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We consider an interferometer that contains active elements, such as a parametric amplifier, with
general two-mode Gaussian unitary channels rather than the usually considered phase-shift channel.
We concentrate on a scheme based on the recently proposed pumped-up SU(1,1) active interferome-
ter where all input particles participate in the parameter estimation, and from which a conventional
SU(1,1) interferometer is a limiting case. Using the covariance matrix formalism, we derive the
quantum Fisher information of this active interferometer with a general two-mode Gaussian unitary
channel, as well as the sensitivity for a number-sum measurement scheme, finding simple expressions
for the latter. As an example application, we apply our results to Bose-Einstein condensates (BECs),
and in particular a BEC gravitational-wave detector based on resonance, finding that the sensitivity
of the detector can be improved by several orders of magnitude with this new interferometry scheme.

INTRODUCTION

Since its invention by Michelson in the late 19th century, interferometers have become a powerful tool for preci-
sion measurements, often achieving sensitivities that are not possible with any other known techniques. The most
astonishing application is perhaps gravitational-wave (GW) detection, with the Laser Interferometer Gravitational-
Wave Observatory (LIGO) using an interferometer of a very similar implementation to that designed by Michelson
to observe GWs for the first time [1]. The interferometers of LIGO are currently being upgraded to use techniques
of quantum metrology, with the application of squeezed light expecting to improve the sensitivity, which has already
demonstrated promising results in previous trials [2]. In general, quantum correlations allow interferometers to go

beyond the shot-noise limit 1/
√
N , where N is the number of probes, with Heisenberg scaling, 1/N , considered the

ultimate goal. One way to achieve this optimum scaling is to use an SU(2) interferometer design such as that imple-
mented by LIGO but with squeezed input states [3]. However, it is also possible to design an interferometer where the
quantum correlations are generated within it, requiring fewer optical elements and making it more robust to losses.
For example, an SU(1,1) (Mach-Zehnder) interferometer [4] is similar to an SU(2) Mach-Zehnder interferometer but
with the passive beam splitters replaced by active elements that parametrically create or annihilate correlated parti-
cles. The interferometer, therefore, generates entanglement between its side modes, allowing for Heisenberg-scaling
sensitivities. Such an interferometer has been realized experimentally in various systems, including optical systems
[5, 6], hybrid atom-light systems [7], and spinor Bose-Einstein condensates (BECs) [8, 9].

However, generating a large number, N , of particles in the side modes is extremely challenging and the sensitivity
is, therefore, easily beaten by interferometers operating at the standard quantum limit with large input states, despite
the poorer scaling with N . In order to overcome this issue, a variant of the SU(1,1) interferometer has recently been
proposed where the pump beam is mixed with the side modes such that all particles take part in the measurement
[10]. This essentially allows for 1/

√
NN0 scaling where N0 is the number of particles in the pump beam. Since, in

general, N0 � N , then this can improve the sensitivity of the original SU(1,1) interferometer and, in particular, the
sensitivity can never be worse [10]. This is similar to the fact that an SU(2) interferometer with two squeezed input
ports can provide the theoretically optimum sensitivity [3] but, in practice, it is currently preferable to use a large
coherent beam and a squeezed state (see e.g. [11]).

An interferometer can be broken up into three stages: 1) the generation of the (reduced) quantum state of the side
modes, 2) the quantum channel(s) that imprints the parameter to be estimated, and 3) the measurement process.
The ultimate theoretical precision of the interferometer is obtained from the saturation of the quantum Cramér-Rao
bound (QCRB) [12, 13], 1/

√
MH, where M is the number of repeated measurements and H is the quantum Fisher

information (QFI) introduced by Braunstein and Caves [14] and optimizes over all possible measurement schemes
such that it is independent of stage 3). However, for a particular, measurement scheme, the precision is bounded

by the ‘classical’ Cramér-Rao bound, 1/
√
MF , where F is referred to as the ‘classical’ Fisher information for the

measurement scheme, with F ≤ H. This can also be related to the sensitivity of the interferometer ∆ε, defined by
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the minimum value of the shift in the parameter to be estimated ε that can be sensed by considering changes in the
values of the measured observable.

The second stage of an interferometer is usually considered to consist of a phase-shift channel that imprints phases
onto the two arms. Here, we extend this to general (two-mode) Gaussian unitary channels, i.e. mode-mixing and
squeezing channels, and use the covariance matrix formalism (see Section II) to calculate the QFI and sensitivity for
a number-sum measurement scheme. In particular, we find straightforward expressions using the covariance matrix
formalism, which was not used in [10], for calculating the sensitivity of general interferometers with number-sum
measurements. This type of interferometer would be implementable in many systems, such as optical, hybrid atom-
light, cold atoms and BECs. In particular, we apply our considered interferometry scheme to a GW detector that uses
phonons of a BEC [15], finding that the sensitivity of the device can, in practice, be greatly improved in comparison
to the previously considered scheme. In this case, all the active and passive elements of the interferometer would be
applied to a single BEC in a trap and would not be separated in space as in a traditional interferometer, such as
Mach-Zehnder.

I. ACTIVE INTERFEROMETRY

The original active interferometer, the SU(1,1) interferometer, was proposed by Yurke et al. [4] and resembles a
Mach-Zehnder interferometer but with the passive beam-splitters replaced by active elements. The input state is a
large coherent beam (the pump) that is sent to a parametric amplifier from which two beams, the side modes, are
created in a two-mode squeezed vacuum state. The beams then undergo a phase shift after which they are recombined
in a second parametric amplifier. Subsequently, a measurement is performed, such as a number-sum measurement,
from which the phase shift can be estimated. The optimum sensitivity, ∆φ, of this interferometry is found to scale as
1/N [4].

A recently proposed variant of the standard SU(1,1) interferometer, called pumped-up SU(1,1) [10], places a tritter
(three-way beam splitter) between the first parametric amplifier and the phase-shift channel, and linearly mixes the
side modes with the pump mode, which is assumed to be relatively undepleted after the fist parametric amplifier.
This is illustrated in Figure 1, with Ûε representing the unitary transformation for a phase-shift channel, i.e. Ûε =

exp(−iφN̂/2) where φ := φ1 + φ2, N̂ := â†1â1 + â†2â2, and â1 and â2 are the annihilation operators for the two side
modes.1 Depending on the chosen angle, the tritter can significantly increase the side mode particle numbers, at the
expense of them no longer being in a squeezed vacuum state. Since, the pump mode will have far more particles than
the side modes after the first active element, at least in foreseeable SU(1,1) interferometers, this leads to an increase
in the sensitivity of the interferometer. Essentially, the sensitivity can now be made proportional to 1/

√
NN0 with

N0 � N .

II. ACTIVE INTERFEROMETRY WITH GAUSSIAN UNITARY CHANNELS

The schemes presented in the previous section assume that the side modes undergo unitary transformations that
encode phases φ1 and φ2 on the respective states, and are sensitive to the total unitary transformation Û(φ) =

exp(−iφN̂/2) [4]. In this section, we consider a pumped-up SU(1,1) interferometer but with the phase-shift channels

now replaced with two-mode squeezing and mode-mixing channels, which is illustrated in Figure 1, with Ûε representing
the unitary transformation for these channels. Together with the phase-shift channel, considered in [10], these form
the complete set of unitary two-mode Gaussian channels (see e.g. [16]).2 They can also be considered as general (two-
mode) Bogoliubov transformations, and are generated through quadratic interaction Hamiltonians. Higher-order
Hamiltonians will not, in general, be Gaussian-preserving [16]. In this case, the side modes undergo the following
unitary transformations:

U(ξ) = eξâ
†
1â
†
2−ξ

∗â1â2 or (1)

U(ζ) = eζâ
†
1â2−ζ

∗â1â
†
2 , (2)

where ξ := seiφB and ζ := meiφA , with s ≥ 0, m ≥ 0 and φA, φB ∈ R. In the following, we will consider the
parameters of interest to be the squeezing parameter s and mode-mixing parameter m. A relevant application for
this interferometry scheme is considered in Section III.

1 By the original definition [4], the pumped-up SU(1,1) interferometer [10] is technically not an SU(1,1) interferometer since the unitary
transformation of the tritter does not belong to the SU(1,1) group. However, the original SU(1,1) (Mach-Zehnder) interferometer [4] is
derived when the tritter angle is zero.

2 For an analysis of the optimum input states for such channels using the QFI, see [17].



3

pump

sid
e m

ode 1

side mode 2

FIG. 1. Interferometer setup considered in Section II. The first stage is an active beam splitter Ûsq(r), after which the side modes

and pump are sent through a three-way passive beam splitter (a tritter) Ûtr(θ) as in the pumped-up SU(1,1) interferometer

[10]. In pumped-up SU(1,1), the side modes then undergo a phase-shift channel Ûε = U(φ), whereas, for the scheme in Section

II, the side modes undergo a (two-mode) Gaussian unitary channel, with Ûε representing the unitary transformation of the
channel. The beams are then recombined through the reverse tritter and active beam splitter operations. Finally, a number-sum
measurement is performed on the side modes.

In order to formulate a simple expression for the QFI and sensitivity of this interferometry, it is convenient to use
the covariance matrix formalism. This uses a phase-space representation of a quantum state where a Gaussian state
is fully defined by its displacement vector d and covariance matrix σ. In the real q, p representation, these are defined
in the following way for a general system consisting of n bosonic modes:3

d := 〈x̂〉 , (3)

σij :=
1

2
〈{x̂i, x̂j}〉 − 〈x̂i〉 〈x̂j〉 , (4)

where x̂ := (x̂1, x̂2, . . . x̂2n−1, x̂2n)T and x̂i are quadratures defined by:

x̂2i−1 := âi + â†i , (5)

x̂2i := i(â†i − âi), (6)

with i ∈ Z+, and âi and â†i the annihilation and creation operators. For example, a two-mode squeezed vacuum state
is defined by d = 0 and the covariance matrix:

σ =

(
cosh 2r 1 sinh 2r Rϑsq

sinh 2r Rϑsq cosh 2r 1

)
, (7)

where:

1 :=

(
1 0
0 1

)
, (8)

Rϑsq :=

(
cosϑsq sinϑsq
sinϑsq − cosϑsq

)
, (9)

and r and ϑsq are respectively the squeezing parameter and phase. Unitary transformations U acting on density
matrices now lead to symplectic matrices S acting on the displacement and covariance matrices through d′ = Sd and
σ = SσST (see e.g. [16]).

The initial state of the pump mode is assumed to be a coherent state, and so the displacement and covariance

3 Note that several conventions are used for the definitions of d,σ and x̂. See, e.g. [16], for an alternative convention to that presented
here.
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matrices of the full input state to the interferometer are:

d0 =


2Re(α)
2Im(α)

0
0
0
0

 =
√
N


2 cosϑ0
2 sinϑ0

0
0
0
0

 , (10)

σ0 = 16, (11)

where we have written α ≡
√
Neiϑ0 , with N the total particle number, and 16 := diag(1, 1, 1, 1, 1, 1) the identity

matrix of which the first two rows and columns are for the pump mode, the next two rows and columns are for one
of the side modes, and the final rows and columns are for the other side mode.

We next act on this state with a two-mode squeezing operation to parametrically populate the side modes. The state
of the full system is now given by Ssd0 and Ssσ0S

T
s where Ss is given by (A1) with r the squeezing parameter and

ϑsq the phase of the process. Here we have assumed that the pump is fairly undepleted by the squeezing operation

and remains in a coherent state, but we take α → α0 after acting with Ss, where |α2
0| := |α|2 − 2 sinh2 r, and

N0 := |α0|2, N := 2 sinh2 r, so that particle number is conserved [10]. After the phonons are parametrically excited
from the condensate, we apply a tritter to the three modes. The symplectic matrix for this operation Str is derived
in Appendix B and given by (A2), where θ is the angle of the tritter and ϑ is its phase. Following the tritter stage, we
act on the side modes with the squeezing or mode-mixing operations given by (1) and (2). The symplectic matrices
for these operations are respectively given by (A3) and (A4). Subsequently, the beams are brought back together with
another tritter and then an outcoupling process, which are both the reverse of the operations that were performed
prior to the Gaussian unitary channel. The state of the full interferometer is then given by:

d = Sd0, (12)

σ = Sσ0S
T , (13)

where S := S−SεS+ with S− := Ss(−r)St(−θ), S+ := St(θ)Ss(r) and Sε being either the squeezing or mode-
mixing channel for the side modes. At the end of the interferometer, we assume the conventional SU(1,1) number-sum

measurement of particles in each mode [4]. That is, the the measured observable is: Ŝ = N̂ := â†1â1 + â†2â2.

A. Quantum fisher information

Since it is independent of the particular measurement scheme used, when calculating the QFI we only need to
consider the operations up to and including the Gaussian unitary channels i.e. the state of the relevant system is
defined by d = SεS+d0 and σ = SεS+d0(SεS+)T .4 For Gaussian states, the QFI, Hε, can be obtained through
[18, 19]:

Hε =
1

2

Tr[(σ−1ε σ̇ε)
2]

1 + µ2
ε

+ ∆d′Tε σ
−1
ε d

′
ε + 2

(µ̇ε)
2

1− µ4
ε

, (14)

where:

dε := Sεd, (15)

σε := STε σSε, (16)

σ̇ε :=
dσε
dε

, (17)

∆d′Tε :=
d(dε+ξ − dε)

dξ

∣∣∣∣
ξ=0

, (18)

µ̇ε :=
dµε
dε

, (19)

4 To obtain the QFI for the conventional phase-shift channel, the Sε matrix would be that presented in (A7). This then results in the
same expressions derived in [10] which were obtained using a Heisenberg picture with the annihilation and creation operators, in contrast
to the Schrödginer picture, phase-space method considered here.
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and µε := 1/
√

detσε is the purity. Above we have taken ε as the parameter of interest, which is proportional to the
squeezing parameter s of (1) for the squeezing operation, and m of (2) for the mode-mixing operation. Precisely, we
define s =: 1

4εB and m =: 1
4εA where B and A are proportionality constants.

When the squeezing channel is chosen, the QFI is found to be:

H =
1

16
B2
[
4 + sin2(2θ) sinh2 r + 2(1 + cos4 θ)η2(ϑsq) sinh2(2r) + |α0|2

(
4 sin4 θ + η1(r) sin2 2θ

)]
, (20)

where:

η1(r) := sinh(2r) cos(2ϑ− 2ϑ0 − ϑsq + 2φB) + cosh(2r), (21)

η2(ϑsq) := sin2(ϑsq − φB). (22)

When ϑsq = φB + π/2 and ϑ = ϑ0−φB/2 + π/4, H has three turning points at θ = 0, θ = π/2 and θ = θt where θt is

provided in (C1) and matches the analogous optimum angle found in [10] for a phase-shift channel. For large N , θt
can be approximated as 1

4π + csc−1(N +
√
N(N + 2))/2. For θ = 0, θ = π/2 and θ = θt, H is:

H(θ = 0) =
1

4
B2
(

1 + sin2(ϑsq − φB) sinh2(2r)
)
≡ 1

4

(
1 + sin2(ϑsq − φB)N2

)
, (23)

H(θ =
π

2
) =

1

4
B2
(

1 +N0 +
1

2
sin2(ϑsq − φB)N2

)
, (24)

H(θ = θt) =
1

32
B2Ne2r(1 + coth r) +O(N

0
) (25)

−−−→
r�1

1

8
B2NN, (26)

where, for the θ = θt turning point, we have assumed that N � 1 and taken the optimum phase relation ϑ =
ϑ0 + ϑsq/2 − 2φB . When θ = 0 we recover standard SU(1,1) interferometry, and so (23) is the QFI for an SU(1,1)
interferometer with a squeezing channel. This type of interferometer derived when θ = 0 could still be considered
an SU(1,1) interferometer since the unitary representation of a squeezing channel is part of the SU(1,1) group and,

although a phase-shift channel described by Ŝ is no longer present, Ŝ still forms the measurement process.
In general, if we assume N � 1 in (20), then we obtain:

H =
1

4
B2N

(
sin4 θ +

1

4
sin2(2θ)η1(r)

)
+O(N

0
) (27)

≈ 1

8
B2 sin2(2θ)NN, (28)

where in the last line we have assumed that N � 2 and taken the optimum phase relation ϑ = ϑ0 + ϑsq/2 − 2φB .
For the pump to remain relatively undepleted before the squeezing channel, we then have (see Appendix D for more
detail):

H ≈ 1

4
B2
(

1 +N2 + θ2(N0e
2r +N/2−N2)

)
(29)

≈ 1

2
B2θ2N0N, (30)

where we have again used ϑ = ϑ0 + ϑsq/2− 2φB , and further assumed that r � 1 and N � 1 in the last line. Note
that, as with pumped-up SU(1,1) with a phase-sift channel [10], the QFI for pumped-up SU(1,1) with a squeezing
channel is never worse than a standard SU(1,1) interferometer with a squeezing channel, and will likely be orders of
magnitude larger in practical setups. This is illustrated in Section III using a particular practical application.

If we instead use the mode-mixing channel, the QFI is given by:

H =
1

8
A2
[
(1 + cos2 θ) sinh2(2r) + sin2 θ Φ1(θ, φA)

(
sinh2(2r)− 2 sinh2 r

)
(31)

+ 2|α0|2 sin2 θ
(

sin2 θ sin2 φ+ Φ1(θ, φA)η3(r)
)]

(32)

where:

Φ1(θ, φA) := sin2(θ) sin2(φA)− 1, (33)

η3(r) := sinh(2r) cos(2ϑ− 2ϑ0 + ϑsq)− cosh(2r). (34)
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Analogous expressions to (23)-(25) for the squeezing case can be obtained from (31) when θ = 0, θ = π/2 with
φA = π/2, and θ = π/2 with φA = 0:

H(θ = 0) =
1

4
A2N2, (35)

H(θ =
π

2
, φA =

π

2
) =

1

4
A2
(
N0 +

1

2
N2
)
, (36)

H(θ =
π

2
, φA = 0) =

1

4
A2(Ne2r +N) +O(N

0
) (37)

−−−→
r�1

1

2
A2NN, (38)

where, for the last case we have assumed that N � 1 and taken ϑ = ϑ0 − ϑsq/2 + π/2. As for the squeezing channel
above, the θ = 0 case (35) is the QFI for a conventional SU(1,1) interferometer with a mode-mixing channel. In
contrast to the squeezing channel case, this type of interferometer derived when θ = 0 would not be considered an
SU(1,1) interferometer by the original definition [4] since the unitary representation of the mode-mixing channel does
not form part of the SU(1,1) group. Instead, such an interferometer would be described by a larger group, for example,
the unitary group associated with a double covering of Sp(4,R) [20].

In general, if we assume N � 1 in (31), then we obtain:

H =
1

4
A2N sin2 θ

(
sin2 θ sin2 φA + Φ1(θ, φA)η3(r)

)
+O(N

0
) (39)

≈ 1

2
A2 sin2 θ(1− sin2 θ sin2 φA)NN, (40)

where in the last line we have assumed that N � 1/2 and again taken ϑ = ϑ0−ϑsq/2 +π/2. For the pump to remain
relatively undepleted before the mode-mixing channel, we then find:

H ≈ 1

4
A2
(
N2 + θ2(N0e

2r +N/2−N2)
)

(41)

≈ 1

2
A2θ2N0N, (42)

where we have assumed that r � 1 in the last line. This is similar to the QFI for the squeezing channel (29), just
with B replaced by A. As in the squeezing case, the QFI for pumped-up SU(1,1) with a mode-mixing channel is never
worse than the original SU(1,1) interferometry design with a mode-mixing channel rather than a phase-shift channel,
and will likely be orders of magnitude larger in practical setups, which we consider further in Section III.

B. Sensitivity

In the previous section we calculated the QFI for pumped-up SU(1,1) interferometry with a mode-mixing and
squeezing channel using the covariance matrix formalism. We now consider the particular implementation of pumped-
up SU(1,1) discussed in Section II where the measurement process is the sum of the number of particles in the side

modes, i.e. the measured observable is Ŝ = N̂ := â†1â1 + â†2â2. The square of the sensitivity of the interferometer is
defined as (see e.g. [11] for a derivation):

∆2ε :=
Var(Ŝ)

(∂ε 〈Ŝ〉)2
(43)

where Var(Ŝ) := 〈Ŝ2〉 − 〈Ŝ〉
2
. For Gaussian states, this is related to the Fisher information through [21]:

F = F0 +
2
(
∂ε

√
Var(Ŝ)

)2
Var(Ŝ)

(44)

where:

F0 :=
1

∆2ε
, (45)
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such that F ≥ F0. Writing (43) in the covariance matrix formalism in the q, p basis, we find the simple expressions:5

〈Ŝ〉 =
1

4
[Tr(σs) + dTs ds − 2n], (46)

Var(Ŝ) =
1

8
[Tr(σ2

s) + 2dTs σsds − 2n] (47)

where n is the number of modes, which is 2 in this case, and σs and ds are the covariance and displacement matrices
of the side modes, which are generated from d and σ given in (12) and (13) by simply removing the first two rows
and columns.

Working with small s, if the squeezing channel is chosen, (46)-(47) become:

〈Ŝ〉 =
1

4
s2
(
|α0|2 sin2(2θ)(sinh(2r) cos(2ϑ− 2ϑ0 − ϑsq + 2φB + cosh(2r)) (48)

+ 4
(
1 + cos4 θ

) (
sinh2(2r) sin2(ϑsq − φB) + 1

)
+ sin2(2θ) cosh2 r

)
, (49)

Var(Ŝ) =
1

4
s2
(
|α0|2 sin2(2θ)(sinh(2r) cos(2ϑ− 2ϑ0 − ϑsq + 2φB) + cosh(2r)) (50)

+ 8
(
1 + cos4 θ

) (
sinh2(2r) sin2(ϑsq − φB) + 1

)
+ sin2(2θ) cosh2 r

)
, (51)

=⇒ F0 =
1

16
B2

(
(|α0|2η1 + cosh2 r) sin2(2θ) +

(
1 + cos4 θ

)
(sinh2(2r)η2 + 1)

)2
(|α0|2η1 + cosh2 r) sin2(2θ) + 2 (1 + cos4 θ) (sinh2(2r)η2 + 1)

. (52)

We now use particle conservation to write |α0(r)|2 = |α|2 − 2 sinh2 r and |α|2 = N so that |α(r)|2 = 1/ε − 2 sinh2 r,
where ε := 1/N , and take N � 1, to find:

F0 =
1

16
B2 sin2(2θ)η1(r)N +O(N

0
). (53)

Note that this is contained in the corresponding expression for the QFI (27) and agrees with (28) in the same limits.
For the pump to remain relatively undeleted before the squeezing channel, we then obtain

F0 ≈
1

2
B2θ2N0N, (54)

when r � 1, and 2ϑ = 2ϑ0 + ϑsq − 2φB , which agrees with the corresponding QFI expression (30). The number-sum
measurement is, therefore, an optimum measurement scheme in these limits.

On the other hand, if the mode-mixing channel is chosen, then we have:

〈Ŝ〉 = m2
(

sin2 θ
(
Φ1|α0|2η3(r)− Φ2 sinh2 r + (Φ1 − 1) sinh2(2r)

)
+ 2 sinh2(2r)

)
, (55)

Var(Ŝ) = m2
(

Φ1 sin2 θ
(
|α0|2η3(r)− sinh2 r + 2 sinh2(2r)

)
+ 2(1 + cos2 θ) sinh2(2r)

)
, (56)

where

Φ2 := sin2(θ) cos2(φA)− 1. (57)

Taking N � 1, we find:

F0 =
1

4
A2 sin2 θ Φ1(θ, φA)η3(r)N +O(N

0
). (58)

Note that, as with the squeezing channel considered above, this is contained in the corresponding expression for the
mode-mixing QFI (39) and agrees with (40) in the same limits. For the pump to remain relatively undeleted before
the mode-mixing channel, we then obtain:

F0 ≈
1

2
A2θ2N0N, (59)

with 2ϑ = 2ϑ0 − ϑsq and r � 1. This agrees with the corresponding QFI expression (42). The number-sum
measurement is, therefore, also an optimum measurement scheme for the mode-mixing case in these limits.

5 See Appendix F for the equivalent expressions for homodyne/heterodyne measurements.
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III. APPLICATION: DETECTING GRAVITATIONAL WAVES WITH PHONONS OF A BEC

We now apply our considered interferometry schemes to Bose-Einstein condensates and, in particular, a GW
detector based on phonons of a BEC that resonate with a GW. This detector was recently proposed in [15] and
was suggested to look for GWs from persistent sources that have frequencies slightly higher than the GWs suited to
LIGO (around 1 kHz − 100 kHz). Persistent sources include, for example, pulsars and spinning neutron stars (that
are non-axisymmetric), and, in contrast to the GWs from mergers seen by LIGO and VIRGO, GWs from persistent
sources have not been yet been observed. The detector uses the collective quantum excitations (phonons) of a BEC,
which are resonantly squeezed or mode-mixed by a GW in a scheme that resembles a quantum version of resonant
mass detectors [22], but with the GW parametrically, rather than directly, driving the quanta of sound waves (see
e.g. [23] for a discussion on the similarities and differences of these two types of detectors). The detector also utilizes
quantum metrology. In particular, a two-mode squeezed state of phonons is prepared that acts as a probe state in a
quantum metrology scheme for GW detection, and Heisenberg scaling in the number of initial phonons is observed.6

Since the GW acts as a squeezing or mode-mixing channel on the phonons (at least to second order in the GW
strain) we can, in principle, apply the interferometry setup considered in the previous sections to this detector. This
new scheme can be thought of as mixing the interferometry setup of the highly successful laser GW detectors, such as
LIGO and VIRGO, with the resonance process most associated with resonant-mass detectors, which were the first GW
detectors [22]. However, parametric resonance is utilized rather than the direct resonance process found in traditional
resonant-mass detectors, which would represent a coherent and so classical channel.

To apply the considered interferometry scheme, we take the condensate to be the pump mode (since its state
can be approximated by a highly-populated coherent state), and the two phonon modes to be the side modes. The
scheme requires parametrically amplifying the phonon modes from the condensate during the initial active element
stage, and mixing the condensate with the phonon modes during the tritter stage. The former could be achieved,
for example, by modifying the boundary conditions of the phonons in an analogue to the dynamical Casimir effect
[15, 26–29], introducing an additional time-dependent potential [30] (also see Appendix E), applying a laser to the
BEC [31–33], or using other methods such as enhancing Beliaev damping [34]. For the tritter, phonons have already
been beam split with a condensate in a process resembling heterodyne detection by turning off the trapping potential
[35, 36]. However, here we propose implementing the mixing at the initial stage of an interferometer rather than
just for a quantum measurement process (see Appendix E for a possible implementation that again involves applying
an additional, oscillating potential to the BEC). This would mean that all the active and passive elements of the
interferometer would consist of operations applied to a single trap that contains the BEC. That is, the elements would
not be spatially separated as in a traditional optical interferometer.

A. Quantum Fisher Information

In [15], a two-mode squeezed state of phonons is prepared and then a GW is found to effectively acts as a squeezing
or mode-mixing channel on the phonons. The QFI for the resonant squeezing channel can be shown to be (see
Appendix G for more detail):

H =
1

4
B2[1 + sin2(ϑsq − φB) sinh2 2r] (60)

=
1

4
B2[1 +N2

P ] when ϑsq = φB +
π

2
, (61)

where NP = 2 sinh2 r is the number of initially squeezed phonons and B is defined in (G7) with the angular frequencies
ωm, ωn of two phonon modes satisfying Ω = ωm + ωn where Ω is the GW angular frequency. The QFI, therefore, has
Heisenberg scaling, which is the optimum scaling achievable with a quadratic Hamiltonian. In general, the sensitivity

6 Rather than considering phonons of a BEC in an effectively rigid trap, we could also imagine a squeezed state of light in an optical cavity
(optical resonator), which will be the concern of future work (see also, e.g. [23, 24], for alternative schemes using optical resonators).
The GWs that would resonate with the light field could then be much higher than those considered here, with possible sources including,
for example, exploding Planck stars [25].
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of the detector is bounded by the QCRB:7

∆ε ≥ 1√
MH

(62)

≥ 1√
1
4B

2N2
PNdτ/t

, (63)

where Nd is the number of detectors, τ is the integration time, and we have assumed that NP � 1 and that there is
no delay in repeating the experiments.

If we instead use a pumped-up SU(1,1) interferometry scheme as outlined above, then the GW would be considered
to act on the phonons once they had been sent through a tritter with the condensate. The QFI in this new case would
be given by (30) with B given by (G7). Since N0 is always much greater than N for the description of the BEC used
here, and taking θ = 0 in (29) recovers the QFI of the original scheme, then the QFI is never worse in the SU(1,1)
case. Furthermore, it is likely to be experimentally challenging to create large phonon states in a squeezed vacuum
state, and the SU(1,1) scheme utilizes the large number of atoms in the condensate to compensate for this. Taking,
for example, N0 = 106 and r = 4.2 in (61), then the same QFI can be generated using r = 2 (and θ2 ≈ 0.094 so
that our description of the BEC remains valid during the GW channel) with the QFI for the pumped-up scheme (30),
and keeping r = 4.2 (with θ2 ≈ 0.092) leads to two orders of magnitude improvement over that obtained from (61).8

For the mode-mixing channel of the detector, on the other hand, the QFI would be given by (42) in the pumped-up
SU(1,1) scheme, with A given by (G9).

B. Sensitivity

In general, the sensitivity of the detector in the pumped-up SU(1,1) scheme is bounded by (62) but now with H
given respectively by (30) and (42) for the squeezing and mode-mixing channels. One possible implementation of the
original scheme proposed in [15] is to prepare an experiment similar to that in [27] where squeezed phonons could
be created by oscillating the trapping potential, and then phonon evaporation and singe-atom detectors are used to
measure the phononic state after the GW. The classical Fisher information for such an experiment was calculated in
[38] and found to well-approximate the QFI given by (61). On the other hand, with the pumped-up SU(1,1) scheme
using a number-sum measurement, the sensitivity would be given by (54) and (59) for the different quantum channels,
with the A and B definitions given above. As shown in Section II B, these sensitivities approximate that which would
be obtained from the QFIs when N0 � N , which is the case considered here.

IV. SUMMARY

We have introduced an active interferometric scheme based on the pumped-up SU(1,1) interferometer [10], but
with mode-mixing and squeezing channels rather than a conventional phase-shift channel. The QFI and, assuming a
number-sum measurement, sensitivity of the interferometer can achieve similar scaling to that observed in the original
pumped-up scheme [4] and should, in practice, provide orders of magnitude improvement over the original SU(1,1)
interferometer with the phase-shift channel replaced by a Gaussian channel. We have calculated these quantities
using the covariance matrix formalism, finding simple and convenient expressions for the sensitivity (see (46)-(47)).
We have also applied this interferometer setup to a GW detector based on phonons of a BEC since here the GW is
expected to essentially act as a mode-mixing or squeezing channel on the phonons in a resonant process (see Appendix
G). In practice, this can potentially improve the sensitivity of the detector compared to its original formulation [15]
by several orders of magnitude.

7 Here we are just concentrating on the sensitivity to the GW strain as defined by the QCRB rather than, for example, the spectral strain
sensitivity as often defined for GW detectors (see e.g. [37]).

8 This could potentially be improved further if the condensate could also be squeezed, perhaps allowing for a N2
0 Heisenberg-like scaling.

However, this would likely require a modified description for the BEC state that the GW interacts with than previously considered in
[15].
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Appendix A: Symplectic matrices of interferometry operations

Here we provide the symplectic matrices, in the real q, p representation, for the various processes involved in our
considered active interferometry schemes, as illustrated in Figure 1 and discussed in Section II. The first stage of
the interferometer is the two-mode squeezing operation that parametrically populates the side modes, which has the
following symplectic matrix (see e.g. [16]):

Ss =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 cosh r 0 sinh r cosϑsq sinh r sinϑsq
0 0 0 cosh r sinh r sinϑsq − sinh r cosϑsq
0 0 sinh r cosϑsq sinh r sinϑsq cosh r 0
0 0 sinh r sinϑsq − sinh r cosϑsq 0 cosh r

 , (A1)

where r is the squeezing parameter and ϑsq is the squeezing phase. The same convention is used as in Section II such
that the first two columns and rows are for the pump, the next two column and rows are for one of the side modes,
and the last two columns and rows are for the other side mode.

The next stage is a tritter between the side-modes and the pump, which has the following symplectic matrix (see
Appendix B for its derivation):

Str =



cos θ 0 1√
2

sin θ sinϑ 1√
2

sin θ cosϑ 1√
2

sin θ sinϑ 1√
2

sin θ cosϑ

0 cos θ − 1√
2

sin θ cosϑ 1√
2

sin θ sinϑ − 1√
2

sin θ cosϑ 1√
2

sin θ sinϑ

− 1√
2

sin θ sinϑ 1√
2

sin θ cosϑ cos2( θ2 ) 0 1
2 (−1 + cos θ) 0

− 1√
2

sin θ cosϑ 1√
2

sin θ sinϑ 0 cos2( θ2 ) 0 1
2 (−1 + cos θ)

− 1√
2

sin θ sinϑ 1√
2

sin θ cosϑ 1
2 (−1 + cos θ) 0 cos2( θ2 ) 0

− 1√
2

sin θ cosϑ − 1√
2

sin θ sinϑ 0 1
2 (−1 + cos θ) 0 cos2( θ2 )


, (A2)

where θ is the angle of the tritter and ϑ is its phase (see Appendix B for their definitions in terms of the Hamiltonian
of the tritter).

Following the tritter, there is the squeezing or mode-mixing channel, which are defined by the unitary transforma-
tions (1)-(2). The symplectic matrices for these are (see e.g. [16]):

Ssc =

 1 0 0
0 1 cosh s RφB sinh s
0 RφB sinh s 1 cosh s

 , (A3)

and

Smc =

 1 0 0
0 1 cosm RφA sinm
0 −RTφA

sinm 1 cosm

 , (A4)

where:

RφB :=

(
cosφB sinφB
sinφB − cosφB

)
, (A5)

RφA :=

(
cosφA sinφA
− sinφA cosφA

)
. (A6)

In contrast, the symplectic matrix for a unitary phase evolution Û(φ) = exp(−iφN̂/2) would be the following (see
e.g. [16]):

Spc =



1 0 0 0 0 0
0 1 0 0 0 0

0 0 cos φ2 sin φ
2 0 0

0 0 − sin φ
2 cos φ2 0 0

0 0 0 0 cos φ2 sin φ
2

0 0 0 0 − sin φ
2 cos φ2

 . (A7)
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Appendix B: Derivation of symplectic matrix of tritter

The tritter used in the pumped-up SU(1,1) interferometry scheme is generated by the following Hamiltonian [10]:

Htr =
~G√

2

[
eiϑâ†0(â1 + â2) + e−iϑâ0(â†1 + â†2)

]
, (B1)

which, in the Heisenberg picture, results in:

â1,2(θ) = â1,2 cos2(θ/2)− â1,2 sin2(θ/2)− ie−iϑ√
2
â0 sin θ, (B2)

â0(θ) = â0 cos θ − ieiϑ√
2

(â1 + â2) sin θ. (B3)

We can write this as:

a(θ) := Aa (B4)

where:

a :=



â0
â†0
â1
â†1
â2
â†2

 , (B5)

A :=



cos θ 0 − ie
iϑ
√
2

sin θ 0 − ie
iϑ
√
2

sin θ 0

0 cos θ 0 ie−iϑ√
2

sin θ 0 ie−iϑ√
2

sin θ

− ie
−iϑ
√
2

0 cos2(θ/2) 0 − sin2(θ/2) 0

0 − ie
iϑ
√
2

0 cos2(θ/2) 0 − sin2(θ/2)

− ie
−iϑ
√
2

0 − sin2(θ/2) 0 cos2(θ/2) 0

0 − ie
iϑ
√
2

0 cos2(θ/2) 0 cos2(θ/2)


. (B6)

We now move to the real symplectic q, p representation. In this case we have:

q = Qa, (B7)

where:

q :=


q0
p0
q1
p1
q2
q2

 , (B8)

and:

Q :=


1 1 0 0 0 0
−i i 0 0 0 0
0 0 1 1 0 0
0 0 −i i 0 0
0 0 0 0 1 1
0 0 0 0 −i i

 . (B9)

The symplectic representation of the tritter transformation is then:

q(θ) = Qa(θ) = QAa = QAQ−1q := Strq, (B10)
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where:

Str = QAQ−1 (B11)

=


cos θ 0 1√

2
sin θ sinϑ 1√

2
sin θ cosϑ 1√

2
sin θ sinϑ 1√

2
sin θ cosϑ

0 cos θ − 1√
2
sin θ cosϑ 1√

2
sin θ sinϑ − 1√

2
sin θ cosϑ 1√

2
sin θ sinϑ

− 1√
2
sin θ sinϑ 1√

2
sin θ cosϑ cos2( θ2 ) 0 1

2 (−1+cos θ) 0

− 1√
2
sin θ cosϑ 1√

2
sin θ sinϑ 0 cos2( θ2 ) 0 1

2 (−1+cos θ)

− 1√
2
sin θ sinϑ 1√

2
sin θ cosϑ 1

2 (−1+cos θ) 0 cos2( θ2 ) 0

− 1√
2
sin θ cosϑ − 1√

2
sin θ sinϑ 0 1

2 (−1+cos θ) 0 cos2( θ2 )

 . (B12)

Note that with a conventional two-way beam-splitter, θ = π/2 would swap the modes. However, for the above tritter,
θ = π/2 would not completely swap the side modes and pump modes. This is responsible for N appearing in the QFI
expressions in Section II, even when θ = π/2.

Appendix C: Quantum Fisher Information

The QFI for the SU(1,1) scheme presented in Section II when there is the squeezing channel is given by (20). Taking
ϑsq = φB + π/2 and ϑ = ϑ0 − φB/2 + π/4, the QFI H has three turning points: θ = 0, θ = π/2 and θ = θt where
θt = cos−1(zt)/2 with:

θt := cos−1(zt)/2, (C1)

zt :=
csch2 r(sinh(2r)2 − 2|α0|2)

4|α0|2(1 + coth r)− 2 cosh(2r)
≡ N(N + 4)− 2N

N(2N − 3N − 1) + 2(N −N)
√
N(N + 2)

. (C2)

The angle θt matches that found in [10] for a phase-shift channel. When N is large it can be approximated by [10]:

θt ≈
1

4
π +

1

2
csc−1(N +

√
N(N + 2)). (C3)

Appendix D: Full undepleted pump regime

In Section II, we assumed that the pump is relatively undepleted after the first active element (see also [10]). If we
want to further assume that the pump is also relatively undepleted after the tritter stage, then θ cannot be too large.
After the tritter stage, in general, the number of particles in the pump and side modes is the following:

N0(θ) = N0 cos2 θ +
1

2
N sin2 θ, (D1)

N(θ) = N0 sin2 θ +
1

2
N(1 + cos2 θ). (D2)

Let us require that N = γN0 and N(θ) = δN0(θ) where γ � 1, δ � 1 and δ ≥ α. Then θ must satisfy:

θ ≤ 1

2
arccos

(δγ + 2δ − 3γ − 2

δγ − 2δ + γ − 2

)
. (D3)

For example, taking δ = 0.1, we obtain:

θ ≤ 1

2
arccos

(18 + 29γ

22− 11γ

)
, (D4)

which, in the limit γ → 0, gives θ2 ≈ 0.0938, and we note that θ2/ sin2 θ ≈ 1.03.

Appendix E: Experimental implementation of parametric amplifier and tritter in BECs

The quantum field Hamiltonian for a rarefied, interacting, non-relativistic Bose gas can be well-approximated by
(see, e.g. [39])

Ĥ =

∫
drΨ̂†

[
− ~2

2m
∇2 + V(r)

]
Ψ̂ +

1

2
g

∫
drΨ̂†Ψ̂†Ψ̂Ψ̂, (E1)
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where Ψ̂ is the atomic field operator; V(r) is the trapping potential; and g = 4π~2a/m is the coupling strength for a
two-body contact potential, with a the s-wave scattering length and m the atomic mass [39, 40].

Working in the Heisenberg picture, the field Ψ̂ can be decomposed into:

Ψ̂(r, t) = [ψ̂0(r) + ψ̂(r, t)]e−iµ(t)/~, (E2)

where:

ψ̂0(r) := φ0(r)â0, (E3)

ψ̂(r, t) :=
∑
n 6=0

φn(r)ân(t), (E4)

with â0 the annihilation operator for the ground state, ân the annihilation operator for the nth excited state, and
µ(t) = µt, with µ the chemical potential. We now apply the Bogoliubov approximation where we assume that
the ground state is macroscopically occupied such that removing one atom has little effect on the behaviour of the
system, so â0 |N0〉 =

√
N0 |N0 − 1〉 ≈

√
N0 |N0〉. The ground state is then effectively in a large coherent state (i.e.

approximately in a classical state): â0 |ψ0〉 =
√
N0 |ψ0〉 and â†0 |ψ0〉 ≈

√
N0 |ψ0〉, so that we can drop the hat from â0

and â†0. We also apply a Bogoliubov transformation to ân such that we can write the excited field ψ̂ as:

ψ̂(r, t) =
∑
n

[un(r)b̂ne
−iωnt + v∗n(r)b̂†ne

iωnt]. (E5)

Then, plugging (E2) into (E1), using the Bogoliubov approximation and transformation (E5), and dropping terms

trilinear and quartic in b̂n, b̂
†
n (since they have fewer factors of

√
N0 � 1), the Hamiltonian is diagonalized as (see e.g.

[39]):

: Ĥ : =
∑
n

~ωnb̂†nb̂n (E6)

where :: refers to normal ordering; un, vn, and ωn satisfy the Bogoliubov-de-Gennes equations:

~ωnun(r) =
[
− ~2

2m
∇2 + V(r)− µ+ 2gN0|φ0|2

]
un(r) + gN0φ

2
0vn(r) (E7)

−~ωnvn(r) =
[
− ~2

2m
∇2 + V(r)− µ+ 2gN0|φ0|2

]
vn(r) + gN0φ

∗2
0 un(r), (E8)

un and vn are orthonormal [39]: ∫
dr[u∗n(r)um(r)− v∗n(r)vm(r)] = δnm, (E9)

and φ0 satisfies the time-independent Gross-Pitaevskii equation:[
− ~2

2m
∇2 + V(r) + gN0|φ0|2

]
φ0 = µφ0, (E10)

such that φ0(t) := φ0e
−iµt/~ satisfies the time-dependent version.

We now apply a small time-dependent potential εVε(r, t) to the BEC where ε� 1. This introduces a term εVεΨ̂†Ψ̂
to (E1), which, after applying (E2) and (E5), provides an interaction Hamiltonian (see Appendix C of [30] for a
detailed derivation using the grand canonical Hamiltonian):

ĤI(t) = ε

∫
drVε(r, t)

[
|a0|2|φ0|2 + |a0|

∑
n

(
b̂ne
−iϑ(r)e−iωnt + b̂†ne

iϑ(r)eiωnt
)

(E11)

+
∑
n,m

[u∗n(r)um(r)b̂†nb̂me
i(ωm−ωn)t + vn(r)v∗m(r)b̂nb̂

†
me
−i(ωm−ωn)t] (E12)

+
∑
n,m

[u∗n(r)v∗m(r)b̂†nb̂
†
me

i(ωm+ωn)t + un(r)vm(r)b̂nb̂me
−i(ωm+ωn)t]

]
, (E13)

where exp(iϑ(r)) := φ0(r)u∗n(r) + φ∗0(r)v∗n(r). We now investigate how this interaction Hamiltonian can be used to
generate a two-mode squeezed state of phonons and a tritter.
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1. Two-mode squeezing

To create a two-mode squeezed state of phonons, we require a Hamiltonian of the form (see e.g. [16]):

Ĥ = r[eiϑsq b̂†mb̂
†
n + e−iϑsq b̂mb̂n]. (E14)

This can be obtained from (14) by choosing an oscillating potential to pick out these particular terms on resonance
[30]. For example Vε(t) = εV0 cos Ωt would achieve this where Ω := ωm + ωn and V0 is a constant amplitude.

2. Tritter

The Hamiltonian for a tritter is given by (B1) where here we treat â0 as the annihilation operator for the condensate,

and ân 6=0 as the annihilation operator for the phonon modes, which we denoted as b̂n6=0 above. Since the condensate
must be more populated than the phonon modes before and after the tritter for our description of the BEC used
above to still hold, we can apply the Bogoliubov approximation and drop the hat on â0, leaving us with:

Htr =
~G√

2
|a0|
[
eiϑ(b̂m + b̂n) + e−iϑâ0(b̂†m + b̂†n)

]
. (E15)

This can be picked out from (14) by choosing an oscillating potential of the form V (t) = εV0 cos(Ωt) cos(Ω′t), where
Ω := ωm + ωn and Ω′ := ωn − ωn, and assuming that ϑn(r) ≈ ϑm(r), which could be achieved, for example, by
choosing modes with equal and opposite momenta in a uniform BEC with periodic boundary conditions [39].

Appendix F: Heterodyne detection

Rather than using a number-sum measurement, another possibility would be to use a heterodyne measurement, for
example, between the pump and the side modes. Balanced homodyne detection for the side modes was considered in
[41] for a standard SU(1,1) interferometer and [42] for a ‘truncated’ SU(1,1) experiment. In our considered heterodyne
case, at the measurement stage a balanced beam splitter could be applied between one of the side modes and the
pump, and the difference of the number of particles in the two output parts of the final beam splitter could be
considered: Ŝ = N̂1 − N̂2. In the covariance matrix formalism we have:

〈Ŝ〉 =
1

4
[Tr(σJz) + dTJzd] (F1)

Var(Ŝ) =
1

8
[Tr([σJz]

2) + 2dTJzσJzd− 2n]. (F2)

where:

Jz =

(
1 0
0 −1

)
. (F3)

However, in order to measure the squeezing parameter of the estimation channel, Var(Ŝ) or 〈Ŝ2〉 would need to be
considered as the signal (see e.g. [43]) and, therefore, the variance of this would be used in the error estimation.

Appendix G: The quantum channels associated with a phononic BEC GW detector

In [15], the effect of a GW on phonons of a BEC is described using quantum field theory in curved spacetime. The
GW is found to act as a unitary Bogoliubov transformation on the phononic field:9

b̂m :=
∑
n

(A∗mnb̂n +B∗mnb̂
†
n), (G1)

9 The BEC Bogoliubov transformations (E5) were not considered in [15] but are treated in [30].
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where Amn and Bmn are Bogoliubov coefficients that depend on the GW amplitude and frequency, and must also
obey the following identities [44]: ∑

k

[AikA
∗
jk −BikB∗jk] = δij , (G2)∑

k

[AikBjk −BikAjk] = 0. (G3)

This is a unitary transformation and, assuming Gaussian phonon states, the corresponding symplectic matrix in the
real q, p basis is [28]:

S =



M11 M12 . . . . . . . . .

M21
. . .

. . .
. . .

. . .
...

. . . Mmm Mmn
. . .

...
. . . Mnm Mnn

. . .
...

. . .
. . .

. . .
. . .


, (G4)

where:

Mmn =

(
Re(Amn −Bmn) Im(Amn +Bmn)
−Im(Amn −Bmn) Re(Amn +Bmn)

)
. (G5)

When the GW frequency Ω matches the sum of two phononic modes, Ω = ωm + ωn, there is a resonant process such
that, for example, Bjk was found to be [15]:10

Bjk(t) =
1

4
εBeiφB (1 + (−1)j+k)δj+k,m+n +O(ε2), (G6)

where ε is the GW amplitude, φB is an arbitrary phase that we have included, and:

B :=
√
ωjωkct, (G7)

with t the time of interaction between the GW and the phonons, c a unitless constant due to the BEC Bogoliubov
transformations (G1) with the appropriate boundary conditions, and we have assumed a uniform BEC in a one-
dimensional trap with the origin at the centre. There could also be resonances for the A-coefficients in this case [45]
but these would vanish when j = m, k = n or j = n, k = m, which are the only cases of relevance here and discussed
below. When Ω = ωn − ωm (with n > m) there is also a resonant process such that, for example, Ajk is found to be:

Ajk(t) =
1

4
AeiφA(1 + (−1)j+k)(δj−k,n−m − δj−k,m−n) +O(ε2), (G8)

where φA is an arbitrary phase that we have included and:

A := ε
√
ωjωkct, (G9)

with c is a unitless constant due to the BEC Bogoliubov transformations (G1) with the appropriate boundary condi-
tions. There may also be additional resonances for the B-coefficients in this case [45] but these would vanish when
j = m, k = n or j = n, k = m, which are the only cases of relevance here and discussed below.

Considering a general phononic state with displacement and covariance matrices:

d = (d1,d2, . . .)
T , (G10)

σmn =

(
ψmn φmn
φTmn ψ′

mn

)
, (G11)

10 Here we assume that n 6= m such that we are considering two-mode squeezing. For a single-mode squeezing channel, see [30].
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then, after the GW acts on the phononic field, the state is given by:

d = (d′1,d
′
2, . . .)

T , (G12)

σ′
mn =

(
Cmm Cmn
Cnm Cnn

)
, (G13)

where:

di := Mijdj , (G14)

Cij := MT
niψnMnj +MT

miφ
T
nmMnj +MT

niφnmMmj +MT
miψmMmj +

∑
l 6=m,n

MT
liMlj , (G15)

and the last term is due to tracing out the other modes [28].
Since the phononic field is prepared such that modes m and n are in a large vacuum squeezed state, and all other

modes are in the vacuum, when the GW has frequency Ω = ωm +ωn, to second order in ε, the action of the wave can
then be effectively represented by the symplectic matrix:

Snm =

(
[1 + 1

2s
2
nm]1 snmRφB

snmRφB [1 + 1
2s

2
nm]1

)
, (G16)

where:

RφB :=

(
cosφB sinφB
sinφB − cosφB

)
, (G17)

snm =
1

4
εc
√
ωmωnt, (G18)

and we have used (G2)-(G3) up to second order in ε. To second order also in the squeezing parameter s, (G16) is

simply a two-mode squeezing channel U = eξb̂
†
mb̂
†
n−ξ

∗b̂mb̂m in modes m and n:

Ss =

(
cosh s1 sinh sRφB

sinh sRφB cosh s1

)
, (G19)

where ξ := seiφB . This is as expected since the B-coefficients of a Bogoliubov transformation (G1) are associated with
parametric down conversion. It is also clear from considering the GW as a time-varying gravitational field and applying
the canonical approach presented in [30], which is essentially equivalent to choosing Vε(x, t) = εmx2Ω2 sin Ωt/4 in
(E11) for a quasi one-dimensional BEC analysed in the proper detector frame [46]. From [30, 46], the unitless constant
c in (G6) is given by:

c := ξnξm
n2 +m2

(n−m)2
, (G20)

where:

ξn :=
mc2s
~ωn

(G21)

with cs the speed of sound of the BEC, and ξn � 1 for ωn to correspond to a phononic frequency [39].
Analogous to the above, when the other resonance condition is chosen with Ω = ωn − ωm, the action of the GW is

effectively that of a mode-mixing channel U = eζb̂
†
mb̂n−ζ

∗b̂mb̂
†
m with ζ := smne

iφA up to second order in ε, and with
smn also given by (G18). In this case the symplectic matrix is given by:

Snm =

(
cos snm1 sin snmRφA

− sin snmR
T
φA

cos snm1

)
. (G22)

The fact that this is a mode-mixing channel is expected since the A-coefficients of a Bogoliubov transformation (G1)
are associated with beam-splitting. It is also clear from considering the GW as a time-varying gravitational field and
applying the canonical approach presented in [30]. From [30, 46], the unitless constant c in (G8) is given by:

c := ξnξm
n2 +m2

(n+m)2
. (G23)
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