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Abstract—In this work, the coupling of novel open-
source tools for simulating two-phase incompressible
flow problems with fluid-structure interaction and
mooring dynamics is presented. The open-source
Computational Fluid Dynamics (CFD) toolkit Proteus
is used for the simulations. Proteus solves the two-
phase Navier-Stokes equations using the Finite Ele-
ment Method (FEM) and is fully coupled with an
Arbitrary Lagrangian-Eulerian (ALE) formulation
for mesh motion allowing solid body motion within
the fluid domain. The multi-body dynamics solver,
Chrono, is used for calculating rigid body motion
and modelling dynamics of complex mooring systems.
At each time step, Proteus computes the forces from
the fluid acting on the rigid body necessary to find
its displacement with Chrono which will be used
as boundary conditions for mesh motion. Several
verification and validation cases are presented here
in order to prove the successful coupling between the
two toolkits aforementioned. These test cases include
wave sloshing in a tank, floating body dynamics under
free and wave-induced motion for different degrees of
freedom (DOFs), and mooring dynamics using beam
element theory coupled with rigid body dynamics
and collision detection. The successful validation of
each component shows the potential of the coupled
methodology to be used for assisting the design of
offshore renewable energy devices.

Index Terms—Computational Fluid Dynamics, Fi-
nite Element, Fluid-Structure Interaction, Offshore
Renewable Energy, Mooring Dynamics

I. INTRODUCTION

Being able to understand and predict the be-
haviour of offshore floating structures under typical
or extreme environmental loads is an important
factor for assessing their viability. This becomes

particularly critical for offshore renewable energy
where devices are purposely placed in highly ener-
getic sites in order to capture a relatively abundant
resource. Some of these floating devices aim to
limit the response to wave loads such as floating
wind turbines, while others are tuned to have a high
response with the most energetic waves such as wave
energy converters. The numerical tools used for
simulating such events must be thoroughly verified
and validated through established benchmarks, con-
ceptual problems and comparison to experimental
data from well monitored physical experiments.

Numerical modelling is rapidly and increasingly
becoming cost and time efficient, and recent ad-
vancements in this domain have made it more reli-
able. These scientific efforts have led the world of
Computational Fluid Dynamics (CFD) that tradition-
ally preferred the Finite Volume Method (FVM) to
look at the more flexible but more computationally
expensive Finite Element Method (FEM).

Proteus, an open-source computational methods
and simulation toolkit developed by the Engineer
Research and Development Center (ERDC) of the
U.S. Army Corps of Engineers (USACE) and HR
Wallingford, is used in the work presented here for
solving Navier-Stokes equations, tracking the free
surface of two-phase flows, and moving the mesh.
The source code of Proteus is available to all at:
https://github.com/erdc-cm/proteus.

Using input forces and moments from the CFD
solver, floating body and mooring dynamics are
solved with the open source library Project Chrono.
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This library allows a fully coupled simulation of
rigid and flexible bodies with FEM cable dynamics,
where collision detection of the cables with struc-
tures is enabled by creating node clouds along the
cable. The source code of Chrono is available at:
https://github.com/projectchrono/chrono

The focus of the research presented here is the
simulation of wave-structure interaction coupled
with floating rigid body and mooring dynamics using
novel open-source tools. First, the capabilities of the
CFD solver alone for simulating two-phase flows are
presented with a conceptual model of wave sloshing
motion in a fixed tank. Then, numerical results for
floating bodies are validated against experimental
data for different degrees of freedom (DOF). This
includes free oscillation and decay of surface-
piercing bodies released from a position away from
equilibrium, and wave-induced oscillation under
wave loads of various frequencies. Finally, mooring
quasi-statics and mooring dynamics coupled with
rigid body motion will be presented.

II. GOVERNING EQUATIONS
A. Fluid Domain

In the context of the simulations presented in
following sections, the fluid domain €2 ¢ is composed
of two phases: the water phase (£2,,) and the air
phase (€2;), so that 2y = Q,, U{},. Solution within
Q; is computed with Proteus in the following steps.

1) Navier-Stokes: The fluid velocity field is
obtained through the Navier-Stokes equation for
incompressible fluid (see eq. (1)).

pu+pu-Vu—V-a=pg 0
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with the density of the fluid p, the fluid velocity
vector u, the gravity acceleration vector g, and
the Cauchy-Schwarz tensor & = —pI + pAu with
pressure p and dynamic viscosity .

Dividing by the density, the first term of eq. (1)
is often written as:

u+u-Vu—-V- (V(Vu—i—Vut)) zg—%Vp
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With kinematic viscosity v = £
The time integration used for the cases presented
here is backward Euler due to its robustness and
lower computational cost when compared to higher
order methods. The Courant-Friedrichs-Lewy (CFL)
condition is used to limit the size of the time step
(eq. (3)). At

u

CFL = AL
where At is the time step and Az is the character-
istic element length. The CFL value is calculated

3)

for each cell, and is limited against a predefined
value throughout the numerical domain.

2) Free Surface Tracking: The free surface is de-
scribed implicitly using the Volume-of-Fluid (VOF)
[5] method coupled with the Level Set (LS) method
[12]. The LS method uses a signed distance function
as shown in eq. (4), giving the distance of any point
in space ¢ from the free surface.
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The VOF method returns O for all points in the
water phase, 1 for all points in the air phase, and
values between 0 and 1 in a transition zone around
the free surface using a smoothed heaviside function

(see eq. (5)).
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Where € is a user defined smoothing distance (equal
to 3 characteristic element length throughout this
paper), and 6. the value of the heaviside function.

The LS model is used to correct the VOF model,
more details about this implementation are available
in [11].

3) Turbulence: In Proteus, the Navier-Stokes
equation are discretised in space using Residual-
Based Variational Multiscale (RBVMS) method, as
originally proposed in [2] and there are 2 turbulence
models available: k-¢ and k-w.

B. Body Dynamics

As mentioned previously, Project Chrono — an
open-source multi-body dynamics simulation engine
— is used for the simulation of floating bodies
presented in this work. It allows the simulation of
rigid and flexible bodies, imposition of constraints
(joints, springs, etc.), and collision detection, as well
as finite element modelling of beams and cables
(more details about the latter in section IV-C).

To define a rigid body, the necessary variables
are its mass m, inertia tensor I, (2x2in2D,3x3
in 3D), and the original position of its barycentre r".
In addition, the geometrical description of the outer
shell of the body must be provided using vertices,
segments, and facets, as the mesh on the exterior
surface of the body conforms to the fluid mesh,
while the interior of the body (£2) is not mesh as
the structures investigated in this work are assumed
fully rigid.

The hydrodynamic forces over the fluid/solid
interface, 0Qsn, = 00 N 0, is computed
by retrieving the tensor of the fluid stresses &


https://github.com/projectchrono/chrono

from the solution of the Navier-Stokes equations.

Subsequently, stresses are integrated over the body
boundaries to provide forces Fy and moments M ¢
as described in egs. (6-7).

Fj = / &ndl’ ()
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My = / (x —r) x (en)dl’ @)
0

with n normal vector to the boundary, x a point on
the boundary, r the position of the barycentre, and
I" the boundary (segment if 2D, surface if 3D).
The total forces and moments are then used to
calculate the new acceleration, velocity, and position
of the body for a given time step (see egs. (8-9)).

F, = mi @®)
M; = Lo )

with m the mass, I, the inertia tensor and w the
angular acceleration of the body.

The time integration chosen for solving body
dynamics in the simulations presented here is
implicit Euler for systems of second order using

the Anitescu/Stewart/Trinkle single-iteration method.

Other integration methods are available in Chrono,

and this one was chosen for its robustness and speed.

Because a time step within Chrono takes much less
computational time than a time step of Proteus, the
rigid body solver uses several substeps with the CFD
solver time step, allowing a more refined solution
for body dynamics.

C. Mesh Motion

In Proteus, the mesh is moved using the Arbitrary
Lagrangian-Eulerian (ALE) method also known as
the Mixed Interface-Tracking/Interface-Capturing
Technique (MICTICT) [16].

The mesh motion is solved through the equations
of linear elastostatics, which take the form of
eq. (10) for the equilibrium equation.

FHuvViu+ A+ )V (V-u)=0  (10)

where A and p are the Lamé parameters, as shown
in eq. (11).
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For the simulations presented in this work, the

nominal mesh Young’s modulus is £ = 1 and
Poisson ratio is v = 0.3.
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Fig. 1: Snapshots of mesh deformation around
moving body for different positions (top left shows
the mesh as it was initially generated).

The mesh is constrained, in our case, at the
borders of the domain (walls and solid boundaries)
and is updated at each time step by using the
displacement of the nodes at the boundary of the
rigid bodies. The mesh then deforms in the fluid
domain following eq. (10).

The mesh motion is taken into account directly
in the Navier-Stokes equations that are solved in
the Eulerian frame. This is achieved by solving the
equation in a transformed space, where the mesh
motion effect is introduced as an additional transport
term in the conservation equations [1].

The displacement of the nodes placed on a mov-
ing body are used as dirichlet boundary conditions
for the moving mesh model, and are obtained
through eq. (13).

Ax" = (x" — xg)«R"Hf(x"fxg)+h”+1 (13)

with x the coordinates of a point in space, x, the
coordinates of the pivotal point (which is the centre
of mass in the case of a single body not experiencing
any collisions),h the translational displacement, and
R™*1 the rotation matrix of the body from its
position at time ¢" to t"*1,

At the tank/domain boundaries (0f2), the mesh
nodes are either fixed ((Ax™) = 0) or are allowed
only a translational motion along the boundary
(Ax™ -n =0).

Figure 1 illustrates a close-up the moving mesh
around a moving body.

Additional details about the mesh motion are
provided in [1].

III. VERIFICATION AND VALIDATION

The verification and validation cases presented in
this section aim to show the capability of Proteus to
simulate two-phase flow problems, the convergence
of the solution with spatial and temporal refinement,
as well as its coupling with Chrono and the use of
the ALE mesh module.



A. Sine Wave Sloshing

This verification test case looks at spatial and
temporal convergence of the solution of a conceptual
two-phase flow problem in the absence of any
moving obstacle, meaning that the mesh motion
module is not activated.

The sloshing motion of a body of water is studied
in a fixed tank given initial conditions for the free
surface. This type of test case is common practice
for verifying that the coupling of the equations of
two-phase flow CFD solvers work adequately, and
to quantify their accuracy and convergence order.
The conditions used are the same as in [14] (based
on [17]), with a 2D tank of dimensions 0.1 x 0.1m,
water depth d = 0.05m, and amplitude of the
sinusoidal profile of the free surface of a = 0.05m.
The initial conditions are derived using the third
order solution as provided by [15] for a sloshing
wave of the first mode in a fixed tank. This analytical
solution is also used as a comparison to the time-
varying numerical results. Boundary conditions are
free-slip on the tank bottom and side walls and
atmospheric conditions at the top boundary. In
this conceptual model, the fluid viscosity is turned
off (v = 0). For all test cases, the mesh used is
unstructured with triangular elements that are of the
same size all across the domain.

The error € between the numerical results and
theoretical curve is estimated using Pearson product-
moment correlation coefficient (PPMCC or Pear-
son’s 1) over the first 5 periods of the sloshing
oscillation.

On fig. 2, the error of the pressure obtained
numerically at the left boundary placed halfway
in the water column is plotted for different time
stepping. The order of convergence can be found
by fitting a linear curve to the error data on
a logarithmic scale. It clearly appears that the
solution converges with, in this case, a convergence
order of 0.8 for time convergence with a fixed
mesh refinement with characteristic element size
of he = {. Varying the spatial refinement also has
an effect, but tests shows that it becomes minimal
when compared to reducing the time step after a
sufficiently refined mesh value (here he = ). The
variation of the CFL value instead of using fixed
time step also gives an order of convergence of 0.8,
but the solution gets away from the asymptotic range
for a CFL value superior to 0.5. For this reason, the
simulations presented in the next sections of this
paper use CFL < 0.5.

B. Floating Body - Free Oscillation

This section presents validation results for floating
bodies with different constraints on their degrees of
freedom.

At (s)

Fig. 2: Error (¢) between numerical results and an-
alytical solution for pressure sloshing wave motion
using PPMCC on the 5 first periods for different
fixed time steps (At).

1) Roll: This experiment is based on the ex-
perimental setup of [10] with a floating caisson
of dimensions 0.3m x 0.1m (lengthxheight) that
is constrained for all DOFs apart from roll, in a
tank of dimensions 35bm X 1.2m. The width of the
caisson and the tank are the same: 0.9m, making it
possible to approximate the experiment numerically
by setting a 2D test case, where a slice of the
experimental setup can be used numerically. The
width of the caisson is only taken into account
when calculating the forces and resulting moments
on the floating body using its moment of inertia
I.. = 0.236kg m?>.

The initial conditions are as follows: initial
angle of 15° for the floating caisson, tank of total
dimensions 5m x 1.8m with absorption zones of
2m at each end of the tank, and fluid at rest with
a water column of 0.9m. For this experiment, no-
slip boundary conditions (dirichlet value of zero for
all velocity components) were imposed on bottom
and side walls (I'y.) of the tank and on all facets
of the caisson. The top boundary (I'yn,) of the
tank used atmospheric conditions, with dirichlet
boundary conditions preventing fluid to travel in a
motion parallel to I'yy, and a VOF value imposed
as the value of air (1 in this case). The simulated
time was as long as the experimental recordings: 5
seconds.

Figure 3 shows the unfiltered results for the
oscillation of the floating body and its damping
compared to the experimental results. While there
is good agreement regarding the natural period,
the damping is underestimated numerically. It is
believed that this significant difference in damping
is not an error of the model, but could be explained
by several factors, such as and mainly by friction
from the structure used to fix the caisson to the tank
in the experimental setup or, to a minimal extent, the
fact that even though the width of the caisson and
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Fig. 3: Time series of roll motion of rectangular
(2D) floating body for h. = £ (with H, the height
of the floating body) and fixed At = 5e¢ — 4 with
initial angle ¢9 = 15°. Experimental results were

digitalised from [10].

the tank are the same, the 2D numerical simulation
is just a slice of a 3D experimental setup (the latter
inevitably letting some fluid travel across the width
of the tank). Furthermore, the turbulence model was
switched off during the simulation, similarly to the
particle-in-cell simulation of the same case from
[3] that gives similar results to Proteus in terms of
damping of the oscillation.

In order to investigate the stability of the mesh
motion integrated in Proteus, the natural period
was also calculated for different starting angles (5°,

10°, 15°) that lead to different mesh deformations.

This resulted in a maximum difference of 0.2%
between the results for the natural period of the
rolling caisson with different initial angle and similar
damping profiles, proving the robustness of the
ALE mesh technique. The small difference could
be explained by nonlinearities developing in the
fluid domain and affecting the motion slightly due
to the difference of volume of water displaced and
velocity/vorticity of the fluid around the floating
body when using different starting angle.

2) Heave: This test is based on the experiment
of [6], where the heave oscillation of a cylinder was
studied with: cylinder length of L = 1.83m and a
diameter of D = 15.24cm (with 1.27cm between
the tank walls and end-plates of the cylinder). The
cylinder is halfway submerged when at rest, and all
DOFs apart from heave are constrained.

For this simulation, the initial conditions are
similar to the previously described test case with
the fluid at rest and no-slip boundary condition and
cylinder is pushed down from its resting position to
a given initial position (—2.54cm from still water
level). The mesh refinement is as follows: constant
mesh refinement up to a distance equal to the
initial push of the cylinder around the mean water
level, and up to a distance of D from the cylinder
boundaries. Gradual coarsening of the mesh is then

0.9 — Proteus
08 +  Experiment (Ito 1977)
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Fig. 4: Time series of heave motion of a circular
(2D) floating body for h, = 5% and fixed At = 5e—
4 with initial push of yg = —2.54cm. Experimental
results were digitalised from [6].

applied from the refined parts with 10% increase in
area of mesh elements.

A time series of the experimental and numer-
ical results is presented in fig. 4, with the time
normalised as t\/g, and the heave displacement
normalised as yi The numerical curve is in good
agreement with the experimental curve, leading to
accurate prediction of the natural period and of
the damping of the oscillation. Even though the
DOF investigated here is different, one could argue
that the good agreement obtained in damping could
mean that there was indeed frictional effects in the
experiment described in the previous section, where
the experimental damping was overestimated.

C. Floating Body - Wave-Induced Oscillation

In this experiment, still based on the experimental
setup [10] with a configuration similar to the one
described in section III-B1, waves are generated in
order to compute the Response Amplitude Operator
(RAO) of the floating body. With A the wavelength
of the wave generated, the tank dimensions are
changed depending on the wave characteristics in
order to match a generation zone of 1\ to limit
wave reflection upstream and an absorption zone of
2 to absorb waves downstream. The two relaxation
zones are separated by a distance of 2\, and the
floating body is placed 1)\ away from the generation
zone (see fig. 5). Initially, the floating body is at
rest position (no initial rotation).

As the waves generated for this example are
weakly nonlinear, their profile is computed using the
Fenton approach with Fourier Transform in order
to get a wave profile close to fully developed. See
table I for the characteristics of the waves generated.
For each test case, the characteristic element size
was no less than A, = ﬁ. The generation and
absorption zones work with a blending function in
a similar manner to [7].
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Fig. 5: Numerical tank setup for a typical floating
body test case under wave loads.

Figure 6 gives results for the response of the body
under different wave frequencies and amplitudes
plotted against the experimental results and linear
theory. Overall, these results are in good agreement
with the experimental results, as explained in more
details below.

For higher frequency waves, where ﬁ > 1,
the results are in good agreement with the linear
potential theory as well as the experimental results.
At ﬁ = 1.15, where the experiment shows a
smaller response than the theory, the divergence
in response between the experiment and the nu-
merical/theoretical results looks particularly large,
possibly due to the steepness of the response
curve at this particular point, meaning that even
a small difference of wave frequency between
the experimental setup and the numerical setup
could lead to a very different response result. At
o = 1.32, 3 tests with same frequency waves
but different wave heights were run, and similar
results were obtained, confirming the experimental
observations that the wave height has a negligible
effect on the caisson response at high frequency.

For waves with frequency identical to the natural
frequency of the caisson (;—n = 1), the magnifi-
cation factor varies greatly with wave height. The
numerical results for different wave heights shown
in fig. 6 at ;= =1 indicate that the magnification
value increases when the wave height decreases,
which is the expected behaviour according to [10].

For lower frequency waves (ﬁ < 1), the numer-
ical results are generally closer to the experimental
results than the linear potential theory. This can
be explained by the fact that nonlinearities have a
significant effect at these frequencies, affecting the
caisson response. The numerical results, however,
seem to slightly underestimate this effect when
compared to the experiment. Possible reasons for
this behaviour include the rather large characteristic
element size (with respect to the floating body
dimensions) for longer wave periods (as h. is scaled
with \) and/or the larger time stepping. It is worth
noting that results from [3] using PICIN (Particle
In Cell - INcompressible) for this case are different
in this frequency range with an overestimation

—— Linear Theory
O  Proteus
+ Experiment (Jung et al., 2006)
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Fig. 6: RAO of rolling caisson under regular wave
loads, with ¢ the roll response, k£ the wavenumber,
and A the wave amplitude

of the nonlinear effects when compared to the
experiment. Further investigation is necessary, with
a finer mesh around the caisson as these low wave
frequencies lead to relatively large wavelengths and
the characteristic element size was scale with the
wavelength throughout the whole domain for these
simulations. Figure 7 shows snapshots of the floating
body oscillation and fluid velocity and direction for
a full wave period in the case of i =0.77.

IV. MOORINGS

Moorings are an important component of floating
offshore renewables that should not be overlooked
as it can significantly influence the response of the
device. This section presents a quasi-statics module
that was developed independently and validation of
mooring cable dynamics using the Project Chrono
library. The quasi-statics model is used for setting
initial conditions to lay out the mooring cables for
the dynamics model.

A. Quasi-Statics

The quasi-statics module developed here supports
multi-segmented sections (line made out of different
materials) and stretching of the cable is taken into

TABLE I: Wave characteristics for computing RAO
of floating body (see fig. 6)

Case T H lambda
1 0.8 0.029 1.006
2 0.85 0.033 1.135
3 093 0.016 1.351
4 093 0.027 1.354
5 093 0.032 1.355
6 093 0.04 1.359
7 1 0.044 1.568
8 1.1 0.057 1.891
9 1.2 0.032 2.224

10 1.2 0.06 2.23
11 1.2 0.067 2.233
12 1.3 0.06 2.581
13 1.4 0.061 2.939
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Fig. 7: Snapshots of Proteus results for roll motion of floating body under wave-induced oscillation with
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Fig. 8: Catenary layout, with zy the horizontal span,
L lifted cable length, d horizontal distance between
anchor and fairlead, h vertical span

account. It is also used for initial conditions in
order to lay out the cable given fairlead and anchor
coordinates, and the length of the cable.

Once the shape of the catenary described with
the parameter a is found (see fig. 8 for a typical
catenary layout of a mooring line), the catenary
equation eq. (14) can be used to find coordinates
of points along the cable.

y = a cosh (f)
a

s = asinh <£>
a

with y the vertical position (direction aligned with
the gravitational acceleration), x the horizontal
position, s the distance along the cable, and a the
characteristic value of the catenary shape.

In the current implementation of the quasi-statics
module, an iterative process is used. In case of a
partly-lifted line, the right value of the horizontal
span xo of the mooring line must be found so that
the lifted line length and the line laying on the
seabed are together equal to the total line length. If
the line is fully lifted (Ls = L), a transcendental
equation in a is solved (see eq. (16)).

v/ Ls?2 — h? = 2asinh i
2a

If elasticity of the line is taken into account, more
iterations are needed to adjust the change in lifted
line length as it stretches.

Quasi-statics analysis can be used to estimate the
order of magnitude of tensions that are experienced
by the floating device. It is a simple and fast
method, but it neglects the dynamic effects of the
cable that can become non-negligible under certain
conditions (e.g. wave frequencies applying large
and varying loads on the device), often leading to
an underestimation of the maximum tensions that
can occur along the cable.

This module can be used for simple and fast
moorings analysis, but also for initial conditions

(14)
15)

(16)

==+ quasi-statics (line 1)
N —— quasi-statics (line 2 and 3)
—e— experiment

N —e— quasi-statics (Harnois 2015) 4
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Fig. 9: validation of quasi-statics module for dif-
ferent surge positions of a WEC moored with 3
catenary lines, with x( the horizontal span, d the
vertical and h the horizontal distance from the
anchor to the fairlead, and T the tension at the
fairlead.

to lay out cables at equilibrium position for a
more complex and demanding dynamic analysis
as described in the following section. Figure 9
shows results of a quasi-statics analysis compared
to experimental results from [4], where a Wave
Energy Converter (WEC) is moored with 3 catenary
lines with 4 different segments each (2 chains and
2 ropes) and is placed at different surge positions.

B. External Forces

The total external force f. due to the fluid
surrounding the cable is:

fe = fd + fam + fb )
With f; the drag force, f,,, the added mass force,
and f;, the buoyancy force.

The buoyancy force is applied as a volumetric
load and calculated as follows, with p. the density
of the cable, and p; the density of the fluid:

f, = (pe — pf) g (18)

The drag force and added mass force use dif-
ferent coefficients for their tangential and normal
components to the cable. The tangential and normal
components of a vector are denoted with ; and ,, in
the following equations, and can be found for any
vector following eqs. (19-20).

x = (x£)
xn:x—(x~f)f

19)
(20)
The drag force is calculated using Morison’s equa-

tion (egs. (21-23)), where the cable is considered a
slender cylindrical structure.
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fd,n = ipfcd,ndn Hur,nH U n (22)
1

fd,t = Epfcd,tda ||u7‘,t|| U, ¢ (23)

with Cy, and Cy; the normal and tangential drag
coefficient, d,, and d, the normal and axial drag
diameters, and u, the relative velocity of the fluid
to the cable element as in eq. (24).

u, =uy—7 24)

The added mass force is calculated with the
acceleration of the fluid with the cable a,, as shown
in eqs. (25-27).

fam = fam,n + fam,t (25)
d2

fam,n = pram,nTrTa’r,n (26)
md?

fam,t = pfca,m,t Tar,t (27)

For each element, the drag and added mass forces
are calculated at the nodes and averaged to be
applied as a distributed load over the length of
the element.

As the mooring cable mesh and the fluid domain
mesh do not conform, the loads can be calculated
from the velocity and acceleration of the fluid at
the nodes of the cable that can be retrieved from
the fluid domain using the solution of the Navier-
Stokes equations calculated from Proteus in each
cell containing a cable node.

C. Dynamic Analysis

For mooring dynamics, the FEM method was
used within Chrono. The cable is discretised in
elements that are described with the Absolute Nodal
Coordinate Formulation (ANCF). The ANCF beam
elements are composed of 2 nodes, each defined
with their position and direction vectors.

The mooring and floating body dynamics are fully
coupled and solved together with Chrono between
each CFD time step by applying the external forces
computed from Proteus. Substeps within a main
CFD step are generally used for stability and better
accuracy of the multi-body dynamics as these are
usually significantly cheaper computationally than
when solving the equations for the fluid domain.
In the current implementation, the external forces
from Proteus computed for each CFD step are kept
constant within the multi-body dynamics substeps.

In the simulations presented here, the material of
the mooring cables is assumed to be transversely
isotropic. Bending stiffness can be changed by
modifying the moment area of inertia, and collision
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Fig. 10: Indicator diagram with axial pretension
Tao = 11.78N, w = 0.79rads~! and a = 0.04z.
Experimental and Orcaflex results from [9].

detection of the cable with obstacles such as the
seabed is activated by producing a nodes cloud.

Due to its relatively slender profile and to allow
unrestricted displacement of the mooring line, the
mooring cable has its own separate mesh. The
slender profile of the mooring cable would require
very small mesh elements relative to the rest of
the domain, increasing the computational cost of
the simulation drastically. Furthermore, the displace-
ment of the cable within the fluid domain might be
too large for the moving mesh to handle accurately.

In the current implementation, the fluid can act
on the mooring (hydrodynamic loads as described
in the previous section), but there is no feedback
of the mooring displacement onto the fluid. The
effects of the mooring cable on the fluid is thought
to be negligible compared to the other forces in the
simulation.

The test case chosen for validating the moorings
dynamics is based on [8, 9], where a scaled cylindri-
cal floating Wave Energy Converter (WEC) and its
catenary mooring line are modelled experimentally.
The WEC is placed in a tank with uniform water
depth of z = 2.8m and has a diameter of 0.5m
and height of 0.2m. Several weights of the WEC
were tested, and the one used here to compare
results is m = 30kg. The mooring line is a chain
of length L = 6.98m with submerged weight per
unit length of w = 1.036Nm~!. The fairlead is
placed h = 2.65m above the seabed. The chosen
experiment consists in driving the WEC in the
surge direction at a given angular frequency w
and amplitude a with, in this case, a = 0.04z and
w = 0.79rad s~! with pretension 740 = 11.78N.

The quasi-statics model is used to initialise the
position of the nodes along the cable for the Chrono
simulation. A nodes cloud is generated in Chrono
along the mooring line for collision detection on
the seabed. External forces are taken into account at
each time step when solving the mooring dynamics



by retrieving the relative velocity of the cable with
the fluid velocity. Figure 10 is an indicator diagram,
showing the horizontal tension at the fairlead against
the position in surge of the WEC. The tensions
are well predicted with Chrono, and the dynamic
effect (hysteresis of the curve) due to the drag force
acting on the mooring line can be observed. The
difference in hysteresis observed between Chrono
and the experiment can be influenced by the drag
and added-mass coefficients, which are derived from
assumptions and are one of the main source of
errors in mooring dynamics simulations. In this
case, Cqp = 1.4, Cqy = 1.15, Com,n = 1 and
Cam,t = 0.5 were used in Chrono, as they are
typical values used for studless chain. This is a
work in progress and further testing with different
coefficients is required.

Preliminary simulations using all the tools pre-
sented in this work — CFD with wave generation and
ALE mesh, floating body and mooring dynamics,
and collision detection — have been successfully
produced and show great potential for simulating
realistic cases for offshore renewable energy ap-
plications. An illustrative snapshot of a 3D proof-
of-concept simulation is shown in fig. 11 based
on the floating cylinder and mooring configuration
of [13], with 3 catenary mooring lines discretised
with 100 elements per mooring cable, and regular
wave generation with period 7' = 1s and height
h = 0.15m in a tank with a water level of 0.9m. For
mooring cable nodes that extend outside of the CFD
domain, fluid velocity is assumed to be the one given
by the waves that are used as boundary conditions
in the CFD model (assuming that the waves are then
are undisturbed). As mentioned earlier, this is an
early proof-of-concept simulation combining all the
tools that have been validated in the work presented
here, implying that further testing and validation
of the models coupled together is necessary to
more confidently use it as a whole for complex
CFD simulations making use of floating body and
mooring dynamics.

V. CONCLUSION

The numerical results presented in this paper
for two-phase flows CFD using the Proteus toolkit
coupled with body and mooring dynamics using
the Chrono library show good agreement with a
variety of analytical, numerical and experimental
results. Temporal and spatial convergence of the
two-phase flow solver alone was shown with the
sloshing motion of a body of water, with error
from the results laying in the asymptotic range.
The simulation of floating bodies with Proteus and
Chrono was undertaken for i) free oscillation for
comparing their natural period and damping of the

Fig. 11: Snapshot of proof-of-concept simulation
combining wave generation, ALE mesh, and 3
catenary mooring lines attached to a 6 DOF floating
cylinder at ¢ = 12.8s. Color map shows velocity
magnitude.

simulation with experiments (roll and heave motion)
and ii) the RAO of a floating body under loads of
regular waves of different frequencies. Finally, the
simulation of mooring lines with quasi-static and
dynamic models was validated against experimental
data.

The aforementioned test cases successfully
demonstrate the capabilities of Proteus — an FEM
based solver differing from the majority of the main
open-source CFD tools that are FVM based — as
a viable solution for modelling the key aspects of
floating offshore renewable energy devices when
coupled with Chrono. The combination of these
numerical tools show great potential to reliably
simulate the response of possibly complex offshore
floating structures enduring environmental loads.
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