S A1/ Kor) (3.10)

where the Maslov grading (see (3.7)) is computed in the symplectic vector space T,y M /(K +
J(K,)). More details about Maslov gradings assigned to non-transversally intersecting graded
Lagrangian subspaces can be found in [MWal, Section 4.1], for example.

Now, we go back to our situation and assume x is a Reeb chord from A; to A; in (U, a).
Since L; is graded, SA; has a grading function in S(0U) inherited from L;. The computation of
|z| is done in the literature (e.g. [AS10a] [Abol2b|, where they indeed proved HW (Ty,) = k|[u]
for |u| = —(n — 1)) and we recall it here.

Without loss of generality, we assume A; and A; are connected. Let ¢;,¢; € P be such that
TP noU =A; and T P noU = Aj. We equip the cotangent fibers and P with the canonical
relative grading (see ) The grading functions of L; and L; differs from the grading functions
of Ty P and T, q”;P near A; and Aj, respectively, by an integer. In the following, we will assume
the grading functions coincide and the actual |z| can be recovered by adding back the integral
differences of the grading functions.

Let q; € P be a lift of ¢;. Each Reeb chord x from A; to A; corresponds to a geodesic from
¢; to gj, which can be lifted to a geodesic x from q; to a point q; € P such that 7(q;) = ¢;. If

q, is not the antipodal point of q; and q; # q; (3.11)

then there is a unique closed geodesic (assumed to have length 27) passing through q; and q;.
Therefore, for each interval I, = (km, (k + 17)), k € N, there is a unique geodesic from q; to q;
with length lying inside I;. If the length of x lies in [, then

2| = —k(n — 1) (3.12)

For generic g;, g;, every lifts q;, q; of ¢;, g; satisfies (3.11)).

3.2.3 Type three

There are four kinds of Reeb chords from A; to itself. First, if = is a Reeb chord from one
connected component of A; to a different one, then the computation of |z| reduces to the Type
two (Section. For the remaining three kinds, we assume A; = Ty PndU, i.e. it has exactly
one connected component. Let q; be a lift of ¢; and x : [0,1] — P be the lift of the geodesic
such that x(0) = q;, q; := x(1) and 7(q},) = ¢;- The three possibilities are
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1. q;,q; satisfy (3.11)) (with q replacing q;), or

2. q; is the antipodal point of q;, or
3. qi =q]

For the first case, the computation of |x| reduces to the previous one again (Section [3.2.2). For
the second and the third cases, we have (see (3.9) for the meaning of K)

Ky = TyayLi (3.13)
|(1}‘ = L(<¢H)*TI(O)LZ/K$,Tx(l)Lj/K$) = —k:(n - 1) (314)

where kr is the length of x, and the term —k(n — 1) is exactly the (integral) difference of the
values of the grading functions at (¢ )+ Tp0)Li and Tyq)L; as graded Lagrangian planes.

We want to point out that in the second and third cases x lies in a Morse-Bott family .S, of
Reeb chords from A; to itself and dim(S;) =n — 1.

3.2.4 Type four

Reeb orbits of U are graded by the Robbin-Salamon index [RS93] (see also [Bou02, Section
5]), which is a generalization of the Conley-Zehnder index to the degenerated case. To de-
fine the Robbin-Salamon index of a Reeb orbit v, we need to pick a symplectic trivialization
., of £ along v subject to the following compatiblity condition: Together with the obvious
trivialization of R(d,, Ry,), ®~ gives a symplectic trivialization of T'M along 7, and hence a
trivialization of (Aé:op T*M)®? along v. The compatiblity condition is that the induced trivial-
ization of (AfCOP T*M)®? along 7 coincides with the trivialization of (Agp T*M)®? we picked in
the beginning of Section @ One may show that there is ®, satisfying the compatiblity condition.

We can now define a path of symplectic matrices (®)e[o,1] given by ®; := (684 §y(0) =
&v@t) = &(0), where qﬁf is the time-¢ flow generated by R,, and the last isomorphism is given by
®.,. We can assign the Robbin-Salamon index for ®; as follows: First, we isotope (relative to
end points) ®; to a path of symplectic matrices ®, such that ker(®; — Id) # 0 happens at finitely
many times ¢ = t1,...,%; and for each t;, the crossing form J%h:t]— (®}) is non-degnerate on
ker(®;, — Id). The signature of J %\t:tj (®}) is denoted by o(t;) and the Robbin-Salamon index
is defined by

k
prs(®0) = 2o (0) + Y o(t) + Jo() (315)
j=1

where (1) is defined to be zero if ®; is invertible. The index is independent of the choice of
<I>§j. The Robbin-Salamon index of v with respect to the trivialization ®, is

prs(v) == prs(P) (3.16)

Any two choices of ®, satisfying the compatiblity condition would give the same index.

There are two kinds of Reeb orbits v in dU, namely, contractible in U or not. We are only
interested in the case that v is contractible in U, which means that it can be lifted to a Reeb
orbit in 0U that is contractible in U. The lifted Reeb orbit corresponds to a geodesic loop I, in
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P. The Robbin-Salamon index prg(y) is computed in [Hin04, Lemma 7] (the proof there can
be directly generalized to all n)

trs(y) = 2k(n — 1) (3.17)

where £ is the covering multiplicity of I, with respect to the simple geodesic loop, or equivalently,
2km is the length of [,.

We want to point out that v lies in a Morse-Bott family .S, of (unparametrized) Reeb orbits
and dim(S,) = 2n — 2.

3.3 Dimension formulae

In this section, we first review the virtual dimension formula from [Bou02|], where the domain
of the pseudo-holomorphic map only has interior punctures. Then we consider the case that the
domain only has boundary punctures, and finally obtain the general formula by gluing.

Let (Y*,a%) be contact manifolds with contact forms a®. We assume that every Reeb
orbit v of Y* lies in a Morse-Bott family S, of (unparametrized) Reeb orbits. Let (X,wyx) be
a symplectic manifold such that there exists a compact set Kx < X and Tx € R.qg so that
(X\Kx,wx|x\ky) is the disjoint union of the ends ([Tx,o0) x Y'*,d(e"a™)) and ((—o0, =Tx] x
Y~,d(e"a™)). In this case, we have

Lemma 3.8 ([Bou02], Corollary 5.4). Let ¥ be a punctured Riemannian surface of genus g
and 0% = . Let J be a compatible almost complex structure on X that is cylindrical over the
ends. Let u : > — X be a J-holomorphic map with positive asymptotes {'y;r}jil and negative

asymptotes {'yj_ }j;l (see Convention . Then the virtual dimension of u is given by

virdim(u) =(n = 3)(2 =29 — s* —s7) + > prs(v)) = D mrs(v;) + % > dim(S,+)
j=1 j=1 J=1
; % 3 dim(S. ) + 26U (TX) [u]) (3.18)
j=1

where 2¢;Y (T X)([u]) is the relative first Chern class computed with respect to the fized symplectic
trivializations along the Reeb orbits that we chose to compute purs (see Section m)

Sketch of proof. As explained in Section [3.2.4] the trivialization P+ of £ along q/ji determines
J

+.J
t

a path of symplectic matrices ®;~. We can trivialize T X along fyji using <I>,Y;r by adding the
J

invariant directions Or, RE. The corresponding path of symplectic matrices become 6? C.
<I>:—W @ Iox2, where Io.o is the 2 by 2 identity matrix. By additivity property of urg, we have
1rs(®; ) j/ms(@t_’]) + prs(l2x2) = pirs(®77).

If ker(®;” — Id) = 0 (which is never the case) for all 'y;—r, then the index of u is given by

ind(u) =n(2 =29 —s* —s7) + > urs(v]) = D, nrs(r;) + 26U TX) ([u]) (3.19)
j=1 j=1
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If ker(@f’j —Id) # 0, then it contributes dim(ker(@li’j —Id)) = dim(S_+) +2 (resp. 0) to ind(u)
J

when ’y;-*r is a positive (resp. negative) asymptote. However, the definition of pgg already takes

into account %dim(ker(@f’y — Id)) so we have

st

ind(u) =n(2 - 29 —s" —s7) + Z(MRS(’Y;) + %(dim(S,YJ ) +2)) (3.20)
j=1
2 prs(0}) = 3 (dim(S,-) + 2)) + 24 (TX) [u]) (321)

- +
B S S ~ 1 S .
=n(2 =29 — 5" —s7) + 3, urs(v)) = Y, urs(y;) + 5 ), dim(S
L & &

+ % D dim(S-) + (57 + 57) + 261 (TX) ([u]) (3.22)

Finally, to obtain the virtual dimension, we need to add the dimension of the Teichmiiller space
that X lies, which is 6g — 6 + 2(s* + s7). It gives the formula (3.18]). O

We note that Lemma still holds when Y* = ¢, where the corresponding s* = 0.

Example 3.9. The virtual dimension of v : C — T*S™ with the puncture asymptotic to a
simple Reeb orbit is given by

virdim(u) = (n — 3)(2 — 2(0) — 1 — 0) + 2(n — 1) + %(271 ) —dn—6  (3.23)

because [ (TT*S™) = 0. When n = 2, we have virdim(u) = 2 which is obtained in [Hin04,
Lemma 7).

Now, we consider the relative setting. A Lagrangian cobordism L in X is a Lagrangian such
that there exists T > T'x so that L (-0, =T x Y~ = (=00, =T x A~ and L n [T,00) x Yt =
[T,0) x AT for some Legendrian submanifolds A* in Y*. Let Lo, L; be exact Lagrangian
cobordisms such that LohL;. We assume that every Reeb chord x from Aa—r to AI—F lies in a
Morse-Bott family S, of Reeb chords. In this case, we define (see (3.9))

mb(z) = dim(S;) + 1 = dim(K) (3.24)

If x € Lo n Ly, we define mb(x) = 0. The reader should note that the discrepancy between
mb(z) and dim(S;) comes from the R-direction of symplectizations. As always, we assume that
Lo, Ly are Z-graded so all elements in Ly n L1, and all Reeb chords from A(J)L to AIL are graded

(see Section [3.2).

Lemma 3.10. Let S € R be equipped with Lagrangian labels L; on 0;S, where each Lj is a
Lagrangian cobordism. Let J be a compatible almost complex structure on X that is cylindrical
on the ends. Let u : S — X be a J-holomorphic map with positive asymptotes {xj ;il and

negative asymptotes {x;}g;l such that w(0;S) < Lj;. Assume all asymptotes are Morse-Bott,
then the virtual dimension of u is given by

T

virdim(u) = n(1 —r7) + Z( (z;) + mb(z Z (r~+rt=3) (3.25)

j=1
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Sketch of proof. When all x;—r are Lagrangian intersection points, then the index of w is given by
(see [Sei08l, Proposition 11.13])

ind(u) = n(l —r7) + Z (3.26)

If a:ji is a Reeb chord, then the intersection of the graded Lagrangian subspaces K_+ is non-
.7

wma

x>
zero. Similar to the proof of Lemma there are extra contributions to virdim(u) from the

asymptotes. This time, a:;—r contributes dim(K +) = mb(:c;—r) (resp. 0) to ind(u) when x;—r
J

is a negative (resp. positive) asymptote. The reversing of the roles of positive and negative
asymptotes between here and the proof of Lemma can be understood from the fact that in
(13.19)), positive asymptotes contribute positively while in , positive asymptotes contribute
negatively, which in turn boils down to the reversing convention of the definition of indices
between orbits and chords.

After all, we have

ind(u) = n(1 —r~ Z ) + mb(z Z (3.27)

The last term of (3.25) comes from the dimension of R4*!. O

Again, Lemma applies also in the case when Y~ = @ or Y™ = (.

Example 3.11. Let g, q1 € S" and A; be the unit cospheres at g;, and assume 7 and the zero
section are equipped with the canonical relative grading. Let x be the shortest Reeb chord from
A to Ay in the unit cotangent bundle of S™. The virtual dimension of u : S — T*S™ such that
SeR?, u(@S) © 8", u(d1S) < T S™, u(d28) < T S™ with positive asymptotes go and z at &
and &s, respectively, and a negative asymptote ¢q; at & is given by

virdim(u) =n(1—=1)+0—-0—-0=0 (3.28)
Finally, note that the shifting on the gradings of T5° 5™ or S™ do not change this virtual dimension
(see Section [3.2).
Now, we combine Lemma and

Lemma 3.12. Let S be a disk with r* +r~ boundary punctures and s* + s~ interior punctures.
Let u: S — X be a J-holomorphic map with positive asymptotes {x+}T 1 and negative asymp-
totes {x } _1 at boundary punctures, and positive asymptotes {'y] } *1 and negative asymptotes
{’yj }j;l at interior punctures such that u(0S) lies in the corresponding Lagrangians determined
by the boundary asymptotes. Then the virtual dimension of u is given by

st

virdim(u) =(n —3)(1 — st —s7) + 2 ,uRs(’y;'r) - 2 prs(y;) + % 2 dim(S,y;)
j=1 j=1 j=1
4= Z dim(S_-) + 2¢;4TX) ([u])
] 1
+ St

+
) + mb(z Z (n—1)7r +r7" (3.29)
i—1 j=1

<.
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Proof. We follow the proof in [Sei08, Proposition 11.13]. The domain S is the connected sum of
a disk S with »™ 4+ 7~ boundary punctures and a sphere Sy with s™ 4 s~ interior punctures.
Let u; : S1 — X be a J-holomorphic map with positive asymptotes {:c;r};il and negative
asymptotes {x; };;1 such that u;(0S57) lies in the corresponding Lagrangians determined by the
boundary asymptotes. Let ug : So — X be a J-holomorphic map with positive asymptotes

{fy;r }‘;J;l and negative asymptotes {'y; }‘;;1. Then, we have
ind(u) = ind(u1) + ind(u2) — 2n (3.30)

which can be computed by (3.22)) and (3.27). Finally, to get the virtual dimension, we need to
add the dimension of the Teichmiiller space that S lies, which is (r~ + 7+t —3) +2(sT + s7). It
gives the formula (3.29)). O

We want to use Lemma [3.8] and to derive some corollaries for the holomorphic buildings
Uy = (Uy)yev (7) Obtained in Theorem Let v # v’ be adjacent to the edge e. If Ig(v) + 1 =
l7(v"), then there is a Reeb chord z (or orbit ) which is the positive asymptote of u, at f, !(e)
and the negative asymptote of u,, at fv_,l(e). Let wy#2uy (resp uy# U, ) be a pseudo-holomorpic
map with boundary and asymptotic conditions determined by gluing u, and u,s along z (resp.
7). By a direct application of Lemma and we get

{ virdim (u, #zuy) = virdim(u,) + virdim(w,,) — dim(Sg)

virdim (uy #4uy) = virdim(u,) + virdim(u,) — dim(S) (3.31)

On the other hand, if I3(v) = I3(v") so that there is a Lagrangian intersection point z which is
the positive asymptote of u, at f,!(e) and the negative asymptote of u, at f,/'(e), then we
have

virdim(uy #4 Uy ) = virdim(u,) + virdim(u,) + 1 (3.32)

where u,#,u, is defined analogously.

3.4 Action

This subsection discuss the action of the generators. A similar discussion can be found in
[BEH'03] and [CRGGI5, Section 3.

Let Lo, L; be exact Lagrangians in (M,w, ). It means that, for j = 0,1, there exists a
primitive function f; € C°(L;,R) such that df; = 0|y;. For a Lagrangian intersection point
p € CF (Lo, Ly), the action is

A(p) = folp) — f1(p) (3.33)

so A(p¥) = —A(p) (see Convention [3.7). For a contact hypersurface (Y, = |y) < (M,w, )
and a Reeb chord x : [0,1;] = Y from Ao = Lo nY to Ay = Ly nY. The length of x is

L(z) — f a1, (3.34)
and the action is

A(z) = L(z) + (fo(x(0)) — fi(z(l)) (3.35)



Reeb orbits are special kinds of Reeb chords so the length and action of a Reeb orbit ~ is

L(y) = A(v) = fv*oz (3.36)

We have the following action control

Lemma 3.13 (see [CRGGI15](Lemma 3.3, Proposition 3.5)). Let uey = {uy}yev(7) be a holo-

morphic building obtained in Theorem . If u, has positive asymptotes {xj+ ;:1, {'y;r }jil and

negative asymptotes {x;};;p {Vj_}i;l, then

Eo(uy) = Y A(f) + X AG) = D Alry) = D, Al;) 2 0 (3.37)
j=1 j=1 j=1 j=1

The equality holds if and only if u, is a trivial cylinder (see (3.3))).

Since A(7y) > 0 for any Reeb orbit v and A(z) > 0 if x is a non-constant Reeb chord such
that 2(0) = x(l,), a direct consequence of Lemma is

Corollary 3.14. If u, : ¥, — SM™ has only negative asymptotes, then at least one of the
asymptotes is not a Reeb orbit nor a Reeb chord x such that x(0) = z(ly).

Lemma 3.15. Let ue = {uv}vevm be a holomorphic building obtained in Theorem . Let x;

be the boundary punctures corresponding to the leaves and root edges of T If Z?:o |A(z;)| < T,
then for every v € V(T), the action of every asymptote of u, lies in [—T,T].

Proof. Let us assume the contrary. Then there is an asymptote of u, with action lying outside
[—T,T]. We assume that this is a boundary asymptote and denote it by z. The case for interior
asymptote is identical. If A(z) > T (resp. A(z) < —T), we pick v' € V(T) (which might be
v itself) such that x is a negative (resp. positive) asymptote of u,. Let e be the edge in T
corresponds to this asymptote. Let G be the subtree of T\{e} containing v’.

Denote z,,; by the asymptotes corresponding to the vertex v. Let sgn(z) = 0 (resp. sgn(x) =
1) if = is a positive (resp. negative) asymptote. Then

0< )] Buluy)

veG

= 3 (1)) Az, (3.38)
veG 1

< (_1>sgn($)A($) + Z ‘A(.%'])’ <0

Here z;, runs over all asymptotes of u,, and j over all semi-infinite edges. The second
inequality holds because all finite edges are cancelled between the components they connect.
This concludes the lemma.

O]

Lemma 3.16. Let uxw = {uy}ev(r) be a holomorphic building obtained in Theorem . If
ve VIUV™  then only the action of the asymptote of w, that corresponds to the edge e, closest
to the root of T contributes positively to E,,(uy).
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Proof. Let G, be the subtree of T\{e,} containing v. We apply induction on the number of
vertices in Gy.

If G, has only one vertex, then 0 < E,,(u,) is only contributed by the asymptote corresponds
to e, so the base case is done.

Now we consider the general case. Let e be an edge in G, (so e # e,). Let v/ # v be the
other vertex adjacent to e so v’ € V% U V¥ by Lemma By induction on G/, we know
that the asymptote corresponding to e contributes positively to E,(u,) and hence negatively
to Ey(uy). Finally, for E,(u,) to be non-negative, we need to have at least one term which
contributes positively to E,,(u,). This can only be contributed by the asymptote corresponding
to ey. L]

Lemma 3.17 (Distinguished asymptote). Let uy, = {uv}vevm be a holomorphic building ob-
tained in Theorem[3.3 If 0L, # & and u, is not a trivial cylinder (see (3.3)), then there is a
boundary asymptote x of u, that appears only once among all the asymptotes {x:—r} of Uy.

Proof. By Lemma when v € V?, the asymptote of u, at &y is the only asymptote that
contributes positively to energy and hence appears only once among the asymptotes of .

Now, we consider v € V¢, If there are more than two Lagrangians appearing in the
Lagrangian labels of 0%,, say, 0;5 and ;415 are labelled by Ly, and Lg,, respectively, for
k1 # ko, then the asymptote of u, at 5;? 41 can only appear once among the asymptotes of wu,,
by Lagrangian boundary condition reason.

If there are exactly two Lagrangians appearing in the Lagrangian labels of 03, then there are
exactly two j such that the Lagrangian labels on 0;5 and 0,15 are different. Let the two j be ji
and ja. It is clear that f, (&7, 1) and f,(£7, 1) are the only two edges in Jeore\ (79U T that are
adjacent to v. Therefore, by our first observation, the action of the asymptotes corresponding
the other edges of v contributes negatively to Ey,(u,).

If w, converges to the same Reeb chord at &G +1 and &, 4, then one of it must be a positive
asymptote and the other is a negative asymptote by Lagrangian boundary condition. Therefore,
the contribution to FE,(u,) by this same asymptote cancels. Similarly, if u, converges to the
same Lagrangian intersection point at £ ., and &7, ., then the contribution to E(uy) by this
same asymptote cancels because of the order of the Lagrangian boundary condition. As a result,
we have E,(u,) < 0 which happens only when wu, is a trivial cylinder (see (3.3)), by Lemma
B.13 O

Remark 3.18. Notice that, when u, maps to SY, the sum (3.37) becomes

+ —

2o L@+ Y L) = ) L) = 3, L) (3.39)
1 j=1

Jj=1 Jj=1 J

<

because the terms involving the primitive functions on the Lagrangians add up to zero.

3.5 Morsification

We come back to our focus on U = T*P, where P satisfies . We will need to use a
perturbation of the standard contact form ag on 0U to achieve transversality later. In this
section, we explain how the action and index of the Reeb chord/orbit are changed under such a
perturbation.
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As explained in Section (0U, ) is foliated by Reeb orbits. The quotient of oU by
the Reeb orbits is an orbifold, which is denoted by Qay. We can choose a Morse function
fo : Qav — R compatible with the strata of Qs and lifts fg to a Rq,-invariant function
fo: 0U — R (see [Bou02, Section 2.2]). Let critp(fg) be the set of critical points of fg. Let
a = (1446 fs)ap, which is a contact form for |§| « 1. Let L(0U) be the length of a generic simple
Reeb orbit of (U, ay).

Lemma 3.19 ([Bou02] Lemma 2.3). For allT > L(0U), there exists § > 0 such that every simple
a-Reeb orbit v with L(y) < T is non-degenerate and is a simple cg-Reeb orbit. Moreover, the
set of simple a-Reeb orbits v with L(vy) < T is in bijection to critp(fg).

Furthermore, if v is the m-fold cover of a simple a-Reeb orbit ~* such that L(v) < T, then

1. L ..
pO() + 5dim(Sy) = ps(v) = Hrg(7) — 5 dim(S,) (3.40)
where p%g(Y), prs(y) are the Robbin-Salamon index of v with respect to o and o, respectively,
and S is the Morse-Bott family with respect to o that v lies.

Proof. The first statement follows from [Bou02, Lemma 2.3].

For the second statement, we need to compare the path of symplectic matrices ®§, @y
corresponding to a and «y, respectively. We can isotope the Poincare return map ®7° relative
to end points, by changing the trivialization, to &3?0 such that ker(%?o — Id) # 0 only happens
at finitely many ¢ € [0, 1], where all such ¢ contribute transversely. For a fixed T, we can choose
0 sufficiently small such that ®f and &J?O are arbitrarily close but with ker(®%(1) — Id) # 0.
As a result, only the last contribution to pupzy(7) at t = 1 may not persist (see (3.15)) and we
obtain the result. O

Corollary 3.20. For all T > L(0U), there exists 6 > 0 such that every a-Reeb orbit v with
L(v) < T and being contractible in U has pu%g(v) =n—1. As a result, the virtual dimension of
u: C — SM~ with positive asymptote v satisfies virdim(u) = 2n — 4.

Proof. The underlying simple Reeb orbit v* of v must have L(v®) < T so it is also a agp-Reeb
orbit, by Lemma Since «y is contractible in U, by the explanation in Section [3.2.4] we have
Wre(y) = 2k(n—1) for some k > 0 and dim(S,) = 2n — 2. Therefore, uf%g(y) = n—1 by Lemma

and virdim(u) = (n — 3) + p%q(y) = 2n — 4.
0

We have a similar index calculation for Reeb chords:
t(xo) — dim(Sg,) < t(z) < t(zo) + dim(Sy,)- (3.41)
The proof is identical to Lemma [3.19 hence omitted. Let A, < OU be the cosphere at g.

Lemma 3.21. There exists fg such that for all T > L(JU), there exists § > 0 such that every
a-Reeb chord x from Ag to Ay, with L(xz) < T has |x| < 0 in the canonical relative grading.
Here, we allow q1 = qo.

Moreover, if q; are in relatively generic position on P, for each lift q; of q;, there is exactly
one such chord tq, q, With |2q,.q,] = 0 in canonical relative grading such that xq, q, can be
lifted to a Reeb chord from Aq, to Ag,.
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Proof. For the first statement, when ¢ > 0 is sufficiently small, z is C'-close to a ag-Reeb chord
from A, to itself. Recall from Section that, a non-degenerate cg-Reeb chord zg from A, to
itself has ¢(zo) < 0. Therefore, if x is C'-close to g, then «(z) < 0.

On the other hand, a degenerated ag-Reeb chord zy from A, to itself has t(zg) = —k(n —
1) < —(n — 1) for some k > 0. We have dim(S,,) = n — 1, so if 2 is Cl-close to zg, then
u(z) < t(zo) + dim(Syy) < —(n —1) + (n — 1) = 0. The first inequality comes from (3.41)).

For the second statement, we only need to notice that |zq, q,| = 0 if an only if the chord is
the lift of (a perturbation of) the unique geodesic between q; and qg with length less than 7

from (3.12]). O]

Note that, we do not need to assume x is non-degenerate in Lemma [3.21

After choosing « in Lemma there are only finitely many simple Reeb orbits of length
less than T'. They correspond to finitely many geodesic loops in P. Therefore, for generic (on
the complement of the geodesic loops) ¢ € P, A, does not intersect with simple Reeb orbits of
length less than T". Moreover, for generic perturbation of fg, we can achieve the following:

Lemma 3.22. We assume n > 2. For generic C?-small perturbation of fo away from critp(fg)
(such that the set critp(fq) is unchanged), every a-Reeb chord x from Ay to itself with L(x) < T
satisfies x(t) ¢ Ay for t € (0, L(x)). Moreover, we can assume every such x is non-degenerate.

Proof. Mike Usher has pointed out the following proof to the authors. Assume a chord x has
interior insection z(t;), ¢ = 1,---,k with Ay, then we may now choose a contactomorphism
7 with small C%-norm supported near z(t;), which pushes z(t;) off A, for all i, and consider
the contact form 7.a. Since we did not change the contact structure, A, remains Legendrian
and the perturbation on the contact form is by a function f supported near z(t;). 7(z(t)) is
then a Reeb chord with no interior intersection with A4, and from the transversality assumption
and argument above, there is no new chords created. The induction on the number of chords
concludes the lemma.

O]

Corollary 3.23. We assume n > 2. For all T > L(0U) and k € N, there exists 6 > 0,
fo: 0U — R and pairwise distinct qu,...,q; € P such that a = (1 + §fp)ag satisfies

(1) every simple a-Reeb orbit  that is contractible in U and L(y) < T is non-degenerate and
prs(y) =n—1, and

(2) every a-Reeb chord x from U¥_ A, to U¥_ A, with L(z) < T is non-degenerate, satisfies
x(t) ¢ UF_ A, forte (0,L(z)) and |z| < 0 with respect to canonical relative grading.

As a consequence, the image of the a-Reeb chords x from U¥_| Ay, to UF_ Ay, with L(z) < T
are pairwise disjoint, and they are disjoint from the image of simple a-Reeb orbits.

Proof. After choosing ¢, fo such that (1) is satisfied by Lemma and Corollary and
we can apply Lemma [3.22| to U§:1Aqr Since the perturbation is arbitrarily C2-small, we have
|z| <0 by Lemma and (3.12]). O

In the rest of the paper, we always choose a contact form « on 0U such that Corollary [3:23]
holds, we denote the set of simple a-Reeb orbit v with L(y) < T' by X2. Similarly, we denote
the set of a-Reeb chord x from U¥ Ay, to U¥_ A, with L(z) < T by X%.
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3.6 Regularity

In this section, we address the regularity of curves u, in the holomorphic buildings obtained
in Theorem for v € V¢ U VP We adapt the techniques developed in [EES05], [EES017],
[Dra04] and [CRGGI5]. We borrow the observation made in [EES05]: if there is an asymptote
that only appears once among the boundary asymptotes of a pseudo-holomorphic curve as proved
in Lemma then one can achieve regularity by perturbing J near the asymptote.

The main difference of our situation is that, we do not work in a contact manifold that is a
contactization of an exact symplectic manifold, hence we don’t have a projection of holomorphic
curve as in [EESO5|[EES07]. We remedy the situation by localizing to a neighborhood of the
Reeb chord.

We first explain the space of almost complex structure we use. In what follows, we always
assume that a contact form « on oU is chosen such that Corollary is satisfied.

Lemma 3.24 (Neighborhood Theorem). For any Reeb chord x € Xf., there exists a neighborhood
N, of Im(x), an open ball B, = R?*"~2 containing the origin, an open interval I, = R and a
diffeomorphism ¢n, : Ny — By x I such that

a= ¢y (dz + Z?:_l zidy;)
{ 7TBQC(JJL (z(1))) =5 (3.42)

where (z;,y;) € By, z € I, and wp, : By x I, — By is the projection to the first factor.

Proof. Tt follows from a Moser’s argument. We give a sketch following [Gei08, Theorem 2.5.1].
Since da is non-degnerate on T,Y /T,Im(x) for all p € Im(x), we can use exponential map with
respect to an appropriate metric to find coordinates (z1,y1,...,Zn—1,Yn—1,2) near I'm(x) such
that Im(z) = {z; = y; = 0} and on TY |12,

{ a(d) = 1,15.da = 0 (3.43)

Or;, Oy, € ker(a), da = Y7 da; A dy;
Let agen-1 g4 = dz + Sl aidy; and o = (1 — t)agen—1 gq + ta. It follows that on TY|,(),
ap = a,doy = do for all ¢ (3.44)

In particular, oy is a family of contact forms in a sufficiently small neighborhood of I'm(x). By
Moser trick, there exists a vector field X; near I'm(z) such that the flow v, satisfies ¢fa; =
ap2n—1 gq for all t € [0,1] and X,(p) = 0 for all p € Im(z). We set ¢n, = (¢1)" " O

Remark 3.25. If we replace dz + Z?;ll x;dy; by dz + Z?;l xidy; + dy1 in Lemma m the
lemma still holds.

Corollary 3.26. Let B, be one chosen in Lemma|[3.24 or Remark[3.25. If J' is a compatible
almost complex structure on B, then there is a cylindrical almost complex structure J on the
symplectization R x N, such that (rg, o7y )s 0 J(v) = J o (7p, oy )«(v) for all v e .

Proof. We can use the symplectic decomposition 7{, .)(R x N;) = R{d;, Ra)®E, and the isomor-
phism (7p, )« : § ~ Ty (2)Bs to define J such that J(0r) = Rq and J(v) = (75, omy)s) Lo
J'o(mp, omy)«(v) for v € £,. One can check that .J is a cylindrical almost complex structure. [
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Now we may address the regularity of neck-stretching limits along 0U. We summarize various

auxiliary data chosen so far.

1)

2)

Let Y < (M, w,0) be a perturbation of dU such that (Y, 6|y) = (0U, «). By abuse of notation,
we denote 0]y by a.

For the T chosen in Corollary there are finitely many Reeb orbits or Reeb chord from
Uiy to UjAg, with length less than T. Moreover, the simple Reeb orbits X7 and the Reeb
chords X{ have pairwise disjoint images.

For each x € X, we pick a neighborhood N, of I'm(x) using Remark We assume that
all these neighborhoods are pairwise disjoint and disjoint from the Reeb orbits of «.

Let z € Xf, 2(0) € Ay, and z(L(x)) € Ay,. By Corollary for sufficiently small N, we
can assume that

Dis:= Ay A Ny (3.45)

is a disk for ¢ = 0,1. Moreover, by the fact that x is non-degenerate, we know that 7, (Do )
and 7p, (D1,z) are transversally intersecting Lagrangians. There exists a compatible Jpg, on
B, such that Jp, is integrable near the origin. By possibly perturbing A,;, or equivalently
perturbing «, we can assume that wp (D; ) are real analytic submanifolds near origin for
all x. We fix a choice of Jp, for each x € X%

Let jcyl(ﬁU; {Nx}xex%) be the space of J € jcyl((?U) such that J is R,-invariant in N, and
there is a compatible almost complex structures J’ on B, so that J' = Jp, near the origin
and (mp, oy ) 0 J(v) = J o (mp, o my)«(v) for all v € {. By Corollary we know that
chl(aU; {Nx}rek§) #* J.

We define N (Y) as in (3.1)). We can pick J° such that (®n(y))«J|n(v) € TV (0U; { Ny }wexs)-
Let {J7} e[3r0) be a smooth family R-adjusted to (Y, a) as explained in Section (3| (see
Remark

Let {L; }?:0 be a collection of Lagrangians satisfying the assumptions of Theorem More-
over, we assume that A; = ufJ: Aqk]-,i for some g, in Corollary @ If T was chosen

sufficiently large, there exists 0 < 7°% < T (depending only on the primitives of {L;}, see
Section such that

for all Reeb chords = from A; to A, |A(z)| < T*Y implies |L(z)| < T (3.46)

Without loss of generality, we can assume T exists and Z?:o |A(z)| < T*¥. Applying
Theorem and Lemma we get a holomorphic building us = {uy}yey(7) such that all
the asymptotes of u, are either Lagrangian intersection points, Reeb chords in A’ or multiple
cover of Reeb orbits in A'7.

For uq,, we have the following regularity result.

Proposition 3.27 (Regularity for intermediate level components). There is a residual set
Jevbres — gvl(oU; {Nz}zexs) such that if (the cylindrical extension of) (®nv))sd | n(yy lies
in JYI | then for ve Veore U VO and ly(v) € {1,...,ng — 1}, the JY -holomorphic curve u, is
transversally cut out.

35



Proof. By Lemma u, has a boundary asymptote x that appears only once among its
asymptotes. We want to show that transversality can be achieved by considering variation of
almost complex structures in SN, := R x N,.

Let A" = U;A,, and SA = U;SA,, where A, are obtained in Corollary There is a
Banach manifold B consisting of maps

u: (Xy,08,) — (SY, SA™) (3.47)

in an appropriate Sobolev class with positive weight (see [Abb04], [Dra04]). Let Ua be an
appropriate Banach manifold that is dense inside J ¥ (0U; {Nz}zexs). The map

(u, J) = ju (3.48)
defines a section F of a bundle £€%! — B x Ua with differential

DF(u,J) : T,B x TyUx — &N (3.49)
(7, Y) = Dy(n) + Y (u) o duo js, (3.50)

where jy,, is the complex structure on X,. By a choice of metric, we identify
T.B ~ L(u*TSY, uls, SA™) (3.51)

where the right hand side is the completion of the space of smooth sections in ©*T'SY, which
takes value in u3y SA™t along the boundary, with respect to an appropriate Sobolev norm. On

the other hand, we have 0" = Q%L (u*TSY), where the right hand side is the completion of
the space of smooth u*TSY -valued (0, 1)-form with respect to an appropriate Sobolev norm.
We want to argue DF(u, J) is surjective at (u, J) using that fact that there exists a boundary
asymptote x € X} of u that appears only once among its asymptotes and dyu = 0.

Suppose not, then there exists 0 # [ € €% such that

4, DF(u, J)(n, Y )25, =0 (3.52)

for all n € Ty,B and Y € T;UA. By unique continuation principle, it suffices to show that [ = 0
on some non-discrete set of X, to get a contradiction.

Let R = u~!(N,) < ¥, and we will show that for  supported in R and Y supported in SN,
it is sufficient to get l|g = 0. By Lemma we can identify SN, with R, x (Bg)z,4 X (Iz):-
Let uw = mp, o My o uy|g. In the coordinates ((r, 2), ({zi}, {vi})), we can write l|g = (l1,l2). For
n =0 and Y supported in SN, E|7 implies

(o, Y (@) oduojs,)r2r =0 (3.53)
where Y is 7, z-invariant in SN, by the definition of 7% (0U; { Ny} e xg) 0 Y () is well-defined.
Lemma 3.28. It follows from (3.53|) that Iy = 0.

Assuming Lemma [3.28] it suffices to show that [y = 0. Similarly, {; admits the unique
continuation property (see [Dra04, page 754]) so we only need to show that [; = 0 on some
non-discrete set of R. For Y = 0 and 7 supported in R, (3.52]) becomes

(l1,D(myz) o Dunpre g =0 (3.54)

1Y vanishes along 0,, 0, and takes values in 0y, Oy,
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Figure 2: Green region: U;; Blue region: Us; Red region: B(z1,€); Purple region: B(z2,¢€). Only
uo(Eo) hits Uy but not U among u;(E;) because unlike p; (for 1 < j < s), &, is a boundary
puncture.

where 7., : SN; — R, x (I;), is the projection. Notice that J|T(Rrx(1r)z) is the standard
complex structure, and 7 depends on the domain R rather than the target SN,. Therefore, we
can find an interior point p of R and construct n appropriately supported near p to show that
1 = 0. The details of the construction of 7 can be found in [Dra04, page 754].

As a result, I|[g = 0 and hence [ = 0. The existence of J¥7"9 follows from applying
Sard’s-Smale theorem to the projection F~1(0) — Ua. O

Proof of Lemma([3.28 The proof is the same as [EES07, Lemma 4.5(1)]. For readers’ conve-
nience, we will recall the proof using our notation.

By the definition of J¥ (U {Nitrexs), U is a J’'-holomorphic curve for some compatible
almost complex structure J' on B, such that J' = Jp, near origin. Moreover, exactly one
boundary puncture, denoted by &;,, of R is mapped to the origin by our choice of x.

By the asymptotic behavior of holomorphic disks, we can assume that for sufficently small
d > 0, there exists a neighborhood (Ey, 0Ey) < (R,0R) of &;, such that

(i) (u(Ep),u(dEy)) < (B(0,26),mp, (Do v Di1y) v dB(0,20)),
(ii) 7B, (Do v D14) N 0B(0,26) are two real analytic disjoint branches,
(ili) w(0Ep) contains two regular oriented curves o < Doz, 71 € D14 in B(0,20), respectively.

Here B(0,26) is a 20-ball centered at the origin and D;, are defined in (3.45).

To prove Iy is zero we consider the variation of J’' near a point on vy. To this end, we need
to keep track of other parts of R that map onto 7.

Let p1...,p, € OR be the preimages under @ of 0 with the property that one of the compo-
nents of the punctured neighborhood of p; in 0R maps to vp. This set is finite and is identified
with the set of boundary intersections between u and R x z.

Let pri1,...ps € R\OR be the preimages under @ of 0 with the property that the preimage of
7o under % intersects some neighborhood of p; in a 1-dimensional subset. By monotonicity lemma
and maximum principle, this set is also finite, and is identified with the interior intersections
between v and R x z.

For 1 < j < s, let E; € R denote the connected coordinate neighborhood of w=1(B(0,24))
near p;. Let Uy = u(Ep) and Uz be the Schwartz reflection of Uy through 1 (see Figure [2)).

37



By monotonicity lemma and maximum principle, for ¢ = 1,2 we can find a point x; €
Ui\(B(0,9) v mp, (Do v D1 )) and small neighborhoods B(z;,€), € « r, such that

N (B(zi€)) © US_oE; (3.55)

When a certain branch of a(E;) D a(Ep), then z;u(E};) for i = 1,2 We exclude from our list
any such j > 1. Note that for j > 1, 1 € u(Ej) if and only if z9 € u(E;). To simplify notation,
we continue to index this possibly shortened list by 1 < j < s.

For 1 < j < r, we double the domain F; through its real analytic boundary dFE;. We also
double the local map u| E;- We continue to denote the open disk by Ej. For 0 < j < s, let
uj = u|p;. We can also double (for 1 < j < r) the cokernel element [ (which is anti-holomorphic)
locally and define (for 0 < j < s) (l2); = l2|E;-

There exists a disk £ < C and a map fg defined on E such that for 1 < j < s, there exists
positive integers k; and bi-holomorphic identifications ¢; of £ with E; such that (I2);(¢;(2)) =
fe(2%) for z € E.

Via our choice of perturbation of the complex structure, we can choose Y to be supported
in B(xo,€). We get

(O 2(12)(6(2)), Y (uj 0 ¢j) 0 d(uj o ¢;) © jp)pzp =0 (3.56)
j=1

where jp is the complex structure on E. Varying Y, this implies

s

D 1(12);(¢i(2) =0 (3.57)

Jj=1

We can also choose Y to be supported in B(z1,€). We get
O 02)5(65(2)), Y(uj 0 ¢) 0 d(uj © ¢5) © juyre g + ((12)o(2), Y (uo) o dug © 12,5, = 0
j=1

Since the first term is 0 by (3.57)), by varying Y, it implies l|g, = (I2)o = 0 and hence l; = 0. [

Next, we need to address the regularity when u, lies in the top/bottom level of uy. We will
explain the case that l5(v) = ngy (i.e. top level) in details and the other case is similar.

Let Jy;+ be a compatible almost complex structure of SM™ such that it is integrable near
SL;rrhSLj, i # j. We assume that SL;, SLj+ are real analytic near SL;rrhSLj.

For JY € JYU (Y, a), we let J*(SM™) to be the set of compatible almost complex structure
J such that J = Jy;+ near | J,., SLT N SL;r and there exists R > 0 so that J+|(—oo,—R]><aM+ =

JY‘(—oo,—R]xY-

i#]

Proposition 3.29 (Regularity for M *-components). There is a residual set J "9 < J+(SM™)
such that if J* € JT79, then for ve Ve uV? and ly(v) = ng, the J*-holomorphic curve u,
1s transversally cut out.

Proof. By Lemma u, has a boundary asymptote x that appears only once among its
asymptotes. If the distinguished asymptote of wu, is a Lagrangian intersection point, then we
can apply the argument in [EESO7, Lemma 4.5(1)] or Lemma again to achieve the regularity
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of u,. If the distinguished asymptote of w, is a Reeb chord, we denote the corresponding puncture
by &7 . By the asymptotic behavior of u,, for a sufficiently large R, the preimage of a small
neighborhood of (—o0, —R] x I'm(z) under u, is a neighborhood of §;. - Therefore, we can find a
somewhere injectivity point near & - Similar to the situation in SY, we can perturb J in SM™
as long as J is cylindrical outside a compact set. Therefore, we can use the somewhere injectivity
point to achieve regularity (see [CRGG15l Proposition 4.19] for exactly the same argument). [

Similarly, one define J~(SM ™) analogously and we have

Proposition 3.30. There is a residue set J "9 < J—(SM™) such that if J= € T, then
forve Vere uVe and ly(v) = 0, the J~-holomorphic curve u, is transversally cut out.

Remark 3.31. There is a possible alternative approach to the above reqularity results if one
could generalize the work of Lazzarini [Laz00] [LazIl] and Perrier [Per] to the SFT settings.
This seems promising at least for SM*, but the general reqularity of SY might be more difficult.

3.7 No side bubbling

We can now summarize the previous discussion on us and draw geometric conclusions in this
section.

Let Lj, j = 0,...,d be a collection of embedded exact Lagrangian submanifolds in (M, w, )
such that L;hL; for all ¢ # j. Let P be a Lagrangian such that is satisfied (P can be one
of the L;). Let U be a Weinstein neighborhood of P and we assume that 6|y coincides with the
canomcal L10uv1lle one form on T*P. For T » 1, we pick « satisfying Corollary |3 H and T°%
satisfying (3 .

Let YV be a perturbation of oU such that (Y,0|y) = (0U,«). We denote 0|y by a. We
have a neighborhood ®y(y) : (N(Y),w|nwy)) = ((—¢€,€) x Y,d(e"a)) of Y. We assume that
Lin N(Y) = (—¢,€) x Aj where Aj = | [Ay; =17 PnY for some gj, € P in Corollary 3. 3

Let J™ be a smooth famlly of almost complex “structures R- adjusted to N(Y), such t
JY e gevlreg , Where J eylreg is obtained in Proposition m We also assume that J* € J i’Teg ,
where J+7¢ is obtained in Proposition

Let xg € CF(Lo, Lq) and z; € CF(Lj—1,Lj) for j = 1,...,d. When T is large enough, w
maye assume that

d
Z (z;)] < TOY (3.58)

Suppose that there exists a sequence {73};”; such that limj ., 7, = 00, and a sequence
up € M7™*(20;24,...,21). We assume that virdim(ug) = 0. Let uyp = {uv}veV be the
holomorphic building obtained in Theorem Then we have

Proposition 3.32 (No side bubbling). If n > 3, then V™ = & and ny = 1. Moreover, if
ve VO, then uy is a rigid JT-holomorphic map with exactly one boundary asymptote which is
negative and goes to a Reeb chord.

Proof. For a subtree G < T, we use virdim(G) to denote the virtual dimension of the map
HoeGUy, Where #,cqu, refers to the map obtained by gluing all w, such that v € G along the
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asymptotes determined by the edges. By (3.31)), (3.32)) and the fact that all Reeb chords/orbits
arising as asymptotes of u, are non-degnerate, we have

virdim(G) = ) virdim(u,) + ke (3.59)
veG

where k¢ is the number of edges that correspond to Lagrangian intersections points and connect
two distinct vertices in G. By assumption, virdim(7) = 0. Since w, are transversally cut out for
v e Veore y VO (Proposition [3.27, [3.29] [3.30), we have virdim(u,) > 0. For v € V™, we cannot
address the regularity but we have the following.

Lemma 3.33. For each connected component G of T, we have virdim(G) > 0.

Proof. Let v € G be the vertex closest to the root. By we have a distinguished interior
puncture n° € ¥, which contributes positively to E,(u,). Let 4° be the Reeb orbit that w, is
asymptotic to at n°. Since A(7°) = L(7°) > 0, 4° must be a positive asymptote of u,.

Notice that, by Corollary there is no v € G such that u, maps to SM™. There-
fore, #,cqu, is a topological disk in SM~ so 4° is contractible in U. Moreover, virdim(G) is
determined by 7° and it is given by 2n — 4 > 0 (see Corollary . O

By combining (3-59), virdim(7) = 0, virdim(u,) > 0 for v € V¢ U V? and Lemma we
conclude that V™ = ¥, kg = 0 and virdim(u,) = 0 for all v.

Notice that if u, is not a trivial cylinder but Iy(v) ¢ {0, ngs}, then virdim(u,) > 1 because
one can translate u, along the r-direction. Therefore, all intermediate level curves are trivial
cylinders so ny = 1. The last thing to show is that if v € V7, then ly(v) = 1 and u, has only
one boundary asymptote.

We argue by contradiction. Suppose ly(v) = 0. Due to the boundary condition, all asymp-
totes of u, are Reeb chords yo,...,yq,. Inside SM ™, we can compute the index of Reeb chords
using the canonical relative grading. By Corollary we have ¢(y;) < 0 for all j. It means
that virdim(u,) = n — Z?”zo t(yj) — (2 —dy) = n—2> 0. This is a contradiction so ly(v) = 1
for all v e V7.

Finally, if there exists v € V? such that u, has more than one boundary asymptote, then by
the fact that T is a tree, we must have v € V7 such that l3(v) = 0. This is a contradiction so we
finish the proof of Proposition [3.32

O

3.8 Gluings in SFT

To conclude our discussion on generalities of neck-stretching, we recall the following gluing
theorem for SF'T, which will play an important role in our proof.

Theorem 3.34. Let uq = (Uy)pev(7) € M7 (z0; 24, . . ., 21) be a holomorphic building such that
uy 18 transversally cut out for all v and virdim(ue ) = 0. Assume also that all asymptotic Reeb
chords are non-degenerate.

Then for any small neighborhood Ny, of us in an appropriate topology, there exists T > 0
sufficienly large such that for each T > Y, there is a unique u™ € M7 (xg; 24, ...,21) lying inside
Ny..,. Moreover, u” is regular and {uT}TE[T,OO) converges in SF'T sense to us as T goes to infinity.
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A nice account for the SFT gluing results can be found in Appendix A of [Lip06]. In the
presence of conical Lagrangian boundary conditions as in above, see also [EES07, Proposition
4.6] and [EES05, Section 8]. Theorem is essentially the same as Proposition 4.6 in [EES07],
except our contact manifold is not P x R. But this is not a concern for the gluing argument
because the argument involves local analysis on a neighborhood of the holomorphic building,
which is not affected by the global topology.

The typical application of Proposition [3.32] and Theorem [3.34] goes as follows. Given a
collection of Lagrangians such that the assumption of Theorem [3.3| is satisfied, we want to
determine the signed count of rigid elements in M7" (zq; x4, . .., 1) for some large 7. When d = 1
(resp. d = 2), the signed count is responsible to the Floer differential (resp. Floer multiplication).
If we pick up € M7 ™ (zo; 24, . . ., x1) such that limy_, 7 = 0, we get a holomorphic building
by Theorem [3.3] By Proposition [3:32] u, satisfies the assumption of Theorem [3.34] Therefore,
for sufficently large 7, M”" (xg; 4, ..., 21) is in bijection to M”” (zo; x4, ..., 21). Moreover, all
elements in M7" (zo;xg,...,x1) are transversally cut out. It means that the Floer differential
(resp. Floer multiplication) can be computed by determining M’ ” (zo; x4, .., 1), which is
exactly what we will do in the following section.

4 Cohomological identification

Let P be a Lagrangian such that (2.58]) is satisfied and P be the universal local system on P.
We pick a parametrization of P so that 7p can be defined. In this section, we want to prove
that

Proposition 4.1. For €°, &' € Ob(F), we have cohomological level isomorphism
H (hom zpert (€2, Tp(EY))) ~ H(homz(E°, mp(E))) (4.1)

We will only consider the case that & = L; are Lagrangians without local system. The proof
of the general case is identical except that the notations become more involved. In slightly more
geometric terms, we would like to directly construct a chain map ¢ from

Co := Cone(CF(P, L1) ® CF(Lo,P) = CF(Lo, L1)) (4.2)

to
Cl = CF(L(), Tle) (43)

which induces isomorphism on cohomology.

By applying a Hamiltonian perturbation, we assume Lgh L1, and that each connected com-
ponent of L; n U is a cotangent fiber in U. The cotangent fiber TP n U has |T'| different lifts
{TyqP}ger n'U in U, where U < T*P is the universal cover of U. We assume the Dehn twist
Tp is supported inside U and we have a commutative diagram:

U-—2*25U

Pl

[y

where m : U — U is the covering map. As always, we assume that Lo, L are equipped with
Z—gradings and spin structures.
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Our strategy is to study directly the Floer cochain complexes from both sides of .
Section gives a geometric correspondence between the generators from the two sides, and
Section (.3 will study the SFT limits of involved holomorphic strips and triangles. Section [4.4]
use a local model to compute several key contribution of moduli spaces in the SFT limits, which
eventually leads to the matching of differentials of in Section Due to the heaviness
of notation and length of our proof, we also included a more technical guide in Section in
hope of keeping the readers on board.

4.1 Correspondence of intersections

We denote the set of generators in Cy by X(Cp), which is divided into two types X,(Cp) and
X,(Co):

o X,(Cp): generators in hom(P, L1) & hom (Lo, P)[1]

e X,(Cy): generators in hom(Lg, L1)

More precisely, X,(Co) = Lo n L1 and X,(Cp) is the set of elements of the form [q¥ ® gp] ~

[a¥g®Pp] ~ [(97'a)¥ ® p], where we are using the correspondence (2.39) and (2.40). On the
other hand, we denote Ly n 7pL; by X(C1) which is a set of generators for C}.

Let pe Lon P, ge L1 n P and p,q € P be a lift of p and ¢, respectively. We also introduce
the following notation

Cp,q: the unique intersection T;P n 7p (T4 P) (4.4)
Cp,q := T(Cp,q), Which is an intersection of Ly n 7pLq

Lemma 4.2. There is a grading-preserving bijection ¢ : X (Cpy) — X (C1).

Proof. First, there is an obvious graded identification between Xj(Cy) and the intersections of
Lo n 7pLy outside U, so we only need to explain how to define (| Xa(Co)-
We define ¢|x,c,) by
L|XG(CO) :q" @P— Cpgq (4.5)

This map is well-defined because

Uq”g ' ®gp) = 1((9a)" ® gP) = T(Cyp,gq) = Cp.q (4.6)

The last equality comes from the equivariance of 7p. It is clear that ¢|x,(c,) is a bijection from
X, (Cp) to the intersections of Ly N 7pL; inside U.
To see that (| X,(Co) Preserves the grading, we only need to observe that 7 interwines the

canonical trivialization of (AS*P(T*U))®2 and (AZ"P(T*U))®? so the computation reduces to
the case that P = S™, which is well-known (see e.g. [Sei03]). O

Using Lemma we define X, (C) = ¢(X,(Co)) and A,(Ch) = t(A(Cp)). We summarize
our notation in Figure [3]
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TP(T;P)

P

Figure 3: Generator correspondence between Cy and C

4.2 Overall strategy

The differentials in Cy can be divided into four types.
e Type (Al): differentials in hom(Lg,P), i.e. pseudo-holomorphic strips in M(p’; p)
e Type (A2): differentials in hom (P, L1), i.e. pseudo-holomorphic strips in M((q')¥;q")
e Type (B): differentials in hom(Lg, L1), i.e. pseudo-holomorphic strips in M(zg; z1)

e Type (C): differentials from the evaluation map, i.e. pseudo-holomorphic triangles in
M(z; 9", p)

For C1, we divide the differentials similarly, using correspondence of generators ¢. Concretely,
we have:

e Type (A1’): pseudo-holomorphic strips in M(cp q; ¢p,q);
e Type (A2’): pseudo-holomorphic strips in M(cp o5 Cp,q);

e Type (A3’): pseudo-holomorphic strips in M(cp/ o;Cp,q) that are not in Type(Al’) and
(A27);

e Type (B’): pseudo-holomorphic strips in M(zg; z1);
e Type (C’): pseudo-holomorphic strips in M(x; cp q);
e Type (D’): pseudo-holomorphic strips in M(cp,q; 2);

where x, zg, 1 € Xp(Ch).
By the discussion in Section we know that for an appropriate choice of {J7} and 7 » 1,
all the rigid J7-holomorphic polygons in the moduli above are transversally cut out and they are
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Lo L,

Type (C)

Figure 4: Types of holomorphic curves in Cy

bijective to the corresponding holomorphic buildings. By studying the holomorphic buildings,
we will show that there are bijective correspondences

!/

m7”

(p’;p) m7” M7 (¢epr.q; Cp,q) for all g; (4.7)
MJT((QI ) ~ MJT(ch/; Cp,q) for all p; (4.8)
MJT (xo; ) ~ M7 (o5 1); (4.9)

(:c q’,p) ~ ~ M7 (x5 ¢p.q); (4.10)
Type (A3’) and (D’) are empty with respect to J7. (4.11)

where the two sides of are with respect to boundary conditions (Lo, L1) and (Lo, 7p(L1)),
respectively. In other words, for 7 » 1, ¢ : Cy — (7 is an isomorphism which clearly implies
Proposition [£.1]

In the following subsections, we ignore the sign and only conisder the case that char(K) = 2.

The complete proof of Proposition where orientation of moduli is taken into account, will
be given in Appendix [A]

4.3 Neck-stretching limits of holomorphic strips and triangles

In this section, we will list all possible holomorphic buildings uq, = {Uy}vev(g') that arises as the
limit (when 7 — 00) of curves in the moduli discussed in Section By Proposition we
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Figure 5: Types of holomorphic curves in C

know that u, satisfies the following conditions

(i) The total level ng = 1,

(7i) virdim(u,) = 0 for all v. (4.12)
(747) All compact edges in T correspond to Reeb chords. '

(

iv) If v € V9, then Ig(v) = 1 and u, has exactly one boundary asymptote.

Therefore, we assume (4.12)) hold throughout this section. Recall also that Corollary holds
for our choice of (0U,«), hence the asymptotes under consideration are non-degenerate and
mb(z) = 1 (cylindrical direction).

Lemma 4.3. In the case (iv) of [£.12)), let v e VO and x be the negative asymptote of u,. Then
lz| = 1.

Proof. By Lemma and virdim(u,) = 0, we have
0 = virdim(u,) = || + mb(z) —2 = |z| — 1 (4.13)

Therefore, |z| = 1.

Lemma 4.4. Ifly(v) = 0, then u, has at least one asymptote that is not a Reeb chord.

Proof. Suppose not. Let y1,...,yr be the asymptotes of u,, which are all positive Reeb chord.
Notice that the shift of gradings for any individual boundary condition does not affect the virtual
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dimension of u,. Therefore we can use the canonical relative grading to compute the virtual
dimension of u,. By Lemma and Corollary we have

k
virdim(uy) =n— > |yl -3 -k) =n—-3+k>n—2>0 (4.14)
j=1
which contradicts the assumption (4.12)) that virdim(u,) = 0. O

Lemma 4.5. Every generator cpq € CF(T; P, 7p(T; P)) satisfies |cpq| = n — 1 with respect to
the canonical relative grading. Moreover, if cp g 15 the only asymptote of a non-constant J~ -
holomorphic map w, : £, — SM~ = T*P that is not a Reeb chord, then cp q must be positive
as an asymptote of u,.

Proof. To see that |cp q| = n — 1, it suffices to show that |cp | = n — 1. One can compute it
directly by noting that 7p(T§P) = P[1]#T4P, where P[1] is the grading shift of P by 1 and
# denotes the graded Lagrangian surgery at the point q (see [Sei00] or [MWal]). Alternatively,
one can see it using the Dehn twist exact sequence [Sei03]

0 — HF¥(TEP, 1p(TEP)) — @b 1k HF* (P, TiP) @ HF(TEP,P) — 0 (4.15)

and the fact that the second non-trivial term is non-zero only when a = 0 and b = n.
On the other hand, if cp q is a negative asymptote and the remaining asymptotes are denoted

by y1,..., Yk, we would have (computed in canonical relative grading)
k
virdim(u,) = |epgl = vl = (2= k) =n—2>0 (4.16)
i=1
which contradicts to the assumption (4.12]) that virdim(u,) = 0. O

Now, we can describe the SFT limits of various moduli.

Lemma 4.6 (Type (A1)). Let uw = (uy)pev(7) be a non-empty SF'T limit of curves in M7 (p';p).
Then T consists of exactly two vertices vy, ve and

e u,, is a J~-holomorphic triangle with negative asymptote p’' := w(p’) and positive asymp-
totes x,p where z is a Reeb chord with |z| = 0 in the canonical relative grading;

o vy € V7 so, by Lemma Uy, 18 a JT-holomorphic curve with one negative asymptote x
such that |x| =1 in the actual grading.

Proof. Notice that, by the boundary condition P, p and p’ must be asymptotes of the same wu,.
We call it u,,. We label the other vertices of T by wva,...,v; for some k > 0. By boundary
condition again, we know that v; € V7 for j > 1. By , we have ly(v;) = 1 for j > 1.
Moreover, all v; are adjacent to vy because u,; has a negative asymptote (see Figure @ By

Lemma [3.10] and Corollary [3.23] again,
k
0 = virdim(u,) = 7] — |pl = 3 sl — (1= k) >k — 1 (4.17)
j=1

so k = 0,1. However, k # 0 by boundary condition. As a result, £ = 1 and we denote y; by z.
Finally, to compute |z| in the canonical relative grading, we just need to make a grading
shift so that [p’| — [p| = 1 on T); P. It gives |z| = 0 in the canonical relative grading.
O
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Figure 6: Multiple side bubbles

Similarly, we have

Lemma 4.7 (Type (A1’)). Let ug = (uy)yey (3 be a non-empty SFT limit of curves in M7 (cpr g3 Cp.q)-

Then T consists of exactly two vertices vy, ve and

® uy, is a J-holomorphic triangle with negative asymptote cy g and positive asymptotes
x,Cpq where x is a Reeb chord with |x| = 0 in the canonical relative grading;

e vye V% 50 Uy, 8 a JT-holomorphic curve with one negative asymptote x such that |z| =1
in the actual grading.

We omit the corresponding statements for type (A2) and (A2’) because of the similarity.
Next we consider

Lemma 4.8 (Type (B), (B’)). Let uw = (uy)yev(7) be a non-empty SFT limit of curves in
MY (zo;21). Then T consists of exactly one vertex v and ly(v) = 1.

Proof. If T has a vertex v such that ly(v) = 0, then all the asymptotes of v are Reeb chords
which contradicts to Lemma Therefore, ly(v) = 1 for all v € V(T) and it holds only when
T consists of exactly one vertex. O

Lemma 4.9 (Type (C)). Let uw = (uy)vey(7) be a non-empty SF'T limit of curves in M7 (z;qY, p).
Then T consists of exactly two vertices vy, ve and

® Uy, s a J” -holomorphic triangle with positive asymptotes y,q", p, where y is a Reeb chord
with |y| = 0 in the canonical relative grading;

e uy, is a Jt-holomorphic curve with two negative asymptotes x and y.

Proof. Again, we use the same argument as in the proof of Lemma[4.6] There is v; € T such that
Uy, is a holomorphic polygon and q, p are asymptotes of u,,. All other vertices are adjacent
to v1: otherwise, there will be components in T*P with only Reeb asymptotes, contradicting
Lemma Denote these vertices by wve,...,vg. There is exactly one j > 1 (say j = 2) such
that v; ¢ V7 and x is an asymptote of uy;. For T to be a tree, u,, has exactly one negative Reeb
chord asymptote, which is denoted by yo. Let the negative asymptote for u,, (for j > 2) be y;.
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For u,, to be rigid, we have

k
0=n—lpl~la"|= Y Iyl — (2= k) >n—n—0+k—-2
j=2

so k < 2. However, we have k > 2 so we get k = 2. Moreover, the canonical relative grading of
Y2 is 0.
O

Remark 4.10. Later on, we will also make use of the moduli space M?" (pY;zVY,q"). The shape
of neck-stretching limit will remain the same as Type (C), because this is simply a modification
of some of the strip-like ends (from outgoing to incoming, and vice versa) and does not change
the behavior of the underlying curve.

Lemma 4.11 (Type (C’)). Let uewy = (uy)ev(s) be a non-empty SFT limit of curves in
M7 (x5¢pq). Then T consists of exactly two vertices vy, ve and

® u,, is a J -holomorphic bigon with positive asymptotes y,cp q, where y is a Reeb chord
with |y| = 0 in the canonical relative grading;

e uy, is a Jt-holomorphic curve with two negative asymptotes x and y.

Proof. The argument is entirely parallel to Lemma Let u,, be the J™-holomorphic curve
such that cp ¢ is an asymptote of it. Let the other asymptotes of wu,, be y1,...,yr. For u,, to
be rigid, by Lemma

k
0 = virdim(uy,) = n — |epgl = D [yl — 2=k)=n—(n—1)—2+k=k—1 (4.18)
j=1

so k = 1 because u,, has at least one positive Reeb chord asymptote. O
Our final task is to show that type (A3’) and (D’) are empty for 7 » 1.

Lemma 4.12 (Type (A3")). Let uew = (uv)vev () be a SFT limit of curves in M7 (cp /s Cpa)
that are not in Type(A1’) and (A2’). Then uq is empty.

Proof. There is v € V(7T) such that cp o is a negative asymptote of u,. By boundary condition,
Cp,q cannot be an asymptote of u,. The existence of u, violates Lemma ]

By Lemma [4.5| again, we have

Lemma 4.13 (Type (D). Let ug = (uy)pey(7) be a SFT limit of curves in M7 (ep.q; ). Then
Uy 15 empty.

4.4 Local contribution

In this section, we will determine the algebraic count of some moduli of rigid J~-holomorphic
curves in SM~ = T*P, using a cohomological counting argument.

Let g1, g2, g3 € P be three generic points such that u;A,, satisfies Corollary Let q; e P
be a lift of ¢; for i = 1,2,3. Let J~ be the almost complex structure on T*P that is lifted
from J~. Since the contact form 0|sy equals to the lift of o = 6|5y, by Lemma there is
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a unique Reeb chord ;; from Ag, to Ag; such that |z; ;| = 0 in the canonical relative grading.
Let q; € CF(T§P,P) and c;; € CF(T§ P, 7p(1g P)) be the chains represented by the unique
geometric intersection in the respective chain complexes.

We are interested in the algebaic counts of the following moduli spaces

(1) M7 (auiaz, 212), M7 (g55 21,2, ay) and M7 (s qz, 21,2, qy),
(2) M (c32;21,2,€31),

(3) M7 (c13;c23,71,2),

(4) MY (i e1,21,2).

Theorem 4.14. The algebraic count of the above moduli spaces are all +1.

Proof of Theorem[{.1]] We will apply SFT stretching on the the following “big local model”.

Consider an Az Milnor fiber consisting of the plumbing of three copies of T*S5". We denote
the Lagrangian spheres by S1, P and S3, respectively, where S; n S3 = . We can identify a
neighborhood of P with U. By Hamiltonian isotopy if necessary, we assume that U n S} is a
pair of disjoint cotangent fibers for j = 1,3. We perturb 57 to S2 by a perfect Morse function,
so that U n S5 is another cotangent fiber.

It will be clear that we should, for j = 1,2,3, naturally abuse the notation to denote
q; € CF(S;,P), which is the only generator in the corresponding cochain complex. Let
e,pt € CF(S1,S2) be the minimum and maximum of the Morse function, respectively, where e
represents the identity in cohomology. On the cohomological level, it is clear that [qs2][e] = +[q1]
and [e][q)] = £[qy]. This implies the algebraic count

#M(q1; qz,e) = £1

4.19
#M(qy;e,q)) = +1. (4.19)
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We now apply the same argument to other cochain complexes. For i # j, let c;; €
CF*(S;, 7p(S;)). be the only generator in their corresponding complex. Again, the multi-
plication by [e] on [c1 3] and [c3 1] yields

#M(c1,3;¢2,3,€)

1, (4.20)
#M(c32;€,¢3,1) .

-
= +1 (4.21)

For the case of co; € CF(S2,7p(S1)), it is immediate from Seidel’s exact sequence that
rank HF'(S2, 7p(S1)) = 1, concentrated on degree 0. C'F(S3,7sS51) has two additional generators
|c2,1] = n — 1 and |pt| = n, which cancel each other. Therefore, one has

#M(pt;co1) = £1 (4.22)

To deduce Theorem we perform a neck-stretching along dU. It means that we choose
a family of almost complex structure J™ adapted to dU and see how the J™-holomorphic curves
converge as 7 goes to infinity. We require that the limiting almost complex structure on SU
coincides with J~ and we denote the limiting almost complex structure outside U by J*. S
and Sy give two fibers in U, and every holomorphic curve in MY (qy; gz, €) will converge, in
the U part, to a curve in M7~ (qi;qq, 712) (see Lemma where the direction of the strip-like
ends are switched). This implies

HFMY (q1; a2, 212)) - (FMY (2195€)) = #M (qi; 92, ¢) = +1.

Since all counts are integers, it follows that #M7~ (d1;92,z1,2) = 1 which implies the same is

true for #M” (q3;212,q)) and #M7 (a2, 712, a7)-
The same stretching argument, along with (4.20)) (4.21]) (4.22)) yields
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(#M? (c13;c03,712)) - (AM (21.95€)) = #MY (135003, €) = £1, (4.23)
(H#M? (e32i 712, ¢31)) - (HMT (2125€)) = #MT (e32;€,31) = +1, (4.24)
HFM (s ea1,21.2)) - M (219, pt; P)) = #MT (pt;c01) = £1. (4.25)

which give the remaining algebraic counts.

Finally, notice that even though Sy is obtained by a perturbation of Si, we can actually
Hamiltonian isotope S so that Sy n P is the preassigned ¢ and there is no new intersection
between Sy and S1, S3 being created during the isotopy. With this choice of Sy and the stretching
argument explained above, Theorem follows.

O

One may define the analogous moduli spaces similarly on T* P for cotangent fibers T;° P. By
equivariance, every rigid J~-holomorphic curve lifts to |T'| many rigid J~-holomorphic curves
and every rigid J~-holomorphic curve descends to a rigid J~-holomorphic curve.

With this understood, we have

Corollary 4.15. The algebraic count of the following moduli spaces are +1.

1 _(p,;p7$p’,p)a MJ_ (q/v;xq,q'7qv> and MJ_ (gvpa xq,p7qv)7

2 (epaiTaqs Cpa)

(1) m/
(2) M/
(3) M7 (cpt,q5 cp.as Tp',p)
(4) M7 (D cpqs Tq,p)

where x ; is the ungiue Reeb chord of canonical relative grading 0 from A,y to A, which can
be lifted to a Reeb chord from Ay to Ap. The definition of x4 o and zqp are similar.

4.5 Matching differentials

We now are ready to prove Proposition 4.1} The first lemma relates algebraic counts of differ-
entials of Type (Al) and (A1’).

Lemma 4.16. For 7 » 1, the algebraic count of following moduli spaces are equal

o M7 (cpr i Cp.q), differentials in hom (Lo, Tp(L1)) from cpq to ¢y qs

o M77(p';p), differentials in hom(Lg,?P) from p to p’

Proof. To prove the lemma, we look at the SFT limit of these moduli when 7 goes to infin-
ity. Let ul, and u2 be a limiting holomorphic building from curves in M’ (¢ o; Cp,q) and
M7 (p’; p), respectively. Lemma and ul, consist of a J~-holomorphic curve uf}l and a
J-holomorphic curve u . Moreover, uf, lies in M’ ' (p pr; &) for both i. On the other hand,
ul lies in MY (¢pr g Cp,qs Tpr p) and u2, lies in M7~ (p/s p, 2/ ).

Therefore, for 7 » 1,
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#M7" (p', p)
a (2pps D) - #M7 (P'sp o p)
7 #

=# Tpp's D) - (¢p',qi Cpaas Tp',p)
:#MJ (¢p'.ai Cp.a)
where the second equality uses Corollary (1) and (3). O

Similarly, we compare the differentials of Type (A2) and (A2’).
Lemma 4.17. For 7 » 1, the algebraic count of following moduli spaces are equal

o M7 (cpq'iCpa):

o M7 (dV;q).
Proof. The proof is almost word-by-word taken from Lemma[f.16] Lemmal[4.6] [4.7]and Corollary
4.15] (1) and (2) implies

(dY:qY)
(xq,q) #MJ ( "L‘q,q’qu)
(Tq,q) - # (Cp,q/5 Tqq's Cp,a)

# (Cp,q’5 Cp,q)

+

+

The last lemma addresses differentials of Type (C) and (C’).

Lemma 4.18. For 7 » 1, the algebraic count of following moduli spaces are equal
e M7 (2;9Y,p), for some x € CF*(Lg, L1) represented by an intersection outside U,
o M7 (75cp.q)-

Proof. The strategy is still similar. Apply the same neck-stretching as in Lemma and
one obtains a building consisting of a triangle and a bigon for M’ (x;q", p), thanks to Lemma
and a building consisting of two bigons for M”/" (z; ¢p ) from Lemma 4.11l Therefore

#M' (2;q",p)
=#M (2, 24,3 D) -
=#M (2, 24,7 D) -
=#M” (z; cp,q)

where the second equality uses Corollary (1) and (4). O

MJ7 (@a D, Zq,p, qv)
M7 (; cp,as Ta,p)

i
i

As the end product of this section, we have

Proof of Proposition when char(K) = 2. For 7 » 1, the differential on Cy and C; can be
identified by Lemma [£.16] [£.17] 4,18 and O

The proof of Proposition when char(K) s 2 is given in Appendix

52



5 Categorical level identification

In this section, we want to prove Theorem [1.2] by showing the following:

Theorem 5.1. For any object &' € Ob(F), we can perform a Hamiltonian perturbation for & to
obtain another object (EY)" of F such that there is a degree zero cochain cp € homofperf (rp((EY)), Tp(EY))
so that cp is a cocycle, and

B2 (e, )+ hom e (€2, 7p((€1))) = hompye (€%, Tp(21)) (5.1)

is a quasi-isomorphism for all E° € Ob(F)
In particular, 7p(&1) ~ 7p((EY)) ~ Tp(EL) as perfect Ax right F-modules.

The overall strategy goes as follows. By Proposition Corollary and the fact that
Hamiltonian isotopic objects are quasi-isomorphic, we know that

H(hom zpert (T ((EY)), Tp(EY))) = HF (1p(EY), 7p(EY)) (5.2)

Our goal is to pick an appropriate non-exact degree zero cocycle cp € hom%. ... (7p((€Y)), Tp(EL)),
and check that p?(ep, —) is a quasi-isomorphism for all €2 € Ob(F) (see . By a Hamiltoni-
an perturbation if necessary, it suffices to check the equality for those £° such that Lg intersects
Ly, (L1) and P transversally. This allows us to apply neck-stretching along U to compute
p%(cp,-) for 7 » 1 (see Section .

The discussion in this section works for fields K of arbitrary characteristics, even though we
didn’t pay exclusive attention to signs.

Again, let us give a sketch of this section in hope of rescuing discouraged readers from
the daunting details and notations. As pointed out in the introduction, we will pursue the
generator that comes from L and the Dehn twist of a perturbation of L, which represents the
fundamental class of CF (L, L) before the Dehn twist. This is not a cocycle in D, and we
computed its differential in [5.1.1l To offset them, we use the tensor product component in D,
whose differential, as a product in the Fukaya category, is computed in which eventually
yields the desired cocycle c¢p. After studying more of the A, -structure, we verify cp gives the
desired quasi-isomorphism .

The reader should note that we postpone all issues of orientations to the appendix, but as
it turns out, the content in this section depends on analysis of signs minimally.

5.1 Hunting for degree zero cocycles

To find a degree zero cocycle, we need to first analyze the differential of hom zpet (7p((EL)), Tp(EL))
by neck-stretching. The discussion in this section works for field K of arbitrary characteristics.

Let L} be a C?-small Hamiltonian push-off of L; such that Lj n U is a union of cotangent
fibers. Let q1,...,qa,, € CF(L1,P) and ¢, ..., q&Ll e CF(L}, P) be the cochain representatives
of the geometric intersection points, where dr,, = #(P n L1) = #(P n L}). We also number the
intersection points so that dp(¢;,q}) < € in the standard quotient round metric. Let Aqi,Aq;_ c
0oU be the cospheres at ¢; and q}, respectively. We assume ¢;, q;- satisfy Corollary Fix q;, q;
be a lift of g;, q;, respectively, for all 4, j. Our focus will be the cochain complex

D := hom gpest (Tp((E')), Tp(E1)) = (CF(P, &) @ CF(7p((€)), P)[1] @ CF(r((€')), €")
(5.3)
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which is generated by elements supported at the intersection points

q; ®7’p(q§) fori,j=1,...,d,
cifg,] = cngq forgel',i,j=1,...,dr, (5.4)
Wi, for k=1,...,#(L] n Ly)

The first two kinds of intersection points are inside U while {wy} are outside U. FElements
supported at ¢/, ; and wy, are given by

Homig(1p((€1) )ey, o+ €6, o) @0k Homie(7p((€1) ) €13,) (55)
v

respectively. On the other hand, the elements supported at ¢ ® 7p (q;) are generated by
(V*®q)) ® (g7p(d)) @), for v° € &, v € Homx(rp((€1))rp()), K), g €T (5.6)

Here we use the commutativity 7(me(q})) = 7p(7(d})) = 7p(q;).

Lemma 5.2. With respect to canonical relative grading, we have

‘Qz\/‘ = 07 fO?" qz € h0m<P T*P)
iTp(q;)| =1, for 7p(q}) € hom(7p(T} P) P) (5.7)
¢lgil =1 forc), ;= W(TP(qujP) NnT§P)e hom(Tp(T]P) T} P)

Proof. The fact that |¢| = 0 follows from the definition of canonical relative grading (3.8]).

¢’ ;| =1 follows from |¢; , ;| = n — 1 (see Lemma 4.5)). Finally, from the long exact sequence
1,9,3 9]
HF*(P, Ty P) - HF*(P, 7p(Ty P)) — — HF*Y(P,P) - HF* (P, T5P) (5.8)

and the fact that HF(P, Tp(Tq’z_ P)) has rank 1, we know that HF°(P, P) ~ HF°(P, T(Z_ P), and
HF*(P, TP(T(Z P)) — HFF¥*'(P, P) is an isomorphism when k = n — 1. Therefore, [7p(q})¥| =
n—1and |[7p(q;)| = n —|7p(q))"] = 1. O

Without loss of generality, we assume that there is a unique wj with degree 0 and we denote
it by er. All other wy has |wg| > 0. With generators understood, we now recall that the

differential for element ¢, supported at x = ¢y, ; or = wy, is given by u Y(y) = pk(ys), and
for element supported at ¢’ ® Tp((]J) is given by (see ([2.87)))

uh (1 @ qf ® gre(q)) @ vh) =(-1) L (0?2 @ q)) @ (g7 (d)) @91
+ W ®q )®M}'(QTP(q]') ®')
+pFW?®aq), gme(d)) @) (5.9)

Our focus will be put on p(ve,) and pk(4* ® qy , g7e(d)) @ ¥1).
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5.1.1 Computing ,ul}-(lﬁeL)

Let h: L1 — R be a smooth function such that dh = 6|r,. We define h; := h|s, which are
constants because L; is cylindrical near A,. Hamiltonian push-off induces A’ : Lj — R such
that dh' = 0|1, and h; := h'|s ;. Are constants By possibly reordering the index set of i, we

assume that h; < hy < hd For each i, by relabelling if necessary, we also assume that ¢;

is the closest to g; among points in {q] } =1, and q; is the closest to q; among points in {gq}}ger.
We recall from ) that the action of a Reeb chord z from A, ; to Ay, is given by

A(z) = L(z) + h; — hy (5.10)

Lemma 5.3. There is a constant € > 0 depending only on {qz}fii and Ly such that when L} is
a sufficiently small Hamiltonian push-off of L1,

e A(x) > € if x is a Reed chord from Aq; to Ay, and j > i, and
o A(z) > € ifx is a Reed chord from Ay to Ag, but not the shortest one.

Proof. There is a constant ¢ > 0 depending only on {qz}jii and L; such that L(z) > 3¢ if z is
either a Reeb chord from A,; to Ay and i # j, or it is a non-constant Reeb chord from A,
to itself. We can choose a small Hamiltonian perturbation such that L(x) > 2e if either z is a
Reeb chord from Aq;_ to Ag,, or a non-shortest Reeb chord from Ay to Ag,. If j = i, we have
hj = h; so we can assume the Hamiltonian chosen is small enough such that h} —h; > —e and

therefore A(x) = L(x) + h; — h; > € in both cases listed in the lemma. O

For each i, we denote the shortest Reeb chord from A, : to Ay, by xy;. In regards to the
canonical relative grading, we have |z ;| = 0. Since g is "the closest to q; among points in
{94} ger, if we lift the Reeb chord zy; to a Reeb chord starting from A 2 then it ends on Ag,

The following lemmata ﬂ 5.5( and [5.6) concern some moduli of rlgld bigon with mput
being e;,. We start with the case when the output lies outside U.

Lemma 5.4. For 7 » 1, rigid elements in M’ (wy;er) with respect to boundary condition-
s (TP(L ),L1) and (L}, L1) (i-e. they contribute to the differential in CF(rp(L}),L1) and
CF(L}, L)), respectively, can be canonically identified.

Proof. By the same reasoning as in Lemma [4.8] as 7 goes to infinity, the holomorphic building
U = (Uy)yev(7) consists of exactly one vertex v and u, maps to SM™. The result follows. [

In Lemmal5.3] the € is independent of perturbation. Therefore, we can choose a perturbation
such that the action of ey, in hom (L}, L1) (and hence in hom(7(L}), L1)) is less than €. In this
case, we have

Lemma 5.5. Let e satisfy Lemmaﬂ If A(er) <€, then for all j > i and ge T (or j =i and
g # 1), there is no rigid element in M”" (c ¢igiier) for > 1.

Proof. Suppose not, then we will have a holomorphic building uy, = (UU)UEV(‘J') as 7 goes to
infinity. Let u,, be the J~-holomorphic curve such that ¢/, ; is an asymptote of u,,. One can
argue as in Lemma {4.11| to show that u,, has exactly one positive Reeb chord asymptote z.
Moreover,  can be lifted to a Reeb chord from qu;_ to Ay, by boundary condition. When
j>iand geT (or j =iand g # 1r), we have A(z) > € by Lemma [5.3] Since A(er) < € by
assumption, we get a contradiction by Lemma [3.15 O

95



Lemma 5.6. For L} sufficently close to Ly and T » 1, the algebraic count of rigid elements in
Proof. Similar to previous discussions, every limiting holomorphic building us, = (uv)vevm
from strips in M7" (czV 10,05 € 1) consists of two vertices (see Lemma . By boundary condition,
the bottom level curve u,, lies in M7~ (¢i'1y.43 ®iri), which has algebraic count +1 by Corollary

4.15(4). Therefore, it suffices to determine the algebraic count of M i (xiriser).

We consider the rigid elements in the moduli M(g,”; ez, (¢/)") for a compatible almost com-
plex structure J, which is responsible to the g -coefficient of u%(er, (q})¥) for the operation
p2(-,+) : hom(Ly, L1) x hom(P, L)) — hom(P, Ly). Therefore, it has algebraic count +1 with
respect to J when L} is C%-close to L;.

Next, we will use a cascade (homotopy) type argument which goes back to Floer and argue
that the algebraic count of M7" (¢;er, (¢})¥) is £1 for all 7 < 0. The difficulty lies in that
neither g’ or (¢})" is a cocycle, so the cohomological arguments would not work here. A detailed
account for a cascade (homotopy) type argument involving higher multiplications can be found
in, for example, [AST10D] (see also [Sei08|, Section 10e], [Aurl(]).

Let us recall the overall strategy of the cascade argument tailored for our situation. Pick
a path of compatible almost complex structures (Ji)e[o,.0) from J to J7 for some finite time
7. For a generic path of almost complex structure (Ji)ue[o,c0), there are finitely many 0 <
t1 < -+ < tx < 1 such that there exists J;, stable maps with input ey, (¢;)", output ¢ and
consisting of two components. In our case, they consist of a Jy-holomorphic triangle and a
bigon, respectively. Moreover, one of the components must be of virtual dimension 0, and the
other one is of dimension —1. In this case, we say a bifurcation occurs at t;, and denote the
component of virtual dimension —1 as u.

If a bifurcation occurs at t;, then M (g ;er,(¢;)") has the same diffeomorphism type when
t € (t — €, t;) for some small € > 0. The birth-death bifurcation cancels a pair of Jy, _-triangles
at time ¢;; and the death-birth bifurcation creates a pair of Jy i -triangles at the time ¢;. In
either case, there is a pair of stable J;,-stable triangles. When ¢ approaches ¢; from the right, we
get the cooresponding cobordisms. The change of algebraic count from MJtl*G(qu; er, (q})Y) to
M7ute(qYser, (¢))V) is called the contribution to M7t (q);er, (¢})") by the bifuration at time ;.

Therefore, to show that the algebraic count persists to be +1 crossing t;, we will analyze
each bifurcation moment # below and prove the contribution to M7t (¢);er, (¢})") is zero. For
simplicity we let [ = 1. Since there are exactly two irreducible components at ¢ = t1, one of
them has to has virtual dimension 0 and the other one has dimension —1. Let w denote the
component of virtual dimension —1 (it can be either a strip or a triangle), and we divide the
possible stable Ji,-holomorphic triangles into three cases:

(i) both ¢ and (g;)" are asymptotes of u;

\%

(ii) exactly one of ¢ and (¢;)¥ is an asymptote of u;

(iii) neither of ¢ nor (¢/)" is an asymptote of w.

Case (i): If both ¢ and (q¢})¥ are asymptotes of u, then the last asymptote 2 of u must be a gen-
erator of CF(L}, L1) by boundary condition. Moreover, x is a degree 1 element of CF (L, L;)
because virdim(u) = —1 and |er| = 0. This bifurcation contributes to a change in the algebraic
count of M7t(q;er, (¢})¥) by the algebraic count of rigid elmements from M7 (x;e) (when
t > t1, the moduli M1 (z;er) and M”11 (g ;x, (¢})¥) glue together to give a change). However,
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the algebraic count of rigid elmements from M”41 (2;er) is zero because ey, is a cocycle.

Case (ii): If exactly one of ¢;” and (¢})" is an asymptote of u, then P is a Lagrangian boundary
condition of one of the component of 0%,, where ¥, is the domain of u. By this boundary
component, there is another point g; or qé- for some j # i which is an asymptote of u. Since
there is a lower bound between the distance from g; (or ¢;) to ¢; (or qg) for j # i, we can apply
monotonicity Lemma at an appropriate point in Im(u) n P to get a constant § > 0 depending
only on {qz}ji} but not L) such that the energy E,(u) > ¢. If we chose L] to be sufficently
close to L; such that A(er) + A((q})¥) — A(g’) < 0, then for u to contribute to a change of
algebraic count of MJt(ql-V; er,(q})Y), u has to be glued with a rigid J;,-holomorphic curve of
negative energy, which does not exist.

Case (ii1): If none of ¢ and (¢)¥ are asymptotes of u, then u is a bigon with one asymptote
being e, and the other asymptote, denoted by z, being a generator of CF (L}, L1). Moreover,
|| = 0 because virdim(u) = —1. It is a contradiction because ey, is the only generator of
CF(L}, L) with degree 0 and constant maps have virtual dimension 0.

As a result, no bifurcation can possibly contribute to a change to the algebraic count and
#M'"(q)5er,(¢))v) = £1 for all 7. By letting 7 go to infinity, the argument in Lemma
implies that the limiting holomorphic building ue, = (uy)yev () consist of two vertices. Moreover,
we have u,, € M/ (¢ ;744,(¢})") and u,, € M’ " (i i;er). It implies that the algebraic count
of rigid element in M”" (xi4;er) is £1. The proof finishes.

[

Remark 5.7. The fact that the algebraic count 0]"3\/[‘]+ (xi 45 er) is =1 will be used in Proposition
[5-§ again.

Let us take local systems on the Lagrangians into account. Let &', (')’ be local systems
supported on Ly, L, respectively. Using the Hamiltonian push-off, we have the identifications
1y/ 1y/ 1 1y/ 1
(€Y Yy > (Vo =~ Ely and (€Y )y g > EL (5.11)
for all wy and cq; gq,- In particular, we can define ¢p to be the identity morphism supported at
the intersection underlying ey, but as a morphism, it is written as:

tp := id € Homg(rp((€"))e, €L.) © hom zest (Tp((E1)'), To(€1)) = D (5.12)

We also denote eg as
ec :=1id € Hom ((81)/, . (5.13)

Geometrically, both tp and eg are supported at the same intersection point and represents
the same identity morphism between the stalks. ¢p can be regarded as a chain-level preimage
of the € under the (Poincaré) dualized Seidel’s exact sequence, hence has no guarantee to be
closed.

Let us take local systems on the Lagrangians into account. Since m (U n L1) = 1, we can
identify stalks of the local system 811) over each p € U n Ly using the flat connection (equivalently,
assume the connection is trivial in U n Ly). Similary, identify all (81);, for p’ € U n LY. This
also induces an identification of stalks on 7p(7}; P), since local systems therein are pushforwards
of the ones over a fiber.

We can now summarize the previous lemmata.
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Proposition 5.8. For L} sufficiently close to L1 and T > 1, we have

pHtn) = D ey, | (514
4,3,9
where wczg’j e Homg (TP<(€1)/)qu,gq§ ’ giqi,gq3-> and

Yev  =0ifj>iandgel (orj=1iandg+# lr
{ o ( ) (5.15)

wciv’lrﬂ. =+tide HomK(TP((g’l)/)qu,q; s Siqiyq/i)
Proof. By Lemma and the fact that eg is a cocyle in CF((€')’, &), we know that pu!(tp) =
Zi?j,g Yey .. The fact that wcxg’j =0ifj>iand geI (or j =i and g # 1r) follows from
Lemma Finally, to see that zpcl_v’w = ¢d we need to understand the moduli MJT(CZ»V,IN; er)
and the parallel transport maps given by the rigid elements in it.

Consider the holomorphic building when 7 = o0, we have two components u1 € M7~ (¢ 24, (¢})V)
and ug € M7 (wiriser) by Lemma and Remark When L is sufficiently C2-close to L,
the action of uq,us can be as small as we want. It implies that, by monotonicity lemma, uo lies
in a Weinstein neigborhood of L;.

It in turn implies that, for each strip uz in the limit, the associated output is v ; = +id
when the input at the point ey, is tp (the sign of 1 ; supported on zy; depends on the sign
of up). This is because we have identified the stalks of &' and (€')" at the point ey, and the
associated parallel transports I5,, and Ip,,, on their respective boundary conditions are inverse
to each other (in fact, the strip itself provides an isotopy after projecting to L; in the Weinstein
neighborhood). Since we have proved that the algebraic count of M’" (xiriser) is £1 (see
Remark , the associated output by all elements in M7 (xii;er) is +id, when the input at
er, is tp.

To get the proposition, we now replace u; by u} € M7 (¢i'1p43®iri). As explained earlier,
we have identified the fibers of the local systems of €' and 7p(E!) at Cqiq,- Since the parallel
transports of &' and 7p(€) inside U are trivial, if the input at z;; is 4-id, so is the output. By
Lemma the algebraic count of M’ T(civ, 104 Tiri) is £1 and each strip contributes +id (and
the sign of +id only depends on the sign of the strip), therefore, the total countribution is +id,

as desired.
O

Remark 5.9. In summary, when LY is sufficently close to Ly, ey, being a cohomological unit is
responsible for the algebraic count of M7 (g ;er, (q})") being £1 and hence the g’ -coefficient
of p(er, (¢)) being £1. On the other hand, eg being a cohomological unit is reponsible for the

q, -coefficient of p* (e, (d})") being 1. Lemma and Proposition are obtained by replacing
the bottom level curves at the SET limit.

5.1.2 Computing 1% (¢° ® q;, g7p(d)) ® ')

Next, we want to study i ((¢¥2®q,’ )®(QTP<C1;~)®1/11)) (see (5.6), (5.9)). In particular, we want to
focus on the term p%(¢*®qy’ ng(q;-)®¢1) so we need to discuss the moduli M(c}’, ;; ¢, 7p(q}))
and M(w; q;”, 7p(q;))-

Lemma 5.10. For 7 » 1, there is no rigid element in M7 (wy; ql-V,Tp(q;)).
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D 7p(L})

7p(L}) (same branch)
P

q;

Figure 9: Holomorphic triangles in U

Proof. We argue by contradiction as before. Let uey = (uy)yer(7) be a limiting holomorphic
building. By boundary condition, there is v; € V(7T) such that g,", Tp(q;) are asymptotes of u,, .
The other asymptotes of u,, are positive Reeb chords yi,...,yx. The virtual dimension of u,,
can be computed using canonical relative grading (Lemma , and is given by

k
virdim(uy, ) = n(1 = 0) — |¢;’| — |7p(q;)| — Z lys) —(1—k)=2n—-0—-1—-(1—%k)>0
s=1
because n > 3. It contradicts to virdim(u,, ) = 0. O

Lemma 5.11. For 7 » 1, there is no rigid element in M’" (sz,g,j3 qu,Tp(qé)) unless ¢; 55 = Cig,;
for some geT.

Proof. Assume uq = (uy)ypev(7) be a limiting holomorphic building. If ¢; ;5 # ¢; 45 for all g€ T,
then ¢; ;5 ¢ Ty P 0 Tp(Tq"i_ P). By boundary condition, there is v; € V/(T) such that ¢, 7p(q;)
are asymptotes of u,, but ¢’. - is not an asymptote of u,,. Therefore, all other asymptotes of
Uy, are positive Reeb chords and we get a contradiction as in Lemma .10, O

The following lemma computes the p? map with trivial local systems on L; and L.

Lemma 5.12. For 7 » 1, the ¢, ;-coefficient of pz(qiv,ng(q;-)) is +1 when h = g and is 0
when h # g. Here u? : hom(P, L1) x hom(7p(L}),P) — hom(rp(L}), L1) is the multiplication.

Proof. First, we want to argue that any v € M7’ (ciV,h’j; q, Tp(q;)) contributing to p?(q;, g7p (q;))
has image completely lying inside U when 7 » 1. We argue as before. Let ue = (uy)yev () be a
limiting holomorphic building. By boundary condition, there is v; € V/(T) such that ¢, 7p(q})
are asymptotes of u,,. If ¢, j is not an asymptote of u,,, then we get a contradiction as in Lem-
ma Therefore, u,, has asymptotes ¢’} ;, ", 7p(g;) and positive Reeb chords y1, ..., Y.
The virtual dimension of w,, is given by

k
virdim(uy, ) = |4l = a7 | = 17p (@) = D] sl + k=1 -0 -1+ k=k

s=1

It means that £ = 0 so u,, has no positive Reeb chord and the claim follows.
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In particular, we can lift u e M7" (clv hyt 4 Tp(q;)) to the universal cover U. By considering
the boundary condition, it is clear that we must have h = g for u to exist. Now, to compute the
¢;', j-coefficient of 13(qy), g7p(dj})), we use the following model.

We consider an As-Milnor fiber as in the proof of Theorem but rename the objects to
keep the notation aligned with the current situation. For example, we denote the Lagrangian
spheres by S7 ,S and Ss such that S1nSy = . Let 7 be the Dehn twist along S, ¢¥ € CF (S, S1),
q € CF(S,,5), 7(¢) € CF(7(S2),S), ¢V € CF(7(S2),51) and e,f € CF(S,S). We have
gV =0,1¢| =n,|7(d)| =1, |cY| =1, |e]| =0 and |f| = n. Consider the following commutative
diagram (up to sign)

x 2
HF(1(S2),8) x HF(S1,7(S2)) x HF(S, 1) — 2~ HF(r(Ss), S) x HF(S,7(S2))
iwwq')f)xzd i,ﬁmp'm
2
HF(S,,5) x HF(S, 1) r HF(S,S)

All the Floer cohomology has rank 1 except that HF'(S,S) has rank 2. The bottom arrow gives
1%(q,q") = f. By the long exact sequence

HF¥*(S1,85) — HF*(S1,7(S3)) —» HF*1'(S,,8) — HFFL(S,, S5) (5.16)

and the fact that HF(S1,S2) = 0, we know that HF"1(Sy,7(S2)) — HF"(S1,9) is an i-
somorphism. Since 7(¢’) represents the unique (up to multiplications by a unit) non-zero
class in HF(7(S2),5), we know that u?(7(q’),-) induces the isomorphism HF"~!(Sy,7(Ss)) ~
HF™(S1,S). Therefore, we must have 12(7(q'),c) = +q.

By the associativity of cohomological multiplication, we have p?(7(¢'), u%(c,qv)) = +f. It
implies that p?(c,q%) = +7(¢')¥. Dually, we have p?(q",7(¢')) = +¢¥ (it amounts to changing
the asymptote ¢ from outgoing end to incoming end, and 7(¢’) from incoming end to outgoing
end).

Since each u € MJT(ciV,hyj; qiv,Tp(q; ) can be lifted to U, there is a sign preserving bijective
correspondence M”" (Civhj; qiv,rp(qé.)) ~ M(cY;qY,7(q")) so we get the result.

O]

Remark 5.13. There is an alternative geometric argument as follows. When the fibers cor-
responding S1 and So in the proof of Lemma are fibers of antipodal points. The moduli
computing c" -coefficient of u*(q¥,7(q')) is the constant map to the point Sy nS. One can check
that this constant map is reqular so the algebraic count is +1. In the more general case, where
S NSy is not the antipodal point of S1 NS, one can apply a homotopy type argument to conclude

Lemma[5.12.

Now we enrich the statement of Lemma by adding the local system on L; and L}
into consideration. Take the universal cover U of the neighborhood of P, there is a unique
path (up to homotopy) in 7p(7T%*,P) from c¢q .o to g7p(q;). It descends to the unique path

99; Qi,99; ]

(up to homotopy) in 7p(T q*;_P) from Cqi,9q; 1O 7p(¢}), which we denote by [qu,gqg — 7p(q})]-

Similarly, there is a unique path (up to homotopy) in T3 P from ¢; to ¢ which we denote

9,99
by [¢; — qu,gq;-]- Then we have
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Proposition 5.14. For 7 » 1, we have (see (5.6)) ), up to sign,

W ®ay, gre(d)) ® v = Iy e

. /)
q; ,gqj

1) ® (¥ o I[cqi,gqg—M'p(q;-)])

e Homg(7p((&')) el

(5.17)

C )
599 a;,99)

for v? e &L and ¢! € HOMK(TP((El)/)TP(q;),K). In particular, the right hand side is supported

at the intersection point ¢, ; only and the morphism q)?g,j = (- ® qiv,ng(q;-) ® —)

(I)i@,)g,j : 8; ® HomK(TP((EI)/)Tp(q;)a K) - HomK(TP((Sl),)cqi’qu ) giqi,gq;) (518)

18 an isomorphism.

Note that the parallel transport from Tp(qg) to g; in the statement was omitted for a reason
that will become clear from the proof.

Proof. By Lemma [5.10} [5.11) and [5.12} we already know that u*(¢* ® a),97p(d}) ® Pl s

supported at the intersection point ¢y, ;. Moreover, as explained in the proof of Lemma

the rigid elements contributing to u?(q;’, ng(q;)) lie completely inside U.

To obtain the result, it suffices to understand the parallel transport maps. Let v € M7" (Cz‘v,g,j? q’, Tp(q;.)).
The contribution to p%(¢?> ® q), g7p (q;) ® 1) by u is given by (up to sign)

(Loyu © ¢2) ®(q;" ©lou© gTP(q;’)) ® (¢1 ° Tagu) (5.19)

Since the domain of w is contractible, u can be lifted to the universal cover and therefore
the generator ¢y ; uniquely determine the homotopy class of the path dju on P (and also
dou on 7p(L}) and du on Lq, which is why the parallel transport of dju is omitted in the
statement), which is exactly the path such that q; o Iy, © ng(q;-) = 1, where ng(q;) is
regarded as an element of the universal local system at q} and q," is regarded as an element
of the dual of the universal local system at ¢;. In other words, we have Iy, ,(g97p (q;)) = q;.

On ther other hand, we have I5,, = I| ()] and Ip,, = Tlgi—scy 1 50 (5.19) reduces to
99 J §-99];

qu‘ g
2 1 . .
I[qiacq gq;-](w ) ® (' o I[qu,gngm(q;_)]). Now, (5.17)) follows immediately from Lemma [5.12

On the other hand, since I| and I}

. . 1 T
. /\1 are isomorphisms from € to &
q’_)cqi,gq;] quygq;- H"-P(qj)] p qi Cq;,9d/;

J
and from 7p((&')") by O p((EY) )Tp(q;), respectively, (5.17)) clear induces the isomorphism
i

C,
s,

852' ®H0mK(TP<(81)/)TP(Q})7K) - 82 . ®H0mK(TP((81)/)

ql,gqj

K) (5.20)

qu,gq;- ’
as desired O
With these preparation, we go back to the study of the degree zero cocycles of D.

Corollary 5.15. For Ly sufficiently close to Ly and 7 » 1, every degree 0 class in H*(D) admits
a cochain representative B which is a sum of elements supported at er, and {q;’ ®T(q§-)}i,j only.
Moreover, the term of B supported at ey, cannot be zero unless 5 = 0.
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Proof. Every degree 0 cocycle in D is a sum of elements supported at er, {¢}, ;}ijq and {g” ®
7(qj)}i,; because |wy| # O for wy # er. Let 8 be a degree 0 cocycle which represents a class

[8]. By Proposition we can eliminate the terms of 8 supported at ¢’ 4.; by adding the

ulD—differentials of certain cochains supported at g;’ ®T(q§-). Note that the term of 8 supported

at ¢, ; themselves might not be exact because (P ®aq))® (97p(d;) ® ¥!)) involves more

than just pu%(¢? ® qu,ng(q;) ®¥l) (see (5.9)), but the remainder terms cannot have o

components. Therefore, we have a cochain 3 cohomologous to 3 such that ' is a sum of
elements supported at ez, and {g;” ® 7(¢;)}:; only.

Now, suppose the term of 5’ supported at ey, is 0. We write 8’ = Z(m) "I where, for all i, 7,
"I is an element supported at q; ®Tp(q§~). If 4p"0:J0 = ( for some g, jo, then by the isomorphism
statement in Proposition the terms of p!(8") must contain a non-trivial element supported

at ¢ o for some g. Because all other u'(¢)*/) do not have non-zero element supported at
Cio.g.io? this draws a contradiction.
O
By Corollary we can write every degree 0 cocyle 5 of D as
B = ¢eL + Zd}qu@TP(q;.) (521)

7:7‘7‘
where 1), is an element supported at 2. Moreover, by ([5.6)), we can further decompose wqiv ®rp(q)
as

Ni,g,j

%g@na(q;) = Z Z wzz,g,j,k®qiv ®QTP((1;‘) ®1/}z'1,g,j,k (522)
gel’ k=1

for some wzg%k €&, wil’g’j’k € HomK(Tp((El)’)TP(q;),K) and n; g ; € N.

Proposition 5.16 (Cocycle elements). For L sufficienly close to Ly and T > 1, there is a
non-exact degree 0 cocycle cp in D of the form

cp=tp+ Y, P ip @A ®gTe(d) @, (5.23)
g7k7i7j

where wzg%k = wil’g’j’k =0 if either j > i or (j =i and g # 11 ), and (see (5.18)))

‘I’%h,i(zwzlp,i,k ®qy ®7p(q;) ® %l,h,i,k)) = +id (5.24)
%

where +id € Homg (rp((EY))e. €L ).

C
q;,9; ;.9

Proof. Let B be a non-exact degree 0 cocycle of D (which exists from (5.2))). We write 8 in
the form (5.21]). Note that 1., can be geometrically identified as an element of hom((€)’, &1).

Lemma [5.4] implies that, for u(8) = 0, we must have ,u,lwm((gl), 81)(weL) = 0.
Also, Corollary implies that the degree zero cocycle 3 is uniquely determined by its 1.,

component, (or, as a cochain of D, (e, ) has no wg-components). Therefore,

rank(H%(D)) < rank(H®(hom((EY), &) (5.25)

62



However, as explained in (5.2), we have
rank(H"(D)) = rank(HFO((&'), &) (5.26)

It implies that for each degree 0 cocycle v, € hom((E'),EL), there exists Ygv@rp(g)) Such that
i J
Ver + 20 wq}@‘rp(q;) is a degree 0 cocycle in D.
In particular, we can take 1., = tp. For u'(tp + Z” ,l/)qi\/@TP(Q;))) to be zero, the terms of

it supported at ¢;’, . must be zero for all 7, j,g. Therefore, we obtain the result by Proposition

(.8 and [5.14] (see ) O

5.2 Quasi-isomorphisms

Let ¢p be the degree 0 cocycle obtained from Proposition In this section, we are going to
study the map (5.1)) for €° € Ob(F).

We assume that Lo Ly, Loh7p(L)), and that LonU is a union of cotangent fibers U?i(iT;. P,
where dr, = #(Lo n P). Let p; be a choice of lift of p; in P. Let Co := hom(E°, 7p((€)")) and
Cy = hom(€°, Tp(&)). We know from Lemma that, when 7 is large enough, there is a
subcomplex C§ < Cp generated by generators of Cj outside U. Let Cf := Cy/C§ be the quotient
complex, which is generated by generators of Cy inside U. Similarly, C§ := hom(€%, &) = Cy is
a subcomplex and Cf := C1/C5 is the quotient complex. By definition (see ), for ¢ € Cy,

MQ(C@7 w) :M_QF(tDa ¢> + 2 (¢ig’j7k ® qz\/) ® ,U_QF(QTP(CIQ) ® wilyg,j,]w w)

i?j?.g?k:
+ > W, @A) gme(d) @ Ul ks ) (5.27)
/[:7j7g7k

We define 12(cp, —) := p%(cp, —)|Cg 1 Cg — (1.

Lemma 5.17. For 7 » 1, the image of u2(cp,—) is contained in C5. Therefore, p2(cp,—) :
C§ — Cf is a chain map.

Proof. Note that the first and last term on the right hand side of (5.27) lie inside C} as a
consequence of Lemma Therefore, it suffices to show that ,uzf(ng(q;-) ® wi{ ik ) = 0 for
1 € C5. We consider the moduli M7 (ps; 7p(q;),y) where y € (Lo n7p(L))\U and ps € Lo N P.
Let ue = (uy)pey(7) be a holomorphic building converging from curves in MY (ps; 7p(q}), y)-
From the boundary condition, there exists v; € V(T) such that ps and Tp(qé-) are asymptotes of
Uy, . The other asymptotes of u,, are positive Reeb chords y1,...,yn. We have

m
virdim(uy, ) = [ps| — |7p(q})] — Z lyl—1—m)=2n—-1—(1-m)=n—-2>0, (5.28)
=1

contradiction. Therefore, M”" (ps; 7p(q;),y) = & for 7 » 1. O

Lemma 5.18. For 7 » 1, p%(cp, —) = p%(tp, —).

Proof. By Lemma the second term in (5.27)) vanishes, so it suffices to prove that M (x; q;, Tp(qé), y) =
& for 7 » 1, where y € (Lo n7p(L}))\U and x € Lon L1. Let uspy = (y)ypev(7) be a holomorphic
building converging from curves in M”’" (z; ¢’ ,Tp(q;), y). From the boundary condition, there
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exists v € V(T) such that ¢ and 7p(q;) are asymptotes of u,,. The other asymptotes of u,,
are positive Reeb chords 1, ..., ymn. We have

m
virdim(uy, ) = n — |¢;’| = |7p(q})] — Z ly|—(1—m)=2n—-1—(1-m)=n—-2>0 (5.29)
=1

Therefore, M”" (:U;qiv,Tp(qg),y) =@ forT»1, O

Proposition 5.19. For 7 » 1, p2(ep, —) is a quasi-isomorphism.

Proof. For y € (Lo n7p(L}))\U and x € Ly n L1, the proof of Lemma implies that all rigid
elements in M7" (z; e, y) have their image completely outside U.

As aresult, the computation of p2(cp, —) = p%(tp, —) picks up exactly the same holomorphic
triangles that contributes to u%(eg,—) : C§ = hom(&%, (€)) — hom(€% &) =~ Cf via the
tautological identification between eg and tp (see and the paragraph after it). Since eg
is the cohomological unit, u2(cp, —) is also a quasi-isomorphism. ]

By Lemma we know that p?(cp,—) induces a chain map on the quotient complexes
ug(CD, —) : C¢ — C{. Since the first and last term on the right hand side of (5.27) are, by
definition, lying inside C}, the map ug(c% —) is given by

pelen, ) = D (V35 ®a)) ® pF (g7 (d)) @]y 54 ¥) (5.30)
4,5,9,k

By Proposition and the five lemma, to show that u?(cp,—) is a quasi-isomorphism, it
suffices to show that uZ(CD, —) is a quasi-isomorphism.
We recall from Lemma that there is a bijective correspondence

v : hom(P, L) ®r hom (Lo, P) — (Lo n 7p(L})) n U (5.31)

so we can write a point y € (Lo n7p(L1)) N U as cpp, o = t(q]” @hps) for some h € I' and some

s5,1. We want to understand the moduli M7 (p,,; Tp(qé-), Chps,q;) for various j, s,l, m, which is
responsible for (part of) the operation

hom(rp(Ly),P) x hom (Lo, 7p(L})) — hom(Lg, P) (5.32)

Notice that, by switching the appropriate strip-like ends from incoming to outgoing (and vice
versa) for the same holomorphic triangles, (5.32]) can be dualized to

hom(P, Lo) x hom(rp(L}),P) — hom(rp(L}), Lo) (5.33)

If we replace Lo by Ly (both of them are union of cotangent fibers in U), then we see that ([5.33))
has already been studied in Lemma and The outcome is the following:

Lemma 5.20. For  » 1, for ﬂ)chp o € Co supported at cpp_ a
s,9 ’

HE (7P () ® Y ks ey, o) (5.34)
is 0 if L # 5. Whenl = j, (5.34) becomes
1
ghps ® (I[Tp(qg)—)ps] © wi,g,j,k © I[Chps,q"?._)TP(q;)] © ¢Chps,q9 © I[psﬁchp&q;]) (535)

where all the parallel transport maps are the unique one determined by the boundary condition

inside U (cf. Proposition .
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Proof. The argument largely resembles the proof of Lemma [5.11] [5.12] and Proposition [5.14] A
neck-stretching argument as in Lemma!l@' deduces that M7 (p,,; Tp(q}), Chps,qg) is not empty
only if j = | and m = s. The same dimension count implies that when j = [, m = s and
T » 1, every rigid element of M’" (pm;Tp(qg),chpsyq;) has image inside U. The local count
and the chasing of local systems from Lemma [5.12] and Proposition [5.14] applies directly to the
current case because it is a computation in U about cotangent fibers and their Dehn twists. In
particular, if we remove the local systems on Ly and 7p(L}), we get

19T (d}), Chp, o) = 1F(9TP(4]), Conp, gar,) = 9hPs € hom (Lo, P) (5.36)

The parallel transport maps are uniquely determined by boundary conditions, and after chasing
all of them, we get the result. O

Let V = hom(®P, (€')) ®r hom (&Y, P) which is generated by elements of the form
(T*®(q))") @ (hpr ®T") (5.37)

forhel,r=1,....dp,, t=1,...,d,, Y?€ (81);, and Y e Homg (€2 ,K) (cf. (5.6)).

pt?
e For s =1,...,dr,, let Vs be the subspace generated by elements in (5.37)) such that ¢ = s.

e Fors=1,...,d,and [ =1,...,dp,, let V; be the subspace of V, generated by elements
in (5.37)) such that r = [.

e Fors=1,...,dr,,l=1,...,d;, and g€ T, let V,; , be the subspace of V,; generated by
elements in ((5.37) such that h = g.

Therefore, we have direct sum decompositions
V=®:Vs, Vs =@1Vsy, Vg =BV (5.38)

The bijective correspondence ¢ ([5.31]) extends to an isomorphism, also denoted by ¢, from V'
to C{ by keeping track of the (uniquely determined) parallel transport maps along Lagrangians
inside U. On the other hand, there is an obvious isomorphism F : hom (P, €V )®@rhom (€%, P) — V
given by

T*®q)®hps®T) — (*®(q))") @ (hps @ T) (5.39)

where we used the identification Eél ~ (El)fn by the Hamiltonian push-off. As a result, we have
a composition map

0:VL (Lomrp(L’l))mUMCfiv (5.40)
which respects a filtration on V in the following sense.
Lemma 5.21. We have
O(Vs) c Vs for all s
O(Vs1) € @i Vsy for all s,1 (5.41)

O(Vsin)  Vein + (@e=1Vsy)  forall 5,1, h
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Proof. Explicitly, © is given by (see (5.30) and Lemma )

(T?*® (a)") ® (hps ® T (5.42)
= 2 (W7 @ (d)¥) ® (9hps ® R($ 14, Y2, 1)) (5.43)
1,9,k

where R( 2.179717,6, T2,T!) is a term depending on 1#1.17!]7[’,{, T2, 7! given by composing parallel trans-

port maps. It is therefore clear that ©(V;) < Vi. By Proposition and , we know that
wi%g,l,k = 0 unless j < is0 O(Vy;) C @ Vi

When ¢ = [, %’%g,l,k # 0 only if ¢ = 1p (by Proposition . Therefore, ©(Vy;p) <

O

Veih + (@e=1Vs )
Proposition 5.22. ,ug 18 a quasi-isomorphism.

Proof. Since ug is a chain map, it suffices to show that ug is bijective. We know that ¢ and F
are isomorphisms so it suffices to show that O is surjective (see (5.40)). By (5.38) and Lemma
[.21] it suffices to show that

Olv,in : Ve = Vaun + (@1=1Vst))/ (@1 Vist) (5.44)
is bijective for all s,1, h. For fixed s,l, h, the map (b.44]) can be identified with the map
(81>;i ® HOmK(EgS ) K) - (81);; ® HOmK(ggs ’ K)
Y — 2(¢12,1F,z,k ® R(Y 110 T3 TH) (5.45)
k

By (5.24) and keeping track of the uniquely determined parallel transport maps, it is clear that
(5.45) is an isomorphism. O

Concluing the proof of Theorem[1.3,[5.1} For each &' € Ob(F), we apply Proposition to
find a degree 0 cocycle c¢p € homG,..(tp((€')'), Tp(€')). Given any object (€°) € Ob(F),
we consider a quasi-isomorphic €Y, which is a Hamiltonian isotopic copy and the underlying
Lagrangian Ly intersects transversally with Li,7p(L}) and Ly n U.

Proposition and together with the five lemma, then conclude that (5.1) is a quasi-
isomorphism.

O]

Proof of Corollary[I.3 When P is diffeomorphic to RP" and n = 4k — 1, P is spin and can be
equipped with the spin structure descended from S™. When char(K) # 2, the universal local

system P is a direct sum of two rank 1 local systems ! and £2. This is because K[Zs] splits
when char(K) # 2. Moreover, by Lemma and Corollary we have

i o 0 ifi+#7
®0l 0J) _
HF*(&',¢&7) { H*(S") i i — j (5.46)
so &' and &2 are orthogonal spherical objects. In this case,
Tp(€) ~Cone(®i=12(homzr(E, &) ® &) 25 &) (5.47)
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where ev is the evaluation map. The spherical twist to € along €’ is defined to be Cone(homx (€%, €)®
€ 25 €). A direct verification shows that is the same as applying the spherical twist to

€ along &' and then &2. It is the same as first applying spherical twist along &2 and then &!
because €' and &2 are orthogonal objects.

When P is diffeomorphic to RP" and char(K) = 2, then H*(P) = H*(RP",Z3). In this
case, one can define a P-twist along P (see [HT06], [Harll]) which is an auto-equivalence on
Frerf - More precisely, the algebra H *(RP", Za) is generated by a degree 1 element instead of
a degree 2 element so the P-twist along P is not exactly, but a simple variant of, the P-twist
defined in [HT06]. To compare with the P-twist, we note that K[Zz] fits into a non-split
exact sequence

0> K—K[Z] —>K—0 (5.48)

it implies that P = Cone(P[—1] — P) and the morphism in the cone is the unique non-trivial
one. In this case, the fact that Tp(€) is the P-twist of € along P is explained in [Segl8| Remark
4.4]. 0

A Orientations

In this appendix, we will discuss the orientations of various moduli spaces appeared in this
paper. Our goal is to prove Proposition when char(K) # 2. We follow the sign convention
in [Sei08]. For basic definitions, readers are referred to [Sei08, Section 11,12] ,which we follow
largely in the expositions.

A.1 Orientation operator

A linear Lagrangian brane A" = (A, o™, P¥) consists of

e a Lagrangian subspace A < C"
e a phase o € R such that e2™V-1e" — Detq(A)

e a Pin,-space P# together with an isomorphism P# x Pin, R™ = A.

Here, Detq is the square of the standard complex volume form on C". The k-fold shift
A7[k] of A is given by (A, a” — k, P* ® A°P(A)®F), where AP is the top exterior power. For
every pair of linear Lagrangian branes (AZ]éé ,Afﬁ), one can define the index L(A# ,Af) and an
orientation line (i.e. a rank one R-vector space) O(Az)éﬁ , Af&)

Now, we explain how the indices and orientation lines are related to Fredholm operators. Let
S e R and E = S x C" be regarded as a trivial symplectic vector bundle over S. Let F < E
be a Lagrangian subbundle over 0S. For each strip-like end €', we assume F ‘ei(& j) is independent
of s for j = 0,1,. On top of that, we pick a continuous function a# : S — R and a Pin-structure
P# on F such that e2™V—1o%@) — Detq(F,) for all x € S. In this case, we get a pair of linear
Lagrangian branes (A?O, A?l) for each puncture ¢¢, where A?j = (Fleisj), ™ (€'(s, 7)), Pf(s’j))
for j = 0,1. We can associate a Fredholm operator Dgr to these data and we have [Sei08,
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Proposition 11.13]

d
ind(Ds r) =1(Af o Afo ) Z (AZ 0 AL ) (A1)
o(AL, o AL 1) = det(Ds r) ® o(AEd O,A?Z D® - ®o(Af AL ) (A.2)

where ind(Dg ) and det(Dg r) are the index and determinant line of the operator, respectively.

In the reverse direction, given (ABéE ,A#), one can pick S to be the upper half plane H
and (F,«a, P) such that the pair of linear Lagrangian branes at the puncture of S is (A# , A]#)
In this special case, the operator Dy r has the property that ind(Dpp) = L(A#,Af) and
det(Dg,r) = o(A#, Aft) We call Dy g an orientation operator of (A#,Af&).

Let p be a path of Lagrangian branes from Af to A}#[l]. Let S be the closed unit disk D and
(F,a™, P*) be given by p(f) at the point e2™=19 ¢ 9S. We denote the corresponding operator
by Dp , and call it a shift operator. There are gluing theorems concerning how indices and
determinant lines are related before and after gluing two operators at a puncture or a boundary
point [Sei08, (11.9), (11.11)]. In particular, we can glue an orientation operator of (A#,A#)

with Dp , at boundary points that both fibers are Afé and obtain
o(Af, A7) ®det(Dp,y) = o(AF, AT[1]) ® AP (Ay) (A.3)

By [Sei08, Lemma 11.17], there is a canonical isomorphism det(Dp ,) = A'P(A;) so we have a
canonical isomorphism

o(AY, AF) = o(AF, AT 1)) (A4)

Therefore, there is a canonical isomorphism between O(A# , Af) and O(A#, Af[k]) for all k € Z.
Similarly, we can consider a path of Lagrangian branes 7 from A# [1] to Aé’é . We can use
S = D and 7 to define an operator Dp , which we call a front-shift operator. In this case,

we can glue an orientation operator of (Azfé , A’l#) with Dp ; at boundary points that both fibers
are A# and obtain

o(AY, ATY®@det(Dp ) = o(AF[1], A7) ® A*P(Ag) (A.5)

By [Sei08, Lemma 11.17], there is a canonical isomorphism det(Dp ;) = A'°(Ag) so we have a
canonical isomorphism

o(AY, AT) = o(AF[1],AT) (A.6)

A.2 Floer differential and product

Let L;, ¢ = 0,1, be closed Lagrangian submanifolds equipped with a grading function 6, :
L; — R (see Section and a spin structure. We assume that Lo L. At each point x € L;,
we have a Lagrangian brane T, L# (T Li, 01, (x), Ping) inside T, M where Ping is the Pin,,-
space determined by the spin structure on L;. The k-fold shift L;[k] of L; is given by applying
k-fold shift to TmLz# for all z € L;. For each x € Ly n Ly, we have a pair of Lagrangian
branes (TmL#, TfoE) inside T, M. Therefore, we have the grading |z| := L(TIL#, TmLf&) and the
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orientation line o(x) := o(TxL#, TIL#). We define |o(z)|g to be the one dimensional K-vector
space generated by the two orientations of o(x) modulo the relation that their sum is zero.
An isomorphism ¢ : o(z) — o(z’) between two orientation lines can induces an isomorphism
lclk : Jo(z) |k — |o(z") |-

Let 9,21 € Lo n Ly and u : S = R x [0,1] — M be a rigid element in M(x;z1). Using the
trivialization of Ag)p (M, w) together with the grading functions and spin structures on L;, we
get a trivial bundle E = u*TM = S x C and a Lagrangian subbundle F' together with (o, P%)
over 0S. By , we get a canonical isomorphism

det(Dy) =~ o(zg) ® o(z1)" (A.7)
On the other hand, the s-translation R-action on u induces a short exact sequence
R — Tuﬁf(fbo; .731) — TuM(.%'(); .1'1) (AS)

where fff(a:o; x1) is the moduli space of strips before modulo the R-action. Therefore, we have
an identifcation of the top exterior power of T, M(xzo;x1) and T, M(xo; x1), respectively. As a
result, an orientation of M(zg; 1) gives an isomorphism (see (A.2))

ey o(x1) — o(zp) (A.9)
Therefore, we can define the Floer cochain complex by
CF (Lo, L1) = @zeronr, lo(z)|x (A.10)

and the differential ¢ on |o(z)|k is given by summing

"= 0 feulk : o(@)] — Jo(a)] (A.11)
ueM(x’;x)

over all 2’ such that |2/| = |z| + 1. We have 0% = 0 [Sei08, Section (12f)]. Similarly, given a
collection of pairwisely transversally intersecting Lagrangian branes {L; };;:0’ xj € Li_1n Lj,
j=1,...,d,and zg € Lo n Lg, we get an isomorphism (after an orientation of R%*! is chosen)

Cu:0(xg) ®- - ®o(x1) — o(xg) (A.12)

for each rigid element u € M(xo;xq, ..., 21), and hence a multilinear map between the relevant
Floer cochain complexes. Assuming the convention of orientations in [Sei0§]. The actual Ay
structural map p?(zg, ..., x1) is given by summing over all |c,|x with a sign twist given by (—1)1
(see [Sei08], Section (12g)]), where

d
=) klaxl (A.13)
k=1

In particular, p!(z) = (—1)1*lo(z).

We are interested in how Floer differentials and p2-products (i.e. d = 1,2) behave under
shifts , . Let x € Ly L1 be equipped with a pair of Lagrangian branes (TxL#, Tfo).
We use Z (resp. Z) to denote the same intersection = being equipped with the pair of Lagrangian
branes (TxLé’é, Tfoé[l]) (resp. (TxL#[l], Txlﬁf)). We denote the canonical isomorphism
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(resp. (A.6) at = by o, : o(x) — o(Z) (resp. 0y : o(z) — o(Z)). For xg,x1 € Ly n L1 and a rigid
element u € M(xo; x1), we denote u by @ (resp. 4) when we regard it as an element in M(Zg; Z1)
(resp. M(Zo;Z1)). It is explained in [Sei08, Section 12h] that

Oy O Cy = Cii © Oz, (A.14)

It is instructive to recall the reasoning behind . Consider orientation operators Dy ,,,
Dy z,, the shift operators Dp , ;. at x; and the linearized operator D, defining the Floer dif-
ferential. The left hand side of Oz, © Cy 1s Obtained by first gluing D,, with Dy ,,, then
Dy #Dpy 5, with Dp , .. the right hand side ¢z o 0, is obtained from gluing Dy ,, with Dp , .,
first, and then D, with Dy ., #Dp p ;.

Since the operators (Dy# D 2, )#Dp pzo a0d Dy# (D g, #Dp a2, ) are homotopic (mean-
ing the underlying path of Lagrangian subspace on the boundary are homotopic), the associa-
tivity of determinant line under gluing implies .

Similarly, we have

Nao © Cu = Cq O Ny (A.15)

so (A.14)) and (A.15)) implies that
cod=270oo, nod=daoon (A.16)

Now, we consider the Floer product. Let u € M(xo; 22, 21) where zg € LonLo and 2 € Lj_1nL;
for j = 1,2. We use u’ to denote u when we regard it as an element in M(x; T2, Z1). We continue
to use Dy« to denote an orientation operator of a Lagrangian intersection point * (equipped
with pair of Lagrangian branes). The gluings of Dp ,,, and Dp ;. induce the o-operator
at x1 and n-operator at x, respectively. The operator (Dy#Dp z,)#DH 2, is homotopic to
(Dw#DHhz,)#DHz,, and Dy z, ~ D 2o# DD 120, DH g, ~ DHg #Dp pa, are homotopies of
operators. It implies that there is an equality

Cu = (_]‘)|xl|cul o ("7.792 ®Ux1) (Al?)

where the sign (—1)!#1| comes from (A.14) when moving Dp ; .z, pass Dz, -
We abuse the notation and denote the canonical isomorphism from C'F(Lg, L) to CF(Lg, L1[1])
(resp. CF(Lg[1l],L1)) by o (resp. n). Denote the operator

(=1)d8 . g — (—1)ll(a) (A.18)

for elements of pure degree |a| (and extend linearly), then u! = 0o (—1)%9. Combining (A.13),
(A18), (A-17) we have

Ml o ((—1)deg 00) = ((—l)deg oog)o ,ul (A.19)
plon=—nopu' (A.20)
W2 = i (1® (~1)% 0 0)) (A21)

Note that (A.19) is equivalent to u' oo = —o o u! but (—1)4°8 o ¢ will be used later so we prefer
to write in this form.
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A.3 Matching orientations

We use the notations in Section 4] In Section we proved that there are bijective identifica-
tions between the moduli

w7 (P/§ p) ~ MJT(CP’,q? Cp,q) (A.22)
m7” (x;qY,p) ~ m7” (x;¢p,q) (A.23)
w7 (qlv§qv) =~ MJT(qu’? Cp,q) (A.24)

Let pb!, p'? and p'? be the terms of the differential of CF(Lg,7p(L1)) contributed by the
moduli on the right hand side of (A.22]), (A.23) and (A.24)), respectively. In particular, we have

RS BT B (A.25)
and (after modulo signs)

o(id@u') = pttos (A.26)

Lou? = ,ul’2 oL (A.27)

o(pt®id) = pl3 o (A.28)

To finish the proof of Proposition it suffices to find a collection of isomorphisms

Ipq:0(q”) ®o(p) — o(cp,q) (A.29)

for all q¥ ® p € X,(Cp) such that

|k o (id®@p') = p' o Ik (A.30)
g op? = p"? oIk (A.31)
ko (u' @ (1)) = "3 o ||k (A.32)

where I = (Dqv@pex, (Co)Ip.a) ® (@rex, (Co)ido(x)), and idy(,) is the identity morphism from o(x)
to o(t(x)) = o(z) for x € Xp(Ch). Notice that, the sign in (A.32) (and the absence of signs in
(A.30), (A.31))) comes from the fact that (see Section [2.5))

pHq” ®@p) = (-)Pul(q")®p + 9 @' (p) + 1*(q”. P) (A.33)

In this section, we give the definition of I, 4 and check that (A.30)), (A.31), (A.32) hold. Since
the sign computation is local in nature and it is preserved under the covering map T*U — T*U,
we assume that £ = P = S™.

First, we consider the case when |q¥| = 1 for any q¥ ® p € CF(P,L;) ® CF (Lo, P). In
this case, we can perform a graded Lagrangian surgery (see [Sei00] or [MWa]) P#qT§P, which
means that P#qTgP can be equipped with a grading function so that its restriction to P\{q}
and T4P\{q} are the same as the grading functions on P\{q} and on T{P\{q}, respectively.
Moreover, all P, TyP and P#T4P are spin and the (unique) spin structure on P#,T5P
restricts to the (unique) spin structure on P\{q} and on T;P\{q}, respectively.

In this case, we have a canonical identification of o(p), viewed as a subspace of CF(T;P,P)
and of CF (T3P, P#TyP), respectively. Moreover, P#4T P is Hamiltonian isotopic to mp (T4 P),
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which sends p to c¢p g, and the Hamiltonian interwines the brane structures (i.e. grading func-
tions and spin structures on the Lagrangians). Therefore, we have an isomorphism

D ram : o(p) = o(cp q) (A.34)
from o(p) € CF(T3P,P) to o(cpq) = CF(T5P, 7p(T3P)). Any choice of an isomorphism
Pour 0(q”) > R (A.35)
will give us an isomorphism

O = Poyr @ Pram : 0(q") ®0(p) > R®o0(cp,q) = 0(cp,q) (A.36)

for every q¥ ® p such that |q¥| = 1. We assume that a choice of ®,, is made for the moment
(the actual choice will be uniquely determined by Lemma |A.1)).
Now, for general q¥ ® p, we consider the isomorphism (see Section |A.2))

p:=n®((-=1)*00): CF(P, L) CF(Ly,P) — CF(P[1],L1) ® CF(Lo,P[1])  (A.37)
and we define I, 4 by
Ing:=®o0 o1l 0(q") ®o(p) — o(cpq) (A.38)

Notice that |o!~19"|(p)| = |p| +|q¥| — 1 = |¢p.q|, and one should view this isomorphism as iden-
tifying o(p) with o((¢)'~19"/(p)) by a sign-twisted shift followed by identifying o((¢)'~19"|(p))
and o(cp,q) by a Hamiltonian isotopy. Readers should be convinced from that it is sensible
to use the sign-twisted shift (—1)48 o 7.

Lemma A.1. There is a choice of @y such that (A.31]) holds.

Proof. To prove , we start with the case that |q¥| = 1. The bijection is obtained
by the bijection M7 (&;qY, P, Tqp) = M7 (&; cp.q> Tqp)- As before, we identify o(cp ) with
o(p) by the Hamiltonian isotopy defining ®r4.,. In this case, the linearized operator Dey o2q.p
corresponding to the latter moduli is homotopic to Dqv p zq , #DH,qv, Where Dqv p oo, 18 the
linearized operator corresponding to the former moduli and Dp v is an orientation operator
of q¥. The fact that these two operators are homotopic is a reflection of the fact that we
can perform a graded Lagrangian surgery P#qTqP compatible with the spin structures when
|q¥| = 1. As a result, there is a choice of ®,, such that

cu = Cy © (Psur @ Ppram) : 0(q”) ® o(p) — o(x) (A.39)

where u € M7"(z;9Y,p) and v € M7 (x;cpq) is the element corresponding to u under the
bijection (A.23]) for 7 » 1, where the bijection of moduli spaces persists. We use such a choice
of @, from now on. In particular, it means that

p=ph?o|dk (A.40)

for ¥ ® p such that |q¥| = 1. For general q¥ ® p, we use and to deduce that
Tl o 4% = [l 0 12 0 [67719° [y = 12 0| Tl (A1)
which is exactly the desired . O
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With the choice of @, chosen in Lemmal[A.1] we can now proceed and prove (A.30)), (A.32).
Lemma A.2. The equation (A.30) holds.

Proof. To show , we again first consider q¥V ® p such that |[q¥| = 1. Let p’ € Lo n P
such that |p’| = |p| + 1. The bijection is obtained from the bijection M7 ™ (p'; p, zp/ p) ~
M7 (¢p'.qi Cp,a> Tp',p)- By the Hamiltonian isotopy defining ® g4sm,, we see that the linearized op-
erator corresponding to the former moduli is homotopic to the linearized operator corresponding
to the latter moduli. It implies that

PHam 0 cu =y © Pham : 0(p) - O(Cp’,q) (A'42)

where u € M7" (p’;p) and v’ € MJT(cp/7q;cp,q) is the element corresponding to u under the

bijection (A.22). Tt implies that (note that |p| = |cp.q| and p!(a) = (—1)!%0(a), see (A13))

|(I>Ham|K o Hl = ,Ufl’1 o |q)Ham|]K (A43)
for ¥ ® p such that |q¥| = 1. It also means that, whatever isomorphism we choose for @,
we have
i 0 (i@ pu!) = ' o Dl (A.44)
For general q¥ ® p, we use (A.19) and (A.44)) to deduce that
||k o (id® pl) = | D o © nl_‘qvl‘K ® |PHam © ((—l)deg o 0)1_|qv ‘ |k © ul (A.45)
= |Pgyr © nlf‘qvl‘K ® (,ul’l o |®pam © ((—l)deg o 0)17|qv | 9 (A.46)
= @ |1k (A.47)
which is exactly the desired (A.30)). O

Lemma A.3. The equation (A.32)) holds.

Proof. To prove , we appeal to an algebraic argument instead of identifying the moduli
directly. Let Vj,, , be the subspace of CF (P, L) ® CF(Lg,P) generated by o(q") ® o(p) such
that |q¥| = m and |p| = n. The bijection comes from the bijection M/ (q'¥; g q") ~
M7 (epqi Tquqs Cp,q)- Therefore, for each a € Z, there is f(a) € {0,1} such that

@[k o (1 ®id)|v;, = (=1)T "3 o Dk |v,, (A.48)

We remark that the existence of f follows from the fact that the sign only depends on |p| and |q" |
(because once |p| and |q"| are determined, the local model computing the sign is determined).

By ([A:20)), we have ¢ o (u' ®@id) = —(u! ® id) o ¢ so we get
(1) F@o g ko (4 @id) v,y = (1Tt o B0 kv, (A.49)
by precomposing by |¢'~*|k. By relabelling the subscripts, we have
[l o (' @id)ly,,, = (=)= DF=my b3 o | Tl (A.50)
The Ag-relations on CF (P, L) ® CF(Lg, P) give

ptop® + o (id@p') + p’ o (' @ (—1)%8 1) =0 (A.51)
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On the other hand, CF(Lg,7p(L1)) is a cochain complex so by considering the square of differ-
ential with input in X, (C) and output in X,(C1) (Section [A.1]), we get

/.Ll o /.,Ll’2 + 'ul,z OMLl + M1,2 o /_,1,1’3 — O (A52)

Since we have already proved (A.30)) and (A.31), when we apply |I|x to the left of (A.51) and
on the right of (A.52)), we get (after cancellation)

W2 o Tl o (' @ (~1)%% 1) = ut2 0 ph3 o [T (A.53)

Applying it to V;,, and plugging in (A.50), we have

(_1)(f(m+n—1)+1—m)+(n—l),u1,2 optBo|Ilg = pb? o ut? o |I|k (A.54)
When p'? o b3 o |I|g # 0, it is possible only when (f(m +n —1) +1—m) + (n — 1) is even.
In particular, we have f(a) = a — 1 modulo 2. Put it back to (A.50), we get (A.32). O
Proof of Proposition[{.1. It follows from Lemma [A2] [A.T] and [A73] O
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