
.

Gravitational waves from phase transitions
and cosmic strings in neutrino mass
models with multiple Majorons

Pasquale Di Bari, Stephen F. King, and Moinul Hossain Rahat

School of Physics and Astronomy, University of Southampton,
Southampton, SO17 1BJ, U.K.

Abstract: We explore the origin of Majorana masses within the Majoron model and
how this can lead to the generation of a distinguishable primordial stochastic background
of gravitational waves. We first show how in the simplest Majoron model only a contribu-
tion from cosmic string can be within the reach of planned experiments. We then consider
extensions containing multiple complex scalars, demonstrating how in this case a spectrum
comprising contributions from both a strong first order phase transition and cosmic strings
can naturally emerge. We show that the interplay between multiple scalar fields can am-
plify the phase transition signal, potentially leading to double peaks over the wideband
sloped spectrum from cosmic strings. We also underscore the possibility of observing such
a gravitational wave background to provide insights into the reheating temperature of the
universe. We conclude highlighting how the model can be naturally combined with scenarios
addressing the origin of matter of the universe, where baryogenesis occurs via leptogenesis
and a right-handed neutrino plays the role of dark matter.
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1 Introduction

The discovery of gravitational waves (GWs) [1] opens new opportunities to test physics be-
yond the standard model (BSM). This is particularly interesting for those models currently
evading constraints from colliders and, more generally, from laboratory experiments. Even
though GWs have so far been detected only from astrophysical sources, there are many
different processes in the early universe that could lead to the production of detectable
primordial stochastic GW backgrounds. In particular, a production from the vibration of
cosmic strings [2] and from strong first order phase transitions [3–5] provide quite realistic
and testable mechanisms within various extensions of the standard model (SM) [6–8].

These two GW production mechanisms are usually studied separately. In this paper we
show how within the Majoron model [9], an extension of the SM explaining neutrino masses
and mixing, a GW spectrum is produced where both sources can give a non-negligible con-
tribution and fall within the sensitivity of planned experiments. In the Majoron model
a type-I seesaw [10–14] Lagrangian results as the outcome of a global U(1)L spontaneous
symmetry breaking and Majorana masses are generated by the vacuum expectation value
(VEV) of a single complex scalar field. The massless Goldstone boson, identified as the
imaginary part of the complex scalar, is dubbed as Majoron. The model can also nicely
embed leptogenesis for the explanation of the matter-antimatter asymmetry of the uni-
verse [15].

The idea that a strong first order electroweak phase transition associated to the lepton
number symmetry breaking can generate a stochastic GW background has been explored
in [16]. In this case a coupling of the complex scalar to the SM Higgs field was considered.
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A phase transition within the dark sector of the Majoron model, disconnected from the
electroweak phase transition, was considered in [17], where non-renormalisable operators
and explicit symmetry breaking terms have been included in order to enhance the signal.
Moreover, a low-scale phase transition, in the keV-MeV range was also considered in order
to reproduce the NANOGrav putative signal at very low frequencies (∼ 10−9Hz) [18].

A first order phase transition from U(1)L-symmetry breaking in the dark sector, with no
coupling of the complex scalar field to the SM Higgs field, was also considered in [19] without
resorting either to explicit symmetry breaking terms or to non-renormalizable operators.
Both the case of low and high scale phase transition were explored. It was found that at low
scales the NANOGrav result cannot be explained, unless one invokes some enhancement
from some unaccounted new effect. On the other hand, it was found that at high energy
scales the signal can be sufficiently large to fall within the sensitivity of future experiments
such as µAres [20], DECIGO [21], AEDGE [22], AION [23], LISA [24], Einstein Telescope
(ET) [25], BBO [26] and CE [27]. However, this result relied on the introduction of an
external auxiliary real scalar field undergoing its own phase transition occurring prior to
the complex scalar field phase transition. Once the auxiliary scalar gets a VEV, its mixing
with the complex scalar field generates a zero-temperature barrier described by a cubic
term in the effective potential of the latter, leading to a strong first order phase transition
and detectable GW spectrum.

In this paper, we show how the role of the auxiliary field can be nicely played by a
second complex scalar in a multiple Majoron model. We discuss neutrino mass models
with spontaneous breaking of multiple global lepton number symmetries, typically with
hierarchical scales. The three right-handed (RH) neutrino masses are then generated by
different complex scalars each undergoing its own independent phase transition occurring,
in general, at different energy scales and breaking lepton number along a specific direction
in flavour space. We have, then, what could be referred to as a (RH neutrino) flavoured
Majoron model. Importantly, we show that a contribution from the vibration of cosmic
strings generated from the spontaneous breaking of the global lepton number symmetry
has also to be taken into account to derive the GW spectrum of these models. The overall
spectrum then is the sum of contributions from both production mechanisms: a contribution
from strong first order phase transitions and a contribution from the vibration of cosmic
strings. For sufficiently strong phase transitions, the resultant signal looks like one or more
peaks (from phase transition) over a slanted plateau (from cosmic string).

The paper is organised as follows. In Section 2 we review the traditional single Majoron
model where the right-right Majorana mass term, with three RH neutrinos, is generated
by a single complex scalar field breaking total lepton number symmetry. The differences
in the Majorana masses are then to be ascribed to different couplings. Even in this tra-
ditional setup we point out that a GW production from the vibration of cosmic strings,
not accounted for in previous works, should be considered and can give a detectable signal.
In Section 3 we extend the model with an additional complex scalar with its respective
global lepton number symmetry, whose spontaneous breaking gives mass to the two lighter
RH neutrinos. In this way only two distinguished phase transitions occur with hierarchical
energy scales. We show that the resulting GW spectrum is, in general, the sum of two con-
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tributions, one from the lower scale phase transition and one from the vibration of cosmic
strings created at the highest scale symmetry breaking. The corresponding phase transition
does not produce a sizeable contribution to the GW spectrum, but it results into a VEV
of the complex scalar field that generates a term entering the effective potential describing
the second phase transition at a lower scale. This term strongly enhances the production of
GWs during the second phase transition. In this way the high scale complex scalar associ-
ated with the Majoron field provides the external auxiliary scalar that had to be assumed in
[19], so that the model is self-contained and does not rely on external assumptions. Finally,
in Section 4 we consider the case when all three RH neutrino masses are associated with
different complex scalars, each charged under a different global lepton number symmetry.
At high temperatures one has the restoration of a U(1)L1 × U(1)L2 × U(1)L3 symmetry.
While the temperature decreases, a sequential breaking of each U(1)LI

symmetry occurs at
a different scale accompanied by a different phase transition. In this case we show that the
GW spectrum now can receive a contribution from both the two lower scale phase transi-
tions and still from the vibration of cosmic strings at the highest scale symmetry breaking.
We show that such an spectrum may have twin peaks from phase transition signals over a
slightly sloped plateau of the cosmic string signal. We draw conclusions in Section 5 and
point out that the GW spectrum of the model can provide us important information about
the reheating temperature of the universe, and that the model fits naturally within a unified
framework of solving the puzzles of baryon asymmetry and dark matter.

2 Primordial GW stochastic background in the single Majoron model

In this section, we first review the main features of the single Majoron model and then
discuss the generation of a stochastic background of primordial GWs.

2.1 The single Majoron model

The usual single Majoron model is a simple extension of the SM [9], where the spontaneous
breaking of a global UL(1) symmetry generates a Majorana mass term for the RH neutrinos.
The SM field content is then augmented with N RH neutrino fields NI (I = 1, 2, . . . , N)

and a complex scalar singlet,

ϕ =
1√
2
(φ+ i χ) , (2.1)

where the real component is CP -even and the imaginary component is CP -odd. The new
scalar ϕ has a tree level potential V0(ϕ). For definiteness, we consider the well motivated
case N = 3. The tree-level extension of the SM Lagrangian is then given by

−LNI+ϕ = Lα hαI NI Φ̃ +
λI

2
ϕN c

I NI + V0(ϕ) + h.c. , (2.2)

where Φ̃ is the dual Higgs doublet. In the early universe, above a critical temperature Tc,
one has ⟨ϕ⟩ = 0 so that the RH neutrinos are massless. Moreover, since the lepton doublets
Lα and the RH neutrinos NI have L = 1, and ϕ has L = 2, lepton number is conserved.
Below Tc, the UL(1) symmetry is broken and the scalar ϕ acquires a vacuum expectation
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value ⟨ϕ⟩ = v0/
√
2. In this way the RH neutrinos become massive with Majorana masses

MI = v0 λI/
√
2. This leads to lepton number violation and small Majorana masses for

the SM neutrinos via type-I seesaw mechanism. We assume that Tc ≫ Tew ∼ 100GeV,
so that the Majoron phase transition occurs prior to the electroweak phase transition and,
therefore, the Majorana mass term is generated later than the Dirac mass term.

Let us consider the simple tree level potential

V0(ϕ) = −µ2|ϕ|2 + λ|ϕ|4 , (2.3)

where λ is real and positive, in a way that the potential is bounded from below, and µ2

is real and positive to ensure the existence of degenerate nontrivial stable minima with
⟨ϕ⟩ = v0 e

iθ/
√
2 with 0 ≤ θ < 2π and where v0 ≡

√
µ2/λ. After spontaneous symmetry

breaking, we can rewrite ϕ as

ϕ =
eiθ√
2
(v0 + S + i J) , (2.4)

where S is a massive field with m2
S = 2λv20 and J is the Majoron, a massless Goldstone

field. Moreover, RH neutrino masses MI = λI v0/
√
2 are generated by the VEV of ϕ and

these lead to a light neutrino mass matrix given by the (type-I) seesaw formula

(mν)αβ = −v2ew
2

hαIhβI
MI

, (2.5)

where vew is the standard Higgs VEV. Notice that the potential in Eq. (2.3) corresponds to
a minimal choice where we are neglecting possible mixing terms between the new complex
scalar field ϕ and the standard Higgs boson. In this way, the phase transition involves only
the dark sector, consisting only of ϕ and the three RH neutrinos. Moreover, we are not
considering non-renormalisable terms, so that the model is UV-complete.

Since all minima are equivalent, one can always redefine θ in a way that the symmetry is
broken along the direction θ = 0, without loss of generality. The minimum of the potential
lies along the real axis and, for all purposes, one can consider the potential as a function of
φ, so that one has:

V0(φ) = −1

2
µ2 φ2 +

λ

4
φ4 . (2.6)

Let us now discuss the generation of a primordial stochastic background of GWs. There
are two possible sources in the Majoron model. The first is an associated strong first order
phase transition [19] that we discuss in the subsection 2.2. The second is the network of
cosmic strings generated by the breaking of the global U(1)L symmetry that we discuss
in the subsection 2.3. The latter has not been discussed before within a Majoron model,
though it is analogous to the U(1)B−L spontaneous symmetry breaking discussed in [28–31].

2.2 Stochastic GW background from first order phase transition

The scalar field and the three RH neutrinos form what we refer to as the dark sector.
The dark sector interacts with the SM sector only via the Yukawa interactions. In the
early universe finite temperature effects need to be taken into account. They will drive a
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phase transition, occurring in the dark sector, from the metastable vacuum at ϕ = 0, where
lepton number is conserved and RH neutrinos are massless, to the true stable vacuum at
ϕ = v0/

√
2, where lepton number is non-conserved and RH neutrino are massive. They

are described in terms of a finite-temperature effective potential V T
eff(ϕ). At temperatures

above a critical temperature Tc, finite temperature effects will induce symmetry restoration
[32]. When temperature drops down the critical temperature, the phase transition occurs
and, in the zero temperature limit, the tree-level potential V0(ϕ) is recovered, in the broken
symmetry phase.1

The finite-temperature effective potential can be calculated perturbatively at one-loop
[33] and is given by the sum of three terms,

V T
eff(ϕ) ≃ V0(ϕ) + V 0

1 (ϕ) + V T
1 (ϕ) , (2.7)

where the zero-temperature one-loop contribution V 0
1 (ϕ) is given by the Coleman-Weinberg

potential. This can be written, using cut-off regularization, as [33–36]

V 0
1 (ϕ) =

1

64π2

{
m4

ϕ(ϕ)

(
log

m2
ϕ(ϕ)

m2
ϕ(v0)

− 3

2

)
+ 2m2

ϕ(ϕ)m
2
ϕ(v0) (2.8)

−2
∑

I=1,2,3

[
M4

I (ϕ)

(
log

M2
I (ϕ)

M2
I (v0)

− 3

2

)
+ 2M2

I (ϕ)M
2
I (v0)

] .

The pre-factor of two in the second line accounts for two degrees of freedom for each RH
neutrino species. The one-loop thermal potential is given by [34–36]

V T
1 (ϕ) =

T 4

2π2

[
JB

(
m2

ϕ(ϕ)

T 2

)
− 2

∑
I

JF

(
M2

I (ϕ)

T 2

)]
, (2.9)

where the thermal functions are

JB,F (x
2) =

∫ ∞

0
dy y2 log(1∓ e−

√
x2+y2) . (2.10)

The functions m2
ϕ(ϕ) and M2

I (ϕ) are the shifted masses given by

m2
ϕ(φ) ≡

d2V 0(φ)

d2φ
= −λv20 + 3λφ2 (2.11)

and

M2
I (φ) = λ2

I

φ2

2
, (2.12)

where we specialized their dependence as a function of φ since, even when thermal effects
are included, all the study of the dynamics can be done along the real axis of ϕ without
loss of generality.

1Notice that the reheating temperature of the universe TRH needs to be higher than Tc for both symmetry
restoration and symmetry breaking to occur. If it is lower, the universe history starts directly in the
broken phase and there is no phase transition. For this reason, finding evidence for a phase transition and
establishing the value of Tc would straightforwardly place a lower bound on TRH.
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This time the sum over the RH neutrino species, the only fermions coupling to ϕ, should
only include those that are fully thermalised prior to the phase transition, while we can
neglect the contribution from those that are not. RH neutrinos thermalise at a temperature
[37, 38]

T eq
I ≃ 0.2

(h† h)II v
2
ew

meq
, (2.13)

where meq ≡ [16π5/2√g⋆ρ/(3
√
5)] (vew/MP) ≃ 1.1meV

√
g⋆ρ/g

SM
ρ is the usual effective equi-

librium neutrino mass and vew ≃ 174GeV is the standard Higgs vacuum expectation value.
The condition for the thermalisation of the RH neutrino species NI prior to the phase
transition can then be written as

(h† h)II ≳ 5
Tcmeq

v2ew
. (2.14)

The equilibration temperature Teq and the condition Eq. (2.14) can also be conveniently
expressed in terms of the dimensionless RH neutrino decay parameters

KI = v2ew
(h† h)II
meqMI

, (2.15)

obtaining, respectively,

Teq ≃ 0.2MI KI and KI ≳ 5
Tc

MI
. (2.16)

Taking into account the measured values of the solar and atmospheric neutrino mass scales,
from the seesaw formula it can be shown that all three RH neutrino species can satisfy
the condition of thermalisation and this is what we assume for simplicity following [19].2

Of course we also assume TRH ≫ Tc for the phase transition to occur (as noticed in the
footnote). Another important thermal effect to be taken into account is that the tree-level
shifted mass have to be replaced by resummed thermal masses [39]

m2
ϕ(φ) → m2

ϕ,T (φ) = m2
ϕ(φ) + Πϕ , (2.17)

where the Debye mass Πϕ is given by

Πϕ =

(
2 + dscalar

12
λ+N

M2

24v20

)
T 2 . (2.18)

In this expression one has dscalar = 2 for the case of a complex scalar we are considering. The
quantity M denotes either the mass of the heaviest RH neutrino in the case of hierarchical
RH neutrino mass spectrum (in which case N = 1), or a common mass in the case of quasi-
degenerate RH neutrinos (in which case N is the number of RH neutrinos). This allows us

2On the other hand, in the case of a strong hierarchical RH neutrino spectrum, like in the case of
SO(10)-inspired models, one can have an opposite situation where only the heaviest RH neutrino species
is fully thermalised prior to the phase transition. One could even have a scenario where no RH neutrino
species is thermalised.
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to reduce the number of parameters while spanning the space between N = 1 (hierarchical
RH neutrinos) and N = 3 (quasi-degenerate RH neutrinos).

With this replacement and neglecting O((MI/T )
6) terms in the high temperature ex-

pansion of the thermal functions, one obtains the dressed effective potential [19, 40, 41]

V T
eff(φ) ≃

1

2
M̃2

T φ2 −AT φ3 +
1

4
λT φ4 . (2.19)

In this expression we introduced

M̃2
T ≡ 2D (T 2 − T 2

0 ) , (2.20)

where T0 is the destabilisation temperature defined by

2DT 2
0 = λ v20 +

N

8π2

M4

v20
− 3

8π2
λ2 v20 . (2.21)

The dimensionless constant coefficients D and A are given by

D =
λ

8
+

N

24

M2

v20
and A =

(3λ)3/2

12π
. (2.22)

Finally, the dimensionless temperature dependent coefficient λT is given by

λT = λ− N M4

8π2 v40
log

aF T 2

e3/2M2
+

9λ2

16π2
log

aB T 2

e3/2m2
S

. (2.23)

Notice that one has to impose M1 < mS in order for the massive scalar S to decay into RH
neutrinos in a way that its thermal abundance does not overclose the universe. However,
this condition is easily satisfied, since the scalar and RH neutrino masses are roughly of the
same order-of-magnitude as v0.

At very high temperatures the cubic term in the effective potential (2.19) is negligible
and one has symmetry restoration. However, while temperature drops down, there is a
particular time when a second minimum at a nonzero value of φ forms. When temperature
further decreases, a barrier separates the two coexisting minima. The critical temperature
Tc is defined as that special temperature when the two minima become degenerate. Until
this time, the probability that a bubble of the false vacuum nucleates vanishes but below
the critical temperature it is nonzero. The nucleation probability per unit time and per
unit volume can be expressed in terms of the Euclidean action SE as [42]:

Γ(φ, T ) = Γ0(T ) e
−SE(φ,T ) . (2.24)

At finite temperatures one has SE(φ, T ) ≃ S3(φ, T )/T and Γ0(T ) ≃ T 4 [S3(T )/(2π T )]3/2 [43],
where the quantity S3 is the spatial Euclidean action given by

S3(φ, T ) =

∫
d3x

[
1

2
(∇φ)2 + V T

eff(φ)

]
= 4π

∫ ∞

0
dr r2

[
1

2

(
d2φ

dr2

)2

+ V T
eff(φ)

]
. (2.25)
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The physical solution for φ minimizing S3(φ, T ) can be found solving the EoM

d2φ

dr2
+

2

r

dφ

dr
=

dV T
eff(φ)

dr
, (2.26)

with boundary conditions (dφ/dr)r=0 = 0 and φ(r → ∞) = 0. Since for T ≥ Tc the
nucleation probability vanishes, one has limT→T−

c
SE → ∞, while on the other hand

limT→T0 SE → 0, so that at T0 all space will be in the true vacuum and the phase transition
comes to its end.3 If the phase transition is quick enough, then one can describe the phase
transition as occurring within a narrow interval of temperatures about a particular value
T⋆ such that Tc > T⋆ > T0. The temperature T⋆ is referred to as the phase transition
temperature and it is usually identified with the percolation temperature, defined as the
temperature at which the fraction of space still in the false vacuum is 1/e. The fraction of
space filled by the false vacuum at time t is given by [44, 45]

P (t) = e−I(t) , (2.27)

where

I(t) =
4π

3

∫ t

tc

dt′ Γ(t′) a3(t′)

[∫ t

t′
dt′′

vw
a(t′′)

]3
, (2.28)

a(t) is the scale factor and vw is the bubble wall velocity. Therefore, P (t⋆) = 1/e corresponds
to I(t⋆) = 1, where t⋆ ≡ t(T⋆). It can be shown [46] that at T⋆ the Euclidean action has to
satisfy

SE(T⋆)−
3

2
log

SE(T⋆)

2π
= 4 log

T⋆

H⋆
− 4 log[T⋆ S

′
E(T⋆)] + log(8π v3w) , (2.29)

where H⋆ = H(t⋆). This equation allows to calculate T⋆ and SE(T⋆) having derived SE(T )

from the solution of the EoM.
The calculation of the GW spectrum produced during the phase transition is charac-

terised by two quantities. The first is β ≡ Γ̇/Γ, the rate of variation of the nucleation rate.
Its inverse, β−1, gives the time scale of the phase transition. In our case, we are interested
in the scenario of fast phase transition, for β−1 ≪ H−1, so that, with a first order expansion
of the Euclidean action about t⋆

β

H⋆
≃ T⋆

d(S3/T )

dT

∣∣∣∣
T⋆

. (2.30)

This provides a sufficiently good approximation for β/H⋆ ≳ 100 [46]. The second quantity
characterising the phase transition is the strength of the phase transition α defined as

α ≡ ε(T⋆)

ρ(T⋆)
, (2.31)

3This is true for not too strong phase transitions, as we will consider, otherwise the Euclidean action
might actually reach a minimum and then increase again reaching an asymptotic non-vanishing value at
zero temperature.
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where ε(T⋆) is the latent heat released during the phase transition and ρ(T⋆) is the total
energy density of the plasma, including both SM and dark sector degrees of freedom. The
latent heat can be calculated using

ε(T⋆) = −∆V T⋆
eff (φ)− T⋆∆s(T⋆) = −∆V T⋆

eff (φ) + T⋆
∂∆V T⋆

eff (φ)

∂T

∣∣∣∣∣
T⋆

, (2.32)

where ∆V T⋆
eff (φ) = V T⋆

eff (ϕtrue
1 )−V T⋆

eff (ϕfalse
1 ), and in the first relation, from thermodynamics,

∆s is the entropy density variation and the free energy of the system has been identified
with the effective potential. Notice that in our case, V T⋆

eff (ϕfalse
1 ) = 0. Also notice that the

constraint β/H⋆ ≫ 1 for the validity of Eq. (2.30) implies a constraint α ≪ 1, since the
two quantities are not completely independent of each other with β/H⋆ ∝ α−2 [47]. For
definiteness, we will then impose α ≤ 0.3, corresponding typically to β/H⋆ ≳ 100. The
total energy density of the plasma can be expressed, as usual, as

ρ(T ) = gρ(T )
π2

30
T 4 . (2.33)

The number of the total ultrarelativistic degrees of freedom gρ(T ) is in this case given by
the sum of two contributions, one from the SM and one from the dark sector, explicitly, one
has gρ(T ) = gSMρ (T ) + gdarkρ (T ), where gSMρ (T⋆) = 106.75 and gdarkρ (T⋆) = gϕρ + 7

4 N with
gϕρ = 2.

Let us now calculate the GW spectrum defined as

h2ΩGW0(f) =
1

ρc0h−2

dρGW0

d ln f
, (2.34)

where ρc0 is the critical energy density and ρGW0 is the energy density of GW, produced
during the phase transition, both calculated at the present time. We assume that the phase
transition occurs in the detonation regime, i.e., with supersonic bubble wall velocities,
vw ≥ cs = 1/

√
3, that is typically verified in the regime α ≤ 0.3 we are considering.

Moreover, the dominant contribution to the GW spectrum typically comes from sound
waves in the plasma, so that h2ΩGW0(f) ≃ h2Ωsw0(f).

A numerical fit to the the GW spectrum that is the result of semi-analytical methods
and at the same time takes into account the results of numerical simulations, quite reliable
in the regime α ≤ 0.3 we are considering, yields [24, 48, 49]

h2Ωsw0(f) = 3h2 rgw(t⋆, t0) Ω̃gw H⋆R⋆

[
κ(α)α

1 + α

]2
Ssw(f)Υ(α, β/H⋆) , (2.35)

where the redshift factor rgw(t⋆, t0), evolving Ωgw⋆ ≡ ρgw,⋆/ρc,⋆ into Ωgw0 ≡ ρgw0/ρc0, is
given by [50]

rgw(t⋆, t0) =

(
a⋆
a0

)4 (H⋆

H0

)2

=

(
gS0
gS⋆

) 4
3 gρ⋆

gγ
Ωγ0 ≃ 3.5× 10−5

(
106.75

gρ⋆

) 1
3
(
0.6875

h

)2

,

(2.36)
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and in the numerical expression we used: gγ = 2, gS⋆ = gρ⋆, gS0 = 43/11 ≃ 3.91 ,
Ωγ0 = 0.537 × 10−4(0.6875/h)2. Replacing the expression for the mean bubble separation
R⋆ = (8π)1/3vw/β, valid in the detonation regime we are assuming, we obtain the numerical
expression

h2Ωsw0(f) = 1.45× 10−6

(
106.75

gρ⋆

) 1
3

(
Ω̃gw

10−2

) [
κ(α)α

1 + α

]2 vw
β/H⋆

Ssw(f)Υ(α, β/H⋆) .

(2.37)
The spectral shape function Ssw(f) is given by

Ssw(f) =

(
f

fsw

)3 [ 7

4 + 3(f/fsw)2

]7/2
, (2.38)

where fsw is the peak frequency given by

fsw = 8.9µHz
1

vw

β

H⋆

T⋆

100GeV

( gρ⋆
106.75

)1/6
. (2.39)

Notice that we have normalized the number of degrees of freedom to the SM value since
we are discussing phase transitions at or above the electroweak scale. The efficiency factor
κ(α) measures how much of the vacuum energy is converted to bulk kinetic energy. We
adopt Jouguet detonation solutions since we assume that the plasma velocity behind the
bubble wall is equal to the speed of sound. Then, the efficiency factor is [51, 52]

κ(α) ≃ α

0.73 + 0.083
√
α+ α

, (2.40)

and the bubble wall velocity is vw(α) = vJ(α), where

vJ(α) ≡
√
1/3 +

√
α2 + 2α/3

1 + α
. (2.41)

Jouguet solutions provide a simple prescription but a rigorous description would require
numerical solutions of the Boltzmann equations [52]. The prefactor Ω̃gw in Eq. (2.35) is
calculated from numerical simulations and a recent analysis shows that in the regime we
are considering, for α ≤ 0.3 and vw = vJ ≳ cs, it takes values approximately in the range
Ω̃gw = 10−3–10−2 [49], with the exact value depending on additional parameters necessary
to simulate the GW production from sound waves, such as friction, that we do not describe
in our analysis. For this reason we show in all results bands of GW spectra corresponding
to this range of values for Ω̃gw rather than a single curve. This should also account for the
use of simple Jouguet solutions for vw rather than solutions of Boltzmann equations, also
depending on friction as additional parameter.

Finally, notice that in Eq. (2.35) there is also a suppression factor Υ(α, β/H⋆) < 1

which decreases with the strength of the phase transition and is given by [53, 54]:

Υ(α, β/H⋆) = 1− 1√
1 + 2H⋆τsw

, (2.42)
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B.P. λ v0 [GeV] M [GeV] α β/H⋆ T⋆ [GeV] ⟨ϕ⟩trueT⋆
[GeV]

solid 2 1015 1015 0.00019 219.9 1.68× 1015 5.7× 1014

dashed 2 1014 1014 0.0017 1002.1 1.70× 1014 5.39× 1013

dotted 2 103 103 0.0015 65895.5 1713.5 502.6

Table 1. Benchmark points for gravitational wave signals from first order phase transition of ϕ.

where the product of the lifetime of the sound waves τsw with the Hubble expansion pa-
rameter at the time of the phase transition can, in turn, be expressed in terms of α and
β/H⋆ as

H⋆τsw = (8π)
1
3

vw
β/H⋆

[
1 + α

κ(α)α

]1/2
. (2.43)

Let us now calculate the GW spectrum within the Majoron model. If we consider the
minimal tree level potential in Eq. (2.3), there is a simple solution of the EoM for the
Euclidean action given by [19, 35]

S3

T
=

M̃3
T

A2 T 3
f(a) , (2.44)

where we defined the dimensionless parameter

a ≡
λT M̃2

T

2A2 T 2
. (2.45)

and where
f(a) ≃ 4.85

[
1 +

a

4

(
1 +

2.4

1− a
+

0.26

(1− a)2

)]
(2.46)

provides an accurate analytical fit. Using this expression for the Euclidean action, for a
given choice of the model parameters v0, λ and M , one can calculate the critical temperature
using Eq. (2.29). From this one can calculate the parameters α and β/H⋆ and then finally
derive the GW spectrum from Eq. (2.35).

In Fig. 1 we show, with blue bands, the GW spectra corresponding to the three bench-
mark choices for the values of v0, λ and M in Table 1. We also show the sensitivity regions
of LIGO [55, 56] and some planned/proposed experiments, µAres [20], LISA [24], BBO [26],
DECIGO [21], AEDGE [22], AION [23], ET [25] and CE [27].

Considering that these three choices are those found in a scan that maximise the signal
in respective peak frequencies, it should be clear that the contribution from phase transitions
in the case of the minimal model is far below the experimental sensitivity. In this way we
confirm the conclusions found in [19]. In the next subsection we point out, however, that
at least for large values of v0, the contribution from cosmic strings could be detectable in
future experiments even in this minimal model.

Before concluding we should also mention that one could think to add an explicit
symmetry breaking cubic term in the tree level potential. However, as noticed in [19], its
coefficient is upper bounded by the observation that it unavoidably generates also a linear
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Figure 1. The blue bands denote the contribution to the predicted GW spectrum from first order
phase transition for v0 = 1015 GeV (solid line), 1014 GeV (dashed line) and 1TeV (dotted line). The
red lines denote the contribution from cosmic strings for v0 = 1015 GeV (solid line) and 1014 GeV

(dashed line), the signal for v0 = 1 TeV is too suppressed to show here. The (green) shadowed
regions show the sensitivity curves of the indicated experiments.

term in the effective potential. This tends to remove the barrier between the two vacua so
that, if the coefficient is too large, there is no first order phase transition and, therefore, no
GW production. For this reason, we do not pursue this scenario.

2.3 GW from global cosmic strings

Spontaneously breaking the U(1)L symmetry at high energies by the complex scalar ϕ

generates a global cosmic string network, which dominantly radiates Goldstone bosons,
and sub-dominantly emits gravitational waves [57]. Compared to the Nambu-Goto string-
induced almost flat gravitational wave spectrum associated with a gauged symmetry break-
ing, the global cosmic string-induced gravitational waves are typically suppressed, and their
amplitude mildly falls off with frequency for most of the spectrum of interest. This makes
their detection at interferometers more challenging, unless the symmetry breaking scale v0 is
above 1014 GeV. In this section we briefly review the dynamics of global cosmic strings using
the the velocity-dependent one scale (VOS) model [58–63] and the associated gravitational
wave spectrum following [64].

The global cosmic string network consists of horizon sized long strings that randomly
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intersect and form sub-horizon sized loops at the intersections. The network shrinks and
loses energy with time, but eventually enters a scaling regime where the average inter-string
separation scale L, and the ratio of the energy density of the network to the total background
energy density remain constant. For Nambu-Goto strings, this energy is radiation from the
string loops predominantly in the form of gravitational waves. However, for global strings
the leading mode of energy radiation is from the emission of Goldstone particles, and only
a fraction of the energy is radiated as gravitational waves.

The energy density of the global string network can be expressed as

ρcs =
µ(t)

L2(t)
=

µ(t)

t2
ξ(t), (2.47)

where µ(t) is the energy per unit length of the long strings, and ξ(t) is a dimensionless
parameter which represents the number of long strings per horizon volume. While for
Nambu-Goto strings, µ is a constant, for global strings it has a logarithmic dependence on
the ratio of two scales, a macroscopic scale L(t) close to the Hubble scale, and a microscopic
scale δ(t) ∼ 1/(λv0) representing the width of the string core,

µ(t) = 2πv20 log
L(t)

δ
≡ 2πv20N(t). (2.48)

Here we have defined a dimensionless time parameter N(t) ≡ log[L(t)/δ(t)]. Eq. (2.48) can
then be written as

N(t) +
1

2
log ξ(t) = log v0t, (2.49)

assuming the quartic coupling λ ∼ 1.
The evolution of the inter-string separation scale L(t) and the average long string

velocity v̄ are given by a system of coupled differential equations,(
2− 1

N

)
dL

dt
= 2HL

(
1 + v̄2

)
+

Lv̄2

ℓf
+ c̄v̄ + s

v̄6

N
, (2.50)

dv̄

dt
= (1− v̄2)

( q
L

− 2Hv̄
)
. (2.51)

The first term on the RHS of Eq. (2.50) represents dilution effect from Hubble expansion.
The second term gives a negligible thermal friction effect with a characteristic scale ℓf ∝
µ/T 3. The third term stands for the loop chopping effect, where c̄ is the rate of loop
chopping. The fourth term represents the the backreaction due to the Goldstone emission. q̄
is a momentum parameter. In analogy with Nambu-Goto strings, the solution of Eqs. (2.50)
and (2.51) can be expressed as

L2(t) =
t2

8

nq̄(q̄ + c̄)(1 + ∆)

1− 2
n − 1

2N(t)

, (2.52)

v̄2(t) =
1−∆

2

nq̄

q̄ + c̄

(
1− 2

n
− 1

2N(t)

)
, (2.53)
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where ∆ ≡ κ̄/(N(q̄ + c̄)), κ̄ ≡ sv̄5/(1 − ∆)5/2, and n = 3, 4 corresponds to matter and
radiation domination, respectively. Fitting data extracted from the simulation results in
Refs. [65–67], the VOS model parameters can be approximated as [64]

{c̄, q̄, κ̄} ≃ {0.497, 0.284, 5.827}. (2.54)

Since ξ(t) = t2/L2(t) from Eq. (2.47), Eq. (2.52) can be used to express ξ as a function of
N(t). Eq. (2.49) then expresses N(t) as a function of t. Similarly, v̄ can be expressed as
function of t from Eq. (2.53).

Assuming that the loop size during formation of the string network is given by ℓi ∼ αti,
and the fraction of energy density of the strings contributing to gravitational wave Fα ∼ 0.1

[68, 69], the formation rate of string loops is given by

dρ0
dt

×Fα = −dρcs
dt

× Fα ×Fα = Eloop
µ

t3
FαFα, (2.55)

where Fα ∼ 1 is the loop size distribution function, and Eloop ≡ c̄v̄ξ3/2 is the loop emission
parameter.

After formation, the string loop rapidly oscillates and radiates energy in the form of
Goldstone particles and gravitational waves until disappearing completely [57]

dE

dt
= −ΓGµ2 − Γav

2
0, (2.56)

where we assume the benchmark values Γ ∼ 50 [68, 70–72] and Γa ∼ 65 [73, 74]. The size
of a loop initial length ℓi = αti at a later time can be expressed as

ℓ(t) ≃ αti − ΓGµ(t− ti)−
Γa

2π

t− ti
logN

, (2.57)

where the second and third terms represent the decrease in loop size for gravitational wave
emission and Goldstone emission, respectively.

It is useful to decompose the radiation into a set of normal modes f̃k = 2k/ℓ̃, where k =

1, 2, 3, . . ., and ℓ̃ ≡ ℓ(t̃) is the instantaneous size of a loop when it radiates at t̃. Accordingly,
the radiation parameters can be decomposed as Γ =

∑
k Γ

(k) and Γa =
∑

k Γ
(k)
a , where

Γ(k) =
Γk−4/3∑∞
j=1 j

−4/3
, and Γ(k)

a =
Γak

−4/3∑∞
j=1 j

−4/3
, (2.58)

and the normalization factor is approximately
∑∞

j=1 j
−4/3 ≃ 3.60.

Taking redshift into account, the observed frequency at today’s interferometers is

fk =
a(t̃)

a(t0)
f̃k, (2.59)

where t0 is present time and the scale factor today is a(t0) ≡ 1. The relic gravitational
wave amplitude is summed over all normal modes

ΩGW(f) =
∑
k

Ω
(k)
GW(f) =

∑ 1

ρc

dρGW

d log fk
. (2.60)
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From Eqs. (2.55) and (2.57), the contribution from an individual k mode can be expressed
as

Ω
(k)
GW(f) =

FaFa

αρc

2k

f

∫ t0

tf

dt̃
Eloop

(
t
(k)
i

)
t
(k)4
i

Γ(k)Gµ2

α+ ΓGµ+ Γa
2πN

[
a(t̃)

a(t0)

]5 a
(
t
(k)
i

)
a(t̃)

3

θ(ℓ̃)θ(t̃− ti),

(2.61)

where tf is the formation time of the string network. Heaviside theta functions ensure
causality and energy conservation. t

(k)
i represents the time when a loop is formed, which

emits gravitational wave at the time t̃, and is given by

t
(k)
i =

ℓ̃(t̃, f, k) +
(
ΓGµ+ Γa

2πN

)
t̃

α+ ΓGµ+ Γa
2πN

, (2.62)

where the loop size can be written as ℓ̃ = 2ka(t̃)/f .
The frequency spectrum of the gravitational wave amplitude is calculated by numeri-

cally evaluating Eq. (2.61), and summing from k = 1 to a large value to ensure convergence.
Evidently, the spectrum can be divided into three regions. The first region corresponds to
very high frequencies starting at fv0 , where the signal falls off, and the exact shape de-
pends on the initial conditions and very early stages of the string network evolution not
fully captured by the VOS model. fv0 is related to the time when the Goldstone radiation
becomes significant. In the intermediate radiation dominated region feq < f < fv0 , the
spectrum gradually declines as log3 (1/f). In the matter dominated region f0 < f < feq,
the spectrum behaves as f−1/3. feq is related to the time of matter-radiation equality, and
f0 is related to the emission at the present time. These characteristic frequencies are given
by

fv0 ∼ 2

αtn

a(tv0)

a(t0)
∼ 1010 Hz, (2.63)

f0 ∼
2

αt0
∼ 3.6× 10−16 Hz, (2.64)

feq ∼ 1.8× 10−7 Hz. (2.65)

Although the gravitational wave spectrum from global cosmic strings span over a very
wide frequency range, for our purposes we will be concerned mostly in the µ-Hz to kilo-
Hz range, where some of the planned interferometers are sensitive. This range falls under
feq < f < fv0 . The gravitational wave spectrum can be approximately expressed in this
regime by [64]

ΩGW(f)h2 ≃ 8.8× 10−18
( v0
1015GeV

)4
log3

[(
2

αf

)2 v0
teq

1

z2eq
√
ξ
∆

1/2
R (f)

]
∆R(f), (2.66)

where zeq ≃ 8000 [75], and ∆R(f) represents the effect of varying number of relativistic
degrees of freedom over time:

∆R(f) =
g∗(f)

g0∗

(
g0∗S

g∗S(f)

)4/3

. (2.67)
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There are several constraints on the global cosmic string formation scale ∼ v0. The
dominant radiation mode from global strings is emission of Goldstone bosons. Assuming
they remain massless, the upper limit on the total relic radiation energy density from CMB
∆Neff ≲ 0.2 [75] implies v0 ≲ 3.5 × 1015 GeV [64]. If we assume standard cosmology,
non-observation of gravitational waves at Parkes Pulsar Timing Array (PPTA) [69, 76, 77]
gives an upper bound v0 < 2× 1015 GeV. Other constraints from inflation scale and CMB
anisotropy bound require v0 ≲ O(1015) GeV [78, 79]. Hence we consider the global lepton
number symmetry violation at scales ≲ 1015 GeV. Furthermore, we require TRH ≳ v0 to
ensure that the lepton number symmetry is restored in the early universe and symmetry
breaking can take place at the scale ∼ v0.

We show the global cosmic string induced GW signals for v0 = 1014 and 1015 GeV in
Fig. 1 with red curves. The former is within the sensitivity of upcoming interferometers
µAres, DECIGO and BBO, whereas the latter might be probed at LISA, AEDGE and
Einstein Telescope as well. The phase transition signals for v0 = 1014 and 1015 GeV remain
buried under their respective cosmic string signals.4 We therefore conclude that the single
Majoron model can still be probed in GW interferometers through its cosmic string signal
as long as the global lepton number symmetry is spontaneously broken in between 1014 and
1015 GeV.

3 GW from Majorana mass genesis in a two-Majoron model

As we discussed, the GW contribution to the stochastic background from a phase transition
in the single Majoron model is by far below the sensitivity of planned experiments. The
reason for the suppressed signal amplitude can be traced back to the fact that for a single
scalar, the cubic term is strictly temperature dependent and vanishes at zero temperature.
It was noticed in [19] that the signal can be strongly enhanced if an auxiliary scalar field
is introduced. This would undergo its own phase transition getting its final VEV prior to
the phase transition of the original scalar. In this way a bi-quadratic mixing term could
be added to the tree level potential. This term generates a zero temperature barrier in
the thermal effective potential able to enhance the strength of the phase transition α and,
consequently, the GW spectrum.5 The nature of the auxiliary scalar field was not specified
in [19]. Here we propose a model with two Majorons where the auxiliary scalar field is
identified as a complex scalar field charged under a new global lepton number symmetry.

For definiteness, we call the complex scalars ϕ1, ϕ2, and their respective global lepton
number symmetries U(1)L1 , U(1)L2 . The Lagrangian can be written as

−LNI+ϕi
= Lα hαI NI Φ̃ +

y1
2
ϕ1N c

1 N1 +
y2
2
ϕ1N c

2 N2 +
y3
2
ϕ2N c

3 N3 + V0(ϕ1, ϕ2) + h.c. ,

(3.1)

4If the reheating temperature is below v0, the universe would start in a broken phase, and there would
be no signals from either cosmic strings or phase transition.

5This effect has been intensively employed in electroweak baryogenesis, where the phase transition of
the Higgs boson is typically either not taking place at all or too weak, and can be enhanced in the presence
of a real auxiliary scalar, which introduces a temperature-independent cubic term to the thermal effective
potential of the Higgs field.
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As before, we ignore any mixing between the SM Higgs doublet Φ̃ with the complex scalars
ϕ1, ϕ2. Here ϕ2 couples only to the RH neutrino N3, whereas ϕ1 couples to both N1 and
N2. This can be ensured by giving nonzero U(1)L1 charges to N1 and N2 and half of
their complementary charge to ϕ1, whereas N3 and ϕ2 have similar complementary charges
under U(1)L2 only. Furthermore, we have chosen a basis where ϕ1 and ϕ2 only couple to
the diagonal elements of the RH neutrino mass matrix.

As usual, we write the complex fields as ϕ1 = (φ1+ i χ2)/
√
2 and ϕ2 = (φ2+ i χ2)/

√
2

and assume that the vacuum expectation values are along the real axis, ⟨ϕ1⟩ = v1/
√
2

and ⟨ϕ2⟩ = v2/
√
2. After spontaneous breaking of both U(1) symmetries, χ1 and χ2 are

identified as two Majorons. We further assume the hierarchy v2 ≫ v1, so that the RH
neutrino mass spectrum is hierarchical M3 ≫ M1,M2.

The U(1)L1 ×U(1)L2 symmetry allows the usual quadratic and quartic terms for both
ϕ1 and ϕ2. It also allows a quartic mixing between the two scalars, so that the tree level
potential can now be written as

V0(ϕ1, ϕ2) = −µ2
1|ϕ1|2 + λ1|ϕ1|4 − µ2

2|ϕ2|2 + λ2|ϕ2|4 + ζ|ϕ1|2|ϕ2|2. (3.2)

At sufficiently high temperatures, both symmetries are restored. At temperatures T ∼ v2,
spontaneous breaking of U(1)L2 generates the massless Majoron field χ2. When the phase
transition of ϕ2 has completed, the second phase transition of ϕ1 may start at around
T ∼ v1. From this first phase transition we can expect a negligible contribution to the GW
spectrum at observable frequencies, as we have seen in the previous section.

Let us now focus on the phase transition of ϕ1 at a lower scale. Writing the potential
Eq. (3.2) in terms of the real fields φ1, φ2, and the minimization conditions yield

µ2
1 = λ1 v

2
1 +

ζ

2
v22, (3.3)

µ2
2 = λ2 v

2
2 +

ζ

2
v21. (3.4)

Because of the mixing term in the potential, the scalar mass matrix has non-vanishing off-
diagonal terms. Following [80], it can be diagonalized by rotating the basis vectors, so that
φ1 and φ2 can be expressed in terms of the new mass eigenstates φ̄1 and φ̄2

φ1 = v1 + φ̄1 cos θ − φ̄2 sin θ, (3.5)

φ2 = v2 + φ̄1 sin θ + φ̄2 cos θ, (3.6)

where the rotation angle can be determined, assuming v2 ≫ v1, to be

θ ≃ − ζv1
2λ2v2

. (3.7)

In this basis, expanding the quartic mixing term in Eq. (3.2) in terms of the mass eigenstates
yields a cubic term for φ̄1,

ζ

4
φ2
1φ

2
2

v2≫v1−−−−→ −ζ2

2

v2
λ2

φ̄3
1 + . . . (3.8)

– 17 –



Figure 2. GW parameters α and β/H⋆ from scan over the model parameters λ1, v1, M and C.
The color bar represents log10 T⋆/GeV for each point.

Since the mixing angle θ is very small, the mass eigenstate φ̄1 almost coincides with φ1.
Hence the net effect is the appearance of a new cubic term in the thermal effective potential
of φ1,

Veff(φ1, T ) ≈
1

2
M̃2

T φ2
1 − (AT + C)φ3

1 +
1

4
λT φ4

1 , (3.9)

where C = ζ2v2/(2λ2). Comparing Eq. (3.9) to Eq. (2.19), the expressions for M̃T , A and
λT are obtained from Eqs. (2.20)-(2.23) with the replacement λ → λ1, v0 → v1. Since the
heaviest RH neutrino mass M3 ∼ v2 ≫ v1, we can assume that the N3’s have fully decayed
at the onset of the ϕ1 phase transition. On the other hand, we can assume that both the
lighter RH neutrinos are fully thermalised and, therefore, take N = 2.

The cubic term at zero temperature helps to strengthen the phase transition of ϕ1. To
illustrate this, we perform a random scan over the model parameters (λ1, v1, C) in the range
10−6 ≤ λ1 ≤ 1, 1 ≤ v1/GeV ≤ 107, 10−4 ≤ M/v1 ≤ 10 and 10−8 ≤ C/v1 ≤ 1 and calculate
the GW parameters T⋆, α and β/H⋆, following section 2.2. In Fig. 3 we show the results
of the scan, where the color map represents log10 T⋆/GeV at each point. The model allows
α ≳ O(1) and β ≳ 107, however, as we discussed, we consider only points for α ≤ 0.3 and
β/H⋆ > 100.

To get a better understanding of how T⋆, α and β/H⋆ depend on the model parameters,
we look at a two-dimensional slice of the parameter space in terms of {λ1, v1} setting
M = 0.15v1 and C = 0.002v1. The results are shown in Fig. 3. We find that T⋆ ∼ O(v1)

and is nearly independent of λ1. On the other hand α is essentially determined by λ1, and
peaks near λ1 ∼ O(10−4). Finally, β/H⋆ depends on both λ1 and v1.
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Figure 3. Dependence of the GW parameters T⋆, α and β/H⋆ on the model parameters λ1 and
v1, setting M = 0.15v1 and C = 0.002v1.

B.P. λ1 v1 [GeV] M [GeV] C [GeV] α β/H⋆ T⋆ [GeV] ⟨φ1⟩trueT⋆
[GeV]

A 0.00057 1188.22 186.53 20.79 0.29 244.65 5863.12 1.38× 105

B 0.00061 2.32× 105 3.63× 104 3023.02 0.30 204.66 7.81× 105 1.79× 107

C 0.00036 9.88× 106 1.08× 106 2× 106 0.30 141.48 7.51× 108 1.92× 1010

Table 2. Benchmark points for gravitational wave signals from first order phase transition of φ1.

We now look at the gravitational wave spectrum for the three benchmark points listed
in Table 2. The benchmark points have been chosen to maximize the GW amplitude from
first order phase transition in their respective peak frequencies. The resulting signals are
shown in Fig. 4, along with the GW spectrum from the global cosmic strings for v2 = 1015,
5×1014, 2×1014 and 1014 GeV. The peak amplitude of these signals are consistent with what
one would expect from the range of α and β/H⋆ where our calculation of GW spectrum is
valid, as discussed in Appendix A.

The peak amplitude of the benchmark points A and B are sensitive to DECIGO, BBO,
AEDGE, and ET, CE, respectively, while point C peaks at a higher frequency. In all cases,
the peak amplitude is larger than the global cosmic string induced spectrum for v2 ≲ 1015

GeV. For any benchmark point and a given v2, the combined gravitational wave spectrum
would look like a peak towering above the slightly tilted plateau.6 While the wideband
nature of the global cosmic string induced signal offers detection possibility at multiple
interferometers, the larger peak from first order phase transition provides better visibility.
Combining the two features, a unique gravitational wave signal emerges for models with two

6However, if v1 < TRH < v2, we would only have the phase transition signal. The signal is still enhanced
since ϕ2 gets a VEV prior to the phase transition of ϕ1, although no symmetry breaking appears near the
scale v2. For TRH < v1, even the phase transition signal would disappear as the universe is in a broken
phase at Tc ∼ v1.
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Figure 4. Gravitational wave spectrum from first order phase transition of v1 for three benchmark
points shown in Table 2 and from global cosmic string formed by spontaneous breaking of the global
U(1)L2 symmetry by ϕ2 for four representative cases. The shaded region in the phase transition
signals represent uncertainties in the calculation of the gravitational wave amplitude. Sensitivities
and upper bounds from various upcoming and present interferometers are also shown.

scalars, one breaking a global U(1) symmetry at ultraviolet scales and the other undergoing
a strong first order phase transition at lower scales.7

4 GW from Majorana mass genesis in a three-Majoron model

A straightforward generalization of the model is to include three complex scalars with
hierarchical VEVs, so that each scalar gives mass to one of the RH neutrinos,

−LNI+ϕI
⊃ haI L̄aHNI +

1

2
y1ϕ1N c

1N1 +
1

2
y2ϕ2N c

2N2 +
1

2
y3ϕ3N c

3N3 + V0(ϕ1, ϕ2, ϕ3)

+ h.c.. (4.1)

The Lagrangian has a U(1)L1 ×U(1)L2 ×U(1)L3 symmetry, with each U(1) corresponding
to each scalar. We denote the VEVs as ⟨ϕI⟩ ≡ vI and without loss of generality assume

7GW spectra where both contributions from cosmic strings and phase transition combined together were
also found in [30, 31].
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λI vI [GeV] MI [GeV] CI [GeV] α β/H⋆ T⋆ [GeV] ⟨φI⟩trueT⋆
[GeV]

D 0.00027 1188.2 186.5 10.79 0.30 241.37 5196.52 1.50× 105

E 0.00029 2.32× 105 3.63× 104 1523.02 0.30 203.53 6.7× 105 1.88× 107

Table 3. Benchmark point for gravitational wave signal from first order phase transition of φ1,
denoted by D (I = 1) and φ2, denoted by E (I = 2).

v3 ≫ v2 ≫ v1. The tree-level scalar potential is given by

V0(ϕ1, ϕ2, ϕ3) =
∑

I=1,2,3

[
−µ2

Iϕ
∗
IϕI + λI(ϕ

∗
IϕI)

2
]
+

1,2,3∑
I,J,I ̸=J

ζIJ
2

(ϕ∗
IϕI)(ϕ

∗
JϕJ). (4.2)

After spontaneous breaking of the global lepton number symmetries, the three RH neutrinos
get nonzero Majorana mass from the VEV of ϕ1, ϕ2, ϕ3. Assuming these VEVs are along the
real axis, one can identify the imaginary part of the complex scalars as massless Majorons.

The mixing terms ζIJ in Eq. (4.2) introduce a zero temperature cubic term to the
effective potential of a scalar with smaller VEV. As before, the phase transition of ϕ3

occurring at around the scale v3 is not expected to generate any strong gravitational wave
signal, since there is no zero temperature cubic term in its effective potential. However, the
spontaneous breaking of U(1)L3 at this scale would generate global cosmic string induced
gravitational waves, which can be probed if v3 ≳ 1014 GeV. Suppose the phase transition of
ϕ3 is completed before the universe cools down to the scale v2, when ϕ2 undergoes a phase
transition. The quartic mixing of ϕ2 with ϕ3 now introduces a zero temperature cubic term
to the thermal effective potential of ϕ2, resulting in a strong first order phase transition and
associated gravitational wave from the sound waves. At this stage ϕ1 does not play any
role in the phase transition of ϕ2. Then, during the phase transition of ϕ1 at around the
scale v1, the other two scalars have already completed their phase transition and together
they would introduce an effective zero temperature cubic term from their mixing with ϕ1,
resulting in a strong phase transition and subsequent gravitational wave signal.

Typically the percolation temperature T⋆ is proportional to the VEV of the correspond-
ing scalar undergoing the phase transition. From Eq. (2.39), this implies that the combined
effect of the phase transition of the three scalars may yield a double peaked gravitational
wave spectrum, with one peak at a lower frequency due to the phase transition of ϕ1, and
another peak at a higher frequency due to the phase transition of ϕ2. Together with a
global cosmic string induced gravitational wave spectrum from U(1)L3 breaking, the com-
bined amplitude of the gravitational wave signal may resemble twin peaks over a slightly
slanted plateau, if the phase transition signals are sufficiently strong.8 In Table 3, we show
a benchmark point consisting of the phase transition of ϕ1, denoted by D and the phase
transition of ϕ2, denoted by E , that together with v3 = 2×1014 GeV generate the combined
gravitational wave signal shown in Fig. 4. Notice that in this case we have assumed that

8This is, of course, assuming TRH > v3, otherwise the signals that can be generated only above a given
TRH would not appear.
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Figure 5. Gravitational wave spectrum from first order phase transition of ϕ1 and ϕ2, with
corresponding parameters shown in rows D and E , respectively, in Table 3, and from cosmic
string formed by spontaneous breaking of the global U(1)L3 symmetry by ϕ3 at v3 = 2 × 1014

GeV. Individual GW contributions are shown with dotted, dashed and dotdashed lines, while the
combined spectrum is shown with a solid curve. Band in GW spectrum from phase transition
represent the possible O(0.1) suppression in the parameter Ω̃gw.

at each phase transition N = 1, corresponding to a situation where only the RH neutrino
species NI , coupling to its associated scalar field ϕI undergoing the phase transition, is
fully thermalised, while the other two either have fully decayed or have not yet thermalised.
This assumption is quite natural because of the strong hierarchy we are assuming for the
vI ’s, implying that a strong hierarchy of the RH neutrino mass spectrum and in turn of the
equilibration temperatures (see Eq. (2.13).

5 Conclusion

We have investigated the gravitational wave signatures of the Majoron model of neutrino
mass generation and have identified two sources of gravitational waves. In the simplest
single Majoron model, a complex scalar couples to the RH neutrinos and generates their
Majorana mass after spontaneously breaking the global lepton number symmetry. The
breaking of a global symmetry creates global cosmic strings which can produce gravitational
waves, with a different spectrum as compared to that from local Nambu-Goto strings. In
the observable frequency window, the amplitude of this signal mildly declines as log3[1/f ],
and still remains sensitive to upcoming GW interferometers if the symmetry is broken at a

– 22 –



scale in between 1014 − 1015 GeV. However, there is a possible additional source of GWs in
this model, since the complex scalar gets a nonzero vacuum expectation value and in the
process might undergo a first order phase transition. If such a phase transition is sufficiently
strong, it could generate a peaked GW signal which may tower over the global cosmic string
signal.

For the simplest model with just one complex scalar coupling to all three RH neutrinos,
we confirm the result of Ref. [19] that the phase transition signal is too feeble to be detected.
However, we point out that the global cosmic string signal even in this model can be detected
if the lepton number symmetry is broken at around 1014 − 1015 GeV.

We then considered an extended Majoron model, introducing two complex scalars with
hierarchical vacuum expectation values, one giving mass to the heaviest RH neutrino and
the other to the remaining two lighter ones. Assuming the scalars are charged under separate
lepton number symmetries and have a quartic mixing between them, we explored the global
cosmic string induced GW spectrum which is generated when the heaviest RH neutrino gets
a mass. We showed that, while the phase transition of the associated scalar remains weak,
its mixing with the other scalar introduces a zero-temperature cubic term to the potential of
the latter, and greatly enhances the GW signal from its phase transition. We have discussed
examples where the combined GW spectrum of the model may have an observable bump
or peak due to the phase transition signal, visible in the slanted plateau region from the
cosmic string signal, where such a bump may appear anywhere over the whole range of
observable frequencies.

Finally, we have discussed an interesting possibility of a double peaked spectrum which
may occur over the global cosmic string plateau region, where such a spectrum may arise
from an extension of the Majoron model to include three complex scalars. This rather
plausible model is easily implemented for a hierarchical RH neutrino mass spectrum, where
each RH Neutrino gets its mass from the spontaneous breaking of its respective lepton
number symmetry. Such a double peaked spectrum provides a characteristic signature of
the three Majoron model of neutrino mass generation.

We have also noticed how the observation of such a GW spectrum would give us a
precious information on the cosmological history and in particular on the reheating tem-
perature of the universe. We have implicitly assumed that this was higher than all vacuum
expectation values and critical temperatures so that the GW spectra are produced through
the entire range of corresponding frequencies. However, if the reheating temperature is
below the vacuum expectation value of one of the complex scalar fields, then the phase
transition would not take place and the signal would be absent. At the same time it should
be mentioned that the model we have presented can be clearly combined with (minimal)
leptogenesis [15] since the decays of the RH neutrinos would produce a B − L asymmetry
that can then be partly converted into a baryon asymmetry. Therefore, the observation of
the GW spectra in this model would also provide a strong test of leptogenesis. Moreover,
as proposed in [81], a phase transition of the complex scalar field can be also associated
to the production of a dark RH neutrino playing the role of dark matter [82]. Future GW
experiments have then the potential to shed light on neutrino mass genesis, cosmological
history and origin of matter of the universe.
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Figure 6. Contours of the peak GW amplitude from sound waves as a function of α and β/H⋆.
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A Dependence of peak GW amplitude on FOPT parameters

The peak of the GW amplitude from sound waves can be expressed as a function of
FOPT parameters α and β/H⋆, as seen from Eq. (2.35). In Fig. A we show contours
of log10Ω

peak
sw0 h2. This plot shows that typically the peak amplitude of GW sourced by

sound waves would be weaker than 10−11, as we have seen in the benchmark points of
Figs. 3 and 4.
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