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Abstract

Armstrong’s axioms of functional dependency form a well-known log-
ical system that captures properties of functional dependencies between
sets of database attributes. This article assumes that there are costs asso-
ciated with attributes and proposes an extension of Armstrong’s system
for reasoning about budget-constrained functional dependencies in such a
setting.

The main technical result of this article is the completeness theorem for
the proposed logical system. Although the proposed axioms are obtained
by just adding cost subscript to the original Armstrong’s axioms, the
proof of the completeness for the proposed system is significantly more
complicated than that for the Armstrong’s system.

1 Introduction

In dependency theory, functional dependencies are often used not only as a de-
scription of the data, but also as a semantic constraints for database designs,
see Vardi [1985]. Armstrong [1974] introduced a system of three axioms de-
scribing the properties of functional dependencies between sets of attributes in
a database. The applicability of these axioms goes far beyond the domain of
databases. They describe the properties of functional dependency between any
two sets of values. For example, knowing sides a and b of a triangle and the
angle γ between them, one can determine the third side c and two other angles
α and β. We write this as a, b, γ� c, α, β. Yet, knowing two sides of the triangle
and the angle not between them, one cannot determine the remaining site and
angles: ¬(a, b, α� c, β, γ).

The property a, b, γ � c, α, β is valid when a, b and c are three sides of a
triangle and α, β, γ are the angles opposite to these sides respectively. However,
it may not be valid under some other interpretation of variables a, b, c, α, β, and
γ. For example, it is not valid if a, b and c are three sides of a pentagon and
α, β, γ are the opposite angles. Armstrong’s axioms capture the most general
properties of functional dependencies that are valid in all settings. These axioms
are:

(A1) Reflexivity: A�B, if B ⊆ A,
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(A2) Augmentation: A�B → A,C �B,C,

(A3) Transitivity: A�B → (B � C → A� C),

where A,B denotes the union of sets A and B. Armstrong proved the soundness
and the completeness of this logical system with respect to a database semantics.
The above axioms became known in database literature as Armstrong’s axioms,
see Garcia-Molina et al. [2009, p. 81]. Beeri, Fagin, and Howard Beeri et al.
[1977] suggested a variation of Armstrong’s axioms that describes properties
of multi-valued dependency. Väänänen [2007] proposed a first order version of
these principles. Naumov and Nicholls [2014] developed a similar set of axioms
for what they called the rationally functional dependency.

There have been two different approaches to extending Armstrong’s axioms
to handle approximate reasoning. Bělohlávek and Vychodil [2006] described a
complete logical system that formally captures the relation that approximate
values of attributes in set A functionally determine approximate values of at-
tributes in set B. In his upcoming work, Väänänen [2014] considered the relation
attributes in set A determine attributes in set B with exception of p fraction of
cases. We denote this relation by A�p B. For example, A�0.05 B means that
attributes in set A determine attributes in set B in all but 5% of the cases.
Väänänen [2014] proposed a complete axiomatic system for this relation, which
is based on the following principles:

1. Reflexivity: A�0 B, where B ⊆ A,

2. Totality: A�1 B,

3. Weakening: A�p C,D → A,B �p C,

4. Augmentation: A�p B → A,C �p B,C,

5. Transitivity: A�p B → (B �q C → A�p+q C), where p+ q ≤ 1,

6. Monotonicity: A�p B → A�q B, where p ≤ q.

Note that Väänänen’s relation A �p B is exactly the original Armstrong’s
functional dependency relation when p = 0. In the case of an arbitrary p,
relation A�pB could be considered as a “weaker” form of functional dependency,
which might hold even in the cases where the functional dependency does not
hold.

In this article we propose another interpretation of atomic predicate A�pB,
that we call the budget-constrained dependency. Just like Väänänen’s approxi-
mate dependency, the budget-constrained dependency is a weaker form of the
original Armstrong’s functional dependency relation. Intuitively, there is a
budget-constrained dependency A�pB when just a few new attributes could be
added to the set A in such a way that the extended set functionally determines
the set B. We use parameter p to formally specify what the phrase “a few
new attributes” means. Namely, we assume that a non-negative cost is assigned
to each attribute and that A �p B means that there is a way to add several

2



attributes with a total cost no more than p to set A in such a way that the
extended set of attributes functionally determines all attributes in set B. In
this article we introduce a complete logical system for the budget-constrained
dependency which is based on the following three principles that generalize
Armstrong’s axioms:

1. Reflexivity: A�p B, if B ⊆ A,

2. Augmentation: A�p B → A,C �p B,C,

3. Transitivity: A�p B → (B �q C → A�p+q C).

We call our framework “the budget-constrained dependency” because its
most natural application is in the setting where all data is potentially accessible
to an agent at a cost. In this setting A�pB means that if an agent already knows
the values of attributes in set A, then she can determine the values of attributes
in set B at a cost p. One example of such a setting is fees associated with
information access: criminal background check fees, court records obtaining fees,
etc. Another example is geological explorations, where learning about deposits
of mineral resources often requires costly drilling. Although it is convenient to
think about a budget constraint as a financial one, a budget constraint can also
refer to a limit on time, space, or some other resource.

Although Reflexivity (A1), Augmentation (A2), and Transitivity (A3) are
usually called Armstrong’s “axioms”, technically they can be formalized either
as inference rules or as axioms. In the former case the language of the system
consists only of the atomic predicate of the form A �p B. In the latter case
the language consists of all Boolean combinations of such predicates and the
formal logical system also includes propositional tautologies and the Modus
Ponens inference rule. Armstrong [1974] original paper proves the completeness
of (A1), (A2), and (A3) as inference rules. However, his proof can be easily
modified to prove the completeness of the corresponding system of axioms, as
in Heckle and Naumov [2014].

Bělohlávek and Vychodil [2006] and Väänänen [2014] also proved the com-
pleteness theorems for logical systems consisting of inference rules. Different
from their approach, in this article we treat our version of Armstrong’s axioms
as propositional axioms. Since inference rule

ϕ1, ϕ2, . . . , ϕn

ψ

could be interpreted as a propositional formula

ϕ1 → (ϕ2 → . . . (ϕn → ψ) . . . ),

an axiom-based system is syntactically richer than the corresponding rule-based
system. Thus, the completeness result for an axiom-based system obtained in
this article is stronger than a potential claim of the completeness result for the
corresponding rule-based system.
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The main result of this article is the completeness theorem for our logical
system. Since the system essentially consists of three Armstrong’s axioms la-
beled with budget constrains, one might expect the proof of the completeness
to be a straightforward modification of the proof of the completeness for the
original Armstrong’s system. Surprisingly, the proof of the completeness in our
case requires a much more sophisticated argument.

Next, we explain the reason for this unexpected complexity. The complete-
ness theorem states that any unprovable formula is not satisfied in at least one
model. Thus, to show the completeness we need to be able to construct a model
(or a “counterexample”) for each unprovable formula. For instance, consider
the formula a� b→ b� a in the language without budget constraints. To con-
struct a counterexample for this formula we need to describe a model in which
attribute a functionally determines attribute b but not vice versa. To describe
such a model, one can think of attributes a and b as paper folders that are used
to store copies of certain documents. Specifically, consider a model in which
folder a always stores a copy of document X and folder b is always kept empty,
see Figure 1. In this model, based on the content of folder a one can always
vacuously recover the content of empty folder b. At the same time, based on
the content of empty folder b one cannot recover the content of folder a. Thus,
formula a� b→ b� a is false in this model.

a

X

b

Figure 1: Formula a� b is true, but formula b� a is false.

To construct a counterexample for formula a� b ∨ b� a, one can consider a
model in which folders a and b containing copies of two different (and unrelated
to each other) documents X and Y respectively, see Figure 2.

a

X

b

Y

Figure 2: Formulas a� b and b� a are both false.

To construct counterexamples for more complicated formulas, one can con-
sider models with multiple folders containing copies of multiple documents. An
example of such a model is depicted in Figure 3. In this model a, b � c is true
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because anyone with access to folders a and b knows the content of folder c.
The folder/document model informally described here is sufficiently general to
create a counterexample for each formula unprovable from Armstrong’s axioms.
In fact, the original Armstrong’s proof of the completeness for his rule-based
system and the proof of the completeness for the corresponding axiom-based
system (Heckle and Naumov [2014]) could be viewed as formalizations of this
folder/document construction.

cb

Y

Y

a

Z

XX

Figure 3: Formula a, b� c is true.

The situation becomes significantly more complicated once the cost of infor-
mation is added to the language. Let us start with a very simple example. If
we want to construct a counterexample for formula a�4 b, then we can consider
a model depicted in Figure 4 with two folders: a and b, priced at $3 and $5,
respectively. The first of these folders is always empty and the second contains
a copy of the document X. It is clear that in this model anyone who knows
the content of folder a still needs to spend $5 to learn the content of folder b.
Thus, budget-constrained dependency a �p b is not satisfied in this model for
each p < 5.

b

X

a

$5$3

Figure 4: Formula a�4 b is false.

Let us now consider a more interesting example. Suppose that we want to
construct a counterexample for formula a �4 b → ∅ �4 b. That is, we want
to construct a model where anyone who knows the content of folder a can
reconstruct the content of folder b after spending at most $4. Yet, the same can
not be done without access to folder a. To construct such a model we use the
cryptographic tool called one-time encryption pad. Our model consists of three
folders a, b, and c priced at $3, $5, and $4, respectively, see Figure 5. Let folder
b contain a copy of a document X, folder c contain encryption an pad P , and
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folder a contain the encrypted version of the document. In this model, ∅�4 b is
false because $4 buys either access to the encryption pad in folder c or access to
the encrypted text in folder a, but not both. However, formula a�4 b is true in
the same model because anyone who knows encrypted text Encrypt(X,P ) can
spend $4 on pad P , decode message X, and thus, learn the content of folder b.

b

X

a

$5$3

c

Encrypt(X,P)

$4

P

Figure 5: Formula a�4 b→ ∅ �4 b is false.

The one-time pad encryption is known in cryptography as a symmetric-key
algorithm because the same key (i.e. the one-time pad) could be used to encrypt
and to decrypt the text. As a result, in the model depicted in Figure 5, not
only formula a�4 b is true, but formula b�4 a is true as well.

For the next example, we construct a counterexample for formula

a�4 b→ (∅ �4 b ∨ b�4 a).

This is an easier task than one might think because one just needs to modify
the previous model by adding add to the folder a some extra document not
related to the document X and to raise the price of this folder, see Figure 6.
This guarantees that the only way to learn all the content of folder a is to buy
folder a directly.

b

X

a

$5$7

c

Encrypt(X,P)

$4

P

Y

Figure 6: Formula a�4 b→ (∅ �4 b ∨ b�4 a) is false.

The situation becomes much more complicated if we want (i) the value of
attribute a to be recoverable from the value of attribute b and (ii) the value of
attribute b to be recoverable from the value of attribute a, but at a different
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price. In other words, we want to construct a counterexample of the following
formula:

a�1 b ∧ b�5 a→ (∅ �5 a ∨∅ �1 b ∨ b�4 a). (1)

At first glance, this goal could be achieved using the asymmetric key cryptog-
raphy, commonly used in the public-key encryption. For instance, suppose that
folder a contains a document X and folder b contains the same document en-
crypted with an encryption key ke, see Figure 7. To obtain the content of folder
b based on the content of folder a, one only needs to know the encryption key
ke. To restore the content of folder a based on folder b one needs to know the
value of the decryption1 key kd. If the encryption key and the decryption key
are priced at $1 and $5 respectively, the formula b�4 a is not satisfied from the
cryptographic point of view. Since folders a and b are priced in this model at
$100 each, formulas ∅�5 a and ∅�1 b are not satisfied either. Thus, the entire
formula (1) is not satisfied from the cryptographic point of view.

a

X

$100

b

$100

AsymEncrypt(X,ke)

c

$1

ke

c

kd

$5

Figure 7: Formula a�1 b ∧ b�5 a→ (∅ �5 a ∨∅ �1 b ∨ b�4 a) is false.

Note, however, that cryptographic asymmetric-key algorithms are only poly-
nomial time secure and the proof of polynomial time security requires an ap-
propriate computational hardness assumption [Katz, 2010, Ch. 2]. In other
words, in public-key cryptography, the encrypted text can be decrypted using
only the public encryption key if one has exponential time for the decryption.
Neither Armstrong [1974] definition of functional dependency nor our definition
of budget-constrained functional dependency, given in Definition 6 below, as-
sumes any upper bound on computability of the functional dependency. From
our point of view, one would be able to eventually restore the content of folder a
based on folder b by spending $1 on the content of folder c. Thus, in the above
setting, without polynomial restriction on computability, not only formula b�4a
is true, but formula b�1 a is true as well.

Figure 8 shows a counterexample for statement (1) that does not require
functional dependency to be polynomial time computable. Assume that folders
a and b contain copies of unrelated documents X and Y , folder c contains an

1In public-key cryptography, an encryption key is known as the public key and a decryption
key as the private key. We do not use these terms here because in our setting neither of the
keys is public in the sense that both of them have associated costs.
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b

Encrypt(Encrypt(Y,P1),Q2)

a

Encrypt(Encrypt(X,Q1),P2)

$100

$100

c

$1

P1

Y

d

Encrypt(X,Q1)

X

Encrypt(Y,P1)

Encrypt(Encrypt(Encrypt(X,Q1),P2),Q3)

Encrypt(Encrypt(Encrypt(Y,P1),Q2),P3)

......

......

P2 P3

......
Q1 Q2 Q3

......

$5

Figure 8: Formula a�1 b ∧ b�5 a→ (∅ �5 a ∨∅ �1 b ∨ b�4 a) is false.

infinite supply of one-time encryption pads P1, P2, P3, . . . and folder d contains
another infinite set of one-time encryption pads Q1, Q2, Q3, . . . . First, encrypt
document Y with one-time pad P1 and place a copy of the resulting cyphertext
Encrypt(Y, P1) into folder a. Next, encrypt Encrypt(Y, P1) with pad Q2 and
place a copy of the resulting cyphertext Encrypt(Encrypt(Y, P1), Q2) into folder
b. Then, encrypt Encrypt(Encrypt(Y, P1), Q2) with pad P3 and place a copy of
the resulting cyphertext Encrypt(Encrypt(Encrypt(Y, P1), Q2), P3) into folder
a, and so on ad infinitum. Perform similar steps with the document X, as shown
in Figure 8.

To show that the model depicted in Figure 8 is a counterexample for formula
(1), we need to prove that both formulas a�1 b and b�5 a are satisfied in this
model and each of the formulas ∅�5 a, ∅�1 b, and b�4 a is not satisfied. First,
notice that formula a�1 b is satisfied because folder a contains all documents in
folder b encrypted with one-time pads P1, P2, . . . and that all these pads could
be acquired for $1 by buying folder c. Second, formula b �5 a is satisfied for
a similar reason using pads Q1, Q2, . . . . Third, formula ∅ �5 a is not satisfied
because for $5 one can only buy either folder c or folder d, both containing only
one-time pads. In the absence of folder b, one-time encryption pads can not be
used to recover document X stored in folder a. Formula ∅ �1 b is not satisfied
for a similar reason. Finally, b�4 a is not satisfied because $4 is not enough to
buy the content of folder d. This amount of money can only be used to buy
pads P1, P2, . . . in folder c. Knowing the content of folder b and one-time pads
P1, P2, . . . , one can not recover document X contained in folder a.
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In this article we prove the completeness of our logical system. At the core
of this proof is a generalized version of the construction presented in Figure 8.

The axiomatic system proposed in this article is related to other logic system
for reasoning about bounded resources. The classical logical system for reason-
ing about resources is the linear logic of Girard [1987]. Alechina and Logan
[2002] presented a family of logical systems for reasoning about beliefs of a per-
fect reasoner that only can derive consequences of her beliefs after some time
delay. This approach has been further developed into the multi-agent Timed
Reasoning Logic in Alechina et al. [2004]. Bulling and Farwer [2010] proposed
Resource-Bounded Tree Logics for reasoning about resource-bounded compu-
tations and obtained preliminary results on the complexity and decidability of
model checking for these logics. Alechina et al. [2011] incorporated resource re-
quirements into Coalition logic and gave a sound and complete axiomatization of
the resulting system. Another logical system for reasoning about knowledge un-
der bounded resources was proposed by Jamroga and Tabatabaei [2013]. Their
article focuses on the expressive power of the language of the system and the
model checking algorithm. Our previous work Naumov and Tao [2015] intro-
duced a sound and complete modal logic for reasoning about budget-constrained
knowledge. Unlike our current system all of the above logics do not provide a
language for expressing functional dependencies.

This paper is organized as follows. In Section 2 we formally define the lan-
guage of our logical system and its informational semantics. In Section 3 we list
the axioms of the system that have already been discussed in the introduction.
In Section 4 we give several examples of formal proofs in our logical system. In
Section 5 we prove the soundness of our axioms with respect to the informa-
tional semantics. In Section 6 we introduce an auxiliary hypergraph semantics
of our logical system and prove the completeness with respect to this seman-
tics. In Section 7 we use the result obtained in the previous section to prove
the completeness of our logical system with respect to the informational seman-
tics. Section 8 strengthens the informational completeness results by proving
the completeness with respect to a more narrow class of finite informational
models. Section 9 concludes the article.

2 Syntax and Semantics

In this section we introduce the language of our system and formally describe its
intended semantics that we call informational semantics. Later on we introduce
an auxiliary hypergraph semantics used as a technical tool in the proof of the
completeness with respect to the original informational semantics.

Definition 1 For any set A, let language Φ(A) be the minimum set of formulas
such that

1. A �p B ∈ Φ(A) for all finite sets A,B ⊆ A and all non-negative real
numbers p,
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2. if ϕ ∈ Φ(A), then ¬ϕ ∈ Φ(A),

3. if ϕ,ψ ∈ Φ(A), then ϕ→ ψ ∈ Φ(A).

Next, we introduce the formal informational semantics of our logical system.
The only significant difference between our definition and the one used in Arm-
strong [1974] is the costs function ‖ · ‖ that assigns a non-negative cost to each
attribute. Note that we assume that the cost is assigned to an attribute, not to
its value. For example, if we assign a certain cost to a folder with documents,
then this cost is uniform and does not depend on the content of the documents
in this folder.

Definition 2 An informational model is a tuple 〈A, {Da}a∈A, ‖ · ‖,L〉, where

1. A is an arbitrary set of “attributes”,

2. Da is a set representing the domain of attribute a ∈ A,

3. ‖ · ‖ is a cost function that maps each attribute a ∈ A into a non-negative
real number or infinity +∞,

4. L ⊆
∏

a∈ADa is the set of “legitimate” vectors of attribute values under
the constraints imposed by the informational model.

In the example depicted in Figure 8, folders are attributes and the information
stored in the documents contained in a folder is a value of such an attribute.
The set of all possible values of an attribute is its domain. The cost of different
attributes is specified explicitly in Figure 8. Note that there is a certain depen-
dency between the plaintext, one-time encryption pads, and the cyphertext. In
other words, not all combinations of values of different attributes are possible.
The set L is the set of possible, or “legitimate”, combinations of these values.

We allow the cost ‖a‖ of an attribute a to be infinity. Informally, one can
interpret this as attribute a not being available for purchase at any cost. If all
attributes are available for sale, then we say that the informational model is
finite.

Definition 3 Informational model 〈A, {Da}a∈A, ‖ · ‖,L〉 is finite if ‖a‖ < +∞
for each a ∈ A.

Definition 4 For any vector `1 = 〈f1a 〉a∈A ∈ L, any vector `2 = 〈f2a 〉a∈A ∈ L,
and any set A ⊆ A, let `1 =A `2 if f1a = f2a for each attribute a ∈ A.

Definition 5 For each finite set A ⊆ A, let ‖A‖ =
∑

a∈A ‖a‖.

The next definition is the key definition of this section. It specifies formal
semantics of our logical system. Item 1. of this definition provides the exact
meaning of the budget-constrained functional dependency.

Definition 6 For each informational model I = 〈A, {Da}a∈A, ‖·‖,L〉 and each
formula ϕ ∈ Φ(A), the satisfiability relation I � ϕ is defined as follows:
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1. I � A �p B when there is a finite set C ⊆ A such that ‖C‖ ≤ p and for
each vectors `1, `2 ∈ L, if `1 =A,C `2, then `1 =B `2,

2. I � ¬ψ if I 2 ψ,

3. I � ψ → χ if I 2 ψ or I � ψ.

3 Axioms

For any set of attributes A, our logical system, in addition to propositional
tautologies in language Φ(A) and the Modus Ponens inference rule, contains
the following axioms:

1. Reflexivity: A�p B, where B ⊆ A,

2. Augmentation: A�p B → A,C �p B,C,

3. Transitivity: A�p B → (B �q C → A�p+q C).

By A,B we denote the union of sets A and B. We write ` ϕ if formula ϕ is
derivable in our system. Also, we write X ` ϕ if formula ϕ is derivable in our
system extended by the set of additional axioms X.

4 Examples of Proofs

We prove the soundness of our logical system in the next section. Here we give
several examples of formal proofs in this system. We start by showing that the
Weakening and the Monotonicity axioms from Väänänen [2014] are derivable in
our system.

Proposition 1 (Weakening) ` A�p C,D → A,B �p C.

Proof. By the Augmentation axiom,

` A�p C,D → A,B �p B,C,D. (2)

By the Reflexivity axiom,
` B,C,D �0 C. (3)

By the Transitivity axiom,

A,B �p B,C,D → (B,C,D �0 C → A,B �p C). (4)

Finally, from (2), (3), and (4), by the laws of propositional logic,

` A�p C,D → A,B �p C.

�
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Proposition 2 (Monotonicity) ` A�p B → A�q B, where p ≤ q.

Proof. By the Reflexivity axiom,

` B �q−p B. (5)

By the Transitivity axiom,

` A�p B → (B �q−p B → A�q B). (6)

Finally, from (5) and (6), by the laws of propositional logic,

` A�p B → A�q B.

�

As our last example, we prove a generalized version of the Augmentation
axiom.

Proposition 3 ` A�p B → (C �q D → A,C �p+q B,D).

Proof. By the Augmentation axiom,

` A�p B → A,C �p B,C (7)

and
` C �q D → B,C �q B,D. (8)

At the same time, by the Transitivity axiom,

` A,C �p B,C → (B,C �q B,D → A,C �p+q B,D). (9)

Finally, from (7), (8), and (9), by the laws of propositional logic,

` A�p B → (C �q D → A,C �p+q B,D).

�

5 Soundness

In this section we prove the soundness of our logical system.

Theorem 1 If ϕ ∈ Φ(A) and ` ϕ, then I � ϕ for each informational model
I = 〈A, {Da}a∈A, ‖ · ‖,L〉.

The soundness of propositional tautologies and the Modus Ponens inference rule
follows from Definition 6 in the standard way. Below we prove the soundness of
the remaining axioms as separate lemmas.
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Lemma 1 For each finite sets A,B ⊆ A, if B ⊆ A, then I � A�p B.

Proof. Let C = ∅. Thus, ‖C‖ = ‖∅‖ = 0 ≤ p. Consider any two vectors
`1, `2 ∈ L such that `1 =A,C `2. It suffices to show that `1 =B `2, which is true
due to Definition 4 and the assumption B ⊆ A. �

Lemma 2 For each finite sets A,B,C ⊆ A, if I � A �p B, then I � A,C �p

B,C.

Proof. By Definition 6, assumption I � A�pB implies that there is a set D ⊆ A
such that (i) ‖D‖ ≤ p and (ii) for each `1, `2 ∈ L, if `1 =A,D `2, then `1 =B `2.

Consider now `1, `2 ∈ L such that `1 =A,C,D `2. It suffices to show that
`1 =B,C `2. Note that assumption `1 =A,C,D `2 implies that `1 =A,D `2 and
`1 =C `2 by Definition 4. Due to condition (ii) above, the former implies that
`1 =B `2. Finally, statements `1 =B `2 and `1 =C `2 together imply that
`1 =B,C `2. �

Lemma 3 For each finite sets A,B,C ⊆ A, if I � A �p B and I � B �q C,
then I � A�p+q C.

Proof. By Definition 6, assumption I � A �p B implies that there is D1 ⊆ A
such that (i) ‖D1‖ ≤ p and (ii) for each `1, `2 ∈ L, if `1 =A,D1

`2, then `1 =B `2.
Similarly, assumption I � B �q C implies that there is D2 ⊆ A such that

(iii) ‖D2‖ ≤ q and (iv) for each `1, `2 ∈ L, if `1 =B,D2 `2, then `1 =C `2.
Let D = D1, D2. By Definition 5, ‖D‖ ≤ ‖D1‖+‖D2‖. Taking into account

statements (i) and (iii) above, we conclude that ‖D‖ ≤ p + q. Consider any
two vectors `1, `2 ∈ L such that `1 =A,D `2. It suffices to show that `1 =C `2.
Indeed, by Definition 4, assumption `1 =A,D `2 implies that `1 =A,D1 `2. Hence,
`1 =B `2 due to condition (ii). At the same time, assumption `1 =A,D `2 also
implies that `1 =D2

`2 by Definition 4. Thus, `1 =B,D2
`2 by Definition 4.

Therefore, `1 =C `2 due to condition (iv). �

This concludes the proof of Theorem 1.

6 Auxiliary Hypergraph Semantics

The main goal of the rest of the article is to prove the completeness of our
logical system with respect to the informational semantics. To achieve this goal
we introduce the hypergraph semantics of our logical system and prove that the
following statements are equivalent for each ϕ ∈ Φ(A):

1. ϕ is provable in our logical system,

2. ϕ is satisfied in any informational model with a set of attributes A,

3. ϕ is satisfied in any hypergraph with a set of vertices A.
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We prove the equivalence of these statements by showing that the first statement
implies the second, the second implies the third, and the third implies the first.
Note that we have already proved in Theorem 1 that the first statement implies
the second one. In the rest of the article we prove that the second statement
implies the third and that the third implies the first. Together, these results will
imply the soundness and the completeness of our logical system with respect to
the informational semantics.

6.1 Hypergraph Terminology

Before defining the hypergraph semantics of our logical system, we introduce
the basic hypergraph terminology used throughout the rest of the article. In
mathematics, a hypergraph is a generalization of a graph in which edges have
arbitrary numbers of ends, see Berge [1989]. Our hypergraph semantics is based
on weighted directed hypergraphs. In such hypergraphs, edges are directed in
the sense that they have multiple tails and multiple heads. For any given edge
e, we denote these sets by in(e) and out(e). The edges are weighted in the sense
that there is a non-negative value assigned to each edge.

Definition 7 A weighted directed hypergraph, or just a “hypergraph”, is a tuple
〈V,E, in, out, w〉, where

1. V is an arbitrary finite set of “vertices”,

2. E is an arbitrary (possibly infinite) set of “edges”, disjoint with set V ,

3. in is a function that maps each edge e ∈ E into set in(e) ⊆ V ,

4. out is a function that maps each edge e ∈ E into set out(e) ⊆ V ,

5. w is a function that maps each edge e ∈ E into a non-negative real number
w(e).

Definition 8 For any hypergraph 〈V,E, in, out, w〉 and any set F ⊆ E, let
w(F ) =

∑
e∈F w(e).

Next, we define the closure A∗F of a set of vertices A with respect to a set
of edges F of a hypergraph. Informally, the closure A∗F is a set of all vertices
that are reachable from a vertex in set A following the directed edges in set F .
In order to follow a directed edge e ∈ F , one needs to be able to first reach all
vertices in set in(e). To define the closure A∗F , we first define the partial closure
Ak

F of all vertices reachable from A through F in no more than k steps:

Definition 9 For each weighted directed hypergraph 〈V,E, in, out, w〉, each set
A ⊆ V , each set F ⊆ E, and each non-negative integer k, let set Ak

F be defined
recursively as follows:

1. A0
F = A,
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2. for any k ≥ 0,

Ak+1
F = Ak

F ∪
⋃

{f∈F | in(f)⊆Ak
F }

out(f).

Figure 9 depicts a hypergraph where vertices are represented by circles and
edges by ovals. We use arrows to indicate tails and heads of an edge. An
arrow from a vertex to an edge indicates that the vertex is a tail of the edge,
and an arrow from an edge to a vertex indicates that the vertex is a head of
the edge. For example, in(e1) = {v1, v2} and out(e1) = {v3, v4}. The same
figure shows partial closures A0

F = {v1, v2}, A1
F = {v1, v2, v3, v4}, and A2

F =
{v1, v2, v3, v4, v5, v6}, where A = {v1, v2} and F = {e1, e2}.

e1

v2

v1

v4

e2

v5

v3

v6

A0F

A1F
A2F

Figure 9: Ak
F for A = {v1, v2} and F = {e1, e2}.

Finally, we define closure A∗F to be the union of all partial closures:

Definition 10 A∗F =
⋃

k≥0A
k
F .

Next, we establish two properties of closures that are used later in the proof of
the completeness for the hypergraph semantics.

Lemma 4 For each set of vertices A ⊆ V and each set of edges F ⊆ E there
is k ≥ 0 such that A∗F = Ak

F .

Proof. By Definition 7, the set of all vertices V is finite. Thus, by Definition 9,
chain A0

F ⊆ A1
F ⊆ A2

F ⊆ . . . is a non-decreasing chain of subsets of finite set V .
Hence, there must exist k ≥ 0 such that all sets in this chain starting with set
Ak

F are equal. Therefore, A∗F = Ak
F by Definition 10. �
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Lemma 5 For each k ≥ 0, each set of vertices A ⊆ V , and each set of edges
F ⊆ E, there is a sequence A = A1, f1, A2, f2, . . . , An−1, fn−1, An = Ak

F such
that

1. n ≥ 1,

2. f1, . . . , fn−1 ∈ F are distinct edges,

3. A1, . . . , An−1, and An are subsets of set V ,

4. in(fi) ⊆ Ai, for each 1 ≤ i < n,

5. Ai ∪ out(fi) = Ai+1, for each 1 ≤ i < n.

Proof. We prove this lemma by induction on k. If k = 0, then Ak
F = A by

Definition 9. Therefore, the single-element sequence A is the desired sequence.
For the induction step, assume that there is a sequence

A = A1, f1, A2, f2, . . . , An−1, fn−1, An = Ak
F

that satisfies the conditions 1 through 5 above. Let g1, . . . , gm be all such
edges g ∈ F that in(g) ⊆ Ak

F and out(g) * Ak
F . By the condition 5 above,

the condition out(g) * Ak
F implies that none of g1, . . . , gm is equal to any of

f1, . . . , fn−1. Note that Ak+1
F = Ak

F ∪
⋃m

i=1 out(gi) by Definition 9. Therefore,
the two-line sequence

A = A1, f1, A2, f2, . . . , An−1, fn−1, An = Ak
F , g1, A

k
F ∪ out(g1),

g2, A
k
F ∪ out(g1) ∪ out(g2), g3, . . . , gm, A

k
F ∪

m⋃
i=1

out(gi) = Ak+1
F

is the required sequence for k + 1. �

6.2 Hypergraph Completeness

In this section we define the hypergraph semantics of our logical system and
prove the completeness of the system with respect to this auxiliary semantics.
In other words, using statements defined in the beginning of Section 6, we prove
that the third statement implies the first one. The hypergraph semantics is
specified in the following definition. Item 1 in this definition is the key part
because it specifies the meaning of the atomic predicate A�p B. Note that we
use symbol � for the satisfiability relation under the informational semantics
discussed previously and  for the satisfiability relation under the hypergraph
semantics introduced here.

Definition 11 For each hypergraph H = 〈V,E, in, out, w〉 and each formula
ϕ ∈ Φ(V ), the satisfiability relation H  ϕ is defined as follows:

1. H  A�pB if there is a finite set F ⊆ E such that w(F ) ≤ p and B ⊆ A∗F ,

16



2. H  ¬ψ if H 1 ψ,

3. H  ψ → χ if H 1 ψ or H  ψ.

The next theorem is the completeness theorem for the hypergraph semantics
of our logical system. The proof of this theorem ends at the end of this section.

Theorem 2 Let V be a set and ϕ ∈ Φ(V ). If H  ϕ for each hypergraph H
with set V as vertices, then ` ϕ.

Proof. Suppose that 0 ϕ. Let X be a maximal consistent subset of Φ(V ) con-
taining formula ¬ϕ. We define a hypergraph H = 〈V,E, in, out, w〉 as follows.
Let E be set {〈A, p,B〉 | A �p B ∈ X}. For each edge 〈A, p,B〉 ∈ E, let
in(〈A, p,B〉) = A, out(〈A, p,B〉) = B, and w(〈A, p,B〉) = p. In the corollary
below and the three lemmas that follow, we establish basic properties of the
hypergraph H needed to finish the proof of the completeness.

Corollary 1 in(e) �w(e) out(e) ∈ X for each e ∈ E.

Lemma 6 X ` A �p A
∗
F for each finite F ⊆ E such that w(F ) ≤ p and for

each set A ⊆ V .

Proof. By Lemma 4, there must exist k ≥ 0 such that A∗F = Ak
F . Thus, by

Lemma 5, there is a sequence

A = A1, f1, A2, f2, . . . , An−1, fn−1, An = A∗F (10)

such that

1. n ≥ 1,

2. f1, . . . , fn−1 ∈ F are distinct edges,

3. A1, . . . , An−1, and An are subsets of set V ,

4. in(fi) ⊆ Ai, for each 1 ≤ i < n,

5. Ai ∪ out(fi) = Ai+1, for each 1 ≤ i < n.

Towards the proof of the lemma, we first show that

X ` A�∑m−1
i=1 w(fi)

Am (11)

for each 1 ≤ m ≤ n. We prove this by induction on m. If m = 1, then Am = A
due to the choice of sequence (10). Thus, X ` A�0A1 by the Reflexivity axiom.

Assume thatX ` A�∑m−1
i=1 w(fi)

Am. We need to show thatX ` A�∑m
i=1 w(fi)

Am+1. Indeed, since fm ∈ F ⊆ E, then by Corollary 1, we have

in(fm) �w(fm) out(fm) ∈ X.
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Thus,
X ` Am, in(fm) �w(fm) Am, out(fm)

by the Augmentation axiom. Note that in(fm) ⊆ Am due to the condition 4
above. Hence,

X ` Am �w(fm) Am, out(fm).

Also note that Am ∪ out(fm) = Am+1 by condition 5 above. Thus,

X ` Am �w(fm) Am+1.

Therefore, by the induction hypothesis and the Transitivity axiom,

X ` A�∑m
i=1 w(fi) Am+1.

This completes the proof of statement (11). To finish the proof of the

lemma, note that the assumption w(F ) ≤ p implies
∑n−1

i=1 w(fi) ≤ p. Thus,
` A�p−

∑n−1
i=1 w(fi)

A by the Reflexivity axiom. At the same time, statement (11)

for m = n asserts that X ` A�∑n−1
i=1 w(fi)

An. Hence, by the Transitivity axiom,

X ` A�p−
∑n−1

i=1 w(fi)+
∑n−1

i=1 w(fi)
An.

In other words, X ` A �p An. Therefore, X ` A �p A
∗
F due to the choice of

sequence (10). �

Lemma 7 A�pB ∈ X if and only if H  A�pB, for each sets A,B ⊆ V and
each non-negative real number p.

Proof. (⇒). Suppose that A�pB ∈ X. Then, 〈A, p,B〉 ∈ E by the choice of set
E. Let F be the singleton set {〈A, p,B〉}. Note that w(F ) = p, in(〈A, p,B〉) =
A = A0

F , and, by Definition 9 and Definition 10,

B = out(〈A, p,B〉) ⊆
⋃

{f∈F | in(f)⊆A0
F }

out(f) ⊆ A1
F ⊆ A∗F .

Hence, B ⊆ A∗F . Therefore, H  A�p B by Definition 11.
(⇐). Suppose that H  A�pB. Then, by Definition 11, there is a finite F ⊆ E
such that w(F ) ≤ p and B ⊆ A∗F . Hence, ` A∗F �0 B by the Reflexivity axiom.
Additionally, X ` A�pA

∗
F by Lemma 6. Thus, X ` A�pB by the Transitivity

axiom. Therefore, A�p B ∈ X due to the maximality of the set X. �

Lemma 8 ψ ∈ X if and only if H  ψ for each ψ ∈ Φ(V ).

Proof. We prove the lemma by induction on the structural complexity of for-
mula ψ. The case when ψ is of form A�p B follows from Lemma 7. The other
cases follow from the maximality and consistency of set X and Definition 11 in
the standard way. �

To conclude the proof of the theorem, note that assumption ¬ϕ ∈ X implies
that H 1 ϕ by Lemma 8 and Definition 11. �
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7 Completeness theorem for the informational
semantics

In this section, we prove the completeness theorem for the informational se-
mantics stated in the end of this section as Theorem 3. This result could be
rephrased in terms of statements discussed in the beginning of Section 6 as:
the second statement implies the first one. In the previous section, we have
already shown that the third statement implies the first one. Thus, it suffices
to prove that the second statement implies the third. In other words, we show
that if formula ϕ is not satisfied by a hypergraph H, then it is not satisfied by
an informational model IH constructed from H. To prove this, we first describe
how to construct an informational model IH = 〈A, {Da}a∈A, ‖ · ‖,L〉 based on
a given hypergraph H = 〈V,E, in, out, w〉.

Let A = V ∪ E. Recall that sets V and E are disjoint due to Definition 7.

Definition 12 For any attribute a ∈ A = V ∪ E, the cost ‖a‖ is defined as
follows:

‖a‖ =

{
w(a), if a ∈ E,
+∞, if a ∈ V .

We continue the construction with an auxiliary definition of a path on
weighted hypergraph model H. It is convenient to distinguish two types of
paths: paths that are initiated at a vertex and paths that are initiated at an
edge. Note that paths of both types terminate at a vertex.

Definition 13 A path initiated at vertex v0 is a finite alternating sequence of
vertices and edges 〈v0, e1, v1, e2, . . . , en, vn〉 such that

1. n ≥ 0,

2. vk−1 ∈ in(ek) for each 1 ≤ k ≤ n,

3. vk ∈ out(ek) for each 1 ≤ k ≤ n.

For example, sequence 〈v1, e1, v4, e2, v6〉 is a path initiated at vertex v1 in the
hypergraph depicted in Figure 9.

Definition 14 A path initiated at edge e1 is a finite alternating sequence of
vertices and edges 〈e1, v1, e2, . . . , en, vn〉 such that

1. n ≥ 1,

2. vk−1 ∈ in(ek) for each 1 < k ≤ n,

3. vk ∈ out(ek) for each 1 ≤ k ≤ n.
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Sequence 〈e1, v4, e2, v6〉 is a path initiated at edge e1 in the hypergraph depicted
in Figure 9.

To understand the rest of the construction of informational model IH , let us
consider an analogy between this construction and the informal document/folder
model discussed in the introduction. The vertices of the hypergraph could be
viewed as folders with multiple documents and directed edges show the process
of the dissemination and the encryption of these documents between the folders.
In our informational model, for the sake of simplicity, each document consists
of just a single bit. For the hypergraph depicted in Figure 9, there might be
a document (bit) xv6 initially stored in folder v6. The value of this bit will
be disseminated along various paths in the hypergraph and encrypted version
of the document will be stored in different vertices (folders) along these paths.
More specifically, the value of each bit stored in a vertex is disseminated against
the direction of each edge leading to this vertex. In our example, because vertex
v6 is a head of edge e2 whose tails are v1 and v4, the encrypted value of xv6 is
disseminated between these two tails. Namely, bit xv6 is represented as a sum
of three bits ke2,v6

, xv1,e2,v6 and xv4,e2,v6 modulo two:

xv6 = ke2,v6 + xv1,e2,v6 + xv4,e2,v6
(mod 2).

One can think of bit ke2,v6 as an encryption key stored in edge e2 and bits
xv1,e2,v6 and xv4,e2,v6 as encrypted documents distributed between vertices v1
and v4. Since vertex v1 is not a head of any edge in the hypergraph depicted in
Figure 9, the value of bit xv1,e2,v6 is only stored in vertex v1 and not disseminated
any further. At the same time, because vertex v4 is a head of edge e1, the value
of bit xv4,e2,v6 is further distributed between tails of edge e1. It is represented
as a sum of three bits ke1,v4,e2,v6 , xv1,e1,v4,e2,v6 and xv2,e1,v4,e2,v6 modulo two:

xv4,e2,v6
= ke1,v4,e2,v6 + xv1,e1,v4,e2,v6

+ xv2,e1,v4,e2,v6 (mod 2).

Again, one can think of bit ke1,v4,e2,v6 as an encryption key stored at edge e1 and
bits xv1,e1,v4,e2,v6

and xv2,e1,v4,e2,v6 as encrypted documents distributed between
vertices v1 and v2.

To summarize, informally, each edge in the hypergraph stores one encryption
key corresponding to each path initiated at this edge. Vertices store encrypted
documents as they are being disseminated along the paths. This intuition is
captured in the two definitions below.

Definition 15 For any attribute a ∈ A = V ∪ E, let domain Da be defined as
follows:

1. If a ∈ V , then Da is the set of all functions that map paths initiated at
vertex a into set {0, 1}.

2. If a ∈ E, then Da is the set of all functions that map paths initiated at
edge a into set {0, 1}.
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Definition 16 Let L be the set of all vectors 〈fa〉a∈A ∈
∏

a∈ADa such that for
each edge-initiated path 〈e1, v1, e2, . . . , en, vn〉, the following equation is satisfied:

fe1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

fu(〈u, e1, v1, e2, . . . , en, vn〉) =

fv1
(〈v1, e2, . . . , en, vn〉) (mod 2). (12)

This concludes the definition of the informational model IH = 〈A, {Da}a∈A, ‖ ·
‖,L〉.

Definition 17 Let 0 be the vector 〈fa〉a∈A such that fa = 0 for each a ∈ A.

Lemma 9 0 ∈ L.

Proof. Equation (12) holds for vector 0 because 0+
∑

u∈in(e1) 0 = 0 (mod 2). �

The dissemination of encrypted information described above on the hyper-
graph depicted in Figure 9 takes place from a head vertex of an edge to the tail
vertices of the edge. This means that the bit stored at the head vertex could be
determined based on the encryption key and the bits stored at the tail vertices.
In other words, information flows in the direction that is opposite to the direc-
tion of the edge, but the functional dependency exists in the same direction as
the edge. This observation is the key to the understanding of the next lemma.

Lemma 10 For any set of vertices A ⊆ V , any set of edges F ⊆ E, any k ≥ 0,
and any two vectors `1, `2 ∈ L, if `1 =A,F `2, then `1 =Ak

F
`2.

Proof. We prove the lemma by induction on k. If k = 0, then Ak
F = A by

Definition 9. Thus, assumption `1 =A,F `2 implies that `1 =A `2 by Definition 4.
Suppose that `1 =Ak

F
`2. We need to prove that `1 =Ak+1

F
`2. By Definition 9,

it suffices to prove that `1 =b `2 for each e ∈ F and each b ∈ out(e), where
in(e) ⊆ Ak

F . See Figure 10.

e

u2

u3

b

e1

vn

u1

v1Ak
F Ak+1

F

e2 . . . . . . en

Figure 10: Illustration to Lemma 10.

Let `1 = 〈f1a 〉a∈A and `2 = 〈f2a 〉a∈A. It suffices to show that

f1b (〈b, e1, v1, . . . , en, vn〉) = f2b (〈b, e1, v1, . . . , en, vn〉)
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for each path 〈b, e1, v1, . . . , en, vn〉 initiated at vertex b. Indeed, by Definition 16,

f1b (〈b, e1, v1, . . . , en, vn〉) = f1e (〈e, b, e1, v1, . . . , en, vn〉) +∑
u∈in(e)

f1u(〈u, e, b, e1, v1, . . . , en, vn〉) (mod 2).

Recall that e ∈ F , and so, by Definition 4, assumption `1 =A,F `2 of the lemma
implies that `1 =e `2. Hence, f1e = f2e . Then,

f1b (〈b, e1, v1, . . . , en, vn〉) = f2e (〈e, b, e1, v1, . . . , en, vn〉) +∑
u∈in(e)

f1u(〈u, e, b, e1, v1, . . . , en, vn〉) (mod 2).

By induction hypothesis, `1 =Ak
F
`2. Additionally, in(e) ⊆ Ak

F by the choice of

edge e. Thus, `1 =in(e) `2 by Definition 4. Hence, f1u = f2u for each u ∈ in(e).
Then,

f1b (〈b, e1, v1, . . . , en, vn〉) = f2e (〈e, b, e1, v1, . . . , en, vn〉) +∑
u∈in(e)

f2u(〈u, e, b, e1, v1, . . . , en, vn〉) (mod 2).

Therefore, f1b (〈b, e1, v1, . . . , en, vn〉) = f2b (〈b, e1, v1, . . . , en, vn〉), by Definition 16.
�

Lemma 11 For any set of vertices A ⊆ V , any set of edges F ⊆ E, and any
two vectors `1, `2 ∈ L, if `1 =A,F `2, then `1 =A∗

F
`2.

Proof. The statement of the lemma follows from Lemma 10 and Definition 10. �

A cut (V1, V2) is a partition of the set of all vertices E. We consider cuts to
be directed in the sense that (V1, V2) and (V2, V1) are two different cuts.

Definition 18 An edge e ∈ E is called a crossing edge of a cut (V1, V2), if
in(e) ⊆ V1 and out(e) ∩ V2 6= ∅.

The set of all crossing edges of cut c = (V1, V2) is denoted by Cross(c). For
example, edge e1 is the only crossing edge of the cut c depicted in Figure 11.
Generally speaking, cuts (V1, V2) and (V2, V1) have different sets of crossing
edges.

Lemma 12 For each c = (V1, V2), if e /∈ Cross(c) and out(e) ∩ V2 6= ∅, then
in(e) ∩ V2 6= ∅.

Proof. Suppose that in(e) ∩ V2 = ∅. Then, in(e) ⊆ V1. Thus, we have
out(e) ∩ V2 6= ∅ and in(e) ⊆ V1. Therefore, e ∈ Cross(c) by Definition 18. �
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Figure 11: Cross(c) = {e1}, where c = ({v1, v2, v3}, {v4, v5, v6})

Lemma 13 If c = (A∗F , V \A∗F ), then Cross(c)∩F = ∅, for each set of vertices
A ⊆ V and each set of edges F ⊆ E.

Proof. Suppose that there is an edge e ∈ F such that e ∈ Cross(c). Thus,
in(e) ⊆ A∗F and out(e)∩ (V \A∗F ) 6= ∅, by Definition 18. By Lemma 4, there is
k ≥ 0 such that A∗F = Ak

F . Hence, in(e) ⊆ Ak
F . Thus, out(e) ⊆ Ak+1

F by Defini-
tion 9. Therefore, by Definition 10, out(e) ⊆ A∗F , which yields a contradiction
with out(e) ∩ (V \A∗F ) 6= ∅. �

The next definition specifies the core construction in the proof of the com-
pleteness by introducing the notion of a cut-limited inverted tree rooted at a
vertex v. Informally, such a tree starts at vertex v and grows through the edges
and vertices of the hypergraph. The tree is inverted because it grows in the
direction against that of the edges. From each vertex, the tree brunches into
each edge that has this vertex as a head. From each edge, the tree expands
through only one of the tail vertices. Furthermore, if the edge is a crossing
edge of the cut, then the tree does not expand from this edge at all. The tree
can potentially loop through the hypergraph and be infinite. Figure 12 shows
a cut-limited inverted tree rooted at vertex m. Note that this tree is inverted
as it expands in the direction opposite to the direction of the edges. The tree
is limited by cut (V1, V2) and, thus, it does not continue through the crossing
edge r of this cut. The tree brunches at vertex d and continues through edges
r, s, and t of which vertex d is a head. Since the tree does not brunch at edges,
edge y can only expand either through tail h or through tail k. The inverted
tree depicted in Figure 12 expands through tail h.

The next definition specifies the notion of a cut-limited inverted tree. We
formally represent tree as a collection of paths.

Definition 19 For any cut c = (V1, V2), c-limited inverted tree rooted at vertex
v ∈ V2 is any minimal set of paths T such that

1. 〈v〉 ∈ T ,

2. for each vertex-initiated path 〈v0, e1, v1, e1, . . . , en, vn〉 ∈ T and edge e0 ∈
E such that v0 ∈ out(e0), we have 〈e0, v0, e1, v1, e1, . . . , en, vn〉 ∈ T ,
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Figure 12: A cut-limited inverted tree rooted at vertex m.

3. for each edge-initiated path 〈e1, v1, e1, . . . , en, vn〉 ∈ T if e1 /∈ Cross(c)
then there is exactly one v0 ∈ in(e1)∩V2 such that 〈v0, e1, v1, e1, . . . , en, vn〉 ∈
T .

Because set T in the above definition is required to be a minimal set satisfying
the given conditions, all paths in this set terminate with the vertex v at which
the tree is “rooted”.

Lemma 14 For any cut c = (V1, V2) and any v ∈ V2 there is a c-limited inverted
tree rooted at vertex v.

Proof. We recursively construct an infinite sequence of sets of paths T0, T1, T2, . . . ,
whose vertices are all in set V2, as follows:

1. T0 = {〈v〉}.

2. For each k ≥ 0, let

T2k+1 = {〈e, v1, e1, . . . , vn, en, v〉 | 〈v1, e1, . . . , vn, en, v〉 ∈ T2k, v1 ∈ out(e)}.

3. For each path π = 〈e0, v1, e1, . . . , vn, en, v〉 ∈ T2k+1 such that e0 /∈ Cross(c),
choose any vertex u ∈ in(e0) ∩ V2. Since v1 ∈ out(e0) ∩ V2, such vertex
u exists by Lemma 12. Construct a path 〈u, e0, v1, e1, . . . , vn, en, v〉. Let
T2k+2 be the set of all paths constructed in such a way, taking only one
path (and only one vertex u) for each path π.

Let T =
⋃

i≥0 Ti. �
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Lemma 15 For any cut c = (V1, V2), any c-limited inverted tree rooted at vertex
v ∈ V2, and any π ∈ T , all vertices in path π belong to set V2.

Proof. The statement of the lemma follows from condition 3 of Definition 19
and the minimality condition on T of the same definition. �

The next lemma shows that two vectors can agree on a large set of attributes
while not being equal on all attributes.

Lemma 16 For any vector 〈fa〉a∈A ∈ L, any cut c = (V1, V2), and any b ∈ V2,
there is a vector 〈f ′a〉a∈A ∈ L such that

1. f ′u = fu for each u ∈ V1,

2. f ′e = fe for each e ∈ E \ Cross(c),

3. f ′b 6= fb.

Proof. By Lemma 14, there exists a c-limited inverted tree T rooted at vertex
b ∈ V2. Define vector 〈f ′a〉a∈A as follows:

f ′a(π) =


1 + fa(π), if a ∈ V and π ∈ T ,
1 + fa(π), if a ∈ Cross(c) and π ∈ T ,
fa(π), otherwise,

(mod 2), (13)

where π is a path initiated at a.

Claim 1 〈f ′a〉a∈A ∈ L.

Proof. We need to show that vector 〈f ′a〉a∈A satisfies equation (12) of Defini-
tion 16 for each edge-initiated path. There are three cases that we consider
separately:

v2 vnv1

u0

e1 e2 . . .
u1

u2

e3

Figure 13: Case I

Case I: path 〈e1, v1, e2, . . . , en, vn〉 does not belong to tree T . In this case, by
Definition 19, path 〈v1, e2, . . . , en, vn〉 does not belong to tree T either. Nei-
ther do paths 〈u, e1, v1, e2, . . . , en, vn〉 for each u ∈ in(e1). Thus, according to
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definition (13),

f ′e1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

f ′u(〈u, e1, v1, e2, . . . , en, vn〉)

= fe1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

fu(〈u, e1, v1, e2, . . . , en, vn〉).

Since 〈fa〉a∈A ∈ L, by Definition 16,

fe1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

fu(〈u, e1, v1, e2, . . . , en, vn〉)

= fv1(〈v1, e2, . . . , en, vn〉) (mod 2).

At the same time, since path 〈v1, e2, . . . , en, vn〉 does not belong to tree T ,
by definition (13), we have fv1(〈v1, e2, . . . , en, vn〉) = f ′v1(〈v1, e2, . . . , en, vn〉).
Therefore,

f ′e1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

f ′u(〈u, e1, v1, e2, . . . , en, vn〉)

= f ′v1(〈v1, e2, . . . , en, vn〉) (mod 2).

vnv1 v2

u0
V1 V2

e1 e2 . . .
u1

u2

Figure 14: Case II

Case II: path 〈e1, v1, e2, . . . , en, vn〉 belongs to tree T and e1 ∈ Cross(c). It
follows from Definition 19 that path 〈v1, e2, . . . , en, vn〉 belongs to tree T as
well and that path 〈u, e1, v1, e2, . . . , en, vn〉 does not belong to tree T for each
u ∈ in(e1). Hence, by definition (13),

f ′e1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

f ′u(〈u, e1, v1, e2, . . . , en, vn〉)

= fe1(〈e1, v1, e2, . . . , en, vn〉) + 1 +
∑

u∈in(e1)

fu(〈u, e1, v1, e2, . . . , en, vn〉) (mod 2).

Since 〈fa〉a∈A ∈ L, by Definition 16,

fe1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

fu(〈u, e1, v1, e2, . . . , en, vn〉)

= fv1(〈v1, e2, . . . , en, vn〉) (mod 2).
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At the same time, since path 〈v1, e2, . . . , en, vn〉 belongs to tree T , by defini-
tion (13) we have f ′v1(〈v1, e2, . . . , en, vn〉) = fv1(〈v1, e2, . . . , en, vn〉)+1 (mod 2).
Therefore,

f ′e1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

f ′u(〈u, e1, v1, e2, . . . , en, vn〉)

= fv1(〈v1, e2, . . . , en, vn〉) + 1 = f ′v1(〈v1, e2, . . . , en, vn〉) (mod 2).

vnv1 v2

u0
V1 V2

e1 e2 . . .
u1

u2

Figure 15: Case III

Case III: path 〈e1, v1, e2, . . . , en, vn〉 belongs to tree T and and e1 /∈ Cross(c). It
follows from Definition 19 that path 〈v1, e2, . . . , en, vn〉 belongs to tree T as well
and that there is a unique u0 ∈ in(e1)∩V2 such that path 〈u0, e1, v1, e2, . . . , en, vn〉
belongs to tree T . Hence, by definition (13),

f ′e1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

f ′u(〈u, e1, v1, e2, . . . , en, vn〉)

= f ′e1(〈e1, v1, e2, . . . , en, vn〉) + f ′u0
(〈u0, e1, v1, e2, . . . , en, vn〉) +∑

u∈in(e1)\{u0}

f ′u(〈u, e1, v1, e2, . . . , en, vn〉)

= fe1(〈e1, v1, e2, . . . , en, vn〉) + (fu0
(〈u0, e1, v1, e2, . . . , en, vn〉) + 1) +∑

u∈in(e1)\{u0}

fu(〈u, e1, v1, e2, . . . , en, vn〉)

= fe1(〈e1, v1, e2, . . . , en, vn〉) + 1 +∑
u∈in(e1)

fu(〈u, e1, v1, e2, . . . , en, vn〉) (mod 2).

Since 〈fa〉a∈A ∈ L, by Definition 16,

fe1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

fu(〈u, e1, v1, e2, . . . , en, vn〉)

= fv1(〈v1, e2, . . . , en, vn〉) (mod 2).
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At the same time, f ′v1(〈v1, e2, . . . , en, vn〉) = fv1(〈v1, e2, . . . , en, vn〉)+1 (mod 2)
by definition (13) since path 〈v1, e2, . . . , en, vn〉 belongs to tree T ,

f ′e1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

f ′u(〈u, e1, v1, e2, . . . , en, vn〉)

= f ′v1(〈v1, e2, . . . , en, vn〉) (mod 2).

This concludes the proof of the claim. �

Claim 2 f ′u = fu for each u ∈ V1.

Proof. Consider any vertex u ∈ V1. Recall from Definition 15 that the domain
of function fu is the set of all paths starting at vertex u. By Lemma 15, none
of these paths belongs to tree T . Therefore, f ′u = fu due to definition (13). �

Claim 3 f ′e = fe for each e ∈ E \ Cross(c).

Proof. The statement of the claim follows from definition (13). �

Claim 4 f ′b 6= fb.

Proof. By Definition 19, the single-element path 〈b〉 belongs to tree T . Thus,
f ′b(〈b〉) = 1 + fb(〈b〉) due to definition (13). Therefore, f ′b 6= fb. �

This concludes the proof of the lemma. �

Lemma 17 H  A �p B if and only if IH � A �p B, for each A,B ⊆ V and
each non-negative real number p.

Proof. (⇒). Suppose that H  A �p B. Then, by Definition 11, there is a
subset F ⊆ E such that w(F ) ≤ p and B ⊆ A∗F . By Definition 12, inequality
w(F ) ≤ p implies that ‖F‖ ≤ p. Thus, by Definition 6, it suffices to show that
for any two vectors `1, `2 ∈ L, if `1 =A,F `2, then `1 =B `2, which, in turn,
follows from statement B ⊆ A∗F and Lemma 11.
(⇐). Assume that IH � A�pB. Thus, by Definition 6, there is F ⊆ A = V ∪E
such that ‖F‖ ≤ p and for all `1, `2 ∈ L, if `1 =A,F `2, then `1 =B `2. Note that,
by Definition 12, ‖F‖ ≤ p implies that F ⊆ E and w(F ) ≤ p. Suppose now
that H 1 A�p B. Thus, B * A∗F , by Definition 11. Hence, there is b ∈ B such
that b /∈ A∗F . To finish the proof of the lemma, it suffices to construct `1, `2 ∈ L
such that `1 =A,F `2 and `1 6=b `2. Consider cut c = (A∗F , E \ A∗F ). Let `1 be
vector 0 ∈ L. By Lemma 16, there is vector `2 such that `1 =A∗

F ,E\Cross(c) `2,
and `1 6=b `2. Note that A ⊆ A∗F by Definition 10 and Definition 9. Thus,
`1 =A,E\Cross(c) `2. By Lemma 13, we have Cross(c)∩F = ∅. In other words,
F ⊆ E \ Cross(c). Therefore, `1 =A,F `2. �
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Lemma 18 H  ψ if and only if IH � ψ, for each ϕ ∈ Φ(V ).

Proof. We prove the lemma by induction on the structural complexity of for-
mula ψ. The base case is shown in Lemma 17. The induction step follows from
the induction hypothesis, Definition 11, and Definition 6. �

In the preceding part of this section, given any hypergraph H, we con-
structed a corresponding informational model IH and proved properties of this
informational model. Next, we state and prove the completeness theorem for
the informational semantics.

Theorem 3 For each set A and each formula ϕ ∈ Φ(A), if I � ϕ for each
informational model I = 〈A, {Da}a∈A, ‖ · ‖,L〉, then ` ϕ.

Proof. Assume that 0 ϕ. By Theorem 2, there is a hypergraphH = 〈V,E, in, out, w〉
such that ϕ ∈ Φ(V ) and H 1 ϕ. Therefore, IH 2 ϕ by Lemma 18. �

8 Completeness theorem for the finite informa-
tional semantics

In the previous section, we have shown the completeness of our logical system
with respect to the informational semantics. In Definition 3, we introduced the
notion of a finite informational model as a model in which each attribute has
a finite cost. In this section we prove the completeness of our logical system
with respect to the class of finite models. This is achieved by showing how any
(potentially infinite) informational model could be converted to a finite model
through the construction described below.

Definition 20 For any non-negative real number r and any informational model
I = 〈A, {Da}a∈A, ‖ · ‖,L〉, let Ir be tuple 〈A, {Da}a∈A, ‖ · ‖r,L〉, where

‖c‖r =

{
‖c‖, if ‖c‖ ≤ r,
r, otherwise.

for each attribute c ∈ A.

Corollary 2 For any non-negative real number r and any informational model
I, tuple Ir is a finite informational model.

Corollary 3 ‖c‖r ≤ ‖c‖, for each non-negative real number r, each informa-
tional model I = 〈A, {Da}a∈A, ‖ · ‖,L〉, and each attribute c ∈ A.

Definition 21 For any ϕ ∈ Φ(A), let rank(ϕ) be defined recursively as follows:

1. rank(A�p B) = p,
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2. rank(¬ψ) = rank(ψ),

3. rank(ψ → χ) = max(rank(ψ), rank(χ)).

Lemma 19 If rank(ϕ) < r, then Ir � ϕ if and only if I � ϕ.

Proof. We prove the lemma by induction on the structural complexity of formula
ϕ. The inductive step immediately follows from Definition 6. Now, suppose that
formula ϕ has form A�p B.
(⇒) If Ir � A �p B, then, by Definition 6, there is a set C ⊆ A such that
(i) ‖C‖r ≤ p and (ii) for each `1, `2 ∈ L if `1 =A,C `2, then `1 =B `2. From
condition (i), Definition 21, and assumption rank(ϕ) < r of the lemma,

‖C‖r ≤ p = rank(ϕ) < r. (14)

Hence, ‖c‖r ≤ ‖C‖r < r for each c ∈ C, by Definition 5. Thus, by Defini-
tion 20, we have ‖c‖ = ‖c‖r. Then, by Definition 5 and the first inequality in
statement (14),

‖C‖ =
∑
c∈C
‖c‖ =

∑
c∈C
‖c‖r = ‖C‖r ≤ p.

By Definition 6, the inequality ‖C‖ ≤ p together with condition (ii) above
implies that I � A�p B.
(⇐) If I � A �p B, then, by Definition 6, there is a set C ⊆ A such that
(iii) ‖C‖ ≤ p and (iv) for each `1, `2 ∈ L if `1 =A,C `2, then `1 =B `2. By
Definition 5, Corollary 3, and again Definition 5,

‖C‖r =
∑
c∈C
‖c‖r ≤

∑
c∈C
‖c‖ = ‖C‖.

This along with condition (iii) implies that ‖C‖r ≤ p. Therefore, by Definition 6
and condition (iv), we have Ir � A�p B. �

We next state and prove the completeness theorem for the class of finite
informational models.

Theorem 4 If I � ϕ for each finite informational model I = 〈A, {Da}a∈A, ‖ ·
‖,L〉 such that ϕ ∈ Φ(A), then ` ϕ.

Proof. Suppose that 0 ϕ. Thus, by Theorem 3, there is an informational model
I = 〈A, {Da}a∈A, ‖ · ‖,L〉 such that I 2 ϕ. Pick any r such that rank(ϕ) < r.
Then, Ir 2 ϕ by Lemma 19. �

9 Conclusion

In this article we introduced a notion of the budget-constrained dependency
that generalizes the notion of functional dependency previously studied by Arm-
strong [1974]. We propose a sound and complete axiomatization that captures
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the properties of the budget-constrained dependency. Although the axioms of
our system are generalizations of the original Armstrong’s axioms, the proof
of the completeness for our system is significantly more complicated than its
Armstrong’s counterpart.
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