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Iterative learning control for a class of multivariable
distributed systems with experimental validation

Slawomir Mandra, Krzysztof Galkowski, Andreas Rauh, Harald Aschemann and Eric Rogers

Abstract—This paper develops an iterative learning
control design for a class of multiple-input multiple-
output systems where a distributed heating system is
used as a particular example to experimentally ver-
ify the design. The class of systems considered are
described by a parabolic partial differential equation,
which for control design is approximated by a finite
dimensional state-space model obtained by applying
the method of integro-differential relations combined
with a projection approach. In some cases, including
the distributed heating system, this approximation can
result in a non-minimum phase system and hence an
additional design challenge. In this work, the iterative
learning control law is computed in the frequency
domain by solving a convex optimization problem and
its performance is evaluated in both simulation and
experimentation.

Index Terms—Iterative learning control, Feedback
control, Distributed system, Multivariable system,
Non-minimum phase.

I. INTRODUCTION
Iterative learning control (ILC) has been especially

developed for the commonly encountered case where a
physical plant or system performs the same finite duration
task over and over again. Each execution is termed a trial
or pass in the literature, this paper uses the former term
and the finite duration of a trial is termed the trial length.
Examples include a robot executing a pick and place task,
i.e., collect an object (or payload) from a location, transfer
it over a finite duration, place it on a moving conveyor (or
at a fixed location) under synchronization, return to the
starting location for the next payload and so on.

Applications such as pick and place robots can be
controlled by specifying a reference trajectory and then
applying a control input on each trial whose objective is
to enforce close tracking of this trajectory. In turn, this
can be formulated by defining the error on each trial as the
difference between the reference trajectory (or vector for a
multivariable example) and then the design problem is to
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use control action to force this error to zero, or to within
some acceptable bound, as the number of trials increases.

Research on ILC is well established, where the survey
papers [1], [2] are possible sources for an overview of the
early research on control law development and applica-
tions. Recent applications include marine vibrators [3] and
wafer stage semi-conductor manufacturing processes [4].
Also there has been research with experimental verification
on design in the presence of uncertainty in model descrip-
tion and the presence of certain forms of disturbances, see,
e.g., [5].

Much of the current ILC research is focused on systems
that are governed by a set of ordinary differential or
discrete equations. Comparatively less effort has addressed
ILC design for systems described by partial differen-
tial (PDE) equations, also termed distributed parameter
systems. One approach to ILC design for such systems
is to use semi-group theory, where for linear dynamics
frequency domain analysis is also possible, see, e.g., [6].
A typical distributed parameter system to which ILC is
applicable would be one where a particular profile is to be
established and maintained, e.g., the temperature along a
rod, is to be established by repeated finite duration sweeps
where the energy applied on the next sweep is dependent
on the profile established on the previous sweep.

For many industrial applications, the development of
control schemes for distributed parameter systems that
can operate in real-time are of particular interest. In this
case, there are two fundamentally different approaches,
the first of which is to complete the design in the infinite
dimensional systems setting and then construct finite-
dimensional approximations of low computational com-
plexity for implementation. The alternative is to approx-
imate the distributed parameter dynamics by a finite-
dimensional system and then proceed to control design
and implementation.

In the latter case, the options include finite volume,
finite element or finite difference methods to approxi-
mate the distributed parameter dynamics by a system
of ordinary differential equations and hence a differential
systems state-space model, for further background, see,
e.g. [7]. Moreover, if the system is discretized in both
space and time then a system of algebraic equations
and hence a discrete systems state-space model can be
formed. This paper uses another method in the form of
integro-differential equations (MIDR) combined with a
projection approach [8]. All of these approaches will have
an approximation error associated with them and none
will be superior in all cases and which to use will depend
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on the particular application under consideration.
Once the finite dimensional model is formed using the

MIDR, a new ILC design in the frequency domain for
multiple-input multiple-output (MIMO) systems is devel-
oped. The design is applicable to models that are either
minimum or non-minimum phase, where, as in other areas,
non-minimum phase models pose extra design challenges.
In [9], three ILC design algorithms for a non-minimum
phase MIMO system are developed. The first and second
of these are based on the stable inverse of the system model
supported by the zero phase-error tracking algorithm [10].
These designs also differ in how the interactions in the
MIMO plant are analyzed. The third ILC design is based
on H∞-synthesis, first proposed for ILC in [11], with finite
preview. In this approach the learning filter of the ILC law
is computed for a given Q-filter by solving two coupled
Riccati equations. As a result, the calculated filter has the
same number of states as the generalized plant. For an
uncertain plant model the learning function is found by
solving the µ-synthesis problem.
For a non-causal learning filter and/or Q-filter the

use of the H∞ norm for analysis and design is replaced
by the L∞ norm in [9]. A new ILC design for MIMO
systems is developed based on the L∞ norm and convex
optimization, where to achieve high control quality, the
monotonic convergence condition of the tracking error
from trial-to-trial under a given norm is minimized in
a frequency range specified by designer e.g. for which
the frequency spectrum of a reference signal has many
components. The optimization is carried out taking into
account restrictions imposed on robustness against un-
modeled dynamics of a distributed system as well as a
maximum gain (a maximum singular value) of the learning
filter to reduce impact of measurement noise and initial
condition error. Defining these restrictions requires only
providing the values of two scalar parameters. Usually,
to obtain the desired ILC performance, it is required
to specify weighting functions in the frequency domain
[12], [13]. This paper gives substantial new results beyond
the conference version [14], including a comprehensive
experimental validation. The authors also applied the
multivariable norm-optimal iterative learning control to
accurate temperature tracking in the heated rod [15].

The nonnegative integer k as a subscript on a vector
or scalar valued function, which evolves over the finite
trial length, denotes the trial number. Bold letters denote
matrices or vectors, bold small letters time-varying column
vector signals. The identity matrix with compatible dimen-
sion is denoted by I. Also ‖·‖∞ is the L∞ system norm
of its discrete-time transfer-function matrix argument and
σ(·) denotes the maximum singular value of a matrix. A
symmetric positive (semi-) definite matrix is denoted by
� 0 (� 0). Moreover, j is the unit imaginary number and
Ts denotes the sampling period.

II. Background and Control Design Objectives
The most common applications of ILC are still systems

described by ordinary differential and/or difference equa-
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Fig. 1: Experimental setup: an iron rod with rectangular
cross-section heated or cooled from bottom by heating
elements.
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Fig. 2: Schematic representation of the system of Fig. 1
showing the actuator and sensor locations.

tions over a finite duration and operating in a repetitive
mode, i.e., a sequence of trials over the finite trial length
with resetting to the starting position once each trial is
complete, or a stoppage time between the end of one trial
and the beginning of the next one. For such systems,
the aim is to achieve a specified reference trajectory by
using information measured during the previous trial (or a
finite number thereof) to update the control action applied
on the next trial. The goal is to sequentially improve
performance from trial-to-trial and the design problem
can be formulated as a tracking problem using a supplied
reference representing desired behavior.

Given the progress with design for temporal dynamics,
see, e.g., the references cited in the previous section, there
is a need to develop ILC for spatio-temporal systems,
i.e., dynamics described by PDEs. This paper approaches
this problem from the standpoint of first developing a
finite-dimensional approximate model of the dynamics as
a basis for control law design. The problem considered is
establishing a particular temperature profile in a metal rod
by repeated sweeps, i.e., trials, of a heating source given
a reference profile and sensing and actuating at a finite
number of discrete locations along the rod. The resulting
design procedure is, however, applicable to all systems
modeled by the defining PDE and this issue is considered
again in the concluding section of the paper.

The system considered in this paper is shown in Fig. 1
and Fig. 2 gives a schematic diagram with the main
variables marked. This system consists of a homogeneous
metal rod of length l and a rectangular cross-section
(width b, height h, where b, h � l) that can be heated
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or cooled from bottom by four actuators generating heat
flows Q̇i(t), i = 1, . . . , 4. All of the side surfaces of the rod
are thermally insulated and the top surface is in direct
contact with the atmosphere at a temperature of ϑa(t).
The edges of the Peltier elements define the sections of the
rod and the temperatures at the geometric midpoints (as
one case) of the second and fourth sections, i.e., ϑ( 3l

8 , t),
ϑ( 7l

8 , t), are measured and are the controlled system out-
puts.

In this case, a spatio-temporal temperature distribution
ϑ(z, t) along z-axis, in time t, of the rod can be used to
model the dynamics, see [8], which is governed by the PDE
∂q(z, t)
∂z

+ κ1
∂ϑ(z, t)
∂t

+ κ2ϑ(z, t) = µ(z, t) + κ2ϑa(t), (1)

where q(z, t) is the heat flux density given by Fourier’s
heat conduction law as

q(z, t) = −λ∂ϑ(z, t)
∂z

, (2)

with coefficients κ1 = ρcp and κ2 = α
h that depend on

the density ρ, the specific heat capacity cp, the convective
heat transfer coefficient α, the height h of the rod and λ,
which is the heat conductivity. The input function µ(z, t)
models the spatial distribution of the heat flux transferred
by the actuators

µ(z, t) =
4∑
i=1

ai(z)Q̇i(t), (3)

where i enumerates the rod sections, and

ai(z) =


4
bhl

for z ∈ [zi−1, zi],

0 otherwise.
(4)

The positions zi = i l4 , i = 1, 2, 3, 4, are the edges of the
actuators. Since the side surfaces of the rod are isolated,
the boundary conditions for the heat flux density q(z, t)
are: q(0, t) = q̄0(t) = 0 and q(l, t) = q̄l(t) = 0. In general,
the initial (t = 0) temperature distribution in the rod
can be specified as ϑ(z, 0) = ϑ̄0(z) or, in particular, as
the initial ambient temperature i.e. ϑ(z, 0) = ϑa(0). All
simulation and experimental results given in this paper
use this last condition.

Note 1. As given above, the experimental setup satisfies
b, h � l. Consequently the temperature mainly changes
along the longitudinal direction of the rod (l) and the
changes in the orthogonal directions (b, h) are negligible.
This justifies the 1-D modeling assumption, for further
details, see, e.g., [16].

Substituting (2) into (1) gives the parabolic PDE that
governs the spatially distributed temperature in the rod.
Next, the method of integro-differential relations (MIDR)
combined with the projection approach [8] is used to
construct the finite dimensional approximate model used
for design and experimental verification in the rest of this
paper. Moreover, this method can be applied to any sys-
tem described by the PDE considered. The relative merits

of this model approximation method against alternatives
is considered again at the end of this section and in the
concluding section of this paper.

In the application of MIDR to the heating process,
the temperature profile in each section of the rod is
approximated by a polynomials of degree M and hence

ϑ̃(z, t) =
4∑
i=1

M∑
m=0

bi,m,M (z)θi,m,M (t), (5)

where the functions bi,m,M (z) are the Bernstein polyno-
mials

bi,m,M (z) =
{
bm,Mi (z) for z ∈ [zi−1, zi],
0 otherwise,

bm,Mi (z) =
(
M

m

)(
z − zi−1

zi − zi−1

)m(
zi − z

zi − zi−1

)M−m (6)

and θi,m,M (t) are the unknown time-dependent coeffi-
cients. The temperature distribution continuity between
neighbouring segments i and i + 1 is guaranteed by the
assumption that

θi,0,M (t) = θi−1,M,M (t), i = 2, 3, 4. (7)

The finite-dimensional state-space model approximation
of the dynamics is obtained by following the procedure
given in [8]. In application, this method requires the
selection of the degree M of the Bernstein polynomials
and this is application specific. In the considered case, the
ambient temperature above the rod is homogeneous and
the initial temperature distribution of the rod is equal to
the ambient temperature. The heat flows transferred by
the actuators are also homogeneous. Also it is assumed
that the reference temperature is smooth and hence the
temperature distribution in each segment of the rod is also
smooth. Based on these facts, M = 3 is used and a state-
space model of the following form is obtained

ẋ(t) = Acx(t) +Bcuc(t) +Ecϑa(t), (8)

where

x(t) =
[
x1(t) x2(t) x3(t) x4(t)

]T
and

x1(t) =


θ1,0,3(t)
θ1,1,3(t)
θ1,2,3(t)
θ1,3,3(t)


T

, x2(t) =

θ2,1,3(t)
θ2,2,3(t)
θ2,3,3(t)

T

,

x3(t) =

θ3,1,3(t)
θ3,2,3(t)
θ3,3,3(t)

T

, x4(t) =

θ4,1,3(t)
θ4,2,3(t)
θ4,3,3(t)

T

,

uc(t) =
[
Q̇1(t) Q̇2(t) Q̇3(t) Q̇4(t)

]T
.

The output equation to complete the state-space model
is obtained by evaluating (5) for the temperature sensor
positions z = 3l

8 ,
7l
8 and hence

y(t) = Ccx(t), (9)
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with
y(t) =

[
ϑ( 3l

8 , t) ϑ( 7l
8 , t)

]T
.

Specification of the entries in the matrices of this state-
space model will be detailed in Section IV. Validation
of the resulting state-space model, as an approximate
representation on which to base at least initial control
system design, has been undertaken and is reported in [17].
As discussed previously, there are other methods of con-
structing a finite-dimensional approximation of infinite-
dimensional dynamics that could be applied, but none
will be universally better than any of the others. In the
remainder of this paper, the model constructed in this
section is shown to lead to high quality ILC design with
supporting experimental results.

III. ILC Control Configuration and Design
The experimental setup allows for various input-output

configurations to be examined. In this paper, the problem
considered is tracking the reference temperatures at the
geometric midpoints of the second and fourth segments
with control applied through the first and third actuators
in Fig. 2. The remaining two heating elements, located
under the sectors with temperature sensors, are used
to generate a disturbance to evaluate the compensation
properties of the ILC design. Another form of disturbances
are the changes in the ambient temperature.

All these disturbances are unknown to the controller and
the state-space model for design is

ẋ(t) = Acx(t) +Bccu(t) +Eccd(t),
y(t) = Ccx(t),

(10)

where

u(t) =
[
Q̇1(t)
Q̇3(t)

]
, d(t) =

ϑa(t)
Q̇2(t)
Q̇4(t)

 ,
are the control and disturbance vectors, respectively. Also

Bcc = Bc


1 0
0 0
0 1
0 0

 , Ecc =
[
Ec Bcd

]
,

with

Bcd = Bc


0 0
1 0
0 0
0 1

 .
Given the reference trajectory or vector, the error,

denoted by ek on any trial can be formed by subtracting
the output produced on this trial. The ILC design problem
then is to construct a sequence of trial inputs, denoted by
uk such that the sequence ek converges in k. Hence the
design requirement can be expressed as

lim
k→∞

||e∞ − ek|| = 0, lim
k→∞

||u∞ − uk|| = 0, (11)

where || · || denotes the norm on a vector, e∞ is the
converged error and u∞ is termed the learned control.

Plant
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State and
disturbance
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Fig. 3: Block diagram of the control scheme.

Also it may be acceptable in some cases to achieve error
convergence to within some tolerance.

In application, ILC is a feedforward action, i.e., from
trial-to-trial and as the trial length is finite it is possible
for trial-to-trial error convergence to occur for an unstable
linear system. (Over a finite duration even an unstable
linear system will produce a bounded output in response
to a bounded input.) Hence, in general, there is a need to
combine ILC with feedback control on the current trial
and hence regulate the dynamics along the trials. Also
non-repeatable, from trial-to-trial, disturbances may arise,
which the trial-to-trial structure of the ILC action cannot
compensate but feedback action can mitigate against (or
completely remove) such disturbances.

Given the above discussion, the overall control scheme
designed in this section and experimentally tested in the
next is shown in Fig. 3 and the role of each part is discussed
in general terms first prior to detailed design. Design
is undertaken in the discrete domain and therefore the
dynamics (10) have been digitized using the exact method
and on trial k + 1 the dynamics are described by

xk+1(p+ 1) = Axk+1(p) +Buk+1(p) +Edk+1(p),
yk+1(p) = Cxk+1(p),

(12)

where dk+1(p) is the disturbance acting on the dynamics
along this trial. The control structure below contains a
current trial feedback loop combined with an ILC law, as
detailed next.

In the design developed in this section the disturbance
vector is treated using the equivalent input disturbance
approach, see, e.g., [18] and for analysis the state-space
model (12) is replaced by

xk+1(p+ 1) = Axk+1(p) +B
(
uk+1(p) + δk+1(p)

)
,

yk+1(p) = Cxk+1(p),
(13)

where δk+1(p) is the equivalent disturbance vector that
has the same effect on the output vector yk+1(p) as the
disturbance vector dk+1(p). Moreover, δk+1(p) is described
by the disturbance model

εk+1(p+ 1) = Adεk+1(p),
δk+1(p) = Cdεk+1(p).

(14)
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Combining these last two state-space models gives

zk+1(p+ 1) = Aazk+1(p) +Bauk+1(p),
yk+1(p) = Cazk+1(p),

(15)

where

Aa =
[
A BCd
0 Ad

]
, zk+1(p) =

[
xk+1(p)
εk+1(p)

]
,

Ba =
[
B
0

]
, Ca =

[
C 0

]
.

Estimation of the state and equivalent disturbance vec-
tors is by the Luenberger observer

ẑk+1(p+ 1) = Aaẑk+1(p) +Bauk+1(p)
+KL

(
yk+1(p)−Caẑk+1(p)

)
,

(16)

where ẑk+1(p) =
[
x̂T
k+1(p) ε̂T

k+1(p)
]T is the observer

state vector and KL =
[
KT

L1 KT
L2
]T is the observer gain

matrix. Also the estimated equivalent disturbance vector
is calculated as

δ̂k+1(p) = Cdε̂k+1(p). (17)

The current trial feedback control loop (see Fig.3) con-
structs the plant input as

uk+1(p) = Nwk+1(p)−Ksx̂k+1(p)− δ̂k+1(p), (18)

where N is the static feedforward gain matrix and
wk+1(p) represents a signal by which the ILC action
and the reference trajectory are applied, as specified be-
low. Routine manipulations give the following state-space
model description of the real-time control dynamics

χk+1(p+ 1) = Aclχk+1(p) +Bclwk+1(p) +Ecldk+1(p),
yk+1(p) = Cclχk+1(p),

(19)
where

Acl =

 A −BKs −BCd
KL1C A−BKs −KL1C 0
KL2C −KL2C Ad

 ,
Bcl =

BNBN
0

 , Ecl =

E0
0

 , χk+1(p) =

xk+1(p)
x̂k+1(p)
ε̂k+1(p)

 ,
Ccl =

[
C 0 0

]
.

Let
yref(p) =

[
yref1(p)
yref2(p)

]
(20)

denotes the reference vector. Then the tracking error
vector on trial k is

ek(p) = yref(p)− yk(p). (21)

The vector generated by the ILC law and the reference
trajectory together form

wk+1(p) = yref(p) + vk+1(p) (22)

with
vk+1(p) = Q(q)

(
vk(p) +L(q)ek(p)

)
, (23)

where q is the forward time-shift operator qek(p) ≡
ek(p+ 1). This control law is extensively used in ILC, see,
e.g., [1], both in simulation and experimental verification,
where Q(q) is often termed the robustness filter or Q-filter
and L(q) is the learning filter. The detailed structure of
Q(q) and L(q) is application dependent and the rest of this
section develops a design without a detailed structure for
either of these filters, where L(q) must be of FIR structure
to give a convex optimization problem. Then in the next
section the selection of the Q-filter and the learning filter
to advantage for a particular example is given for the
heating process, supported by experimental results.

Design of the state feedback matrix Ks can be com-
pleted in many ways given the required controllability
assumption. In this paper, the route is by minimizing the
linear quadratic cost function

Js =
∞∑
p=0

(
xT
k+1(p)Qsxk+1(p)+uT

k+1(p)Rsuk+1(p)
)
, (24)

where Qs � 0 and Rs � 0 are appropriately chosen
weighting matrices. This solution involves the discrete-
time matrix Riccati equation

ATPs
(
I −B(BTPsB+Rs)−1BTPs

)
A+Qs = Ps, (25)

whose solution Ps gives Ks as

Ks = (BTPsB +Rs)−1(BTPsA). (26)

By the separation principle, the observer gain matrix
can be designed independent of Ks. Again the minimizing
quadratic cost function route is used, i.e.,

Jo =
∞∑
p=0

(
z̆T
k+1(p)Qoz̆k+1(p)+y̆T

k+1(p)Roy̆k+1(p)
)
, (27)

where z̆k+1(p) = zk+1(p)− ẑk+1(p) is the state estimation
error vector, y̆k+1(p) = yk+1(p) − ŷk+1(p) is the output
estimation error vector and Qo � 0 and Ro � 0 are
appropriately chosen weighting matrices. The solution
matrix Po of the following discrete-time matrix Riccati
equation

APo
(
I−CT(CPoC

T +Ro)−1CPo
)
AT +Qo = Po (28)

gives
KL =

(
(CPoC

T +Ro)−1(CPoA
T)
)T
. (29)

The static feedforward gain matrix N in (18) can, if
required, be chosen as the inverse of the DC gain matrix of
the feedback control loop to reduce the steady-state error
in the feedback loop. This control action is particularly
significant only on the first trial.

For the ILC design, the frequency domain description
of (19) is used, i.e., on applying the z-transform

Yk+1(z) = P (z)
(
Vk+1(z) + Y ref(z)

)
+ P̃ (z)D(z), (30)

where
P (z) = Ccl(zI −Acl)−1Bcl, (31)

P̃ (z) = Ccl(zI −Acl)−1Ecl. (32)
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In ILC the z-transform, defined over an infinite horizon
signal, is an approximation due to the finite trial length
and hence a large number of samples per duration time is
assumed [19].

The ILC law (23) in the z-domain (where the depen-
dence on z is suppressed when the meaning is clear) is

Vk+1 = Q(Vk +LEk). (33)

and
Ek = Y ref − Yk. (34)

Stability of the plant dynamics P is guaranteed by the
feedback control loop and monotonic trial-to-trial error
convergence under a given norm is established by the
following well known result, see, e.g. [1].

Lemma 1. Suppose that an ILC law of the form (33) is
applied to a MIMO system described by (30). Suppose also
that

‖PQ(P−1 −L)‖∞ = γ < 1, (35)

then the ILC dynamics

Ek+1 = PQ(P−1 −L)Ek
+ (I − PQP−1)

(
(I − P )Y ref − P̃D

) (36)

is stable and the trial-to-trial tracking error converges
monotonically under a given norm, i.e.,

‖E∞ −Ek+1‖2 ≤ γ‖E∞ −Ek‖2, (37)

to

E∞ =
(
I − PQ(P−1 −L)

)−1(I − PQP−1)
·
(
(I − P )Y ref − P̃D

)
.

(38)

Given (38), it follows immediately that perfect tracking
for all Y ref and D is possible if Q = I. In applications
a Q-filter in form of a zero-phase low-pass filter with
unity magnitude at low frequency is often used to improve
learning system robustness to uncertainty in the plant
model. This is at the cost of not satisfying the perfect
tracking property, see, e.g. [1]. For the application area
considered in this paper, the use of an appropriately
chosen Q-filter is especially important because the model
used for design is an approximation of the PDE dynamics.

In general, the ILC design problem is to select the
Q-filter and the learning filter to achieve high tracking
accuracy over a wide frequencies range, fast and mono-
tonic trial-to-trial error convergence under a given norm,
appropriate robustness of the control system to modelling
errors and low sensitivity to measurement noise and initial
conditions. These are conflicting requirements (to some
degree) and in this paper the following convex optimiza-
tion problem in the frequency domain, which guarantees
monotonic convergence of the tracking error vector from
trial-to-trial under a given norm is proposed. This assumes
the frequency responsesQ(ejωiTs) of the Q-filter have been
constructed for the application under consideration, where
a particular example is given in the next section.

The new ILC design algorithm is

minimize
L

ωr2∑
ωi=ωr1

σ
(
M(ejωiTs)

)
subject to:
σ
(
M(ejωiTs)

)
≤Mmax, ∀ωi ∈ [ω1 < ω2 < . . . < ωN]

σ
(
L(ejωiTs)

)
≤ Lmax, ∀ωi ∈ [ω1 < ω2 < . . . < ωN]

(39)
where

M(ejωiTs) = P (ejωiTs)Q(ejωiTs)
(
P−1(ejωiTs)−L(ejωiTs)

)
.

(40)
This algorithm is for MIMO systems and is a major

contribution of this paper. The optimization parameter
0 < Mmax < 1 is an upper bound on convergence
rate γ (see (35)) and has been introduced to increase
robustness against unmodeled dynamics. The second con-
straint of (39) limits the maximum gain (the maximum
singular value) of the learning filter to an appropriately
selected value Lmax, which again depends on the ap-
plication considered. It has been added to reduce the
impact of measurement noise and initial conditions on
performance. In [12], [13] this problem has been solved
by the introduction of a weighting function defined in
frequency domain, which complicates the design and is not
required in this approach.

The constraints of (39) should be satisfied for all ω
in [0, ωN], where ωN is the Nyquist frequency. This can
be relaxed such that only a finite, but large, number
of logarithmically spaced angular frequencies ωi are con-
sidered (angular frequency gridding). A consequence of
limiting the maximum singular value of the learning filter
could be a reduction in the trial-to-trial convergence speed,
potentially over a wide range of frequencies.

For a given frequency ωi, the convergence speed depends
on σ

(
M(ejωiTs)

)
. In particular, reducing this value gives

faster the trial-to-trial error convergence. Moreover, in
applications it could be important to obtain fast mono-
tonic trial-to-trial error convergence rate of the tracking
error under a specified norm over the frequency range
for which the frequency spectrum of the reference signal
has many components. In the optimization problem above,
this is achieved by minimizing the sum of all σ

(
M(ejωiTs)

)
between the lower ωr1 and upper ωr2 limits of the angular
frequency range for which the reference signal spectrum
has components with significant magnitude, which is again
application dependent.

IV. Simulation and Experimental Verification
The section gives the results from validation of the

algorithm developed in the previous section applied to
the MIMO heating system of Section II. The location of
the input and output signals of the approximate plant
model (10) are marked in Fig. 1 using the following
notation: u1 ≡ Q̇1(t) and u2 ≡ Q̇3(t) are the first and
second entry of the input vector signal u(t), respectively;
d1 ≡ ϑa(t), d2 ≡ Q̇2(t) and d3 ≡ Q̇4(t) are the entries
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in the disturbance vector signal d(t); y1 ≡ ϑ( 3l
8 , t) and

y2 ≡ ϑ( 7l
8 , t) are, respectively, the first and second entry

of the output vector y(t).
The numerical values of the experimental setup plant

model parameters are as follows: l = 0.320 m, b = 0.040 m,
h = 0.012 m, ρ = 7800 kg/m3, cp = 420 J/(kg·K), α =
150 W/(m2·K) and λ = 55 W/(m·K). For these values a
minimal realisation of (10) was constructed, resulting in a
model with 10 states, which is non-minimum phase with
two invariant zeros, both at s = 0.1011. Using the exact
discretization method with a sampling period of Ts = 1 s
results in a state-space model of the form (12), again with
xk+1(p) ∈ R10. This model is also non-minimum phase
with two invariant zeros both at z = 1.1065. As in other
areas of linear systems, non-minimum phase zeros have
particular effects on ILC performance, see, e.g., [20].

The ambient temperature is a non-repeatable distur-
bance that cannot be compensated by the ILC law. This
temperature is slow-varying and therefore the disturbance
observer can be used to compensate for its effect. For this
reason, the disturbance model (14) is chosen as integral
action, i.e., Ad = Cd = I.

Each controller in the overall ILC design is designed
separately based on the plant model (12). Both the state
feedback gain matrix Ks and the state and disturbance
Luenberger observer gain matrixKL have been calculated
using the optimization setting given in Section III. To
enforce a compromise between fast dynamics and the
suppression of high frequency noise, the weighting ma-
trices in (24) and (27) have been taken as Qs = CTC,
Rs = 0.05I, Qo = diag(I, 2I) and Ro = I. This results in

Ks =



−0.0439 −0.0491
0.3642 0.1032
0.2670 0.2436
−0.2905 −0.1920
0.2442 0.1252
0.3569 0.3568
0.2495 0.3114
0.1471 0.2493
−0.0498 −0.4204
−0.1456 0.8236



T

, KL =



−0.6349 0.3741
0.7399 −0.4144
0.9401 −0.4358
−0.6769 0.3089
−0.1206 0.2423
0.4635 −0.0255
−0.0629 0.5887
0.1947 0.7508
−0.5103 −0.5924
−0.1081 0.7205
0.9831 −0.4295
0.4307 0.9887



.

The choice of the weighting matrices used is a matter for
judgement based on the particular example under consid-
eration, the set here demonstrates that such matrices can
be found. Moreover, any pole placement with an observer
design method can be used. These matrices are used in
the simulation and experimental results given below and
it is also noted that in detailed design they may have to
be reselected to obtain the required response for a given
example.

To achieve a small steady state error vector on the first
trial, the static feedforward gain matrix (see Fig. 3) has
been taken as the inverse of the DC gain matrix of the
closed-loop feedback control system and hence

N =
[
4.6935 −2.4303
1.5513 4.6324

]
.

Again other choices are possible depending on the appli-
cation considered and the performance requirements.

The design of the ILC law begins with the specification
of the Q and L-filters. As one example, the design below
is based on the premise that the current trial feedback
control loop results in controlled dynamics with a transfer-
function matrix P that is approximately diagonal over
the frequency range of interest. In which case, diagonal
structures can be selected for the Q and L-filters.

The particular structure of the Q and L-filters consid-
ered first have the form

Q(q) = diag
(
Q1(q), Q2(q)

)
, (41)

and
L(q) = diag

(
L1(q), L2(q)

)
. (42)

The entries of the Q-filter are in the form of low-pass,
Butterworth filter of order nQm applied in zero-phase
form, resulting in a 2nQm-th order zero-phase low-pass
filter written as

Qm(q) =
b0m + b1mq

−1 + b2mq
−2 + · · ·+ bnQm

q−nQm

1 + a1mq−1 + a2mq−2 + · · ·+ anQm
q−nQm

·
b0m + b1mq + b2mq

2 + · · ·+ bnQm
qnQm

1 + a1mq + a2mq2 + · · ·+ anQm
qnQm

,

(43)
where m = 1, 2. The learning filter matrix entries are
formed from non-causal finite impulse response filters of
order nLm, i.e.,

Lm(q) = l1mq + l2mq
2 + · · ·+ lnLm

qnLm . (44)

Consider the matrix P for the controlled current trial
feedback loop for the heating process written in the form

P =
[
P11 P12
P21 P22

]
.

Fig. 4 shows the Bode gain plots for each of the four
entries in this 2 × 2 frequency response matrix, where
the magnitudes of the off-diagonal entries are smaller than
those on the diagonal. Hence (41) is further simplified to
Q = QI and the remaining task is to select the filter
order nQm, chosen to be 2 and the cut-off frequency of this
filter is chosen as 0.1 rad/s, where above this frequency the
feedback control loop significantly damps the input vector
wk+1(p).

The maximum singular value of P as well as magnitudes
of P11 and P22 at this frequency are σ

(
P (ej0.1Ts)

)
≈

|P11(ej0.1Ts)| ≈ |P22(ej0.1Ts)| ≈ 0.05. Given that |P11| and
|P22| have similar values for frequencies from 10−4 rad to
the Nyquist frequency, therefore Q1 = Q2 is assumed. The
Bode diagram with Q = Q1 = Q2 is given in Fig. 5.

The new ILC design has been applied in simulation to
the heating process of Section II and the result experi-
mentally validated. The results are given and discussed
next. Then the relative performance against alternatives
is described.

All optimization problems in the results that follow
were solved using the MATLAB based software CVX and
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SDPT3 for 1000 values of logarithmically spaced frequen-
cies ωi in the range [10−4, ωN = π

Ts
] rad/s andMmax = 0.9

was chosen to obtain acceptable robustness.
Singular values of P below the frequency 10−4 rad/s

and between the frequency samples ωi do not change
significantly. This guarantees that the model of the current
trial feedback loop is appropriately determined and the
constraints of (39) are satisfied below 10−4 rad/s and
between the frequency samples ωi.
The orders of L1(q) and L2(q) of the learning filter

(42), relative to the order of the plant model (12), have
been taken as nL1 = nL2 = 10. The model of the
feedback control loop (19) or (31) is 22th order, where
the 12 additional states are introduced by the state and
disturbance observer (16).

One of the advantages relative to alternatives (the most
relevant are considered later in this section) of the new
design (39) is the ability to achieve fast trial-to-trial
error convergence over a frequency range of interest, i.e.,
ωr1 and ωr2, respectively, as defined at the end of the
previous section. In the current design these are selected
by examining the frequency spectrum of the reference
signals. Fig. 7 (top plot) shows the reference trajectories
(black and gray solid line) applied during all design studies
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(39) with diag. L (39) with non-diag. L

Fig. 6: Maximum singular values ofM (top, linear scale on
the vertical axis) and of L (bottom) for the new design (39)
for the diagonal and non-diagonal forms of the learning
filter transfer-function matrix.

in this paper together with amplitude spectrums of the
reference signals (bottom plot). These spectra have many
components at low frequencies and therefore the choice of
ωr1 = 10−4 rad/s and ωr2 = 0.02 rad/s were made.
Another advantage of the new design is to complement

L with a limit on its maximum singular value to increase
the robustness of the ILC design against measurement
noise. The choice of this parameter is application depen-
dent and for this application it is taken as approximately
2.5(σ(P ))−1 at the cut-off frequency of the Q-filter and
results in Lmax = 50. Completing the design gives the
entries in L of (42) as

L1(q) = 1.4050q1 − 1.4796q2 − 2.6064q3 − 3.4666q4

− 4.3478q5 − 5.4692q6 − 6.6882q7 − 8.2280q8

− 10.4490q9 + 42.3133q10,

L2(q) = 3.8432q1 − 1.7307q2 − 2.7839q3 − 3.4920q4

− 4.3099q5 − 5.4891q6 − 6.6589q7 − 8.0460q8

− 10.2179q9 + 39.8697q10.

Fig. 6 (black solid lines) shows the maximum singular
values of M (top plot) given by (40) and L (bottom)
for this design. The maximum singular values of M in
the range ω ∈ [10−4, 10−2] rad are small, which should
result in a fast convergence speed of the tracking error.
The convergence rate γ = max

(
σ(M)

)
is 0.9, i.e., equal

toMmax, due to the first constraint in (39). The maximum
gain of the learning filter i.e., max

(
σ(L)

)
is equal to Lmax,

due to the second constraint in (39).
All designs in this section has been validated over 10

trials with the zero boundary conditions i.e. v0(p) = 0 and
e0(p) = 0. The reference trajectories and the disturbance
signals are shown in Fig. 7. Also the disturbance signals
(given by black and gray dashed line in Fig. 7) are the heat
flows generated by the actuators connected to the second
and fourth sections of the rod, where these section also
contain the measurements of the outputs. The ambient
temperature, i.e., the entry in the disturbance vector dk+1
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Fig. 8: RMS(ek) values of the tracking error vector for
the new design, where L(exp) denotes the experimentally
measured results.

in (12), was set to zero for the simulations. To highlight
the compensation properties of the design the disturbance
signals were applied starting from the fifth trial, i.e. on
trial k = 5, . . . , 10.
The root-mean-square, denoted RMS(ek of the tracking

vector, given by

RMS(ek) =

√√√√ 1
α

α∑
p=1

eT
k (p)ek(p)

is used to compare the trial-to-trial convergence of all the
designs in this section, where α = 2500 is the trial length.
The black solid line in Fig. 8 shows the RMS(ek)

resulting from the simulation of the controlled system,
demonstrating the fast convergence of the tracking error.
Also the increase in the error due to the introduction of
the disturbance from the 5th trial and for succeeding trials
is also quickly and monotonically reduced.

To validate these simulation predictions, an experimen-
tal program was also completed. The ILC signals, input
signals, output signals and the tracking errors progressions
recorded during these experiments are shown in Fig. 9.
These show strong agreement with the simulation results
as does the experimental RMS(ek) of the error also shown

in Fig. 8 (black dashed line), where the differences between
the simulated and experimental results are due to mea-
surement noise and modelling errors. Moreover, the tem-
perature in the laboratory increased as the experiments
progressed, i.e., the ambient temperature changed during
the experiments but the simulations assumed a constant
ambient temperature.

These results confirm that this ILC design does not
require knowledge of the exact plant model and repetitive
disturbance signals to achieve precision tracking. More-
over, the effects of non-repetitive, slow-varying distur-
bances in form of changes of the ambient temperature are
compensated by the disturbance observer.

In Fig. 7 yref1(0) = yref2(0) = 0, i.e., equal to the
initial ambient temperature at the beginning of the first
trial. During the experiment, the ambient temperature
increased and at the beginning of subsequent trials yref1(0)
and yref2(0) were lower than the ambient temperature.
This means that without the current trial feedback loop,
between the end one trial and the start of the next,
the rod temperature would change due to changes in
the ambient temperature and an initial tracking error
would occur starting on the second trial. However, the
current feedback control loop, including the disturbance
observer, was operating between trials and compensated
this unwanted effect, resulting in zero initial error on each
trial, see Fig. 9.

It is necessary to compare the new design with alterna-
tives. The first of these designs the ILC law in the absence
of a limit on L, i.e. L∞-based optimal synthesis

minimize
L

M

subject to:

σ
(
M(ejωiTs)

)
≤M, ∀ωi ∈ [ω1 < ω2 < . . . < ωN]

M ≤Mmax,
(45)

where M(ejωiTs) is given by (40) and 0 < Mmax < 1 is
an appropriately chosen value as in (39). An alternative
design is to use (45) with the additional conditions

σ
(
L(ejωiTs)

)
≤ Lmax, ∀ωi ∈ [ω1 < ω2 < . . . < ωN] (46)

Fig. 10 shows plots of the maximum singular values of the
M and the learning filter for these last two designs.

Another design was completed with the Q-filter as
before but a non-diagonal L of the form

L(q) =
[
L11(q) L12(q)
L21(q) L22(q)

]
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Fig. 9: Experimentally measured signals for the new de-
sign.
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based on (45) and for the design based on (45) and (46).

resulting in

L11(q) = 1.9762q − 2.3071q2 − 3.0377q3 − 3.5838q4

− 4.2453q5 − 5.2667q6 − 6.2530q7 − 7.4311q8

− 9.2380q9 + 40.3817q10,

L12(q) = 2.7801q + 0.6410q2 + 0.4889q3 + 0.4967q4

+ 0.4305q5 + 0.1898q6 − 0.0117q7 − 0.3192q8

− 1.1067q9 − 3.5864q10,

L21(q) = 4.5104q − 0.1022q2 − 0.3272q3 − 0.3833q4

− 0.4523q5 − 0.6748q6 − 0.7047q7 − 0.6607q8

− 0.6644q9 − 0.5390q10,

L22(q) = − 0.7430q − 2.5071q2 − 3.0921q3 − 3.6281q4

− 4.2474q5 − 5.0970q6 − 6.0247q7 − 7.1572q8

− 8.7486q9 + 42.2384q10.

The gray dashed plots in Fig. 6 show the maximum
singular values ofM and the learning filter for this design.

For comparison purposes, the simulation results for the
alternative ILC designs and also for the case when the ILC
loop is disabled, i.e., vk+1(p = 0. The RMS(ek) values for
these designs against trial number shown in Fig. 11, where
in the case when the ILC loop is disabled the constant
values of RMS(ek) before and after the start of disturbance
generation on the fifth trial are typical for control systems
without learning algorithms.

The L∞-based design, i.e. (45), results in a very fast
trial-to-trial error convergence speed, however, the max-
imum singular values of the learning filter for high fre-
quencies are large. Implementing this design on a physical
system can make it sensitive to measurement noise and
initial conditions. For the design based on using (45)
and (46), the maximum singular values of L stays below
the limit Lmax = 50 but the maximum singular values of
M for low frequencies are large. This, in turn, results in a
(relatively) slow trial-to-trial error convergence speed and
the disadvantages of the both L∞-based designs have been
overcome in the new design (39).

The gray dashed line in Fig. 11 shows RMS(ek) values
for the new design (39) with the non-diagonal form of L.
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The convergence speed of this design is slightly higher than
that for the diagonal form of L (see the black solid plot in
Fig. 8) and is comparable to the L∞-based design despite
max

(
σ
(
L(ejωiTs))

)
= 50 (see Fig. 6, bottom plot, gray

dashed line).

V. CONCLUSIONS
An ILC design method for a multivariable distributed

parameter systems based on first constructing a finite-
dimensional model described by linear ordinary differ-
ential equations has been developed and experimentally
validated. This design uses a current trial feedback con-
trol loop to achieve good tracking performance starting
from the first trial and compensation of non-repetitive
disturbances by inclusion of a disturbance observer. The
current trial feedback control loop is also designed to
reduce the coupling in the system, which allows for the
use a simplified, i.e., diagonal form of the Q-filter and the
learning filter, as a comparison a non-diagonal learning
filter was also designed but gave relatively little relative
improvement in performance.

In this new design, the ILC filters are designed in the
frequency domain and based on convex optimization. The
ILC filters can be either non-causal or causal and the
choice of the orders of these filters is based on knowledge
of the particular example under consideration. To provide
fast trial-to-trial error convergence rate of over a specified
frequency range or to limit the maximum gain (i.e., the
maximum singular value) of the learning filter the use of
weighting functions is not needed. Overall, the frequency
domain design requires the designer to specify several
scalar parameters. The performance of this design has
been confirmed by experimental application to the heating
process, where changes in the ambient temperature of the
laboratory during the experiments allows validation of the
attenuation of non-repetitive disturbances.

The new design is based on first constructing a finite-
dimensional approximation to the distributed parameter
dynamics and the approximation has been constructed
using one of a number of alternatives. Investigation of

the potential, together with examining the relative perfor-
mance, of others is one area for possible future research as
is application of the design to other distributed parameter
systems. Moreover, by the disturbance observer, this new
design has the capability to reject non-repetitive distur-
bances and further work is required to extend to stochastic
disturbances.
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