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ABSTRACT
Aeroelastic flutter is a phenomenon when blades experience an aeroelastic self-excitation from the surrounding air

resulting in the full destruction of aero-engines. It poses a big challenge for aero-engine bladed-disks design, especially for
integrally bladed-disks (blisks). The lack of friction interfaces in blisks drastically reduces structural damping making them
more likely to experience aeroelastic flutter. One of the most effective approaches to improve the damping in a blisk is the
use of friction ring dampers. This paper presents a numerical study to investigate the effects of friction ring dampers on
the aeroelastic stability of blisks. A lumped parameter model is used to represent the blisk with a ring damper. Aeroelastic
self-excitations are simply represented by Van der Pol oscillators. The frictional contact between the blisk and ring damper
is modelled by using Jenkins elements. Nonlinear modal analysis is used to compute the nonlinear dynamic response of the
system. The results show that the friction ring damper can significantly reduce the risk of flutter and the amplitude of flutter
induced limit cycle oscillations for a blisk by increasing the structural damping, especially at a high modal amplitude. The
study also shows that the nonlinear modal analysis can efficiently identify the flutter boundary of such a strongly dissipated
nonlinear system.

INTRODUCTION
In industrial turbomachinery, vibration is considered as a major cause for high cycle fatigue failures in bladed disks.

The type of blade vibrations can be mainly classified into two groups: synchronous forced response and aeroelastic flutter.
Flutter is a phenomenon of unstable aeroelastic interaction between bladed disks and their surrounding airflow, also known
as aeroelastic self-excitation. In the case of flutter, because of the overall negative damping in the system, the energy
is injected into bladed disks from the surrounding airflow. When flutter occurs, the amplitude of blade vibration grows
unrestrainedly until the structure fails as the negative aerodynamic damping will continuously inject the energy into the
system. If the structural damping can completely balance the negative aerodynamic damping, the flutter induced Limit
Cycle Oscillation (LCO) can be seen. Flutter in bladed disks has been investigated in the field of fluid dynamics by several
researchers Zhao et al. (2017); Vahdati et al. (2011); Stapelfeldt and Brandstetter (2020). In Salles and Vahdati (2016),
two numerical algorithms for computing the effects of fan flutter were compared in detail. To avoid catastrophic failures
due to the flutter, various frictional damping techniques have been attempted to introduce structural damping to avoid the
occurrence of flutter or reducing the amplitude of flutter induced LCO. The traditional bladed disks consist of several blades
and a disk. There are many contact interfaces within the assembly. Whereas for blisks, also known as integrally bladed
disks, since they are manufactured by a single piece of material, there is no contact interface in the system which makes
the structural damping much lower than bladed disks. Therefore, to improve the damping performance of the blisk, friction
ring dampers (FRDs) are recently introduced to provide additional friction interfaces. Essentially, a FRD is a ring-type
structure located within the groove underneath the disk. The nonlinear dynamics of a blisk with FRD has been investigated
by several researchers Laxalde et al. (2008, 2010); Sun, Yuan, Denimal and Salles (2021a,b); Tang and Epureanu (2019);
Lupini and Epureanu (2020); Wu et al. (2020).

In the actual design of blisks, if the vibrations of blisks are excited through an aeroelastic self-excited mechanism, the
aerodynamic damping of the system is negative. In this case, the design of FRDs is necessary to compensate the negative
aerodynamic damping. The aerodynamic force for a full-scale structure can be obtained from the direct computation of fluid
dynamics with a considerable computational burden. In a low fidelity simulation, aeroelastic self-excitations are simplified
by Van der Pol (VdP) oscillators Dowell (1981); Facchinetti et al. (2004). One of the advantages of using VdP oscillators
is the conversion of negative damping into a positive one after the amplitude exceeds critical limits. VdP oscillator is a
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Figure 1 Lumped parameter model for blisk with ring damper: full annulus and an elementary sector

suitable representation for the aeroelastic self-excitation for a phenomenological simulation using illustrative models Půst
et al. (2018); Půst and Pešek (2017); Pešek et al. (2019). Due to the presence of frictional contact and VdP oscillators,
the dynamic response of such an aeroelastic system is strongly nonlinear and complicated. The classic methods for linear
dynamics are not suitable anymore and advanced methods for nonlinear dynamic analysis are needed.

Nonlinear Normal Modes (NNMs) can be used to study the nonlinear dynamic responses. Compared to linear systems,
the orthogonality and superposition of the linear modes are not valid for NNMs. The periodic definition of NNMs was
firstly proposed in Rosenberg (1960), as a family of periodic solutions. Then, the NNMs were geometrically defined as
an invariant manifold in Shaw and Pierre (1991), which extended the definition of NNMs to nonlinear non-conservative
systems. TheNNMs in non-conservative systems are named as dampedNonlinear NormalModes (dNNMs) Sarrouy (2019),
which are typically non-periodic (decaying or growing in the time history). To extended the periodic definition of NNMs
to dNNMs, two concepts were proposed in the last two decades, complex nonlinear mode by Laxalde and Thouverez
(2009) and Extended Periodic Motion Concept (EPMC) by Krack (2015). In EPMC, dNNMs were formulated in a periodic
form by introducing artificial damping into such systems to compensate the energy exchanged by the non-conservative
nonlinear forces (i.e. VdP oscillator or frictional contact). Thanks to EPMC, dNNMs can be directly represented as harmonic
solutions and classic numerical methods for periodic problems (i.e. Harmonic Balance Method (HBM) Urabe (1965)) can
be simply implemented. Furthermore, the use of dNNMs has also been proved to be an efficient method to predict the
self-excited solutions in the case of friction-induced vibration in Sun, Vizzaccaro, Yuan and Salles (2021). To the best of
the authors’ knowledge, using nonlinear modal analysis to investigate the aeroelastic flutter phenomena for blisks has never
been attempted in the literature.

This work aims to propose a modelling strategy to investigate the effects of friction damping on aeroelastic stability for
a blisk with a friction ring damper. In this study, aerodynamic excitation is simplified by a VdP nonlinear oscillator. EPMC
based nonlinear modal analysis is then used to compute the self-excitation solutions. This paper is organised as follows: the
Lumped Parameter Model (LPM) to represent the blisk and FRD will be introduced at first; it is followed by the description
of VdP oscillator and frictional contact model; then, the formulations to obtain dNNMs are presented; after that, results of
flutter region and flutter induced LCOs are demonstrated using dNNMs and discussed followed by the conclusions.

MODEL DESCRIPTION
Blisk and Ring Damper

A LPM is used in this work to represent the full scale of blisk with FRD. This LPM (see Fig.1) has been used in the
existing research Laxalde et al. (2007); Sun et al. (2018). There are total eight Degree of Freedoms (DoFs) per sector,
which are used to represent the blisk: two DoFs for the blade (q

b1
and q

b2
), three DoFs for the disk (internal q

dI
, right

q
dR

and left q
dL
) and the other three for the FRD (internal q

rI
, right q

rR
and left q

rL
). There are 24 sectors in total within

this cyclic symmetric structure, Ns = 24. The model parameters are listed in Fig.1. The blisk and FRD are assumed to be
identical among each sector. TheMead’s approachMead (1975) is used to apply cyclic boundary conditions. After applying
the cyclic symmetric boundaries, the DoFs associated with the right boundaries (qdR and qrR) are eliminated. The DoFs
retained after the cyclic symmetric reduction are: Q = [q

b1
,q

b2
,q

dI
,q

dL
,q

rI
,q

rL
]T.
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Figure 2 Natural frequency against nodal diameter and mode shape for the third modal family with nodal diameter
1

Linear modal analysis
The natural frequencies of the LPM (without the FRD) are plotted against the Nodal Diameter (ND) in Fig.2(a). There

are four families of modes, two of them blade dominated modes (diamonds and circles). The natural frequencies of these
two families are almost constant for all possible NDs. Whereas, the other two (squares and triangles) are disk dominated
modes. For disk dominated modes, the modal stiffness increases dramatically with a growing ND because of the blade-disk
coupling effect. The blade-disk coupling effect gives access for communication of the vibration energy between blades and
disks. The FRDs are designed to reduce the vibration amplitude for the mode with a large disk displacement. Therefore,
the modes from 3rd modal family (represented by squares) are selected for the following study. The mode shape of 3rd

modal family with ND 1 is shown in Fig.2(b, c). By looking at the mode shape, the DoFs associated with the disk show a
significant modal displacement.

Equation of Motion
The general Equation of Motion (EoM) for nonlinear modal analysis is given in Eqn.(1), whereM and K are the mass

and stiffness matrices. In nonlinear modal analysis, the linear damping is usually not considered. Q(t) is the periodic
solutions of the present EoM, the underline of the symbol is used to represent the vector and variable t does not appear
explicitly in the following equations. F f (Q , Q̇) is the friction force between the blisk and FRD; F a(Q , Q̇) is the aeroelastic
self-excitation applied to the blade.

M Q̈(t)+KQ(t)+F f (Q , Q̇)+F a(Q , Q̇) = 0 (1)

Modelling aeroelastic self-excitation
The aerodynamic excitation is represented by the classic VdP oscillator. In a VdP oscillator, the aerodynamic damping

is negative, and it increases with the vibration amplitude. One of the great advantages of this model is that positive damping
can be achieved when the amplitude of self-excitation exceeds a prescribed limit Půst et al. (2018). There are two critical
parameters within the VdP oscillator, which are β1 and β2. These two critical parameters are expected to be tunned using
empirical aerodynamic data. The aerodynamic excitation is assumed to be applied on the blade DoF 1 q

b1
. The values of

β1 and β2 are selected by the authors to demonstrate the potential for such a model.

F a =−β1 · q̇b1
+β2 ·q2

b1
q̇

b1
(2)

Modelling friction
The frictional contact between the blisk and FRD is modelled by a 1D contact element Jenkins (1962). This 1D contact

element consists of a Jenkins element in tangential direction with a constant normal load as shown in Fig.3(a). N0 is the
constant normal load 500 N; kt is the tangential contact stiffness 5e6 N/m; µ is the friction coefficient 0.5. x(t) is periodic
tangential relative displacement between the contact pairs; w(t) is the relative displacement of the contact point. For a
current time step i, relative displacement x(ti), the displacement of the contact point w(ti) and the friction force Fx(ti) are
calculated iteratively. The tangential friction forces is predicted using fpre = kt(x(ti)−w(ti−1)), then corrected in Eqn.(3).
The relative displacement can be calculated by x(t) = qdI(t)−qrI(t) or x(t) = qdL(t)−qrL(t). After applying Eqn.(3), the
friction force can be computed and shown in Fig.3(b, c, d).
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{
if fpre < µN0 Sticking: Ff (ti) = fpre w(ti) = w(ti−1)
if fpre ≥ µN0 Sliding: Ff (ti) = µN0 · fpre/

∣∣ fpre
∣∣ w(ti) = x(ti)−Ff (ti)/kt

(3)

COMPUTATION OF DAMPED NONLINEAR NORMAL MODE
The dNNMs are not in a periodic form because of the non-conservative nonlinear forces. The dNNMs are computed

based on EPMC, which was proposed by Krack (2015). The basic idea of EPMC is that using an artificial viscous damping
term to balance the energy exchanged by the non-conservative nonlinearities. Thanks to the artificial damping, the dNNMs
can be represented using harmonic formulations and the classic HBM method can be applied. The modal damping ratio ζ
of this artificial damping term is defined as ζ , which is considered as a free parameter and expected to be determined in the
computation of dNNMs. This modal damping ratio ζ is used to quantify the amount of energy exchanged. For example, in
the system with frictional contact, the total energy is dissipated leading to a positive modal damping ratio. Whereas in the
case of a self-excited system, a negative modal damping ratio can be seen. After the introduction of this artificial negative
damping term, the EoM is rewritten as Eqn.(4), where ω0 is the resonant frequency of the dNNM. 2ζω0M Q̇ is the artificial
viscous damping term.

M Q̈(t)+KQ(t)−2ζω0M Q̇+F f (Q , Q̇)+F a(Q , Q̇) = 0 (4)

Harmonic Balance Method
The classic HBM is applied to solve Eqn.(4) in the frequency domain Cameron and Griffin (1989). In the framework

of HBM, the solutions Q, the nonlinear forces F f and F a are represented by series of harmonic functions with the resonant
frequencyω0. The periodic solutions and forces are decomposed by the Fourier series truncated up toNh order of harmonics,
as shown in Eqn.(5). Q̃n is the complex Fourier coefficient for the nth order of harmonics. j represents the imaginary parts.

Q(t) = ℜ{
Nh

∑
n=0

Q̃ne j·nω0t}; Q̃n = Q̃c
n − jQ̃s

n (5)

Substituting Eqn.(5) into Eqn.(4) and balancing the harmonic terms with a Galerkin projection. Then, this EoM in time
domain is transformed into the frequency domain, where Q̃ is a collection of Fourier coefficients: Q̃ = [Q̃0, Q̃1, · · · , Q̃Nh

]T.
F̃ f and F̃ a have the similar form with Q̃. The EoM in frequency domain is provided in Eqn.(6-7). Furthermore, it is difficult
to directly calculate the friction force in the frequency domain. Therefore, the classic alternating frequency/time method is
applied to iteratively compute F̃ f ,(Q̃), as described in Cameron and Griffin (1989).

Z Q̃+ F̃ f ,(Q̃)+ F̃ a,(Q̃) = 0 (6)

Z= diag(Z0,Z1, . . . ,ZNh
); Zn =−n2ω2

0M Q̃n − j2nζω2
0M Q̃n +K Q̃n (7)

Unlike the linear modes, the dNNMs and other modal properties are highly energy-dependent. Themodal displacement
Q, the resonant frequency ω0 and the modal damping ratio ζ vary with the level of energy within the system. To capture this
energy dependence, a new parameter, the modal amplitude α , is introduced into the system to quantify the modal energy.
Then, the modal displacement can be expressed as: Q = α ·Q0, where Q0 is the mass normalised modal displacement. The
mass normalised modal displacement is achieved by applying a mass normalisation constraint. In addition, the absolute
phase of dNNMs is arbitrary. Therefore, a phase normalisation is required. Both constraints are applied in a similar way
with Sun et al. (2020).
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Figure 4 Damped nonlinear normal modes for Case A: (a, b) For different β1; (c, d) For different β2

Continuation method
The continuation method is a numerical method that can be used to track the evolution of a systematic behaviour

against one or several of the system parameters. There are two major benefits of using continuation techniques. Firstly, the
continuation technique is able to distinguish the solutions which are very close to each other. Secondly, they can be used to
find different solutions for the same parameter. In a nonlinear case, more than one solution can coexist for one parameter.
For nonlinear modal analysis, the modal amplitude is considered as the chasing parameter to track the evolution of the
dNNM against the vibration amplitude. Readers are invited to refer Allgower and Georg (2003) for a detailed description.

RESULTS AND DISCUSSION
In the previous sections, the mechanical model and related numerical methodology for the present work are presented.

In this section, we will show the result of this self-excited system from nonlinear modal analysis and related parametric
studies. The dNNMs are used to represent the flutter induced LCOs of blisk with FRD under aeroelastic self-excitation.
The effects of FRD and aeroelastic self-excitation on the resonant frequency ω0 and modal damping ratio ζ of the dNNM
will be discussed in detail. The present work consists of 3 scenarios. For Case A, the FRD is not included within the system
and only the aeroelastic self-excitation based on VdP is considered. For Case B, the FRD is introduced into the system but
it is assumed to be fully sticking. Finally, for Case C, the FRD involves both sticking and slipping states.

The results are shown in the form of frequency-amplitude (ω0 −|qb1|) curves and the damping-amplitude (ζ −|qb1|)
curves. The vibration amplitude is extracted from the first blade DoF |qb1|. The part of the curve (where ζ < 0, dotted
part of the curves) represents the possible flutter induced LCOs depending on the material damping of the structure, and
the region filled by colours in the figure is where the flutter can occur. Taking the blue point in Fig.4 (a, b) as an example,
there exists a flutter induced LCO with an amplitude of 5 mm and a frequency of 2055.27 rad/s, if the material damping
of the system equals −ζ (0.5%). If the material damping is smaller than −ζ , the solutions of the system are unstable at an
amplitude of 5 mm and a frequency of 2055.27 rad/s (vibration amplitude of the system will gradually grow). The flutter
phenomenon can be seen.

Aeroelastic flutter of the blisk
The aeroelastic self-excitation is represented by the VdP oscillator, which has one negative linear damping and a pos-

itive nonlinear quadratic nonlinear term. β1 controls the negative linear damping and β2 represents the positive nonlinear
quadratic damping. The values of these two parameters are selected by authors to show the potential of such a modelling
strategy. In a real design situation, the aeroelastic self-excitation can be obtained from a direct computation of fluid dy-
namics. Here, the VdP oscillator is used to represent the given aeroelastic self-excitation for such a low fidelity simulation.
The results are shown in Fig.4. Generally, one can notice that an increase in β1 can lead to a lower ω0 and a lower ζ at
small amplitude. Whereas β2 does not have significant effects on ω0 and ζ at small amplitude but can affect the slopes of
the ζ −|qb1| curves.

From the Fig.4, it is obvious to obtain a general trend for the evolution of the ω0 and ζ with respect to |qb1|. At a
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Figure 5 Damped nonlinear normal modes: (a, b) For Case A, B and C; (c, d) For different mr; (e, f) For different kr

low level of |qb1|, one can notice a negative ζ , which comes from the negative linear damping term. An increase in |qb1|
leads to increase in ζ . Once the |qb1| exceeds the critical displacement. A positive ζ can be obtained. As for the change
of the resonant frequency, when ζ < 0, ω0 increases from the natural frequency and starts to decrease when ζ > 0. In the
case of the blisk with flutter phenomenon, the surrounding airflow can impact the total mass, stiffness and damping of the
system resulting in a resonant frequency that is different from the natural frequency of the blisk. However, the mass ratio
between the surrounding airflow and the blisk is very small. Thus, the change in the frequency caused by the surrounding
airflow usually can be ignored. From the Fig.4 (a, c), the variation of ω0 is less than±0.2%, which provides a good physical
representation of the real situation.

To further demonstrate the ζ − |qb1| curves, we take the case of β1 = 0.05, β2 = 0.003 as an example. When the
amplitude is less than 8.21 mm, the ζ is negative indicating that the system is physically unstable. It means that additional
damping (i.e. material damping) is required to balance the negative damping introduced by the aeroelastic self-excitation
to avoid the flutter. When the amplitude exceeds 8.21 mm (the solid part of the curves), the flutter induced LCOs cannot
exist and the system is always stable.

Aeroelastic flutter of the blisk with ring damper
After the parametric study of the critical coefficients of the aeroelastic self-excitation, the values of β1 and β2 are

selected as 0.05 and= 0.003 for the rest of the study. The ω0 −|qb1| curves and ζ −|qb1| curves for Case B and Case C are
shown and compared with Case A. Results are shown in Fig.5(a, b). It is worth reminding that Case B represents the blisk
with a sticking FRD and aeroelastic self-excitation, whereas in Case C, the FRD can be both sticking and sliding.

For ω0 −|qb1| curves, it is obvious to notice that the effects from aeroelastic self-excitation are almost negligible. The
evolution of ω0 of Case C is a typical softening effect for structures with friction dampers Sun et al. (2020). At a low
amplitude, the ring damper is sticking to the blisk, the ω0 − qb1 curve for Case C is overlapped with the one of Case B.
With an increasing amplitude, the ring starts to slide and the system is less stiff leading to a decreasing ω0. Finally, the ω0
of Case C will asymptotically tend to the ω0 of Case A.

By looking at Fig.5(b), the ζ starts from −0.63% at zero amplitude. When |qb1| increases to 0.76 mm, the FRD starts
to slide and dissipate the total energy of the system leading to a positive friction damping. The ζ dramatically increases
and becomes positive at the amplitude of 1.16 mm. It is obvious to identify that, with the help of FRD, the flutter region
is much smaller than that in Case A. In nonlinear modal analysis, material damping is not included in the computation of
dNNMs. If the material damping is 0.5%, then flutter induced LCOs are highlighted by black markers. By comparing the
amplitudes of these flutter induced LCOs, the one in Case C has the lowest amplitude.

Effects of the ring damper mass and stiffness
The results from the previous section has proven that FRDs can be seen as an efficient damping device to reduce the

possibility of aeroelastic flutter and the amplitude of flutter induced LCOs of the blisk. Then, different values of the mr
(mr = 0.008 kg, the default case mr = 0.01 kg and mr = 0.012 kg) and kr (kr = 1.5e4 N/mm, the default case kr = 2e4 N/mm
and kr = 2.5e4 N/mm) are tested to further explore the possibility of the future design of FRDs. Results are provided in
Fig.5(c, d, e, f).

In Fig.5(c, d), the ω0 − |qb1| curves and ζ − |qb1| curves for three different values of mr are shown. Changing the
damper mass can directly influence the normal load N0 and the inertia of the FRD. A lower value of mr leads to a stiffer
system and smaller flutter region. The maximum value of ζ does not change significantly. Whereas for the effects of kr,

6



both ω0 and ζ experience obvious influences. A higher kr makes the system less flexible resulting in a greater ω0. The
flutter region can be also reduced by an increase in the stiffness of FRD.

CONCLUSIONS
This paper provides a numerical solution to the design of the friction ring dampers for blisks to investigate the flutter

boundary in turbomachinery with a given aeroelastic self-excitation. A qualitative flutter analysis for blisks with friction ring
damper is achieved using a lumped parameter model, Van der Pol oscillators and Jenkins elements. The phenomenological
results are represented using the damped nonlinear normal modes to investigate the effects of the ring damper on the flutter
boundary and flutter induced limit cycle oscillations. With the introduction of the ring damper, the possible flutter region
of the studied mode and the amplitude of flutter induced limit cycle oscillations can be significantly reduced. Furthermore,
a proper design of the friction ring damper can further improve the damping performance.

This work can be considered as the first attempt to use damped nonlinear normal modes to study the blisk with friction
dampers under aeroelastic self-excitation. Using damped nonlinear normal modes is very straightforward to identify the
flutter regions and flutter induced limit cycle oscillations. A full-scale structure and a more accurate representation of
aeroelastic self-excitation will be considered in the near future.
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