The University of Southampton
University of Southampton Institutional Repository

Modelling of high purity H2 production via sorption enhanced chemical looping steam reforming of methane in a packed bed reactor

Modelling of high purity H2 production via sorption enhanced chemical looping steam reforming of methane in a packed bed reactor
Modelling of high purity H2 production via sorption enhanced chemical looping steam reforming of methane in a packed bed reactor
Sorption enhanced chemical looping steam reforming of methane (SE-CLSR) relies on the exothermicity of both a metal catalyst’s oxidation and the in situ CO2 capture by carbonation onto a solid sorbent to provide the heat demand of hydrogen (H2) production by steam reforming while generating a nearly pure H2 product. A brief thermodynamic analysis to study the main features of the SE-CLSR process is done prior to the reactor modelling work. Later, one dimensional mathematical model of SE-CLSR process in the packed bed configuration is developed using gPROMS model builder 4.1.0® under the adiabatic conditions. This model combines reduction of the NiO catalyst with the steam reforming reactions, followed by the oxidation of the Ni-based reduced catalyst. The individual models of NiO reduction, steam reforming with in situ CO2 capture on Ca-sorbent, and Ni re-oxidation are developed by using kinetic data available in literature and validated against previous published work. The model of SE-CLSR is then applied to simulate 10 alternative cycles of the fuel and air feed in the reactor. The performance of the model is studied in terms of CH4 conversion, CO2 capture efficiency, purity and yield of H2. The sensitivity of the process is studied under the various operating conditions of temperature, pressure, molar steam to carbon ratio (S/C) and mass flux of the gas phase. In this work, the operating conditions used for the production of H2 represent realistic industrial production conditions. The sensitivity analysis demonstrates that the developed model of SE-CLSR process has the flexibility to simulate a wide range of operating conditions of temperature, pressure, S/C and mass flux of the gas phase.
modelling, Steam reforming, Chemical looping, CO2 capture, Nickel catalyst
0016-2361
271-286
Abbas, Syed Zaheer
3b02900e-fef6-40e1-acf7-96f26bfde4a8
Dupont, V.
ed7d2d70-b6a3-4b52-9ca9-faec8cace4bf
Mahmud, T.
4eb0b46f-1c51-43e6-a97e-e9a75cb06689
Abbas, Syed Zaheer
3b02900e-fef6-40e1-acf7-96f26bfde4a8
Dupont, V.
ed7d2d70-b6a3-4b52-9ca9-faec8cace4bf
Mahmud, T.
4eb0b46f-1c51-43e6-a97e-e9a75cb06689

Abbas, Syed Zaheer, Dupont, V. and Mahmud, T. (2017) Modelling of high purity H2 production via sorption enhanced chemical looping steam reforming of methane in a packed bed reactor. Fuel, 202, 271-286. (doi:10.1016/j.fuel.2017.03.072).

Record type: Article

Abstract

Sorption enhanced chemical looping steam reforming of methane (SE-CLSR) relies on the exothermicity of both a metal catalyst’s oxidation and the in situ CO2 capture by carbonation onto a solid sorbent to provide the heat demand of hydrogen (H2) production by steam reforming while generating a nearly pure H2 product. A brief thermodynamic analysis to study the main features of the SE-CLSR process is done prior to the reactor modelling work. Later, one dimensional mathematical model of SE-CLSR process in the packed bed configuration is developed using gPROMS model builder 4.1.0® under the adiabatic conditions. This model combines reduction of the NiO catalyst with the steam reforming reactions, followed by the oxidation of the Ni-based reduced catalyst. The individual models of NiO reduction, steam reforming with in situ CO2 capture on Ca-sorbent, and Ni re-oxidation are developed by using kinetic data available in literature and validated against previous published work. The model of SE-CLSR is then applied to simulate 10 alternative cycles of the fuel and air feed in the reactor. The performance of the model is studied in terms of CH4 conversion, CO2 capture efficiency, purity and yield of H2. The sensitivity of the process is studied under the various operating conditions of temperature, pressure, molar steam to carbon ratio (S/C) and mass flux of the gas phase. In this work, the operating conditions used for the production of H2 represent realistic industrial production conditions. The sensitivity analysis demonstrates that the developed model of SE-CLSR process has the flexibility to simulate a wide range of operating conditions of temperature, pressure, S/C and mass flux of the gas phase.

This record has no associated files available for download.

More information

Submitted date: 23 March 2017
Published date: 15 August 2017
Keywords: modelling, Steam reforming, Chemical looping, CO2 capture, Nickel catalyst

Identifiers

Local EPrints ID: 479318
URI: http://eprints.soton.ac.uk/id/eprint/479318
ISSN: 0016-2361
PURE UUID: e1d33f73-18f4-4e42-bd4f-8b0a4111509c
ORCID for Syed Zaheer Abbas: ORCID iD orcid.org/0000-0002-8783-8572

Catalogue record

Date deposited: 20 Jul 2023 16:55
Last modified: 17 Mar 2024 04:18

Export record

Altmetrics

Contributors

Author: Syed Zaheer Abbas ORCID iD
Author: V. Dupont
Author: T. Mahmud

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×