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Abstract—An orthogonal affine-precoded superimposed pilot
(AP-SIP)-based architecture is developed for the cyclic prefix
(CP)-aided single input single output (SISO) and multiple in-
put multiple output (MIMO) orthogonal time frequency space
(OTFS) systems relying on arbitrary transmitter-receiver (Tx-
Rx) pulse shaping. The data and pilot symbol matrices are
affine-precoded and superimposed in the delay Doppler (DD)-
domain followed by the development of an end-to-end DD-
domain relationship for the input-output symbols. At the re-
ceiver, the decoupled pilot and data symbol are extracted by
employing orthogonal precoder matrices, which eliminates the
mutual interference. Furthermore, a novel pilot-aided Bayesian
learning (PA-BL) technique is conceived for the channel state
information (CSI) estimation of SISO OTFS systems based on the
expectation-maximization (EM) technique. Subsequently, a data-
aided Bayesian learning (DA-BL)-based joint CSI estimation and
data detection technique is proposed, which beneficially harnesses
the estimated data symbols for improved CSI estimation. In this
scenario our sophisticated data detection rule also integrates
the CSI uncertainty of channel estimation into our the linear
minimum mean square error (LMMSE) detectors. The AP-SIP
framework is also extended to MIMO OTFS systems, wherein
the DD-domain input matrix is affine-precoded for each transmit
antenna (TA). Then an EM algorithm-based PA-BL scheme is
derived for simultaneous row-group sparse CSI estimation for
this system, followed also by our data-aided DA-BL scheme that
performs joint CSI estimation and data detection. Moreover, the
Bayesian Cramer-Rao bounds (BCRBs) are also derived for both
SISO as well as MIMO OTFS systems. Finally, simulation results
are presented for characterizing the performance of the proposed
CSI estimation techniques in a range of typical settings along with
their bit error rate (BER) performance in comparison to an ideal
system having perfect CSI.

Index Terms—OTFS, MIMO, affine precoded, superim-
posed, channel estimation, delay-Doppler, high-mobility, sparse,
Bayesian learning.

I. INTRODUCTION

Next-generation wireless communication systems are ex-
pected to support reliable communication in high (350-400
Km/Hr) [1], [2] to extremely high mobility (800-900 Km/Hr)
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[3] scenarios, which poses significant challenges. In such
high mobility use cases, the existing multicarrier modulation
(MCM) schemes such as orthogonal frequency division mul-
tiplexing (OFDM) experience significant performance degra-
dation owing to the inter-carrier interference (ICI) that arises
due to the high Doppler shift.

To overcome this challenge, Hadani et al. proposed the
novel orthogonal time frequency space (OTFS) modulation
technique [4], which relies on the delay and Doppler (DD)-
domain, rather than on the conventional time-frequency (TF)-
domain for modulation of the information symbols. This
leads to significantly improved performance in high Doppler
systems, since the DD-domain channel tends to remain approx-
imately constant for a much larger duration than its conven-
tional TF-domain counterpart, potentially facilitating improved
channel state information (CSI) estimation and prediction. As
a result, OTFS has gained immense popularity toward applica-
tion in diverse domains such as radar [5], the massive Internet
of Things (mIoT) [6], and in the vehicle-to-everything (V2X)
[7] scenarios. Needless to say, the availability of accurate CSI
is key toward realizing the performance benefits promised by
such systems. Therefore, several researchers have developed
CSI estimation techniques for unleashing the full potential of
OTFS. These contributions are reviewed next.

A. Literature Review

The seminal work in [8] developed an explicit end-to-
end input-output DD-domain model for a single input and
single output (SISO) OTFS system. Bespoke pilot transmission
scheme were conceived for DD-domain CSI estimation in [4],
[9], [10]. However, a major drawback of these techniques
is that they use an entire OTFS frame to transmit the pilot
symbols, which leads to a high pilot overhead. Moreover, the
quality of the CSI estimate acquired by this procedure is very
sensitive to the value of the associated empirically chosen
threshold. Nonetheless, this approach has been extended to
multiple input and multiple output (MIMO) OTFS systems by
the authors of [11], wherein the pilot impulses used for the dif-
ferent transmit antennas (TAs) are sufficiently well separated
to result in interference-free outputs at the receive antennas
(RAs) in the DD-domain. However, the pilot overhead required
by this scheme is once again excessive due to the substantial
guard interval required between the impulses to avoid their in-
terference. Raviteja et al., in [12], designed a further advanced
scheme where the data symbols, pilots, and guard bands are
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embedded in the same OTFS frame. The interference between
the pilot and data symbols is avoided by using suitable guard
bands. An important benefit of the embedded design proposed
in [12] is that both CSI estimation and data detection are
performed using the same OTFS frame. Although the scheme
of [12] is capable of successfully reducing the overhead in
comparison to the impulse pilot-based scheme, the pilots and
guard intervals together still lead to significant throughput loss.

Then Shan et al. [13], conceived a scheme that utilized a
large-scale antenna array at the receiver to decrease the guard
bands, resulting in reduced overhead. Their approach involved
the reception of signals at various angles by RAs, followed
by a decoupling stage to extract multiple parallel streams.
However, compensating for phase became complicated due to
the signal rotation in delay and Doppler coordinates caused
by different angles of arrival, especially when data and pilot
signals were superimposed. A key shortcoming of both the im-
pulse based and embedded pilot schemes discussed is that the
required overhead is high. Therefore, the efficiency is reduced.
Furthermore, the performance of the aforementioned schemes
heavily depends on a threshold that has to be tuned empirically.
The accuracy of pilot-based CSI estimation schemes can be
significantly improved by superposing the data and pilots, as
shown by the authors of [14] and [15]. A pivotal drawback of
the techniques described in [14], [15], which are based on di-
rect superposition of the data and pilot symbols, is the resultant
mutual interference that degrades the performance. Moreover,
the above studies employ the MAP and message passing-based
detection rules, respectively, and require the number of active
dominant reflectors to be known at the receiver, which renders
them impractical. More importantly, these existing works have
not considered MIMO OTFS systems, which are addressed in
this treatise. An alternative technique of superimposing data
over pilots is to employ the affine precoding principle, which
was proposed by Tran et al. [20], [21]. A major advantage of
using this approach is that the interference arising due to the
superposition of the data can be removed entirely at any SNR,
thanks to the orthogonality of precoder matrices. However,
the schemes proposed in [20], [21] consider a time-invariant
channel and are hence not suitable for high Doppler systems,
in which the channel varies rapidly in time.

One of the major constraints in adopting such techniques
in OTFS-based systems is the need to design hardware that is
also compatible with the existing systems. The authors of [22],
[23] have successfully addressed this issue via development
of OFDM-based OTFS systems. Their solution is capable of
realizing OTFS based on current OFDM hardware by applying
bespoke pre- and post-processing blocks, which renders it
remarkably easy to implement in practical systems. Conse-
quently, we propose an affine-precoded-superimposed pilots
(AP-SIP)-based DD-domain technique for CSI estimation in
both SISO and MIMO OTFS systems. Another novelty of our
work is that we exploit the DD-domain sparsity arising due to
having a low number of active reflectors, which can result in
significant performance improvement, without requiring prior
statistical knowledge of the channel. Recently, the authors
of [24]–[26] demonstrated the excellent gains achieved by
AI-based approaches in terms of improving the accuracy of

OTFS channel estimation. These promising schemes can be
further explored in our future works. Table I provides a
tabular representation of the contributions of the various works
discussed above in relation to the current one. The main
contributions of this paper are defined next in a clear and
structured format.

B. Contributions

• This study develops an AP-SIP model for CP-aided SISO
OTFS systems along with arbitrary Tx-Rx pulse shaping.
As a consequence of orthogonal affine precoding, the
pilots and data outputs can be readily separated at the
receiver by post-multiplying the received signal with
the respective precoder matrices, which suppresses the
mutual interference.

• A novel pilot-aided Bayesian learning (PA-BL) tech-
nique is conceived for SISO OTFS systems that exploits
the sparsity of the DD-domain channel for improved
CSI estimation. This framework employs the classic
expectation-maximization (EM) framework that updates
the DD-domain CSI iteratively and has a much lower
complexity than the conventional maximum likelihood
(ML) technique.

• A data-aided joint CSI estimation and data detection tech-
nique, termed as DA-BL, is also proposed for this system,
which employs a modified data detection rule together
with the BL principle for joint channel estimation and
data detection in order to further improve the accuracy
of the channel estimate obtained. The improved LMMSE
receiver proposed for this system also integrates the CSI
uncertainty arising due to channel estimation into the data
detection process.

• A data-aided joint CSI estimation and data detection
technique, termed as DA-BL, is also proposed for this
system, which employs a modified decoding rule together
with the BL principle, and further improves the accuracy
of the channel estimate. The LMMSE receiver developed
for this system also integrates the CSI uncertainty arising
due to estimation imperfections into the data detection
process.

• Additionally, a simultaneous row-group sparse DA-BL
scheme is also developed for joint CSI estimation and
data detection in MIMO OTFS systems. This algorithm
maximizes the accuracy of CSI estimation by leveraging
the data symbols decoded via an improved MMSE rule
that accounts for the CSI imperfections.

• In addition, Bayesian Cramer-Rao bounds (BCRBs) have
been derived for both SISO and MIMO OTFS systems in
order to benchmark the CSI estimation performance.

C. Organization of the Paper

The remaining sections of the paper are structured as
follows. Section II proposes the AP-SIP SISO OTFS model.
Section-III formulates the CSI estimation problem of SISO
OTFS systems and develops the PA-BL scheme that exclu-
sively uses the pilot symbols and subsequently the DA-BL
scheme that also exploits the data symbols in addition to pilots.
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TABLE I
CONTRASTING OUR NOVELTY TO THE EXISTING TECHNIQUES

Features [10] [11] [12] [14] [15] [16]* [17] [18] [19]* Proposed
OTFS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
MIMO system ✓ ✓ ✓ ✓
Affine precoding ✓ ✓
Superimposed signalling ✓ ✓ ✓ ✓
Flexible pilot slot ✓ ✓ ✓ ✓ ✓
Limited pilot subcarriers ✓ ✓ ✓ ✓ ✓ ✓
CSI estimation in domain DD DD DD DD DD F TF TF F DD
Prior information (Dominant paths) A A NA A A A NA NA A NA
Simultaneous row-group sparse ✓ ✓
Data aided CSI estimation ✓ ✓ ✓ ✓ ✓
CSI uncertainty for data detection ✓ ✓
ZF based modified detection rule ✓ ✓
MMSE based modified detection rule ✓
Tx-Rx Pulse Shaping I I P P I I P P I P
Note: * Considers OFDM scenario, A: Available, NA: Not available, P: Practical, I: Ideal

Section-IV presents the AP-SIP MIMO OTFS CSI estimation
model, followed by the PA-BL and DA-BL schemes that
exploit the inherent simultaneous row-group sparsity for CSI
estimation in Section-V. Furthermore, the Bayesian Cramer-
Rao bounds of both SISO and MIMO AP-SIP-based OTFS
channel estimation are derived in Section-VI to benchmark
the CSI estimation performance. Section-VII presents our
simulation results, and Section-VIII concludes the paper. For
ease of exposition, the proofs of some of the results are given
in the appendices toward the end of the paper.

D. Notation

Upper case (A) and lower case (a) boldface letters are
used to denote matrices and vectors, respectively. The quantity
vec(A) denotes the vector obtained by stacking the columns
of matrix A while vec−1(a) denotes the inverse operation of
constructing matrix A from a. The notation [·]M represents
the modulo-M operation, while diag (a) denotes a diagonal
matrix with elements of vector a on the principal diagonal.
Finally, the paper frequently uses the vec operator property
vec (ABC) =

(
CT ⊗A

)
vec (B), where ⊗ stands for the

matrix Kronecker product.

II. AP-SIP BASED SISO OTFS SYSTEM MODEL

Consider an AP-SIP-based SISO OTFS system constructed
upon an OFDM-based multicarrier system, as shown in Fig.
1. Let the subcarrier spacing and the OFDM symbol duration
be denoted by ∆f , and T , respectively, so that T∆f = 1. In
addition, let M and N be the number of symbols arranged
along the frequency and time axes, respectively, in the TF-
domain grid of the OFDM system. These TF-domain symbols
are generated through an appropriate transformation from an
equivalent DD-domain grid, wherein M,N symbols are placed
along the delay and Doppler axes, respectively. Consequently,
the resultant OTFS system has a bandwidth of M∆f and a
frame duration of NT . Accordingly, the delay and Doppler
axes of the DD-domain grid are sampled at integer multiples of
∆τ = 1

M∆f and ∆ν = 1
NT , respectively. Let Xd ∈ CM×K1

and Xp ∈ CM×K2 denote the information and pilot symbol
matrices, respectively, where K1 +K2 = N . The elements of

both Xd and Xp are drawn from a suitable constellation with
average powers of σ2

d and σ2
p, respectively, i.e., E{XdX

H
d } =

σ2
dIM and σ2

p =
Tr(XpX

H
p )

MK2
, so that σ2

d + σ2
p = 1. In the

proposed AP-SIP based system, the data input Xd and pilot
input Xp are affine-precoded using the transmit precoder
(TPC) matrices D ∈ CN×K1 and P ∈ CN×K2 , respectively,
so that they are semi-orthogonal, i.e.,

PHP = IK2×K2 ,D
HD = IK1×K1 ,

PHD = 0K2×K1
,DHP = 0K1×K2

. (1)

Interestingly, such TPC matrices as P and D can be readily
obtained from an arbitrary unitary matrix U ∈ CN×N , so
that P = U(:, 1 : K1) and D = U(:,K1 + 1 : N). Hence,
as shown in the Fig. 1, the AP-SIP based DD-domain data
matrix XDD ∈ CM×N is obtained as

XDD = Xd.D
H +Xp.P

H (2)

The procedure of OTFS modulation is described next.
The OTFS system places the elements of the M × N

AP-SIP data symbol matrix XDD over the DD-domain grid.
Subsequently, the inverse symplectic finite Fourier transform
(ISFFT) is employed to map these DD-domain symbols to
the TF grid at the transmitter. This operation is formulated
as XTF = FMXDDF

H
N ∈ CM×N , where FM and FN

represent the M th and N th order discrete Fourier transform
(DFT) matrices, respectively. The OFDM modulator evaluates
the M -point inverse fast Fourier transform (IFFT) of each
column of the TF-domain symbol matrix XTF followed by
transmit pulse-shaping in order to obtain the time-domain
(TD) symbol matrix S ∈ CM×N , which can be formulated as
S = PtxF

H
MXTF = PtxXDDF

H
N , where diagonal matrix Ptx

contain the M -samples of the transmit pulse ptx(t), i.e., Ptx =

diag
{
ptx

(
pT
M

)}M−1

p=0
. Furthermore, the conventional OFDM

system transmits each column1 of the matrix S separately
by performing parallel-to-serial (P/S) conversion, followed by

1By contrast, many OTFS schemes described in [27], [17], initially vector-
ize the TD symbol matrix S as s = vec

(
PtxXDDF

H
N

)
=

(
FH

N ⊗Ptx
)
xDD,

where xDD = vec (XDD) ∈ CMN×1, and subsequently append a CP of
length L for eliminating the inter-frame interference.
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Fig. 1. Block diagram of AP-SIP-based OTFS system implemented using OFDM.

appending a cyclic prefix (CP) of length L to each column.
The resultant TD signal is transmitted over a doubly-dispersive
wireless channel, as described next.

The DD-domain wireless channel h(τ, ν) is formulated as
[4], [28]–[30]

h(τ, ν) =

Lp∑
i=1

hiδ(τ − τi)δ(ν − νi), (3)

which is a 2-dimensional function of the delay variable τ and
Doppler variable ν. In the channel model above, the quantities
τi and νi represent the delay and Doppler shifts, respectively,
introduced by the ith reflector, hi represents the associated
complex path gain, whereas Lp is the number of multipath
components. The quantity νi is expressed as νi =

ki

NT , where
ki is the fractional index corresponding to the Doppler shift
νi and is given as ki = round(ki)+Ki, where |Ki| < 0.5. On
the other hand for a typical wideband system associated with
M = 32 and ∆f = 15KHz; the delay resolution obtained
is ∆τ = 1

M∆f = 2.08µsec, which is low. Hence, one can
safely assume that the delays of the multipath components
are integer multiples of the delay resolution [28], [31], [32].
Note that for a typical underspread channel [28], [32], we
have li << M and ki << N . The signal received at the
output of this DD-domain channel is formulated next. Let sn ∈
CM×1, 0 ≤ n ≤ N − 1, denote the nth column of the TD
symbol matrix S, and rn ∈ CM×1 represent the corresponding
output after CP removal. The pth sample of rn, denoted by
rn(p), 0 ≤ p ≤M − 1, is expressed as

rn(p) =

Lp∑
i=1

hie
j2π

ki(p−li)

MN sn
(
[p− li]M

)
+ wn(p), (4)

where sn(p) denotes the pth element of the vector sn
and wn(p) represents the noise samples. Let rn ∈ CM×1

be arranged as rn = [rn(0), rn(1), · · · , rn(M − 1)]
T

and wn ∈ CM×1 be arranged as wn =
[wn(0), wn(1), · · · , wn(M − 1)]

T . Using (4) and rn,
the received signal vector rn can be formulated as

rn =

Lp∑
i=1

hi

(
Π̄
)li (

∆̄li

)ki
sn +wn = rn = H̄sn +wn.

(5)

where the matrix H̄ ∈ CM×M be defined as H̄ =∑Lp

i=1 hi

(
Π̄
)li (

∆̄li

)ki , Π̄ denotes a permutation matrix of

order M and ∆̄li ∈ CM×M represents the diagonal matrix as
shown in [18], [17]

∆̄li =

{
diag

{
1, ω, · · · , ωM−li−1, ω−li , · · · , ω−1

}
, if li ̸= 0,

diag
{
1, ω, · · · , ωM−1

}
, for li = 0,

(6)

with ω = ej2π
1

MN . Furthermore, upon concatenating the out-
puts rn, 0 ≤ n ≤ N−1, as R = [r0, r1, · · · , rN−1] ∈ CM×N ,
we have

R = H̄S+W, (7)

where W = [w0,w1, · · · ,wN−1] ∈ CM×N represents the
concatenated noise matrix. Subsequently, OTFS demodulation
is applied to TD sample matrix R as follows.

The OFDM demodulator first applies a receive pulse shap-
ing filter prx(t) of duration T , followed by performing the
M -point FFT over each column of the received signal matrix
R for obtaining the TF-domain demodulated symbol matrix
YTF ∈ CM×N . These operations are given by YTF =

FMPrxR, where Prx = diag
{
p∗rx

(
pT
M

)}M−1

p=0
. Next, the DD-

domain demodulated OTFS signal YDD ∈ CM×N is obtained
by performing the SFFT of the OFDM-demodulated signal
YTF, which is expressed as YDD = FH

MYTFFN = PrxRFN .
Finally, upon substituting R, and in turn substituting S into
YDD , the simplified input-output DD-domain relationship of
the AP-SIP SISO OTFS system is derived as

YDD = H̄DDXDD +WDD, (8)

where H̄DD = PrxH̄Ptx ∈ CM×M , which can be further
expressed as

H̄DD =

Lp∑
i=1

hiPrx
(
Π̄
)li (

∆̄li

)ki
Ptx, (9)

and WDD = PrxWFN . By contrast, the input-output rela-
tionship derived in other OTFS studies, such as [12], [27],
is of the form yDD = HDDxDD + wDD, where we have
yDD = vec (YDD) ∈ CMN×1, and the end-to-end channel
matrix HDD is of size MN ×MN . Note that the simplified
relationship of (8) can be attributed to the CP concatenation
to each column of the TD symbol matrix S. It follows from
(2) that the AP-SIP matrix XDD comprises the data matrix Xd

and pilot matrix Xp. Owing to the semi-orthogonality of the
TPC matrices P and D, one can decouple the resultant output
corresponding to the data matrix Xd during signal detection,
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Fig. 2. Fractional and integer Doppler grids

as described subsequently. Upon substituting (2) in (8), we
have

YDD = H̄DD(Xd.D
H +Xp.P

H) +WDD. (10)

One can now decouple the data output YDD,d ∈ CM×K1 from
YDD of (10) by post-multiplying it by the data TPC matrix
D, i.e YDD,d = YDDD, followed by further simplification
exploiting the properties stated in (1), as

YDD,d = H̄DD
(
XdD

HD+XpP
HD

)
+WDDD

= H̄DDXd +WDD,d. (11)

Furthermore, considering wDD,d = vec (WDD,d) ∈ CMK1×1,
its covariance matrix Rw,d is given by Rw,d = σ2

[
IK1
⊗(

PrxP
H
rx

) ]
. This in turn implies that any column of the noise

matrix WDD,d has the covariance of RW,d = σ2
(
PrxP

H
rx

)
∈

CM×M . Thus, considering the average symbol power of Xd

as σ2
d, the LMMSE detector is formulated as

XMMSE
d =

(
H̄H

DDR
−1
W,dH̄DD +

1

σ2
d

IM

)−1

H̄H
DDR

−1
W,dYDD,d,

(12)

which is finally demodulated according to the specific transmit
constellation symbols using the nearest neighbor decoding rule
[33].

III. SPARSE DD-DOMAIN CSI ESTIMATION MODEL FOR
AP-SIP SISO OTFS SYSTEMS

For CSI estimation, the pilot output YDD,p ∈ CM×K2 is
decoupled from the data upon post-multiplying YDD of (10)
by the TPC matrix P, i.e YDD,p = YDDP, followed by further
simplification exploiting the properties stated in (1), as

YDD,p = H̄DD
(
XdD

HP+XpP
HP
)
+WDDP

= H̄DDXp +WDD,p. (13)

Furthermore, considering wDD,p = vec (WDD,p) ∈ CMK2×1,
its covariance matrix Rw,p is given by Rw,p = σ2

[
IK2
⊗(

PrxP
H
rx

) ]
. Upon employing the pilot output model above,

the DD-domain channel can be estimated as discussed next
when considering a typical underspread wireless channel, one
can denote its maximum delay spread by Mτ and Doppler
spread by Nν . This implies that the delay and Doppler
shifts introduced by each multipath component of the wire-
less channel obey: lmax = max(li) < Mτ << M , and
kmax = max(ki) < Nν << N,∀i. Toward introducing
fractional Doppler, consider a grid of size Gτ ×Gν , such that

Gν >> Nν , i.e., each grid interval corresponding to integer
Doppler shift is divided into multiple intervals as shown in
Fig. 2. The jth Doppler-grid point, 0 ≤ j ≤ Gν , corresponds
to a Doppler-shift of νj = jNν

GνNT Hz. For Gν = Nν , it reduces
to the previous model with integer Doppler shift. Employing
this framework, the channel h(τ, ν) is given by

h(τ, ν) =

Mτ−1∑
i=0

Gν−1∑
j=0

hi,jδ(τ − τi)δ(ν − νj). (14)

Owing to having only a few dominant multipath components,
most of the coefficients hi,j are zero, and only a small
number of coefficients Lp are non zero, which correspond to
the Lp dominant reflectors, associated with Lp << MτGν .
Equivalently, the sparse representation of the matrix H̄DD of
(14) can be obtained as

H̄DD =

Mτ−1∑
i=0

Gν−1∑
j=0

hi,jPrx
(
Π̄
)i (

∆̄i

)j
Ptx. (15)

Now, upon substituting (15) into (13) yields

YDD,p =

Mτ−1∑
i=0

Gν−1∑
j=0

hi,jPrx
(
Π̄
)i (

∆̄i

)j
PtxXp +WDD,p.

(16)
Furthermore, vectorizing YDD,p as yDD,p = vec(YDD,p),
yields

yDD,p =
Mτ−1∑
i=0

Gν−1∑
j=0

[
IK2
⊗
(
Prx(Π̄)i(∆̄i)

jPtx

)]
xphi,j +wDD,p,

(17)

where xp = vec(Xp) ∈ CMK2×1. This can be further
simplified as

yDD,p =

Mτ−1∑
i=0

Gν−1∑
J=0

wp,i,jhi,j +wDD,p, (18)

where wp,i,j =
[
IK2 ⊗

(
Prx(Π̄)i(∆̄i)

jPtx
)]
xp ∈ CMK2×1.

The above relationship can be expressed as the canonical
sparse signal recovery problem of

yDD,p = Ωph+wDD,p, (19)

where the dictionary matrix Ωp ∈ CMK2×MτNν and sparse
channel vector h ∈ CMτNν×1 are given by

Ωp = [wp,0,0 . . .wp,0,Gν−1 . . .wp,Mτ−1,0 . . .wp,Mτ−1,Gν−1] .
(20)

h = [h0,0 . . . , h0,Gν−1, . . . , hMτ−1,0 . . . , hMτ−1,Gν−1]
T
.
(21)

For linear estimation model shown in (19), the conventional
MMSE estimate ĥMMSE is given by

ĥMMSE =
(
ΩH

p R−1
w,pΩp +R−1

h

)−1

ΩH
p R−1

w,pyDD,p. (22)

Note that the conventional MMSE estimate shown above
requires knowledge of the channel’s covariance matrix Rh ∈
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CMτGν×MτGν , which is unknown in practice. Addition-
ally, another significant drawback of using the conventional
MMSE-based method for DD-domain CSI estimation is that
it does not exploit the sparse characteristics of the DD-
domain channel, which can lead to a significantly improved
performance. To overcome these drawbacks, we conceive a
Bayesian learning (BL) procedure for enhanced sparse DD-
domain CSI estimation, as described in the next subsection.

A. Pilot aided Bayesian learning (PA-BL) for AP-SIP SISO
OTFS systems

In the PA-BL framework, a parameterized Gaussian prior is
assigned to the sparse channel vector h [17], as f(h;Λ) =∏MτGν−1

i=0
1

(πλi)
exp

(
−|h(i)|

2

λi

)
. Here, λi represents the un-

known hyperparameter associated with the ith component of
vector h and Λ = diag

(
{λi}MτGν−1

i=0

)
∈ R+MτGν×MτGν

denotes the hyperparameter matrix. In the proposed PA-BL
method, the hyperparameter estimation is performed using the
well-known expectation maximization (EM)-procedure which
is detailed in Algorithm 1.

Algorithm 1: PA-BL-based sparse CSI estimation in
SISO OTFS systems

Input: Decoupled pilot output vector yDD,p form (19)
and pilot dictionary matrix Ωp from (20), noise
covariance matrix Rw,p, stopping parameters
ϵ and Nmax

Initialization: λ̂i

(0)
= 1,∀ 0 ≤ i ≤MτGν − 1, Λ̂

(0)
=

IMτGν , Λ̂
(−1)

= 0, j = 0

Output: ĥPA-BL = µ(j)

1 while ∥Λ̂
(j)
− Λ̂

(j−1)
∥2F > ϵ and j < Nmax do

2 j ← j + 1
3 E-step:
4 Compute the aposteriori covariance and mean

Σ(j) = [ΩH
p R−1

w,pΩp + (Λ̂
(j−1)

)−1]−1,

µ(j) = Σ(j)ΩH
p R−1

w,pyDD,p

5 M-step:
6 Compute the hyperparameter estimates
7 for i← 0 to MτGν − 1 do

λ̂
(j)
i = Σ(j)(i, i) + |µ(j)(i)|2

.

Upon convergence of the EM procedure, the estimate of the
sparse vector h is given by the aposteriori mean µ(j) computed
in step-2. Finally, the estimated CSI ĤPA-BL

DD of our AP-SIP
based SISO-OTFS system is given by

ĤPA-BL
DD =

∑
i,j

ĥPA-BL
i,j Prx

(
Π̄
)i (

∆̄i

)j
Ptx. (23)

Subsequently, the estimated CSI ĤPA-BL
DD (23) is utilized in

the MMSE detector defined by (12) for data detection. Note
that the CSI estimation framework developed above employs
only the pilot output yDD,p for channel estimation. In order
to further improve the CSI estimation, one can exploit the
estimate of the data symbol matrix XDD for iteratively refining
the CSI estimate ĤPA-BL

DD . The resultant uncertainty in the CSI
estimates, which is characterized by the aposteriori covariance
matrix Σ(j), can be exploited for developing the optimal
MMSE detector. This motivates us to develop a data-aided
CSI estimation framework for AP-SIP SISO-OTFS systems,
which is described next.

B. Data aided Bayesian learning (DA-BL) for AP-SIP SISO
OTFS systems

Consider the decoupled data output YDD,d expression ob-
tained in (11). Upon substituting H̄DD from (15) into the
decoupled data output is given by

YDD,d =

Mτ−1∑
i=0

Gν−1∑
j=0

hi,jPrx
(
Π̄
)i (

∆̄i

)j
PtxXd +WDD,d.

(24)
Upon, vectorizing YDD,d as yDD,d = vec(YDD,d), the resulting
expression is

yDD,d (25)

=

Mτ−1∑
i=0

Gν−1∑
j=0

[
IK1
⊗
(
Prx(Π̄)i(∆̄i)

jPtx

)]
xdhi,j +wDD,d,

where xd = vec(Xd) ∈ CMK1×1. This can be further
simplified as

yDD,d =

Mτ−1∑
i=0

Gν−1∑
J=0

wd,i,jhi,j +wDD,d, (26)

where wd,i,j =
[
IK1 ⊗

(
Prx(Π̄)i(∆̄i)

jPtx
)]
xd ∈ CMK1×1.

By casting the above relationship into the sparse signal recov-
ery model, we get

yDD,d = Ωdh+wDD,d, (27)

where the dictionary matrix Ωd ∈ CMK1×MτNν is given by

Ωd = [wd,0,0 . . .wd,0,Gν−1 . . .wd,Mτ−1,0 . . .wd,Mτ−1,Gν−1] .
(28)

The sparse channel vector h ∈ CMτGν×1 is given by (21).
For DA-BL-based sparse CSI estimation and detection, the
data output from (19) and pilot output from (27) are stacked
as [

yDD,d

yDD,p

]
︸ ︷︷ ︸
y∈CMN×1

=

[
Ωd

Ωp

]
︸ ︷︷ ︸

Φ∈CMN×MτGν

h+

[
wDD,d

wDD,p

]
︸ ︷︷ ︸
v∈CMN×1

. (29)

Thus, the resultant system model corresponding to the data-
aided system is given by

y = Φh+ v, (30)

where the covariance matrix of the noise vector v is Rv =
blkdiag(Rw,d,Rw,p) ∈ CMN×MN . The DA-BL technique
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proposed for joint CSI estimation and data detection proceeds
as follows.

For the DA-BL framework, the parameterized Gaussian
prior is assigned to the sparse DD-domain CSI h given as

f(h;Λ) =
∏MτGν−1

i=0
1

(πλi)
exp

(
−|h(i)|

2

λi

)
, similar to the

PA-BL framework. The proposed DA-BL framework jointly
and iteratively estimates the hyperparameter matrix Λ and
data symbol matrix Xd using the EM algorithm. Here, the
complete information set is represented as {y,h}, where h
is the hidden variable, and y is the observation variable.
Let {Xd,Λ} represent the unknown parameter set and let

Λ̂
(j−1)

=

{
X̂

(j−1)
d , Λ̂

(j−1)
}

, where X̂
(j−1)
d and Λ̂

(j−1)

denote the estimates of the data symbol matrix Xd and the
hyperparameter matrix Λ gleaned from the (j − 1)th EM
iteration. For the current jth iteration, the E-step computes
the log-likelihood function L(Λ | Λ̂

(j−1)
) of the complete

data set, which is given by

L(Λ | Λ̂
(j−1)

) = E
h|y;Λ̂(j−1) {log [p (y,h;Λ)]} (31)

= E {log [p (y | h;Xd)]}+ E {log [p (h;Λ)]} . (32)

In the M-step, the log-likelihood L(Λ | Λ̂
(j−1)

) computed is
jointly maximized with respect to the unknown parameter set
Λ. Note that the first term log [p (y | h;Xd)] in (32) depends
only on the data matrix Xd, and the second term log [p (h;Λ)]
depends exclusively on the hyperparameter matrix Λ. There-
fore, the joint maximization of L(Λ | Λ̂

(j−1)
) with respect

to Xd and Λ reduces to two independent maximizations
of the first and second terms with respect to Xd and Λ,
respectively. The M-step1 for the hyperparameter update λ̂

(j)
i

can be expressed as

λ̂
(j)
i = argmax

λi≥0
E
h|y;Λ̂(j−1) {log [p (h;Λ)]} , (33)

for 0 ≤ i ≤MτGν−1. This can be simplified similar to Step3
of Algorithm 1 as

λ̂
(j)
i = Σ(j)(i, i) + |ĥ(j)(i)|2, (34)

where the a posteriori mean vector ĥ(j) ∈ CMτGν×1 and
the associated covariance matrix Σ(j) ∈ CMτGν×MτGν are
determined as

ĥ(j) = Σ(j)(Φ(j−1))HR−1
v y,

Σ(j) = [(Φ(j−1))HR−1
v Φ(j−1) + (Λ̂

(j−1)
)−1]−1. (35)

Here, the quantity Φ(j−1) is constructed from the estimate of
the data input X̂(j−1)

d at the (j− 1)th iteration. Subsequently,
in M-step2, the update X̂

(j)
d of the data matrix is determined

as

X̂
(j)
d = argmax

Xd

E{log[p(yDD,d | h;Xd)]}, (36)

which can be further formulated as

X̂
(j)
d = argmin

Xd

E{||yDD,d −Ωdh||22}

≡ argmin
Xd

E{||YDD,d − H̄DDXd||2F }. (37)

Algorithm 2: DA-BL based sparse CSI estimation in
SISO OTFS systems
Input: Decoupled joint output vector y from (30),

joint dictionary matrix Φ from (29), joint noise
covariance matrix Rv = blkdiag(Rw,d,Rw,p),
threshold ϵ and Nmax

Initialization: Λ̂
(0)

= Λ̂
(j)

PA-BL, Λ̂
(−1)

= 0, j = 0,

Ω
(−1)
d = Ω̂

PA-BL
d , Φ(−1) =

[
Ω

(−1)
d

Ωp

]
Output: ĥDA-BL = µ(j) and X̂DA-BL = X̂

(j)
d

1 while ∥Λ̂
(j)
− Λ̂

(j−1)
∥2F > ϵ and j < Nmax do

2 j ← j + 1
3 E-step:
4 Compute the aposteriori covariance and mean

Σ(j) = [Φ(j−1)HR−1
v Φ(j−1)H + (Λ(j−1))−1]−1,

µ(j) = Σ(j)Φ(j−1)HR−1
v y

5 M-step1:
6 Compute the hyperparameter estimates
7 for i← 0 to MτNν − 1 do

λ̂
(j)
i = Σ(j)(i, i) + |µ(j)(i)|2

.
8 M-step2:
9 Update estimate of the data matrix X̂

(j)
d by using

LMMSE estimate of (44) or ZF estimate of (43).

Upon simplifying the cost function of (37), the expression
obtained is

= E[Tr{(YDD,d − H̄DDXd)
H(YDD,d − H̄DDXd)}]

= Tr{YH
DD,dYDD,d −YH

DD,dĤ
(j)
DDXd

−XH
d (Ĥ

(j)
DD)

HYDD,d −XH
d E[H̄H

DDH̄DD]Xd}, (38)

where Ĥ
(j)
DD is the CSI estimate for the jth iteration, given as

Ĥ
(j)
DD = E

[
H̄DD

]
=
∑
u,v

ĥ(j)
u,vPrx

(
Π̄
)u (

∆̄u

)v
Ptx. (39)

The quantity ĥ
(j)
u,v is the estimate of hu,v for the jth iteration.

As shown in Appendix-A, the quantity E[H̄H
DDH̄DD] can be

simplified to

E[H̄H
DDH̄DD] = (Ĥ

(j)
DD)

HĤ
(j)
DD +Ξ(J), (40)

where Ξ represents the channel estimation uncertainty, which
is defined in terms of the error covariance matrix Σh of ĥDD =
vec(ĤDD) as

Ξ(p, q) = Tr [Σh(p̃−M + 1 : p̃, q̃ −M + 1 : q̃)] , (41)

where p̃ = pM, q̃ = qM . The detailed derivation of Ξ is given
in Appendix B.
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Hence, M-step2 can be expressed as

X̂
(j)
d =argmin

Xd

{||YDD,d − Ĥ
(j)
DDXd||2F + ||

(
Ξ(j)

) 1
2

Xd||2F }

(42)

=argmin
Xd

{∥∥∥∥∥
[
YDD,d

0

]
−

 Ĥ
(j)
DD(

Ξ(j)
) 1

2

Xd

∥∥∥∥∥
2

F

}
. (43)

Note that the above detection rule is equivalent to zero forcing
(ZF) signal detection for the data matrix Xd. In order to
further improve the detection performance, we also present
an LMMSE-based detection procedure, which is derived in
Appendix A.

The simplified LMMSE-based data detection rule is formu-
lated as

X̂
(j)
d = Ĥ

(j)H
DD

[
Ĥ

(j)
DDĤ

(j)H
DD +Ξ(j) +

σ2

σ2
d

(
PrxP

H
rx

) ]−1

YDD,d.

(44)

IV. AP-SIP BASED MIMO OTFS SYSTEM MODEL

Consider an AP-SIP MIMO OTFS system constructed upon
an OFDM-based multicarrier system. Let the number of trans-
mitter antennas (TAs) in the MIMO system be Nt, and the
number of receiver antennas (RAs) be Nr. The data and pilot
inputs corresponding to the tth TA are Xd

t ∈ CM×K1 and
Xp

t ∈ CM×K2 , respectively, for 1 ≤ t ≤ Nt. Similar to
AP-SIP-based SISO OTFS systems, for each TA, the data
and pilot inputs are affine-precoded using the semi-orthogonal
matrices D and P, respectively. Thus, the input XDD

t ∈ CM×N

corresponding to each TA in the DD-domain is given by

XDD
t = Xd

tD
H +Xp

tP
H . (45)

The DD-domain representation of the MIMO wireless channel
corresponding to the rth RA and tth TA, where 1 ≤ r ≤
Nr, 1 ≤ t ≤ Nt, can be modeled as

hr,t(τ, ν) =

Lp∑
i=1

hi,r,tδ(τ − τi)δ(ν − νi), (46)

where τi and νi represent the delay and Doppler shifts intro-
duced by the ith reflector.

Let the tth TA transmit the symbol matrix XDD
t over the

DD-domain wireless channel HDD
r,t ∈ CM×M corresponding

to rth RA and tth TA, where HDD
r,t = PrxHr,tPtx, At the rth

RA the received signal YDD
r ∈ CM×N has a contribution from

all the transmitted symbols XDD
t , and can be expressed as

YDD
r =

Nt∑
t=1

HDD
r,tX

DD
t +WDD

r . (47)

By stacking the outputs corresponding to all the RAs,
the output YDD ∈ CMNr×N is given as YDD =
[(YDD

1 )T (YDD
2 )T . . . (YDD

Nr
)T ]T . Thus, the input-output rela-

tionship is given by

YDD = H̃DDXDD +WDD, (48)

where XDD[(X
DD
1 )T (XDD

1 )T . . . (XDD
Nt

)T ]T ∈ CMNt×N ,
WDD = [(WDD

1 )T (WDD
2 )T . . . (WDD

Nr
)T ]T ∈ CMNr×N and

H̃DD ∈ CMNr×MNt represents the DD-domain MIMO-OTFS
channel given as

H̃DD = blkmtx
{
HDD

r,t

}Nr,Nt

r=1,t=1

= (INr
⊗Prx)

[
blkmtx

{
Hr,t

}Nr,Nt

r=1,t=1

]
(INt

⊗Ptx),

(49)

where channel matrix between the rth RA and tth TA is given
by Hr,t =

∑Lp

i=1 hi,r,t

(
Π̄
)li (

∆̄li

)ki from (46). Substituting
XDD

t from (45) in (47) yields

YDD
r =

Nt∑
t=1

HDD
r,t

(
Xd

tD
H +Xp

tP
H
)
+WDD

r . (50)

The data and pilot matrices can be decoupled by exploiting the
semi-orthogonality of the TPC matrices P and D, as described
next.

One can now decouple the data output YDD,d
r from YDD

r of
(50) upon post-multiplying it by the data TPC matrix D as

YDD,d
r = YDD

r D =

Nt∑
t=1

HDD
r,t

(
Xd

tD
HD+Xp

tP
HD

)
+WDD

r D

=

Nt∑
t=1

HDD
r,tX

d
t +WDD,d

r . (51)

The simplification of (51) follows upon exploiting the prop-
erties in (1). Furthermore, stacking the outputs corresponding
to all RAs, the output of the receiver ỸDD,d ∈ CMNr×K1 is
expressed as

ỸDD,d =
[
(YDD,d

1 )T (YDD,d
2 )T . . . (YDD,d

Nr
)T
]T

. (52)

The system model of decoupled data detection is given by

ỸDD,d = H̃DDX̃d + W̃DD,d, (53)

where

X̃d =
[
(Xd

1)
T (Xd

2)
T . . . (Xd

Nt
)T
]T ∈ CMNt×N ,

W̃DD,d =
[
(WDD,d

1 )T (WDD,d
2 )T . . . (WDD,d

Nr
)T
]T
∈ CMNr×N

. Once again, the MMSE-based detector can be formulated as

X̃MMSE
d =

(
H̃H

DDR̃
−1
W,dH̃DD +

1

σ2
d

IMNt

)−1

H̃H
DDR̃

−1
W,dỸDD,d,

(54)

where R̃W,d = (INr
⊗RW,d) ∈ CMNr×MNr denotes the

noise covariance matrix.

V. SPARSE DD-DOMAIN CSI ESTIMATION MODEL FOR
AP-SIP MIMO OTFS SYSTEMS

When relying in the received signal in (50), one can now
decouple the pilot output YDD,p

r from YDD
r of (50) by post

multiplying it by the TPC matrix P for CSI estimation as

YDD,p
r = YDD

r P =

Nt∑
t=1

HDD
r,t

(
Xd

tD
HP+Xp

tP
HP
)
+WDD

r P

=

Nt∑
t=1

HDD
r,tX

p
t +WDD,p

r . (55)
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The simplification of (55) follows upon exploiting the results
of (1). Let the maximum delay spread of the DD-domain
MIMO OTFS channel be Mτ and the maximum Doppler
spread be denoted by Nν . For an under-spread channel, the
parameters obey lmax = max(li) < Mτ << M and
kmax = max(ki) < Nν << N . Toward introducing
fractional Doppler, consider a grid of size Gτ × Gν , such
that Gν >> Nν , similar to SISO OTFS system defined in
Section-III. Let furthermore hi,j,r,t represent the path gain of
the ith delay tap and jth Doppler tap for the rth RA and tth
TA. The channel hr,t(τ, ν) between the rth RA and tth TA is
given by

hr,t(τ, ν) =

Mτ−1∑
i=0

Gν−1∑
j=0

hi,j,r,tδ(τ − τi)δ(ν − νj). (56)

Upon substituting the expression for HDD
r,t into (55) followed

by vectorization, the resulting expression is

yDD,p
r

=

Nt∑
t=1

vec

Prx

Mτ−1∑
i=0

Gν−1∑
j=0

hi,j,r,t(Π̄)i(∆̄i)
jPtxX

p
t

+wDD,p
r ,

(57)

where yDD,p
r = vec(YDD

r P) ∈ CMK2×1 , wDD,p
r =

vec(WDD
r P) ∈ CMK2×1. Simplifying the previous expression

yields

yDD,p
r =

Nt∑
t=1

Mτ−1∑
i=0

Gν−1∑
J=0

wp
i,j,thi,j,r,t +wDD,p

r , (58)

where wp
i,j,t =

(
IK2
⊗Prx(Π̄)i(∆̄i)

jPtx
)
xp
t ∈ CMK2×1 and

xp
t = vec (Xp

t ) ∈ CMK2×1. The above relationship may also
be expressed in vectorized form as

yDD,p
r =

Nt∑
t=1

Ωp
thr,t +wDD,p

r , (59)

where yDD,p
r represents the observation vector for the

decoupled pilots at the rth RA corresponding to all
the TAs, Ωp

t ∈ CMK2×MτGν represents the dic-
tionary matrix for the tth TA, which is given by
Ωp

t = [wp
0,0,t . . .w

p
0,Gν−1,t . . .w

p
Mτ−1,0,t . . .w

p
Mτ−1,Gν−1,t].

The quantity hr,t ∈ CMτGν×1 is the channel coefficient vector
for the RA-TA pair (r, t), which is given by

hr,t =[h0,0,r,t . . . h0,Gν−1,r,t . . .

. . . hMτ−1,0,r,t . . . hMτ−1,Gν−1,r,t]
T . (60)

The above result can be expressed as

yDD,p
r = Ω̃phr +wDD,p

r , (61)

where the dictionary matrix Ω̃p ∈ CMK2×MτGνNt is given
as Ω̃p =

[
Ωp

1,Ω
p
2, . . . ,Ω

p
Nt

]
, and the channel coefficient

vector hr ∈ CMτGνNt×1 for a particular r is given as
hr = [hT

r,1,h
T
r,2, . . . ,h

T
r,Nt]

T . Upon concatenating the outputs
corresponding to all the RAs using (61), the resultant obser-
vation matrix ỸDD,p =

[
yDD,p
1 ,yDD,p

2 , . . . ,yDD,p
Nr

]
is given by

ỸDD,p = Ω̃pH̃+ W̃p, (62)

where the channel coefficient matrix H̃ ∈ CMτGνNt×Nr

across all the RAs is given by H̃ = [h1,h2, . . . ,hNr],
and the corresponding noise matrix W̃p is W̃p =[
wDD,p

1 ,wDD,p
2 , . . . ,wDD,p

Nr

]
∈ CMk2×Nr . For the model

shown in (62), the conventional MMSE estimate of the CSI,
denoted by ĤMMSE, is given as

ĤMMSE =
(
Ω̃

H

p R−1
wp

Ω̃p +R−1
h

)−1

Ω̃
H

p R−1
wp

ỸDD,p, (63)

where the channel’s covariance matrix Rh ∈
CMτGνNt×MτGνNt is unknown and hence it is set
as IMτGνNt , while the noise covariance matrix is
Rw,p = σ2(IK2 ⊗PrxP

H
rx ) ∈ CMK2×MK2 . The next section

describes the BL-based estimation technique conceived for
MIMO OTFS systems, where we exploit the sparsity in
addition to determining the channel’s covariance, in order to
improve the performance of the LMMSE estimate.

A. Pilot aided Bayesian learning (PA-BL) for AP-SIP MIMO
OTFS systems

As for the MIMO OTFS channel, the delay and Doppler
shifts corresponding to the multipath components are identical
for all TA/RA pairs. Thus, the sparsity profile of the vectors
hr,t ∈ CMτGν×1 is identical for all pairs (r, t). The vector
hr ∈ CMτGνNt×1 obtained by stacking hr,t for all values
of t, exhibits a group sparse structure, since the ith group of
coefficients, 0 ≤ i ≤MτGν − 1, given by{

hr

(
[(t− 1)MτGν ] + i

)}Nt

t=1

,

are either all zero or non-zero. Moreover, the matrix H̃, which
is obtained by concatenating vector hr for all values of r,
exhibits a row sparse structure, since the ith group of rows
denoted by the row indices

{
[(t− 1)MτGν ]+i

}Nt

t=1
are either

all zero or non-zero. Thus, H̃ has a simultaneously row-
group sparse structure. The PA-BL framework designed for the
estimation of this row-group sparse matrix begins by assigning
a parameterized Gaussian prior to the sparse channel vector
hr,t as

f(hr,t;Λ) =

MτGν−1∏
i=0

1

(πλi)
exp

(
−|hr,t(i)|2

λi

)
.

For the PA-BL framework, the sparsity profile of hr,t

is identical for each RA/TA pair. The update equa-
tions for the jth iteration are summarized in Algo-
rithm 3. The estimate ĥi,j,r,t is obtained as ĥi,j,r,t =

ĤSBS PA-BL [i(Gν + 1) + j + (t− 1)MτGν , r − 1] . The esti-
mate ĤDD

r,t of the channel matrix corresponding to the rth RA
and tth TA is obtained as

ĤDD
r,t = Prx

[Mτ−1∑
i=0

Gν−1∑
j=0

ĥi,j,r,t

(
Π̄
)i
(∆̄i)

j
]
Ptx. (64)
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Algorithm 3: PA-BL-based row-group sparse CSI
estimation in MIMO OTFS systems

Input: Decoupled pilot output matrix ỸDD,p, pilot
dictionary matrix Ω̃p from (62), noise
covariance matrix R

W̃p
, threshold

ϵ and maximum iteration Nmax.
Initialization: λ̂i

(0)
= 1,∀ 0 ≤ i ≤MτGν − 1, Λ̂

(0)
=

IMτGν , Λ̂
(−1)

= 0, set j = 0

Output: ĤSBS PA-BL = M(j).

1 while ∥Λ̂
(j)
− Λ̂

(j−1)
∥2F > ϵ and j < Nmax

2 j ← j + 1
3 E-step:
4 Compute the aposteriori covariance and mean

Σ(j) = [Ω̃
H

p R−1

W̃p
Ω̃p + (INt

⊗ (Λ(j−1))−1)]−1,

M(j) = Σ(j)Ω̃
H

p R−1

W̃p
ỸDD,p

M-step:
5 Compute the hyperparameter estimates
6 for i← 0 to MτNν − 1 do
7

λ̂
(j)
i =

1

NrNt

Nr∑
r=1

Nt∑
t=1

|M(j)[(t− 1)Nt + i, r − 1]|2

+
1

Nt

Nt∑
t=1

Σ(j)[(t− 1)Nt + i, (t− 1)Nt + i]
8

.

B. Data aided joint CSI estimation and data detection for AP-
SIP MIMO OTFS systems

Commencing with the output YDD,d
r in (51) and decoupling

the data from the superimposed pilots, followed by substituting
for HDD

r,t and vectorizing, the resulting expression is

yDD,d
r

=

Nt∑
t=1

vec

(
Mτ−1∑
i=0

Gν−1∑
J=0

Prxhi,j,r,t(Π̄)i(∆̄i)
jPtxX

d
t

)
+wDD,d

r ,

(65)

where yDD,d
r = vec(YDD

r .D) ∈ CMK1×1 , wDD,d
r =

vec(WDD
r .D) ∈ CMK1×1. Further simplification of (65)

yields

yDD,d
r =

Nt−1∑
t=0

Mτ−1∑
i=0

Gν−1∑
J=0

wd
i,j,thi,j,r,t +wDD,d

r , (66)

where wd
i,j,t = (IK1 ⊗PrxΠ̄

i
∆̄jPtx)x

d
t ∈ CMK1×1. The

above relationship can be expressed in the compact form of

yDD,d
r =

Nt−1∑
t=0

Ωd
thr +wDD,d

r , (67)

Algorithm 4: DA-BL-based row-group sparse CSI
estimation in MIMO OTFS systems

Input: Decoupled joint output matrix Ỹ from (71),
joint dictionary matrix Φ̃ from (70), joint noise
covariance matrix Rv = blkdiag(Rw,d,Rw,p),
threshold ϵ, Nmax.

Initialization: Λ̂(0) = Λ̂
(j)

PA-BL, Λ̂
(−1)

= 0, j = 0,

Ω̃
(−1)

d = Ω̂
PA-BL
d , Φ̃(−1) =

[
Ω̃

(−1)

d

Ω̃p

]

Output: ĤDA-BL = M(j) and X̂DA-BL = X̂
(j)
d .

1 while ∥Λ̂
(j)
− Λ̂

(j−1)
∥2F > ϵ and j < Nmax do

2 j ← j + 1
3 E-step:
4 Compute the aposteriori covariance and mean
5

Σ(j) = [Φ̃
H
R−1

ṽ Φ̃+ (INt
⊗ (Λ(j−1))−1)]−1,

M(j) = Σ(j)Φ̃
H
R−1

ṽ Ỹ.

M-step1:
6 Compute the hyperparameter estimates
7 for i← 0 to MτNν − 1 do
8

λ̂
(j)
i =

1

NrNt

Nr∑
r=1

Nt∑
t=1

|M(j)[(t− 1)Nt + i, r − 1]|2

+
1

Nt

Nt∑
t=1

Σ(j)[(t− 1)Nt + i, (t− 1)Nt + i]
9

.
10 M-step2: Update estimate of data matrix X̂

(j)
d by

using the LMMSE estimate of (73)

where the dictionary matrix Ωd
t ∈ CMK1×MτNν

corresponding to the tth TA is given by Ωd
t =

[wd
0,0,t . . .w

d
0,Gν−1,t . . .w

d
Mτ−1,0,t . . .w

d
Mτ−1,Gν−1,t]. The

channel coefficient vector hr,t ∈ CMτGν×1 for a particular
RA and TA pair (r, t) is given by (60). The above expression
can be further simplified as

yDD,d
r = Ω̃d.hr +wDD,d

r , (68)

where yDD,d
r represents the observation vector for the de-

coupled data at the rth RA corresponding to all the TAs.
Furthermore, the dictionary matrix Ω̃d ∈ CMK1×MτGνNt

is given as Ω̃d = [Ωd
1,Ω

d
2, . . . ,Ω

d
Nt

], and hr for a partic-
ular value of r is given by hr = [hT

r,1,h
T
r,2, . . . ,h

T
r,Nt]

T .
Upon Concatenating the output vectors yDD,d

r corresponding
to all the RAs, the resulting observation matrix ỸDD,d =

[yDD,d
1 ,yDD,d

2 , . . . ,yDD,d
Nr

] ∈ CMK1×Nr can be formulated out
as

ỸDD,d = Ω̃dH̃+ W̃d, (69)

where WDD,d = [wDD,d
1 ,wDD,d

2 , . . . ,wDD,d
Nr ]. When aiming for

data-aided AP-SIP-based MIMO OTFS CSI estimation, one
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can stack the outputs from (69) and (62) to obtain the joint
CSI estimation and detection model of[

ỸDD,d

ỸDD,p

]
︸ ︷︷ ︸

Ỹ∈CMN×Nr

=

[
Ω̃d

Ω̃p

]
︸ ︷︷ ︸

Φ̃∈CMN×MτGνNt

H̃+

[
W̃d

W̃p

]
︸ ︷︷ ︸

Ṽ∈CMN×Nr

. (70)

Thus, our compact model of data-aided (DA) CSI estimation
is given by

Ỹ = Φ̃H̃+ Ṽ. (71)

As for the DA-BL framework, the parameterized Gaussian
prior given by f(hr,t;Λ) is assigned to the sparse chan-
nel vector hr,t, similar to the PA-BL framework. The up-
date X̂

(j)
d for the data matrix is determined as X̂

(j)
d =

argmaxXd
E
{
log[p(ỸDD,d | H̃;Xd)]

}
, which can be further

formulated as

X̂
(j)
d =argmin

Xd

E
{
||ỸDD,d − Ω̃dH̃||2F

}
≡ argmin

Xd

E
{
||YDD,d − H̃Xd||2F

}
. (72)

Let Ĥ(j) denote the CSI estimate for the jth iteration given
as Ĥ(j) = M(j). Then the simplified LMMSE-based data
detection rule is formulated as

X̂
(j)
d = (Ĥ(j))H

[
Ĥ(j)(Ĥ(j))H +Ξ(j) +

σ2

σ2
d

(
PrxP

H
rx

)]−1

ỸDD,d,

(73)

where the (p, q)th element of the matrix Ξ is given as

Ξ(j)(p, q) = Tr
[
Σ

(j)
h (p̃−MNr + 1 : p̃, q̃ −MNt + 1 : q̃)

]
.

(74)
The quantity Σ

(j)
h = (INrNt

⊗ ζ)(INr
⊗ Σ(j))(INrNt

⊗
ζH) is the covariance matrix of vec(H̃DD), Σ(j) is the
covariance matrix obtained from the E-step of Algorithm
4 and ζ ∈ CM2×MτGν is defined by (82), where φj

i =

vec
[
Prx(Π̄)i(∆̄i)

jPtx
]
∈ CM2×1, p̃ = pMNr and q̃ =

qMNt, as derived in Appendix B.

C. Computational complexity and comparative efficiency
analysis

The computational complexities of the PA-BL and DA-
BL techniques for the SISO OTFS system are of the order
O(M3

τG
3
ν), which arise due to the matrix inversion of size-

MτGν × MτGν . Similarly, for the MIMO OTFS system,
the computational complexities of both the proposed schemes
can be shown to be of the order O(M3

τG
3
νN

3
t ) due to the

matrix inversion of size-MτNνNt×MτNνNt necessitated by
each of them. On the other hand, the worst-case complexities
of the OMP [17] scheme for a SISO OTFS system, and
its counterpart, the RG-OMP [18] algorithm for a MIMO
OTFS system, are of the order O(M3K3

2 ), which is owing
to the intermediate LS estimate computation required in each
iteration. The efficiency of the proposed framework can be
expressed as Se = 1 − ρ, where ρ is the overhead in each
frame. It is worth noting that the proposed CSI estimation
framework transmits MK2 pilot symbols in a SISO OTFS

frame comprising MN symbols, and MK2Nt pilot symbols
in a MIMO OTFS frame comprising MNNt symbols. Thus,
the overhead is ρAP−SIP = K2

N and the respective efficiency
is SAP−SIP

e = 1− K2

N = K1

N for both SISO as well as MIMO
OTFS systems.

On the other hand, the efficiencies for the conventional
embedded pilot (EP)-based technique for SISO and MIMO
scenarios are given by SEP−SISO

e and SEP−MIMO
e , respec-

tively, which can be determined as shown in Table-II for
integer-Doppler based systems. The efficiencies are even lower
for a fractional-Doppler system. The efficiency values obtained
upon substituting the parameters from System 1, 2, and 3
are given in Table II, from which it can be readily observed
that the proposed sparse CSI estimation framework has a
significantly higher efficiency.

VI. BCRB FOR THE DD-DOMAIN CSI ESTIMATOR OF
SISO, MIMO OTFS SYSTEMS

For the SISO OTFS system in (30), the Fisher informa-
tion matrices corresponding to the observation model and
the channel prior are given by Jy and Jh, respectively.
Using the theory in [34], these can be formulated as Jy =

−Ey,h{∂
2 log[f(y|h)]
∂h∂hH }, Jh = −Eh{∂

2 log[f(h;Λ)]
∂h∂hH }. Thus, fol-

lowing some simplification, the overall Fisher information
matrix JSISO is given as

JSISO = Jy + Jh = Φ̄HR−1
v Φ̄+Λ−1, (75)

where Λ is the true hyperparameter matrix. The BCRB for the
error covariance matrix of h now follows as J−1. Furthermore,
the BCRB for the MSE of the estimate of the DD-domain
channel vector hDD = ζh obeys [34]

MSE ≥ Tr{ζJ−1
SISOζ

H}, (76)

where ζ in the above expression is given by (82) in Appendix
B.
For the MIMO OTFS system model in (71), the net Fisher
information matrix JMIMO corresponding to the observation
ỹ, where ỹ = vec(Ỹ), and the prior distribution of the
channel coefficient vector h̃, where h̃ = vec(H̃), is given
as JMIMO = Φ̃HR−1

v Φ̃ + Λ−1, where Λ is the underlying
true hyperparameter matrix . Using (84) from Appendix B,
the DD-domain channel satisfies the relationship HDD =
(INrNt ⊗ ζ)H. Therefore, the BCRB for the MSE of its
estimate is given as

MSE ≥ Tr{(INrNt
⊗ζ)(INr

⊗J−1
MIMO)(INrNt

⊗ζ)H}, (77)

where ζ in the above expression is given by (82) in Appendix
B.

VII. SIMULATION RESULTS

This section presents our results to characterize the perfor-
mance of the proposed AP-SIP CSI estimation schemes. We
consider three different systems, including a high-frequency
millimeter wave system (System 1), and two sub-6 GHz band
systems (System 2 and 3) with their detailed parameter values
presented in Table III and IV, including the delay and Doppler
values. The channel in System 3 is generated using the EVA
model [35] considering a maximum speed of 120 Km/Hr.
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TABLE II
COMPARATIVE EFFICIENCY ANALYSIS

System 1 System 2 System 3
SAP−SIP
e = K1

N
0.9688 0.9375 0.9688

SEP−SISO
e = 1− (2Mτ+1)(2Nν+1)

MN
0.7178 0.4355 0.7178

SEP−MIMO
e = 1− (NtMτ+Mτ+Nt)(2Nν+1)

MNNt
0.7842 0.5684 0.8174

h
TABLE III

DESIGN PARAMETERS FOR SYSTEM 1,2 AND 3

Parameters System1 System 2 System 3
Carrier frequency (GHz) 24 4 4
Subcarrier frequency (KHz) 15 7.5 15
# of Doppler-axis symbols M× Delay-axis symbols N 32 × 32 16 × 32 32 × 32
Max. doppler spread Mτ× Max. delay spread Nν 8 × 8 8 × 8 8 × 8
Precoder matrix for Data M ×K1 32× 31 16× 15 32× 31
Precoder matrix for Pilot M ×K2 32× 1 16× 1 32× 1
# of Dominant reflectors Lp 5 5 9
Modulation scheme 4-PSK 4-PSK 16,64-QAM
Pulse-shape Rectangular Rectangular Rectangular

TABLE IV
DD-PROFILE FOR SYSTEM 1 DD-PROFILE FOR SYSTEM 2

Path-Index(i) 1 2 3 4 5
Delay τi(µsec) 2.08 4.16 6.24 8.32 10.41
Doppler νi(Hz) 0 470 940 1880 2820
Speed (Km/Hr) 0 21.1 42.2 84.4 126.6

Path-Index(i) 1 2 3 4 5
Delay τi(µsec) 4.16 8.33 12.49 16.66 20.83
Doppler νi(Hz) 0 470 940 1410 1880
Speed (Km/Hr) 0 126.9 253.6 380.4 507.2

A. NMSE performance analysis

Figures 3(a), 3(b), show the NMSE performance of the
proposed DA-BL, PA-BL and other competing schemes, such
as OMP [36], FOCUSS [37] for AP-SIP-based SISO OTFS
system with settings corresponding to System 1 and 2, re-
spectively. The normalized MSE (NMSE) is defined as

NMSE = ||ĥDD − hDD||
2
/||hDD||2, (78)

where ĥDD = vec(ĤDD). Since ĤDD depends on the estimated
delay and Doppler parameters, as seen from (81), errors in the
estimation of these parameters impact the NMSE defined in
(78). The figure shows that the BL principle-based PA-BL
and DA-BL yield significantly better estimation performance
than competing estimation schemes such as OMP, FOCUSS,
and MMSE in the SISO OTFS system. The OMP method’s
subpar performance can be traced back to its dependence
on the stopping parameter. On the other hand, convergence
issues and sensitivity to the regularisation parameter hinder
the performance of FOCUSS [37]. Since conventional-MMSE
does not leverage DD-domain CSI sparsity, it has the worst
NMSE performance. Clearly, the performance of the non-
Bayesian sparse estimation schemes OMP, FOCUSS is not as
robust as that of the BL approaches, owing to the deficiencies
described earlier. The proposed DA-BL is seen to yield the
best performance among all the competing sparse estimation
schemes. This is due to its ability to leverage the data estimates
obtained via the modified LMMSE rule as described in (44)
in addition to the limited pilot overhead. Furthermore, its
performance is also close to the BCRB at high SNRs. This
is remarkable since the DA-BL achieves this without prior

knowledge of the channel’s covariance matrix which would
be initially important for the conventional LMMSE estimator.
Moreover, knowledge of the support of the sparse channel
is not required either. This demonstrates that the DA-BL
is ideally suited for the practical implementation of OTFS
systems, where typically no prior information is available.

As observed from the Fig. 3(c), 3(d) that the PA-BL is seen
to outperform the existing FOCUSS, RG-OMP [18], and MBL
[17], MMSE approaches. It is also interesting to observe that
the PA-BL outperforms the MBL, which can be explained by
the fact that the latter only leverages the simultaneous row
sparsity present in the multiple measurement vector, while the
former exploits the simultaneous row-group sparsity, which
leads to its improved performance. The DA-BL algorithm
proposed for joint CSI estimation and detection leads to a
further improvement as seen for the SISO systems, since it
also harnesses the abundant data symbols in addition to the
limited number of pilot symbols for improved CSI estimation.
Indeed, its performance closely follows the BCRB in the high-
SNR regime.

B. SER performance analysis
Figures 3(e), 3(f) characterize the SER vs. SNR perfor-

mance of the techniques proposed for the SISO OTFS systems,
with setting as per those given for System 1 and 2 respectively,
again the corresponding parameters are given in Table III, IV.
The SER is evaluated for the data symbols that are superim-
posed onto the pilots by employing the CSI obtained from each
of the estimation techniques described previously. The SER
performance is also benchmarked against the performance of
that of a hypothetical receiver having perfect CSI. Clearly,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. NMSE/ SER vs. SNR performance for AP-SIP OTFS modulation (a) NMSE vs. SNR for SISO System 1 (b) NMSE vs. SNR for SISO System 2 (c)
NMSE vs. SNR for MIMO System 1 (d) NMSE vs. SNR for MIMO System 2 (e) SER vs. SNR for SISO System 1 (f) SER vs. SNR for SISO System 2
(g) SER vs. SNR for MIMO System 1 (h) SER vs. SNR for MIMO System 2

the SER corresponding to the BL-based schemes such as PA-
BL, DA-BL is better than that of the non-BL schemes, i.e.,
OMP and FOCUSS owing to having better CSI estimates,
which is in agreement with the NMSE plots Fig. 3(a), 3(b).
Moreover, the DA-BL technique is once again seen to yield
the best performance, with its SER closely following that of
the benchmark detector having perfect CSI. This demonstrates
the efficacy of the proposed DA-BL procedure conceived
for obtaining the CSI estimates that have a high degree of
accuracy.

Observe in Fig. 3(g), 3(h) that the MIMO OTFS System
1 and System 2, respectively, exhibit a trend similar to their
SISO OTFS counterparts for Nr = 2, Nt = 2. In line with our
previous discussions, it is amply evident that the SER obtained
by the BL-based schemes such as MBL, PA-BL, and DA-BL is
superior to that of the non-BL schemes such as RG-OMP and
FOCUSS. This may be credited to the improved CSI estimates
of the former schemes. Furthermore, it is evident that the DA-
BL technique provides the best performance, with its SER
closely tracking that of the benchmark detector having perfect
CSI.

C. NMSE and SER performance for fractional Doppler

Figures 4(a)-4(f) present the NMSE and SER performance
of the various algorithms for AP-SIP SISO and MIMO OTFS
systems with specifications as per System 3, which incorpo-
rates fractional Doppler, where the channel is generated using
the EVA model. It is clear that the DA-BL estimator yields
an improved performance in comparison to other estimation
schemes. The performance can be further enhanced by increas-

ing the number of Doppler bins Gν , which improves the grid
resolution. Furthermore, it can be observed from Fig. 4(a),
4(b), that as the speed is increased from 120 Km/Hr to 240
k/Hr, the performance degradation of the proposed algorithms
is only minimal. This is owing to the robustness of OTFS
modulation to high Doppler shift arising due to mobility.

D. Other NMSE trends

Figure 5(a) plots the NMSE vs pilot duration K2 for the
proposed sparse CSI estimation schemes used by the SISO
OTFS system having the parameters of M = 64, N = 8,
Mτ = 8, Nν = 8, SNR = 10dB. The figure demonstrates
that the NMSE decreases as the pilot training duration, i.e., K2

increases, which is along the expected lines. Once again, the
DA-BL scheme outperforms the other schemes, which shows
the value of exploiting data symbols. Interestingly, even for a
very low value of K2, viz., K2 = 1 the DA-BL achieves a
remarkably accurate CSI estimate, which shows the benefit of
data symbols for reducing the pilot overhead.

Figure 5(b) compares the performance of the schemes, when
the number of subcarriers M is increased from 16 to 64, and
N = 16, with the rest of the parameters unchanged. As the
number of subcarriers grows, so does the number of pilot
symbols, hence enhancing estimation performance. The figure
shows the same trend as seen in the previous figures, with the
DA-BL having the best performance, followed closely by the
PA-BL that only exploits the pilot symbols.

Figures 5(c), shows the NMSE vs number of iterations for
the PA-BL and DA-BL schemes for SISO and MIMO OTFS
systems, respectively, with parameters as per System 1. It can
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(a) (b) (c)

(d) (e) (f)

Fig. 4. NMSE/ SER vs. SNR perfromance for AP-SIP OTFS modulation, with parameters as per System 3 (a) NMSE vs. SNR for SISO OTFS, 16-QAM,
(b) NMSE vs. SNR for SISO OTFS, 64-QAM, (c) SER vs. SNR for SISO OTFS, (d) NMSE vs. SNR for MIMO OTFS, Nt = Nr = 4, 16-QAM, (e) NMSE
vs. SNR for MIMO OTFS, Nt = Nr = 4, 64-QAM, (f) SER vs. SNR for MIMO OTFS, Nt = Nr = 4

be observed that the DA-BL and PA-BL converge at the same
rate, due to the fact both are Bayesian learning approaches
for CSI estimation. However, the NMSE of the former is
considerably lower in comparison to the latter owing to the
better CSI estimate that arises from additionally exploiting the
data symbols. In summary, the capability of jointly exploiting
the unknown data symbols and the sparsity of the channel,
without prior knowledge of the number of dominant reflectors
or channel statistics, renders the proposed DA-BL scheme
ideal for implementation in practical SISO- and MIMO-aided
OTFS systems.

VIII. SUMMARY AND CONCLUSIONS

This paper presented an AP-SIP framework for CSI estima-
tion in CP-aided SISO and MIMO OTFS systems relying on
arbitrary Tx-Rx pulse shapes. A key feature of the proposed
schemes is that they successfully exploited the DD domain
sparsity for improving the accuracy of CSI estimation in
comparison to the existing schemes. First, the end-to-end DD-
domain model was derived for the decoupled pilot and data
symbols, followed by the PA-BL scheme designed for iterative
DD-domain sparse CSI estimation. This further evolved to the
development of the DA-BL for joint CSI estimation and data

detection, which exploits the data symbols for CSI estimation,
together with a modified LMMSE rule harnessed for data
detection. The AP-SIP framework was subsequently extended
to MIMO OTFS systems and a novel technique was developed
for affine precoding the DD-domain input matrix that allowed
us to decouple the data and pilot responses at the receiver.
This was then leveraged to develop the EM algorithm-based
PA-BL technique for sparse CSI estimation, which exploits
the simultaneous row-group sparsity of the channel using
exclusively pilot symbols, and also the DA-BL, which carries
out joint MIMO CSI estimation and data detection. Our
simulation results demonstrated the improved performance of
the proposed CSI estimation strategies in various settings. A
performance similar to that of various benchmarks such as the
NMSE of the BCRB and the SER performance of ideal OTFS
receivers having perfect CSI was attained.

APPENDIX A
MMSE DETECTOR

For data-aided joint AP-SIP SISO OTFS systems, the
MMSE detector of Xd for the jth iteration is formulated as
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(a) (b) (c)

Fig. 5. (a) NMSE vs. Pilot training duration (K2) for the AP-SIP SISO OTFS system, M = 64, N = 8, (b) NMSE vs. SNR for AP-SIP SISO OTFS system,
M ∈ {16, 64}, N = 16 (c) NMSE vs. Number of iterations, SNR = 10dB (System 1)

X̂
(j)
d = RXY R

−1
Y Y YDD,d, where

RXY = E[XdY
H
DD,d] = E[XdX

H
d ĤH

DD +XdW
H
DD,d]

= E[XdX
H
d ]E[Ĥ(j)H

DD ] = σ2
d(Ĥ

(j)H
DD ),

RY Y = E[YDD,dY
H
DD,d]

= E[(ĤDDE(XdX
H
d )ĤH

DD] + E[WDD,dW
H
DD,d]

= σ2
dE[ĤDDĤ

H
DD] + σ2(PrxP

H
rx )

= σ2
d(Ĥ

(j)
DDĤ

(j)H
DD +Ξ(j)) + σ2[(PrxP

H
rx )], (79)

where the data symbols Xd, noise WDD,d and the CSI estimate
ĤDD are independent of each other. Therefore, the MMSE
detector for the input Xd is given by

X̂
(j)
d = Ĥ

(j)H
DD

[
Ĥ

(j)
DDĤ

(j)H
DD +Ξ(j) +

σ2

σ2
d

(
PrxP

H
rx

)]−1

YDD,d.

(80)

For a rectangular pulse Prx = Ptx = IM . The above
expression can be simplified as

X̂
(j)
d = Ĥ

(j)H
DD

[
Ĥ

(j)
DDĤ

(j)H
DD +Ξ(j) +

σ2

σ2
d

IM

]−1

YDD,d.

APPENDIX B
CALCULATION OF Ξ FOR AN AP-SIP OTFS SYSTEMS

Consider SISO OTFS system, the quantity E{HH
DDHDD}

can be expressed as E{HH
DDHDD} = ĤH

DDĤDD+Ξ, where the
matrix Ξ is calculated as follows. Let hDD ∈ CM2×1 denote
the vectorized equivalent channel defined as hDD = vec(HDD),
which can be further simplified as

hDD = vec

[
Mτ−1∑
i=0

Gν−1∑
J=0

Prxhi,j(Π̄)i(∆̄i)
jPtx

]

=

[
Mτ−1∑
i=0

Gν−1∑
J=0

hi,jφ
j
i

]
, (81)

where φj
i = vec

[
Prx(Π̄)i(∆̄i)

jPtx
]
∈ CM2×1. The above

equation can be recast as hDD = ζh, where ζ ∈ CM2×MτGν

and is given by

ζ =
[
φ0
0, . . . , φ

Nν−1
0 , . . . , φ0

Mτ−1, . . . , φ
Gν−1
Mτ−1

]
, (82)

where h is the sparse channel coefficient vector given by
(21). Let the estimate hDD be denoted by ĥDD = vec(ĤDD),
and the estimate of h by ĥ. It is readily seen that ĥDD = ζĥ.
The associated error covariance matrix Σh ∈ CM2×M2

can
be formulated as Σh = ζΣζH , where Σ ∈ CMτGν×MτGν

is the error covariance matrix of ĥ. Furthermore, it can be
shown that for matrix Ξ, element at (p,q) is given by

Ξ(p, q) = Tr

[
Σh(p̃−M + 1 : p̃, q̃ −M + 1 : q̃)

]
.

Consider MIMO OTFS system, the quantity E{H̃HH̃} can
be expressed as E{H̃HH̃} = ĤHĤ+Ξ, where the matrix Ξ is
calculated as follows. Let hDD

r,t ∈ CM2×1 denote the vectorized
equivalent channel corresponding to the rth RA and tth TA,
which is defined as

hDD
r,t = vec(HDD

r,t ) = vec

[
Mτ−1∑
i=0

Gν−1∑
J=0

hi,j,r,tPrx(Π̄)i(∆̄i)
jPtx

]

=

[
Mτ−1∑
i=0

Gν−1∑
J=0

hi,j,r,tφ
j
i

]
, (83)

where φj
i = vec

[
Prx(Π̄)i(∆̄i)

jPtx
]
∈ CM2×1. The above

equation can be expressed as hDD
r,t = ζhr,t, where ζ ∈

CM2×MτGν is given by (82) and hr,t is the sparse channel
coefficient vector given by (60). Vectorizing H̃DD, one obtains
h̃DD = vec(H̃DD) = [(vec(HDD

1,1))
T . . . (vec(HDD

Nr,Nt
))T ]T =[

(ζh1,1)
T , (ζh1,2)

T . . . (ζhNr,Nt
)T
]T

, which can be further
simplified as

h̃DD = (INrNt
⊗ ζ)

[
(h1,1)

T , (h1,2)
T . . . (hNr,Nt

)T
]T

= (INrNt
⊗ ζ)h̃ (84)
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The estimate of h̃DD, denoted by ĥDD, is given as ĥDD =
vec(ĤDD). Let the estimate of h̃ be ĥ. The relationship
between ĥDD and ĥ is given by ĥDD = (INrNt

⊗ζ)ĥ with the
associated error covariance matrix Σh ∈ CM2NrNt×M2NrNt

determined as Σh = (INrNt
⊗ ζ)(INr

⊗ Σ)(INrNt
⊗ ζ)H ,

where Σ ∈ CMτGνNt×MτGνNt is the error covariance
matrix obtained from the E-step of Algorithm-4. It can
be shown that for matrix Ξ, element at (p,q) is given
as Ξ(p, q) = Tr [Σh(p̃−MNr + 1 : p̃, q̃ −MNt + 1 : q̃)] ,
where p̃ = pMNr, and q̃ = qMNt.
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