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Abstract

We propose an experiment based on a Bose-Einstein condensate interferometer for strongly

constraining fifth-force models. Additional scalar fields from modified gravity or higher dimensional

theories may account for dark energy and the accelerating expansion of the Universe. These theories

have led to proposed screening mechanisms to fit within the tight experimental bounds on fifth-force

searches. We show that our proposed experiment would greatly improve the existing constraints on

these screening models by many orders of magnitude, entirely eliminating the remaining parameter

space of the simplest of these models.
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General relativity (GR) has remained a tremendously successful theory, producing ac-

curate physical predictions consistent with the barrage of experiments and observations

conducted over the last century. Despite this success, there are still many open problems

within GR and apparent limitations of the theory itself. Amongst modified theories of grav-

ity aiming to address these problems, scalar-tensor theories (e.g. Brans-Dicke theory [1],

see also [2]) are some of the most widely studied. Modified theories of gravity like f(R)-

gravity can additionally be shown to be equivalent to scalar-tensor theories, and higher

dimensional theories (e.g. string theory) predict the existence of effective scalar field modes

in 4-dimensional spacetime due to compactifications of the extra dimensions [3].

Modifications of gravity gained even greater attention after the accelerated expansion of

the Universe was discovered [4, 5] and the puzzle of dark energy (DE) - the energy that

supposedly drives this expansion - arose. Consequently, there have been several proposed

explanations for the nature of DE based on scalar-tensor theories (see e.g. [6, 7] for an

overview of models). Some of these models are predicted to cause a fifth force, which is

in contradiction with observations and experiments [8–10]. Consequently, some of these

models have already been ruled out by observations [11]. However, models with a so-called

“screening mechanism” [12] have features that supress the effects of the additional scalar

fields in regions of high matter density. A screening mechanism would allow additional scalar

fields to contribute to dark energy while the coupling to matter as a fifth force still evades

experimental constraints.

Cold atom systems have proven to be invaluable tools in precision metrology. From prac-

tical applications such as ultra-high precision clocks [13] to more fundamental experiments

searching e.g. for deviation from the equivalence principle [14–16], the high degree of control

and low internal noise afforded by cold atom systems makes them an ideal testing ground.

Many scalar-tensor theories assume a conformal coupling between the metric tensor and the

scalar field, and cold atom systems have been found to be well suited to studying these par-

ticular models in experiments (e.g. in atom interferometers [17, 18]) and analogue gravity

simulations [19]. Atom interferometry experiments currently provide the tightest constraints

on some of these models [12, 20].

In this Letter, we propose using a guided Bose-Einstein condensate (BEC) interferometer

scheme to further constrain these conformally coupled screened scalar field models. Guided

is used in this context to refer to atoms held in a trap for all or most of the interferometer
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scheme, rather than being in free fall. For this scheme, we consider a guided BEC interfer-

ometer as currently demonstrated in experiments. The main advantage of this scheme is a

longer integration time: a trapped BEC can be held near a source object for much longer

than atoms in a ballistic trajectory. We show that the constraints on the above screened

scalar field models could be improved by many orders of magnitude.

The models we consider here come from scalar-tensor theories of gravity [2]. As stated

above, an additional scalar field Φ may be coupled to the metric tensor conformally in these

theories, such that ordinary matter fields evolve according to the conformal metric

g̃µν = A2 (Φ) gµν (1)

for some conformal factor A2 (Φ), where gµν is the normal GR metric. The equilibrium state

of the Φ field is determined by minimising an effective potential [7, 12, 21]

Veff (Φ) = V (Φ) + A (Φ) ρ, (2)

where V (Φ) is the self-interaction potential of the model and ρ is the ordinary matter

density.

We specifically consider two prominent examples of fifth force models with screening

mechanism, namely the chameleon field [21, 22] and the symmetron field (first described

in [23–28] and introduced with its current name in [29, 30]). These models have been

investigated in atom interferometry experiments as the thick wall of a vacuum chamber can

shield its interior from outside effects [17, 31], allowing the ultra-high vacuum to simulate

the low density conditions of empty space resulting in long range (and thus measurable)

chameleon or symmetron forces.

The chameleon field model is described by the conformal coupling [21]

A2 (Φ) = exp [Φ/Mc] (3)

and the potential

V (Φ) = Λ4 exp [Λn/Φn] . (4)

The parameter Mc determines the strength of the chameleon-matter coupling. This param-

eter is essentially unconstrained but is plausibly below the reduced Planck mass MPl ≈

2.4 × 1018 GeV/c2. The self-interaction strength Λ determines the contribution of the

chameleon field to the energy density of the Universe, as the potential can be expanded
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as V ≈ Λ4 + Λ4+n/Φn. This energy density can drive the accelerated expansion of the

Universe observed today if Λ = ΛDE ≈ 2.4 meV. Finally, different choices of the parameter

n define different models, where n ∈ Z+ ∪ {x : −1 < x < 0} ∪ 2Z−\ {−2} produces valid

models with screening mechanisms. The two most commonly studied chameleon models are

those where n = 1 or −4 [12].

The effective mass of the chameleon field in equilibrium is determined by the minimum

of its effective potential, i.e. m2
c = |∂2Veff/∂Φ2|Φ=Φmin

. The position of the effective potential

minimum (and thus effective mass) depends on the ordinary matter density ρ (see Appendix

A for a detailed demonstration). In regions of low density, e.g. the intergalactic vacuum,

the chameleon is light and mediates a long range force. In regions of high density, e.g. in a

laboratory, the chameleon becomes massive and the force becomes short-ranged, making it

challenging to detect with fifth force tests.

The symmetron model has a conformal coupling and a potential given by [29]

A2 (Φ) = exp
[
Φ2/2M2

s

]
(5)

and

V (Φ) = −µ
2

2
Φ2 +

λs
4

Φ4 (6)

respectively. As for the chameleon, Ms gives the symmetron-matter coupling and λs deter-

mines the self-interaction strength. Unlike the chameleon, the symmetron effective potential

has a Z2 symmetry which can be spontaneously broken in environments of low matter den-

sity (see Appendix A). This allows the symmetron to obtain a non-vanishing effective mass

in regions where the ambient matter density is below the critical density ρ∗ = µ2M2
s . The

symmetron field has a vanishing vacuum expectation value in high density regions (ρ > ρ∗)

and thus a vanishing force. Consequently, the parameter µ determines the scale of the

symmetron-matter decoupling.

We propose to use a BEC interferometer held near some source mass to constrain the

chameleon and symmetron models (Fig. 1). The lowest order gravitational effect of the

source mass is a gravitational redshift, which manifests as a position dependent global phase.

The lowest order potential fifth force effect is a modification of this global phase by a position

dependent value. This total global phase θ is given by (see Appendix B)

θ (r) =
mc2T

2~

[rs
r
− 2 logA (Φ (r))

]
(7)
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FIG. 1: A schematic diagram of the vacuum chamber overlaid on the field profile of a

chameleon field around a spherical source object. The separation of the BEC components

is greatly exaggerated.

where rs is the Schwarzschild radius of the source object, m is the mass of each atom in

the BEC, T is the time and A is the conformal factor defined as above. A BEC coherently

split into parts would measure the phase gradient and thus field gradient in an interference

measurement. The other contributions from the environment (e.g. the gravity of the Earth)

could be subtracted with differential measurements or a dual interferometer scheme where

measurements are performed near to and far from the source object.

BEC-based interferometers are not a new concept, and have already been proposed and

demonstrated (e.g. [32–36], see also [37] and references therein). Coherent splitting of a

BEC into spatially separated clouds has been implemented both with atom chips [32, 34, 38]

(chips printed with an electrode structure allowing for the generation of magnetic and radio-

frequency fields very close to an atom cloud) and in free space [39]. Recombination and

interference of the separated clouds is typically achieved by turning the trapping potential

off and letting the clouds expand into each other as they fall [37]. An alternative scheme

has been recently realised, where the two condensate parts are brought into contact via

Josephson tunnelling through a low potential barrier [40]. This acts as a beam splitting

operation, and the interference contrast is projected onto a mean atom number difference
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between the two wells.

The optimal sensitivity of a measurement maximised over all possible measurement

schemes is given by the quantum Fisher information (QFI) through the quantum Cramér-

Rao bound (QCRB) [41–43]. Since the QFI gives the best possible sensitivity in estimating

a parameter, optimised over all possible forms of measurement, the QCRB trivially follows

as

(∆κ)2 ≥ 1

NH (κ)
(8)

where ∆κ is the absolute error in estimating the parameter κ due to some measurement,

H (κ) is the QFI for estimating the parameter κ and N is the number of measurements

performed.

Gaussian states cover the majority of easily experimentally accessible states such as co-

herent states, thermal states and squeezed states. Calculating the QFI for Gaussian states

is simple as Gaussian states have a straightforward description in terms of their first and

second moments [44–46].

Let θ− be the accumulated phase difference between two arms of a BEC interferometer.

The QFI for estimating θ− with a fully condensed N0-atom BEC is given by

H (θ−) = N0 (9)

which scales with the standard quantum limit (SQL) [47].

We now consider some experimental limitations to the schemes proposed in this Letter and

use these to calculate the expected sensitivity of our schemes to constraining the chameleon

and symmetron models. Typical BEC experiments condense clouds consisting of 104 − 106

atoms, although condensates of up to 108 atoms have been demonstrated with sodium [48],

and up to 109 atoms has been demonstrated with hydrogen [49, 50]. For estimating the

sensitivity of this detector, we assume an initial BEC with 106 atoms.

The maximum integration time of our proposed detector is set by the mutual coherence

time of the components of the split BEC. Mutual coherence times up to 500 ms have been

demonstrated with atom chips [51, 52], so we will estimate the integration time of our

detector to be 500 ms.

We do not consider the effects of technical noise in the trapping potential or other sources

of experimental noise. While we expect that these sources of noise will contribute substan-

tially to the achievable sensitivity of any detector, any substantive analysis will strongly
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FIG. 2: Constraints for the parameter space of the chameleon model n = 1. The brown

area corresponds to constraints from atom interferometry and the green area to those from

Eöt-Wash experiments [12, 20]. The dotted line indicates the DE scale Λ = 2.4 meV. New

constraints predicted in this work are coloured in blue, where dark blue corresponds to

1000 runs and light blue corresponds to 10000 runs.

depend on the details of the experimental implementation which we also leave to future

work.

The expected new bounds on the chameleon and symmetron models from an implemen-

tation of our proposed schemes are presented in Figs. 2 - 4. Together with the numbers

given above, we use the same experimental dimensions as in [53] for ease of comparison.

Specifically, we consider a spherical vacuum chamber of radius L = 5 cm and vacuum pres-

sure 6 × 10−10 Torr. The source object is an aluminium sphere with a radius of R = 9.5

mm. The effective distance between the object and the BEC is 8.8 mm, and we assume that

the two parts of the BEC are split by 100 µm. With clever trap positioning, the distance

between the object and the BEC may eventually be limited by the strength of the van der

Waals or Casimir-Polder forces, but these are not relevant at the 10 mm scale.

Fig. 2 shows the predicted new constraints for one of the most popular screening models

- the chameleon with n = 1. There it can be seen that the BEC interferometry scheme

would be able to improve existing constraints for this model by up to 3 orders of magnitude
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FIG. 3: Constraints for the value of Mc for positive n chameleon models at Λ = 2.4 meV.

The brown area corresponds to constraints from atom interferometry, the green area to

those from Eöt-Wash experiments, and the violet area represents constraints from

astrophysics [12, 20]. New constraints predicted in this work are coloured in blue, where

dark blue corresponds to 1000 runs and light blue corresponds to 10000 runs.

and close the gap between former interferometry and Eöt-Wash experiment constraints on

the DE scale Λ = 2.4 meV. This amounts to ruling out the simplest chameleon model as a

model of dark energy.

Figure 3 shows constraints for the value of Mc over different values of positive n chameleon

models and for Λ = ΛDE = 2.4 meV. Our scheme would improve existing interferometry

constraints by more than 2 orders of magnitude and close the gap to Eöt-Wash for n ≤ 5.

The predicted constraints on the parameter space of the symmetron model are shown in

Fig. 4. We expect that our proposed experiment would improve the existing constraints by

between 16 and 26 orders of magnitude in λ across the entire accessible range of Ms.

For a summary of the accessible areas of and detailed constraints on the parameter space

for both the chameleon and symmetron models, see Appendix C.

While we have only considered chameleon and symmetron screening models, it should

be stressed that constraints for any other type of conformally coupled scalar field could be

obtained in a similar manner, e.g. for galileons [54] or dilatons [55, 56].
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FIG. 4: Constraints for the parameter space of the symmetron model. The brown area

corresponds to constraints from atom interferometry, the green area to those from

Eöt-Wash experiments, and the violet area represents constraints from exoplanet

astrophysics [12, 20]. New constraints predicted in this work for a BEC interferometer are

coloured in blue. Different shades of blue correspond to µ = 10−4, 10−4.5, 10−5 and 10−5.5

eV in natural units respectively.

To bring this proposal into reality, future work will focus on optimising the experimental

implementation. Any subsequent implementation of our proposal will either discover n = 1

chameleon fields at the cosmological energy density or completely rule them out, along with

greatly improving the bounds on other screened scalar models.
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Appendix A: Effective potentials for the chameleon and symmetron models

(a) (b)

FIG. 5: n = 1 chameleon effective potential for high (left) and low (right) ordinary matter

densities plotted in green, with its components plotted in blue and orange.

FIG. 6: Symmetron effective potential for high (blue) and low (orange) ordinary matter

densities.

Fig. 5 compares the chameleon effective potential Veff (in green) in high and low density

environments for the n = 1 chameleon. The effective potential is given to lowest order by

Veff (Φ) =
Λ4+n

Φn
+

ρ

2Mc

Φ +O
(

Φ2

M2
c

)
. (A1)

These first two components are plotted in blue and orange respectively for low (Fig. 5a)

and high (Fig. 5b) values of ρ. It is reasonable to ignore higher order terms in Φ/Mc as any

fifth force effect measured on or near the Earth must be perturbative to be consistent with
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experimental observations. The effective mass of excitations of the chameleon field is given

by

m2
c =

∣∣∣∣∂2Veff

∂Φ2

∣∣∣∣
Φ=Φmin

= 2Λ5

(
ρ

2McΛ5

)3/2

(A2)

for n = 1, which clearly scales with ρ. Therefore, any chameleon force will be screened in

high density environments.

Fig. 6 compares the symmetron effective potential for high (orange) and low (blue)

density environments. The effective potential is given by

Veff (Φ) =
1

2

(
ρ

M2
s

− µ2
s

)
Φ2 +

λs
4

Φ4 (A3)

from which it is obvious that the Z2 symmetry (Φ→ −Φ) is broken when the coefficient of

the quadratic term in Φ is negative. This occurs at the critical density ρ∗ = µ2
sM

2
s . Above

this density (Fig. 6, orange curve), the minima of Veff are degenerate at Φ = 0 so there is

no fifth force. Below this density (Fig. 6, blue curve), the minima become non-degenerate

and non-zero at an effective mass of

m2
s = 2

(
µ2
s −

ρ

M2
s

)
. (A4)

Appendix B: Derivation of the lowest order effect of a conformally coupled screened

scalar effect on a bosonic field

We begin by modelling our BEC as an interacting massive scalar Bose field Φ̂ (x, t)

in a covariant formalism to introduce the background metric in a natural way, following

the approach of [19, 57, 58]. Note that we do not assume that the BEC has “relativistic”

properties such as large excitation energies (i.e. mass energy), high flow velocities (i.e. speed

of light) or a strong interaction strength etc., and will later explicitly make “non-relativistic”

restrictions.

Following the above references, we describe the evolution of the field operator Φ̂ with the

Lagrangian density

L = −
√
−g
{
∂µΨ̂†∂µΨ̂ +

(
m2c2

~2
+ V

)
Ψ̂†Ψ̂ + U

}
, (B1)

where V is the external potential, U is the interaction potential and gµν is the metric of

the background (in general curved) spacetime with determinant g. As is standard in BEC
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literature [59, 60], we consider only the leading order 2-particle contact interactions and

approximate the interaction strength as

U =
λ

2
Ψ̂†Ψ̂†Ψ̂Ψ̂. (B2)

The interaction strength λ can be related to the s-wave scattering length as by

λ = 8πas. (B3)

We can rewrite the field operator Ψ̂ as

Ψ̂ = φ̂eimc
2t/~. (B4)

We will later make the assumption that time derivatives of φ̂ are small, i.e. the excitations

described by φ̂ have non-relativistic energies.

The appropriate background metric near a sphere of radius R and mass M sourcing

screening for the assumed screened scalar field has the line element

ds2 = eζ
2(r)
[
−f (r) dt2 + f−1 (r) dr2 + r2dΩ2

]
(B5)

where f (r) = 1 − rs/r, rs = 2GM/c2 is the Schwarzschild radius of the object and the

conformal factor A has been rewritten as A2 (Φ) = exp [ζ2 (Φ)] for notational convenience.

Eq. (B5) reduces to the Schwarzschild metric when ζ2 → 0. The gravitational effect of

the Earth is ignored; it is assumed that this can be accounted for either with differential

measurements with and without the mass or through a dual interferometer scheme or simply

by splitting the interferometer horizontally.

We now convert this Lagrangian to a Hamiltonian density (for readability and ease of

interpretation) and make the following assumptions:

1. |ζ2| � 1,

2. rs � r,

3.
∣∣∣∂tφ̂∣∣∣ /c� ∣∣∣∂iφ̂∣∣∣ and

4. ~2
∣∣∣∂iφ̂†∂iφ̂∣∣∣� m2c2φ̂†φ̂,
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where i runs over spatial indices. To lowest order in ζ2 and rs/r, the resulting Hamiltonian

density is

H =
~2

2m

∑
i

∂iφ
†∂iφ+ Veff φ̂

†φ̂+
1

2
λNRφ̂

†φ̂†φ̂φ̂, (B6)

where

Veff = VNR +
1

2
mc2

[
ζ2 − rs

ravg

]
. (B7)

The potentials have been rescaled in the form

VNR =
V

2m
, λNR =

λ

2m
(B8)

as these are the form of the external potential and interaction strength that usually appear

in the Gross-Pitaevskii equation (GPE) [59, 60]. The interaction strength λNR is usually

written as g (e.g. in [59]), but we avoid this notation here to avoid confusion with the

background spacetime metric.

We have defined ravg as the mean distance of the BEC from the center of the source mass,

and expanded rs/r as

rs
r

=
rs

ravg + r′
=

rs
ravg

(
1− r′

ravg
+ · · ·

)
. (B9)

We can neglect all terms except the first if the BEC trap geometry has a negligible extent in

the direction perpendicular to the source mass field gradient. For example, the BEC could

be trapped with a cigar-shaped trapping potential oriented perpendicularly to the source

mass.

The total field φ̂ can be written in terms of momentum eigenmodes as [59]

φ̂ (r, t) =
[
Ψ0 (r) + ϑ̂ (r, t)

]
e−iµt/~, (B10)

where Ψ0 corresponds to the momentum ground state, µ is the chemical potential and ϑ̂

contains all higher order modes. We make the Bogoliubov approximation and also assume

that the excited modes of the field are negligibly occupied. If the potentials VNR and λNR are

stationary, then the equation of motion for Ψ0 derived from the above Hamiltonian density

is [
− ~2

2m
∇2 + Veff − µ+ λNR |Ψ0 (r)|2

]
Ψ0 (r) = 0. (B11)

This is the time-independent GPE with the potential replaced by the effective potential

Veff . Since the screened scalar field contribution to Veff is approximately constant across
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the width of the BEC, this GPE can be solved by splitting the chemical potential into

µ = µ0 + µI where µ0 is the chemical potential when Veff → VNR. The extra term is then

given by

µI =
1

2
mc2

[
ζ2 − rs

ravg

]
. (B12)

Thus, the lowest order effect on the BEC ground state is a shift in the chemical potential,

i.e. a phase shift. Physically, this phase is the gravitational red-shift due to the source

mass, and the lowest order contribution of the screened scalar field is a modification of this

red-shift. It is also worth noting that this phase shift appears in both the ground state and

all excited modes of the BEC in a basis independent way.

Appendix C: Analysis of the constraint plots in the main text

The constraints plotted in Figures 2-4 in the main text are derived from the quantum

Cramer-Rao bound for estimating the phase difference in an interferometer. This bound is

given by

(∆θ−)2 ≥ 1√
NH (θ−)

. (C1)

Assuming a null measurement, the bounds on the screening models are given by

1√
NH (θ−)

≥ mc2T

2~
(
ζ2 (r1)− ζ2 (r0)

)
(C2)

for phases measured at r0 and r1.

1. Chameleon constraints, Figures 2 and 3 in the main text

There are three major sections in the BEC interferometer constraints in Fig. 4; the

negatively sloped section where Mc/Mpl < 10−10, the vertical lines bounding the region on

the large Mc side of the figure, and the positively sloped section between them.

In the limit of an infinitely wide vacuum chamber, the n = 1 chameleon field in the

(non-perfect) vacuum has an effective mass

m2
∞ = 2Λ5

(
ρ∞

2McΛ5

)3/2

(C3)
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where ρ∞ is the matter density of the vacuum. When the chameleon field is screened within

the source mass, the constraint resulting from a null measurement is given by

1√
NH (θ−)

>
mc2T

2~

√
2Λ5

Mc

(
1
√
ρ∞
− 1
√
ρobj

)
Rem∞R/~

∣∣∣∣e−m∞r1/~

r1

− e−m∞r0/~

r0

∣∣∣∣ (C4)

where ρobj is the density of the source object; this corresponds to the negatively sloped

section of the Figure 2 constraints.

For larger values of Mc, the infinite vacuum chamber approximation does not hold as

the Compton wavelength of the equilibrium chameleon becomes larger than the size of the

vacuum chamber. In this case, the field equilibrium inside the vacuum chamber is instead

described by [61]

ϕ∞ → ξ
(
n(n+ 1)Λ4+nR2

) 1
n+2 , (C5)

where ξ = 0.55 is a fudge factor given by the chamber’s spherical geometry and vacuum

density. The effective mass is set to the radius of the vacuum chamber m∞ → ~/Rvac and

the relevant constraint from a null measurement is

1√
NH (θ−)

>
mc2T

2~

(
ξ

[
2Λ5R2

vac

M3
c

]1/3

−

√
2Λ5

Mcρobj

)
ReR/Rvac

∣∣∣∣e−r1/Rvac

r1

− e−r0/Rvac

r0

∣∣∣∣ . (C6)

This corresponds to the positively sloped section of Figure 2.

The vertical section occurs when both the massive source and the vacuum in the chamber

are screened, which leads to a Λ-independent field profile and

1√
NH (θ−)

>
mc2T

2~

(
ρobjR

3

3M2
c

)
eR/Rvac

∣∣∣∣e−r1/Rvac

r1

− e−r0/Rvac

r0

∣∣∣∣ . (C7)

The horizontal boundaries in Figure 3 for early values of n result from the source and

the vacuum both being screened. For larger values of n, the background field profile given

in Eq. (C5) is used.

2. Symmetron constraints, Figure 4 in the main text

The value of µs to which these constraints apply is limited by the geometry of the proposed

experiment, as the Compton wavelength in low density regions is approximately 1/µs. For

the field to evolve to its vacuum minimum within the chamber, the Compton wavelength
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must be smaller than the vacuum chamber radius. However, if the Compton wavelength is

too small then the field is Yukawa supressed. The value of µs that this proposed experiment

can constrain is restricted by these two conditions to

10−5.5 eV . µs . 10−4 eV (C8)

in natural units.

An object is screened from the symmetron force when its density is above the critical

density ρ∗ = µ2
sM

2
s . The region in Ms that our proposed experiment would constrain is

the region where this critical density is between the densities of the source object and the

surrouding vacuum. These two density restrictions cause the sharp sides of the excluded

regions in both our predicted excluded regions and the atom interferometry exclusion regions

in Figure 4.

The curve in the high Ms section of the predicted excluded regions is the area where the

critical density and the source object density become comparable. The peak in the low Ms

section of the µs = 10−4 eV excluded region is caused by a resonance where the Compton

wavelength of the symmetron field matches the distance from the object to the BEC.

The wavefunctions of atoms in a BEC are (in the ideal case) spread over the width of

the BEC and all overlap. As a first approximation, we consider the BEC to be a region of

uniform density as opposed to a collection of discrete objects. The density of the BEC is

between that of the vacuum and the source object. When the BEC density is below the

critical density, it does not substantially modify the symmetron field profile. When the BEC

density is above the critical density, there should in principle be a dip in the symmetron

field profile. However, the Compton wavelength of the symmetron is far greater than the

width of the BEC in this entire section of the parameter space, so the BEC again does not

substantially effect the symmetron field profile. Hence, whether or not the BEC is screened

does not play a role in determining the region of parameter space excluded by our proposed

experiment.

The full bound is given by

1√
NH (θ−)

>
mc2T

2~
µ2
s

λM2
s

(
1− ρ∞

µ2
sM

2
s

)
×(

2Γ

[
e−moutr0

r0

− e−moutr1

r1

]
+ Γ2

[
e−2moutr1

r2
1

− e−2moutr0

r2
0

]) (C9)
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where

Γ = RemoutR
minR− tanh (minR)

minR +moutR tanh (minR)
(C10)

and

m2
i = 2

(
µ2
s −

ρi
M2

s

)
. (C11)
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