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This research conducted an investigation into the use of novel human computer interaction

(HCI) interfaces in the control of small multirotor unmanned aerial vehicles (UAVs). The main

objective was to propose, design, and develop an alternative control interface for the small mul-

tirotor UAV, which could perform better than the standard RC joystick (RCJ) controller, and to

evaluate the performance of the proposed interface. The multimodal speech and visual gesture

(mSVG) interface was proposed, designed, and developed. This was then coupled to a Rotor S

ROS Gazebo UAV simulator. An experiment study was designed to determine how practical the

use of the proposed multimodal speech and visual gesture interface was in the control of small

multirotor UAVs by determining the limits of speech and gesture at different ambient noise lev-

els and under different background-lighting conditions, respectively. And to determine how the

mSVG interface compares to the RC joystick controller for a simple navigational control task

- in terms of performance (time of completion and accuracy of navigational control) and from

a human factors perspective (user satisfaction and cognitive workload). 37 participants were

recruited. From the results of the experiments conducted, the mSVG interface was found to

be an effective alternative to the RCJ interface when operated within a constrained application

environment. From the result of the noise level experiment, it was observed that speech recog-

nition accuracy/success rate falls as noise levels rise, with 75 dB noise level being the practical

aerial robot (aerobot) application limit. From the results of the gesture lighting experiment,

gestures were successfully recognised from 10 Lux and above on distinct solid backgrounds,

but the effect of varying both the lighting conditions and the environment background on the

quality of gesture recognition, was insignificant (< 0.5%), implying that the technology used,

type of gesture captured, and the image processing technique used were more important. From
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the result of the performance and cognitive workload comparison between the RCJ and mSVG

interfaces, the mSVG interface was found to perform better at higher nCA application levels

than the RCJ interface. The mSVG interface was 1 minute faster and 25% more accurate than

the RCJ interface; and the RCJ interface was found to be 1.4 times more cognitively demanding

than the mSVG interface. The main limitation of this research was the limited lighting level

range of 10 Lux - 1400 Lux used during the gesture lighting experiment, which constrains the ap-

plication limit to low lighting indoor environments. Suggested further works from this research

included the development of a more robust gesture and speech algorithm and the coupling of

the improved mSVG interface on to a practical UAV.
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Chapter 1

Introduction

“Because of the limitations of the human cognitive skills, judgment, decision-

making, and tactical understanding in the use of Unmanned Aerial Vehicles (UAV),

there is a need to redesign the current human-computer interface to improve the

interaction and communication links between operators and the UAVs. . . ”

– Cavett et al. (2007)

1.1 Research Background

Unmanned multirotor aircraft have been gaining a lot of popularity in recent years (Li et al.,

2018; Michelson, 2014). These systems have found applications in diverse areas ranging from

military to civilian applications (Romell and Karjalainen, 2017; Liu and Foina, 2016). The

popularity of these systems, particularly in the civilian domain, has led to several creative

applications in agriculture, aerial survey and inspection, surveillance and monitoring, search

and rescue, photography and videography, entertainment, sports, health care, law enforcement,

and environmental conservation. Table 1.1 lists some of these applications (refer to Table A.1 in

Appendix A for a more comprehensive coverage). At the time of this research, the most common

application for a small UAV is cost-effective aerial image data acquisition, but this may soon be

superseded by drone deliveries of civilian goods, military last mile delivery and resupply, and

the delivery of medical supplies. As the popularity and application of unmanned aerial vehicles

increases, the number of operators, users, developers, researchers, and other beneficiaries have

also increased significantly. This research is interested in how this increasing league of human

operators interact with these small multirotor UAVs.

The current designs of human computer interaction (HCI) control interfaces for small UAVs

overloads the limited physical and cognitive ability of the UAV operator. Sometimes, two op-

erators may be required to control a single UAV (Aeryon Labs Inc., 2011) particularly in more
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demanding environments or scenarios, such as a search and rescue mission, where the primary

operator (pilot) flies the UAV and a secondary operator (spotter) controls the on-board camera

in search of missing persons. Mapping two operators to one UAV is the opposite of the idea

portrayed in the DJI (2015a) Phantom X multi-drone control concept, where a single opera-

tor simultaneously controls two small multirotor aircraft in a sky-painting application scenario,

which seemed to be a simpler, more interesting, and intuitive way of interacting with aerial

robots. In a similar manner, researchers and theatre artists from the Texas A&M University

adopted the use of small UAVs as little fairies in their theatre adaptation and performance of

William Shakespeare’s play “A Midsummer Night’s Dream” (Murphy et al., 2011). There is also

the flying table lamp shade project, codenamed “SPARKED: a live interaction between humans

and quadcopters”, featuring a choreographed performance by entertainers and researchers from

Cirque du Soleil, ETH Zurich, and Verity Studios (Cirque du Soleil et al., 2014; Waibel, 2014a),

dreaming of the possibilities of direct human aerobotic interaction with co-located UAVs. Hu-

man swarm aerobotic interaction is also a related field of interest (Nagi et al., 2014). The

growing presence of aerial robots in civilian airspace raises a social interaction challenge, which

if properly done, would allow robots to blend in, share, and participate in the human world.

Table 1.1: Civilian applications of aerial robots.

S/No CATEGORY APPLICATIONS

1 Aerial Inspection Rail Network Inspection; Offshore oil rig mainte-

nance inspection

2 Disaster Relief Search and rescue operations; Healthcare supply de-

livery

3 Emergency Services Law enforcement applications such as portable aerial

surveillance; Firefighting applications

4 Entertainment Applications Commercial Newsgathering; Filmmaking; Theatrical

entertainment (Murphy et al., 2011); Drone racing

5 Environmental Applications Wildlife conservation; Habitat exploration; Flood

monitoring; Open water monitoring

6 Field Applications Aerial Survey & Mapping; Agricultural applications

7 Industrial Applications Aerial robotic manipulators (Muscio et al., 2016)

- flying robotic arms in manufacturing; Warehouse

quick light-goods transportation; Indoor inspection

8 Photography Selfies; Sport Videography; Mountaineering expedi-

tion

9 Transportation Drone delivery of goods e.g. Amazon (2016) & DHL

delivery trials; Drone rides transporting humans
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1.2 Research Problem

Current human computer interaction control interfaces for small multirotor UAVs may be

difficult to learn, require long training hours, and may demand too much of the operator’s cog-

nitive effort. There is also the need for intuitive control interaction with aerial robots (aerobots)

at higher levels of autonomy, for which the standard RC joystick controller is otherwise ardu-

ous. There is also the s-curve model explanation for HCI interfaces. The S-curve framework is

particularly useful for analysing technological cycles and predicting the introduction, adoption,

growth, and maturation of technological innovations as demonstrated in Griliches (1957). As

shown in Figure 1.1a, a lot of research is often required in the early stages of new technologies

to break the technological barrier, after which growth and adoption is accelerated to the tech-

nological innovation’s maturity. Performance for a specific technology peaks as it approaches its

maturity or physical limit, beyond which further pushing the performance becomes increasingly

difficult. While it may be possible to intensify research at this point to build a new s-curve on

the previous, it may be more cost effective and realistic to consider alternative technologies.

(a) Performance index. (b) Comparing two technologies.

Figure 1.1: The S-Curve framework (Scocco, 2006).

The S-curves shown in Figure 1.1b describe a typical variation in the performances of two

competing technologies as a function of time and effort. If the RC joystick controller is technology

A, and if this technology is considered matured having been around for over half-a-decade, and its

performance and adoption rate is peaking, then this research builds on a competing technology B,

which is yet to breakthrough its major technical barriers. This research contributes by proposing

methods and algorithms that could gradually push the technology towards the breakthrough and

exponential growth phase. Therefore this research contributes to a technology in the pipeline,

that could improve the human aerobotic interaction experience and offer unprecedented levels

of performance.
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Since robots are designed to reduce human workload, risk, cost, and human fatigue-driven

errors, Fong and Nourbakhsh (2000) suggested that it is crucial to make the human-robot

interaction effective, efficient, and natural, in order to achieve this. Green et al. (2007) observed

that “people use speech, gesture, gaze and non-verbal cues to communicate in the clearest

possible fashion.” Therefore a technique that is natural, intuitive, easy to learn, easy to use,

and low-cost, is being proposed, designed, and developed by this research work, as shown in

Figure 1.2.

Figure 1.2: Human-aerobotic interaction emulating human-human interaction.

1.3 Aims and Objectives

The aim of this research was to conduct an investigation into the use of novel human-computer

interfaces in the control of a small unmanned multirotor aircraft.

The objectives of this research were to:

1. review current HCI interfaces that can be used for the control of small multirotor UAVs

2. propose an effective alternative interface for the small multirotor UAV that could perform

better than the standard RC joystick controller

3. design and develop the alternative interface

4. compare the performance of the alternative interface with the standard RC joystick con-

troller
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1.4 Application Scenarios

1.4.1 A case of the Matterhorn

Consider a case in which a small multirotor UAV is being developed to 1) patrol a dangerous

region of the Alps, 2) provide signposting information to climbers, 3) alert search and rescue

teams in case of any incidence, and 4) support search and rescue efforts or team operations.

If such a patrol UAV would be required to interact with climbers when needed, how would

the UAV register the climber’s requests? As climbers would not normally have the UAV’s RC

controller, an intangible human-human interaction (HHI)-like multimodal speech and visual

gesture interaction method would seem more suitable for such scenarios.

Figure 1.3: Patient awaits pick up by Air Zermatt helicopter Root and Air Zermatt (2016).

An application of the multimodal speech and visual gesture (mSVG) interaction method on

a patrol, search, and rescue robot could be the Alps in Southcentral Europe, where sporting ac-

tivities such as climbing, mountaineering, hiking, cycling, paragliding, mountain biking, rafting,

skiing, snowboarding, curling, and snow shoeing, are quite popular. People visiting these places

for the first time could easily get lost if not very careful, climbers could fall when anchored on

deceptively rigid surfaces, and people new to certain sports could get hurt, particularly when

caught in stormy weathers. Therefore, patrol UAVs could be dispatched to assist local search

and rescue operation efforts immediately after a storm. For example in the Matterhorn, about

1,700 rescue missions are conducted annually (Root and Air Zermatt, 2016). These high num-

ber of rescues is because “the Matterhorn is home to numerous glaciers, which are laced with
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countless deep crevasses, many of which are hidden by snow that can give way without warn-

ing, swallowing up climbers and skiers in the process” (Root and Air Zermatt, 2016). Figure

1.3 shows a mountaineer being rescued by the Air Zermatt search and rescue helicopter team.

With the limited number of resources and man power, how can this operation be run more

efficiently? Aerobots could be particularly useful in performing patrol, searching areas, and

transporting small supplies. Patrol UAVs could fly along predefine routes, warning climbers of

hidden crevasses, because signs on routes are easily covered by snow. The patrol UAVs could

also be used to keep track of climbers’ progress during its regular flyovers. This could help find

climbers in distress even before a call for help is made, which reduces the time between fall

and call, potentially shortening rescue time, which in turn increases a rescued climber’s survival

chances - especially in situations where every second counts. In addition to this, a fallen climber

may be unconscious, and therefore may be unable to call for help themselves, the UAV could

make the call after failing to establish communication with the climber. Also, climber tracking

information collected during patrol could be used to narrow down the search area in the event

of an emergency or if a climber goes missing.

The UAV could also be used to provide verbal signposting, alerting climbers of their proximity

to deep crevasses hidden by snow. Signs are probably unusable here because they could be easily

covered by snow. According to Root and Air Zermatt (2016) “people never know how close they

are to the limits, every mistake they make could be their last”. A typical signposting interaction

could be - a UAV informs a lone climber, “hello, deep crevasse 400 m ahead”, and the lone climber

could respond with “ok” as an affirmative or “repeat” to have the UAV repeat itself. Prior to

the climb, all climbers and mountaineers would have already been briefed on appropriate UAV

responses, and how to ask for help. They may also choose to opt out of being helped by the

UAV during its routine fly over, if they think that this may be distracting, in which case the

UAV avoids interacting with the climbers. The climber sticks a “don’t disturb” QR code patch

on their backpack, which the UAV scans on approach and flies away instead, except if it is an

emergency. Patrol UAVs could also warn climbers of rapidly changing weather conditions and

advise them on the nearest refuge points. In the event that the patrol UAV comes across a fallen

lone climber, it could potentially alert climbing parties nearby to act as first responders, if they

are quite close to the incident site, while also alerting the central control room of the emergency.

An array of UAVs with front and downward facing cameras, thermal cameras, on-board nav-

igational aid (GPS), on-board sense and avoid (proximity sensors), microphones, speakers, etc.

could be used to execute this patrol operation as described in Figure 1.4a. Immediately after a

storm, such small patrol UAVs augmented with on-board computation abilities via single board

computers with microphone arrays, cameras, a speaker, and other sensors, could be dispatched
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(a) UAV Patrol Grid

(b) UAV View Pan area

Figure 1.4: 5× 5 km2 patrol area grid in six flight legs and with six docking stations.

to patrol and search specific hotspot areas in grids of 5×5 km2. But how should such an mSVG

control interface be effectively developed? This thesis describes our approach to developing an

mSVG control method for a small multirotor UAV. We developed a mathematical model, con-

verted this into a program algorithm, tested this in MATLAB, and then performed a graphical

simulation using a ROS Gazebo firefly UAV simulator. The idea is to run all the computation

required for the mSVG on a single board computer, and couple this to the flight controller

of a typical UAV, with the SBC communicating with the UAV flight controller via waypoint

navigation.

1.4.2 The domestic robot assistant

Consider a case where a small multirotor UAV is being developed to assist elderly or sick

persons with limited mobility, in performing small errands around the house, such as fetching a

bottle of water from the kitchen downstairs for the user upstairs, or fetching a pair of reading

glasses from the bedroom upstairs for a user downstairs, as shown in Figure 1.5. In order for the

UAV to successfully complete the task described, the UAV is assumed to be equipped with a

multi-joint robotic arm manipulator and gripper mechanism, similar to those described in Kim

et al. (2016), Muscio et al. (2016), and Verma (2016) works on augmenting small multirotor

UAVs with functional actuators. The small multirotor UAV could also be useful in alerting

emergency services in the case of a domestic incident such as a trip-fall, fire, gas leak, etc.

observed during it roaming flight around the house.

But how does the user interact with such aerial robot being designed to integrate with the

household? The standard RC joystick controller requires the user to reach for a tangible interface

each time, which is difficult to learn and use, particularly for elderly or sick persons with reduced
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Figure 1.5: Domestic-assist UAV application scenario.

hand dexterity and limited mobility. Again, the multimodal speech and visual gesture interface

technique being proposed in the previous scenario (Section 1.4.1) could also be useful in this

indoor application scenario. In fact, the UAV microphone could be daisy chained with Amazon

echo devices installed around the house, so that the UAV could be issued commands without it

being in view. In other words, a user in the bedroom upstairs, could ask ’alexa’, the Amazon

Echo device voice assistant, to ask the UAV in the living room downstairs to fetch a bottle of

water from the kitchen (also downstairs), and bring it to them in the bedroom (upstairs). Unlike

the previous scenario, this scenario focuses on an indoor application setting within the home,

with very low lighting conditions compared to a sunny outdoor environment.

1.5 Research Questions

The research questions were formulated based on the combination of the research aims and

objectives, and the proposition of the multimodal speech and visual gesture in communication

control signals to small multirotor UAVs. Therefore, the questions addressed in this research

were:

1. How practical is the use of the speech and gesture in the control of small multirotor UAVs?

(a) What is the limit of speech within the context of ambient noise at different dB levels?
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(b) What is the limit of gesture within the context of different backgrounds and varying

lighting levels?

2. How does an mSVG interface compare to the RC joystick controller for a simple naviga-

tional control task?

(a) In terms of performance - time of completion and accuracy of navigational control?

(b) From a human factors perspective - user satisfaction and cognitive workload?

1.6 Hypothesis

In addressing the research questions, an hypothesis was proposed that “the multimodal speech

and visual gesture interface was better than the RC joystick controller in terms of physical

performance and cognitive workoad”.

This was because the multimodal speech and visual gesture interface was considered to be

natural, easy to use, easy to learn, and intuitive. An experiment was designed to test this

hypothesis in Chapter 4 and the result was presented, analysed, and discussed in Chapter 8.

The analysis of variance (ANOVA) and two-sample t-test statistic test tools were used in the

analysis of the results in Chapter 8.

1.7 Research Application Examples

1.7.1 Drone delivery

Figure 1.6: Amazon Prime Air first package delivery Amazon (2016).
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Amazon (2016) developed a drone delivery UAV capable of delivering packages weighing up

to 2.25 kg, to destinations within 20 minute of their facility, autonomously controlled from take-

off, to delivery, return, and landing, being guided by GPS satellite navigation. Figure 1.6 shows

an Amazon Prime air drone taking off to deliver a package. The application of this research

work in this example is the enabling of an interaction possibility between the customer and the

Amazon delivery drone.

1.7.2 Rescue and relief missions

In the wake of a natural disaster, like the Nepal earthquake crisis shown in Figure 1.7, com-

munication and transportation infrastructures are usually damaged, making certain areas inac-

cessible to rescue or relief missions. Again, the application of this research is in the enabling

of an interaction possibility between stranded persons and the search UAV. Stranded persons

could be able to communicate their needs and requirement despite not having a tangible UAV

control device.

Figure 1.7: Earthquake crisis mapping in Nepal DJI et al. (2015).

1.7.3 Inclusive robotics for persons living with disability

This research makes it possible for persons living with certain disabilities to interact with UAV

via speech, intuitive gestures, or sign language. For example, Luis-pérez et al. (2011) investigated

the control of a mobile service robot using the Mexican Sign Language (MSL). Liu et al. (2016b)

also performed an investigation for astronaut-robot control using the American Sign Language

(ASL).
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Chapter 2

HCI Control Methods for Aerial

Robots

“Human-computer interaction is a discipline concerned with the design, evalua-

tion and implementation of interactive computing systems for human use and with

the study of major phenomena surrounding them.”

– Hewett et al. (1996)

This chapter reviews the unimodal and multimodal HCI control interfaces that are being

used in the control of small multirotor UAVs. The unimodal interfaces were classified into

five categories - agents, electromechanical, vision, bioelectrical, and speech control interfaces.

Different multimodal combination of speech and gesture interfaces were also presented. The

limitations of all the interface categories presented were discussed. A concise merit and demerit

summary of each interface category was developed and presented at the end of this chapter.

2.1 HCI Control Interfaces

This section introduces the unimodal interfaces discussed in Section 2.2 - Section 2.6. Mul-

timodal interfaces were discussed later in Section 2.7. As shown in Figure 2.1, the unimodal

aerial robot interfaces discussed in this section are grouped into five categories: agents, elec-

tromechanical, bioelectrical, vision, and speech. As a background to general HCI interfaces, a

brief historical perspective was first presented.

The development of most of the notable human computer control interfaces in use today can be

traced to the advancement of electronics and computer technology in the mid-twentieth century.

Initial human computer interactions were based on mechanical toggle switches. Then came
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Figure 2.1: Aerial robot control interfaces.
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the electromechanical relay switches - from which the electronic keyboard, a set of well-spaced

and orderly-arranged electromechanical push-button switches, patterned after the mechanical

typewriter keyboard, was developed; and it is still being used today. The light-pen was developed

around 1954 to work alongside the keyboard as a graphical input interface (Myers, 1998). It had

the form of a light-sensitive wand allowing computer operators to draw or point to displayed

objects on a computer’s CRT (Cathode Ray Tube) monitor. The first computer joystick was

developed around 1962 at MIT along with Slug Russel’s video game “Space War”, which was

considered to be the first graphical video game (Myers, 1998). The mouse was later developed

at Stanford Research Laboratory around 1965 as a cheap replacement for the light-pen (Myers,

1998).

Research into gesture recognition and control can be traced back to the light-pen era, where

attempts were made at mapping certain light pen gestures to specific Sketchpad program func-

tions (Myers, 1998). Such 2D application of gesture has evolved over the decades. Today, many

commercial 3D CAD software, use gestures performed with the aid of the computer mouse, touch

screen surface, magnetic and acoustic field manipulation, and visual gesture interaction. Also,

virtual reality can be traced to this era, with Ivan Sutherland (Sutherland, 1968) at Harvard in

1965, Tom Furness (Wright-Patterson AFB), and Myron Kruegers (University of Connecticut)

pioneering research works; which were later followed by the study of force feedback by Fred

Brooks (Brooks, 1977; Brooks et al., 1990) and Henry Fuchs groups at the University of North

Carolina in 1971 (Myers, 1998). Natural language and speech recognition for human computer

interaction can be traced back to research conducted at CMU, MIT, IBM, AT&T, and Bell Labs

in the 1950s, as presented in Anusuya and Katti (2009) historical survey.

Although prior research into the development of human computer interfaces seems to have

been largely successful, researchers have continued to investigate the possibilities of developing

new interfaces or improving existing interfaces. The aim is often to make these interfaces more

natural, intuitive, effective, and efficient. But human-computer interaction is a multi-disciplinary

field. It is situated at the intersection of several science and engineering fields such as computer,

control, electronics, mechanical, systems design, and bioengineering. It draws on concepts from

behavioural science, psychology, ergonomics studies, human factors, and several other fields of

study (Preece et al., 2015). Hence the need for these researchers to be either familiar with these

fields themselves or work in teams composed of members familiar with the fields of interest.

Additionally, the progress in human-robotic interaction and human-machine interaction relies

on the successes and progress made in human-computer interaction research. This is because

machines and robotic systems rely on computers for their fundamental control operation. In

order words, computers translate humans control intention into machine or robotic operations.



16 Chapter 2. HCI Control Methods for Aerial Robots

2.2 Software-Agent Computing Devices

As presented in the previous section, robotic systems such as the aerial robot, rely on comput-

ers for their operation. If these computers could be directly accessed, the control operations of

the robot could be modified, eventually altering the behaviour of the robot. In this section, the

robot’s computer is considered to be connected in a network (through Wi-Fi, Bluetooth, Zig-

Bee, etc.) with another standalone computer (the remote agent), which may be able to modify,

update, or specify new control objectives to the robot’s computer.

According to Nwana (1996), an agent can be referred to as a software or hardware component

that is capable of acting (in an exact manner) on behalf of its user, in order to accomplish a

specific task. Agents, in the context of this chapter, refers to intermediate intelligent or smart

systems capable of 1) being pre-instructed or programmed by the operator, 2) processing high-

level programs into low-level control instructions that can be 3) relayed to an aerial robot, with

the aim of providing continuous guidance in order to accomplish the operator’s pre-defined task

or objective. The most commonly used aerial robot control agent as described in this section is a

remote computer system, which could be running a Windows, Linux, or Mac operating system.

Other popular agents include the tablet computers (such as Apple’s iPad Pro and Samsung’s

Galaxy Tab S5e), Smartphones (such as the iPhone Xs and Sony Xperia 10), and Smart watches

(such as the Apple Watch 4 and Samsung Gear S3).

In addition to the remote computer being an independent agent, it can also act as an in-

termediate processing/relay terminal for many other control interfaces, as shown in Figure 2.1.

The remote computer can be pre-programmed for waypoint navigation. It can also accept elec-

tromechanical input and can also provide a visual feedback of the aerial robot collected data

and health status. The tablet computer is often powerful enough to operate complex programs

like the remote computer. It can also provide waypoint navigation, electromechanical contact

switch, touch screen, and accelerometer-based gesture interaction. In addition to this, it can also

provide on-screen visual and haptic feedback of telemetry data, status, and other information.

The smartphone is similar to the tablet computer but smaller in size and form factor. It can

perform similar functions as the tablet computer although it has a smaller screen for visualising

telemetry data, status, and other information.

The smart watch is an attempt to miniaturise the smartphone. Control using the smart watch

could be relayed through the smartphone as demonstrated by Mark Ven, the PVD+ co-founder,

as shown in Figure 2.2. Gesture control is achieved by collecting and processing the smart

watch’s IMU sensor data. Processing could be relayed through a smartphone, tablet computer,
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Figure 2.2: Controlling the AR Drone via hand gestures, using an Apple Watch Reuters (2015).

or a remote computer. At the time of writing this chapter, the smartwatch is not capable

of processing these data, hence not capable of directly controlling the aerial robot on its own

without additional hardware support. However, unlike the other agents, the smart watch has

the additional advantage of being a wearable technology.

2.2.1 Remote workstation graphical interface example

In Ramchurn et al. (2015) human-agent collaboration with multiple UAV, a supervisory con-

trol graphical interface was developed for use on a remote computer workstation. Cavett et al.

(2007) graphical interface was also designed to be used for controlling a UAV from a remote

computer workstation. These graphical interfaces were designed to lower cognitive workloads

and improve performance from planning to task execution. In addition to accepting input con-

trols, which are processed by the remote workstation, and passed on to the UAV for execution,

graphical interfaces also provide visual feedback which are useful for non-line-of-sight application

scenarios.

2.2.2 The Apple Watch example

The Apple Watch, shown in Figure 2.3a, was developed by Apple Inc. and was first available

in 2015, in four versions, each having 8 GB storage capacity. It relies on a wireless connectivity

with an iPhone, which could be via Bluetooth or Wi-Fi, to perform many functions. It provides
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haptic feedback using a linear actuator called the “Taptic Engine”, which could be triggered

from certain apps. The watch is equipped with IMU sensors, infrared and visible-light LEDs

and photodiodes. Its operating system is the Apple’s WatchOS.

(a) Apple Watch
(b) Mark Ven Demo

Figure 2.3: The Apple Watch released April 2015 (Apple, 2015) and Mark Ven demonstrating

apple watch hand gesture control on a Parrot AR Drone in December 2015 (Reuters, 2015).

In Figure 2.3b, Mark Ven and his PVD+ team, developers from the National Chung Hsing

University, Taiwan, demonstrated the use of the Apple watch in the control of a Parrot AR

drone quadcopter. The researchers at PVD+, a 2013 research spin-off of the National Chung

Hsing University, Taiwan, developed a software algorithm, which they called ‘Dong coding’, to

convert the Apple Watch into a hand gesture remote controller for a small multi-rotor aircraft

(Reuters, 2015). Ven et al successfully demonstrated their control technique at Taichung City,

just eight months after the Apple Watch was first available. As Mark Ven explained to Reuters,

the Apple Watch interprets his hand’s directional gestures, and sends a corresponding direction

control signal to the Parrot AR Drone 3.0, which was being used in their demonstration (Reuters,

2015).

2.2.3 Android Tablet device example

Soto-Gerrero and Ramrez-Torres (2013) had also investigated visual gesture control commu-

nication for a small UAV. In their work, the authors had utilized a tablet device, running the

Android OS, rather than a Windows or Linux based computer, for image processing and other

computational workload. In their research, the user carried the tablet as shown in Figure 2.4.

The camera on the Parrot AR drone captured the user’s image. This was then transferred over

Wi-Fi to the Android tablet, where the image was processed and the gesture - extracted, inter-

preted, and converted to a control signal, which was then communicated back to the UAV. The
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limitation of this method is that the user would have to carry a control device, the tablet in this

case. Could this processing be performed on-board the UAV? Could this be a more convenient,

natural, and perhaps intuitive approach? One of the reasons given for this user-UAV-tablet im-

plementation by these researchers was the limitation of the battery power of the tablet. Usually,

most small UAVs do not have enough battery power to last more than 20 min, whereas most

tablets have enough power to last 8 hours on intensive processing task as performed in their

work.

(a) Usage Description

(b) Functional Block Diagram

Figure 2.4: Soto-Gerrero and Ramrez-Torres (2013)’s User-UAV-Tablet interoperability physical

& block diagram.

For their hardware implementation, these researchers had used a tablet with an NVidia Tegra

3 quad core mobile processor. For their software implementation, they discarded the Parrot

client side API for their IHRVANT java-based native image processing code. Figure 2.4b shows

the functional block diagram of their IHRVANT API system.

2.3 Electromechanical

Electromechanical interfaces describe a class of devices that use mechanically actuated switches

in controlling the flow of current in an electrical circuit. This regulation of the flow of current is

used to signal control intentions to a computer, machine, or robotic system. The most popular

electromechanical control device for an aerial robotic system is the RC joystick controller. Other

electromechanical devices include the keyboard, mouse, push buttons, toggle switches, Cyber

glove, data glove, wired glove, Shift thumb drone controller (Lavars, 2016), IMU HandMagic

device (Calella et al., 2016), and magnetic hand gesture device (Ma et al., 2011).
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2.3.1 RC Joystick Controller

The most common electromechanical HCI interface controller for small unmanned aircraft is

the gamepad-like RC (Radio Controlled) joystick-type controllers shown in in Figure 2.5, which

has two control sticks, a few toggle switches, and trimmers. Each of the control sticks perform

two of the aircraft’s four fundamental operations of throttle, roll, pitch, and yaw control. The

trimmers are used to fine tune and balance the two joysticks in their four axes. The toggle

switches are used to provide additional channels for other custom control functions such as

activating self-stabilizing mode, activating on-board camera recording, and releasing a payload.

The RC joystick controller is the most popular multi-rotor control device. It is widely considered

to be both efficient and effective, and probably the best controller designed so far, for a multi-

rotor aircraft whose autonomy level is within tier-one of the nCA autonomy scale.

(a) DJI (2015b) Phantom 3S

remote controller

(b) Turnigy (2014) TGY-i6

AFHDS transmitter

(c) VDCI Evo IV ground

control station Orzea (2015)

Figure 2.5: Some RC joystick controllers.

RC joystick controllers have been around for over half a century, and in a form similar to what

they are today. The RC joystick controller used to be formally called “Radio Modeller (RM)”,

a term used to describe its original function for flying model aircraft. The Futaba corporation

founded in 1948 started manufacturing RC controllers for model planes since 1962 (VRHC,

2013). A line up of their RC controllers from 1970 - 1983 is given in Figure 2.6 and Figure 2.7.

Comparing these with their most recent controller in Figure 2.8, may suggest that progress in

terms of innovation may be reaching its peak, as the evolution in its physical design form have

remained relatively static. However, the underlying technology has continued to improve from

analog to digital, AM to FM, PCM, PPM, PWM, FHSS, telemetry feedback, haptics feedback,

GPS, etc.

Figure 2.9 shows an image of a Turnigy RC joystick controller, indicating its two joysticks

operating in mode 2, toggle switches, push buttons, variable potentiometers (trimmers), and

a screen for telemetry information. The joystick can be conceptualised as a two-dimensional
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Figure 2.6: Futaba RC Controllers in the 1970’s.

Figure 2.7: Futaba RC Controllers in the 1980’s.

potentiometer (continuous variable resistor) that generates an analogue voltage divider circuit

in each dimension. Each dimensional axis is mapped to a control (e.g. thrust) with a continuous

range of intensity/values bounded by two extreme levels. The RC joystick controller, unlike

most other electromechanical devices, does not require additional or intermediate processing

by a remote computer. It is capable of interacting directly with the aerobot’s flight controller.
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(a) Transmitter

(b) Receiver

Figure 2.8: FUTK4220 4GRS 2.4 GHz 4 Channel Computer Radio System with telemetry

(Futaba RC, 2014).

Additionally, it may be augmented with a FPV (First Person View) headset, a smartphone, or a

tablet computer to provide visual image data from the aerobot’s camera. Telemetry data could

also be feedback to the controller via the smartphone, tablet, or a small screen, installed on the

controller. It can also be augmented to provide haptic feedback of flight turbulence.

An extension of the portable handheld joystick controller is the cockpit-like workstation that

combines both joysticks and keyboards for the control of single, multiple, or large-sized fixed or

multi-rotor UAVs, such as the Raytheon’s UAV control cockpit shown in Figure 2.10. Although

this setup is often used for large fixed winged drones, it could also be configured for controlling,

monitoring, or supervising multiple small UAVs. In fact, in this configuration, the electrome-

chanical HCI interface ability can be enhanced by the remote workstation, by communicating

operator intentions, receiving feedbacks, logging data for immediate or later analysis. In this

configuration, waypoint mapping control method could be an effective method of completing

missions. This could be pre-programmed and updated in real-time.
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Figure 2.9: 10-Channel Turnigy TGY-i10 (mode 2) telemetry RC joystick controller (HobbyKing

and Turnigy, 2015).

2.3.2 Haptics

Haptics is a form of interaction via touch. Haptics “pertains to sensations such as touch,

temperature, pressure, etc. mediated by skin, muscle, tendon, or joint” (Brooks et al., 1990).

In computer control applications, it occurs via the application or reception of tactile sensation.

This touch stimulation results from electromechanically generated forces, vibrations, or motions.

Haptic systems often utilize tactile sensors to measure the force applied on an interface by a user,

and may provide feedback to alert the user via vibrations of variable intensities. Haptics is also

used in providing force feedback to allow operators of heavy machinery ‘feel’ certain situations

such machineries are not able to handled, as in excavators hitting tough large rocks. Such

early signals could protect the machines from being damaged. Perhaps this could be applied in

providing real time wind gust condition of a UAV to its operator?

Notable research work in haptics interaction includes Noll (1975) early tactile man-machine

communication system developed at Bell Telephone Laboratories, Inc. Recent works includes

Cirillo et al. (2016) research on new sensorized flexible skin used to enhance safety and intu-

itiveness in intentional and non-intentional physical human robot interaction (HRI) contacts.

Haptics feedback can be found in mobile devices such as smartphones, tablet PCs, and smart

watches, as subtle vibrations to alert or notify the user of certain event’s occurrence. An example

of the application of haptics in robotics is the Shadow Hand developed by Shadow Robot (2013).

It was developed to be sensitive to touch, pressure, and position. It was designed to reproduce



24 Chapter 2. HCI Control Methods for Aerial Robots

Figure 2.10: Raytheon’s UAV control cockpit (Raytheon and Barnard Micro Systems, 2006).

the strength, delicacy, and complexity of the human grip. According to Shadow Robot (2013),

the developed tactile sensitive robotic hand can be integrated with the haptic Cyber Glove II

(Cyber Glove, 2009), both shown in Figure 2.11

Some researchers are investigating the application of haptic feedback in holographic interaction

(Monnai et al., 2014; Makino et al., 2015). These researchers aim to make users interact with

and ‘feel’ virtual objects as though they were real-world objects; without using haptic gloves,

by using just their bare hands, via some airborne ultrasound tactile display concept. Tactile

interaction could potentially be used in stealthy HRI interaction (Hutchins et al., 2009; Lackey

et al., 2011). Haas (2007) suggested the use of multiple tactile cues (such as temporal rhythm,

spatial trigger location, frequency of impulse, etc.) in providing multiple feedback information.

In addition to the applications of haptics in robotics, it is used specifically in medicine to

guide and provide feedback during telepresence surgeries, in entertainment to heighten the user

experience as found in gaming and movies, and is a key component of the evolving field of

wearable textile technologies.
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(a) Tactile Hand

(b) Haptic Feedback Glove

Figure 2.11: Tactile sensitive robot hand (Shadow Robot, 2013) integrate-able with the haptic

feedback gloves (Cyber Glove, 2009).

2.3.3 Data Gloves

Data glove, Cyber glove, or Gesture glove are glove-like, hand-wearable, computer input

control devices. They are often fitted with electronic inertia sensors used in determining the

position and orientation of the fingers and arm. An accelerometer sensor is used to measure

hand gesture orientation. A gyroscope sensor may be used to measure the rate at which such

hand gestures are formed, hence increasing the vocabulary of possible hand gestures. To further

increase the gesture vocabulary, some gesture gloves may have switches that can be triggered

by specific hand gestures. These gesture gloves require processing on a remote computer. They

could be wirelessly connected to the computer using wireless technologies like Bluetooth or

simply connected via wires. Unlike the IMU-based Cyber-glove and Data-glove, Wired-glove is

based on finger/hand motions triggering switches embedded along the wearable glove structure

(Renitto and Thomas, 2014). Similar to some RC joystick controllers, some of these wearable

gesture devices such as the Cyber Glove (2009), are capable of providing haptic feedback.

Figure 2.12 shows the AcceleGlove, an open-source data glove which can be programmed for

controlling robotic systems such as a robotic arm, UGV, or a small UAV (Grifantini, 2009).

The accelerometer sensors installed on the fingertips of the AcceleGlove is used to determine

the position and 3-D orientation of the palm and its fingers, which is then used in controlling

a robot. The AcceleGlove was originally developed by Hernandez Jose et al. (2002) at George

Washington University, to interpret the American Sign Language. The success of the Accele-
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Figure 2.12: AcceleGlove - a programmable open-source data glove (Grifantini, 2009).

Glove arose the interest of both the institute of health and the military; with both organizations

sponsoring HCI researchers into investigating the possibility of adapting this glove for physical

therapy in healthcare, and for the recognition of military hand signals in robotic warfare sys-

tems, respectively (Renitto and Thomas, 2014). Harris and Barber (2014) designed, developed,

and used a similar wireless IMU data glove in recording and classify hand gesture commands for

a military UGV robot. Other glove systems includes the x-OSC Glove, Key Glove, Clove 2, MIT

Glove Mouse, KITTY, Peregrine Gaming Glove, P5 Gaming Glove, Stanford Thumbcode, and

Nintendo Power Glove (Renitto and Thomas, 2014). HandMagic is an IMU based wristband

for sensing human hand gesture designed and developed by Calella et al. (2016). Although it

is similar to the IMU based gesture gloves, it is only being worn on the wrist, hence does not

capture finger motions.

2.3.4 Magnetic Hand Control Technique

Figure 2.13: Structure of the magnetic hand motion tracking system by Ma et al. (2011).
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Another electromechanical control interface of interest is the magnetic hand control method

demonstrated by Ma et al. (2011), shown in Figure 2.13. This technique is based on installing

small magnets on the fingernails, to generate a magnetic field that can be tracked by a magnetic

sensor bracelet worn on the wrist Ma et al. (2011). The location and orientation of the patch

of magnets fixed on the fingernail is continuously being tracked by the magnetic sensor on the

wrist. A dynamic geometric model of this interaction is developed. The hand posture is then

estimated by comparing its computed location and orientation with the developed geometric

hand model.

2.3.5 Shift thumb drone controller

(a) Shift thumb controller

(b) Shift thumb steering control

Figure 2.14: Shift device for thumb steering/controlling small UAVs (Lavars, 2016).

The Shift thumb drone controller is a single hand operated interface currently being devel-

oped to replace the two hand RC joystick controller. It consists of two major components - a

solid cylindrical handheld device and a thumb wearable ring, as shown in Figure 2.14. It was

advertised to be more intuitive and compatible with some existing drones (Lavars, 2016).

2.4 Vision

This section describes a set of vision-based HCI interfaces used for communicating control

intentions to robots. A camera or some other form of imaging technique is used to capture

images, which are then processed (interpreted) to decode the control information. This control

information is then passed on to the robot to be executed. Computer vision control techniques

often follows the following sequence:

• Capture or acquire image from camera
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• Process image: through image segmentation, extraction, perception, recognition, interpre-

tation, etc. in order to decode control information, probably with the aid of a predefined

image feature vocabulary or some AI algorithm

• Execute control: through an actuation system that response to the identified control range

This technique is analogous to the human vision interaction system. Its underlying principles

emulate the regular human vision principle of operations. An analogy between the human vision

system and the computer vision system is presented in Table 2.1.

Vision based control interfaces utilise the techniques of computer vision such as image cap-

ture/acquisition, filtering, segmentation, feature extraction, and classification, in identifying the

operator’s control intentions. Image acquisition is usually performed with the aid of a regular

camera, thermal camera, infrared camera, or some other specialised imaging system. Infrared

thermal imaging cameras form images using infrared radiation (with wavelengths up to 14 µm),

whereas the common video camera uses visible light (with wavelength ranging from 0.4 − 0.7

µm), for imaging. Due to high processing power requirements, small vision based systems usu-

ally require remote processing. The advent of powerful embedded computers are now making it

more possible for these processing to be done on small systems nowadays. However, the process-

ing speed of these embedded computers are limited. In the case of remote processing, control

throughput is limited by the communication bandwidth for sending captured image data and

receiving decoded control information. Therefore, vision based control interfaces usually have

low control command throughput, which means they are not suitable for high-rate low-level

control function.

Table 2.1: A table of analogy between the human and computer vision systems.

S/No Human Computer

1 The human uses the eye for capturing

images

The computer uses some type of camera: regular

camera, infra-red camera, x-ray camera, radar, etc.

2 The human brain is responsible for pro-

cessing and interpreting the images cap-

tured by the human eye

The computer’s CPU processes and interprets the

image captured by the camera

3 The brain triggers the human to re-

spond to vision

The computer triggers the system’s response via ac-

tuating components

4 The human eyes imaging capability is

naturally limited to the visible light

wavelength range (0.4− 0.7µm)

The computer imaging capacity could be designed

to cover the entire electromagnetic spectrum wave-

length (1× 10−12 − 100× 106m)
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Some devices in this category used for human aerobotic interaction includes regular stan-

dalone cameras, web cameras, stereo cameras, Leap Motion device, Microsoft Kinect. It may

also include virtual, mixed, and augmented reality headsets such as the Oculus Rift and Mi-

crosoft HoloLens amongst others. Some of these devices are discussed further in the following

subsections.

Vision based interfaces, as presented in this research work, may track the human hands, face, or

whole-body, in order to identify specific gestures to be mapped to some predefined robotic control

operations. Vision based hand gestures are controlled gestures performed specifically with the

human hands, in order to communicate the human’s intentions. Vision based face gestures are

fine controlled movements of facial muscles in order to visually signal or communicate control

intentions. Due to the fact that contracting and expanding the facial muscles, over a long period

of time, could be tiring and uncomfortable, it is seldom used in robotics by healthy persons.

However, this type of HCI interaction finds applications amongst persons with severe disabilities

or paralysis of all other parts of their body but their face. However, facial gesture recognition

could be integrated into or made to work with other gesture systems. For example, a hand

gesture controlled quadcopter used for photography could be queued, to take one’s photograph,

by a wink-smile. Also, in a search and rescue mission, a multi-rotor aircraft which recognises

facial gestures can be able to detect distress and hence perform an appropriate emergency

operation. Complex facial attributes can be extracted from 3D facial scans (Blanz, 2007).

Certain facial gestures such as smile, neutral face, mouth open, and wink, can be tracked

and used in robot control applications. Milanova and Sirakov (2008) and Qing et al. (2008)

independently investigated systems to recognise expressions of joy, distress, surprise, interest,

frustration, anger, disgust, fear, and a neutral expression among several human observable facial

expressions. Vision based whole-body gesture interaction is a method of visually signalling

control operations to be executed by a robot, through a set of specified body poses. This

gesture control technique differs from the two previously discussed, being that the whole body

is used in communication, unlike in the hand and facial gestures - where only a part of the body

(hand and face respectively) is used. In this case, the camera captures the whole body pose,

processes and interprets the pose, and controls the system’s actuators to execute an appropriate

response. Soto-Gerrero and Ramrez-Torres (2013) demonstrated this in their upper-body visual

gesture control interaction experiment on a Parrot AR drone via an Android-based mobile phone

platform.
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2.4.1 Single camera systems

An example of a vision based control system designed around a single camera is that devel-

oped by Gupta and Ma (2001). These researchers designed and developed a vision-based hand

gesture recognition system, which consisted of five steps - hand gesture acquisition, segmenta-

tion, filtering, representation, and hand gesture classification, as described in the flowchart in

Figure 2.15a. This system basically consisted of a video camera, video capturing software, and a

personal computer for capturing, processing, and decoding the hand gesture, as shown in Figure

2.15b.

(a) Operational Flowchart

(b) Gesture Capturing System

Figure 2.15: Vision-based hand gesture system (Gupta and Ma, 2001).

The captured image is first transformed into a grey scale image and the hands are then seg-

mented using a histogram thresholding algorithm. The background and other object noise are

then filtered using a morphological filtering approach. After further processing of the resulting

gesture contour by comparing with localized contour sequence, and compensating for both sim-

ilarities and alignment issues, the hand gesture is then classified (Gupta and Ma, 2001). Some

vision capture methods may require the human to wear some form of identification markers

to aid image feature extraction, segmentation, and detection. But this research work is not
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interested in those type of methods.

Mohaimenianpour and Vaughan (2018) developed an algorithm to aid the fast detection of

users’ hands and faces, which was considered robust enough to directly control a UAV in flight,

as shown in Figure 2.16.

(a) Hand tracking examples
(b) Gesture vocabulary

Figure 2.16: Mohaimenianpour and Vaughan (2018) research on visual gesture control for UAV

Schelle and Stutz (2016) investigated the possibility of visually communicating control to

small multi-rotor UAVs via gestures. Their application scenario is illustrated in Figure 2.17.

The authors considered that visual communication with aerobots could improve intelligence,

surveillance and reconnaissance (ISR) missions, redefine how ground personnel control flying

transport vessels, aid search and rescue operations as missing persons could attract attention to

themselves and increase their chances of being discovered.

In Schelle and Stutz (2016) scenario: a) an operator on ground tasks the airborne rotary-wing

UAV to detect and count persons in a given area by performing a specific set of gestures; b)

the UAV perceives those gestures and translates them into gestural command components; c)

once the gestural command set reception and processing is complete, the UAV starts its mission

and flies to the commanded area to perform the person detection and counting task; d) having
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Figure 2.17: Schelle and Stutz (2016) visual communication between an operator and a UAV.

completed this task, the UAV returns to the last known location of the operator and transmits

its results visually with light signals or via an LED Matrix (Schelle and Stütz, 2018) as shown in

Figure 2.18a, which could also work for this research scenario. By augmenting the UAV speaker

output response with the LED matrix display, an on-screen feedback could be provided in the

wild. Figure 2.18b shows the block diagram of their visual communication model.

(a) UAV LED matrix feedback
(b) Communication model block diagram

Figure 2.18: A visual communication model (Schelle and Stütz, 2018)

2.4.2 Webcam

A webcam is a video camera designed to broadcast live feeds over the internet. It is basically a

single camera system with image frames optimised for efficient communication over the internet.

Most webcams are generally designed to operate in low resolution modes such as 480p, in order

to reduce the data bandwidth for broadcasting live feeds continuously over the internet. While

there are some high resolution web cameras available today, the image quality of webcams are

typically lower than dedicated computer vision and broadcast cameras. In Shetty et al. (2016)

investigation on controlling a quadcopter via hand gestures, the researchers used a webcam. The
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captured gesture is processed on a computer system, and the decoded control, relayed to the

multi-rotor UAV. Shetty et al. (2016) setup can be described by the Figure 2.19. An Arduino

board receives control command from the computer wirelessly and relays this to the KK2.1.5

flight controller board of the multi-rotor UAV.

Figure 2.19: Webcam gesture controlled quadcopter.

2.4.3 Two cameras - orthogonal

The effectiveness of a single camera system could be easily undermined by dynamic environ-

mental objects occluding an operator’s gestures. Huang and Chung (2004) developed a method

to track and analyse the human body motion gestures using two cameras installed orthogonal

to each other as shown in Figure 2.20. By combining images from the two cameras’ view, a

three-dimensional body gesture can be identified. In addition to this, the occlusion problem in

the single camera system is reduced.

In Huang and Chung (2004) method, the extracted human silhouette was pattern matched

to a computer generated human model, and then a Hidden Markov Model (HMM) algorithm

was used for posture recognition. HMM is a statistical modelling technique which assumes the

system to be a Markov process with unobserved hidden states. Such system’s outcomes are

usually based on states and transition probabilities.

Figure 2.21a shows Huang and Chung (2004)’s skeletal (stick man) model as an approximation

of the major human bones structure and joints formations. This was based on the observation

that human body part motions result from relative bone movements. Three dimensional (3-D)
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Figure 2.20: Orthogonally arranged gesture capturing cameras (Huang and Chung, 2004).

(a) Skeletal-joint stick-man model
(b) 3-D Computational Model

Figure 2.21: Human body models (Huang and Chung, 2004).

shapes or volumes such as the elliptical cylinder shown in Figure 2.21b could also be effective

descriptors on which the human model could be based.

Figure 2.22 shows how Huang and Chung (2004) two camera system works. In this particular

test, one camera captures the facade view while the second camera captures the lateral view of

the human pose, at the same time. These images can then be processed to extract the whole

body control gesture being intended by the human operator for execution by a robotic system.

2.4.4 Microsoft Kinect

In 2010, Microsoft released a proprietary depth sensing camera system called the Microsoft

Kinect, for their Xbox 360 gaming console. In 2012, Microsoft made the Kinect available for the

Windows platform. This encouraged the development of robotic systems that rely on the Kinect

vision system. Its popularity was centred on its depth sensing capability. Following the success
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(a) Facade camera processed image
(b) Facade camera captured image

(c) Lateral camera processed image
(d) Lateral camera captured image

Figure 2.22: Two camera system - capturing and processing image (Huang and Chung, 2004).

of the Kinect for the Xbox 360, Microsoft developed the Kinect v2 (version 2) for the Xbox one

in 2013, and also made this available to the Windows platform in 2014. Figure 2.23 shows the

Microsoft Kinect version 2. It consists of an RGB camera, an infrared based depth sensor, and

a multi-array microphone (Microsoft, 2014). It is capable of full-body 3D motion capture, facial

recognition, and voice recognition (Microsoft, 2014). The microphone arrays can also be used

for acoustic source localization and ambient noise suppression. The depth sensor works under

any ambient lighting conditions and has an adjustable depth sensing range (1.2 - 3.5 m). The

Kinect is capable of tracking six persons. It has an 8-bit VGA resolution of 640 × 480 pixels

at 30 Hz frame rate, it is capable of a resolution of 1280× 1024 pixel at lower frame rate. The

Kinect field of view is 57◦ horizontal and 43◦ vertical. The Kinect v2 has a wider field of vision

and can track up to 6 human skeletons at once (Microsoft, 2014). It is capable of tracking 25

individual joints of the active player, detect the player’s facial expression, heart rate, movement

speed, and standard controller gestures.
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(a) Kinect v2
(b) Kinect v2 Windows Connector

Figure 2.23: Microsoft Kinect version 2 (Microsoft, 2014).

Sanna et al. (2013) developed a vision-based whole-body gesture capturing system with the

aid of the Kinect, as shown in Figure 2.24 and Figure 2.25. In their method, the whole body

gesture is captured by the Kinect, processed on a Laptop running the Windows 7 operating

system, after which the identified command is communicated to the Parrot AR Drone (a small

UAV) via Wi-Fi, as described in Figure 2.24.

Figure 2.24: Kinect control of a small UAV (Sanna et al., 2013).

Sanna et al. (2013) method requires remote processing by a computer. In their work, they

compared the performance of the joystick, iPhone, Kinect, and the AR vertical camera in au-

tonomous mode. They found that the Kinect was more effective at completing tasks. Although,

only three commands could be issued in 1 second, due to processing and communication latency,
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this was found to be better than the AR drone autonomous mode vertical camera’s one com-

mand in 2 seconds. In other words, they found that remote processing was six times faster than

the on-board alternative.

Figure 2.25: Controlling a Parrot AR Drone via the Kinect (Sanna et al., 2013).

Harris and Barber (2014) investigated the use of the Kinect in the control of an unmanned

ground vehicle (UGV) called the JRMBot, which is shown in Figure 2.26. The JRMBot consisted

of the Kinect, an on-board laptop computer, and other primary control mechanisms. The Kinect

was used to capture speech commands, for navigation and obstacle avoidance. It could also have

been used to capture and classify hand gesture commands instead of the wireless IMU data glove

that they used. The speech and vision information captured by the Kinect was being processed

on-board the robot via the laptop computer. In other words, all processing was performed

remotely. Although, carrying the Kinect and a laptop computer does not constitute a problem

for the UGV, small UAVs are usually designed to fly lighter, longer, and more dynamically;

therefore, these additional payload components could make it difficult to achieve such objectives.

But with the shrinking size of the computers and vision capturing systems, this may not be an

issue for too long.

Ma and Cheng (2016) investigated gesture control on a Parrot AR Drone using the Kinect

v2, as described in Figure 2.27. These researchers used NI LabVIEW in programming their

system. They suggested that their system yielded a satisfactory performance result, although,

the researchers did not provide a measure of their system’s performance. In their work, they

computed geometrical references using quaternions as shown in Figure 2.28. In their method,

they computed the rotational matrix of the arm with respect to the body frame, in order to

identify specific control gestures. Their work, just like Sanna et al. (2013), also relies on remote

image acquisition and processing.
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Figure 2.26: JRMBot Platform with the Kinect and a laptop computer installed (Harris and

Barber, 2014).

Figure 2.27: An overview of Ma and Cheng (2016) AR Drone gesture control implementation.

Figure 2.28: Geometric computation and references for visual gestures control (Ma and Cheng,

2016).

In addition to the whole body gesture application of the Kinect, it can also be used for

vision-based hand gesture interaction as demonstrated by Nimble VR (2012), formally 3Gear

Systems. Nimble VR (2012) developed a finger-precise hand gesture tracking system, which

uses two downward facing Microsoft Kinect sensors. This system, which is shown in Figure

2.29, is reported to provide millimetre level accuracy of the hands (Eichhorn, 2012). By using a

database of pre-computed 3D images, corresponding to all possible configurations of the hand
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in the workspace, efficiently sampled and indexed, the hand pose could be determined within

milliseconds (Eichhorn, 2012).

Figure 2.29: 3Gear Systems finger-precise Kinect hand gesture tracking system (Eichhorn, 2012).

2.4.5 Leap Motion Device

The Leap Motion controller, shown in Figure 2.30, is a device that can be used to perform

hand gesture interaction within a virtual or augmented reality environment (Leap Motion Inc.,

2010a). It consists of three infrared LEDs and two cameras under a black glass (Coelho and

Verbeek, 2014).

Figure 2.30: Leap Motion Device (Leap Motion Inc., 2010a).

(a) Leap Motion Setup Connection
(b) Leap Motion Virtual Interaction

Figure 2.31: Leap Motion Device application examples (Leap Motion Inc., 2010a).

By performing some complex spatial mathematical computational analysis of various gesture

poses, a program could be written to track the human hand gestures or movements, as shown

in Figure 2.31. Coelho and Verbeek (2014) investigated the effectiveness of the Leap Motion

device for manipulating three dimensional objects in virtual space. With the advent of mixed
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reality, the line between virtual reality and real reality is becoming thinner. Hence, what works

in virtual space could, in theory, also work in physical space.

In Sarkar et al. (2016) research work, the authors described their implementation of a gesture

control system for a small multirotor aircraft. These researchers used commercial-off-the-shelf

components: the Leap Motion device and the Parrot AR Drone 2.0 quadcopter. By using

the robotic operating system (ROS) framework, installed on both the ARM Cortex A8 pro-

cessor of the AR Drone and on a Linux based computer, and by utilizing a python script, the

researchers were able to perform gesture communication. Figure 2.32 describes their implemen-

tation method. The researchers envision scenarios in which such gesture communication could

be used in controlling quadcopters during aerial videography or in performing aerial acrobatics

stunts. The second scenario on acrobatic stunts may be limited by the image data processing

and communication latency for such visual gesture systems. However, a gesture could be used

to trigger the execution of a pre-programmed acrobatic stunt.

Figure 2.32: Leap Motion Device controlled Quadcopter.

Gubcsi and Zsedrovits (2018) researched ergonomic quadcopter using the Leap Motion con-

troller with the aid of a remote computer relaying control commands to a real IRIS+ drone in

an outdoor environment.

2.4.6 Oculus Rift

Oculus Rift, shown in Figure 2.33, is an immersive virtual and augmented reality headset

developed by Oculus VR (2016). It is a tethered head-mounted display, originally developed for

gaming purpose but is now being integrated into other computer applications. The Rift uses

an OLED display technology, with 2160 × 1200 resolution (that is, 1080 × 1200 resolution per
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eye), at 90 Hz refresh rate, and a field of view of 110 deg (Oculus VR, 2016). It has integrated

headphones which provides a 3D audio effect, and is also used for rotational and positional

tracking. This utilises a positional tracking system, called “Constellation”, performed with the

aid of a stationary USB IR LED sensor; used in mapping the room via its infrared and LED

lights. Although VR devices such as the Oculus Rift were originally designed to provide feedback

of an immersive experience, these devices could also be used for initiating interaction within their

virtual environment especially when used in combination with other interfaces such as the Leap

Motion device.

(a) Oculus Rift Device

(b) Wearing the Oculus Rift

Figure 2.33: Oculus Rift (Oculus VR, 2016).

2.4.7 Microsoft HoloLens

Microsoft HoloLens is a mixed reality optical head-mounted display smart glass designed to

work with the Windows 10 operating system. This is because Windows 10 is the first Microsoft

OS platform to support holographic computing with APIs that enable gaze, gesture, voice, and

environmental understanding on an untethered device (Furlan, 2016; Microsoft, 2016). Gaze

interaction is achieved via gaze tracking built-in sensors that guides the cursor’s hologram se-

lection. Simple gestures can be used to open apps, select and size items, or drag and drop

holograms in the real world, as shown in Figure 2.34. And voice commands can be used to

navigate, select, open, command, and control apps via Cortana (Microsoft, 2016). This seems

to be an extension of the Microsoft Kinect system, as it shares certain underlying technologies

such as the 3D depth cameras, microphones, and sensors.
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Figure 2.34: Mixed reality HoloLens holographic gesture interaction (Microsoft, 2016).

2.4.8 Other virtual, augmented, or mixed reality devices

Virtual reality (VR) is a computer-generated existence with a rich selection of immersive mul-

timedia experiences often based on a simulation of real world behaviours. Virtual reality offers

a visual sense of belonging in an artificial environment; by enabling the user to see and interact

in that environment via gaze, touch, or speech. This is often achieved through virtual reality

headsets for a more immersive experience, or via computer monitors, as in gaming. Virtual

reality finds application in many areas such as education, training, flight simulation, modelling

inter-planetary experience, medicine and surgery, video games entertainment, artistic renditions,

archaeological exhibitions, architectural designs, and interactive cinema entertainment Kipman

(2016). However, there are a few constraints to the wide acceptance of this technology which

includes health and safety issues, social issues, conceptual issues, and other philosophical con-

cerns. Motion sickness, user’s disorientation in virtual world, computer latency, the complicated

nature of headsets, and an unconstrained real world environment are all examples of technical

health and safety concerns that could result in a less satisfactory user experience.

In augmented reality, real world objects are overlaid with computer generated graphics. Green

et al. (2007) suggested that this could be an effective human-robot collaboration method. While

virtual reality involves being completely immersed in a computer simulated reality, augmented

reality involves only a partial immersion in the simulated reality. In this case, the users are

conscious of and are able to interact with the real world environment.

Mixed reality seems to lie somewhere in-between virtual and augmented reality. It is the

“merging of real and virtual worlds to produce new environments and visualizations where

physical and digital objects co-exists and interact in real time” (Azuma et al., 2001; Costanza

et al., 2009; De Souza E Silva and Sutko, 2009). According to Milgram and Kishino (1994), mixed

reality can be considered as a particular subclass of virtual reality that involves a merger of the
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real and virtual worlds. This seems to be the concept behind the Microsoft (2016) HoloLens.

Mixed reality can be considered as the continuum that ranges from reality, through augmented

reality, through augmented virtuality, to Virtual reality (Milgram and Kishino, 1994; Azuma

et al., 2001).

Some recent VR, AR, and MR devices have been compared and presented in Table 2.2.

Virtual, augmented, or mixed reality may also find application in the tele-operation of robotic

systems. A multi-rotor aircraft control could potentially be controlled by an operator in a

virtual, augmented, or mixed reality. For example, an operator performing control manoeuvres

in a virtual cockpit could have real control consequences on a real aircraft via some cross reality

design.
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Table 2.2: VR headset comparison table.

S/No VR Headset Feature Connection Resolution

(pixels)

Refresh

Rate

Field of View

(degrees)

Mass Release Date

1 Oculus rift

(£ 549.00)

Requires PC,

Oculus touch controllers,

constellation sensors,

compatibility with Xbox controller,

Tethered to PC,

Audio, Oculus Software

HDMI 1.3,

USB 2.0,

USB 3.0

1080 by 1200

(per eye)

90 Hz 110 470 g 28-Mar-16

2 PlayStation VR

(£ 349.99)

Requires Sony PS4 Console,

Dual Shock 4 controller,

PlayStation Aim,

PlayStation Move,

PlayStation Camera,

Audio + Mic, PlayStation 4 Software

HDMI,

USB 2.0

960 by 1080

(per eye)

120 Hz 100 610 g 13-Oct-16

3 HTC Vive

(£ 769.99)

Requires PC,

Lighthouse tracking system,

Audio is not as good as Oculus Rift

Audio,

SteamVR Software

HDMI 1.4,

Display Port

2.0,

USB 2.0,

USB 3.0

1080 by 1200

(per eye)

90 Hz 110 555 g 5-Apr-16

4 Samsung Gear VR

(£ 81.99)

Requires Samsung smartphone,

Samsung Gear VR software powered

by Oculus

USB 2.0,

USB 3.0

1280 by 1440

(per eye)

N/A N/A 318 g 27-Nov-15

5 Samsung Gear VR 2

(£ 99.00)

Requires Samsung smartphone USB 2.0,

USB 3.0

N/A N/A N/A N/A N/A

6 Google Daydream

View

(£ 69.00)

Requires 5-inch or 5.5-inch Android

Smartphones,

Android 7.0 Nougat

N/A N/A 60 Hz N/A N/A 10-Nov-16

7 LG 360 VR

(£ 69.00)

Requires LG G5 smartphone,

USB connection to phone

N/A N/A N/A N/A N/A N/A

8 Microsoft HoloLens

(£ 2,719.00)

Requires PC (Windows 10),

2.3 megapixel widescreen stereoscopic

head-mounted display,

gestural commands,

2.4 MP Camera, Mixed Reality

IEEE

802.11ac,

Bluetooth 4.1

LE

N/A N/A N/A 579 g 30-Mar-16

(Development

Edition)

9 Huawei VR Requires Android Smartphones N/A N/A N/A N/A N/A N/A



Vision 45

2.4.9 DJI Spark Gestures

DJI the renowned consumer multirotor UAV manufacturer, in mid-2017, released the DJI

Spark drone, a 143 × 143 × 55 mm small size, 300 g lightweight, 16 minute flight time, £519

cost UAV (DJI, 2017b,c; Heater, 2017). The Spark was developed to be able to interact with

human users via visual hand gestures, iOS and Android based mobile phones/tablets, and the

RC joystick controller. The DJI Spark has seven gesture controls - palm launch, start/stop palm

control, adjust position, follow, take selfie (picture box symbol), beacon over, and palm land.

Figure 2.35 shows a Spark being signalled to take a selfie picture when the primary operator

forms a “picture box” gesture.

Figure 2.35: Performing the “picture box symbol” gesture to take a selfie using the DJI (2017b)

SPARK.

The Spark uses facial recognition in identifying the primary users. A front-facing camera

installed on a 2D gimbal, capable of capturing 1080p video @ 30fps and 12 MP photo, is used

for capturing gestures, performing the facial recognition, taking selfies, and recording short

videos. It uses a combination of IMU, GPS/GLONASS, downward facing camera, and 3D

infrared module for positioning and navigation. It is able to navigate in the absence of GPS,

common in indoor environment, using only the vision positioning system, which consists of the

downward facing camera and 3D infrared module. It uses a 3D sensing system, which consists

of a front facing 3D infrared module, for sensing and avoiding obstacles. Its processing system

consists of 24 computing cores (DJI, 2017b). The flight controller is built with several safety

features, which includes automatically returning “home” when transmission signal is lost or

battery level is low, hovering indoors at low altitudes, and sensing and avoiding obstacles on its

route (DJI, 2017c).
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A 90-minute flying review of the DJI Spark by TechCrunch gives an insight into a typical

user’s first impression on gesture control drones (Heater, 2017). According to the TechCrunch

testers, the gesture control was tough to learn, despite the fact that one of the testers was a

seasoned videographer with some drone-flying experience (Heater, 2017); a learning curve that

takes more than 16 minutes to get a handle on. According to Heater (2017), there was some

noticeable delays between making a palm gesture and the drone performing the corresponding

movement. Some erratic behaviours were sometimes observed for simple gestures, with the

drone’s camera losing track of the pilot in one instance, which then required taking over control

through the mobile app interface. The testers also observed that, although the drone size is

small, it generates a significant amount of noise similar to the buzz of a lawnmower.

2.5 Bioelectrical

Bioelectrical control interfaces rely on electrical nerve impulses generated by muscular or

neurological human activities. These electrical impulses are usually detected with the aid of

specialized biomedical instruments and probes. The detected electrical signal may be recorded

for immediate analyses on a remote computer, where it is matched against a database of pre-

viously recorded activity signals. By matching activities to carefully isolated and repeatable

signals, similar future generated signals could be successfully correlated back to the activities

generating them. A three way mapping is made between the human’s control intentions, the

associated bioelectrical activity generated, and the part of the human body from which the

bioelectrical activity is observed. From this mapping, a control vocabulary of the human bio-

electrical activities can be created. In other words, bioelectrical control of robotic systems could

be achieved by using a biomedical instrument to capture a user’s control intention, through

monitoring the bio-electrically generated electrical signals on a part of the user’s body, process-

ing this signal on a remote computer to determine the control operation intended, and relaying

such control command to a robotic system for execution. The biomedical equipment used could

be considered as the bioelectrical control interface. A few of these is discussed in this subsection.

The recorded signal data could also be analysed via advanced AI algorithms in order to infer

implicit or more complex controls.

2.5.1 Electroencephalography (EEG)

Electroencephalography is the use of an electroencephalograph device to produce a record of

brain activity. An electroencephalograph is a machine that uses electrodes placed on the scalp to

monitor the electrical activities of different parts of the brain. Clinically, electroencephalography

(EEG) is the recording of the brain’s spontaneous electrical activity over time, by multiple
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electrodes placed on the scalp (Niedermeyer and Lopes Da Silva, 2004). It can be graphically

visualized as a plot of the voltage generated by an activity over a period of time. EEG is

primarily applied in medical diagnosis. Spectral patterns of neural oscillations (brain waves)

are used for medical diagnosis of epilepsy, sleeping disorder, brain death, encephalopathies, and

coma (Abou-Khalil and Misulis, 2006). In robotics, these patterns are being studied, analysed,

and decoded for HCI control applications. The brain activities are often produced as complex

tracings, which are then mapped to predefined human activities, such as various arm control -

left, right, up, down, back, forward, and sideways. In practice, most cerebral signal waveforms

observed in the scalp EEG ranges from 1− 20 Hz. These are subdivided into four bandwidths,

which are - delta (< 4 Hz), theta (4− 8 Hz), alpha (8− 14 Hz), and beta (> 14 Hz) bandwidths

(International Federation of Clinical Neurophysiology, 1999).

The surface EEG technique is a non-invasive method of measuring brain waves. The inva-

sive brain computer interface (BCI) alternatives often involve surgical procedures to implant

electrodes directly on the brain’s grey matter surface, in order to collect higher quality signals

(Anupama et al., 2012). Although these invasive methods often produce the highest quality

EEG signals, it is prone to scar-tissue build-up; that is the development of foreign objects in the

brain, which could eventually lead to weaker or even lost EEG signals (Anupama et al., 2012).

The non-invasive EEG BCI technique, is easy to implement, low cost, and non-invasive. Of the

three EEG based BCI signals: sensorimotor rythms (SMRs), steady state visual evoked potential

(SSVEP), and slow cortical potentials, SMRs are preferred due to the ease of being detected and

its higher level of control (He et al., 2015). In general, EEG based methods seem to be generally

preferred to other brain wave monitoring techniques such as the functional magnetic resonance

imaging (fMRI), functional near infrared spectroscopy (fNIRs), positron emission tomography

(PET), evoked potentials (EP), and event-related potentials (ERPs). The EEG technique is

capable of detecting changes over milliseconds (Anderson, 2015), and it can be combined with

other techniques such as near infrared spectroscopy (NIRS) and fMRI to record high spatial

resolution and high temporal resolution data, simultaneously, without major technical difficulty.

Magnetoencephalography (MEG) is the magnetic imaging alternative to the electrical EEG

method. According to the US National Institute of Health (2011b), magnetoencephalography

is the measurement of magnetic fields over the head generated by electric currents in the brain.

As in any electrical conductor, electric fields in the brain are accompanied by orthogonal mag-

netic fields. The measurement of these fields provides information about the localization of

brain activity which is complementary to that provided by electroencephalography. Magnetoen-

cephalography may be used alone or together with electroencephalography, for measurement

of spontaneous or evoked activity, and for research or clinical purposes (National Institute of
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Health, 2011b).

Neurosky - brain computer interface

The Neurosky headset is a commercially available EEG measuring device. It is used by HCI

researchers in investigating BCI control of robotic systems. An application of the Neurosky

EEG bio-sensor MindWave headset in levitating a small multirotor is as shown in Figure 2.36

(Hammacher Schlemmer, 2015). According to Neurosky, this device measures brainwaves and

not thoughts as some persons may misunderstand this to do (NeuroSky, 2011). Neurosky has

been used as an HCI control interface for video gaming (NeuroSky, 2015) and for controlling a

computer cursor (Ang et al., 2015).

Figure 2.36: Neurosky mind control UFO device available at Hammacher Schlemmer (2015).

Emotiv - brain computer interface

The Emotiv headset is another commercially available EEG measuring device, which seems

more popular among researchers than the Neurosky. There are two Emotiv headsets - the

Insight and the Epoc, as shown in Figure 2.37. The Emotiv Insight is a sleek, 5-channel,

wireless headset that records brainwaves. It uses proprietary dry polymer sensors to achieve a

good level of electrical conductivity, without the usual saline setup requirement of many other

EEG devices. It has five channels, which are AF3, AF4, T7, T8, and Pz, and two reference

signals (Emotiv, 2014). These are sampled at 128 samples per second per channel. It has a

voltage resolution of 0.51 µV and a frequency response ranging from 1 - 43 Hz, covering the

four bandwidth range of the scalp EEG signal. Limiting the maximum frequency to 43 Hz

ensures the Nyquist criteria is satisfied by the 128 Hz per channel sampling frequency. The

Emotiv Insight has been used to investigate BCI levitation control of a small multirotor UAV as
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shown in Figure 2.37. The Emotiv standard development SDK includes a brainwear detection

algorithm, for interpreting signals measured as either mental commands, facial expressions, or

brain performance metrics (Emotiv, 2014). Mental commands includes rotate, pull, push, and

levitate, and may also include hard to visualize commands like fade or disappear.

(a) Emotive multirotor levitation

(b) Emotive Epoc headset

(c) Emotive Insight headset

Figure 2.37: Emotiv BCI headsets and a robotic control application example (Emotiv, 2014).

On the other hand, the Emotiv EPOC and EPOC+ BCI headset were designed for scientific

and research applications such as in neurotherapy. They have a higher performance, smaller

resolution, and greater number of channels than the Emotiv Insight. They have 14 EEG channels

and 2 references (Emotiv, 2014). The Emotiv Epoc has been used in performing the following

research: a) steering a tractor through EPOC collected EMG signals by Gomez-Gil et al. (2011),

b) studying biofeedback in virtual reality applications such as gaming by Iancovici et al. (2011),

c) robotic arm control by Ranky and Adamovich (2010), and d) non-invasive BCI remote control

of a humanoid robot by Thobbi et al. (2010).

University of Minnesota BCI Group

Advances in the field of neuroscience and signal processing have made it possible to develop

brain computer interfaces for mind-control applications in robotics. He et al. (2015), a group of

BCI researchers from the University of Minnesota, investigated a neuro engineering approach to

developing a sensorimotor rhythm (SMR) EEG-based brain computer interface, for the control

of robotic devices. By inversely mapping scalp-recorded EEG signals to the cortical source

domain, and by integrating BCI with non-invasive neuromodulation strategies, the researchers

improved the system’s performance and enhanced the operator’s BCI control learning process.

These researchers also observed that mind-body-awareness-training (MBAT) further enhances

mind control of BCI devices. These researchers consider BCI to be a direct alternative means

of controlling robotic systems, without the intervention of our natural neuromuscular pathways
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(moving body parts), by decoding control intents from the brains electrophysiological signal

activity (He et al., 2015). By this BCI method, the brain could control devices such as a

quadcopter, wheel chair, laptop, or a humanoid directly, via SMR motor imagery, rather than

through the use of the human hand, as shown in Figure 2.38. In this case, the human imagines a

motor action without actually performing any physical movement. The imagined motor action

is BCI decoded, to control a real physical device or a robotic system.

Figure 2.38: BCI control description (He et al., 2015).

In another research, Lafleur et al. (2013) demonstrated the BCI control of a Parrot AR drone

quadcopter in three dimensional space, as shown in Figure 2.39. They implemented this using

both functional MRI and EEG to map the neural activities of the part of the brain that gets

excited by directional movement thoughts.

Tekever’s BRAINFLIGHT project

Tekever’s BRAINFLIGHT project was an attempt to demonstrate the use of a brain machine

interface in the control of a medium-sized fixed-wing UAV, by the Portuguese aerospace firm,

using a commercially available off-the-shelf electroencephalography (EEG) cap, normally used

in neuro-medical applications for recording signals generated by brain activities. This project

was made up of researchers from the Champalimaud Foundation (Portugal), Eagle Science

(Netherlands), Technische Universitat Munchen (Germany), and Tekever (Portugal). These

researchers combined concepts from the field of aeronautics and neuroscience. By using a high

performance non-invasive medical-grade EEG device, they were able to capture high quality

brain waves. The team then applied their developed algorithms to analyse, process, and map the

acquired brain signals to practical drone control signals, which they successfully demonstrated

in Lisbon, Portugal (IMechE PE, 2015; Lee, 2015; Mendes, 2015b; Owano et al., 2015). Figure

2.40 shows the drone pilot wearing the medical-grade EEG cap during the public BCI drone
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(a) Emotive multi-rotor levitation (b) Emotive Epoc headset

(c) Emotive Insight headset

Figure 2.39: The works of the University of Minnesota BCI research group (Lafleur et al., 2013;

University of Minnesota, 2013a,b; Nguyen, 2014).

control test. Visual display, audio sounds, and haptic vibrations were used in providing real

time feedback to the pilot, who in turn continuously tries to trigger the appropriate brain

activities that corresponds to the required adjustment control. Before performing this test,

the BRAINFLIGHT researchers had previously tested their system on two flight simulators - a

Diamond DA42 aircraft simulator and a UAV simulator. However, the BRAINFLIGHT project

does seem to have been temporarily halted, as Mendes (2015b) pointed out that its continued

development would require further maturity of all the technologies involved. In other words, the

BRAINFLIGHT project was already at the limit of the current available technology.

2.5.2 Electromyography (EMG)

Electromyography is a neuromuscular disorder diagnostic method that uses a biomedical in-

strument in recording the electrical waves associated with the activities of the skeletal muscles

(Kamen, 2004). The electromyogram is the graphical record of electric current (or voltage) asso-

ciated with muscular contractions. Medically, EMG is an electro-diagnostic technique that uses
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Figure 2.40: Tekever’s BRAINFLIGHT specialised COTS EEG cap (IMechE PE, 2015; Mendes,

2015b).

surface or needle electrodes, for recording changes in a muscle’s electric potential, when its cells

become electrically or neurologically activated (National Institute of Health, 2011a). Instead of

directly measuring electrical signals, an alternative technique called magnetomyography (MMG)

maps muscle activity by recording the magnetic fields produced by electrical currents, occurring

naturally in the muscles, using arrays of SQUIDs (superconducting quantum interference de-

vices). It is considered more suitable than electromyography in detecting slow or direct currents.

The development of this technique is influenced by the development of SQUIDs.

There are two EMG acquisition methods: surface EMG (sEMG) and intramuscular EMG

(iEMG). In sEMG, a limited assessment of muscle activity is provided by electrodes placed

above the muscles’ skin surface. Because sEMG relies on voltage potential difference, two or

more electrodes are often required to be used. Intramuscular EMG is an invasive but more

accurate approach. Different methods, such as monopolar needle electrode approach, could be

employed in gaining access to the specific muscles of interest. However, for general HCI robotics

control functions, the non-invasive sEMG is preferred. In order to ensure the accurate reception

of good control signals, and a reduction in noise and artefacts, a proper preparation routine,

such as cleaning and marking points of interest, should be adhered before placing the EMG

electrodes. Also, the EMG might need to be calibrated for each use.

EMG often finds applications in the control of prosthetic devices such as prosthetic arms,

hands, and lower limbs. It also finds applications in unvoiced speech recognition applications for

people with aphasia or without vocal cords. In addition to these applications HCI researchers

are investigating EMG control applications for robotics systems, electronic devices, video games,
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wheel chairs, amongst several other.

2.5.3 Myo - EMG armband device

The Myo armband device, shown in Figure 2.41, is a commercially available EMG capture

device, invented by Thalmic Labs in 2013. The Myo armband device is worn on the arm just

like an armband. It is able to capture, consistently, a few unique arm gestures, which can then

be used for robotic control applications as demonstrated in Nagar and Xu (2015), Thalmic Labs

(2015b), and Cacace et al. (2016). Figure 2.42 shows an example of the Myo armband being

used to control a small multirotor via hand gestures.

Figure 2.41: Myo armband device (Thalmic Labs, 2013a).

Figure 2.42: Quadcopter hand gesture control using Myo armband device (Thalmic Labs, 2015a).
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2.5.4 Electrooculography (EOG)

Electrooculography (EOG) describes a technique used in measuring the corneo-retinal stand-

ing potential that exists between the front and the back of the human eye. The resulting signal

is called the electrooculogram. It is usually used in ophthalmological diagnosis and in recording

eye movements. In order to measure the eye movements, a pair of electrodes is placed either

above and below the eye or to the left and right of the eye. By tracking the potential difference

between this electrodes, the position of the eye can be precisely estimated. This method is used

in gaze tracking systems for medical diagnostics of eye problems, visual system, psychology,

cognitive linguistics, and in product design research (Renitto and Thomas, 2014). It could also

find application in complementing VR, AR, and MR technologies. The ability to track the eye

could be used to focus a cursor on a target rather than the need to rotate the whole head from

the neck in order to point a virtual cursor on the target. In fact, Microsoft implemented a gaze

tracking system for their MR headset, the Microsoft HoloLens (Microsoft, 2016). Also, Ang

et al. (2015) developed a cursor control method for persons with severe disabilities, by using the

Neurosky headset as a wearable eye-tracking single-channel EOG HCI equipment.

2.6 Speech

Speech interfaces provide another method of communicating control via voice commands. A

microphone is used to detect the sound wave generated by an operator’s voice commands, which

is then converted to an electrical signal for processing. The operator’s speech command may be

identified by querying a database of speech command vocabulary with the captured speech signal,

for a match. Harris and Barber (2014) investigated verbal speech interaction on a UGV mobile

robot. In their experiment, two microphones, a wireless clip-on microphone and the microphone

installed on the Microsoft’s Kinect, were used to capture the voice input. The captured audio

were processed to text by using three separate audio speech recognition (ASR) technologies -

Microsoft speech platform SDK, CMU PocketSphinx, and Googles web speech API (Harris and

Barber, 2014). These are then compared to a text based vocabulary of commands in order to find

a match for an appropriate command execution. In Harris and Barber (2014) investigation, they

found out that by specifying a set of searchable command vocabulary, a much higher classification

accuracy was achieved. They compared the Microsoft speech SDK and CMU’s PocketSphinx,

which were dictionary-based language recognisers, with Google’s unconstrained grammar speech

web API. They found that the dictionary based recogniser yielded better accuracy than the non-

dictionary based alternative. Also, they rated the Microsoft Kinect speech platform SDK slightly

better than the CMU PocketSphinx.
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Anand and Mathiyazaghan (2016) implemented a voice controlled UAV system. In their work,

the researchers attempted to guide the navigation of the UAV by using voice commands. In

their implementation, the researchers used the Easy VR 3 module to convert spoken words to

text. The text is passed through an Arduino microcontroller board, which is then transmitted

to their custom-built UAV via RF, as shown in Figure 2.43. Alternatively, the Arduino could

be connected to the computer to setup and verify the configuration of the Easy VR 3 module.

Anand and Mathiyazaghan (2016) described their voice recognition module operation methods in

two steps. In the first step, the acoustic signals were captured and broken into 30 ms segments,

for which an acoustic image (the vector of the main signal characteristic) was extracted for

each. In the second step, the phoneme (smallest unit of spoken language) of each segment is

determined by matching - through a combination of the probability of such phonemes being

next to each other, the pronunciation probability, and the probability of the word occurrence in

the target language.

Figure 2.43: Summary of Anand and Mathiyazaghan (2016) voice controlled quadcopter imple-

mentation.

Speech or natural language processing is widely considered a natural user interaction modality

in HCI and Robotic applications. Redden et al. (2010) observed that speech control is partic-

ularly effective during multitasking, as it requires less cognitive resources, especially for short-

burst activities; but performance decreases under longer continuous operations (non-discrete

tasks). Other benefits include that speech is both hands and eyes free (Redden et al., 2010), it

feels more natural, and is not user specific. The development and gradual popularity of commer-

cial voice assistants such as the Apple’s Siri, Microsoft’s Cortana, Google’s Now, and Amazon’s

Alexa, does indicates a growing trend from tangible to intangible interfaces for consumer house-
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hold robotic devices. Most research into controlling a UAV via voice communication often

include gesture or other communication modalities, and are discussed under the multimodal in-

terfaces (Section 2.7). In this subsection, only works that implement the speech communication

mode for UAVs were discussed.

2.7 Multimodal Interfaces

2.7.1 Background

It is often assumed that “Multimodal interfaces can support flexible, efficient, and expres-

sive means of human-computer interaction, that are more akin to the multimodal experiences

humans experience in their physical world” (Oviatt, 2003; Preece et al., 2015). This position

was supported by Turk (2014), who noted that humans fundamentally interact with the world

multimodally. This poses a challenge for HCI researchers to find ways to endow computers with

complementary multimodal abilities that are more intuitive and feel more natural, in order to

heighten the human experience of interacting with computers, machines, and robotic systems.

Turk (2014) attributed the recent rise in the number of multimodal research (any combination

of speech, touch, vision, gesture, etc.) to the advancement in non-desktop embedded computing,

more powerful mobile devices, and more affordable sensors. According to Shah and Breazeal

(2010), humans tend to exhibit more implicit behaviours, utilizing a combination of short ver-

bal and nonverbal gestures in communicating their intentions, when performing tasks under

stressed conditions, with resource constraints, and under time pressure, as is often the case in

space, military, aviation, and medical domains. They suggested that such efficient form of hu-

man to human interaction, could be transferred to human robot interaction in order to improve

the efficiency of human robot collaborations over tasks. They further suggested that an effective

robot teammate should be able to react to human communications in ways that seems natural to

the human, and to have an understanding of how the human teammate may incorporate certain

communication cues in their action planning process. Also, Bischoff and Graefe (2002) discov-

ered that HERMES, a humanoid robot assistant, appeared more user-friendly, intelligent, and

cooperative, when endowed with the ability to interact via a multimodal combination of speech,

vision, and haptics. According to Harris and Barber (2014), soldiers often use a combination of

verbal and visual lexicons, to communicate manoeuvres with each other. And that incorporating

robots into these existing human ISR teams often presents a human-robot interaction challenge.

And with the increasing adoption of semi-autonomous unmanned systems in military operations,

intuitive HCI interfaces that use such human-human interaction redundancies, are perhaps es-

sential to both the human-robot interaction and the operation’s success (Harris and Barber,

2014). Hence, the need to further investigate alternative and intuitive HCI control interfaces -
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suggesting multimodal interfaces. Furthermore, redundancy in interface development would not

only improve the reliability of interaction (Harris and Barber, 2014), but would also improve

the effectiveness of the robotic control interaction. This could also contribute to a better overall

user experience. Redden et al. (2010) also observed that speech control is particularly effective

in brief task usage context, but may perform poorly for task requiring longer continuous control

communication; in which case a ‘manual’ control may be better. Since some task seems to be

more efficiently performed by certain type of control interfaces, perhaps, a multimodal interface

could ensure that such tasks are performed by the best possible interface for that task.

According to Oviatt (2002), “Multimodal system process two or more combined user input

modes - such as speech, pen, gaze, manual gestures, and body movements - in a coordinated

manner. . . ” Lackey et al. (2011) defined multimodal communication as “the exchange of infor-

mation through a flexible selection of explicit and implicit modalities that enables interactions

and influences behaviour, thoughts, and emotions.” By explicit modalities, the authors meant

the use of specific communication methods that clearly conveys control information to the re-

cipient. Whereas, implicit modalities are methods that do not clearly convey the information

intended by themselves alone, but often require the recipient to consider other supporting contex-

tual information in order to accurately interpret the intended information. Hence, these implicit

modalities may be susceptible to misinterpretation. Social robots are often designed to recognise

these implicit cues, which may be relevant in conveying contextual emotional state that might

modify the robot’s behaviour, actions, thoughts, or perceived interpretation. According to Turk

(2014) “Multimodal interfaces describes interactive systems that seek to leverage natural human

capabilities to communicate via speech, gesture, touch, facial expression, and other modalities,

bringing more sophisticated pattern recognition and classification methods to human-computer

interaction.” A multimodal interface could be a combination of any two or more compatible,

complementary, unimodal interfaces. Multimodal interaction offers the flexibility of switching

sequentially across multiple communication modes without breaking the interaction or com-

municating via parallel modes simultaneously for redundancy and error correction. Also, an

interaction started in a sequential multimodal mode, could continue into parallel multimodal

modes, and end in a sequential multimodal mode. Multimodal interaction could be particular

useful in situations where communicating via only one mode of interaction may be ambiguous,

for example in the description of a route on a map, or pointing out an area of interest on an

object with several features. As Bolt (1980) suggested, the smooth transition between multi-

ple communication modes could enhance the interaction experience by providing an economy

of expression, a briefness in interaction, a more effective interaction, and a greater interaction

efficiency. Or as Turk (2014) puts it, “the goal of research in multimodal interaction is to de-

velop technologies, interaction methods, and interfaces that remove existing constraints on what
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is possible in human-computer interaction, towards the full use of human communication and

interaction capabilities in our interactions.”

One of the early works on multimodal HCI interaction was Bolt (1980) “Put-that-there”,

which is shown in Figure 2.44, as was graphically illustrated in Bolt (1980). This early research

suggested that speech can be augmented by pointing gestures, and vice versa. And that this

had the advantage of being natural, providing an economy of expression, and a briefness in in-

teraction. This challenged later researchers into investigating various multimodal combinations,

which could serve as alternatives to the popular keyboard and mouse method being used for

computing.

Figure 2.44: “Put that there” multimodal interaction graphical illustration (Bolt, 1980).

In Reeves et al. (2004), a few guidelines that may be considered in developing multimodal

interfaces were suggested. These included that interfaces should be consistent, be able to provide

feedback, be able to handle or prevent error, and should be able to adapt to different users with

different physical abilities or different context of use. Reeves et al. (2004) emphasized that

“multimodal interfaces should adapt to the needs and abilities of different users, as well as

different contexts of use.” Oviatt (1999) presented ten caveat to consider when developing
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multimodal systems. The ones most relevant to this research were these four: a) users may not

necessarily interact multimodally on a multimodal system, b) multimodal interaction primarily

offers complementarity and not redundancy, c) individual unimodal system’s unreliability do not

linearly or geometrically add up to cause greater system unreliability, as operators often tread

along strengths of each system to give an overall better system performance, d) heightened

user experience, rather than enhanced efficiency, is the main advantage offered by multimodal

systems.

Some of the benefits of multimodal interfaces includes repetition, emphasize, briefness, com-

plementarity, naturalness, intuitiveness, inclusiveness, and diversity. An instruction could be

repeated over an alternative modality, when the original medium becomes corrupted. For exam-

ple, visually gesturing could be an effective alternative when speech fails in a noisy environment.

Repeating the same command over different modality either simultaneously or in quick suc-

cession could be used to emphasize the need for urgency in completing the instructed task.

Multimodal interaction provides an economy of expression by making the communication of

instruction briefer, efficient, and effective. For example “Go there (pointing where). . . ” as a

combination of verbal and visual gesture command is more effective than through the speech

or gesture component alone. According to Haas (2007), speech and haptic interfaces could

supplement each other in demanding environments where varying levels of noise and vibration

masks cues from a single modality. Rim and Schiaratura (1991) observed the speech and gesture

interaction between two persons and noted how these mediums were efficiently utilized by the

actors. Humans could switch continuously from one method to the other, in order to avoid a

break in interaction, dynamic environments where variables such as lighting and noise levels are

continuously being changed, as described in Figure 2.45. Also because humans interact with

each other multimodally, multimodal interfaces that emulate the human multimodal methods

are generally considered more natural and intuitive, compared to their unimodal counterparts.

Multimodal interfaces also tend to be more inclusive than unimodal interfaces, by providing

alternative interaction method for persons living with disabilities to interact. According to Lim

et al. (2018) the synthesis of multimodal interactions such as touchscreen, gesture recognition,

eye tracking, etc could aid the development of context-aware input HCIs.

2.7.2 Speech + Gesture (Myo)

Cacace et al. (2016) investigated multimodal speech and gesture communication with multiple

UAVs in a search and rescue mission. They used the Myo armband (shown in Figure 2.46a) for

gesture interaction and the open-source Julius framework Lee et al. (2001) for speech recognition.

They tested their multimodal deictic speech and Myo based gesture method in the Unity 3D
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Figure 2.45: Rim and Schiaratura (1991) model of listener’s attention to speaker’s verbal and

non-verbal behaviours.

based simulated search and rescue environment shown in Figure 2.46b.

(a) Myo armband gestures

(b) Simulated search and rescue environment

Figure 2.46: Cacace et al. (2016) gesture device, and search and rescue environment.

In their experiment, a search area of 120 × 120 m2 was specified, with six persons missing,

which were required to be found within six minutes, by a rescuer with three UAVs. The data

collected for their analysis included the number of detected persons, the selection time, operative
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mode, and interaction type. The result of their simulation showed that a human operator could

interact effectively and reliably with a UAV via multiple modalities of speech and gesture, in

autonomous, mixed-initiative, or teleoperation mode.

2.7.3 Speech + Gesture (Leap Motion + Camera)

Fernandez et al. (2016) investigated the use of natural user interfaces (NUIs) in the control

of small UAVs. They developed a software framework, called Aerostack, to combine several

NUI methods and computer vision techniques, as described in Figure 2.47. Fernandez et al.

(2016) were motivated by the prospect of aerial robots integrating into the human society, and

interacting with humans through natural and intuitive human methods of speech, gesture, and

vision. Their project was aimed at studying, implementing, and validating NUI’s efficiency in

human UAV interaction.

Figure 2.47: Aerostack Architecture - a framework interfacing operator to robot (Fernandez

et al., 2016).

In their experiment, they captured whole body gestures and visual markers (for localiza-

tion and commands) via a Parrot AR Drone 2.0 camera, captured hand gestures via the Leap

Motion device, and speech command was captured via the ROS implementation of the CMU

PocketSphinx library. A remote computer, running the Aerostack framework, processed all the

captured natural communication methods. It then relays control signals to the UAV to execute

the operator’s control intention. These researchers concluded that natural user interfaces are

effective enough for higher level UAV communication, as demonstrated in their work.
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2.7.4 Speech + Gesture (Gloves + Kinect)

Barber et al. (2016) investigated the performance of a speech and gesture multimodal inter-

face for a soldier-robot team communication during an ISR mission. The researchers collected

performance data on how quickly gestures or speech commands were executed. They attempted

to minimize the time between issuing a command and its physical execution. The authors

considered that multimodal interfaces could provide redundancy and robustness in interaction.

They setup an experiment to evaluate the performance of the multimodal communication inter-

faces in an experimental outdoor reconnaissance and surveillance mission. They recorded the

time it takes the robot to receive, process, and execute an issued command, otherwise called

the response time. They also recorded how accurate the commands were decoded, as the in-

terface accuracy. As shown in Figure 2.48, Barber et al. (2016)’s experiment implemented a

bi-directional multimodal communication system. The soldier commands the robot vehicle via

speech, visual gesture (using the Microsoft Kinect), and non-visual gesture (using the gesture

glove). The vehicle communicates back status information via audio and displayed on-screen

text on a tablet computer.

Figure 2.48: Bi-directional multimodal communication description (Barber et al., 2016).

In setting up for their experiments, they integrated several Commercial-off-the-shelf (COTS)

components such as Microsoft Kinect sensor used in the Xbox one gaming hardware, with

some custom hardware such as the open-finger, Bluetooth based, IMU gesture glove with flex

resistors. The researchers implemented a statistical classifier (a machine learning and data-

mining algorithm) in their gesture recognition module. This seemed to have improved the

gesture processing time to that obtained in their previous work, Harris and Barber (2014). The

researchers initiated gesture interaction by holding the fist, a gesture cue to signal gesture start

and stop, and a speech call sign “husky” for initiating speech interaction. This was particularly
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important in order to avoid the robot from responding to gestures that were not directed towards

it, and to reduce errors due to random speech utterance not meant for the robot. They also

suggested the possibility of developing complex semantic navigation commands such as “perch

over there (speech + pointing gesture), on the tank to the right of the stone monument (speech)”

(Borkowski and Siemiatkowska, 2010; Barber et al., 2016). Speech was used to provide contextual

information for the pointing gesture and vice versa. The speech SDK utilizes a grammar-based

classifier, with a dictionary definition of a few standard military lexical vocabulary. This resulted

in a higher classification performance, having faster look-up time and better accuracy, due to

its smaller vocabulary set. It also had the advantage of off-line operation, which eliminates the

latency required to connect to a remote server for larger speech dictionary definition sets.

In a related research by Hill et al. (2015), the researchers suggested that multimodal speech

and gesture communication was a means to achieving an enhanced naturalistic communication,

reducing workload, and improving the human-robot communication experience. Kattoju et al.

(2016) also investigated the effectiveness of speech and gesture communication in soldier-robot

interaction. In their research, they used an updated version of the unmanned ground vehicle

(UGV) developed by Harris and Barber (2014). They were motivated by the transition of

autonomous robots from being assistant tools to functional operational teammates. In their

experiment, they used a Lapel microphone and a commercial-off-the-shelf speech recognition

software for capturing and classifying speech, and the Microsoft Kinect in conjunction with a

custom-built gesture glove for capturing visual gestures. Based on the UGV’s high classification

rate for the speech and gesture communication, and the minimal training required to execute this

communication by the operator, the researchers concluded that these communication methods

have a significant potential in soldier-robot control interaction.

2.7.5 Speech + Gesture (Camera)

As an extension to the Amazon drone delivery project (Amazon, 2016), Amazon now has a

patent for a UAV that can interpret gesture and vocal commands, a drone that could in theory

be used to deliver packages. The patent describes a drone-like device outfitted with various

sensors, cameras and other equipment that could recognize gestures such as a person waving it

towards them or someone shooing it away (Locklear and Engadget UK, 2017). Figure 2.49 shows

a UAV approaching a human who is waving at it wildly. The idea is to equip the drone with

light sensors and cameras, auditory sensors and output devices like speakers or a laser projector

(Locklear and Engadget UK, 2017). Clearly, Amazon is considering speech and visual gesture

for aerobots, something this research work is contributing towards too.
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Figure 2.49: Amazon drone delivery gesture patent (Locklear and Engadget UK, 2017).

2.7.6 Wizard of Oz Simulation

Wizard of Oz simulation often involves a drone being controlled by a drone pilot using the RC

joystick controller, hidden away from a participant in an experiment. This is usually aimed at

elicitation studies on user behaviours. The users are usually made to feel they are in control of

the UAV, whereas the drone pilot, hidden away somewhere, is the one in control of the UAV’s

operation. The drone pilot simply tries to interpret the user’s intention and acts on this. A few

studies that were based on this type of simulation are described next.

Ng and Sharlin (2011) used wizard of Oz simulation approach to investigate collocated interac-

tion with flying robot, as shown in Figure 2.50. The authors studied the participants behaviour

around the UAV. They also studied how the participants’ interacted with the UAV. Some of

their observations included the users combining speech and two hand gestures in communicating

control intentions to the UAV.

Ng and Sharlin (2011) were curious about how gesture control could be compared with the

Joystick controller for a UAV in a real world setting, but were not able to perform this investi-

gation due to technical challenge of implementing such a gesture-based system in a real world

setting. A problem this research aims to address - a problem of how such a system could be

developed. They considered that speech could be used to augment gesture for a more natural
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Figure 2.50: A Wizard of Oz UAV collocation experiment (Ng and Sharlin, 2011).

interaction, which is also a fundamental assumption for this research.

Cauchard et al. (2015) performed an elicitation study, with 19 participants, to determine what

gestures are considered intuitive for controlling a UAV. Some of the favourite gestures observed

are presented in Figure 2.51. Similar to Ng and Sharlin (2011), the main technical challenge

faced by Cauchard et al. (2015) was implementing this gesture control method on a real UAV

in a real world scenario.

Figure 2.51: Some favourite user-defined gestures for UAV control (Cauchard et al., 2015).

Obaid et al. (2016) extended Cauchard et al. (2015) work further by conducting a similar

elicitation study, with 25 participants, to investigate how to control a drone’s navigation via

gestures - i.e. gesture manoeuvre a drone. Their approach was a user-centred approach, which

allowed the participants to use whatever gesture they considered intuitive for performing a set

of 12 drone actions of which 10 were navigational commands. Their wizard of Oz experimental
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setup is as described in Figure 2.52. Figure 2.53 shows a summary of the most popular gestures

among the participants for the 12 drone actions.

(a) Experiment conduction
(b) Experiment setup

Figure 2.52: A Wizard of Oz experimental setup (Obaid et al., 2016).

Viallet et al. (2006) describes a real time speech and gesture multimodal interface used in

playing chess, shown in Figure 2.54, which was initially developed through a wizard of Oz

simulation experiments.

2.8 Limitations of HCI Control Interfaces

2.8.1 Limitations of control agents

Agents used as HCI control interfaces such as remote workstations, laptop computers, tablet

computers, and smart phones, have made it possible to pre-plan flight missions and update

this in real-time via waypoint mapping. This is usually performed on the agents with the

aid of a touch-screen input interface, mouse drag and click, or keyboard input of coordinates.

Because of the waypoint pre-plan requirement, this interaction method is not flexible, as it does

not support spontaneous control interaction. Missions are executed exactly as scheduled with

minimal interruption from the supervisory control operator. Based on some real-time observed

feedback, the system operator may be able to change certain objectives, and require the UAV

to update its instructions mid-flight and in relative real time. However, this control is neither

as instantaneous nor its response as immediate as that produced by the RC joystick controller

interface.

2.8.2 Limitations of electromechanical devices

Conventional robotic control interfaces includes manual input devices such as joysticks, touch

screens, and trackballs (Redden et al., 2010). Typically, the interaction between humans and
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Figure 2.53: Visual representation of popular gesture among the participants of Obaid et al.

(2016) drone navigation gesture control elicitation study.

Figure 2.54: Multimodal oral with gesture large display interface (MOWGLI) (Viallet et al.,

2006).

aerobots fundamentally consists of a radio controlled joystick controller, augmented with toggle

switches, push buttons, and variable potentiometer, for improved control functionality, as pre-

sented in Figure 2.9. The RC controller is plagued with a number of limitations, some of which

are presented as follows:
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1. Dexterity requirement: the operator must have good dexterity in the use of the hands

(especially the thumbs) in order to be able to fly the multirotor UAV through the RC

joystick controller.

2. Neurological coordination: flying the UAV through the RC controller also requires a good

neurological motor response ability - quick mental refresh rate and a fast physical response

rate.

3. Hand-eye coordination: this puts a lot of strain on the operator’s cognitive effort. Never-

theless, with enough practice, this ability could form a compound-impulse response path-

way between the brain and hands, therefore making the control loop feel a bit more natural.

4. Long training hours: due to some control ambiguities, such as dexterity and neuro-

coordination requirements, learning to fly a small multi-rotor UAV via the RC joystick

controller often requires many training hours (estimated 150 hours to be proficient, and

600 hours to be considered an expert). This helps the operator to overcome these ambi-

guities by skilfully adapting over time.

5. Potential side effects: this may arise due to the stress accumulated on the thumbs, due

to the continuous brisk flickering of both the left and right thumb, placed on the left and

right joystick, in order to maintain horizontal level balance, within fractions of a second.

6. Too many controls (Aeryon Labs Inc., 2011): Besides operating the left and right joysticks,

the operator might be required to operate switches to perform some other functions such

as payload drop or snapshot from an onboard camera, at some specified time, altitude,

distance, space, and location. Simultaneously executing this accurately may be difficult.

7. Orientation un-intuitiveness: particularly observable when the UAV’s front faces the hu-

man operator’s front. In this case, the operator’s forward command causes the UAV to

draw nearer the operator instead of farther away. From the UAV’s point of view, this

makes perfect sense; but from the operator’s point of view, this is a control ambiguity,

difficult to quickly process.

8. Multiple UAV control dilemma: due to the control overload on a small unmanned multi-

rotor aircraft’s operator, the situational awareness of the operator is reduced; making it

impossible to simultaneously control multiple aircraft (Cavett et al., 2007).

9. Little or no autonomy: the level of control offered by the RC joystick controller is limited

to tier-one of the nCA model; hence, it is not suitable for control operations at higher

levels of autonomy.
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10. Tangible control device requirement

11. Reduced mobility: the body parts used in actuating this control interface are not available

for other functions.

2.8.3 Limitations of vision

Vision based HCI systems are often required to perform the operations of capturing, process-

ing, and responding to control gestures in real time. This is particularly difficult in the absence

of good form-sized high-speed hardware with efficient software processing algorithms. Another

challenge is the fact that the human body gestures are complexly articulated dynamically fluid,

non-rigid, non-discrete motions, which could make building a gesture vocabulary difficult. In

addition to these, there is also the possibility of self-occlusion, where some parts of the human

body obstruct other parts of the human body being captured, which eventually makes tracking

the human body motion more difficult (Huang and Chung, 2004). Vision based systems are also

restricted in their range of visibility. The farther away the human operator is from the camera,

the more difficult it is for them to be detected.

2.8.4 Limitations of bioelectrical interfaces

Installing the bioelectrical interfaces such as the EEG cap used in Lafleur et al. (2013) UAV

BCI control project and Tekever’s BRAINFLIGHT (Mendes, 2015a) project, often requires ded-

icating a good amount of time, which increases the overall setup duration, as opposed to the

RC controller “pick and fly” quick setup scenario. Variation in the placement of electrodes on

the human bodies could affect bioelectrical activity readings, which probably explains the long

setup duration. However, this also reduces the installation flexibility and implies that a drift in

electrode position in the middle of a control operation could be potentially dangerous. A good

interface should be able to accommodate a wide margin of error, given that humans are prone

to many types of errors. In addition, bioelectrical interfaces often require long hours of training

and calibration. The cost of setting up, training, and equipment limits the number of pilots as

observed in many BCI research projects, where only one or two operators are trained as pilots

for such research. Additionally, bioelectrical signals recorded from the same activity may vary

from person to person, which suggests the need to observe and calibrate each pilot’s bioelectrical

activity. In addition to these, bioelectrical signals may vary over time for the same activity being

performed by the same person, further making it difficult to create a control vocabulary dictio-

nary for the observed bioelectrical signals. Moreover, if the human operator were to become sick,

their bioelectrical activities would probably become erratic and unpredictable, which may result

in firing into actions unintended control operations. Finally, a group of researchers suggested
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the possibility of hacking EEG signals, and wondered that there may even be a 10−40% chance

of stealing credit card pin details from a carefully observed person (Martinovic et al., 2012).

Therefore, this raises a question of security, even though this method is still being researched

and largely under development. Closely associated to this security concern is the need for the

operator’s privacy right protection.

2.8.5 Limitations of speech interfaces

Speech, as an HCI interface, does have a few technical, social, and environmental limitations.

Some of these are enumerated below:

1. Lexical ambiguity: unlike written language, spoken language contains some ambiguity.

Humans often use the context in which words are spoken to distinguish meanings and in-

terpret the speech appropriately. Some examples of these ambiguities include homophones

(words that sound alike), word breaks, abbreviations, numbers, URLs, and punctuations

(Kaljurand and Alumäe, 2012). Limiting the speech vocabulary may be a way to reduce

this ambiguity. However, this limitation of the speech vocabulary reduces robustness and

introduces a requirement for the operator to learn the created control vocabulary.

2. Noise: speech is susceptible to the inherent environmental noise, which often results in

classification errors (Kaljurand and Alumäe, 2012; Harris and Barber, 2014). This may

be reduced by using an array of microphones to determine and subtract the ambient noise

before speech recognition, as performed in the Amazon speech device, Alexa (Amazon,

2016). Directional microphones could also be considered.

3. Speech recogniser’s constraint: While speaker dependent speech recognisers may require

longer training periods, speaker independent speech recognisers are generally less accurate

(Redden et al., 2010). There is also the training time required for speaker-adaptive systems

to adapt to the user (Lim et al., 2018).

4. Lower comparative effectiveness: Speech control is often less effective than manual control

especially for long continuous control operations, as pointed out in Redden et al. (2010).

5. Dictionary size complexity: the size of the language dictionary could affect the search

speed, performance, and accuracy of the speech interface. However, bounding the ASR

search space to a set of discrete lexicons, may reduce this complexity (Harris and Barber,

2014) and improve efficiency, although at the expense of a more flexible and robust inter-

action. That is a reduction in speech vocabulary to improve accuracy limits the number

of possible applications of the system (Lim et al., 2018).
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6. Context ambiguity: In the case of natural language speech interaction, the robotic system

may be unable to differentiate between a real command, sarcasm, joke, or speech not

directed towards it (Hirsch and Ehrlicher, 1995; Kaljurand and Alumäe, 2012; Harris and

Barber, 2014).

7. Obstruction by other equipment: apparatus such as oxygen or gas mask could obstruct

speech clarity, thereby reducing recognition (Redden et al., 2010).

8. Physical user state: the state of the speaker, such as the state of being stressed, in pain,

sick, or afraid, could also affect speech clarity; hence affecting speech recognition accuracy

(Redden et al., 2010). Similarly, changes in the user’s voice under different operational

conditions, for example during periods of high or low workload, could also affect the speech

recognition accuracy (Lim et al., 2018).

9. Mission constraint: there may also be difficulty in satisfy some mission environmental

requirements. For example, the continuum of military operations cuts across many types

of environments ranging from stealth, to high noise, high g-force, high vibration, echoes,

reverberation, and cross-talk, which may require more robust and resilient interaction

features for which the speech interface may be incapable (Redden et al., 2010).

10. Lambard effect: the Lambard effect is the increase in speaker’s vocal effort observed when

speaking in a noisy environment (Zollinger and Brumm, 2011). This attempt to stretch the

vocal limit, during interaction could potentially distort speech, and result in poor speech

recognition accuracy (Redden et al., 2010).

11. Inadequate for low-level control: speech may not be suitable for controls below tier 1-III

of the nCA model. Control below this level often requires high refresh rate, which speech

interfaces are not able to provide, because of the latency involved in issuing, capturing,

and processing the speech command.

12. Eavesdropping privacy/security risk: performing authentication via speech command may

be challenging because it is easy to be heard when making verbal utterance to a robot.

Although, alternative form of authentication such as voice recognition may be considered,

privacy remains an issue, especially when the robot is feeding back information such as

one’s calendar or diary entry.

13. Accidental/inadvertent triggering of the system leading to unintended inputs (Lim et al.,

2018).

14. Operator/user differences in speech tone, pitch, accents may also affect system accuracy

(Lim et al., 2018)
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2.8.6 Limitations of multimodal interfaces

This section discusses three challenges of multimodal interfaces. The first is a problem of

the fusion complexity. Integrating two or more imperfect unimodal hardware interfaces could

be complicated. As Turk (2014) suggested “different modalities may have different temporal

[timing] constraint, and different signal and semantic endurance.” The hardware and software

differences of the two or more interfaces need to be carefully considered and the integration

performed in such a way that each interface is able to function effectively without getting in the

way of the other. How can the interface fusion be optimised in such a way that yields the most

effective and efficient performance? In other words, how can one avoid the potential unintended

consequences, derived from the sum of individual problems plaguing the unimodal interfaces?

The second problem is that of unimodal dependence. Multimodal interfaces often depend

on the maturity of the constituting unimodal technologies. Therefore, the effectiveness and

efficiency of the multimodal interfaces may be potentially tied to the constituting unimodal

interfaces. Although, Oviatt (1999) argued that multimodal interfaces are more effective and

efficient than their constituting unimodal elements, because it is the good bits of the consti-

tuting interfaces that are often brought together, in such a way that one interface weakness is

complemented by the others strength.

The third problem is that of contradictory commands. What happens when two unimodal

interfaces receive contradictory commands? What happens when two contradictory actions

result from individual interpretation by the unimodal interfaces of the same control command

repeated for different modes? What should be the conflict resolution model for such cases?

Avoiding or addressing this control conflict could potentially be an area for further research.

There is also the problem of reduced control command throughput or decreased input speed

due to multi-interface capture and processing requirements (Lim et al., 2018). This decreased

speed could also arise from control choice overload, resulting in indecision, or slow decision as

to which modality should be used for communication in a particular control instance, or even

repeating the same control over multiple interfaces. This may have the advantage of providing

redundancy of communication channels but it also has the disadvantage of increasing processing

time, and hence increasing the time between control command input and execution.
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Table 2.3: Human aerobotic interaction (hai) interface comparison.

S/No Interface Category Interfaces Merits Demerits Stakeholders/Researchers

1 Electromechanical RC Joystick Controller

Keyboard + Mouse + Joysticks

Push buttons + Toggle switches

Wired Glove, Data Glove, Cyber

Glove;

Magnetic Hand Gesture Technique

Shift drone thumb controller

Google Project Soli

a) Fast response

b) Very reliable

c) Easier to implement

a) Long hours dedicated to training

b) Not natural - not a normal hu-

man interaction method

c) Not intuitive - especially when

re-oriented towards operator

d) Demands high cognitive workload

Futaba, Turnigy, DJI, Hob-

byking, FrSky, Spektrum,

Raytheon, 3D Connection,

VDCI;

Ma et al. (2010)

Lavars (2016)

Google (2014)

2 Vision Camera First Person View (FPV)

Leap Motion

Microsoft HoloLens

Microsoft Kinect

Oculus Rift

a) Natural

b) Easy to learn

a) Difficult to implement

b) Requires higher processing power

c) Occlusion

Gupta and Ma (2001)

Huang and Chung (2004)

Nimble VR (2012)

Blanz (2007)

Leap Motion Inc. (2010b)

3 Bioelectrical MYO armband

Emotiv headset

Neurosky headset

a) Assistive technology

b) Gesture interaction

c) Stealth interaction

a) Not natural due to wearable

device requirement

b) High cognitive concentration

workload

c) Security concerns - snooping

EEG signals to potentially steal

certain information like login pins,

credit card number, etc.

Thalmic Labs (2013b)

NeuroSky (2011)

Emotiv (2014)

Martinovic et al. (2012)

4 Speech Jasper

CMU Sphinx

Julius

Amazon Alexa

a) Natural

b) Easy to learn

a) Difficult to implement

b) Not immune to prevailing envi-

ronmental noise

Bastianelli et al. (2015)

Lee et al. (2003)

Mu-Chun and Ming-Tsang

(2001), Amazon, Google,

Microsoft, Apple

5 Agent Remote Computer

Tablet Computer

Smartphone

Smartwatch

a) Easy to learn

b) Touch-screen gestures

c) Orientation-tilt feature

d) Waypoint programming

a) Relative precision requirement

over a small screen area

b) Severe fatigue on user’s wrist

Huhn and Haewon (2014)

6 Multimodal HHI-like interaction

(Speech + gesture)

a) Natural

b) Easy to learn

c) Robust - complement-

ing interfaces overcomes

unimodal limitations

a) Difficult to implement Harris and Barber (2014)

Oviatt (2003), Bolt (1980)

Shah and Breazeal (2010)

Lackey et al. (2011)

Reeves et al. (2004)
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2.9 Summary of HCI Control Interfaces

As already discussed, there is a variety of HCI interfaces available for interacting with robotic

systems such as the small, unmanned, multi-rotor aircraft. Table 2.3 presents a summary of

these interfaces, their merits, and their demerits.

2.10 Chapter Conclusion

Due to the complexity of the current HCI control interfaces, sometimes two operators may

be required to control a single UAV (Aeryon Labs Inc., 2011). For example, in a search and

rescue mission, it may be difficult for the pilot to, simultaneously, control the UAV while effec-

tively searching for missing persons. In order for robots to reduce human workload, risk, cost,

and human fatigue-driven errors, it is crucial to make the human-robot interaction effective,

efficient, and natural, through multiple modalities of contact, dialogue, and gestures (Fong and

Nourbakhsh, 2000). The need for intuitive control interaction interfaces for aerobots beyond

tier-one components of the nCA autonomy model opens up an opportunity to explore smart

novel interaction techniques (Abioye et al., 2017).

Multimodal Interface overview It is often assumed that “Multimodal interfaces can sup-

port flexible, efficient, and expressive means of human-computer interaction, that are more akin

to the multimodal experiences human experience in their physical world” (Oviatt, 2003; Preece

et al., 2015; Turk, 2014). Hence HCI researchers are constantly trying to find ways to endow

computers, machines, and robotic systems with intuitive and natural multimodal interaction

abilities similar to the human-human experience. This is possible because of the advancement

in non-desktop embedded computing, more powerful mobile devices, and more affordable sensors

(Turk, 2014). According to Shah and Breazeal (2010), humans tend to exhibit more implicit

behaviours, using a combination of short verbal and nonverbal gestures in communicating their

intentions, when performing tasks under stressed conditions, with resource constraints, and un-

der time pressure, as is often the case in the space, military, aviation, and medical domains.

Bischoff and Graefe (2002) discovered that HERMES, a humanoid robot assistant, appeared

more user-friendly, intelligent, and cooperative, when endowed with the ability to interact via a

multimodal combination of speech, vision, and haptics. According to Harris and Barber (2014),

soldiers often use a combination of verbal and visual lexicons, to communicate manoeuvres with

each other, hence incorporating robots into these existing human ISR teams often presents a

human-robot interaction challenge.
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Multimodal interfaces in aerial robotics A multimodal speech and gesture communica-

tion with multiple UAVs in a search and rescue mission, was investigated by Cacace et al. (2016)

using the Julius framework (Lee et al., 2001) and Myo device for speech and gesture respectively.

The result of their simulation experiment showed that a human operator could interact effec-

tively and reliably with a UAV via multiple modalities of speech and gesture, in autonomous,

mixed-initiative, or teleoperation mode. Fernandez et al. (2016) investigated the use of natural

user interfaces (NUIs) in the control of small UAVs using the Aerostack software framework.

Their project was aimed at studying, implementing, and validating NUIs efficiency in human

UAV interaction. In their experiment, they captured whole body gestures and had visual mark-

ers (for localization and commands) via a Parrot AR Drone 2.0 camera, captured hand gestures

via the Leap Motion device, and speech command was captured via the ROS implementation

of the CMU PocketSphinx library. These researchers demonstrated that natural user interfaces

are effective enough for higher level UAV communication. Harris and Barber (2014) and Bar-

ber et al. (2016) investigated the performance of a speech and gesture multimodal interface for

a soldier-robot team communication during an ISR mission, even considering complex seman-

tic navigation commands such as “perch over there (speech + pointing gesture), on the tank

to the right of the stone monument (speech)” Borkowski and Siemiatkowska (2010); Barber

et al. (2016). In a related research by Hill et al. (2015), the researchers suggested that multi-

modal speech and gesture communication was a means to achieving an enhanced naturalistic

communication, reducing workload, and improving the human-robot communication experience,

especially when factoring in that only a minimal training is required to execute this communica-

tion method by the operator. Kattoju et al. (2016) also investigated the effectiveness of speech

and gesture communication in soldier-robot interaction. Ng and Sharlin (2011) observed par-

ticipants’ behaviour around UAVs and studied how the participants’ interacted with the UAV,

particularly how the users combined speech and two hand gestures in communicating control in-

tentions to the UAV. Cauchard et al. (2015) and Obaid et al. (2016) conducted elicitation study

to determine intuitive gestures for controlling UAVs. Nagi et al. (2014) investigated human and

UAV swarm interaction using spatial gestures.

It is quite clear that there exists a plethora of HCI control interfaces for the control of small

multirotor UAVs, as discussed in this chapter. Each of these interfaces is also known to have

specific limitations which affects their suitability for a given application. The HCI control

interface being proposed, designed, developed, and investigated for the control of small multi-

rotor UAVs (aerobots), particularly for the search and rescue scenario described in Section

1.4.1, is the multimodal combination of speech and visual gesture. This is considered to be an

intangible, intuitive, natural, and HHI-like interaction technique that is easy to learn and easy

to use. It is also clear that much of the previous research conducted in this area of speech and
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gesture control for robots often require processing the recorded speech or captured image on a

remote computer, which then relays the identified control command to the robot for execution

(Waibel et al., 2011; Higuchi et al., 2011; Soto-Gerrero and Ramrez-Torres, 2013; Harris and

Barber, 2014; Waibel, 2014b; Anand and Mathiyazaghan, 2016; Barber et al., 2016; Cacace et al.,

2016; Fernandez et al., 2016; Ma and Cheng, 2016; Shetty et al., 2016). This research explored

a single on-board computer solution, where all the processing of both speech and gesture are

being performed in real-time on-board the UAV without remote processing.
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Speech and Gesture Recognition

Due to the multidisciplinary nature of this thesis, this chapter has been written to extend

the literature review to help readers unfamiliar with the concept of speech processing via

the hidden Markov Model (HMM) and gesture recognition via Haar Cascade and Convex

Hull computer vision techniques. Readers familiar with these theories can skip this chapter.

This chapter discusses the theory of speech recognition processing and computer vision object

recognition. It focuses on the major techniques used in the development of the multimodal speech

and visual gesture component of this research. The first section discusses speech recognition

using the hidden Markov model (HMM). The second section discusses the Haar cascade and

convex hull computer vision techniques for object recognition.

3.1 Automatic Speech Recognition

In order to discuss the hidden Markov model (HMM) for speech recognition, an understanding

of the theory of both the hidden Markov model and the discrete Markov model is required. In

this section, the discrete Markov model is first discussed, after which the hidden Markov model

is discussed. Speech recognition using the hidden Markov model is discussed last.

3.1.1 Discrete Markov Models

Models can be used to provide the theoretical description of a signal processing system which

when used to process the signal provide a desired output. These are important components of

prediction systems, identification systems, recognition systems, and several others. Models can

be considered to be either deterministic or statistical. In deterministic models, specific properties

of the signal are known, for example, it may have a sinusoidal, exponential, polynomial, or
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linear behaviour. In which case estimating its parameters may be straightforward. In statistical

models, an attempt is made to characterise the statistical properties of the signal. These systems

include Markov, hidden Markov, Gaussian, and Poisson processes among others. Whilst various

deterministic and statistical models have been developed for speech processing, as highlighted in

(Rabiner, 1989), for the purpose of this research, only the HMM-based statistical model speech

implementation is discussed.

Figure 3.1: A 5-state Markov process (Rabiner, 1989).

A Markov process can be used to describe a system that can only be in one of n distinct states,

s1, s2, . . . , sn at any given point in time. Figure 3.1 shows such a system with five distinct state,

undergoing a change of state according to some predefined probabilistic set of rules and at some

specific set interval. If the state at time t, defined as qt, is sn, then the discrete time Markov

chain transition probability can be formulated as being dependent on some previous state as

described in Equation 3.1

P [qt = sn | qt−1 = sn−1, qt−2 = sn−2, . . . , q1 = s1] (3.1)

Figure 3.2 show four different model topologies of a 4-state Markov process. In the Ergodic

Model, any state can be reached from any state. This model is not ideal for speech recognition

because speech consist of an ordered sequence of sounds. The general left-to-right model topology

restricts backward transition to previous states. That is state transition occurs in one direction

only, left to right. This can be considered as a special case of the Ergodic model with reverse
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Figure 3.2: Four 4-state Markov chain topologies (Paul, 1990).

transitions probabilities set to zero. The Bakis and Linear model are more constrained forms

of the left-to-right models, with transition restricted to a maximum number of state jumps.

Generally, the left to right models (Bakis and Linear included) are good for speech recognition,

since speech is an ordered sequence of sounds. They also require less training data, are simpler

models, and may give better performance than more complex models (Paul, 1990).

For the discrete, first order, Markov chain, in which the current state ‘j’ is only dependent on

the previous state ‘i’, the transition probabilities aij described by Equation 3.1 can be truncated

to

aij = P [qt = sj | qt−1 = si] (3.2)

The state transition coefficients have the following properties:
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1. Transition probabilities aij cannot be negative

aij ≥ 0 (3.3)

2. The sum of the transition probabilities of leaving and entering a particular state equals

unity.
n
∑

j=1

aij = 1 (3.4)

Consider a three state Markov model of the weather observed at a particular time of the day,

for a week. Figure 3.3 is an Ergodic model of this system.

Figure 3.3: Ergodic model of three-state weather Markov process example.

The transition states can be characterised by the following matrix

A = aij =









a11 a12 a13

a21 a22 a23

a31 a32 a33









(3.5)

According to this model, the probability of observing the sequence of “sunny, sunny, cloudy,

rainy, cloudy, sunny, rainy” for the next seven days can be estimated. The observation sequence

is given as

O = S1, S1, S2, S3, S2, S1, S3 (3.6)

Which corresponds to the time sequence

t = 1, 2, 3, 4, 5, 6, 7 (3.7)
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Therefore, the probability of the observation ‘O’, given the model ‘M ’, can be evaluated as

P (O | M) = P [S1, S1, S2, S3, S2, S1, S3 | M ] (3.8)

= P [S1] · P [S1 | S1] · P [S2 | S1] · P [S3 | S2] · P [S2 | S3] · P [S1 | S2] · P [S3 | S1] (3.9)

= π1 · a11 · a12 · a23 · a32 · a21 · a13 (3.10)

Where π1 denotes the initial state probability, generally represented as shown in Equation

3.11, usually works out to unity.

πi = P [q1 = Si], 1 ≤ i ≤ N (3.11)

This stochastic process is called an observable Markov model since the output process is the

set of states at each instant of time, where each state corresponds to an observable (physical)

event (Rabiner, 1989).

3.1.2 Hidden Markov Models

Assuming the Markov model concept is extended to include cases in which the state observa-

tion is also a probability, such that the resulting model is a doubly embedded stochastic model,

in which the underlying stochastic processes is hidden (not directly observable), although it

can be observed through another set of stochastic process that produces the second observation

sequence. Such a model is called the Hidden Markov Model (HMM).

To explain this further, consider the classical coin toss example (Rabiner, 1989; Uchat, 2006).

Assume a coin is being tossed in a room where a curtain barrier is used to block an observer

from directly observing the result of each coin tossed. Assuming an intermediate arbitrator calls

out the result of each coin flip without providing any additional information such as “how many

coins are being tossed” - single coin repeated, two coins alternately, three coins randomly, etc.

Hence a sequence of hidden coin tossing experiment with the observation sequence consisting of

a series of heads and tails, is being performed. A typical observation sequence could be

O = H,H, T, T, T,H, T,H (3.12)
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Given this scenario, how does one build an HMM to explain (model) the observed sequence

of heads and tails. The first problem in developing the HMM model is the need to define what

the states in the model should represent, and then deciding how many states should be in the

model. Figure 3.4 describes three possible models. The first assumes that only a single coin is

repeatedly tossed each time. In this case, there are only two states with one state representing

heads (state 1), and the other, tails (state 2) as shown in Figure 3.4a.

Figure 3.4: Three possible Markov models that can be used to describe the results of the coin

tossing experiments (a) 1-coin model, (b) 2-coins model, and (c) 3-coins model. (Rabiner,

1989).

The second model, Figure 3.4b, assumes that there are two coins, with each coin representing

a state. How the decision is made between which of the two coins is tossed is unclear. This could

be based on a set of coin tosses or other probabilistic events. Hence, the transitions are modelled

by some probabilities, aij , in order to determine whether to remain in the same state ‘i’ or to

transition to the next state ‘j’. The third model, Figure 3.4c, is similar to the second model,

but assumes that there are three coins, with each coin representing a single state. Similar to
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the previous case, transitions between states are also being based on either a set of independent

coin tosses or some other probabilistic events.

After determining the best model that explains the observation, the next problem is the need

to determine the unknown parameters of the model. The first model has one unknown parameter

P(H), the second model has four unknown parameters (P1, P2, a11, a22), and the third model has

nine unknown parameters. These are usually estimated through training, from a given set of

sample observations.

A hidden Markov model is usually characterised by (Rabiner, 1989):

1. The number of states, N , in the model. The individual states are denoted by S =

{S1, S2, S3, . . . , SN}, and the state at time t by qt. These could correspond to the number

of biased coins in the coin toss model of Figure 3.4b and Figure 3.4c.

2. The number of distinct observation symbol, M , which corresponds to the physical output

of the system being modelled. For the coin toss model, this is simply heads or tails.

3. The state transition probability distribution, given as A = {aij}, where

aij = P [qt+1 = sj | qt = si], 1 ≤ i, j ≤ N (3.13)

4. The observation symbol probability distribution in state j, given as B = {bj(k)}, where

bj(k) = P [Vk at t | qt = sj ], 1 ≤ j ≤ N ; 1 ≤ k ≤ M ; (3.14)

5. The initial state distribution π = {πi}, where

πi = P [q1 = si], 1 ≤ j ≤ N (3.15)

Hence, given the appropriate values of N , M , A, B, and π, the HMM can be used to generate

an observation sequence

O = O1 O2 O3 . . . OT (3.16)

Where OT is one of the symbols from V, and T is the number of observations.

Therefore, a complete specification of an HMM requires two model parameters (N and M),

observation symbols V, and the three probability measures A, B, and π. The HMM model can

be represented with the following compact notation

λ = (A,B, π) (3.17)
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In Rabiner (1989), the following three fundamental problems of HMM design were discussed:

1. The evaluation of the probability (or likelihood) of a sequence of observation given a

specific HMM

2. The determination of a best sequence of model states

3. The adjustment of model parameters so as to best account for the observed signal

3.1.3 Speech Recognition Using Hidden Markov Model

Automatic Speech Recognition (ASR) focuses on speech recognition and not speech under-

standing. Speech understanding requires getting the utterance meaning whereas speech recog-

nition is sampling transcribing speech without necessarily getting the meaning of the utterance

(Paul, 1990). Practical automatic speech recognition systems based on HMM includes Carnegie

Mellon University’s Pocket Sphinx project (CMU Sphinx, 2009), Cambridge Universities HTK

project (Young et al., 2006; Gales and Young, 2007), and Japan’s NIST and KU Julius project

(Lee et al., 2001). Template comparison methods of speech recognition, such as dynamic time

warping, directly compares the unknown utterance with known samples. HMM creates stochastic

models from known utterances, and then compares the probability that the unknown utterance

was generated by each stochastic model. Model parameters such as the transition probabilities

are estimated through training with the known utterances. Paul (1990) describes the three basic

HMM algorithms given below

1. Classification of an unknown observation sequence (recognition)

2. Training the models from a set of training data

(a) Forward-backward (Baum-Welch) algorithm

(b) Viterbi training procedure

(c) Gradient hill climbing

(d) Simulated annealing

3. Evaluation of the probability of an observation sequence

Some training algorithm emphasises the maximum likelihood training criterion, such as the

Viterbi training procedure used in the isolated word recognition of “HISTOGRAM” in Paul

(1990), using the waveform, frequency, and time sequence plot as shown in Figure 3.5.
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Figure 3.5: Viterbi decoder alignment for the word “histogram” (Paul, 1990).

HMM as used in speech processing complies with a small set of rules. An HMM model

λ = (A,B, π) is used to determine an observation p(qt = si, q(t+1) = sj , O|λ). The hidden

Markov model could be based on an ergodic topology model, which has the property that every

state can be reached from every other state in a finite number of steps. Therefore, in ergodic

or fully connected HMM models, every state of the model could be reached, in a single step,

from every other state of the model. However, as previously pointed out, this topology is not

ideal for speech recognition, hence the choice often being some form of left-to-right topology.

The fundamental property of all left-right HMMs is that the state transition coefficients have

the property that

aij = 0, j < i (3.18)

That is, no transitions are allowed to states whose indices are lower than the current state, in

other words, no backward transitions, hence probability of backward transitions is set to zero.

Initial state probability for the left-right HMMs is given by

πi =







0 i 6= 1

1 i = 1
(3.19)

In addition, in the left-right HMMs, additional constraints are placed on the state transition

coefficient to prevent large state changes, since state sequences must begin in state 1, progressing

left-right, and ending in state N.

aij = 0, j > i+∆ (3.20)
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Typically ∆ is 1 or 2. HMMs for speech recognition often include

(a) Language model

(b) Phone model

(c) Acoustic model

(d) Pronunciation dictionary

Figure 3.6: Architecture of a HMM-based Recogniser (Gales and Young, 2007).

Figure 3.6 illustrates the main components of a typical large vocabulary continuous speech

recogniser - feature extraction and decoder. The decoder consists of the acoustic model, the

pronunciation dictionary, and an N-gram Language model. A microphone is used to capture

the speech input, converting it into an electrical audio signal waveform, which is then broken

into a sequence of 10 ms fixed-size acoustic vectors Y, when passed through a feature extraction

process Gales and Young (2007), as shown in Figure 3.6.

Y1:T = y1, y2, . . . , yT (3.21)

The vectors Y is then fed through a decoder in an attempt to retrieve the word sequence

w1:T = w1, w2, . . . , wL (3.22)

which is most likely to have generated Y, that is:

ŵ = argmax
x

{P (w | Y)} (3.23)
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Some systems are based on these discriminative models where P (w | Y) is modelled directly.

But this is often considered difficult, hence the use of generative models, such as HMMs, where

the observation sequence P (Y | w) is modelled instead (Gales and Young, 2007). Given that

P (A | B) =
P (A ∩B)

P (B)
(3.24)

And

P (A ∩B) = P (B ∩A) = P (B | A)P (A) = P (A | B)P (B) (3.25)

Then

P (w | Y) =
P (Y | w)P (w)

P (Y)
(Bayes Rule) (3.26)

Therefore, substituting Equation 3.26 into Equation 3.23, results in

ŵ = argmax
x

{

P (Y | w)P (w)

P (Y)

}

(3.27)

Where

P (Y|w)
P (Y) - is determined by the acoustic model

P (w) - is determined by the language model

The acoustic model represents sounds in phone units. For example, the word “cat” is com-

posed of three phones /k/ /ae/ /t/. The English language is considered to have around 44 of

such sound phonemes. For any given word ‘w’, the corresponding acoustic model is synthesised

by concatenating phone models in order to form words, as defined by a pronunciation dictio-

nary (Gales and Young, 2007). The phonetic model parameters are estimated from training

data consisting of their corresponding speech waveforms and orthographic transcriptions. The

language model is often patterned after an N-gram model in which the probability of each word

is influenced by its preceding word, “N-1”. The decoder searching through all possible word

sequences, removing unlikely hypotheses through pruning, in order to keep the search tractable.

At the end of the utterance, the most likely word sequence is output. Lattices could be used to

represent compactly the most likely hypotheses, as shown in Figure 3.7.

Feature Extraction

The feature extraction stage shown in Figure 3.6, breaks the speech waveform captured by the

microphone into compact-sized bits. It needs to minimise the loss of information that is used

to discriminate between words, and should match the distributional assumptions made by the



88 Chapter 3. Speech and Gesture Recognition

Figure 3.7: Word lattice network (Gales and Young, 2007).

acoustic models (Gales and Young, 2007). Typically, the feature vectors are usually computed

every 10 ms using an overlapping analysis window of around 25 ms. The feature parameter yt

is formed from the concatenation of delta parameters as shown below.

yt =
[

ysTt ∆ysTt x2ysTt
]T

(3.28)

Where the delta parameter is given by

∆yst =

∑n
i=1wi(y

s
t+i − yst−i)

2
∑n

i=1w
2
i

(3.29)

This results in a partially but not fully decorrelated feature vector with dimensionality typi-

cally 44 (number of sound phonemes in the English language).

HMM Acoustic Models

Figure 3.8: HMM-based phone model (Gales and Young, 2007).
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Words are decomposed into a sequence of Kw basic sound units or base phones, called pro-

nunciation:

qw1:Kw
= q1, q2, . . . , qKw (3.30)

In order to allow for the possibility of slight pronunciation differences (common across multiple

speakers), the likelihood P (Y|w)
P (Y) can be computed over multiple pronunciation training instances,

where a summation is carried out over all valid pronunciation sequence of w.

P (Y | w)

P (Y)
=

∑

Q

P (Y | Q) P (Q | w)

P (Y)
(3.31)

Where Q is a particular sequence of pronunciation,

P (Q | w) =

L
∏

l=1

P (qwl | wl) (3.32)

qwl is a valid pronunciation for the word wl. A continuous density HMM with transition proba-

bility parameters aij and output observation distribution bj is used to represent each base phone,

as illustrated in Figure 3.8. The transition probability aij specifies the probability of making a

particular transition from state si to state sj . On entering a state, feature vectors are generated

using the distribution bj(yn) associated with the state being entered, where n = 1, 2, . . . , N , as

shown in Figure 3.8. This follows the standard conditional independence assumptions for HMM

as presented in Gales and Young (2007) and Rabiner (1989)

1. States are conditionally independent of all other states given the previous state

2. Observations are conditionally independent of all other observations given the state that

generated it

Assuming that the output distribution is a single multivariate Gaussian

bj(y) = N (y;µ(j),Σ(j)) (3.33)

Where

µ(j) - is the mean of state sj

Σ(j) - is the covariance of state sj
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Due to the relatively high dimensionality of the acoustic vector y, the covariance is usually

constrained to the diagonal. An alternative approach is to model the output using a mixture

Gaussian model. The acoustic likelihood can be determined as

P (Y | Q)

P (Y)
=

∑

Q

P (Θ,Y | Q)

P (Y)
(3.34)

When given the composite HMM Q formed by concatenating all the constituent based phones

q(w1), . . . , q(wL), where Θ = Θ0, . . . ,Θ(T+1) is the state sequence through the composite. A more

detailed discussion on this is given in Gales and Young (2007). A forward-backward expectation

maximization training algorithm is applied to a training set of speech utterances, in order to

efficiently estimate the HMM acoustic model’s parameters (Baum et al., 1970; Dempster et al.,

1977; Rabiner, 1989; Paul, 1990; Gales and Young, 2007).

λacoustic = [{aij}, {bj(yn)}] (3.35)

Figure 3.9: Text to lexicon to phoneme sequence to HMM graph Architecture (Uchat, 2006).

The core acoustic models used in the HTK (HMM Toolkit) speech recogniser consists of a

set of tied three-state HMMs with Gaussian output distribution, built in an order described in

Young et al. (2006), which was also summarised in Gales and Young (2007) as

1. Create a flat-start monophone set based on a single-Gaussian HMM

2. Determine the Gaussian monophone’s parameters by performing 3 or 4 EM (Expectation

Maximization) iterations

3. Clone each single Gaussian monophone once for each distinct triphone
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4. Re-estimate using EM the resulting set of training data triphones

5. Create a decision tree for each state in each base phone

This process results in a tied-state context-dependent acoustic model set. Separating back-

ground silence from the input speech can be performed using any of these three techniques

(Rabiner, 1989):

1. Explicitly detecting the presence of speech via techniques which discriminate background

from speech on the basis of signal energy or signal durations

2. Build a model of the background silence, e.g. a statistical model, and represent the in-

coming signal as an arbitrary sequence of speech and background i.e.

Signal = (silence)− speech− (silence) (3.36)

3. Extend the speech unit models so that background silence is included within the first

and/or last state of the model. Hence silence inherently gets included within all speech

unit models

Limitation of HMMs as applied to speech

1. Assumptions that successive observations (frames of speech) are independent

2. Assumption that the distributions of individual observation parameters can be well repre-

sented as a mixture of Gaussian and autoregressive densities.

3. The Markov assumption that the probability of being in a given state at time ‘t’ only

depends on the state at time ‘t − 1’, is clearly inappropriate for speech sounds where

dependencies often extend through several states

3.2 Vision Gesture Recognition

In performing the visual gesture recognition for this research, two computer vision object

recognition methods were used. These were the Haar cascade object detection and convex hull

defects. These methods were chosen because of their popularity in hand gesture recognition

applications for robotic systems.
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3.2.1 Haar cascade object detection

Viola and Jones (2001), proposed an effective and robust real-time object detection method

using Haar feature-based cascade classifiers. Their method is a machine learning based approach

where a cascade function is trained from many positive and negative images of an object. The

function is then used to detect the object of interest in other images. This method was suc-

cessfully tested for robust real-time face detection (Viola and Jones, 2004), and was used for

hand gesture tracking in this research work. Viola and Jones (2001) object detection procedure

classifies images based on the numerical value obtained during the computation of some simple

rectangular features/detectors. Feature-based systems have a few advantages over pixel-based

systems, such as being able to encode ad-hoc domain knowledge that may be difficult to learn

using a finite quantity of training data, in addition to operating much faster (Viola and Jones,

2001). The features used in this method derived from the Haar basis functions. Three kinds of

features were used - (a) two-rectangle feature, (b) three-rectangle feature, and (c) four-rectangle

feature, as shown in Figure 3.10.

Figure 3.10: Haar features detector window (Mordvintsev and Abid, 2013b) - (a) two-rectangle

features, (b) three-rectangle features, and (c) four-rectangle feature.

The sum of the pixels within the white rectangles are subtracted from the sum of the pixels

within the black rectangles of the feature detector. For the two-rectangle feature, the difference

between the sums of the pixels within the two rectangular regions is computed. For the three-

rectangle feature, the sums of the pixels within the two outside rectangles are subtracted from

the sums of the pixels within the centre rectangle. For the four-rectangle feature, the sums of the

pixels in the diagonal rectangle pairs are subtracted from the other diagonal pair’s pixel sums.

The computational requirement of this Haar feature extraction from pixel operations could be

quite expensive, given that a 24 × 24 resolution base detector could generate 160, 000 features

(Viola and Jones, 2004). Therefore, the authors proposed an integral image rapid computation
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method that uses intermediate representation for images.

ii(x, y) =
∑

x′≤x, y′≤y

i(x′, y′) (3.37)

Where

ii(x, y) - is the integral image

i(x, y) - is the original image

The integral image at (x, y), contains the sum of the pixels above and to the left of (x, y)

inclusively, as shown in Figure 3.11.

(a) Integral sum (b) Array sum

Figure 3.11: Integral sum at point (x, y) and the four array sum reference (Viola and Jones,

2004).

In order to compute the integral image in just one pass over the original image, the following

pair of recurrences are used

s(x, y) = s(x, y − 1) + i(x, y) (3.38)

And

ii(x, y) = ii(x− 1, y) + s(x, y) (3.39)

Where s(x, y) is the cumulative row sum, s(x,−1) = 0, and ii(−1, y) = 0. The integral image

computes the sum of any rectangle in four array references as described in Figure 3.11. Given

that the integral image at point 1 is given by

ii(x1, y1) = A (3.40)



94 Chapter 3. Speech and Gesture Recognition

At point 2 is

ii(x2, y2) = A+B (3.41)

At point 3 is

ii(x3, y3) = A+ C (3.42)

And at point 4 is

ii(x4, y4) = A+B + C +D (3.43)

Then the sum of pixels within region D can be computed as

[ii(x1, y1) + ii(x4, y4)]− [ii(x2, y2) + ii(x3, y3)] (3.44)

[(A) + (A+B + C +D)]− [(A+B) + (A+ C)] (3.45)

2A+B + C +D − 2A−B − C = D (3.46)

From this, it can be shown that the two-feature rectangles can be computed in six array

sums of the integral image, the three-feature rectangles in eight array sums, and the four-feature

rectangle in nine array sums. Like most object detection systems, this technique scans the input

image at many scales. Object detection starts at the base scale in which objects are detected

at a size of 24 × 24 pixels. The image is then scanned at 11 other scales, each at a factor 1.25

larger than the previous image scan.

Given any feature set and a training set of positive and negative images, there exist a number

of machine learning approaches, such as Gaussian mixture model, neural network, support vector

machine, and winnow learning procedure, that could be used to learn a classification function.

However, Viola and Jones (2001) opted for a variant of AdaBoost learning algorithm (Freund

and Schapire, 1997) in selecting the features and training the classifier.

The weak learning algorithm was designed to select a single rectangle feature that best sepa-

rates the positive and negative training examples. For each feature, the weak learner determines

the optimal threshold classification function with the least number of examples being misclas-

sified. The weak classifier h(x, f, p, θ), consists of a feature f , a polarity p, which indicates the

direction of the inequality, and a threshold θ. The classifier is described by

h(x, f, p, θ) =







1, if pf(x) < pθ

0, otherwise
(3.47)
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A listing of a single feature boosting algorithm for learning a query online, as described by

Viola and Jones (2004), is presented in Table 3.1. ‘T’ number of hypotheses were constructed

during the learning, with each hypothesis using a single feature. The final hypothesis was

a weighted linear combination of the ‘T’ hypotheses where the weights were designed to be

inversely proportional to the training errors.

The algorithm presented in Table 3.1 selects key weak classifiers from the set of possible weak

classifiers. If there exists one weak classifier per distinct feature/threshold combination, there

are effectively KN weak classifiers. K is the number of features while N is the number training

image examples. Therefore, given a task with 20, 000 examples and 160, 000 distinct features

per example, then there exist 3.2 billion distinct binary weak classifiers. Although the set of

weak classifiers is extraordinarily large, the AdaBoost process is quite efficient in selecting the

best set of features from the extraordinarily large set of weak classifiers. Viola and Jones (2004)

initial work was based on classifiers constructed from 200 features, which yielded a detection

rate of 95% with one false positive in 14, 084 testing dataset.

Figure 3.12: The first two features (two and three Haar rectangle features) selected by AdaBoost

during classifier training for face recognition (Viola and Jones, 2001).

For the face detection application shown in Figure 3.12, the first feature selected by the

AdaBoost algorithm was the horizontal two-feature rectangle, which seemed to focus on the

property that the eye region was often darker than the nose and cheeks region. The second fea-

ture selected was the longitudinal three-feature rectangle, which seems to focus on the property

that the eyes are darker than the bridge of the nose.

In Viola and Jones (2001) Haar feature based object detection method, a cascade of classifiers

were used to increase detection performance while radically reducing computation time. Smaller,

simpler, efficient, and boosted classifiers were constructed to reject many negative sub-windows
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Table 3.1: Viola and Jones (2004) boosting algorithm for learning a query online.

A. Given example images

(x1, y1), . . . , (xn, yn)

where yi = 0, 1 respectively represent negative and positive examples

B. Initialize weights

w1,i =
1

2m
, 1

2l

for yi = 0, 1 respectively; where m and n respectively represents the number of

negative and positive examples

C. For t = 1, 2, . . . , T :

1. Normalize the weights,

wt,i →
wt,i∑

n
j−1

wt,j

2. Select the best weak classifier based on the weighted errors of each feature

ǫt = min
f,p,θ

∑

i

wi|h(xi, f, p, θ)− yi|

3. Define

ht(x) = h(x, ft, pt, θt)

where ft, pt, and θt are the minimizers of ǫt

4. Update the weights

wt+1,i = wt,iβ
1−ei
t

Where

ei =







0, if example xi is correctly classified

1, otherwise

And

βt =
ǫt

1−ǫt

D. Determine the final strong classifier

c(x) =







1,
∑T

t=1
αtht(x) ≥

1

2

∑T

t=1
αt

0, otherwise

where αt = log 1

βt
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and detect almost all positive instances, before calling on more complex classifiers to process

low false positive rates.

Figure 3.13: Schematic description of how cascaded classifiers work (Viola and Jones, 2001).

Figure 3.13 describes how the cascaded series of classifiers work. The first classifier is adjusted

to detect 100% of the object with a false positive rate of 50%. The next classifier stage takes

the input from the first state and tries to half or reduce the false positive to around 25%,

and so on. The initial classifiers are designed with lower thresholds. Although lower thresholds

yields higher detection rate, they also generate higher false positive rates. The aim is to have the

initial classifiers eliminate large number of negative examples with very little processing, because

subsequent layers require additional computation to detect and eliminate more negatives. This

method of rejection by cascade classifiers relies on the assumption that in any given image, an

overwhelming majority of the sub-windows are negative, hence the cascade classifier attempts

to eliminate as many negatives as possible at the earliest stage possible (Viola and Jones, 2004).

Subsequent classifiers in the cascade are trained using examples passed through previous cascade

stages; hence, subsequent classifiers face a more difficult task than their preceding classifier

stages, which results in them requiring more computational intensiveness. Viola and Jones

(2001, 2004) provided a detailed account of the cascade classifier training in their work, which

could be referred to for more on this topic. Figure 3.14 shows a ROC (receiver operating

characteristic) curve comparison of a 200-feature monolithic classifier and a ten-stage cascade

classifier, with each stage having 20 features, from an experiment conducted by Viola and Jones

(2001). A ROC curve is a graphical plot of the true positive rate (TPR) or sensitivity against

the false positive rate (FPR) or fall-out, at various threshold settings, in order to illustrate the

diagnostic ability of a binary classifier system as its discrimination threshold is varied. They

concluded that, although the accuracy of the systems were not significantly different, the speed

of the cascaded classifier over the monolithic classifier was about ten times faster.
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Figure 3.14: ROC curves comparing a 200-feature monolithic classifier with a cascaded classifier

containing ten 20-feature classifiers (Viola and Jones, 2001).

In training Viola and Jones (2001) object detection method for face detection, 4, 916 set of

cropped faces, scaled and aligned to a base resolution of 24×24 pixels, were used. Each cropped

face contained more of the head to include hairline were possible, the chin, and the cheeks; the

contours of which were used to improve feature accuracy. Their final detector was a 32-layer

classifier cascade with 4, 297 total features. Their feature classifier was trained with 4, 916 faces

and 10, 000 non-face, suggesting the ratio of 1:2 positive to negative training examples. That

is if ‘S’ examples were used to train the classifier, then one-third of the training set, 1
3 S, are

positive examples while two-third, 2
3 S, are negative examples.

The Haar feature cascade object detection algorithm/method is part of the OpenCV library,

which was used in the implementation of the hand fist gesture in this research work. The

OpenCV documentation in Mordvintsev and Abid (2013b), provides a Haar feature cascade

example for face and eye object. OpenCV already contains many pre-trained classifiers for face,

eye, full body, lower body, upper body, smile, and plate number detection, which can be found in

the “opencv/data/haarcascades/ ” directory of its GitHub repository (OpenCV, 2010), as XML

files. In order to enable anyone to train Haar cascade classifiers for any particular object of

interest, a guide on how to train the Haar cascade classifier for object detection in OpenCV has

been published by Puttemans (2015).
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3.2.2 Convex hull defects hand gesture recognition

In Ganapathyraju (2013) hand gesture recognition through convexity hall defects, the author

processed captured images of the hands through a four-stage operation:

(a) Skin detection

(b) Noise elimination

(c) Convex hull algorithm - to get the hand’s outline

(d) Convexity hull defects algorithm to determine finger count for control operation

In order to isolate the hand gestures from other environmental components in the image, skin

colour detection was performed. This was particularly important for accurately applying the

contour detection methods - convex hull and convexity defect algorithms. Ganapathyraju (2013)

used an algorithm that was based on the Y ′CBCR colour space to achieve skin colour detection.

In the Y ′CBCR colour space, Y ′ represents the luma component, while CB and CR represent the

blue-difference and red-difference chroma components respectively. In order to achieve robust

skin colour detection under varying illumination conditions, the luminance Y ′ was separated

from the chrominance CB and CR of the skin. Ganapathyraju (2013) used the following pixel

values for skin detection: 60 ≤ Y ′ ≤ 255, 100 ≤ CB ≤ 255, and 135 ≤ CR ≤ 170. Figure

3.15 shows Ganapathyraju (2013)’s C# based Windows application of an imaged captured by

a webcam, processed with OpenCV convex hull and convexity defect algorithms, to count the

number of fingers being held up by a user.

Figure 3.15: Ganapathyraju (2013) convexity defect finger counting hang gesture.

Noise filtering could be achieved by using cvErode(∗) and cvDilate(∗) OpenCV functions,

with the first function eroding or trimming down areas where hands are not detected, and the

second function dilating/enlarging the non-eroded areas for further processing. This process
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effectively removes noisy pixels from the image. An outline of the hand, from which the convex

hull was to be computed, was then generated. This was achieved through the application of an

OpenCV function, cvDrawContours(∗).

Figure 3.16: Convexity defects Mordvintsev and Abid (2013a).

The cv2.convexHull(∗) function checks for convexity defects in curves and tries to correct it.

The convex curve usually bulges outward but can also be flat. Convexity defect arises where

the curves collapses inward. Figure 3.16 shows the outline of a human hand, with the convex

hull represented by the line drawn around the hand, along the convex tips of the fingers, and

the convexity defects indicated by the double-sided arrow lines, which are the local maximum

deviations of hull from contours, computed using the OpenCV cv2.isContourConvex(∗) and

cvConvexityDefects(∗) functions. The number of defects and the Euclidian distance of the

defects from the geometric centre of the contour was used in determining the number of fingers

in Ganapathyraju (2013) control investigation. Using a similar method Dhawan and Honrao

(2013) developed a convex hull defect based virtual finger pointer and finger counter as shown

in Figure 3.17.

Hand gestures may vary across different usage context, geographical region, and cultural

backgrounds. Hand gestures could be specific to particular professional fields such as the military,

traffic controllers, airfield assistants, etc. Gestures could also be a language such as the American

Sign Language (ASL), Mexican Sign Language (MSL), and British Sign Language (BSL).

3.3 Chapter Conclusion

In this chapter, the discrete Markov model was discussed as a first order Markov process

explained using an ergodic model. The hidden Markov model was described as a doubly em-

bedded stochastic model in which the underlying stochastic processes is not directly observable,
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(a) Finger point (b) Finger count

Figure 3.17: Dhawan and Honrao (2013) convex hull defect based virtual finger pointer and

finger counter.

although it can be observed through another set of stochastic process that produces the second

observation. For speech recognition using the hidden Markov model, stochastic models from

known utterances were first created, and the probability that an unknown utterance was gener-

ated by each stochastic model, were then evaluated. Model parameters such as the transition

probabilities are estimated through training with the known utterances. Examples of practical

HMM-based automatic speech recognition systems included the CMU Pocket Sphinx (CMU

Sphinx, 2009), HTK (Young et al., 2006; Gales and Young, 2007), and Julius (Lee et al., 2001).

The Haar cascade object detection technique was discussed as a method that uses a machine

learning approach for training cascade function, which were then used in object detection. The

cascade classifier functions use the edge, line, and four-rectangle Haar feature detectors. The

convex hull defect for finger gesture recognition was also discussed. The speech and gesture

recognition methods described in this chapter were used in the implementation of the speech

and visual gesture components of the mSVG control interface in this research.
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Chapter 4

Research Method

This chapter discusses the research method used in conducting this research work. The pur-

pose of this chapter is to present the relevant methods and operational procedures used to

complete this research study, and to help ensure that the quality and validity of these pro-

cedures are accurate in addressing the research questions. The approach used in this study

involves conducting experiments with human participants, using custom hardware systems run-

ning custom software programs, based on a novel multimodal speech and visual gesture (mSVG)

control interface combination concept, designed and developed in this research, tested within

a controlled laboratory environment. The experiment study design, hardware components and

setup, and experiment procedure is discussed in this chapter.

4.1 Background

After conducting an extensive literature review (Chapter 2) on HCI control interfaces, as

part of the investigation into the use of novel human-computer interfaces in the control of

small unmanned multirotor aircraft, it became clear that there exists a plethora of HCI control

interfaces to choose from and that the interface selection depends on application scenario and the

autonomy level of the UAVs being used. Therefore a number of application scenario of interest

were considered, and the search and rescue scenario described in Section 1.4.1, and the domestic

application scenario described in Section 1.4.2, were developed. Also, a further research was

conducted on UAV navigation autonomy, which resulted in the development of the nCA tier

classfication framework described in Chapter 5, as the authors saw the need for an alternative

classification system different from the existing limited number of classification schemes available.

Many of the interfaces discussed in Chapter 2 have their applications constrained to the tier-

one components of the nCA autonomy model. Suitable interfaces for tier-two and tier-three

components are generally lacking. In this research, we focused on the development of tier 1-III
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and tier 2-I nCA autonomy level platforms, as described in Figure 4.1 due to the challenging

limitations of current technologies. The original approach was to simulate the nCA Tier 2-I

process and develop the nCA Tier 1-III process, as indicated in Figure 4.1.

Figure 4.1: Research Space as described by the nCA model showing two major areas of interests

being considered for simulation and development.

This research investigation was conceptualised as a two-sided interaction problem - on one

side is the human user and on the other side is the robot being controlled - with the focus

being on the middle interface enabling the human to convey control intent to the robot on the

other side. This concept is described in Figure 4.2. The developed platform was designed to

be able to operate at both tier 1-III and tier 2-I nCA autonomy levels, and to receive control

input via multiple input modalities. The nCA API functionally defines the drone autonomy and

hence its command capability. Example nCA tier 1-III commands are “go forward half metre”,

“hover one metre”, “take a snapshot”, “rotate 270◦ ”, “go [that way] one metre”, etc., where

commands in square brackets are gestures accompanying a speech command. Example of nCA

tier 2-I commands are “go to point D”, “return to start point”, “go to [that point]”, “go to point

C, take a snapshot, and then go to goal point G”, etc. In nCA tier 1-III, the navigation route

is fully specified as a function of direction and distance. Whereas, in the nCA tier 2-I level,

navigation was specified in waypoints.
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Figure 4.2: A human aerobot interaction interface problem.

4.2 Interface Development

In this section, the development of the speech and visual gesture component was described.

However, in order to achieve this, an intermediate step involving the use of the computer key-

board as an interim control symbol generator was first developed. This was then used as the

common symbol template on which all control inputs were being translated into before fur-

ther processing into executable UAV actions. The keyboard was later used as a special case

of the RCJ interface with altitude, attitude, and position (AAP) assist during the performance

comparison of the RCJ and mSVG interfaces.

4.2.1 Intermediate keyboard control symbol processing

The embedded computer keyboard was used to generate control symbols/commands being

processed on the SBC computer and then transferred to the flight controller, thereby bypassing

the speech or visual gesture capture and processing stage. This had the advantage of decoupling

the complexity associated with developing both the interface capture block and multimodal con-

trol processing block simultaneously. The communication between the on-board computers was

conducted through the serial USART interface. A set of five control commands - forward, back-

ward, left, right, and stop, was defined. A look-up table was used to map control commands to a

unique four-digit number system, able to encode a set of 10,000 unique control commands. This

encoding scheme improves medium efficiency, reduces communication bandwidth requirement,

and reduces transmission latency. Table 4.1 shows the command-keyboard-symbol mapping.
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Table 4.1: Keyboard control command and serial data encoding.

S/N Command Keyboard Serial data

1 Stop Ctrl + S 1001

2 Forward Ctrl + Up Arrow Key 1001

3 Backward Ctrl + Down Arrow Key 1002

4 Right Ctrl + Right Arrow Key 1003

5 Left Ctrl + Left Arrow Key 1004

A python script was written to capture and log the keyboard input and capture time. Listing

4.1 is a code snippet for the keyboard input capture and symbol processing. The full source

code is listed in Appendix C.6. Figure 4.3 shows the logged output/feedback as displayed on

Linux Terminal.

Listing 4.1: Keyboard input capture and symbol processing.

24 def get ( ) :

25 inkey = Getch ( )

26 while (1 ) :

27 k=inkey ( )

28 i f k!= ’ ’ : break

29 x = ord ( k )

30 i f x == 3 :

31 e x i t ( )

32 e l i f x == 59 :

33 k=inkey ( )

34 i f ord ( k ) == 53 :

35 k=inkey ( )

36 i f ord ( k ) == 65 :

37 print ’ Forward ’

38 s e r . wr i t e ( ”1001” . encode ( ’ a s c i i ’ )+’\n ’ )

39 e l i f ord ( k ) == 66 :

40 print ’ Backward ’

41 s e r . wr i t e ( ”1002” . encode ( ’ a s c i i ’ )+’\n ’ )

42 e l i f ord ( k ) == 67 :

43 print ’ Right ’

44 s e r . wr i t e ( ”1003” . encode ( ’ a s c i i ’ )+’\n ’ )

45 e l i f ord ( k ) == 68 :

46 print ’ Le f t ’

47 s e r . wr i t e ( ”1004” . encode ( ’ a s c i i ’ )+’\n ’ )

48

49 # pr i n t ’ you p r e s s e d ’ , ord ( k )

50

51 def main ( ) :

52 print ’ p r e s s \” c t r l + Arrow Key\” f o r Quad Navigat ion or \” c t r l + c\” to Quit ’

53 while (True ) :

54 get ( )

4.2.2 Speech capture and processing

In developing the speech component of the mSVG interface, speech was captured using the

Kinobo USB condenser microphone, and processed using the CMU Pocket Sphinx (CMU Sphinx,

2009) automatic speech recognition (ASR) toolkit. The CMU Sphinx is based on the hidden
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Figure 4.3: iQuad Jade Kebyoard control input log as printed on Odroid XU4 command terminal.

markov model (HMM) for speech recognition described in Chapter 3. Other HMM based ASR

considered were HTK (Young et al., 2006; Gales and Young, 2007) and Julius (Lee et al., 2001).

Some commercial ASR were also considered such as the Amazon Alexa, Apple Siri, Microsoft

Cortana, and Google Now. The CMU Sphinx ASR was chosen because its implementation was

well documented, it is open-sourced, supports multiple languages, and can be configured for

offline speech processing on a single-board/embedded computer. All speech model is stored

offline on the embedded computer and does not require a remote network connection for speech

recognition.

The CMU Sphinx installation process for Unix system is well documented under “building an

application with pocketsphinx” (CMU Sphinx, 2009). This process is summarised as follows:

1. Download and unpack SphinxBase (support library required by PocketSphinx) and Pock-

etSphinx (recognizer library written in C) packages. At the time of this development,

sphinxbase-5prealpha and pocketsphinx-5prealpha were the latest versions available.

2. Build and install SphinxBase using Linux “make install” command from the “sphinxbase”

directory via Terminal.

3. Export environment variables for “LD LIBRARY PATH” and “PKG CONFIG PATH”.

4. Switch to the “pocketsphinx” folder via Terminal, and also build and install using “make

install” Linux command.

5. Test installation by running “pocketsphinx continuous -inmic yes” example from Terminal

and speaking into connected microphone.
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Although, the CMU Sphinx ASR was originally developed in C and Java, a python wrapped

version to work with this research’s application was developed by combining the C-based basic

usage example with Li (2016) Python-based example. The Kinobo USB microphone was con-

nected to the Odroid XU4 SBC. The recording was performed as a single-channel (monaural),

little endian, unheadered 16-bit signed PCM audio file sampled at 16 kHz, as required by the

Sphinx ASR. This was temporarily saved with a “.wav” extension. The Sphinx ASR engine was

then started to process and recognise the uttered speech, performing a speech-to-text transla-

tion of the recorded speech command. A keyword search was then performed on the recognised

text, in order to identify commands and modifiers of interests. After completing the control

operation, the temporarily recorded “.wav” speech command is deleted. However, a text log of

the preceding command is kept. The default CMU Sphinx US English language model was used

in this implementation. The phonetic dictionary model was based on a selection of 19 command

words which made up the speech command vocabulary used in this research. Table 4.2 lists the

selections of command vocabulary words and phonemes.

Table 4.2: iQuad phonetics dictionary for speech command.

S/N Words Phonemes

1 backward B AE K W ER D

2 climb K L AY M

3 drop D R AA P

4 forward F AO R W ER D

5 go G OW

6 half HH AE F

7 hover HH AH V ER

8 land L AE N D

9 left L EH F T

10 metre M IY T ER

11 one W AH N

12 right R AY T

13 stop S T AA P

14 step S T EH P

15 pan P AE N

16 starboard S T AA R B ER D

17 larboard L AA R B ER D

18 down D AW N

19 up AH P
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The nineteen words in the dictionary were selected to improve accuracy and efficiency by

reducing the size of the lookup table for each speech utterance to just a few set of phonetic

combinations. Figure 4.4 shows a terminal screen capture of the speech recognition and command

processing. The full code for the speech capture and processing into control symbol is listed in

Appendix C.4.

Figure 4.4: Speech recognition logging on Odroid XU4 Linux terminal.

The main limitation of the developed speech interface was it susceptibility to continuous noise

corruption from 80 dB onwards. Although speech could still be recognised, the random ambient

noise triggers intermittent speech recording even when speech is not being uttered. This was

noted as the point of regular speech interference. Above 85 dB, continuous ambient noise level

recording occurs until the noise source is muted or lowered to under 80 dB, this was noted as the

point of speech drowning. Above this point, uttered speech was wholly drowned by the noise

level that the speech system gets stuck in a recording loop until the noise source is turned off

or noise level lowered. It was still able to process and interpret the captured speech-noise mix,

occasionally recognising some speech utterance spoken during it long recording loop. Therefore,

the developed speech interface could not be used beyond 85 dB as implemented.

4.2.3 Visual gesture capture and processing

Hand gesture interpretation varies across different usage context, geographical region, and

cultural backgrounds. Hand gestures could be specific to particular professional fields such as

the military, traffic controllers, airfield assistants, etc. Gestures could also be a language such as

the American Sign Language (ASL) and Mexican Sign Language (MSL). But for the purpose of

this study, finger counting gestures (zero-finger/hand-fist, one finger, two fingers, three fingers,



110 Chapter 4. Research Method

four fingers, and five fingers) were used. In developing the visual gesture capture system, two

OpenCV techniques were used - Haar cascades and convex hull.

Haar cascades fist tracking

The IDS uEye global shutter colour camera, UI-1221LE-C-HQ (IDS GmbH, 2012), combined

with the BM-2118-V2 lens, was used. With the aid of the IDS uEye API manual and libraries

(IDS GmbH, 2008), a C program was written to configure and capture a sequence of 200 images

on the UI-1221LE-C-HQ uEye camera. The full code is listed in Appendix C.5.2. The hand fist

gesture was processed by using the Haar cascade OpenCV algorithm presented in Mordvintsev

and Abid (2013c) and the Haar cascade classifier for detecting the letter ‘A’ in the American

Sign Language (ASL) by Wachs (2005), as used in Wachs et al. (2006). Listing 4.2 shows a

condensed code listing for applying the “aGest.xml” Haar cascade classifier in the hand fist

gesture recognition application. The full code is listed in Appendix C.5.1.

Listing 4.2: Haar cascade fist gesture processing.

1 import cv2

2 import numpy as np

3

4 hand cascade = cv2 . Ca s c ad eC l a s s i f i e r ( ’ aGest . xml ’ )

5

6 #cap = cv2 . VideoCapture (1)

7 hand hit = 0

8 for k in range (0 ,200) :

9 f i l ename = ”C Img %d .bmp” %k

10 print f i l ename

11 img = cv2 . imread ( f i l ename , cv2 .IMREADUNCHANGED)

12 gray = cv2 . cvtColor ( img , cv2 .COLORBGR2GRAY)

13

14 #hand = hand cascade . d e t e c tMu l t i S c a l e ( img , s c a l e , n e i g h bou r s )

15 hand = hand cascade . de t e c tMu l t iSca l e ( gray , 1 . 3 , 5)

16 for (x , y ,w, h) in hand :

17 cv2 . r e c t ang l e ( img , (x , y ) , ( x+w, y+h) , (0 ,255 ,255) , 2)

18 hand hit = hand hit + 1 ;

19 print ”Hand Hit − %d” % hand hit

20 #cv2 . imwr i t e ( ’ p roce s s ed img hand%d . png ’%hand h i t , img )

21

22 #cv2 . imshow ( ’ img%d’%k , img )

23 #cv2 . imshow ( ’ img2 ’ , gray )

24

25 to t a l image s = 200

26 print ( ”Summary :\ tHand Hit − %d/%d”%(hand hit , t o t a l image s ) )

27 cv2 . imshow ( ’ img ’ , img )

28 while True :

29 k = cv2 . waitKey (30) & 0 x f f

30 i f k == 27 :

31 break

32

33 #cap . r e l e a s e ( )

34 cv2 . destroyAllWindows ( )

Code line 14, hand = hand cascade.detectMultiScale(img, scale, neighbours), calls the clas-

sifier loaded in line 4, specifying the image being processed, the iteration scale factor, and the



Interface Development 111

minimum number of neighbours required for positive hand object/gesture detection. For exam-

ple, a scale factor of 1.05 decreases Haar detector window by 5% in each scale iteration of the

image. Smaller scale values increased the number of computations required, while larger scale

values reduced the number of computations. Also, specifying smaller number of neighbours

resulted in many false positives, while a larger number of neighbours resulted in the failure

to detect many true positives. A scale factor of 1.3 and neighbour size of 5 was found to be

sufficient for this research implementation.

(a) uEye UI-1221LE-C-HQ camera capture. (b) uEye UI-1221LE-M-GL camera capture.

Figure 4.5: Right-hand fist gesture tracking using colour (UI-1221LE-C-HQ) and monochrome

(UI-1221LE-M-GL) camera.

Figure 4.5 shows images of the right hand fist gesture being tracked by the colour (UI-1221LE-

C-HQ) and monochrome (UI-1221LE-M-GL) uEye cameras. Because of the unavailability of

documentation on how to connect the proprietary uEye camera to OpenCV, the two step strategy

was adopted – a) the C program to capture a frame sequence, and b) the Python program

to process the capture images and recognise the gesture. However, the global shutter uEye

camera was eventually replaced with the rolling shutter Odroid 720p web camera, due to further

configuration problems in integrating the uEye camera with the OpenCV libraries, for real-time

processing in the experiment study.

Convex Hull Finger gestures

While the Haar cascade technique was used to detect fist hand gesture, the convex hull tech-

nique was used to detect finger-count hand gestures. These techniques were combined to form

the gesture used in this research. The convex hull method used for the finger-counting gesture

was similar to that described in Ganapathyraju (2013), where hand gestures were recognised

with the aid of convexity hull defects, as explained in Mordvintsev and Abid (2013a). A four-



112 Chapter 4. Research Method

stage image processing operation of skin detection, noise elimination, convex hull and convexity

defect processing, was performed with the aid of OpenCV algorithm libraries, in order to count

the number of fingers being held up by a human user. In order to isolate the hand gestures

from other environmental components in the image, skin colour detection was performed in the

Y ′CBCR colour space. In order to achieve robust skin colour detection under varying illumina-

tion conditions, the luminance Y ′ was separated from the blue-difference chrominance CB and

red-difference chrominance CR of the skin. Noise filtering was achieved by using cvErode(∗) and

cvDilate(∗) OpenCV functions, with the first function eroding/trimming down areas were the

hand was not detected, and the second function dilating/enlarging the non-eroded areas for fur-

ther processing. This process effectively removes noisy pixels from the image. An outline of the

hand, from which the convex hull was to be computed, was then generated. This was achieved

through the application of an OpenCV function, cvDrawContours(∗). The cv2.convexHull(∗)

function checks for convexity defects in curves and tries to correct it. Convex curves are usually

bulge out, or at least flat. Convexity defect arises where the curve outline caves inward. The

number of defects and the Euclidian distance of the defects from the geometric centre of the

contour was used in determining the number of fingers. Using a similar method Dhawan and

Honrao (2013) developed a convex hull defect based virtual finger pointer and finger counter.

Listing 4.3: OpenCV contours and convex hull.

1 import cv2

2 import numpy as np

3

4 img = cv2 . imread ( ’ Img 4 ed i t . jpg ’ , cv2 .IMREADUNCHANGED)

5

6 gray = cv2 . cvtColor ( img , cv2 .COLORBGR2GRAY)

7 blur = cv2 . GaussianBlur ( gray , ( 5 , 5 ) ,0 )

8 b lur2 = cv2 . medianBlur ( img , 5 )

9 ret , thresh1=cv2 . th re sho ld ( blur , 170 ,255 , cv2 .THRESH BINARY INV+cv2 .THRESH OTSU)

10 #ret , t h r e s h 1=cv2 . t h r e s h o l d ( b l u r ,190 ,255 , cv2 .THRESH BINARY)

11 thresh2=cv2 . adapt iveThreshold ( blur , 255 , cv2 .ADAPTIVE THRESH MEAN C, cv2 .THRESH BINARY,11 , 2 )

12 thresh3=cv2 . adapt iveThreshold ( blur , 255 , cv2 .ADAPTIVE THRESH GAUSSIAN C, cv2 .THRESH BINARY,11 , 2 )

13

14 contours , h i e ra r chy = cv2 . f indContours ( thresh1 , cv2 .RETR TREE, cv2 .CHAIN APPROX SIMPLE)

15 max area = 0

16 for i in range ( len ( contours ) ) :

17 cnt = contours [ i ]

18 area = cv2 . contourArea ( cnt )

19 i f ( area > max area ) :

20 max area=area

21 c i = i

22 cnt = contours [ c i ]

23 hu l l = cv2 . convexHull ( cnt )

24 drawing = np . z e ro s ( img . shape , np . u int8 )

25 cv2 . drawContours ( drawing , [ cnt ] , 0 , ( 0 , 2 55 , 0 ) ,2 )

26 cv2 . drawContours ( drawing , [ hu l l ] , 0 , ( 0 , 0 , 2 55 ) ,2 )

27

28 cv2 . imshow ( ’ img1 ’ , img )

29 cv2 . imshow ( ’ img2 ’ , gray )

30 cv2 . imshow ( ’ img3 ’ , b lur )

31 cv2 . imshow ( ’ img3 . 1 ’ , b lur2 )

32 cv2 . imshow ( ’ img4 ’ , thresh1 )

33 cv2 . imshow ( ’ img5 ’ , thresh2 )

34 cv2 . imshow ( ’ img6 ’ , thresh3 )

35 cv2 . imshow ( ’ img7 ’ , drawing )
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36

37 while True :

38 k = cv2 . waitKey (30) & 0 x f f

39 i f k == 27 :

40 break

41

42 #cap . r e l e a s e ( )

43 cv2 . destroyAllWindows ( )

Listing 4.3 is a code listing showing the use of OpenCV for finding convex hull and drawing

contours. Different thresholding algorithm were tested in order to determine the most effec-

tive threshold for this research application. The result of this observation is shown in Figure

4.6. Binary thresholding was selected and was combined with Gaussian blurring because the

combination resulted in a better contour outline, and a more successful gesture recognition.

Figure 4.6: Convex hull hand processing - (img2) monochrome grayscale, (img4) binary inversion

+ Otsu thresholding, (img5) adaptive mean threshold, (img6) binary thresholding, (img7) convex

hull contour based on img4.

4.2.4 RC Joystick Controllers

For the joystick controller component of this research, two joystick controllers were used, one

for the developed multirotor hardware platforms, and the second for the simulation platform.

The 9 channel 2.4 GHz Turnigy 9X transmitter configured for mode 2 operation and reflashed

with the v2 firmware update, available from HobbyKing (2010), shown in Figure 4.7a, was used
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as the RC joystick controller for the hardware multirotor platforms. It was selected because

of its popularity, ease of setup, ease of use, and cost effectiveness. It comes with a 128 × 64

LCD display screen for configuration and information display. The Turnigy 9X 9Ch Transmitter

comes with the Turnigy RF9X-V2 module and the Turnigy 9X8C-V2 8-channel receiver.

(a) 9 Ch Turnigy RC joystick (HobbyKing, 2010). (b) RFDS Int-lnk joystick (Amazon UK, 2016).

Figure 4.7: Turnigy RC and RFDS Futaba Interlink Elite joystick controllers.

The RealFlight Futaba Interlink Elite joystick controller, shown in Figure 4.7b, was used for

the hardware-in-the-loop simulation of RC control in the RealFlight Drone simulator (RFDS)

and in the ROS Gazebo simulation. The RealFlight Interlink Elite joystick comes with the

RFDS software, developed by Hobbico, Inc. et al. (2016) and available from Amazon UK (2016)

as “Great Planes RealFlight GPMZ4800 RealFlight Drone with Interlink Elite Mode 2 Edition”.

In setting up the RealFlight Futaba Interlink Elite joystick controller to work with the RotorS

ROS Gazebo Simulator, the jstest-gtk joystick testing and configuration tool for GNU/Linux,

developed by Ruhnke (2009), was used. Figure 4.8 shows a screenshot of this utility. The

jstest-gtk is based on Gtk+, shows all attached joysticks, visually emulates buttons and axis

being pressed, enables axis and buttons remapping, useful for eliminating deadzones, and for

joystick calibration. It is recommended to calibrate the joystick limits and check axis inversion

before starting the RotorS ROS Gazebo simulation, to avoid abrupt take-off/landing and reverse

navigation.
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Figure 4.8: jstest-gtk joystick testing and configuration tool for GNU/Linux (Ruhnke, 2009).

4.3 Hardware Platform Development

The development of a physical small multirotor platform for this work was initially considered

because the successful realisation of an aerobot controllable via the mSVG technique could be

revolutionary. However, due to the difficulty of successfully implementing the physical system

within the research time constraint, a hardware-in-the-loop simulation approach was eventually

adopted. This section describes the original hardware platform development for the purpose of

research continuity and further works. Also the development of a custom platform was preferred

to the use of commercial platforms which were either too expensive (like the DJI Matrix 100)

or use proprietary flight controller software with limited or no configurable developer options.

4.3.1 ImmersionRC XuGong Multirotor

The first multirotor platform developed was based on the ImmersionRC XuGong V2 Pro

quadcopter frame (ImmersionRC, 2014). It was combined with the HKPilot Mega 2.7 flight

controller hardware running the Ardupilot APM 2.6 (ArduPilot, 2012) open source flight con-

troller software. The propulsion system consisted of four Turnigy Multistar 20 A electronic

speed controllers (ESCs), four 920 KV (RPM/V) MultiStar 2212 motor with 9.4 × 4.3 inch

self-tightening carbon fibre propellers, and a 4S 5200 mAh Multistar Lipo battery. It was setup

to be controlled by a 9 channel Turnigy RC joystick controller configured for Mode 2 operation.

The developed ImmersionRC based quadcopter is shown in Figure 4.9. The main challenge en-

countered was in adapting the convoluted APM 2.5 open source flight controller source codes for

this research’s application particularly with features such as indoor localisation and waypoint

navigation.
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Figure 4.9: Developed ImmersionRC XuGong v2 pro based 450 mm quadcopter.

4.3.2 iQuad Jade Multirotor

The second hardware platform considered was the development of a smaller 350 mm frame

quadcopter, named the “iQuad” project. Unlike the first hardware platform that used the

Arduipilot APM 2.6 flight controller firmware, the flight controller firmware for the iQuad project

was developed from the ground up.

Frame

For the frame, a range of 250 − 350mm quad-rotor platform frame with extra compartment

space capable of housing two controllers - a microcontroller for flight control and an embedded

SBC on-board computer for higher level processing, were considered. The T-Drones Smart

X type-A quadcopter frame, shown in Figure 4.10, was selected because it satisfied the space

requirement, was low cost, and came with extra useful components. The frame was available from

Electricwingman (2016), Goodluckbuy (2016), and Modellbau (2016). The Smart X measures

360mm from corner to corner and has a maximum take-off weight of 820 g. The frame weighs

168 g with no load installed. The arms are 138mm long and weight about 19 g each.

It comes with four T-Motor AIR 2205 motors, four T-Motor Air 15A ESCs, and four self-

tightening 6.5′ × 3.5′ inch propellers. The T-Drone frame also comes with a power distribution
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(a) Schematics
(b) Frame

Figure 4.10: T-Drones Smart X type-A quadcopter frame schematic (Goodluckbuy, 2016) and

top view (Modellbau, 2016).

board for distributing power from the battery to the ESCs and UBEC (Universal Battery Elim-

inating Circuit). A 1500 mAh 3S Turnigy lithium polymer battery was used. The RC controller

used was an eight channel Turnigy TGY 9X RC controller.

Teensy 3.2 Flight Controller Design

Figure 4.11 shows the designed flight controller circuit diagram. Figure 4.12 shows the de-

veloped flight controller. The flight controller hardware consisted of the Teensy 3.2 and GY-86

IMU breakout board.

The Teensy 3.2 is an Arduino compatible board which requires the download of a software

patch PJRC (2015). The GY-86 IMU breakout board is a 10 DOF (degree of freedom) module

with a three-axis gyroscope, a tri-axial accelerometer, a three-axis magnetometer, and an at-

mospheric pressure barometer. The gyroscope and accelerometer are contain in the MPU6050

chip, the magnetometer is contained in the HMC5883L chip, and the MS5611 chip contains the

barometer. Its power supply can range from 3 v to 5 v. It communicates through the I2C serial

bus. It is 22 mm long, 17 mm wide. It uses a standard pin spacing of 2.84 mm and has a hole

at it top right corner, which is 3 mm wide, for fastening to other surfaces.

The flight controller program was developed in arduino using the C++ program language,

designed to be operated via the 9 channel 2.4 GHz Turnigy 9X mode 2 transmitter shown in

Figure 4.7a. The full program listing is presented in Appendix C.1. The flight controller program

loops at 450 Hz, refreshing the IMU values at the same rate. The flight test video is included as
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Figure 4.11: A Multisim circuit diagram showing the design of the flight controller.

Figure 4.12: The developed and programmed flight controller from the Teensy 3.2 and GY-86

boards.

supplementary multimedia data with this thesis. The program was inspired by the open source

Arducopter project with the initial aim of customizing the codes for the ArduPilot Mega 2.5

(APM 2.5) board which uses the AVR Atmega2560 microcontroller and the MPU6000 6-DoF

Accel-Gyro and HMC5883L 3-DoF Compass. But due to the complexity of the APM project

development, we decided to develop a simpler compact single file flight controller program to

work with our custom developed flight controller hardware.
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(a) Top pin out (b) Bottom pin out

Figure 4.13: Teensy 3.2 top and bottom pin out diagram (PJRC, 2015).

(a) GY-86 10 DOF module.

(b) GY-86 Calibration.

Figure 4.14: GY-86 DOF module accelerometer and magnetometer calibration.

Single Board Computer

A second on-board computer, to support the primary flight controller (Teensy 3.2 microcon-

troller), in performing higher level functions of speech and gesture processing was needed. The

Linux compatible Odroid XU4, shown in Figure 4.15, was used. At the time of the iQuad plat-

form development, the Odroid XU4 was one of the most recent single board computers, others
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being the NVidia Jetson Tx1, Raspberry Pi 3, and Intel Edison boards. Although, the NVidia

Jetson TX1 running Ubuntu 16.04 L4T (“Linux for Tegra” or “Linux4Tegra”) version 24.2.1,

was considered, the Odroid XU4 was selected because it had more processing power than the

Raspberry Pi 3, it was more cost effective than the NVidia Jetson Tx1, and it does not require

additional modules like the intel edison boards. The Odroid XU4 supports heterogeneous multi-

processing (HMP). It is more powerful and more energy efficient than the XU3 before it, and

has a small form factor - approximately 83× 58× 22 mm. It is compatible with Ubuntu 16.04

Mate, and Android 4.4 KitKat, 5.0 Lollipop, and 7.1 Nougat. It can be booted from a regular

memory card or from the eMMC 5.0 HS400 Flash Storage (which is faster and hence highly

recommended). It has two USB 3.0 port, one USB 2.0 port, and a Gigabit Ethernet interface. It

has eight CPUs - four Samsung Exynos5422 Cortex-A15 running at 2 GHz (quad-core) and four

Cortex-A7 running at 1.4 GHz (quad-core). It uses the Mali-T628 MP6 (OpenGL ES 3.0/2.0/1.1

and OpenCL 1.1 Full profile) for graphics. It has 2 Gigabyte LPDDR3 RAM PoP stacked. It

displays output through an HDMI 1.4a port. It shipped with Linux Kernel 4.14 LTS and the

Ubuntu 16.04 MATE installed.

(a) XU4 with cooling fan
(b) XU4 without cooling fan

Figure 4.15: Odroid XU4 embedded computer compatible with Ubuntu 16.04 Mate Linux (Hard-

kernel, 2015)

The Odroid XU4 SBC was coupled to the Teensy 3.2 flight controller via USB and serial UART

Tx/Rx communication protocol was used to send control symbols from the SBC to the flight

controller for differential motor control simulation of horizontal 2D navigation, at 115200 baud

rate. A Logitech combo MK270 2.4 GHz wireless keyboard and optical mouse set was connected

to Odroid XU4 SBC for controlling applications on the SBC’s Linux operating system. The

keyboard was also used in generating overriding control symbols, listed in Table 4.1, to remotely
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control the iQuad Jade multirotor platform. The Kinobo USB microphone was also connected

to Odroid XU4 SBC, for capturing speech control commands, which were then processed into

the control symbols listed in Table 4.1, and then passed on to the iQuad Jade multirotor for

differential motor control emulating the control input.

Listing 4.4: Flight controller modified code with serial speech and keyboard control input symbol.

405 // CODEMARK I I : Keyboard/ S e r i a l Inpu t Segment

406 // CODEMARK I I : Speech / S e r i a l Inpu t Segment v i a Odroid XU4

407

408 // s e r i a l b y t e s a v a i l a b l e ?

409 int bytesAvai l = S e r i a l . a v a i l a b l e ( ) ;

410 i f ( bytesAva i l > 0) {

411 while ( bytesAva i l > 0) { // yes

412 char c = ( char ) S e r i a l . read ( ) ; // read nex t b y t e

413

414 i f ( c == ’\n ’ ) { // new l i n e reached − p ro c e s s cmd

415 buf [ b u f o f f s e t ] = ’ \0 ’ ; // add n u l l t e rm ina to r

416 St r ing s t r = St r ing ( buf ) ;

417

418 i f ( s t r == ”1000” ) // h a l t h o r i z o n t a l motion − l e v e l quadcop t e r by s e t t i n g r o l l and p i t c h

an g l e s to z e ro

419 {

420 r c p i t = 0 ;

421 r c r o l l = 0 ;

422 }

423

424 i f ( s t r == ”1011” ) // forward − d r i v e rear motors f a s t e r and f r o n t motors s l owe r by

k b d c u r s o r c o n s t a n t amount

425 {

426 // channe l s [ 1 ] += k b d c u r s o r c o n s t a n t ; // modi fy p i t c h

427 // r c p i t += k b d c u r s o r c o n s t a n t ; // modi fy p i t c h

428 r c p i t = speech movement constant ; // banks 30 de g r e e s in t h e d i r e c t i o n o f motion

429 r c r o l l = 0 ;

430 }

431

432 i f ( s t r == ”1012” ) // back − d r i v e f r o n t motors f a s t e r and rear motors s l owe r by

k b d c u r s o r c o n s t a n t amount

433 {

434 // channe l s [ 1 ] −= kb d c u r s o r c o n s t a n t ; // modi fy p i t c h

435 // r c p i t −= kb d c u r s o r c o n s t a n t ; // modi fy p i t c h

436 r c p i t = −speech movement constant ; // banks −30 de g r e e s in t h e p i t c h d i r e c t i o n

437 r c r o l l = 0 ;

438 }

439

440 i f ( s t r == ”1013” ) // r i g h t − d r i v e l e f t motors f a s t e r and r i g h t motors s l owe r by

k b d c u r s o r c o n s t a n t amount

441 {

442 r c p i t = 0 ;

443 r c r o l l = speech movement constant ; // banks r o l l an g l e to +30 de g r e e s

444 }

445

446 i f ( s t r == ”1014” ) // l e f t − d r i v e r i g h t motors f a s t e r and rear motors s l owe r by

k b d c u r s o r c o n s t a n t amount

447 {

448 r c p i t = 0 ;

449 r c r o l l = −speech movement constant ; // banks r o l l an g l e to −30 de g r e e s

450 }

451 kbd t imeout s ta r t = micros ( ) ;

452 b u f o f f s e t = 0 ;

453 }

454 else i f ( c != ’\ r ’ ) {

455 buf [ b u f o f f s e t++] = c ; // s t o r e in b u f f e r and con t inue u n t i l new l ine

456 }

457 bytesAvai l −−;

458 }

459 }



122 Chapter 4. Research Method

The original C++ program code listed in Appendix C.1 for RC joystick control, was modified

to enable the keyboard and speech serial input control symbol execution on the iQuad Jade UAV

platform. Listing 4.4 shows a code snippet of modifications to the original code. The modified

full code is listed in Appendix C.1.3.

With the aid of a wireless IEEE 802.15.4 Zigbee module, a remote data-logging and debugging

system was developed. Python based command line utility was developed to run on both

Windows and Linux operating systems, to enable remote monitoring of the iQuad Jade platform

and ease troubleshooting of its operations. Figure 4.16 shows the debugger running on the

Windows operating system.

Figure 4.16: Developed data-logging and debugging serial command line utility for monitoring

iQuad Jade platform.

4.3.3 Unicorn Multirotor

Due to slow development progress on the iQuad Jade multirotor platform, an alternative

Unicorn multirotor platform was considered. The Unicorn multirotor UAV was an indoor nav-

igation platform being developed at the autonomous systems laboratory at the University of

Southampton by Liu et al. (2016a) based on a fast semi-direct monocular visual odometry

(SVO) localisation techniques described by Forster et al. (2014). It was a 250 × 250mm span

UAV that uses the Teensy 3.1 and Odroid XU3 as flight controller and on-board computer, and a

global shutter IDS uEye UI-1221LE-M-GL grey scale camera and an ultrasonic sensor for indoor

localisation, in order to hover at set position and altitude. We considered adopting the indoor

navigation technique proposed by Liu et al. (2016a) in order to augment our custom developed

UAV, but this integration proved too challenging and derailing to this research’s aim and objec-
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tives that we decided to consider the more realistic and practical simulation alternative, which

was eventually setup and used in completing this research work.

(a) Isometric front-view showing gesture capture camera (b) Rear-view showing SVO localisation camera

Figure 4.17: Developed Unicorn-based quadcopter UAV.

Figure 4.17 shows the developed Unicorn-derived multirotor platform, which was modified to

accommodate this research’s requirement. The modified Unicorn platform had a front facing

UI-1221LE-C-HQ colour USB camera installed to capture visual gesture images, a downward

facing UI-1221LE-M-GL grey scale USB camera for localisation and waypoint navigation, a

Kinobo USB microphone for speech capture, and a more powerful Odroid XU4 embedded com-

puter running a more recent Ubuntu 16.04 Mate Linux distribution, for high-level computation

processing of the speech, gesture, localisation, and waypoint navigation data input.

4.4 Hardware-in-the-loop software simulation

Two hardware-in-the-loop simulation software were used in this research. The first was the

commercial RealFlight Drone Simulator (RFDS), which was based on proprietary software, was

used to estimate small multirotor UAV pilots RC joystick flying skill level. The second was

the open source RotorS ROS Gazebo simulator, which was used in comparing control interface

performances.

4.4.1 RealFlight Drone Simulator (RFDS)

The RealFlight Drone Simulator (RFDS) was developed by Hobbico, Inc. et al. (2016) and

was available from Amazon UK (2016). It was derived from the RealFlight 7.5, sold as a limited

edition of the 7.5 without the airplanes and helicopter aircraft – just the multirotor drone
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aircraft. The RealFlight drone edition simulator came with a software CD and an Interlink

Elite joystick controller developed by Futaba – the hardware-in-the-loop component. Unlike in

a physical UAV platform, the cost of crashing a UAV or the consequences of a UAV accident

was completely eliminated in the hardware-in-the-loop RFDS software simulation test of RC

joystick controller flying skill level.

Figure 4.18: RFDS challenge Level 5.

The RFDS level challenge tasks were a combination of countdown-time-based manoeuvres

such as flying through a gate, landing on a touchpad, etc. at the end of which a score was

assigned based on how quickly the tasks were completed. Figure 4.18 shows a screenshot of

an RFDS level 5 challenge being attempted. The maximum number of attempts per level per

participant were capped at 7, beyond which the participant does not proceed to subsequent

challenge levels, if not successful. The complete RFDS challenge levels were:

1. Fly through the square gate ahead.

2. Fly through the curved path and then land on the circular touchpad ahead.

3. Fly through the gate and then land on the touchpad.

4. Fly through the path, hit the touchpad, fly through the gate, then land on the second

touchpad.

5. Fly through the path, hit the touchpad, fly through the left raised gate, then through the

right raised gate, and then land back on the starting touchpad.
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6. Hit a series of five touchpad in order, starting and finishing on the middle touchpad. Four

touchpads arranged in a circle around a middle fifth touchpad.

7. Fly through the four slalom staggered gates in order.

8. Fly through the four gate curve, then downward through the horizontal gate, and land on

the touchpad below the horizontal gate.

9. Hit the right touchpad, fly sideways through the raised gate, then hit the left touchpad

on the ground, and fly back upwards and sideways through the raised gate, and then land

back on the right touchpad.

10. Complete the combine obstacles and courses from challenges 7, 8, and 9 in reduced time.

The RFDS simulator was chosen for testing users RC flying skill level because it had a fully

developed set of practical and realistic flight level challenges, which were sufficient for the test

in this research. The RotorS ROS Gazebo simulation did not have this flight challenges, and

would have required significant design and development efforts to successfully implement this;

and this was not a primary focus of this research.

4.4.2 ROS Gazebo Simulation

Due to the fact that the RFDS simulator was a commercial product based on proprietary soft-

ware, for which the source code was not available to developers, open source ROS Gazebo UAV

simulators were considered. The hector quadrotor ROS Gazebo UAV simulator, which was devel-

oped by Meyer et al. (2012), and had support for both indoor and outdoor navigation scenarios,

as shown in Figure 4.19, was the first simulator considered. However, the hector quadrotor

documentation was lacking in details, which made it implementation and setup challenging.

The second major ROS Gazebo UAV simulator considered was the RotorS simulator, which

was developed by Furrer et al. (2016). The RotorS Ros Gazebo UAV simulator was more recent

than the hector quadrotor, was currently being supported and updated by the developers, was

compatible with the latest Ubuntu 16.04 LTS Linux distribution and the ROS kinetic Kame

used at the time of this study, and was better documented. Therefore, the RotorS ROS Gazebo

UAV simulator was chosen over the hector quadrotor, and was successfully developed and used

in this research. The RotorS ROS Gazebo simulator has a model of the Ascending Technologies

(2013) AscTec Firefly hexacopter UAV, which was used to emulate the small multirotor platform

navigation in a custom navigation path developed in this research study. Figure 4.20 shows

the RotorS ROS Gazebo simulator executing a developed python-based waypoint navigation
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Figure 4.19: Hector quadrotor outdoor scenario demo (Meyer et al., 2012; Meyer and

Kohlbrecher, 2012).

program, which was computing and passing GPS-like navigation coordinates and speed to the

RotorS physics framework for simulation.

Figure 4.20: Setting up RotorS (Furrer et al., 2016) ROS Gazebo Simulator.

For emulating the joystick controller in Gazebo, the RealFlight Futaba Interlink Elite joystick

controller was used as the input joystick controller hardware. The setup/startup procedure is

described in Table 4.3.

The hardware for running the ROS Gazebo UAV simulator was a mainstream Viglen desktop

computer with two Iiyama-B2282HD monitors. The computer had an Intel Core i5-7500 Quad-

core 3.40 GHz Processor, with integrated Intel HD Graphics 630 (1100 MHz), an 8 GB 2400

MHz PC4-19200 DDR4 RAM Memory, and a 1 TB 7200 RPM Hard disk drive. The computer

was running the Linux Ubuntu 16.04 LTS desktop operating system, and had the ROS Kinetic

Kame distribution for Ubuntu Xenial (16.04 LTS) and Gazebo version 8 installed.
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Table 4.3: Joystick control ROS Gazebo simulation startup.

A. Hardware components setup:

1. Startup the Linux desktop computer and boot to the default desktop

graphical user interface

2. Connect the RealFlight Futaba Interlink Elite USB joystick controller to

the Linux desktop

3. Run jstest-gtk (install if necessary):

#i f i n s t a l l a t i o n i s needed

$ sudo apt−get i n s t a l l j s t e s t−gtk

# s t a r t s the j o y s t i c k c on f i gu r a t o r

$ j s t e s t−gtk

B. RotorS simulation:

1. Open a new Terminal, “Ctrl + Alt + T”

2. Open “home/catkin ws/” folder in the Terminal using,

$ cd catk in ws/

3. Load setup.bash, and start ROS,

$ source deve l / setup . bash

$ ro s c o r e

4. In a new terminal window, start RotorS mavlink based joystick control

nodes in basic world with the firefly UAV,

$ ros launch r o t o r s gazebo mav with joy . launch mav

name:= f i r e f l y world name:= bas i c

4.5 Experiment Study Design

In order to address the research questions in Section 1.5 and to investigate the proposed

hypothesis in Section 1.6, an experiment study was designed. The study was divided into two

major parts - study A and study B - with each part addressing one of the two major research

questions. Study A was interested in the practical usage limit of the components of the proposed
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speech and visual gesture interface in the control of small multirotor UAVs. It investigated how

the noise levels generated by multirotor UAV propulsion systems affects speech control input.

It also investigated how different backgrounds and lighting levels affects gesture control input.

Study B was interested in comparing the performance and cognitive workload of the proposed

mSVG interface with the standard RC joystick controller via an nCA Tier 1-III navigation

control task.

The study was designed to involve human participants, interacting with hardware components

whose output responses are simulated and displayed to the study participant via computer mon-

itors. The experiment was conducted with the aid of two computer-based UAV simulators, in-

teracting with other external hardware components such as the joystick controller, single-board

computer, web camera, microphone, speaker, and multi-colour (white and yellow) variable LED

lighting systems. These additional hardware components were laid out as shown in Figure 4.21.

Unlike typical pure simulation experiments, the hardware-in-the-loop experiment enabled prac-

tical interaction with real world components, making the results more generalisable to practical

real world applications. The study participants were mostly sited in front of the three-screen

UAV simulation computer workstation, during which the participant were asked to perform a

series of task.

Figure 4.21: Experiment Setup Layout Diagram.
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4.5.1 Study A design

Study A was divided into two sub-parts with the first part focused on speech and the second

part on lighting and background conditions.

Varying ambient noise levels

Speech was one of the components of the proposed mSVG aerobot control interface, hence the

need to determine it practical limitation for the proposed usage. This was done by introducing

noise. Two methods of introducing noise were considered – after or during speech capture. The

first was to generate a noise profile using a python program, to corrupt the captured speech

recording before it is being passed to the ASR for processing. Alternatively, a pre-recorded

noise such as stormy weather and multirotor propulsion noises could be overlaid on captured

speech to corrupt it before processing, using audio editing software to vary the noise level before

the combination. The second was to physically generate the noise level in the lab, so that the

captured speech recording was already corrupted by noise at the point of capture, after which it

is passed on to the ASR speech recogniser. The second method was chosen because it was more

practical and a better representation of typical real life applications.

Table 4.4: Noise levels generated by some small multirotor UAVs (Levin, 2017).

S/N Small Multirotor UAV Noise Levels (dB)

1 DJI Phantom 2 75.8

2 DJI Phantom 3 Pro 76.3

3 DJI Phantom 4 pro 76.9

4 DJI Inspire 2 79.8

5 Hover Cam 72.1

6 DJI Mavic Pro ∼ 65

7 DJI Mavic Pro Platinum ∼ 60

In order to determine what noise levels was to be used in the experiment, the average noise

level generated by practical multirotor UAV propulsion system was considered. Islam et al.

(2016) and Levin (2017) conducted experiments to measure the noise level generated by small

UAVs. In Levin (2017) experiments, five small UAVs were tested by flying the UAVs to a 1

m altitude, and placing a soundmeter 1 m adjacent to the UAV. Table 4.4 summarises Levin

(2017) observation. From this result, and for the purpose of this study, the noise level generated

by the small multirotor UAV was assumed to be approximately 80 decibels. Therefore, by

considering the practical noise levels generated by real small multirotor UAVs, the limitation
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of the implemented ASR speech system (∼ 85 dB practical ASR upper limit) and the ambient

laboratory noise level (∼ 55 dB quiet laboratory conditions), the noise level range of 55 dB to

85 dB, was selected.

It was also noted that sound reduces at a rate of 6 dB for every doubling of distance from a

noise source (Collman, 2014). Therefore, if a DJI phantom 2 generates 75.8 dB of noise at 1 m,

then it would be 69.8 dB at 2 m, 81.8 dB at 0.5 m, and 87.8 dB at 0.25 m. This information was

used to ensure that the point of noise measurement was at the microphone where both speech

and noise were being captured/recorded.

Table 4.5: List of speech commands uttered during noise level experiment.

S/N Speech Command

1 Go Forward

2 Go Backward

3 Step Left

4 Step Right

5 Hover

6 Land

7 Go Forward Half Meter

8 Go Backward One Meter

9 Hover One Meter

10 Step Left Half Meter

11 Step Right One Meter

12 Stop

Thefore, the first task was to measure the effect of varying noise levels from 55 dB to 85

dB in steps of 5 dB, being generated from a Bose Sound link mini speaker system, playing a

pre-recorded loop of a multirotor UAV propeller-rotor noise sound. The experiment participants

were asked to repeat a series of 12 speech commands made from a selection of words in the iQuad

speech vocabulary list in Table 4.2. The commands were “go forward, go backward, step left, step

right, hover, land, go forward half metre, go backward one metre, hover one metre, step left half

metre, step right one metre, and stop”, as shown in Table 4.5. The first six speech commands

were selected because they were essential UAV navigation command that specify fundamental

horizontal motion in the x and y coordinate direction at a fixed z altitude/vertical coordinate.

The seventh to eleventh command were randomly selected commands used to emulate practical

x, y, and z coordinate navigation were short distance (less than 3m) modifiers were applied. The
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twelfth command was selected based on practical consideration for a fail-safe/emergency/urgent

command phrase that halts any current motion action. These commands are issued at quiet

laboratory conditions of 55 dB, and then repeated for 60 dB, 65 dB, 70 dB, 75 dB, 80 dB, and

85 dB noisy laboratory conditions. The results are presented and discussed under Section 7.1

and Section 7.2.

Varying lighting levels and background conditions

Visual gesture was the second component of the proposed mSVG aerobot control interface,

and similar to the first component (speech), its practical usage limits was also needed to be

determined. This was done by varying lighting levels and background conditions to determine

how different visibility conditions affects visual gesture capture and recognition. Similar to the

speech component, two methods of introducing visual noise were considered – after or during

gesture capture. The first was to add Gaussian or other white noise to the originally captured

gesture image before processing the image for gesture recognition. Alternatively, an image

capture of an outdoor or indoor environment such as poor visibility in a stormy weather or

snow precipitation conditions could be edited and made the background of the captured gesture

image before being passed on for gesture recognition, by using a photo editing software to vary

the combination properties such as clarity level, brightness level, contrast level, transparency

level, etc. The second was to physically vary the visibility conditions of the capture environment

by varying the room lighting levels and background conditions. In this case, the visual gesture

image being captured would naturally include the ambient lighting conditions. Similar to the

speech limit experiment design, the second method was chosen for visual gesture image capture

visibility corruption, because it was more practical and a better representation of typical real

life applications.

From measurement, the limits of the LED lighting system provided generated a maximum

visibility of ∼1400 Lux (Overcast Day). Table 4.6 shows the practical lighting level ranges.

When the laboratory and LED lighting systems were turned off, the ambient visibility level

measured was ∼10 Lux (Twilight). This was due to the ambient stray light rays from the

workstation monitors and light reflection bouncing off corridor walls into the lab. Note that the

lux meter measurement was held vertically next to seated participants raised right hand (finger

gesture hand), facing the camera just like the experiment participant’s hand. The LED lighting

system had two lighting colour temperatures – white (5500 K) and yellow (3500 K), which were

used separately and in combination to additionally vary the room lighting conditions. Three

solid background colours – white, green, and navy blue were also used to further expand ambient

gesture capture conditions. The solid backgrounds were chosen to simplify gesture processing.
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Table 4.6: Lighting levels description.

S/N Light Levels (Lux) Description

1 0.0001 Overcast Night

2 0.001 Starlight

3 0.01 Quarter Moon

4 0.1 Full Moon

5 1 Deep Twilight

6 10 Twilight

7 50 Living room, hallway, toilets

8 100 Very Dark Day

9 500 Office lighting

10 1,000 Overcast Day, TV studio

11 10,000 Daylight

12 100,000 Sunlight

The green background was chosen because of its popularity in computer generated graphics,

and it is a primary colour. The navy blue background was used because it is a dark shade of

the primary colour, blue. White was chosen because of its popularity in photography, and its

consideration as a neutral background colour.

Figure 4.22: Conducting the experiments - visibility testing.

Therefore, for the second part of study A experiment, focusing on how varying ambient lighting

conditions and changing background affects gesture recognition quality, the procedure was to

divide the experiment into a sequence of nine lighting stages (LS1 - LS9). The default room
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lighting was turned off, all window blinds closed, and the main lighting source was the LED

lamp with two colour LEDs - white (5500 K) and yellow (3500 K), as shown in Figure 4.22.

For the first light stage, LS1, the LED Lamp were turned off and ambient stray light rays from

workstation monitors, of around 10 Lux was measured and recorded against each of the solid

coloured finger gesture capture background surface area. The green background was setup first,

and the user asked to hold up the following finger gestures in order: ‘one finger’, ‘two fingers’,

‘three fingers’, ‘four fingers’, and ‘five fingers’. The background qualities are estimated based

on how distinct the finger gestures were clearly recognised using a numeric scale of 1-10, with

‘1’ being a complete failure in gesture recognition, ‘3’ being the hand outline was successfully

registered, ‘5’ being all finger gestures being successful but with high frequency noise fluctuations,

and ‘7’ being all fingers were clearly distinguished but with small low frequency fluctuations (one

in 10 seconds), and ‘10’ being perfect steady recognition, with no noise fluctuations within 60

seconds. This was repeated for the blue and white background. And then the second lighting

stage, LS2 experiment was performed, turning only the white lighting knob to the first indicator

point on the right LED lamp, and repeating the capture procedure described for LS1. Note

that all other knobs were reset to zero. For LS3, the white lighting knob was turned to the first

indicator point on both the right and left LED lamps. All the white knobs position were then

reset back to zero before proceeding to LS4. For LS4, the yellow lighting knob was turned to

the first indicator point on the right LED lamp. For LS5, the yellow lighting knobs were turned

to the first indicator point on both the right and left LED lamp. For LS6, the white and yellow

lighting knobs were turned to the first indicator point on both the right and left LED lamps.

After completing LS6 capture, the yellow lighting knobs were reset back to zero. For LS7, the

white lighting knob was turned to the maximum position on both the right and left LED lamp.

After the LS7 capture, all white lighting knobs were reset back to zero. For LS8, the yellow

lighting knobs were turned to the maximum position on both the right and left LED lamp. And

finally, for LS9, both the white and yellow lighting knobs were turned to the maximum position

on both the right and left LED lamps. For each of these LS settings, the capture procedure

described for LS1 was repeated. Note that LS2, LS3, and LS7 were the white lighting capture

experiment stages. LS4, LS5, and LS8 were the yellow lighting experiment stages. LS1, LS6,

and LS9 were the mixed white and yellow lighting experiment stages. The results were presented

and discussed in Section 7.3.

4.5.2 Study B design

Study B experiment was designed to measure and compare the performance and cognitive

workload of the mSVG and RCJ interfaces. The cognitive workload was measured with the aid

of the NASA Task Load Index (TLX) survey questionnaire (Hart and Staveland, 1988; Hart,
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2006), and the performance compared in terms of how quickly and how accurately the navigation

task was completed. The task performed was an nCA Tier 1-III level task, which was considered

a balance task for both mSVG and RCJ, because any lower would benefit the RCJ and any higher

would benefit the mSVG. The study was conducted on the computer-based ROS Gazebo UAV

simulator, augmented with external hardware-in-the-loop components (single-board computer,

joystick controller, camera, microphone, speaker, and lighting system), in order to interact

with the physical world. The study participants were mostly sited in front of a three-screen

UAV simulation computer workstation, during which the participant were asked to perform two

major tasks – Task B1 and Task B2. Task B1 measured the participants RCJ skill level using

the commercial RealFlight Drone Simulator (RFDS) level challenges. Task B2 measured the

time taken to complete the Path v02 task using both the RCJ and mSVG interfaces. Task B2

also recorded how accurately the navigation task was completed using each of the interfaces,

after which the NASA TLX survey questionnaire was administered to the participants to relate

their experiences.

Task B1 - RCJ skill level

For Task B1, Futaba Interlink joystick controller was plugged into a computer running the

windows operating system, and the RealFlight Drone Simulator software program was loaded.

The challenge levels were then queued, and the joystick controller handed to the study partici-

pants to begin the flight navigation task. The maximum number of trials allowed per challenge

level for each participant was 7. The skill test was ended if the participant failed to progress

to the next challenge level within the allowed number of trials, or if the participants completes

all challenges through level 10. The scores generated by the RFDS simulator was a function of

time, indicating how quickly a participant completed the task regardless of how inaccurately or

roughly the task manoeuvre were executed.

Task B2 - RCJ vs mSVG performance comparison

In order to perform the RCJ and mSVG performance comparison, a test navigation path was

designed and developed in Gazebo, which was then imported into the basic world environment of

the RotorS ROS Gazebo simulator (Furrer et al., 2016), with an instance of the of the Ascending

Technologies (2013) AscTec Firefly hexacopter UAV running. Figure 4.23a shows the designed

navigation test path. It was designed to emulate a random real world flight navigation experience

with 90◦ right and left turns, obtuse angle turn, climbing and dropping, hovering, and going

through narrow openings. Figure 4.23b shows the developed navigation test path in Gazebo. In

developing the the Gazebo navigation test path, the dimensions of the Rotor s gazebo firefly uav

was considered. It was found to be 0.665 m wide, which fitted within the square wall windows
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which were dimensioned 1 m horizontally and 1.5 m vertically. The full dimension specification

details of the Astec firefly UAV model was available from Ascending Technologies (2013), and

was given 605× 665× 165 mm. The height of the first window obstacle from table floor was 1

m, and the second window obstacle was 0.5 m. The table floor was 2.5 m from ground reference

(z-axis upward). The entire challenge course structure is positioned x = 8.0 m, y = 0.5 m, and

z = 0 m.

(a) Designed navigation flight test Path v02.
(b) Gazebo developed test flight Path v02.

Figure 4.23: Designed and developed nCA Tier 1-III Path v02 flight navigation test path.

For each study participant, the navigation test was first completed using the joystick controller

interface, after which it was re-completed using the mSVG interface. Figure 4.24 shows the

developed mSVG navigation command syntax which the participants were required to familiarise

themselves with, before performing the mSVG segment of the experiments.

Figure 4.24: mSVG navigation control syntax used in flight Path v02 navigation.

After conducting some preliminary experiments, the performance margin between the RCJ

and mSVG interface was significantly large, the reason for which was due to the fact that the

mSVG was endowed with certain features such as altitude, attitude, and position assist. There-

fore, the Keyboard (KBD) interface was introduce to simulate the RCJ interface in altitude,
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atittude, and position (AAP) assist mode, in order to even the advantages the mSVG had over

the RCJ, for a more like-to-like comparison. Therefore, three interfaces (RCJ, KBD, and mSVG)

were eventually compared in the study, with the KBD interface representing the AAP-assisted

RCJ interface, and the conclusions drawn for the KBD interface were applied to the AAP-

assisted RCJ interface. In order words, a comparison was made between the mSVG interface

and both the standard and AAP-modified RCJ interfaces.

4.5.3 Experiment procedure

This section enumerates the experiment study procedure. For a more detailed step-by-step

procedure, refer to the 10-page participant logbook in Appendix D.5. As part of preliminary

preparation for each experiments, each participants were provided with a printed copy of the

participant information sheet, which was previously emailed to them. If the participant was

satisfied with the study conditions and wishes to continue with the tests, then they were required

to sign a written consent before the study could begin. In addition to this, health and safety

briefings were given. Samples of this documents are available in Appendix D.3 and Appendix

D.4. The experiment study procedure was as follows:

1. The participant workspace was setup with the participant comfortably seated in front of

the computer workstation. Tested that the speech and gesture system works for partici-

pants – calibrating where necessary. Ensured that the participant could interact with the

UAV simulator via speech, gestures, and a combination of both under optimum condi-

tions (quiet environment and good lighting) while sitting in front of the UAV simulator.

The preliminary measurements of the participants distance to microphone, microphone to

speaker, participant to camera, ambient noise level, participant voice level, and ambient

lighting level, was then performed and recorded in the participant’s logbook. (20 minutes)

2. The first part of study A experiment was then conducted. The Bose link mini speaker

noise source was turned on and a recording of a multirotor propulsion noise (included as

supplementary multimedia data with this thesis) was played through the speaker. The

noise level was being varied from 55 dB in steps of 5 dB until 85 dB. For each of 55 dB,

60 dB, 65 dB, 70 dB, 75 dB, 80 db, and 85 dB, the 12 word commands listed in Section

4.5.1 were repeated, and the result was recorded. (20 minutes)

3. The second part of study A experiment was then conducted. The LED lighting system was

setup, the default laboratory lighting was turned off. Using the steps described in Section

4.5.1, the gesture capture quality for each lighting stage was recorded. (20 minutes)

4. The first part of study B (Task B1) was then conducted. The RFDS challenge levels were

queued, and the participants were asked to attempt the RFDS challenges starting from
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Level 1 through Level 10, as described in Section 4.5.2. The score attained, the completion

time, and the number of trials for each level were recorded in the participants logbook.

(25 minutes)

5. The second part of study B (Task B2) was then conducted, as described in Section 4.5.2.

The ROS Gazebo was then setup for the RCJ navigation test experiment. The participant

completion time was recorded in the participant logbook. A screen recording of the sim-

ulator navigation was saved for later analysis of the navigation accuracy. The participant

was then administered the NASA TLX survey questionnaire to record their experience

with the RCJ interface. These were repeated for the keyboard (AAP-assisted RCJ) and

the mSVG navigation tests. For the mSVG test segment, an additional step of recording

in the participant logbook when speech or gesture was used during the navigation test was

performed. (30 minute)

The experiment study duration was 2.5 hours per participant – i.e. 20 minutes participant

preliminary + 60 minutes study A + 15 minutes break + 55 minutes study B. Figure 4.25, shows

the research experiment conductor preparing the experiment participant.

Figure 4.25: Preparing the participant – conducting the experiment.

Some of the experiment precautions observed included carefully taking readings to ensure

that the collected data was accurate and reliable. Experiment assumptions, constraints, and

limitations were clearly stated were applicable, to ensure their repeatability. Standard factory

calibrated measuring instruments were used. The Gain Express SLM-25 professional sound

level meter with backlight display and a measurement range of 30 dB - 130 dB (with data

recording function) was used for measuring sound levels. The YH-THINKING portable handheld

professional digital Lux meter with USB and a measurement range of 0 Lux to 200,000 Lux was
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used for measuring the lighting level. Digital fluctuations were allowed to settle before taking

readings.

A risk assessment was completed for this study and the study was approved by the University

of Southampton Ethics and Research Governance Community with the ethics approval code:

30377. A copy of the completed risk assessment and the approved university ethics application

form is given in Appendix D.1 and Appendix D.2.

4.5.4 Participants recruitment and demographic

For the research study, 37 participants were recruited. The study participants were volunteers

and randomly recruited. Most of the participants were university students in their second or

third year of studies. Each participant received a £20 Amazon voucher to compensate for

time and travel. The selection criteria was good finger dexterity, normal speech articulation

ability, English language proficiency, and aged between 18 and 69 years old. A website was

designed, developed, and hosted on-line for recruiting and signing up the experiment participants

– https://www.hai-research.com/participate. The website was developed using ASP.net

C# with the aid of Microsoft Visual Studio 2017 IDE. It was hosted on Microsoft Azure UK

South servers, on the domain hai-research.com. An SSL certificate was used to secure the

website by establishing an encrypted link between the web server and user’s web browsers. A

secure database was setup to securely store participants signup information. The Website was

also optimised for mobile usage to ease participant’s signup process. Figure 4.26 shows the

participants signup page printed from the Google Chrome web browser.

The demographic distribution of the 37 recruited participants is shown in Figure 4.27. Figure

4.27a shows each participants accumulated UAV flying hours using the RC joystick controller.

The average flying hours of the participants was 10.9595 hours as indicated in Figure 4.27a.

14 of the 37 participants (∼ 38%) had no previous flying experience. 12 of the 37 participants

(∼ 32%) had at least 10 hours of UAV RCJ flying experience. And the remaining 11 of the 37

(∼ 30%) participants had some flying experience under 10 hours. Figure 4.27b shows how long

the participants have been flying for. The average number of months the participants have been

flying for was 24.1622 months. 11 of the 37 participants (∼ 30%) had been flying for at least

24 months. The pie chart in Figure 4.27c shows the male to female gender distribution of the

study participants. Of the 37 participants, there were 14 female and 23 male volunteers. The

pie chart in Figure 4.27d shows the age distribution of the participants. 25 of the 37 participants

(∼ 68%) were aged between 18 - 21 years of age. The remaining 11 of the 37 participants age

were distributed as shown in Figure 4.27d. Figure 4.27e shows the ethnic distribution of the

participants. 24 of the 37 participants (∼ 65%) were White-British and the others distributed

https://www.hai-research.com/participate
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10/31/2017 Participant Signup Form - Human Aerobotic Interaction Research

http://localhost:7213/Participate 1/1

Participant Signup Form
Thank you for volunteering to participate in this human-aerobotic interaction research. Please complete the following participant information form:

Basic information:

RC Joystick controller UAV flying experience:

Been flying since:

Preferred schedule:
Please choose any three date/time schedules for which you may be available between 20th November 2017 to 20th January 2018. It's ok if this
changes later.

Additional information:
Please use the following text box to ask the researcher any question or to give any additional information you want the researcher to know, if any.

 

© 2017 - Ayodeji Abioye | Human Aerobotic Interaction Research | University of Southampton | PTDF | SetsCentral Ltd.

First Name

Last Name

Email

Age 18 - 21 yrs 22 - 25 yrs 26 - 30 yrs  

31 - 35 yrs 36 - 45 yrs 46+ yrs  

Declined  

Multirotor (hrs) 0

 

Fixed Wing (hrs) 0

 

Simulator (hrs) 0

 

Month / Year --------- ----

First date / time Day  Select Month  Select Time

Second date / time Day  Select Month  Select Time

Third date / time Day  Select Month  Select Time

Additional Note

Submit

Figure 4.26: Participant signup page – https://www.hai-research.com/participate.

as shown in Figure 4.27e. The demographic data is also presented in the Table in Appendix

B.1, for the purpose of specific detail referencing.

https://www.hai-research.com/participate
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(a) UAV flying hours. (b) Months flying UAV.

(c) Gender distribution. (d) Age distribution. (e) Ethnic distribution.

Figure 4.27: Participants demographic distribution - previous flying experience and unique

characteristics.

4.5.5 Experiment Result Analysis

The experiment results were analysed with the aid of regression plots and analysis, the Analy-

sis of Variance (ANOVA), and the two-sample t-tests. Statistical significance testing was perform

on the results. Both null and alternative hypothesis were defined to proof or disproof the thesis

hypothesis. The null hypothesis followed the pattern of stating that there was no statistically

significant difference between the mean performances of the RCJ, KBD, and mSVG interfaces

i.e. µrcj = µkbd = µmsvg, or MSBetween roughly equals MSWithin. While the alternative hypoth-

esis often argued that there was a significant difference between the mean performances of the

interfaces i.e. µrcj 6= µkbd 6= µmsvg, or MSBetween > MSWithin. Where the null hypothesis test

fails to be disproved or rejected, the null hypothesis was accepted, which usually indicates that

the sample means were clustered within the 95% confidence interval of the combined sample

distribution, for a given α = 0.05. But were the null hypothesis was disproved, the null hypoth-

esis was rejected and the alternative hypothesis was accepted. The t-test was used for pairwise

comparison where two of the three sample means were considered similar, yet the ANOVA anal-

ysis suggests a significant difference because of the simultaneous triple comparison. In most

cases, the ANOVA analysis was sufficient and preferred, in order to avoid compounding type I
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errors with multiple t-tests since more than two sample means were involved. Also specifying

low α values helped reduced type I errors (false positive) – cases where the null hypothesis was

rejected even though the null hypothesis was actually true.

4.6 Human Factors

According to Sanders and McCormick (1993), human factors “discovers and applies informa-

tion about human behaviour, abilities, limitations, and other characteristics to the design of

tools, machines, tasks, jobs, and environments for productive, safe, comfortable, and effective

human use” (Stanton et al., 2005). Human factors is an important consideration in the design

and maintenance of unmanned aircraft (Hobbs and Herwitz, 2005). For example, Johnson and

Shea (2008) showed that the 2006 Predator B UAV accident, in Arizona, was caused by multiple

human factor failures that could have been potentially prevented. In recent years, with the

massive proliferation of remotely piloted unmanned aerial systems in many civilian applications,

certain concerns are brewing up from several quarters - government, civil aviation agencies, se-

curity and intelligent agencies, the military, rights groups, and the public, who have argued that

the operator’s lack of shared fate with the aircraft could breed complacency. In addition, the

operators of these systems could get bored or easily distracted. This could put the safe operation

of such aerial vehicles into questions as such momentary lapse in concentration could result in

an aerial accident, flying into restricted areas, invasion of privacy, amongst several others.

Therefore, beyond investigating and developing novel HCI interfaces for controlling small

UAVs, there is a need to determine the effectiveness, efficiency, intuitiveness, reliability, safety,

and suitability of these interfaces. The effectiveness and efficiency of the proposed mSVG inter-

face, was investigated through the performance and cognitive workload analysis of the results

from the experiment study.

4.6.1 Performance Measurement

A major consideration in the development of any system is how to measure the system’s

performance. According to Lindquist (1985), the effort-to-learn and the effort-to-use contributes

to the usability of human-computer interaction (HCI) interfaces. Generally, a good interface

design improves the overall user experience, makes interaction enjoyable, intuitive, easy to learn,

and is functionally effective with an accepted level of precision and accuracy. Chao (2009) also

suggested that a good human computer interaction is not about the human adapting to the

limitation of the computer (as used to be the case), but about the computer adapting to the

natural human tendencies or expectations. According to Shneiderman (1998), the usability of an



142 Chapter 4. Research Method

interface can be measured by the time to learn to use the interface, the interface’s performance

speed and rate of errors, the user’s retention of how to use the interface over time, and the

user’s subjective satisfaction. The last point, user’s satisfaction, is particularly important as it

agrees with Coelho and Verbeek (2014) observation that despite the technical poor performance

and inaccuracy of a gesture interface, the users still rated the system high because they enjoyed

the experience. Considering this implication from an alternative perspective, implies that a

very technically good and accurate interface may still offer a poor user experience. According to

Oviatt et al. (2004), an interface performances can be measured by the human performance error

and the systems response latency, which agrees with Shneiderman (1998) usability measures.

The participants of this research study were also asked to rate their navigation task performance

with each of the RCJ, KBD, and mSVG interfaces.

4.6.2 Cognitive Workload and Situation Awareness

Cavett et al. (2007) investigated the performance of various human-computer interface (HCI)

configurations for the control of unmanned aerial vehicles. The researchers designed a few com-

binations of graphical interfaces using MATLAB, to test the variation in the human cognitive

workload on different interfaces. They tried to identify interfaces that reduces the human op-

erator cognitive workload and enhances the operator’s situation awareness. These researchers

suggested the need to redesign current HCI interaction and communication links between UAV

and operators because of the limitation in human cognition, judgement, decision-making, and

tactical understanding. Although in Cavett et al. (2007), the researchers were interested in a

redesign of how information is presented from the UAV to the Operator, this research inves-

tigates the complementary case of how the information from the operator is communicated to

the UAV. In both cases, the idea of reducing the operator workload and improving situation

awareness is equally important. Both direction of communication combine to form a close-loop

control system, with feedback. Similarly, Lim et al. (2019) investigated the management of the

human operator’s workload and situational awareness, within the context of multi-UAV surveil-

lance applications, using their developed Cognitive Human-Machine Interfaces and Interactions

(CHMI2) framework. They proposed an adaptable and reconfigurable ground control station

that responds to the real-time fatique level and situation awareness of the operator in order to

improve their decision making capability.

So, what is meant by the operator’s cognitive workload and situation awareness? Cognitive

workload refers to the amount of concentration required by an operator in performing a task. It

can be considered as the amount of ‘brain power’ dedicated to the performance of a particular

activity. Situation awareness describes an awareness of the environment - elements and events
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- during task performance. It is the ability to effectively observe and react to other environ-

mental disturbances, while performing the primary task. For example, consider the case of a

UAV operator using a joystick controller, to control a UAV without stabilization assist (nCA

tier 1-I). The operator’s concentration requirement is highly demanded to keep the UAV flying

within a safe distance from all obstacles, as well as protect itself from any dangerous manoeuvre

due to an application of too much control (thrust, rudder, aileron, or yaw). Because of this, the

operators interaction with the environment is bare minimal. A narrow field of visual focus could

result in a fast moving flying object approaching from a distance, appearing suddenly, causing

a potentially dangerous impulse response from the UAV operator. The mSVG technique pro-

posed and developed in this research was considered to offer a better balance between cognitive

workload and situation awareness for the small multirotor UAV operator. This was investigated

through the use of the NASA Task Load Index (TLX) components.

4.6.3 Cognitive Workload - NASA Task Load Index

The NASA TLX is a cognitive workload measurement tool developed by Hart and Staveland

(1988) for NASA for performing comparative measurements of the cognitive demand designed

equipments place on their aviation crew. This tool has since found application in many other

fields beyond aviation and aeronautics, most notably robotics and user interface research, such as

Fels et al. (2015) predicting cognitive workload for brain-robot interfaces, and Haber and Chung

(2016) assessment of UAV operator workload for a ground control workstation design, among

several others. In Hart (2006) survey of 550 studies in which the NASA-TLX questionnaire was

used, the authors found this tool to have spread far beyond its original application (aviation),

focus (crew complement), and language (English).

Figure 4.28 shows the NASA Task Load Index (TLX), a multidimensional scale subjective

workload rating method designed to obtain workload estimates from one or more operators while

they are performing a task or immediately afterwards (Hart, 2006). In NASA TLX, workload is

defined as the “cost incurred by human operators to achieve a specific level of performance.” The

subjective experience of workload is defined as an integration of weighted subjective responses

(emotional, cognitive, and physical) and weighted evaluation of behaviours. The behaviours

and subjective responses, in turn, are driven by perceptions of task demand. Task demands

can be objectively quantified in terms of magnitude and importance. An experimentally based

process of elimination led to the identification of six dimensions for the subjective experience of

workload: mental demand, physical demand, temporal demand, perceived performance, effort,

and frustration level. Figure 4.29 shows a graphical representation of the sub-scales and overall

weight ratings. The overall workload rating was obtained by performing a weighted sum of the
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Figure 4.28: Hart (2006) NASA TLX rating scale definition.

six index components.

Figure 4.29: Hart (2006) graphical representation of weighted sub-scale ratings and an overall

workload value.

In this research study, the administered NASA TLX survey was analysed by comparing the

non-weighted bar chart contour of the interfaces with each other. The interface with the lower

contour was considered the better interface. In addition to this, element by element bar plots

were compared too. And finally, an overall non-weighted mean-sum was used to determine a

scaler factor to represent this research study, for the purpose of future numerical/quantitative

comparison with other similar research works. A sample of the NASA TLX questionnaire is

given in Appendix D.6. Table 4.7 highlights the key question posed by each component of

the NASA TLX survey questionnaire, and also shows the symbols used to represent the TLX
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Table 4.7: NASA TLX Symbol and Meanings

S/N Symbol TLX Index Key Question

1 md mental demand How mentally demanding was the task?

2 pd physical demand How physically demanding was the task?

3 td temporal demand How hurried or rushed was the pace of the task?

4 p performance How successful were you in accomplishing what you were

asked to do?

5 e effort How hard did you have to work to accomplish your level

of performance?

6 f frustration How insecure, discouraged, irritated, stressed, and an-

noyed were you?

component in the analysis of the experiment result.

4.7 Chapter Conclusion

In this chapter, the research method used and the rational for selecting the method and

components were given. The interface development section discussed the keyboard interface as a

symbol generator, the speech capture and processing, visual gesture recognition, and RC joystick

selection. Three hardware platforms were discussed, the ImmersionRC XuGong, iQuad Jade,

and Unicorn multirotor platforms. Two hardware in the loop simulation were also discussed,

the RealFlight Drone Simulator and the RotorS ROS Gazebo simulator. The method used in

this research work was to conduct an experiment study. The details of the experiment design

was presented and discussed. The experiment procedure was enumerated. The participant

recruitment method and the demography of the recruited participants was discussed. The

method considered for the analysis of the experiment result was also presented. The discussions

in this chapter was capped with the presentation of the cognitive workload human factor analysis

consideration, with a focus on the NASA TLX survey tool.

By comparing the methodology used in this research with other similar research, it was found

that Gubcsi and Zsedrovits (2018) ‘Ergonomic Quadcopter Control Using The Leap Motion

Controller’, also used the Odroid XU4 hardware but only recruited 4 experiment participants,

whereas this study recruited 37 participants i.e. 33 more participants. However, unlike the

hardware-in-the-loop laboratory simulation tests performed in this study, Gubcsi and Zsedrovits

(2018) conducted outdoor tests on a real IRIS+ drone. Further, the authors chose to investigate

the Leap Motion device for UAV control while in this research, a multimodal combination of

speech and gesture was selected for the same UAV control. Schelle and Stutz (2016) work was
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gesture only, i.e. no speech combination, although they considered using flashlights to augment

their gesture interaction. They used whole body gestures, whereas this research used finger

gestures only. Also, they did not perform any comparison with other UAV control interfaces,

whereas this research compared the mSVG technique with the RCJ interface. They did not

perform any experiment involving multiple human operators as was performed in this research,

where 37 participant participated in the experiment study. However, their implementation was

more practical, unlike this research which was conducted under controlled laboratory conditions,

their tests was conducted outdoors (Schelle and Stütz, 2018).



Chapter 5

The Navigational Control Autonomy

(nCA) Model

The development of the navigational control autonomy (nCA) model was motivated by the

need to compare multiple control interfaces. It was soon observed that the autonomy of the

platform affects the choice of human-computer interaction (HCI) control interface used. The

nCA model therefore provides a method for mapping HCI control interfaces to an appropriate

platform autonomy level.

5.1 Control Autonomy - Autonomy Control Levels

“By Autonomous, it is meant the ability to be self-governing/operating within given con-

straints or rule set” (Payne, 2007). The meaning of autonomy in robotics slightly differs from

the political, philosophical, or biological meanings. This difference has been responsible for

several contentions between experts on how this term is used. The argument as to whether

robotic systems performing a task without external control commands are really doing so solely

through their own ability to make decisions or through a decision-making method that has been

pre-programmed into them. Especially when such systems may be considered to have been

designed and developed to perform such specific functions and not a random system existing

in nature. The designed artificial autonomous system process could be broken down into bits,

understood, and hence predictable by the designer. Therefore, there seems to be a thin layer

requiring further clarification as to whether:

• Proponents: a robotic system, performing a particular task without being told how to do

such task, is simply autonomous or

• Opponents: just executing a pre-defined program on how to make the right decisions that
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complete the task.

In other words, a clarification needs to be made as to whether executing a program, not of the

task, but of how to decide on key elements that affects accomplishing the task, is autonomous or

automatic. Clearly, executing a program of the task would be automatic as described by Clough

(2002). In order to avoid being drawn into this debate, what is meant by autonomy in this

chapter is defined in simple, clear, and unambiguous terms. Clough (2002) made a distinction

between automatic and autonomous systems, “Automatic means that a system will do exactly

as programmed, it has no choice. Autonomous means that a system has a choice to make free of

outside influence. . . ” According to Pfeifer and Scheier (1999), “autonomy means independence

of control. This characterization implies that autonomy is a property of the relation between

two agents, in the case of robotics, of the relations between the designer and the autonomous

robot. Self-sufficiency, situated-ness, learning or development, and evolution increase an agent’s

degree of autonomy.”

In this chapter, autonomy is conceptualised as being self-operating in a dynamic environment,

within a given sets of rules or constraints, without relying on external control. This could be

with the aid of a computer program working with sensors to guide decision-making, or some

complicated artificial intelligence real-time learning and adapting algorithm. This could be a

decision method that the operator may or may not understand, may or may not be able to

predict, but is optimal enough to safely complete the assigned task to an acceptable standard.

Autonomy, in this case, needs no continuous real-time control interaction during task execution

but rather sparse real-time command, or just the initial command instruction may be given, in

some cases.

Autonomy is an abstract concept difficult to measure empirically; hence, it is rather described

qualitatively by analogically developed subjective hierarchical levels. The autonomy of an aerial

robot can be considered in two contexts - navigation and payload. Usually, the payload autonomy

level is expected to match the navigation autonomy as observed in Clough (2002) classification,

which was adopted by the US Air Force Research Lab (AFRL) as the AFRL’s ACL (Autonomous

Control Levels). It was also used as a standard classification in other US military and government

agencies, and by their contractors (Sholes, 2007). Clough (2002) identified eleven autonomy

control levels, listed in order of increasing autonomy:

1. Remotely Piloted Vehicle

2. Execute Pre-planned Mission

3. Changeable Mission
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4. Robust Response to Real Time Faults/Events

5. Fault/Event Adaptive Vehicle

6. Real Time Multi-Vehicle Coordination

7. Real Time Multi-Vehicle Cooperation

8. Battlespace Knowledge

9. Battlespace Cognizance

10. Battlespace Swarm Cognizance

11. Fully Autonomous

The ACL incorporated a model of the human OODA (Observe, Orient, Decide, and Act)

loop, a loop that seemed popular with the military (Clough, 2002). Sholes (2007) developed a

simulation technique for evaluating multiple autonomy algorithms based on Clough (2002) ACL

model. In a separate study by the Office of Naval Research Horrigan and ONR’s Committee

(2000) classified autonomy into the following six levels enumerated below:

1. Human Operated

2. Human Assisted

3. Human Delegated

4. Human Supervised

5. Mixed Initiatives

6. Fully Autonomous

Hill et al. (2007) presented the modified PACT (Pilot Authority and Control of Task) auton-

omy level system, originally developed by the UK Defence Evaluation Research Agency (DERA),

as a better classification of autonomy compared to the Clough (2002) ACL. Firstly, they con-

sidered Clough (2002) descriptive autonomy useful for vehicle level classification but inadequate

for classification at functional levels. Secondly, Clough (2002) ACL imposed an artificial ceil-

ing on the autonomy level that can be achieved by an individual vehicle by introducing swarm

behavioural requirements within it. The PACT classification is as follows:

1. Level 0: Full pilot with no computer autonomy
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2. Level 1: Pilot assisted by computer only when requested

3. Level 2: Pilot assisted by computer without pilot necessarily requesting it (computer advice

continuously)

4. Level 3: Pilot backed up by computer

5. Level 4a: Computer backed up by pilot - computer acts when authorised

6. Level 4b: Computer backed up by pilot - computer acts unless pilot disapproves

7. Level 5a: Computer monitored by pilot - computer informs human of actions

8. Level 5b: Computer monitored by pilot - computer acts completely autonomously and

need not inform the human of its decisions

As may be observed, the PACT levels seemed similar to Horrigan and ONR’s Committee

(2000) classification, which also closely aligns with the civilian aerial robot navigational control

autonomy model presented in this chapter. In addition to the limitations already offered by

Hill et al. (2007), Clough (2002) ACL was structured after military missions, therefore, its

military-specifics context makes it difficult to adopt it in many emerging civilian applications.

In addition, Clough (2002) ACL was modelled as a generalised classification method for all types

of military robotic systems - aerial, ground, and underwater.

Since autonomy, as a concept in robotics is a subjective non-quantitative (not measurable)

analogical (but comparable) descriptor, perhaps its layers could be considered in fuzzy terms as

overlapping strata expressed as a range of percentile rather than as discrete levels. Therefore,

the developed autonomy levels presented in Figure 5.1, which is used as the basis of discussing

the human aerobotic interfaces, is considered as a continuous, overlapping layer rather than

quantized or discrete layers. For this reason, the presentation of the autonomy levels in Figure

5.1 is not presented in levels or vertical columns suggesting equal linear step size increments in

autonomy. Sholes (2007) simulation plot and prediction of the growth of autonomy seems to

supports this hypothesis of a non-linear step-size increase or change from one successive layer

to another. Moreover, the concept of autonomy is a borrowed property from living organisms

existing in nature and the ecological system, which is rarely linear.

Figure 5.1 presents a two-dimensional, expandable pyramidal model of Navigational Control

Autonomy (nCA) levels for multirotor aerial robotic systems. In this model, autonomy is divided

into three tiers: lower, intermediate, and upper tiers. Within each tier, autonomy level increases

from left to right, and then across tiers from lower to intermediate to the uppermost tier. For
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Figure 5.1: Multi-rotor aerial robot navigation control autonomy (nCA) levels.

this reason, it is termed the ‘inverted lightning model of autonomy’ as shown in Figure 5.2.

This two-dimensional pyramidal model of autonomy is expandable rightwards and upwards to

accommodate for new or missing autonomy level classes.

Figure 5.2: The inverted lightning model of increasing autonomy.

Unlike the Office of Naval Research (ONR) and Clough (2002) levels of autonomy, the nCA

model does not take into account the payload autonomy. However, payload autonomy is expected
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to match the aerial robot’s navigation control level. The separation of navigational autonomy

from payload autonomy simplifies the interaction relationship between an operator and an aerial

robot (as considered in this chapter). Additionally, because autonomy classification may vary

slightly across specific domains, the classification method used in this chapter has been developed

specifically for multirotor aerial robotic systems’ application in the civilian domain; as the

AFRL’s and ONR’s classification were patterned towards military specific applications. Perhaps,

with the rapidly evolving civilian applications of the aerobot, a less military objective-based

classification may be worth considering.

5.2 Tier-one Control Levels

The nCA model described in Figure 5.1, has six components distributed in three tiers. The first

tier consists of the following modes:

1. Rate control

2. Attitude stabilisation control

3. Altitude, position, and heading hold/assist Control

Rate control mode is the minimal level at which a human operator can control a small multi-

rotor aircraft. In this mode, no sensor is needed. Full control of the three angular velocities (Roll

rate dφ
dt
, Pitch rate dθ

dt
, & Yaw rate dψ

dt
) are given to the operator. This is usually performed with

the aid of the RC joystick controller. A high level of skill is required to operate the multirotor

aircraft at this level. This level is also called the Acro (short for Acrobatic) or Manual mode.

RC hobbyist often prefer this mode when performing stunt manoeuvres for entertainment pur-

poses. Flying at this level usually requires many training hours. It could take up to 600 hours

of training to become an expert (from being a novice who has never flown before).

The Attitude stabilisation control mode is the next level after the rate control mode. In this

mode, the operator is assisted with attitude stabilisation. The operator only has partial control

over the three angular velocities (Roll rate ∂φ
∂t
, Pitch rate ∂θ

∂t
, & Yaw rate ∂ψ

∂t
). This is because

the multirotor aircraft’s flight controller, in this case, has a stabilisation loop that continuously

balances the aerobot horizontally, especially when the operator stops feeding new rate control

data. The stabilisation loop in this mode requires, at least, an accelerometer sensor. Additional

or optional sensors may include the gyroscope and magnetometer. Data from a gyroscope could

be collected and fused with the accelerometer data for a more accurate attitude stabilization

control, because the accelerometer is prone to noise and the gyroscope to drift. A magnetometer

could also be integrated to minimize yaw drift.
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The next level after the attitude stabilisation is the altitude, position, and heading hold/assist

control mode. In addition to the attitude stabilisation from the previous mode, the operator is

also assisted with the altitude, position, and heading direction. In this mode, the operator no

longer has control over three angular velocity parameters. Control is performed by manipulating

three linear velocities (Horizontal x i.e. dx
dt
, Horizontal y i.e. dy

dt
, & Vertical z i.e. dz

dt
velocity).

In this mode, more sensors are required, such as GPS, barometer, ultrasonic, camera, infrared,

lidar, etc. for localisation within the system specified coordinate system.

5.3 Tier-two Control Levels

The second tier of the nCA model consists of the following two modes:

1. Coordinate/waypoint navigation control mode

2. Autonomous navigational mode

The lowest level of the second tier is the coordinate/waypoint navigation control mode. This

may also be called the automatic navigation mode. In this mode, low-level controls are com-

pletely abstracted from the operator. Navigation is specified by the user before execution. The

start point, intermediate points, and goal point are pre-fed into the aerobot. Once execution

starts, the multirotor flight controller is responsible for all low-level control required to achieve

the goal point from the start point to the endpoint via the route specified by the operator.

Execution would proceed as plan except if the operator decides to abort the mission. In this

mode, navigational sensors for location, continuously tracking flight route, are required. The

system may or may not have a sense and avoid system and is, therefore, the responsibility of

the operator to ensure that the specified route is safe enough for the aerobot to operate. The

aerobot at this control level is expected to be able to perform some self-diagnostics check on

itself, and relay issues requiring operator advice or intervention and may be robust enough to

execute certain fundamental safety measures such as abort mission and return to launch.

The higher level of the second tier of the nCA model is the autonomous navigation mode. In

this mode, the operator only needs to specify the goal position or object, which could be static

or dynamic, as in the case of a person-following UAV. This mode requires: 1) sense and avoid

(SAA) sensors and 2) a path planning AI algorithm.

5.3.1 nCA Tier 2-I Alps search and rescue scenario

In Section 1.4.1, the Alps search and rescue scenario was introduced. The operation described

was a high level operation requiring navigation autonomy in the order of nCA Tier-two.



1
5
4

C
h
a
p
ter

5
.
T
h
e
N
a
viga

tio
n
a
l
C
o
n
tro

l
A
u
to
n
o
m
y
(n
C
A
)
M
od
el

Table 5.1: Example Alps climber’s UAV communication vocabulary set.

S/N
Possible Climber’s Re-

quests
Possible UAV Response

Possible Climber’s Re-

sponse

1 Speech “Alert!”

a)No Weather or Signposting alert! Is there anything else I can help with?

b) Mild/Medium/High Weather/Storm/Precipitation heading this way! Is

there anything else I can help with?

c) Nearest Crevice is within 0.5 km, 1 km, 2 km, 3 km, 4 km, 5 km, or more

than 5 km away. Is there anything else I can help with?

d) Mild/Medium/High Weather/Storm/Precipitation heading this way, and

the nearest Crevice is within 0.5 km, 1 km, 2 km, 3 km, 4 km, 5 km, or more

than 5 km away. Is there anything else I can help with?

a) Speech “Yes”

b) Speech “No”

c) Gesture “Thumbs up”

d) Next Request

2
Speech “Shelter!” or

Gesture “time out”

a) No shelter nearby!

b) Nearest Crevice is within 0.5 km, 1 km, 2 km, 3 km, 4 km, 5 km, or more

than 5 km away. Is there anything else I can help with?

a) Speech “Yes”

b) Speech “No”

c) Gesture “Thumbs up”

d) Next Request

3

Speech “Panoramic

selfie!” or Gesture “Pic-

ture board”

a) Initializing panoramic event! Please confirm panoramic selfie? [Climber

responds to continue]

b) [After panoramic selfie event] Panoramic selfie captured! Is there anything

else I can help with?

a) Speech “Yes”

b) Speech “No”

c) Gesture “Thumbs up”

d) Next Request

4
Speech “Help!” or Ges-

ture “Pray”

a) Contacting control room operator! Please confirm request? [Climber re-

sponds to continue]

b) UAV acts as dial up telephone between mountaineer and rescue operator

c) [After disconnect] Is there anything else I can help with?

a) Speech “Yes”

b) Speech “No”

c) Gesture “Thumbs up”

d) Next Request

5

Speech “Go away!” or

Gesture “Wave away” or

Gesture “Goodbye wave”

or “ignore UAV for 30 s”

a) UAV returning to patrol! Goodbye?

a) Speech “Yes”

b) Speech “No”

c) Gesture “Thumbs up”

d) Next Request
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Table 5.2: Example Alps search and rescue operator’s UAV communication vocabulary set.

S/N Possible Operator’s Requests Possible UAV Response Possible Operator’s Re-

sponse

1

a) Speech “Hold!”

b) Speech “Hold Position!”

c) Speech “Hold Altitude!”

d) Gesture “Fist!” e) Speech “Release

hold!”

a) Holding position and altitude! Please confirm operation?

b) Holding position! Please confirm operation?

c) Holding altitude! Please confirm operation?

d) Holding position and altitude! Please confirm operation?

e) Releasing position and altitude hold! Please confirm opera-

tion?

a) Speech “Yes”

b) Speech “No”

c) Gesture “Thumbs up”

d) Next Request

2

a) Speech “Hover higher/lower!”

b) Speech “Hover at 3 m, 4 m, 5 m, 6

m, or 7 m”

a) Hovering higher/lower! Please confirm operation?

b) Hovering at 3m, 4 m, 5 m, 6 m, or 7 m! Please confirm oper-

ation?

a) Speech “Yes”

b) Speech “No”

c) Gesture “Thumbs up”

d) Next Request

3
a) Speech “Video!” or

b) Speech “Stop Video!”

a) Recording video! Please confirm operation?

b) Stopping video recording! Please confirm operation?

a) Speech “Yes”

b) Speech “No”

c) Gesture “Thumbs up”

d) Next Request

4 Speech “Panoramic view/video!”

a) Capturing panoramic video! Please confirm operation? [Op-

erator responds to continue]

b) [After capture] Initializing Bluetooth/Wi-Fi video transfer/u-

pload! [Operator preps Rx device or operation times out in 30

sec]

c) [After transfer] Panoramic view completed! Is there anything

else I can help with?

a) Speech “Yes”

b) Speech “No”

c) Gesture “Thumbs up”

d) Next Request
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5

a) Speech “Bird’s eye view!” or

b) Gesture “hand salute on forehead

long range view”

a) Capturing bird’s eye view! Please confirm operation? [Opera-

tor responds to continue]

b) [After capture] Initializing Bluetooth/Wi-Fi image transfer-

/upload! [Operator preps receiving device or times out in 30

sec]

c) [After transfer] Bird’s eye view completed! Is there anything

else I can help with?

a) Speech “Yes”

b) Speech “No”

c) Gesture “Thumbs up”

d) Next Request

6

a) Speech “Follow me!” or Gesture

“Wave along”

b) Speech “Stop following!”

a) Initializing follow mode! Please confirm operation?

b) Stop following! Please confirm operation?

a) Speech “Yes”

b) Speech “No”

c) Gesture “Thumbs up”

d) Next Request

7

a) Speech “Find ‘p’ object with ‘q’

colour in ‘r’ place!”

b) Speech “Find climbers over there

[Pointing Gesture]”

c) Speech “Find missing persons

over there [Pointing Gesture] using

heat/thermal signatures”

d) Speech “Track that [Pointing Ges-

ture] brown [colour descriptor] vehicle

[object descriptor]!”

a) Searching ‘p’ object with ‘q’ colour in ‘r’ place! Please con-

firm operation? [recall via controller or handheld computer]

b) Searching for climbers North, South, East, or West of here.

Please confirm operation? [recall/cancel via controller or hand-

held computer]

c) Searching for missing persons North, South, East, or West of

here, using visible and thermal imaging. Please confirm opera-

tion? [recall/cancel via controller or handheld computer]

d) Tracking the brown [colour descriptor] vehicle [object de-

scriptor] at θ deg [compass bearing]. Please confirm operation?

[recall/cancel via controller or handheld computer]

a) Speech “Yes”

b) Speech “No”

c) Gesture “Thumbs up”

d) Next Request

8

a)Speech “Go away/patrol!”

b) Speech “Patrol”

c) Gesture “Wave away”

a) UAV returning to patrol! Goodbye?

a) Speech “Yes”

b) Speech “No”

c) Gesture “Thumbs up”

d) Next Request

Example Alp search and rescue operator’s UAV communication vocabulary set - END
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This section expands on other possible applications within the Alp mountaineering environ-

ment. For example, any of these events could trigger the automatic approach of a patrol: a)

signposting event to alert of dangerous crevice nearby or approaching stormy weather, b) scenic

sight event to suggest a panoramic selfie, c) emergency event such as an unconscious climber

to alert the central control for emergency response. However, a climber could trigger a UAV

approach by simply waving it over. Examples of the climber control command and interaction

possible are listed in Table 5.1. In addition to the standard climber control commands, search

and rescue operators may have access to more advance control command operations such as

those listed in Table 5.2.

5.3.2 Panoramic selfie

Figure 5.3: Panoramic selfie operation.

In panoramic selfie mode, described in Figure 5.3, the UAV pulls back from the operator

to a horizontal distance 10 m away from the operator and climbs to a 5 m altitude. It then

focuses the camera on the mountaineer and flies along the fixed geometric path, formed by the

top edge of an imaginary cylinder as shown in Figure 5.3, for a complete revolution about the

mountaineer, while panning the camera to remain focused on the climber, capturing a short

video clip or image sequence. Figure 5.4 provides a real life size references for this application.

5.3.3 Bird’s eye view

In bird’s eye view mode, the UAV rises vertically to an altitude of 50 m, captures an image,

the centre of which is GPS tagged, and then descends back to the user to transfer the image via
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Figure 5.4: Panoramic selfie size reference [image source: Schelle and Stutz (2016)].

Wi-Fi or Bluetooth with the current climber location geo-tagged.

Figure 5.5: Bird’s eye view operation.

When a search and rescue team operator requests a bird’s eye view, the UAV climbs up

50 m (from its initial 3-5 m altitude), captures an image 1 km wide, and then descends back

to the operator, as described in Figure 5.5, where the image is transferred to the operator’s

handheld computer, with the operator’s location geo-tagged and other landmark or persons

nearby indicated. Both visible and thermal images are made available to the operator. For the

operator in Figure 5.5, the angle of view required for the camera on the UAV to produce the 1
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km stretch image, assuming the UAV was initially hovering at 3 m from ground level, would be

θ = 2arctan 500 m
53 m = 168◦.

5.4 Tier-three Control Level

The third tier consists of only one control mode - the full autonomy mode. At this point,

the operator interaction with the aerobot is very sparse. The operator only needs to specify

a mission and the aerobot takes care of the rest - planning and execution. In this mode, the

aerobot must be well equipped with advanced AI algorithms, for understanding the prevailing

scenarios or context within which mission has been given, planning the mission, and executing

the mission.

5.5 Tier-to-tier Boundary

Between tier one and tier two is the supervisory/manual control boundary. In other words,

most of the operation performed in tier one is manual operator control, whereas tier two is mostly

supervisory. The boundary separating tier-two from tier-three is the boundary of “absolute

trust”. For the aerobot autonomy to progress beyond this point, the operator must be willing

to trust the aerobot’s decisions absolutely.

5.6 AFRL vs nCA vs ONR Autonomy Control Levels

This section relates how the nCA level model maps to the ONR’s and Clough (2002) AFRL

ACL models. In 2000, a research committee for the Office of Naval Research (ONR), proposed

six robotic autonomy level (Horrigan and ONR’s Committee, 2000). In 2002, the Airforce

Research Laboratory (AFRL) UAV program motivated Clough (2002) research into developing

a measurement metrics for autonomous vehicles (Clough, 2002). This was later adopted by the

AFRL as a metric method of measuring their autonomous vehicles. Since then, software has been

developed by various vendors and researchers based on this measurement metrics for used by

government and military agencies (Sholes, 2007). These two widely recognised standard metrics

for autonomy control levels were developed particularly for the military domain. The nCA

model, which was developed in this research, aimed to serve a similar purpose in the evolving

civilian application domain of autonomous vehicles. These three ACL models are compared

side-by-side, with similar levels mapped to each other, as shown in Figure 5.6.

The AFRL’s eleven-level model maps to the nCA six-level model as shown in Figure 5.6.

AFRL’s level zero (Remotely piloted vehicle) maps to the three tier one component of the nCA
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Figure 5.6: Mapping relationship between AFRL, nCA, and ONR autonomy levels.

model. AFRL’s level 1-5 maps to the first component of the second tier of the nCA model.

AFRL’s level 6-9 maps to the second component of the second tier of the nCA model. A one-

to-one mapping is observed in the highest column of both hierarchies, as AFRL’s level 10 (fully

autonomous) maps to the nCA third tiers only component, full autonomy mode.

The ONR’s six-level model maps to the nCA six-level model as shown in Figure 5.6. Both

the bottom and top most level of both models have a one-to-one mapping. The ONR’s level 1

maps to the second and third components of the first tier of the nCA model. The ONR’s level

2 maps to the first component of the second tier of the nCA model. The ONR’s level 3 maps to

both components of the second tier of the nCA model. The ONR’s level 4 maps to the second

component of the second tier of the nCA model.

The mapping relationships of the nCA model with the AFRL and ONR models describes how

robotic systems classified in any of these scales could be re-classified under the nCA scale. It

also shows how robust and fully representative the nCA scale is, of previous models and domain

application, despite being designed for the emerging multirotor aerial systems in the civilian

domain.
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5.7 Chapter Conclusion

Because of the limitations of the existing autonomy models (such as the AFRL and ONR),

in aerobot navigational control autonomy classification, a new autonomy classification model

called the navigational control autonomy (nCA) model was proposed and developed. It was

compared with other existing models. The nCA model differs from the other models in that

it eliminates step-size increment, favours a fuzzy classification between levels, presents levels in

a pyramidal order, and clearly maps the limits of aerobotic control interfaces, such as the RC

joystick controller. The nCA model was used as a basis for discussing the unimodal human

aerobotic control interfaces, in Chapter 2. For example, the nCA model was used to identify

a control void beyond the tier-one components of the nCA model. The popular RC joystick

controller is very effective for tier-one interactions, because it has a high refresh rate capable of

handling such control. Nevertheless, beyond the nCA tier-one classes, it becomes un-intuitive

to use the RC controller. The higher autonomy requires an effective complementing high-level

interaction interface. The nCA model was used as the basis for further discussions in subsequent

Chapters of this research work.



162 Chapter 5. The Navigational Control Autonomy (nCA) Model



Chapter 6

The Multimodal Speech and Visual

Gesture (mSVG) UAV Control

Interface

This chapter describes the design and development of the multimodal speech and visual gesture

(mSVG) interface for use in human aerobotic interaction. The functional block diagram of

the mSVG operation is presented and discussed. The computations are symbolically described

using mathematical notations and logic. In the development of the mSVG system, example

applications were developed to demonstrate its operations. These applications were numerically

simulated using MATLAB and graphically simulated using a combination of Python, ROS, and

the Gazebo Simulator. The examples were based on the nCA (navigation control autonomy)

Tier 1-III and nCA Tier 2-I models discussed in Chapter 5.

6.1 Multimodal Speech and Visual Gesture (mSVG) Model

The mSVG technique is fundamentally a multimodal combination of speech and visual ges-

ture, a method that leverages familiar human-to-human type interaction in human aerobotic

interaction. This combination could be simultaneous, sequential, or complementary. The un-

derlying architecture of how this technique is designed to work is as described in Figure 6.1. Let

the speech and visual gesture input be s and v respectively, and let f and g be the respective

processing functions, which generate the control symbols f(s) and g(v) as shown in Figure 6.1.
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Figure 6.1: mSVG design architecture control capture, processing, and execution.

Then the control command w processed at the multimodal control processing unit (MCPU)

is a function of control symbols f(s) and g(v) as shown below:

w = f(s)⊗ g(v) (6.1)

Where ⊗ is the combination function that sequences, orders, and timestamps incoming control

symbols, determining if they are simultaneous, sequential, or complementary; after which the

combined control input symbol w is generated and passed on to the MCPU. h(w) is the output

of the MCPU, containing the step-by-step instructions required by the nCA autonomy model

API layer matching h(w) with the coordinate increment/decrement parameters δ(x, y, z) via a

delta ∆ parameter, which depends on the nCA autonomy level of the UAV. This is described

by the following equation as:

δ(x, y, z) = ∆h(w) (6.2)

The delta parameter ∆ is a function generated by the nCA API to modify the MCPU output,

h(w), to enable compatibility with different nCA navigational control autonomy levels. For

the Tier 1-III nCA model component, ∆ = 1. Therefore, δ(x, y, z) = h(w). The coordinate

increment/decrement parameters δ(x, y, z) specifies the change in the aerobots 3-dimensional

position with respect to its current position.

6.1.1 nCA Tier 1-III application model

The processing operation in the multimodal control processing unit (MCPU) stage can be

mathematically described through the use of relational set theories. The universal command set

used consists of navigational and scenario commands, which are as presented in Table 6.1 and

Table 6.3. The symbol “u” is a numeric modifier parameter specifying amount of navigational

increment/decrement as used in Table 6.1. Control keyword and modifiers are also highlighted

in block letters. The current position of the aerobot in the world environment is represented by
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Table 6.1: Navigaitional commands and control expresisions with example usage

S/N Navigational Command Control Expression Command Example

1 Forward x+ udx Go FORWARD HALF metre x+ 0.5dx

2 Backward x− udx Go BACKWARD ONE metre x+ dx

3 Right y + udy Step RIGHT y + 0.5dy

4 Left y − udy Step LEFT TWO metres y − 2dy

5 Up z + udz Climb UP ONE metre z + dz

6 Down z − udz Go DOWN HALF metre z + 0.5dz

7 Hover z = u HOVER THREE metres z = 3

8 Land z = 0 Land z = 0

the x, y, and z components of a right hand coordinate system as shown in Figure 6.2. Where dx,

dy, and dz are unit conversion parameter from simulation to world environment, for example

dx = dy = dz = 1 in the simulation test.

Figure 6.2: Right hand UAV navigational coordinate orientation.

Figure 6.3 is a decision tree showing the mapping relationship between the control command

keywords, modifier keyword, and control expression executed. For a given control command,

the command keyword is first identified, followed by the modifying keyword. These are then

combined to determine the control expression to compute for the new navigation coordinate

to be fed in to the UAV flight controller. The 3-D navigation decision tree was used in both

the MATLAB numerical simulation program and the Python ROS Gazebo graphical simulation

program.

The use of the term “relative 3-D navigation” in Figure 6.3 is a reference to the fact that

navigation coordinates are computed with respect to the current UAV position when the com-

mand was issued. Also, the modifier keywords are numeric values e.g. 1
2 , 1, 2, etc. accompanied

by a unit of distance measure such as metres or feet. But what happens when an operator

issues a control command with two or more primary command keywords, such as a speech com-
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Figure 6.3: Relative 3-D Navigation Symbol Decision Tree.

mand “go forward backward two half metre”? Or contradictory commands such as “go forward

[speech]” while “pointing backward [pointing gesture]”? The conflict resolution strategy for

this was to disregard all the preceding primary keywords in the control command and execute

the last keyword in the command sequence. The case of more than one primary keyword was

successfully tested in the MATLAB numerical simulation using this strategy. The MATLAB

and Python program code listings for the numerical and graphical test simulation is given in

Appendix C.2 and Appendix C.3 respectively. A basic algorithm for computing nCA Tier 1-III

task is presented in Table 6.2.
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Table 6.2: nCA Tier 1-III navigation computation example algorithm.

A. Order/sequence control symbol as captured in time

B. Log current UAV position at command time

C. From the control symbol, identify if navigation or scenario command:

1. if navigation command - go to nCA Tier 1-III program loop (step D)

2. if scenario command - go to nCA Tier 2-I program loop

D. If navigation command, identify which of the eight navigation controls is needed

E. Identify modifying parameters ‘u’ value

F. Use decision tree to identify control expression, from table, based on navigation

command and modifying parameter

G. Compute expression using both the UAV position and modifier parameter e.g.

“x+ u ∗ dx”

H. Update flight controller with new coordinate, specifying velocity, and direction

of travel

6.1.2 nCA Tier 2-I application model/library

Figure 6.4: Speech and Gesture control command set model.

Let us consider that the universal set of control commands uctrl, listed in Table 6.1 and Table

6.3, could be issued as either speech or gestures commands. Then the universal command set

can be described as uctrl = uspeech ∪ ugesture. Where uspeech is speech only commands, and

ugesture is gesture only commands. Figure 6.4 presents a set model describing this relationship.

Commands that can be issued via either speech or gestures are represented as commands found

at the intersection of both method ucommon = uspeech ∩ ugesture.
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Figure 6.5: Finger coded climber gestures and corresponding speech commands.

For the first phase of this work, all commands were implemented as speech commands, and

only a few higher level scenario commands were implemented as gestures as described in Figure

6.5. Lets consider an hypothetical set of speech commands,

uspeech = [{ok}, {weather}, {signpost}, {there}, {that}, {selfie}, etc.] (6.3)
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Which can be denoted as

uspeech = [s1, s2, s3, ..., sn] (6.4)

Where n is the total set of climber-user speech control vocabulary available. Similarly, ugesture

could be an hypothetical set of climbers’ visual gesture commands,

ugesture = [{ok - thumbs up}, {leave - wave away}, {what - open palm},

{that - point object}, {there - point place},

{selfie - picture board symbol}, etc.] (6.5)

Which can also be denoted as

ugesture = [g1, g2, g3, ..., gn] (6.6)

Where m is the total number of climber-user gesture control vocabulary available. Using these

notations, a typical series of control commands could be a sequence of

(t1, G1), (t2, G2), (t3, S3), (t4, G4 + S4), (t5, S5 +G5), (t6, S6), etc. (6.7)

Where ti is the sequential time component, Si is the speech command component, and Gi is

the gesture command component. These commands could be sequential, for example - (t1, S1)

followed by (t2, G2) and so on; or simultaneous, as in - (t4, G4 + S4), (t5, S5 + G5), etc. While

sequential commands consist of only one gesture or speech component in each time component

ti, simultaneous commands consist of both speech and gesture components at the same time

component ti. In spatio-temporal terms, a speech and gesture command is considered simulta-

neous if the time between capture is no more than 0.5s, otherwise it is considered a sequential

command and one would be executed after the other. In other words

Command Selection =







Simultaneous(G+ S) if t ≤ 0.5s

Sequential(G,S) if t > 0.5s
(6.8)

Simultaneous command could be emphatic or complementary. A simultaneous command is

emphatic if it repeats the same command using the alternative modality, whereas it is com-

plementary when it provides additional information not given in the alternative modality. For

example, “Hold (Speech) + Fist (Gesture for hold)” issued within 0.5s apart only emphasises

the command for the UAV to “hold” its position. Whereas a command “Go Forward (Speech)

+ Two-fingers (Gesture for numeric modifier two)” issued within 0.5s of each other, results in

the aerobot advancing two metres in the Forward direction. In this case, the gesture command

complements the speech command.
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Table 6.3: Scenario commands and synonyms

S/N Scenario Command Command Synonyms

1 Alert -

2 Shelter -

3 Panoramic Selfie Panoramic, Selfie, Panorama

4 Help Operator

5 Go Away Away, Patrol

6.2 mSVG Design and Simulation of nCA Tier 2-I Application

Scenarios

The last section discussed navigational control command operations. This section discusses

examples of scenario command operations that could be executed by a search and rescue patrol

aerobot in the wild. Navigation commands emulate low level nCA interaction while scenario

commands emulate higher nCA level models. Table 6.3 presents some scenario commands.

6.2.1 Shelter command computation

The UAV knowledge base includes the UAVs world map shown in Figure 6.6, as a computable

lookup table, accessible during multimodal control processing. Figure 6.6 shows the crevice and

shelter map/table implemented in the MATLAB and Python based Gazebo Simulation test.

Figure 6.6: UAV world map showing UAV position, crevices, and shelter locations.
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From Figure 6.6, the relative North degree direction of the crevices, shelters, and other objects

of interests can be computed as follows:

tanα =
ysh1 − yuav
xsh1 − xuav

(6.9)

Therefore, the bearing angle

α = arctan(
ysh1 − yuav
xsh1 − xuav

) (6.10)

The distance between the UAV and the shelter shown in Figure 6.6, can be computed as

d2 = (xsh1 − xuav)
2 + (ysh1 − yuav)

2 (6.11)

Therefore, the nearest shelter to the climber can be said to be “d km in the α◦ North direc-

tion”, where x and y components are measured in km. In general, the equations for computing

the distance and direction of any object located at point ‘x, y’ on the map, from the user/-

climber/operator/UAV ‘xuav, yuav’ are

α = arctan(
y − yuav
x− xuav

) (6.12)

d =
√

(x− xuav)2 + (y − yuav)2 (6.13)

Interpreted as the map object of interest is “d km in the α◦ North direction” from the user.

In addition to these, the UAV could beam a “red arrow” light on the ground with the arrow

pointing in the direction of travel. Also, the UAV could travel the initial 50 metres with the

climber, before flying away.

In the MATLAB simulation, the computation for the shelter command scenario is performed

by the code snippet in Listing 6.1. The code loop in this snippet gets executed when triggered by

the “shelter” keyword in a speech command such as “where is the nearest shelter?” The Python

graphical simulation was similar to the MATLAB simulation. The full code listing for both the

MATLAB and Python programs are given in Appendix C.2 and Appendix C.3 respectively.
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Listing 6.1: MCPU nearest shelter processing

253 % compute n ea r e s t s h e l t e r or c r e v i c e

254 for n = 1 : 1 : length ( uav world map )

255 i f char ( uav world map (n , 1 ) ) == ’ s h e l t e r ’

256 % r e t r i e v i n g s h e l t e r ”x , y” c o o r d i n a t e s

257 x sh = st r2doub l e ( uav world map (n , 2 ) ) ;

258 y sh = st r2doub l e ( uav world map (n , 3 ) ) ;

259

260 % r e t r i e v i n g s h e l t e r ”x , y” c o o r d i n a t e s

261 x uav = quad pos ( i +1 ,1) ;

262 y uav = quad pos ( i +1 ,2) ;

263

264 % % uncomment to see t h e r e s u l t o f each s h e l t e r l o c a t i o n computed

265 % d sh = s q r t ( ( ( x sh−x uav ) ˆ2)+(( y sh−y uav ) ˆ2) )

266 % a l p h a s h = atan2d ( ( y sh−y uav ) , ( x sh−x uav ) ) ; % MATLAB four quadrant tan i n v e r s e

in d e g r e s s

267 % % conv e r t i n g from t r i g o n ome t r i c an g l e s to compass nor th b ea r i n g an g l e s − s ee l o g b oo k

V ( Fri 25−08−2017) f o r d e t a i l s

268 % i f ( ( x sh−x uav ) < 0) && (( y sh−y uav ) > 0) % f o r 2nd quadrant

269 % a l p h a s h b e a r i n g = 450 − a l p h a s h

270 % e l s e

271 % a l p h a s h b e a r i n g = 90 − a l p h a s h % f o r 1 s t , 3 rd , and 4 th quadrant

272 % end

273

274 d sh = sqrt ( ( ( x sh−x uav ) ˆ2)+(( y sh−y uav ) ˆ2) ) ;

275 % i d e n t i f y i n g n ea r e s t s h e l t e r

276 i f d sh < d sh nea r e s t

277

278 a lpha sh = atan2d ( ( y sh−y uav ) , ( x sh−x uav ) ) ; % MATLAB four quadrant tan i n v e r s e

in d e g r e s s

279

280 % conv e r t i n g from t r i g o n ome t r i c an g l e s to compass nor th b ea r i n g an g l e s − s ee

l o g b oo k V ( Fri 25−08−2017) f o r d e t a i l s

281 i f ( ( x sh−x uav ) < 0) && (( y sh−y uav ) > 0) % fo r 2nd quadrant

282 a lpha sh bea r ing = 450 − a lpha sh ;

283 quad pos ( i +1 ,4) = a lpha sh bea r ing ;

284 else

285 a lpha sh bea r ing = 90 − a lpha sh ; % fo r 1 s t , 3 rd , and 4 th quadrant

286 quad pos ( i +1 ,4) = a lpha sh bea r ing ;

287 end

288

289 % upda t ing d i s t a n c e to n ea r e s t s h e l t e r , and name o f s h e l t e r

290 d sh nea r e s t = d sh ;

291 s c e n a r i o p l a c e = uav world map (n , 4 ) ;

292 end

293 end

6.2.2 Panoramic selfie command computation

From Figure 6.7a, capture location 1 components can be computed as

xcl1 = xup − d sin θup (6.14)

ycl1 = yup − d cos θup (6.15)

For capture location 2 - 4 :

xb = xa +
√

d2 + d2 sin(θa + 90) (6.16)
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(a) Panoramic selfie capture location description.

(b) Panoramic MATLAB com-

putation location plot with

UAV initially facing 33 deg

North.

Figure 6.7: Panoramic selfie capture.

yb = ya +
√

d2 + d2 cos(θa + 90) (6.17)

Where subscript ‘a’ denoted parameters refers to parameters from the previous location, and

‘b’ subscripted parameters refers to the parameters for the current location being computed.

In the MATLAB simulation, the computation for the panoramic selfie command scenario is

performed by the code snippet in Listing 6.2. The code loop in this snippet gets executed when

triggered by the “Panoromic” keyword or any of its command synonyms in a speech or gesture

command. This is based on the computation described in this section.

Listing 6.2: MCPU panoramic selfie processing.

359 % program codes to gu i de t h e e x e cu t i on o f ’ s c ena r i o 3 ’ i . e . panoramic s e l f i e

360 i f char ( execute ) == ’ s c ena r i o 3 ’

361

362 % s t a r t v i d eo record

363 v id r e co rd = ’ t rue ’ ;

364

365 % c o l l e c t i n g uav parameters f o r computat ion

366 % cur r en t uav p o s i t i o n and o r i e n t a t i o n

367 x up = quad pos ( i +1 ,1) ;

368 y up = quad pos ( i +1 ,2) ;

369 z up = quad pos ( i +1 ,3) ;

370 theta up = quad pos ( i +1 ,4) ;

371 % th e t a u p = 315 ;

372

373 d capture = 7 ; % image cap tu r e d i s t a n c e from user to cap tu r e l o c a t i o n i s 7 meres

374 a l t c ap tu r e = 3 ; % de f i n i n g image cap tu r e a l t i t u d e − 3 metres

375

376 % l o g s c ena r i o nav l o c a t i o n s

377 p a n s e l f i e l o g = { ’ l o c a t i o n ’ , ’ x ’ , ’ y ’ , ’ z ’ , ’ theta ’ ;

378 ’ user pos . ’ , x up , y up , z up , theta up

379 } ;

380 x capt (1 )=x up ;
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381 y capt (1 )= y up ;

382

383 % computing cap tu r e l o c a t i o n 1

384 x c l 1 = x up − ( d capture ∗ s ind ( theta up ) ) ;

385 y c l 1 = y up − ( d capture ∗ cosd ( theta up ) ) ;

386 z c l 1 = a l t c ap tu r e ;

387 t h e t a c l 1 = theta up ;

388

389 % go to computed l o c a t i o n 1

390 quad pos ( i +1 ,1:4)=[ x c l1 , y c l1 , z c l 1 , t h e t a c l 1 ] ;

391

392 % camera t a k e s p i c t u r e − wh i l e f a c i n g user

393 cam snap = ’ true @ 1 ’ ;

394

395 % l o g data

396 p a n s e l f i e l o g ( 3 , : ) = { ’ c ap l o c 1 ’ , x c l1 , y c l1 , z c l 1 , t h e t a c l 1 } ;

397 x capt (2 )=x c l 1 ;

398 y capt (2 )= y c l 1 ;

399

400 % computing cap tu r e l o c a t i o n 2 ( r o t a t i n g −45 de g r e e s )

401 x c l 2 = x c l 1 + ( sqrt (2∗ ( d capture ˆ2) ) ∗ s ind ( t h e t a c l 1 − 45) ) ;

402 y c l 2 = y c l 1 + ( sqrt (2∗ ( d capture ˆ2) ) ∗ cosd ( t h e t a c l 1 − 45) ) ;

403 z c l 2 = a l t c ap tu r e ;

404 t h e t a c l 2 = th e t a c l 1 − 45 ;

405

406 % go to computed l o c a t i o n 2

407 quad pos ( i +1 ,1:4)=[ x c l2 , y c l2 , z c l 2 , t h e t a c l 2 ] ;

408

409 % camera t a k e s p i c t u r e − wh i l e f a c i n g user

410 cam snap = ’ true @ 2 ’ ;

411

412 % l o g data

413 p a n s e l f i e l o g ( 4 , : ) = { ’ c ap l o c 2 ’ , x c l2 , y c l2 , z c l 2 , t h e t a c l 2 } ;

414 x capt (3 )=x c l 2 ;

415 y capt (3 )= y c l 2 ;

416

417 % computing cap tu r e l o c a t i o n 3 ( r o t a t i n g +90 de g r e e s )

418 x c l 3 = x c l 2 + ( sqrt (2∗ ( d capture ˆ2) ) ∗ s ind ( t h e t a c l 2 + 90) ) ;

419 y c l 3 = y c l 2 + ( sqrt (2∗ ( d capture ˆ2) ) ∗ cosd ( t h e t a c l 2 + 90) ) ;

420 z c l 3 = a l t c ap tu r e ;

421 t h e t a c l 3 = th e t a c l 2 + 90 ;

422

423 % go to computed l o c a t i o n 3

424 quad pos ( i +1 ,1:4)=[ x c l3 , y c l3 , z c l 3 , t h e t a c l 3 ] ;

425

426 % camera t a k e s p i c t u r e − wh i l e f a c i n g user

427 cam snap = ’ true @ 3 ’ ;

428

429 % l o g data

430 p a n s e l f i e l o g ( 5 , : ) = { ’ c ap l o c 3 ’ , x c l3 , y c l3 , z c l 3 , t h e t a c l 3 } ;

431 x capt (4 )=x c l 3 ;

432 y capt (4 )= y c l 3 ;

433

434 % computing cap tu r e l o c a t i o n 4 ( r o t a t i n g +90 de g r e e s )

435 x c l 4 = x c l 3 + ( sqrt (2∗ ( d capture ˆ2) ) ∗ s ind ( t h e t a c l 3 + 90) ) ;

436 y c l 4 = y c l 3 + ( sqrt (2∗ ( d capture ˆ2) ) ∗ cosd ( t h e t a c l 3 + 90) ) ;

437 z c l 4 = a l t c ap tu r e ;

438 t h e t a c l 4 = th e t a c l 3 + 90 ;

439

440 % go to computed l o c a t i o n 4

441 quad pos ( i +1 ,1:4)=[ x c l4 , y c l4 , z c l 4 , t h e t a c l 4 ] ;

442

443 % camera t a k e s p i c t u r e − wh i l e f a c i n g user

444 cam snap = ’ true @ 4 ’ ;

445

446 % l o g data

447 p a n s e l f i e l o g ( 6 , : ) = { ’ c ap l o c 4 ’ , x c l4 , y c l4 , z c l 4 , t h e t a c l 4 } ;

448 x capt (5 )=x c l 4 ;

449 y capt (5 )= y c l 4 ;

450
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451 % UAV re t u r n i n g to user ’ s l o c a t i o n

452 % go to UAV’ s i n i t i a l p o s i t i o n

453 quad pos ( i +1 ,1:4)=[x up , y up , z up , theta up ] ;

454

455 % l o g data

456 p a n s e l f i e l o g ( 7 , : ) = { ’ user l o c . ’ , x up , y up , z up , theta up}

457 %x cap t (6 )= x up ;

458 %y cap t (6 )= y up ;

459

460 f igure

461 plot ( x capt , y capt , ’−∗ ’ )

462 xlim ([−10 10 ] )

463 ylim ([−10 10 ] )

464 % ax i s e qua l

465

466 v id r e co rd = ’ f a l s e ’ ;

467 end

6.2.3 Patrol command computation

As was shown in Figure 6.8a, the patrol operation can be broken down into the following

components: 1) UAV flies at 0.5 m altitude, 2) Briefly stopping at 4 intermediate stop points

between two docking stations (e.g. A and B) to pan and scan area under. The stop points

between point A and point B are computed using the following expression in both the MATLAB

and Python implementation,

(xn, yn) = (xp + 0.2(xb − xa), yp + 0.2(yb − ya)) (6.18)

Note that this expression generates five points because the goal point B is included in the com-

putation. Where p is the previous state and n is the next state. And the ‘a’ and ‘b’ subscripted

coordinate ‘x’ and ‘y’ corresponds to the UAV’s location A and B coordinate component. Figure

6.9 shows this python based ROS Gazebo implementation of the UAV patrol operation.

(a) Designed 5× 5 km2 patrol grid scenario (b) MATLAB patrol operation route plot

Figure 6.8: Patrol control operation simulation in MATLAB.
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Figure 6.9: Python implementation with RotorS ROS Gazebo UAV simulator.

Listing 6.3 is a code snippet for performing the 5 × 5 km2 patrol grid scenario command in

the MATLAB simulation. This was graphically simulated in the ROS Gazebo UAV simulator

using Python. The code loop in this snippet gets executed when triggered by the “Patrol” or

“Away” speech keyword or after a user interaction with a UAV has ended. The computation in

the code listing is based on Equation 6.18.

Listing 6.3: MCPU 5× 5 km2 patrol grid scenario processing.

500 % uav p a t r o l l oop na v i g a t i o n goes here

501 i f uav pat ro l == true

502

503 % de f i n i n g i n t i a l p a t r o l e l emen t s

504 % x a = 0 ;

505 % y a = 0 ;

506 [ x a , y a ]= dea l (0 , 0 ) ;

507 [ x b , y b ]= dea l (5 , 1 ) ;

508 [ x c , y c ]= dea l (0 , 2 ) ;

509 [ x d , y d ]= dea l (5 , 3 ) ;

510 [ x e , y e ]= dea l (0 , 4 ) ;

511 [ x f , y f ]= dea l (5 , 5 ) ;

512 z = 0 . 0 5 ;

513

514 % computing t h e t a ab d i r e c t i o n

515 theta ab = 90 − atan2d ( ( y b − y a ) , ( x b − x a ) ) ; % MATLAB four quadrant tan i n v e r s e in d e g r e s s

516 % f i r s t quadrant computat ion

517

518 % l o g s c ena r i o nav l o c a t i o n s

519 p a t r o l l o g = { ’ uav l o c . ’ , ’ x (km) ’ , ’ y (km) ’ , ’ z (km) ’ , ’ theta ’ ;

520 ’A ’ , 0 , 0 , 0 . 05 , theta ab

521 } ;

522

523 % i n t i a l i z i n g l oop v a r i a b l e s

524 x ab = x a ;

525 y ab = y a ;

526

527 % t r a v e l i n g l o c a t i o n A to B

528 for ab = 1 : 1 : 5
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529 x ab = x ab + (0 . 2 ∗ ( x b − x a ) ) ;

530 y ab = y ab + (0 . 2 ∗ ( y b − y a ) ) ;

531 uav loc = [ ’AB’ ,num2str( ab ) ] ;

532

533 i f ab == 5

534 uav loc = ’B ’ ;

535 end

536

537 p a t r o l l o g ( ab+2 , :) = {uav loc , x ab , y ab , z , theta ab } ;

538 end

539

540

541 % t r a v e l i n g l o c a t i o n B to C

542 % computing t h e t a bc d i r e c t i o n

543 theta bc = 90 − atan2d ( ( y c − y b ) , ( x c − x b ) ) ; % MATLAB four quadrant tan i n v e r s e in d e g r e s s

544 % t h i r d quadrant computat ion

545 x bc = x b ;

546 y bc = y b ;

547

548 for bc = 1 : 1 : 5

549 x bc = x bc + (0 . 2 ∗ ( x c − x b ) ) ;

550 y bc = y bc + (0 . 2 ∗ ( y c − y b ) ) ;

551 uav loc = [ ’BC ’ ,num2str( bc ) ] ;

552

553 i f bc == 5

554 uav loc = ’C ’ ;

555 end

556

557 p a t r o l l o g ( bc+7 , :) = {uav loc , x bc , y bc , z , the ta bc } ;

558 end

559

560 % t r a v e l i n g l o c a t i o n C to D

561 % computing t h e t a cd d i r e c t i o n

562 theta cd = 90 − atan2d ( ( y d − y c ) , ( x d − x c ) ) ; % MATLAB four quadrant tan i n v e r s e in d e g r e s s

563 % f i r s t quadrant computat ion

564 x cd = x c ;

565 y cd = y c ;

566

567 for cd = 1 : 1 : 5

568 x cd = x cd + (0 . 2 ∗ ( x d − x c ) ) ;

569 y cd = y cd + (0 . 2 ∗ ( y d − y c ) ) ;

570 uav loc = [ ’CD’ ,num2str(cd ) ] ;

571

572 i f cd == 5

573 uav loc = ’D ’ ;

574 end

575

576 p a t r o l l o g (cd+12 , :) = {uav loc , x cd , y cd , z , the ta cd } ;

577 end

578

579 % t r a v e l i n g l o c a t i o n D to E

580 % computing t h e t a de d i r e c t i o n

581 theta de = 90 − atan2d ( ( y e − y d ) , ( x e − x d ) ) ; % MATLAB four quadrant tan i n v e r s e in d e g r e s s

582 % f i r s t quadrant computat ion

583 x de = x d ;

584 y de = y d ;

585

586 for de = 1 : 1 : 5

587 x de = x de + (0 . 2 ∗ ( x e − x d ) ) ;

588 y de = y de + (0 . 2 ∗ ( y e − y d ) ) ;

589 uav loc = [ ’DE ’ ,num2str( de ) ] ;

590

591 i f de == 5

592 uav loc = ’E ’ ;

593 end

594

595 p a t r o l l o g ( de+17 , :) = {uav loc , x de , y de , z , the ta de } ;

596 end

597

598 % t r a v e l i n g l o c a t i o n E to F
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599 % computing t h e t a e f d i r e c t i o n

600 t h e t a e f = 90 − atan2d ( ( y f − y e ) , ( x f − x e ) ) ; % MATLAB four quadrant tan i n v e r s e in d e g r e s s

601 % f i r s t quadrant computat ion

602 x e f = x e ;

603 y e f = y e ;

604

605 for e f = 1 : 1 : 5

606 x e f = x e f + (0 . 2 ∗ ( x f − x e ) ) ;

607 y e f = y e f + (0 . 2 ∗ ( y f − y e ) ) ;

608 uav loc = [ ’EF ’ ,num2str( e f ) ] ;

609

610 i f e f == 5

611 uav loc = ’F ’ ;

612 end

613

614 p a t r o l l o g ( e f +22 , :) = {uav loc , x e f , y e f , z , t h e t a e f } ;

615 end

616

617 % t r a v e l i n g l o c a t i o n F to A

618 % computing t h e t a f a d i r e c t i o n

619 th e t a f a = 90 − atan2d ( ( y a − y f ) , ( x a − x f ) ) ; % MATLAB four quadrant tan i n v e r s e in d e g r e s s

620 % f i r s t quadrant computat ion

621 x f a = x f ;

622 y f a = y f ;

623

624 for f a = 1 : 1 : 5

625 x f a = x fa + (0 . 2 ∗ ( x a − x f ) ) ;

626 y f a = y fa + (0 . 2 ∗ ( y a − y f ) ) ;

627 uav loc = [ ’FA ’ ,num2str( f a ) ] ;

628

629 i f f a == 5

630 uav loc = ’A ’ ;

631 end

632

633 p a t r o l l o g ( fa +27 , :) = {uav loc , x fa , y fa , z , t h e t a f a } ;

634 end

635

636 p a t r o l l o g

637

638 x pa t r o l = ce l l2mat ( p a t r o l l o g ( 2 : end , 2 ) ) ;

639 y pa t r o l = ce l l2mat ( p a t r o l l o g ( 2 : end , 3 ) ) ;

640

641 f igure

642 plot ( x pat ro l , y pat ro l , ’−∗ ’ )

643 xlim ([−10 10 ] )

644 ylim ([−10 10 ] )

645 % ax i s e qua l

646

647 % animat ing p a t r o l

648 f igure

649 h = animated l ine ;

650 xlim ([−10 10 ] )

651 ylim ([−10 10 ] )

652 for k = 1 : length ( x pa t r o l )

653 addpoints (h , x pa t r o l ( k ) , y pa t r o l ( k ) ) ;

654 drawnow

655 i f rem(k−1 ,5) == 0 % s t o pp i n g f o r one sec (30 min ) a t dock ing s t a t i o n

656 pause (1 )

657 else

658 pause ( 0 . 1 ) % nav i g a t i n g s l ow l y a l ong p a t r o l nav path ( dock : pa th ) r a t i o = ( 1 : 0 . 1 )

659 end

660

661 end

662

663 end
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6.3 mSVG system component development

The multimodal speech and visual gesture system development was performed in blocks as

shown in Figure 6.1. The first block developed was the speech capture and recognition block,

indicated as block ‘f ’ in Figure 6.1. The next block developed was the gesture capture and

recognition block, indicated as block ‘g’. This was then followed by the discussion of the devel-

opment of the multimodal control processing unit (MCPU), block ‘h’. The nCA API was already

discussed in Chapter 5 with scenarios presented in the preceding sub-sections. And finally, the

ROS Gazebo UAV simulator development was discussed. The mSVG system components are

laid out as shown in Figure 6.10.

Figure 6.10: mSVG component setup.

6.3.1 Speech capture and recognition

Table 6.4 describes the speech capture and symbol processing algorithm. Speech is captured

with the aid of a Kinobo USB microphone, processed and recognised using the CMU Sphinx ASR

with a custom-defined phonetic dictionary; which contained a limited set of command vocabulary

applicable for this research, in order to increase recognition speed and accuracy. The recognised

speech command is encoded into a standard control symbol, which is then passed on to the

MCPU, where it is decoded and processed for execution by a UAV. Listing 6.4 shows the serial

and data logging initialisation code snippets.
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Table 6.4: Speech capture and processing to control symbol algorithm.

A. Program initialisation:

1. import relevant python libraries

2. serial port and speech input data log file

B. Initialise the speech detector class

1. specify audio parameters e.g. sample rate (16 KHz), channel (mono),

model directory, speech dictionary, etc.

2. setup microphone

3. set noise/speech threshold

C. Listening loop - microphone listening for sound levels to exceed threshold

D. Capture - start recording sound if sound level exceeds threshold

E. Decode - recorded sound using the pocketsphinx asr library

F. Encode - convert decoded command into standardise control symbols

G. Relay - pass control command symbols to MCPU for further processing and

command execution

H. Repeat - steps C to G loop continuously until the program is manually ended

by the user

Listing 6.4: Speech control - initialising the serial port.

27 port = ”/dev/ttyACM0”

28 baud = 115200

29

30 s e r = s e r i a l . S e r i a l ( port , baud , timeout=1)

31 f i l ename = ’ speech input ’ + datet ime . now( ) . s t r f t ime ( ”%Y%m%d%H%M%S” ) + ’ . txt ’

32 f = open( f i l ename , ’ a ’ )

33 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\n ’ )

34 f . f l u s h ( )

35

36 #open the s e r i a l po r t

37 i f s e r . isOpen ( ) :

38 #pr i n t ( s e r . name + ’ i s open . . . ’ )

39 da ta s t r i ng = se r . name + ’ i s open . . . ’ + ’\n ’

40 print da ta s t r i ng

41 f . wr i t e ( da ta s t r i ng )

42 f . f l u s h ( )

Listing 6.5 is a code snippet of the listen, capture, decode, encode, relay, and repeat speech

processing loop. The complete program code is listed in Appendix C.4.
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Listing 6.5: Speech control processing.

166 while True :

167 cur data = stream . read ( s e l f .CHUNK)

168 s l i d w i n . append (math . sq r t (abs ( audioop . avg ( cur data , 4) ) ) )

169

170 i f sum ( [ x > s e l f .THRESHOLD for x in s l i d w i n ] ) > 0 :

171 i f s t a r t ed == False :

172 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ”\ t S t a r t i n g r eco rd ing o f phrase ”

173 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\ t S t a r t i n g r eco rd ing o f phrase . . . \ n ’ )

174 f . f l u s h ( )

175 s t a r t ed = True

176 audio2send . append ( cur data )

177

178 e l i f s t a r t ed :

179 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ”\ tF in i shed record ing , decoding phrase ”

180 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\ tF in i shed record ing , decoding phrase . . . \ n ’ )

181 f . f l u s h ( )

182 f i l ename = s e l f . save speech ( l i s t ( prev audio ) + audio2send , p)

183 r = s e l f . decode phrase ( f i l ename )

184 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ”\tDETECTED: ” , r

185 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tDETECTED: ’ + ’ , ’ . j o i n ( r ) + ’ . . . \ n ’ )

186 f . f l u s h ( )

187

188 for con t r o l in r :

189 i f con t r o l == ’ forward ’ :

190 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tiQuad moving forward . . . \ n ’

191 s e r . wr i t e ( ”1001” . encode ( ’ a s c i i ’ )+’\n ’ )

192 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tiQuad moving forward . . . \ n\n ’ )

193 f . f l u s h ( )

194 break

195 i f con t r o l == ’ backward ’ :

196 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tiQuad moving backward . . . \ n ’

197 s e r . wr i t e ( ”1002” . encode ( ’ a s c i i ’ )+’\n ’ )

198 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tiQuad moving backward . . . \ n\n ’ )

199 f . f l u s h ( )

200 break

201 i f con t r o l == ’ r i gh t ’ :

202 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tiQuad moving r i gh t . . . \ n ’

203 s e r . wr i t e ( ”1003” . encode ( ’ a s c i i ’ )+’\n ’ )

204 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tiQuad moving r i gh t . . . \ n\n ’ )

205 f . f l u s h ( )

206 break

207 i f con t r o l == ’ l e f t ’ :

208 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tiQuad moving l e f t . . . \ n ’

209 s e r . wr i t e ( ”1004” . encode ( ’ a s c i i ’ )+’\n ’ )

210 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tiQuad moving l e f t . . . \ n\n ’ )

211 f . f l u s h ( )

212 break

213 i f con t r o l == ’up ’ :

214 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tiQuad c l imbing upward . . . \ n ’

215 s e r . wr i t e ( ”1005” . encode ( ’ a s c i i ’ )+’\n ’ )

216 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tiQuad c l imbing upward . . . \ n\n ’ )

217 f . f l u s h ( )

218 break

219 i f con t r o l == ’down ’ :

220 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tiQuad c l imbing downward . . . \ n ’

221 s e r . wr i t e ( ”1006” . encode ( ’ a s c i i ’ )+’\n ’ )

222 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tiQuad c l imbing downward . . . \ n\n ’ )

223 f . f l u s h ( )

224 break

225 i f con t r o l == ’ starboard ’ :

226 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tiQuad panning starboard . . . \ n ’

227 s e r . wr i t e ( ”1007” . encode ( ’ a s c i i ’ )+’\n ’ )

228 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tiQuad panning starboard . . . \ n\n ’ )

229 f . f l u s h ( )

230 break

231 i f con t r o l == ’ larboard ’ :

232 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tiQuad panning larboard . . . \ n ’

233 s e r . wr i t e ( ”1008” . encode ( ’ a s c i i ’ )+’\n ’ )

234 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tiQuad panning larboard . . . \ n\n ’ )
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235 f . f l u s h ( )

236 break

237 i f con t r o l == ’ stop ’ :

238 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tiQuad stopped moving . . . \ n ’

239 s e r . wr i t e ( ”1000” . encode ( ’ a s c i i ’ )+’\n ’ )

240 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tiQuad stopped moving . . . \ n\n ’ )

241 f . f l u s h ( )

242 break

243 i f con t r o l == ’</s> ’ : # end brace d e t e c t e d

244 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\ tNothing u s e f u l detected . . . \ n ’

245 s e r . wr i t e ( ”0000” . encode ( ’ a s c i i ’ )+’\n ’ ) # send e r r o r code ’0000 ’

246 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\ tNothing u s e f u l detected . . . \ n\n ’ )

247 f . f l u s h ( )

248 break

249

250 # Removes temp audio f i l e

251 os . remove ( f i l ename )

252 # Reset a l l

253 s t a r t ed = False

254 s l i d w i n = deque (maxlen=s e l f . SILENCE LIMIT ∗ r e l )

255 prev audio = deque (maxlen=0.5 ∗ r e l )

256 audio2send = [ ]

257 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ”\ tL i s t en i ng . . . ”

258 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\ tL i s t en i ng . . . \ n ’ )

259 f . f l u s h ( )

260

261 else :

262 prev audio . append ( cur data )

263

264 print ”∗ Done l i s t e n i n g ”

265 stream . c l o s e ( )

266 p . terminate ( )

Figure 6.11 is a screenshot of the of Odroid XU4 Terminal window showing text output feed-

back to the user of the speech recognition and the expected UAV ‘iQuad’ control response.

Listing 6.6 is an example of a text file output log data saved for each speech recognition pro-

gram session. This output log also includes the intialisation data at the beginning of program

execution. A new data log file is created for each program session.

Figure 6.11: Speech recognition feedback on Odroid XU4 Terminal window.
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Listing 6.6: Speech control processing - data logging to text file.

1 2018−04−29T21 :39 : 24 . 669166

2 /dev/ttyACM0 i s open . . .

3 p r e s s ” c t r l + c” to Quit

4

5 ∗ Mic s e t up and l i s t e n i n g .

6

7 2018−04−29T21 :39 : 39 . 897660 Sta r t i ng reco rd ing o f phrase . . .

8 2018−04−29T21 :39 : 41 . 210896 Fin i shed record ing , decoding phrase . . .

9 2018−04−29T21 :39 : 41 . 627214 DETECTED: <s>, <s i l >, go , forward , <s i l >, </s> . . .

10 2018−04−29T21 :39 : 41 . 628221 iQuad moving forward . . .

11

12 2018−04−29T21 :39 : 41 . 628716 L i s t en ing . . .

13 2018−04−29T21 :39 : 43 . 698897 Sta r t i ng reco rd ing o f phrase . . .

14 2018−04−29T21 :39 : 45 . 021239 Fin i shed record ing , decoding phrase . . .

15 2018−04−29T21 :39 : 45 . 405294 DETECTED: <s>, <s i l >, go , backward , </s> . . .

16 2018−04−29T21 :39 : 45 . 405775 iQuad moving backward . . .

17

18 2018−04−29T21 :39 : 45 . 406271 L i s t en ing . . .

19 2018−04−29T21 :39 : 47 . 138244 Sta r t i ng reco rd ing o f phrase . . .

20 2018−04−29T21 :39 : 48 . 803298 Fin i shed record ing , decoding phrase . . .

21 2018−04−29T21 :39 : 49 . 201176 DETECTED: <s>, <s i l >, go , <s i l >, r i ght , </s> . . .

22 2018−04−29T21 :39 : 49 . 201628 iQuad moving r i gh t . . .

23

24 2018−04−29T21 :39 : 49 . 202212 L i s t en ing . . .

25 2018−04−29T21 :39 : 50 . 997934 Sta r t i ng reco rd ing o f phrase . . .

26 2018−04−29T21 :39 : 52 . 310841 Fin i shed record ing , decoding phrase . . .

27 2018−04−29T21 :39 : 52 . 671181 DETECTED: <s>, climb , up , <s i l >, </s> . . .

28 2018−04−29T21 :39 : 52 . 671736 iQuad c l imbing upward . . .

6.3.2 Gesture capture and recognition

Figure 6.12: Speech recognition feedback on Odroid XU4 Terminal window.

Table 6.5 describes the gesture capture and symbol processing algorithm. Gesture was cap-

tured with the aid of an Odroid 720p USB web camera connected to the Odroid XU4 board. The
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Table 6.5: Gesture capture and processing to control symbol algorithm.

A. Program initialisation:

1. import relevant OpenCV and python libraries

2. start serial port transmission and gesture input data log file

3. define global variables

4. Start web camera

B. Capture and pre-process image:

1. capture frame

2. blur image

3. grey image

4. filter image background noise

C. Processing image:

1. find contours

2. find convex hull

3. find convexity defects

D. Gesture recognition and encoding:

1. count number of defects, ndefects

2. number of fingers, nfingers = ndefects + 1

3. map number of fingers to control command symbol

4. remove high frequency recognition noise by tracking 20 successive cycles

for 100% accuracy

E. Relay - pass control command symbols to MCPU for further processing and

command execution

F. Repeat - steps B to F loop continuously until the program is manually ended

by the user

captured gestures were finger-counting gestures as shown in Figure 6.12. The finger gestures

consisted of one finger, two fingers, three fingers, four fingers, and five fingers gestures, which

were mapped to navigational control of forward, backward, right, left, and stop respectively. The
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processing of the finger gestures was based on the convex hull and convexity defect algorithms.

Figure 6.12 shows a five fingers gesture being successfully recognised using this method.

Listing 6.7: Image capture, image processing, and gesture extraction.

59 # Capture frames from the camera

60 ret , frame = capture . read ( )

61

62 frame = cv2 . f l i p ( frame , 1) # v e r t i c a l image f l i p f o r l a t e r a l mirror e f f e c t

63

64 # Get hand data from the r e c t a n g l e sub window

65 #cv2 . r e c t a n g l e ( frame , ( 100 , 100 ) , (300 ,300) , ( 0 , 255 ,0 ) ,0)

66 #crop image = frame [ 100 : 300 , 100 : 300 ]

67 cv2 . r e c t ang l e ( frame , (400 ,50) , (600 ,250) , (0 ,255 ,0 ) ,0)

68 crop image = frame [ 5 0 : 2 50 , 400 : 600 ]

69 drawing = np . z e ro s ( crop image . shape , np . u int8 )

70

71 # Apply Gaussian b l u r

72 b lur = cv2 . GaussianBlur ( crop image , (3 , 3 ) , 0)

73

74 # Change co l o r−space from BGR −> HSV

75 hsv = cv2 . cvtColor ( blur , cv2 .COLOR BGR2HSV)

76

77 # Create a b ina ry image w i th where wh i t e w i l l be s k i n c o l o r s and r e s t i s b l a c k

78 mask2 = cv2 . inRange ( hsv , np . array ( [ 2 , 0 , 0 ] ) , np . array ( [ 2 0 , 2 55 , 2 55 ] ) )

79

80 # Kerne l f o r morpho l o g i c a l t r an s f o rma t i on

81 ke rne l = np . ones ( ( 5 , 5 ) )

82

83 # Apply morpho l o g i c a l t r an s f o rma t i on s to f i l t e r out t h e background no i s e

84 d i l a t i o n = cv2 . d i l a t e (mask2 , kerne l , i t e r a t i o n s = 1)

85 e ro s i on = cv2 . erode ( d i l a t i on , kerne l , i t e r a t i o n s = 1)

86

87 # Apply Gaussian Blur and Thresho ld

88 f i l t e r e d = cv2 . GaussianBlur ( e ros ion , (3 , 3 ) , 0)

89 ret , thresh = cv2 . th re sho ld ( f i l t e r e d , 127 , 255 , 0)

90

91 # Show t h r e s h o l d image

92 cv2 . imshow( ”Thresholded ” , thresh )

93

94 # Find con tour s

95 image , contours , h i e ra rchy = cv2 . f indContours ( thresh , cv2 .RETR TREE, cv2 .CHAIN APPROX SIMPLE)

Listing 6.7 is a code snippet of the image capture and pre-processing, in order to extract or

recognise the finger gesture. Listing 6.8 is a code snippet of the image processing using convex

hull and convexity defects for the finger gesture recognition, and the encoding of the first two

finger gestures for further processing at the MCPU. The complete program code is listed in

Appendix C.5.

Listing 6.8: Finger gesture command recognition processing.

100 # Find contour w i th maximum area

101 contour = max( contours , key = lambda x : cv2 . contourArea (x ) )

102

103 # Create bounding r e c t a n g l e around the contour

104 x , y ,w, h = cv2 . boundingRect ( contour )

105 cv2 . r e c t ang l e ( crop image , ( x , y ) , ( x+w, y+h) , (0 , 0 , 255 ) ,0)

106

107 # Find convex h u l l

108 hu l l = cv2 . convexHull ( contour )

109

110 # Draw contour

111 drawing = np . z e ro s ( crop image . shape , np . u int8 )

112 cv2 . drawContours ( drawing , [ contour ] , −1 , (0 ,255 ,0) ,0 ) # RED con tour s
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113 cv2 . drawContours ( drawing , [ hu l l ] , −1 , (0 ,0 ,255) ,0) # GREEN h u l l

114

115 # Find c on v e x i t y d e f e c t s

116 hu l l = cv2 . convexHull ( contour , r e turnPo int s=False )

117 d e f e c t s = cv2 . convex i tyDe fec t s ( contour , hu l l )

118

119 # Use co s i n e r u l e to f i n d ang l e o f t h e f a r po i n t from the s t a r t and end po i n t i . e . t h e convex

p o i n t s ( t h e f i n g e r

120 # t i p s ) f o r a l l d e f e c t s

121 coun t de f e c t s = 0

122

123 for i in range ( d e f e c t s . shape [ 0 ] ) :

124 s , e , f , d = de f e c t s [ i , 0 ]

125 s t a r t = tuple ( contour [ s ] [ 0 ] )

126 end = tuple ( contour [ e ] [ 0 ] )

127 f a r = tuple ( contour [ f ] [ 0 ] )

128

129 a = math . sq r t ( ( end [ 0 ] − s t a r t [ 0 ] ) ∗∗2 + ( end [ 1 ] − s t a r t [ 1 ] ) ∗∗2)

130 b = math . sq r t ( ( f a r [ 0 ] − s t a r t [ 0 ] ) ∗∗2 + ( f a r [ 1 ] − s t a r t [ 1 ] ) ∗∗2)

131 c = math . sq r t ( ( end [ 0 ] − f a r [ 0 ] ) ∗∗2 + ( end [ 1 ] − f a r [ 1 ] ) ∗∗2)

132 angle = (math . acos ( ( b∗∗2 + c∗∗2 − a∗∗2) /(2∗b∗c ) ) ∗180) /3 .14

133

134 # i f ang l e > 90 draw a c i r c l e a t t h e f a r po i n t

135 i f angle <= 90 :

136 coun t de f e c t s += 1

137 cv2 . c i r c l e ( crop image , far , 1 , [ 0 , 0 , 255 ] , −1)

138

139 cv2 . l i n e ( crop image , s ta r t , end , [ 0 , 2 5 5 , 0 ] , 2 )

140

141 # Pr in t number o f f i n g e r s

142 i f c oun t de f e c t s == 0 :

143 cv2 . putText ( frame , ”ONE” , (200 ,50) , cv2 .FONT HERSHEY SIMPLEX, 2 , 2)

144 n f r e q 1 f = n f r e q 1 f + 1

145 n f r e q 2 f = 0

146 n f r e q 3 f = 0

147 n f r e q 4 f = 0

148 n f r e q 5 f = 0

149

150 i f n f r e q 1 f >= 20 : # removing h i gh f r e quency noise , 20 c on s e c u t i v e c y c l e s = su c c e s s

151 n f r e q 1 f = 0

152 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\ tForward . . . \ n ’

153 s e r . wr i t e ( ”1001” . encode ( ’ a s c i i ’ )+’\n ’ )

154 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\ tForward . . . \ n\n ’ )

155 f . f l u s h ( )

156

157 e l i f c oun t de f e c t s == 1 :

158 cv2 . putText ( frame , ”TWO” , (200 ,50) , cv2 .FONT HERSHEY SIMPLEX, 2 , 2)

159 n f r e q 1 f = 0

160 n f r e q 2 f = n f r e q 2 f + 1

161 n f r e q 3 f = 0

162 n f r e q 4 f = 0

163 n f r e q 5 f = 0

164

165 i f n f r e q 2 f >= 20 : # removing h i gh f r e quency noise , 20 c on s e c u t i v e c y c l e s = su c c e s s

166 n f r e q 2 f = 0

167 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tBackward . . . \ n ’

168 s e r . wr i t e ( ”1002” . encode ( ’ a s c i i ’ )+’\n ’ )

169 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tBackward . . . \ n\n ’ )

170 f . f l u s h ( )

171

172 e l i f c oun t de f e c t s == 2 :

173 cv2 . putText ( frame , ”THREE” , (200 ,50) , cv2 .FONT HERSHEY SIMPLEX, 2 , 2)

174 n f r e q 1 f = 0

175 n f r e q 2 f = 0

176 n f r e q 3 f = n f r e q 3 f + 1

177 n f r e q 4 f = 0

178 n f r e q 5 f = 0
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6.3.3 Multimodal control processing unit

Table 6.6 describes the MATLAB MCPU symbol processing algorithm. After developing the

input control blocks ‘f ’ and ‘g’, the next block to be developed was the ‘h’ block. The approach

was to develop the MCPU block in isolation, and then couple the speech and gesture block

later on. For this reason, test command symbols were defined for use in simulating the input

command being processed into executable UAV actions.

Table 6.6: Multimodal control processing MATLAB operation testing algorithm.

A. Initialise test control symbols/commands

B. Initialise knowledge base:

1. nCA Tier 1-III navigation operation - keywords, modifiers, & unit

2. nCA Tier 2-I scenario commands operation - keyword, execution, & map

C. Start logger - UAV 3-D position, time, control command, & weather

D. Loop through test control commands, moving on to the following command

until the last command has been executed. For each command,

1. if navigation command - go to nCA Tier 1-III program loop

2. if scenario command - go to nCA Tier 2-I program loop

Listing 6.9: Test command/symbol initialisation.

27 s p e e ch c t r l t ime = { ’ 1 4 : 0 0 : 0 0 . 0 00 ’ , ’ 1 4 : 0 2 : 0 0 . 0 00 ’ , ’ 1 4 : 0 4 : 0 0 . 0 00 ’ , ’ 1 4 : 0 5 : 3 0 . 000 ’ , ’ 1 4 : 0 6 : 0 0 . 0 00 ’ , ’

1 4 : 0 6 : 3 0 . 0 00 ’ , ’ 1 4 : 0 7 : 3 0 . 0 00 ’ , ’ 1 4 : 0 8 : 0 0 . 000 ’ , ’ 1 4 : 0 9 : 00 . 0 00 ’ , ’ 1 4 : 1 2 : 0 0 . 0 00 ’ , ’ 1 4 : 1 5 : 0 0 . 0 00 ’ , ’

1 4 : 1 7 : 0 0 . 0 00 ’ } ;

28 s p e e c h c t r l = { ’ go forward ’ , ’ go up ha l f metre ’ , ’ go r i gh t one metre ’ , ’ hover at three metre ’ , ’ land ’ , ’

hover ’ , ’ go backward forward two ha l f metre ’ , ’ go ’ , ’ a l e r t ’ , ’ panoramic s e l f i e ’ , ’ he lp ’ , ’ go away ’ } ;

Listing 6.9 is a code snippet of the control commands used in the developing the MCPU

program. The time tag is captured with the control command in order to determine if two

contiguous commands were sequential (t > 0.5s) or simultaneous (t ≤ 0.5s). Figure 6.13 shows

a screenshot of the MATLAB algorithm during development. Table 6.7 describes the Python

MCPU symbol processing algorithm. This was developed from the preceding MATLAB algo-

rithm, optimised as a python program, adapted to work with ROS, interfacing with ROS Gazebo

UAV simulator, and receiving control input from the SBC in real time. Listing 6.10 is a code

snippet showing the ROS Gazebo initialization routine for the MCPU program. Listing 6.11 is a

code snippet showing the ROS Gazebo waypoint publisher subroutine. The full program listing

for both the MATLAB and Python MCPU is given in Appendix C.2 and C.3 respectively.
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Figure 6.13: MATLAB Screenshot developing MMC v6 Algorigthm.

Table 6.7: MCPU Python processing algorithm.

A. Program initialisation:

1. import relevant python libraries

2. define global variables

3. initialise ROS waypoint navigation components

B. Repeat the MATLAB numerical simulation using Python, ROS, and Gazebo

for graphical simulation.

1. define control commands to be executed sequentially

2. start UAV data log and printing information in Linux terminal window

3. begin navigation and scenario control command execution

4. continuously publish UAV data log information in terminal

5. continuously send updated position/navigation information to the firefly

UAV in the ROS Gazebo simulator

6. end with patrol 5× 5 km2 loop operation
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Listing 6.10: ROS waypoint navigation initialisation.

62 #∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

63 # i n i t i a l i z i n g ros waypoint n a v i g a t i o n

64 #∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

65 # pro ba b l y e x p l o r e ”command/ gps waypo ing ” r o s t o p i c a l t e r n a t i v e f o r q u i c k e r s /w to h/w dep loyment

66 way pt pub = rospy . Pub l i sher ( ’ / f i r e f l y /command/ t r a j e c t o r y ’ , MultiDOFJointTrajectory , queue s i z e =10)

67 rospy . i n i t n od e ( ’ waypoint nav ’ , anonymous=True ) # i n i t i a l i z i n g node ’ waypo in t nav ’

68 rospy . l o g i n f o ( ” Started waypoint nav” )

69

70 nav cmd = MultiDOFJointTrajectory ( )

71 nav po int s = MultiDOFJointTrajectoryPoint ( )

72 nav transform = geometry msgs . Transform ( )

73 nav twi s t = geometry msgs . Twist ( )

74

75 # c r e a t i n g header

76 nav cmd . header . seq = idx

77 nav cmd . header . stamp . s e c s = 0 #rospy . g e t t im e ( )

78 nav cmd . header . stamp . nsecs = 0

79 nav cmd . header . f rame id = ’ ’ # ” n a v c t r l ”

80

81 # c r e a t i n g j o in t names

82 nav cmd . jo int names = [ ’ b a s e l i n k ’ ]

83

84 # c r e a t i n g po i n t components

85 nav transform . t r a n s l a t i o n . x = 0 .0

86 nav transform . t r a n s l a t i o n . y = 0 .0

87 nav transform . t r a n s l a t i o n . z = 1 .0

88 nav transform . r o t a t i on .w = 1.0 # qua t e rn i on r o t a t i o n t rans form

89

90 #na v t w i s t . l i n e a r = [ 0 , 0 , 0 ] # [ x , y , z ] − v e c t o r 3 l i n e a r

91 #na v t w i s t . angu l a r = [ 0 , 0 , 0 ] # [ x , y , z , w ] − v e c t o r 3 angu l a r

92 #nav cmd . p o i n t s = [ nav t rans form , n a v t w i s t ]

93

94 nav po int s . t rans forms = [ nav transform ]

95 nav cmd . po in t s = [ nav po int s ]

96

97 # rospy . l o g i n f o ( nav cmd )

98 # way p t pub . p u b l i s h ( nav cmd )

99 #∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Listing 6.11: ROS Gazebo waypoint publisher.

841 def waypoint nav ( nav x , nav y , nav z , nav theta ) :

842

843 ra t e = rospy . Rate ( 0 . 2 ) # 0.2 hz i . e . 1 messages per 5 seconds

844 i f not rospy . i s shutdown ( ) :

845 nav transform . t r a n s l a t i o n . x = nav x

846 nav transform . t r a n s l a t i o n . y = nav y

847 nav transform . t r a n s l a t i o n . z = nav z

848 # nav t rans fo rm . r o t a t i o n .w = 1.0 # qua t e rn i on r o t a t i o n t rans form

849 # rospy . l o g i n f o ( nav cmd )

850 way pt pub . pub l i sh ( nav cmd )

851

852 ra t e . s l e ep ( ) # s l e e p s f o r 5 seconds

Keyboard interface

After converting the MATLAB MCPU test program into Python, but before coupling the

speech and gesture input stages, there was a need to pass test control symbols in real time to

test how the coupled speech and gesture interface would operate. The keyboard was used to

generate this input symbol. Table 6.8 lists all the speech, gesture, and keyboard input control

commands used for navigation testing, and their common control symbol. Each command,
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Table 6.8: Standardised command control symbols for MCPU input.

S/N Symbols Speech Gesture Keyboard Input

1 1000 Stop 5 fingers Ctrl + X

2 1001 Forward 1 finger Ctrl + Up Arrow Key

3 1002 Backward 2 fingers Ctrl + Down Arrow Key

4 1003 Right 3 fingers Ctrl + Right Arrow Key

5 1004 Left 4 finger Ctrl + Left Arrow Key

6 1005 Up - Ctrl + W

7 1006 Down - Ctrl + S

8 1007 Starboard - Ctrl + D

9 1008 Larboard - Ctrl + A

regardless of the source (speech, gesture, or keyboard), is converted into the common control

symbol before being passed on to the MCPU for further processing.

Table 6.9: Keyboard control processing to symbol algorithm.

A. Program initialisation:

1. import relevant python libraries

2. start serial port transmission and keyboard input data log file

3. start monitoring keyboard keypress

B. Loop - wait for keyboard keypress event

C. Capture keyboard keypress preceeded by “ctrl keyboard command” otherwise

return to B wait loop

D. Process keyboard input command via a lookup table system:

1. if command is found in look up table, then copy corresponding control

symbol to be passed to MCPU

2. if not, then return to B wait loop

E. Relay - pass control command symbols to MCPU for further processing and

command execution

F. Repeat - steps B to E loop continuously until the program is manually ended

by the user
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Listing 6.12: Processing keyboard control symbol.

36 def get ( ) :

37 inkey = Getch ( )

38 while (1 ) :

39 k=inkey ( )

40 i f k!= ’ ’ : break

41 x = ord ( k )

42 i f x == 3 :

43 e x i t ( )

44 e l i f x == 59 :

45 # fo r t h e arrow keys

46 k=inkey ( )

47 i f ord ( k ) == 53 :

48 k=inkey ( )

49 i f ord ( k ) == 65 : # dec ima l v a l u e o f keyboard ’ c t r l + up arrow

key ’

50 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\ tForward ’

51 s e r . wr i t e ( ”1001” . encode ( ’ a s c i i ’ )+’\n ’ )

52 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\ tForward\n ’ )

53 f . f l u s h ( )

54 e l i f ord ( k ) == 66 : # dec ima l v a l u e o f keyboard ’ c t r l + down arrow

key ’

55 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tBackward ’

56 s e r . wr i t e ( ”1002” . encode ( ’ a s c i i ’ )+’\n ’ )

57 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tBackward\n ’ )

58 f . f l u s h ( )

59 e l i f ord ( k ) == 67 : # dec ima l v a l u e o f keyboard ’ c t r l + r i g h t arrow

key ’

60 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\ tRight ’

61 s e r . wr i t e ( ”1003” . encode ( ’ a s c i i ’ )+’\n ’ )

62 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\ tRight\n ’ )

63 f . f l u s h ( )

64 e l i f ord ( k ) == 68 : # dec ima l v a l u e o f keyboard ’ c t r l + l e f t arrow

key ’

65 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\ tLe f t ’

66 s e r . wr i t e ( ”1004” . encode ( ’ a s c i i ’ )+’\n ’ )

67 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\ tLe f t \n ’ )

68 f . f l u s h ( )

69

70 # fo r t h e non−arrow keys

71 e l i f ord ( k ) == 23 : # dec ima l v a l u e o f keyboard ’ c t r l + w ’

72 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tUp ’

73 s e r . wr i t e ( ”1005” . encode ( ’ a s c i i ’ )+’\n ’ )

74 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tUp\n ’ )

75 f . f l u s h ( )

76 e l i f ord ( k ) == 19 : # dec ima l v a l u e o f keyboard ’ c t r l + s ’

77 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tDown ’

78 s e r . wr i t e ( ”1006” . encode ( ’ a s c i i ’ )+’\n ’ )

79 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\tDown\n ’ )

80 f . f l u s h ( )

81 e l i f ord ( k ) == 4 : # dec ima l v a l u e o f keyboard ’ c t r l + d ’

82 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\ tStarboard ’

83 s e r . wr i t e ( ”1007” . encode ( ’ a s c i i ’ )+’\n ’ )

84 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\ tStarboard\n ’ )

85 f . f l u s h ( )

86 e l i f ord ( k ) == 1 : # dec ima l v a l u e o f keyboard ’ c t r l + a ’

87 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\ tLarboard ’

88 s e r . wr i t e ( ”1008” . encode ( ’ a s c i i ’ )+’\n ’ )

89 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\ tLarboard\n ’ )

90 f . f l u s h ( )

91 e l i f ord ( k ) == 24 : # dec ima l v a l u e o f keyboard ’ c t r l + x ’

92 print datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\ tStop ’

93 s e r . wr i t e ( ”1000” . encode ( ’ a s c i i ’ )+’\n ’ )

94 f . wr i t e ( datet ime . utcnow ( ) . i s o fo rmat ( ) + ’\ tStop\n ’ )

95 f . f l u s h ( )
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Table 6.9 describes the keyboard input capture and symbol processing algorithm. Listing 6.12

is code snippet showing the capture and processing of the keyboard input into control symbols,

mapped as shown in Table 6.8. The complete program code is listed in Appendix C.6. Although,

the keyboard input was originally developed to pass test control symbols directly to the MCPU

before the speech and gesture components were coupled to the MCPU, in the later part of this

research work, it was used as the altitude, attitude, and position (AAP) assisted RCJ interface

input equivalent, for a more like-to-like comparison of the mSVG and RCJ in the later part of

this research work.

6.3.4 ROS Gazebo UAV simulator

Input was received from the Odroid XU4 via USB using serial TX/RX transmission at 115200

Baudrate with the aid of the Teensy 3.2 Arduino compatible microcontroller. Listing 6.13 is a

code snippet of the desktop-side (client-side) Teensy 3.2 serial port communication receiver.

Listing 6.13: Client Teensy 3.2 serial interface feeding control symbols to Linux desktop.

1 /∗ FileName : m s v g v 0 3 l i n u x d e s k t o p . ino

2

3 Author : Ayo Abioye ( ab ioyeayo@gmai l . com)

4 Date : Tue 24−Apr−2018

5 Vers ion : 3 .0

6 Target Board : Teensy 3 .2 ( Arduino Uno compa t i b l e code )

7

8 Des c r i p t i o n : A program to r e c e i v e c t r l cmds from Odroid XU4 SBC f o r

9 ROS Gazebo S imu la to r on Linux Desktop Works ta t ion

10 ∗/

11

12 char incomingByte ;

13

14 void setup ( )

15 {

16 S e r i a l . begin (115200) ;

17 S e r i a l 1 . begin (115200) ;

18

19 pinMode (13 , OUTPUT) ; //ON S ta t u s L i g h t

20 d i g i t a lWr i t e (13 , HIGH) ; //

21 S e r i a l . p r i n t l n ( ” S ta r t i ng data logg ing . . . ” ) ;

22 }

23

24 void loop ( )

25 {

26 // S e r i a l . p r i n t ( S e r i a l 1 . read ( ) ) ;

27 i f ( S e r i a l 1 . a v a i l a b l e ( ) > 0) {

28 // read t he incoming b y t e :

29 incomingByte = S e r i a l 1 . read ( ) ;

30

31 // say what you go t :

32 S e r i a l . p r i n t ( incomingByte ) ;

33 }

34 }

Two Teensy 3.2 microcontrollers are used, one connected to the Odroid XU4 via USB - the

server, and the second connected to the Linux desktop computer workstation via USB - the

client. The client microcontroller writes the serial data received from the server microcontroller
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via ‘serial1’ to the desktop via ‘serial’. A terminal screen runs on the desktop that captures the

serial input and feeds this into the ROS framework, with the aid of the RotorS libraries, processes

and passes this to the Gazebo simulator to control the firefly UAV. The server microcontroller

has an identical program running but with the ‘serial1’ and ‘serial’ inputs swapped. Also the

Tx and Rx pin for serial1 are crossed between the server and client microncontroller interfaces,

so that the output of the server can be the input of the client and vice versa.

Listing 6.14: ROS node initialisation for control symbol input processing.

93 def waypoint nav ( ) :

94 way pt pub = rospy . Pub l i sher ( ’ / f i r e f l y /command/ t r a j e c t o r y ’ , MultiDOFJointTrajectory , queue s i z e

=10) # exp l o r e ”command/ gps waypo ing ” op t i on

95 rospy . i n i t n od e ( ’ waypoint nav ’ , anonymous=True ) # i n i t i a l i z i n g node ’ waypo in t nav ’

96 rospy . l o g i n f o ( ” Started waypoint nav” )

97

98 nav cmd = MultiDOFJointTrajectory ( )

99 nav po ints = MultiDOFJointTrajectoryPoint ( )

100 nav transform = geometry msgs . Transform ( )

101 nav twi s t = geometry msgs . Twist ( )

102

103 # c r e a t i n g header

104 nav cmd . header . seq = idx

105 nav cmd . header . stamp . s e c s = 0 #rospy . g e t t im e ( )

106 nav cmd . header . stamp . nsecs = 0

107 nav cmd . header . f rame id = ’ ’ # ” n a v c t r l ”

108

109 # c r e a t i n g j o in t names

110 nav cmd . jo int names = [ ’ b a s e l i n k ’ ]

111

112 # c r e a t i n g p o i n t s

113 #nav cmd . p o i n t s = [ t rans f o rms : [ t r a n s l a t i o n : {x : 1 , y : 1 , z : 1} , r o t a t i o n :{ x : 0 , y : 0 , z : 0 , w :

1} ] ]

114 #nav cmd . p o i n t s . t r ans f o rms = [ [ 1 , 1 , 1 ] , [ 0 , 0 , 0 , 0 ] ]

115

116 #nav t rans fo rm . t r a n s l a t i o n = [1 , 0 , 1 ] # [ x , y , z ] − v e c t o r 3 t r a n s l a t i o n

117 #nav t rans fo rm . r o t a t i o n = [0 , 0 , 0 , 0 ] # [ x , y , z , w ] − qua t e rn i on r o t a t i o n

118

119

120 nav transform . t r a n s l a t i o n . x = 0 .0

121 nav transform . t r a n s l a t i o n . y = 0 .0

122 nav transform . t r a n s l a t i o n . z = 1 .0

123 nav transform . r o t a t i on .w = 1.0

124

125 #na v t w i s t . l i n e a r = [ 0 , 0 , 0 ] # [ x , y , z ] − v e c t o r 3 l i n e a r

126 #na v t w i s t . angu l a r = [ 0 , 0 , 0 ] # [ x , y , z , w ] − v e c t o r 3 angu l a r

127

128 #nav cmd . p o i n t s = [ nav t rans form , n a v t w i s t ]

129 nav po ints . t rans forms = [ nav transform ]

130

131 nav cmd . po in t s = [ nav po ints ]

132

133 # rospy . l o g i n f o ( nav cmd )

134 # way p t pub . p u b l i s h ( nav cmd )

135

136 # de f i n i n g i n i t i a l uav p o s i t i o n

137 nav x = 0

138 nav y = 0

139 nav z = 0

140 nav theta = 0

Listing 6.14 is a code snippet of the MCPU processing ROS node. Listing 6.15 is a code

snippet of the MCPU waypoint navigation ROS node processing the input control symbols

into waypoint navigation coordinates, to be passed on to the RotorS framework for executing
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the navigation control command with the firefly UAV in the Gazebo simulator. The complete

program code is listed in Appendix C.7.

Listing 6.15: ROS control symbol input processing.

142 ra t e = rospy . Rate ( 1 0 . 0 ) # 10.0 hz i . e . 10 messages per second

143 while not rospy . i s shutdown ( ) :

144 temp str ing = se r . r e ad l i n e ( )

145 i f temp st r ing != ”” :

146 # record t ime data

147 da ta s t r i ng = datetime . utcnow ( ) . i s o fo rmat ( ) + ’\ t ’ + temp str ing

148

149 nav theta temp = nav theta

150

151

152 # e x t r a c t command

153 i f temp str ing == ”1001\n” : # forward cmd

154 #nav x = nav x + 1

155

156 tan sign mod = 1 #

tangen t s i g n mod i f i e r to a l t e r d i r e c t i o n

157 i f nav theta temp > 90 : # added

to enab l e computat ion o f

158 nav theta temp = 360 − nav theta temp # 4 th

quadrant e . g 315 deg or s im i l a r

159 tan sign mod = −1

160 nav theta rad = nav theta temp /57.2958

161 d pt = 0 .5

# d e f a u l t mod i f i e r i s 0 .5 m because 1 m i s to b i g a jump

162

163 nav x o ld = nav x

164

165 # compute f o r new x , y c oo r d i na t e

166 nav x = nav x o ld + math . sq r t ( ( d pt ∗∗2) / (1 + math . tan ( nav theta rad ) )

)

167 nav y = nav y + (( nav x − nav x o ld ) ∗ math . tan ( nav theta rad )∗

tan s ign mod )

168

169

170 i f temp str ing == ”1002\n” : # backward cmd

171 #nav x = nav x − 1

172

173 tan sign mod = 1 #

tangen t s i g n mod i f i e r to a l t e r d i r e c t i o n

174 i f nav theta temp > 90 : # added

to enab l e computat ion o f

175 nav theta temp = 360 − nav theta temp # 4 th

quadrant e . g 315 deg or s im i l a r

176 tan sign mod = −1

177 nav theta rad = nav theta temp /57.2958

178 d pt = 0 .5

# d e f a u l t mod i f i e r i s 0 .5 m

179

180 nav x o ld = nav x

181

182 # compute f o r new x , y c oo r d i na t e

183 nav x = nav x o ld − math . sq r t ( ( d pt ∗∗2) / (1 + math . tan ( nav theta rad ) )

)

184 nav y = nav y − ( ( nav x o ld − nav x ) ∗ math . tan ( nav theta rad )∗

tan s ign mod )

185

186

187 i f temp str ing == ”1003\n” : # r i g h t cmd

188 # nav y = nav y − 1

189

190 tan sign mod = 1 #

tangen t s i g n mod i f i e r to a l t e r d i r e c t i o n

191 i f nav theta temp > 90 : # added

to enab l e computat ion o f
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192 nav theta temp = 360 − nav theta temp # 4 th

quadrant e . g 315 deg or s im i l a r

193 tan sign mod = −1

194 nav theta rad = nav theta temp /57.2958

195 d pt = 0 .5

# d e f a u l t mod i f i e r i s 0 .5 m

196

197 nav y o ld = nav y

198

199 # compute f o r new x , y c oo r d i na t e

200 nav y = nav y o ld − math . sq r t ( ( d pt ∗∗2) / (1 + math . tan ( nav theta rad ) )

)

201 nav x = nav x + (( nav y o ld − nav y ) ∗ math . tan ( nav theta rad )∗

tan s ign mod )

202

203

204 i f temp str ing == ”1004\n” : # l e f t cmd

205 #nav y = nav y + 1

206

207 tan sign mod = 1 #

tangen t s i g n mod i f i e r to a l t e r d i r e c t i o n

208 i f nav theta temp > 90 : # added

to enab l e computat ion o f

209 nav theta temp = 360 − nav theta temp # 4 th

quadrant e . g 315 deg or s im i l a r

210 tan sign mod = −1

211 nav theta rad = nav theta temp /57.2958

212 d pt = 0 .5

# d e f a u l t mod i f i e r i s 0 .5 m

213

214 nav y o ld = nav y

215

216 # compute f o r new x , y c oo r d i na t e

217 nav y = nav y o ld + math . sq r t ( ( d pt ∗∗2) / (1 + math . tan ( nav theta rad ) )

)

218 nav x = nav x − ( ( nav y − nav y o ld ) ∗ math . tan ( nav theta rad )∗

tan s ign mod )

219

220

221 i f temp str ing == ”1005\n” : # up cmd

222 nav z = nav z + 0 .5 # d e f a u l t mod i f i e r i s 0 .5 m

223

224 i f temp str ing == ”1006\n” : # down cmd

225 nav z = nav z − 0 .5 # d e f a u l t mod i f i e r i s 0 .5 m

226

227 i f temp str ing == ”1007\n” : # s t a r b oa r d cmd

228 i f nav theta == 50 :

229 nav theta = 0

230 else :

231 nav theta = 310 #nav t h e t a + 50

232

233

234 i f temp str ing == ”1008\n” : # la r b o a r d cmd

235 i f nav theta == 310 :

236 nav theta = 0

237 else :

238 nav theta = 50 #nav t h e t a + 50

239

240

241 # Execu t ing na v i g a t i o n c o n t r o l

242 nav transform . t r a n s l a t i o n . x = nav x

243 nav transform . t r a n s l a t i o n . y = nav y

244 nav transform . t r a n s l a t i o n . z = nav z

245

246 nav theta rad = nav theta / 57.2958 # 180 deg / PI rad = 57.2958

247 nav transform . r o t a t i on . x = 0 ∗ math . s i n ( nav theta rad /2) # yaw

has no x−a x i s components

248 nav transform . r o t a t i on . y = 0 ∗ math . s i n ( nav theta rad /2) # yaw

has no y−a x i s components

249 nav transform . r o t a t i on . z = 1 ∗ math . s i n ( nav theta rad /2) # yaw
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has on l y z−a x i s components

250 nav transform . r o t a t i on .w = math . cos ( nav theta rad /2) # yaw

ang l e component in qua t e rn i on

251

252

253 #rospy . l o g i n f o ( nav cmd )

254 way pt pub . pub l i sh ( nav cmd )

255

256 # l o g data

257 print datas t r ing ,

258 # f . w r i t e ( d a t a s t r i n g )

259 # f . f l u s h ( ) # Force sys tem

wr i t e to d i s k

260 #f . c l o s e ( )

261

262 ra t e . s l e ep ( )

mSVG simulation startup procedure

Figure 6.14: Screenshot of the mSVG ROS Gazebo simulator running with the path v02 loaded.

The procedure for starting up the mSVG simulation is described in Table 6.10. Figure 6.14

shows a successfully started ROS Gazebo simulation with the path v02 flight path loaded and

the firefly UAV awaiting navigation control commands to be executed. Figure 6.15 shows the

ROS computation graph “rqt graph” for the ROS Gazebo UAV simulation. From the rqt graph,

it can be seen that the “waypoint nav” node (waypoint nav 18470 1517071665874) developed in

this Chapter, publishes the computed coordinate as trajectory messages to the firefly position

controller in the RotorS system. This in turn requests the current position of the firefly UAV

from the Gazebo simulator, computes the difference, and then updates the firefly UAV’s position

in Gazebo.
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Table 6.10: ROS Gazebo mSVG simulation startup procedure.

A. Peripheral hardware setup:

1. Teensy 3.2 server and client plugged into the Odroid XU4 SBC and Linux

desktop computers respectively and their Tx and Rx pins for ‘serial1’ crossed

2. Microphone plugged into the Odroid XU4 SBC via USB

3. Odroid web camera plugged into the Odroid XU4 SBC via USB

B. Linux desktop:

1. Startup the Linux desktop computer and boot to the default desktop graphical

user interface

2. Open a new Terminal, “Ctrl + Alt + T”

3. Open “home/catkin ws/” folder in the Terminal using,

$ cd catk in ws/

4. Load setup.bash, and start ROS,

$ source deve l / setup . bash

$ ro s c o r e

5. Start RotorS simulator in basic world with firefly UAV,

$ ros launch r o t o r s gazebo mav hover ing example . launch

mav name:= f i r e f l y world name:= bas i c

6. Load the path v02 navigation flight path model, positioning it at (x, y, z) =

(8.0, 0.5, 0.0)

7. Start mSVGMCPU program to retrieve control command symbol from SBC via

the serial port; to compute new waypoint coordinates, direction, and velocities;

and to pass this to the RotorS simulator for execution on the firefly UAV,

$ rosrun beg inner t u t o r i a l s msvg v 4 . 1 l i nux desktop . py

8. Start rqt graph,

$ rqt graph
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C. Odroid XU4 single board computer:

1. Startup the Odroid XU4 SBC computer and boot to the default desktop graph-

ical user interface

2. Open Terminal, “Ctrl + Alt + T”

3. Start speech capture, process to standardise control symbol, and send to ROS

Gazebo UAV simulator on desktop computer via serial port,

$ cd ˜/ odro id pro j /XU4 4 . 0 x f i l e s /com i n t e r l i n k /msvg

speech cmds

$ python speech cmd i n t e r l i n k v 1 . 0 . py

4. Open a new Terminal, “Ctrl + Alt + T”

5. Start finger gesture capture, process to standardise control symbol, and send

to ROS Gazebo UAV simulator on desktop computer via serial port,

$ cd ˜/ odro id pro j /XU4 4 . 0 x f i l e s /com i n t e r l i n k /msvg

f i n g e r g e s tu r e s

$ python fg i n t e r l i n k v 3 . 0 . py

6. Open a new Terminal, “Ctrl + Alt + T”

7. Start keyboard input capture, process to standardise control symbol, and send

to ROS Gazebo UAV simulator on desktop computer via serial port,

$ cd ˜/ odro id pro j /XU4 4 . 0 x f i l e s /com i n t e r l i n k /msvg v

03 odro id sbc

$ python msvg v 03 . 1 odro id sbc . py

ROS Gazebo mSVG simulation startup procedure - END

Figure 6.15: ROS rqt graph for the ROS Gazebo UAV simulation.
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6.4 Chapter Conclusion

In this chapter, the multimodal speech and visual gesture system model was designed and

developed with the aid of nCA Tier 1-III navigation and nCA Tier 2-I scenario application

examples. In developing the model, mathematical notations and logic were used. These were

then converted into computer programs, from which some useful code snippets were presented.

The mSVG development was discussed in functional blocks of speech input unit, gesture input

unit, multimodal control processing unit, and ROS Gazebo simulator unit. The operations of

the multmodal control processing unit were numerically simulated using MATLAB and then

graphically simulated using Python with the aid of ROS and Gazebo. The MATLAB numerical

simulation enabled one to completely focus on the development of the core MCPU computation

for each scenario without worrying about the demonstration on a UAV simulator or hardware

platform. The ROS Gazebo simulator was based on the RotorS framework developed by Furrer

et al. (2016). The startup procedure for the mSVG system was clearly outlined, starting with

putting the peripheral hardware together, to setting up the ROS Gazebo system on the desktop,

and setting up the speech and gesture capture on the SBC. The designed and developed mSVG

system was used in performing this research’s investigation in the following chapters.
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Chapter 7

Effects of varying noise levels and

lighting levels on mSVG interaction

with aerobots

In this chapter, the result of the experiment study on the effects of varying noise levels

and varying lighting levels on speech and gesture control command interfaces for aerobots, is

presented, analysed, and discussed. The result consists of around 3,108 speech utterance and

999 gesture quality observations. The result of the varying noise level is presented and analysed

in two parts, firstly as the speech command phrase, and secondly as the speech word component.

Then the results of the varying lighting level experiment is presented and analysed. Finally, the

results are discussed.

As discussed in Section 4.5, the experiment study was designed in Section 4.5.1, 37 participants

were recruited in Section 4.5.4, who performed the experiment procedure as described in Section

4.5.3. The 12 speech command phrases used for the speech experiment were “go forward, go

backward, step left, step right, hover, land, go forward half metre, go backward one metre, hover

one metre, step left half metre, step right one metre, and stop”. The following five finger gestures

– ‘one finger, two fingers, three fingers, four fingers, and five fingers’, were used in the gesture

lighting experiment.

7.1 Varying Noise Level - Speech Command Results

Tables showing the results of the experiment are presented in the figures in Appendix B.2.1.

The dataset is included in this thesis CD-R, as part of the result spreadsheet. The blanks

indicated by an underscore are points were the data was not available due to lab threshold noise
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levels being higher than specified, caused by uncontrollable ambient noise conditions during

experiments. Also, the whole of participant A1’s data in this segment were corrupt due to

setup failure at the beginning of the experiments. The implication of this is that total sum of

utterances may be fewer than 37, mostly 36 at each noise dB level.

Figure 7.1: SC1 Frequency Map.

Each of the 12 speech commands were collated across the 37 participants, and the number of

words successfully recognised were plotted against the noise levels with the number of times the

number of words were recognised for the particular speech command by different participants,

that is the hit frequency of each point on the plot was being indicated in brackets. This was

called the frequency map. A MATLAB program was written to collate and plot the data from

the result table. From the frequency map shown in Figure 7.1, it can be observed for the

two-word speech command “Go Forward” that all the 23 utterances successfully made at 55

dB were successfully recognised as two-word commands, as indicated in brackets next to the

point on the frequency map plot. Also, at 60 dB, it can be observed that of the 35 successfully

registered commands, 30 were two-word (full recognition - success), 4 were one-word (partial

recognition - partial success), and 1 was no-word (recognition failure). The distribution of the

partial success is presented in the next section on “variable noise level - word frequency.” At 65

dB, 36 commands were successfully registered/uttered/recorded, but only 27 were two-worded

(success), 5 one-worded (partial success), and 4 failures (no-word). At 70 dB, 11 were successfully
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recognised as two-worded, 12 partial success (one-word), and 13 failures (no-word). At 75 dB, 36

commands were registered, 8 two-word successes, 7 one-word partial successes, and 21 failures

(no word recognised). At 80 dB, 36 commands were registered, zero two-word success, 6 one-

word successes, and 30 failures (no-word). At 85 dB, 36 commands were registered, but all 36

failured, that is no word was recognised at 85 dB by the custom UAV-Speech interface.

Figure 7.2: SC1 Trendline.

A trend can be observed here, that at lower dB noise level, the two-word speech command

“Go Forward” was successfully recognised, whereas recognition fails at higher dB noise levels.

This trend is graphically shown by the trendline plot in Figure 7.2. The points on the trendline

were computed by taking the vertical weighted average from the frequency map as follows:

y(x) =

∑n
i=0 di(x)fi(x)
∑n

i=0 fi(x)
(7.1)

Where n = 4 - is the maximum number of speech command words used in the experiment.

di(x) - is the specific number of speech command words being registered, for the given x dB

noise level. Note that this corresponds to the ith value. fi(x) - is the frequency of the di(x)

point, as indicated on the frequency map, for the given x dB noise level.

For example, the points on the trendline for the first speech command (SC1), “Go Forward”

was computed as follows:
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When x = 55 dB

y(55) =

∑4
i=0 di(55)fi(55)
∑n

i=0 fi(55)
(7.2)

=
d0(55)f0(55) + d1(55)f1(55) + d2(55)f2(55) + d3(55)f3(55) + d4(55)f4(55)

f0(55) + f1(55) + f2(55) + f3(55) + f4(55)
(7.3)

=
0 · 0 + 1 · 0 + 2 · 23 + 3 · 0 + 4 · 0

0 + 0 + 23 + 0 + 0
= 2 (7.4)

When x = 60 dB

y(60) =

∑4
i=0 di(60)fi(60)
∑n

i=0 fi(60)
(7.5)

=
d0(60)f0(60) + d1(60)f1(60) + d2(60)f2(60) + d3(60)f3(60) + d4(60)f4(60)

f0(60) + f1(60) + f2(60) + f3(60) + f4(60)
(7.6)

=
0 · 1 + 1 · 4 + 2 · 30 + 3 · 0 + 4 · 0

1 + 4 + 30 + 0 + 0
= 1.8286 (7.7)

When x = 65 dB

y(65) =

∑4
i=0 di(65)fi(65)
∑n

i=0 fi(65)
=

0 · 4 + 1 · 5 + 2 · 27 + 3 · 0 + 4 · 0

4 + 5 + 27 + 0 + 0
= 1.6389 (7.8)

When x = 70 dB

y(70) =

∑4
i=0 di(70)fi(70)
∑n

i=0 fi(70)
=

0 · 13 + 1 · 12 + 2 · 11 + 3 · 0 + 4 · 0

13 + 12 + 11 + 0 + 0
= 0.9444 (7.9)

When x = 75 dB

y(75) =

∑4
i=0 di(75)fi(75)
∑n

i=0 fi(75)
=

0 · 21 + 1 · 7 + 2 · 8 + 3 · 0 + 4 · 0

21 + 7 + 8 + 0 + 0
= 0.6389 (7.10)

When x = 80 dB

y(80) =

∑4
i=0 di(80)fi(80)
∑n

i=0 fi(80)
=

0 · 30 + 1 · 6 + 2 · 0 + 3 · 0 + 4 · 0

30 + 6 + 0 + 0 + 0
= 0.1667 (7.11)

When x = 85 dB

y(85) =

∑4
i=0 di(85)fi(85)
∑n

i=0 fi(85)
=

0 · 36 + 1 · 0 + 2 · 0 + 3 · 0 + 4 · 0

36 + 0 + 0 + 0 + 0
= 0 (7.12)
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(a) SC2 Frequency Map. (b) SC2 Trendline.

(c) SC3 Frequency Map. (d) SC3 Trendline.

(e) SC4 Frequency Map. (f) SC4 Trendline.

(g) SC5 Frequency Map. (h) SC5 Trendline.

Figure 7.3: Frequency Map and Trendlines I.
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(a) SC6 Frequency Map. (b) SC6 Trendline.

(c) SC7 Frequency Map. (d) SC7 Trendline.

(e) SC8 Frequency Map. (f) SC8 Trendline.

(g) SC9 Frequency Map. (h) SC9 Trendline.

Figure 7.4: Frequency Map and Trendlines II.
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Similarly, the frequency map and trendline of the other 11 speech command phrases are

presented in Figure 7.3, Figure 7.4, and Figure 7.5, after performing a similar analysis. Figure

7.3 shows the results of four speech commands. In particular, Figure 7.3a and Figure 7.3b show

the frequency map and trendline of the second speech command (SC2), “Go Backward”. This is

a two-word command which seems to have a slightly better performance across the experiment

participants than the first speech command (SC1), “Go Forward”, particularly between 70 dB

and 80 dB. Figure 7.3c and Figure 7.3d show the frequency map and trendline of the third speech

command (SC3), “Step Left”, another two-word command. Figure 7.3e and Figure 7.3f show the

frequency map and trendline of the fourth speech command (SC4), “Step Right”, a two-word

command which seems to have been the most successful of all the other two-word commands

previously presented. SC4 has a recognition accuracy of over 90% at 75 dB and about 70% at

80 dB. Figure 7.3g and Figure 7.3h show the frequency map and trendline of the fifth speech

command (SC5), “Hover”, a one-word command, which had the poorest performance of all the

speech command set in the experiment. Its performance was observed to be as low as 22% at 65

dB. This was mainly attributed to its subtle articulation, which leaves it easily prone to noise

corruption even at low noise levels. In addition, the SC5 failure was also partly attributed to the

speech ASR implementation not being robust enough. Commercial or industrial speech ASR

interfaces, such as the Amazon Echo, Apple Siri, and Microsoft Cortana, may offer an improved

performance due to their use of more advance and online AI learning algorithms, whereas the

custom CMU Sphinx ASR which was used in this application was based on offline hidden markov

models (HMM).

Figure 7.4 shows the results of four more speech commands, SC6 - SC9. Figure 7.4a and

Figure 7.4b show the frequency map and trendline of the sixth speech command (SC6), “Land”,

which is also a one-word speech command. But unlike SC5: Hover, SC6: Land, had a better

performance, with recognition accuracy of over 90% at 75 dB and about 67% at 80 dB. Figure

7.4c and Figure 7.4d show the frequency map and trendline for the seventh speech command

(SC7), “Go Forward Half Metre”, which is a four-word command. The result, as presented here,

does not give additional information on which of the four words are failing, and whether these are

primary keywords, primary modifiers, secondary keywords, or secondary modifiers parameters.

Note that the failure of the two primary parameter/words could be considered as the failure of

the control command. However a more general approach is used to address this, by investigating

the overall word failure frequency in Section 7.2. Figure 7.4e and Figure 7.4f show the frequency

map and trendline for the eighth speech command (SC8), “Go Backward One Metre”, another

four-word speech command. Figure 7.4g and Figure 7.4h show the frequency map and trendline

for the ninth speech command (SC9), “Hover One Metre”, a three-word command.
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(a) SC10 Frequency Map. (b) SC10 Trendline.

(c) SC11 Frequency Map. (d) SC11 Trendline.

(e) SC12 Frequency Map. (f) SC12 Trendline.

Figure 7.5: Frequency Map and Trendlines III.

Figure 7.5 shows the results of the remaining three speech commands, SC10 - SC12. Figure

7.5a and Figure 7.5b show the frequency map and trendline of the tenth speech command

(SC10), “Step Left Half Metre”, a four-word speech command with over 75% and about 50%

recognition accuracy rate at 75 dB and 80 dB respectively. Figure 7.5c and Figure 7.5d show
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the frequency map and trendline of the eleventh speech command (SC11), “Step Right One

Metre”, another four-word speech command. Similar to SC4 “Step Right”, SC11 had a good

performance with a recognition accuracy of 92% and 67% at 75 dB and 80 dB respectively.

Both SC4 and SC11 share the same base keywords of “Step Right” the recognition of which

seems to be highly successful in all cases. This would be investigated further when breaking

down the speech command constituents, in Section 7.2, for speech command keyword selection.

Figure 7.5e and Figure 7.5f show the frequency map and trendline of the tenth speech command

(SC12), “Stop”, a one-word speech command with 91% and 64% recognition accuracy rate at

75 dB and 80 dB respectively.

7.1.1 Speech Command Performance Comparison

In order to compare the performance of each of the 12 speech commands using their trendline

characteristic, each weighted trendline was nomalize so they can all be plotted on to the same y-

axis, overlaid on the same graph and visually compared. This was done by dividing the weighted

trendline y(x) values previously computed by the number of words in the speech command.

Mathematically, normalised

YN (x) =
Y (x)

n
=

1

n

[

y(55) y(60) y(65) y(70) y(75) y(80) y(85)
]

(7.13)

where n is number of words in the specific speech command being normalised. The resulting

comparison plot is as shown in Figure 7.6. Note that the poorest performance was observed in

the speech recognition of SC5, ‘Hover’, followed by SC1 ‘Go Forward’ and SC2 ‘Go Backward’ as

indicated in the combined trendline in Figure 7.6. The best speech recognition performance was

observed in SC4 ‘Step Right’, SC6 ‘Land’, SC11 ‘Step Right One Metre’, and SC12 ‘Stop’. Both

single-word and multi-word speech commands were found in each performance category. Also,

the fact that significant fail safe commands such as SC6 ‘land’ and SC12 ‘stop’, were among the

most resilient to noise corruption, having a high recognition success rate at higher noise level, is

very important in UAV applications, where fail safe commands are expected to be very reliable,

otherwise it may be impractical to use.

7.1.2 Experiment speech command (SC) ASR characteristic

In order to determine the characteristic curve describing the speech command performance

within a UAV type application environment, given the custom CMU Sphinx ASR implementa-

tion, and the set of speech control commands, an average of the normalised trendline plotted in
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Figure 7.6: Comparing All SC Trendlines.

Figure 7.6 is computed and plotted. The average trendline characteristics,

yc(x) =
yN1(x) + yN2(x) + · · ·+ yNn(x)

n
(7.14)

=

∑n
i=1 yNi

(x)

n
(7.15)

where yNi
(x) - is the normalize value of y at x dB for the ith speech command. Also, n = 12

since there are 12 speech commands in this case. The result is the performance characteristic

curve shown in Figure 7.7. This curve can be used in predicting the response of the developed

speech control interface for the small multirotor UAV, setting the practical limit of the current

speech control interface implementation, quantifying the effects of performance modification

to the implementation. Also, other speech control methods that use other ASR engines with

different underlying theory other than hidden Markov Model (HMM) as is the case with the

CMU Sphinx, such as Amazon Echo, Microsoft Cortana, and Apple Siri, could be effectively

compared with this implementation using the characteristic performance curve. However, unlike

many of the alternative, the current implementation is low-cost and works off-line without relying

on network connectivity to function effectively.
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Figure 7.7: SC Trendline Model - Normalised.

7.1.3 Characteristic curve fitting

In order to make the UAV speech command interface performance characteristic easily ex-

portable for other application purposes, the curve was fitted to a polynomial line with three

degrees of freedom,

y = ax3 + bx2 + cx+ d (7.16)

Where a = −0.00005147, b = 0.00965375, c = −0.61458338, and d = 14.15673367, then

y = −0.00005147x3 + 0.00965375x2 − 0.61458338x+ 14.15673367 (7.17)

Where x ∈ ℜ | 55 ≤ x ≤ 85. The degrees of freedom was considered sufficient as polynomials

with higher degree of freedom values had coefficients that were near zero (≪ 10−4). Also, higher

degree of freedom values risks characteristic curve over-fitting. In addition, because of the nature

of the curve, other curve fitting such as linear or exponential were considered unsuitable. The

curve fit was generated using MATLAB. The resulting line of best fit equation presented in

Equation 7.17, was plotted over the curve generated in Figure 7.7 to give the characteristic

curves shown in Figure 7.8. The original characteristic curve is the black solid line in the plot,

while the fitted characteristic curve is the red dash-dot line.
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Figure 7.8: SC Trendline Predictive Model (fitting) - Normalised.

7.2 Varying Noise Level - Word Frequency Results

In this section, the experiment results were analysed based on the individual word frequency

rather than the speech command phrase as performed in Section 7.1. There are a total of twelve

(12) unique words that make up the twelve (12) UAV speech command phrases. Similar to

the speech command phrase analysis in the previous section, the total number of each of the

12 words (contained in the 12 speech command phrases) that were successfully recognised were

collated across the 37 participants, and presented in Appendix B.2.2. For each word, a frequency

map and a trendline plot was generated as presented in Figure 7.9, Figure 7.10, and Figure 7.11.

The frequency map is a plot of the total number of times (zero, one, two, three, four, and

five) each word was recorded across all participants for each noise level. For example, Figure

7.9a shows the observation for the first speech word (SW1) ‘Go’ which appeared a total of four

times across all 12 speech command phrase. At 55 dB, of the twenty-three participants whose

data were successfully captured and processed, twenty-one had all 4 of the 4 ‘Go’ word instances

successful, one had 3 of 4 success, and another one had 2 of 4 success. At 60 dB, 4 of 4 ‘Go’

word results were successfully recorded for twenty-five participants, 3 of 4 for five participants,

2 of 4 for two participants, 1 of 4 for two participants, and 0 of 4 for one participant. At 65

dB, of the 36 participants successfully captured and processed, the 4 of 4 ‘Go’ word recognition

was successful for 21 participants, 3 of 4 for 3 participants, 2 of 4 for 4 participants, 1 of 4 for
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2 participants, and 0 of 4 for 6 participants. At 70 dB, the 4 of 4 ‘Go’ word recognition was

thirteen times, 3 of 4 was one time, 2 of 4 was one time, 1 of 4 was five times, and 0 of 4 was

sixteen times. At 75 dB, the 4 of 4 ‘Go’ word recognition was seven times, 3 of 4 was three

times, 2 of 4 was one time, 1 of 4 was five times, and 0 of 4 was sixteen times. At 80 dB, the

4 of 4 ‘Go’ word recognition was two times, 3 of 4 was two times, 2 of 4 was five times, 1 of 4

was two times, and 0 of 4 was twenty-five times. At 85 dB, the 4 of 4 ‘Go’ word recognition was

zero, 3 of 4 was zero, 2 of 4 was zero, 1 of 4 was zero, and 0 of 4 was thirty-six times. From this

result, a decresase can be observed in the total number of times each word was recognised as the

noise level was increased from 55 dB to 85 dB. This was represented by the trendline shown in

Figure 7.9b, which was computed using a similar equation to the weighted trendline Equation

7.1 in the speech command analysis,

y(x) =

∑n
i=0 di(x)fi(x)
∑n

i=0 fi(x)
(7.18)

Where n - is the total number of each word present in the 12 speech commands combined, as

used in the experiment. Note that n is different for each word, for example n = 4 for SW1 ‘Go’,

n = 2 for SW2 ‘Forward’, n = 1 for SW8 ‘Land’, n = 3 for SW10 ‘One’, and n = 5 for SW11

‘Metre’. di(x) - is a coefficient less than or equal to n specifying the number of recognitions out

of n word repetitions in total set of 12 speech commands, for the given x dB noise level. Note

that this corresponds to the ith value. fi(x) - is the frequency (number of times) of the di(x)

of n recognition for the given word at the given x dB noise level, as indicated on the frequency

map.

For example, the points on the trendline for the first speech word (SW1), ‘Go’ were computed

as follows. When x = 55 dB,

y(55) =

∑4
i=0 di(55)fi(55)
∑n

i=0 fi(55)
=

0 · 0 + 1 · 0 + 2 · 1 + 3 · 1 + 4 · 21

0 + 0 + 1 + 1 + 21
= 3.8696 (7.19)

When x = 60 dB

y(60) =

∑4
i=0 di(60)fi(60)
∑n

i=0 fi(60)
=

0 · 1 + 1 · 2 + 2 · 2 + 3 · 5 + 4 · 25

1 + 2 + 2 + 5 + 25
= 3.4571 (7.20)

When x = 65 dB

y(65) =

∑4
i=0 di(65)fi(65)
∑n

i=0 fi(65)
=

0 · 6 + 1 · 2 + 2 · 4 + 3 · 3 + 4 · 21

6 + 2 + 4 + 3 + 21
= 2.8611 (7.21)

When x = 70 dB

y(70) =

∑4
i=0 di(70)fi(70)
∑n

i=0 fi(70)
=

0 · 16 + 1 · 5 + 2 · 1 + 3 · 1 + 4 · 13

16 + 5 + 1 + 1 + 13
= 1.7222 (7.22)
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When x = 75 dB

y(75) =

∑4
i=0 di(75)fi(75)
∑n

i=0 fi(75)
=

0 · 22 + 1 · 3 + 2 · 1 + 3 · 3 + 4 · 7

22 + 3 + 1 + 3 + 7
= 1.1667 (7.23)

When x = 80 dB

y(80) =

∑4
i=0 di(80)fi(80)
∑n

i=0 fi(80)
=

0 · 25 + 1 · 2 + 2 · 5 + 3 · 2 + 4 · 2

25 + 2 + 5 + 2 + 2
= 0.7222 (7.24)

When x = 85 dB

y(85) =

∑4
i=0 di(85)fi(85)
∑n

i=0 fi(85)
=

0 · 36 + 1 · 0 + 2 · 0 + 3 · 0 + 4 · 0

36 + 0 + 0 + 0 + 0
= 0 (7.25)

Figure 7.9c and Figure 7.9d show the frequency map and trendline of the second speech word

(SW2), ‘Forward’, which appeared only two times in the 12 speech command set. Observe that

about half of this command word fails at 70 dB, which is poor for a key command word for

which a higher resilience is needed at higher levels of 75 dB and perhaps 80 dB. Figure 7.9e and

Figure 7.9f show the frequency map and trendline of the third speech word (SW3), ‘Backward’,

which appeared only two times in the 12 speech command set. It had a better performance than

SW2, notably at both 75 dB and 80 dB. Figure 7.9g and Figure 7.9h show the frequency map

and trendline of the fourth speech word (SW4), ‘Right’, which also appeared only two times in

the 12 speech command set, was the most noise resilient and hence the most successful speech

command word with a high recognition accuracy of about 90% at 80 dB.

Figure 7.10 shows the results of four speech words, SW5 - SW8. Figure 7.10a and Figure 7.10b

show the frequency map and trendline of the fifth speech word (SW5), ‘Left’, which appears

twice in the 12 speech command set. Figure 7.10c and Figure 7.10d show the frequency map

and trendline for the sixth speech word (SW6), ‘Step’, which appears four times in the 12

speech command set. Figure 7.10e and Figure 7.10f show the frequency map and trendline for

the seventh speech word (SW7), ‘Hover’, which appears twice in the 12 speech command set.

This was the least successfully recognised speech command word across all participants, with a

recognition rate of 36% at 65 dB. Figure 7.10g and Figure 7.10h show the frequency map and

trendline for the eighth speech word (SW8), ‘Land’, which appeared only once in the 12 speech

command set. Note that this has exactly the same frequency map and trendline characteristic

as speech command SC6 ‘Land’ in Figure 7.4a and Figure 7.4b, because it is a single word

command that appears only once in the speech command set, therefore both speech command

and individual word dimensions of analysis yields the same result.
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(a) SW1 Frequency Map. (b) SW1 Trendline.

(c) SW2 Frequency Map. (d) SW2 Trendline.

(e) SW3 Frequency Map. (f) SW3 Trendline.

(g) SW4 Frequency Map. (h) SW4 Trendline.

Figure 7.9: Speech Word Frequency Map and Trendlines I.
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(a) SW5 Frequency Map. (b) SW5 Trendline.

(c) SW6 Frequency Map. (d) SW6 Trendline.

(e) SW7 Frequency Map. (f) SW7 Trendline.

(g) SW8 Frequency Map. (h) SW8 Trendline.

Figure 7.10: Speech Word Frequency Map and Trendlines II.
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(a) SW9 Frequency Map. (b) SW9 Trendline.

(c) SW10 Frequency Map. (d) SW10 Trendline.

(e) SW11 Frequency Map. (f) SW11 Trendline.

(g) SW12 Frequency Map. (h) SW12 Trendline.

Figure 7.11: Speech Word Frequency Map and Trendlines III.
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Figure 7.11 shows the results of the remaining four speech words, SW9 - SW12. Figure 7.11a

and Figure 7.11b show the frequency map and trendline of the ninth speech word (SW9), ‘Half’,

which appears twice in the 12 speech command set. Figure 7.11c and Figure 7.11d show the

frequency map and trendline for the tenth speech word (SW10), ‘One’, which appears three

times in the 12 speech command set. Figure 7.11e and Figure 7.11f show the frequency map

and trendline for the eleventh speech word (SW11), ‘Metre’, which appears five times in the

12 speech command set. This had the highest frequency of occurrence because it is a modifier

specifying the unit of movement in any direction being given by the keyword. Figure 7.11g

and Figure 7.11h show the frequency map and trendline for the twelfth speech word (SW12),

‘Stop’, which appeared only once in the 12 speech command set. This has exactly the same

frequency map and trendline characteristic as speech command SC12 ‘Stop’ in Figure 7.5e and

Figure 7.5f, because it is a single word command that appears only once in the speech command

set, therefore both speech command and individual word dimensions of analysis yields the same

result.

7.2.1 Speech Word Performance Comparison

The performance of each of the speech words was compared using the same method described

in Section 7.1.1 with the aid of Equation 7.13. The resulting comparison plot is shown in Figure

7.12. Note that the poorest performance was observed in the speech word recognition of SW7,

‘Hover’, followed by SW2 ‘Forward’ and SW1 ‘Go’ as indicated in the combined trendline in

Figure 7.12. The best speech recognition performance was observed in SW4 ‘Right’, SW8 ‘Land’,

SW10 ‘One’, SW11 ‘Metre’, and SW12 ‘Stop’.

7.2.2 Experiment speech word (SW) ASR characteristic

Similar to the SC ASR Characteristic curve presented in Section 7.1.2, the average of the

normalised trendline plotted in Figure 7.12 is computed and plotted to give the SW ASR Char-

acteristic shown in Figure 7.13, which was computed with the aid of Equation 7.15.

7.2.3 SW characteristic curve fitting

Fitting the SW ASR characteristic curve to a three degree of freedom polynomial curve of the

form,

y = ax3 + bx2 + cx+ d (7.26)
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Figure 7.12: Comparing All SW Trendlines.

Figure 7.13: SW Trendline Model - Normalised.

Where a = −0.00004949, b = 0.00916273, c = −0.57521151, and d = 13.14811872, yielded

y = −0.00004949x3 + 0.00916273x2 − 0.57521151x+ 13.14811872 (7.27)
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Figure 7.14: SW Trendline Predictive Model (fitting) - Normalised.

Where x ∈ ℜ | 55 ≤ x ≤ 85. This is plotted as shown in Figure 7.14, where the original

characteristic curve is the black solid line in the plot, and the fitted characteristic curve is the

red dash-dot line.

7.3 Varying Lighting Level Results

This section presents the result from the varying lighting level (VLL) experiments. The

complete result from this segment of the experiment is tabulated in the figures in Appendix B.2.3,

which consists of about 999 gesture observations, from nine lighting stages, three background

quality experiment per stage, and 37 experiment participants. The blanks indicated by an

hyphen are points were the data was not available due to later improvement in experimental

condition after preliminary testing. For example, the blue and green background were not used

during preliminary testing (participant 1 - 5) but were then made available for the significant

remainder of the test (participant 6 - 37). Also, the whole of participant A10’s data in this

segment could not be captured because the equipment calibration failed for the participant.

The implication of this is that the total number of observations for all participants for most

of the lighting stage parameters is 36, and 31 for the green and blue background parameter.

Also, although the same variable knob setting was used for all participants, slightly different

lighting level values were measured up to a span of around 200 lux at higher lighting levels,
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which also accounts for the scatter observed in the plots. This was due to 1) stray light rays

from corridors due to people and lab equipment movements, 2) weather-dependent daylight

level penetration via shut windows, and 3) reflection from workstation computer monitors and

screens within the experiment lab. However, this was not a problem for the result analysis,

since the aim is to observe the quality trend from low to high intensity on different lighting

background and with different lighting source. They were considered as white noise whose

persistent presence throughout the experiment evenly cancels out their effect eventually. For

analysis where the scatter could be a problem, the mean lighting level value could be computed

across all participants and use as the lighting stage lighting level value. Figure 7.15 shows the

result of room temperature variation for each participant as they progress through different

lighting levels going from lighting stage 1 (LS1) to lighting stage 9 (LS9), and it helps validate

the fact that the slight differences in the lighting level for each participant does not affect the

general trend of rising temperature during experiment.

(a) Scatter plot (b) Regression

Figure 7.15: Room temperature change during the varying light level experiment.

Figure 7.15a is a scatter plot of the room temperature against lighting level during the ex-

periment progression through the lighting stages. The scatter plot has been colour coded to

collate lighting level reading at the same lighting stage together. In Figure 7.15b, a line of best

fit was drawn over the scatter plot data in Figure 7.15a, using MATLAB. It can be observed

from Figure 7.15b that temperature was gradually rising during the course of the experiment,

at a gradient of a = 0.00040479, given that the equation of the line is

y = ax+ b = 0.00040479x+ 23.58151862 (7.28)

There are nine lighting stages (LS1-LS9). At each lighting stage, each of the different back-

ground qualities are estimated based on how distinct the finger gestures were clearly recognised
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using a numeric scale of 1-10, with ‘1’ being a complete failure in gesture recognition, ‘3’ being

the hand outline was successfully registered, ‘5’ being all finger gestures being successful but with

high frequency noise fluctuations, and ‘7’ being all fingers were clearly distinguished but with

small low frequency fluctuations (one in 10 seconds), and ‘10’ being perfect steady recognition,

with no noise fluctuations within 60 seconds. The results from the varying light level experiment

would be presented in three sections according to the incident lighting colour of white, yellow,

and mixed.

7.3.1 White lighting on different background

Figure 7.16 shows the result of the varying lighting level experiment when only the white LED

lighting was used on the different backgrounds. These were the lighting stages 2, 3 and 7 (LS2,

LS3, and LS7) steps of the experiment. Figure 7.16a shows the scatter plot of the result of the

finger gesture recognition quality on the green background against the white LED lighting level

in Lux (luminous flux incident on the background surface per unit-area/square-metre). Figure

7.16b shows the line of best fit for the scatter plot shown in Figure 7.16a. The equation of

the line of best fit was y = 0.00101495x + 3.37095643 with a gradient of about 0.10%. Figure

7.16c shows the scatter plot of the result of the finger gesture recognition quality on the blue

background against the white LED lighting level in Lux. Figure 7.16d shows the line of best

fit for the scatter plot shown in Figure 7.16c. The equation of the line of best fit in Figure

7.16d was y = 0.00186688x + 4.25523286 with a gradient of about 0.19%. Figure 7.16e shows

the scatter plot of the result of the finger gesture recognition quality on the white background

against the white LED lighting level in Lux. Figure 7.16f shows the line of best fit for the

scatter plot shown in Figure 7.16e. The equation of the line of best fit in Figure 7.16f was

y = 0.00049768x+ 5.38390575 with a gradient of about 0.05%.

7.3.2 Yellow lighting on different background

Figure 7.17 shows the result of the varying lighting level experiment when only the yellow

LED lighting was used on the different backgrounds. These were the lighting stages 4, 5 and 8

(LS4, LS5, and LS8) steps of the experiment. Figure 7.17a shows the scatter plot of the result of

the finger gesture recognition quality on the green background against the yellow LED lighting

level in Lux. Figure 7.17b shows the line of best fit for the scatter plot shown in Figure 7.17a.

The equation of the line of best fit was y = 0.00335540x+ 3.17575769 with a gradient of about

0.34%. Figure 7.17c shows the scatter plot of the result of the finger gesture recognition quality

on the blue background against the yellow LED lighting level in Lux. Figure 7.17d shows the

line of best fit for the scatter plot shown in Figure 7.17c. The equation of the line of best fit

in Figure 7.17d was y = 0.00296837x + 3.93542753 with a gradient of about 0.30%. Figure
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(a) VLL green background. (b) VLL green background regression.

(c) VLL blue background. (d) VLL blue background regression.

(e) VLL white background. (f) VLL white background regression.

Figure 7.16: VLL white incident LED light on green, blue, and white background.

7.17e shows the scatter plot of the result of the finger gesture recognition quality on the white

background against the yellow LED lighting level in Lux. Figure 7.17f shows the line of best fit

for the scatter plot shown in Figure 7.17e. The equation of the line of best fit in Figure 7.17f

was y = 0.00035590x+ 4.32313692 with a gradient of about 0.04%.
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(a) VLL green background. (b) VLL green background regression.

(c) VLL blue background. (d) VLL blue background regression.

(e) VLL white background. (f) VLL white background regression.

Figure 7.17: VLL yellow incident LED light on green, blue, and white background.

7.3.3 Mixed white and yellow lighting on different background

Figure 7.18 shows the result of the varying lighting level experiment when the white and yellow

LED lighting were combined on the different backgrounds. These were the lighting stages 1, 6

and 9 (LS1, LS6, and LS9) steps of the experiment. Figure 7.18a shows the scatter plot of the
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(a) VLL green background. (b) VLL green background regression.

(c) VLL blue background. (d) VLL blue background regression.

(e) VLL white background. (f) VLL white background regression.

Figure 7.18: VLL mixed white and yellow incident LED light on green, blue, and white back-

ground.

result of the finger gesture recognition quality on the green background against the mixed white

and yellow LED lighting level in Lux. Figure 7.18b shows the line of best fit for the scatter plot

shown in Figure 7.18a. The equation of the line of best fit was y = 0.00119177x + 3.30883877
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with a gradient of about 0.12%. Figure 7.18c shows the scatter plot of the result of the finger

gesture recognition quality on the blue background against the mixed white and yellow LED

lighting level in Lux. Figure 7.18d shows the line of best fit for the scatter plot shown in Figure

7.18c. The equation of the line of best fit in Figure 7.18d was y = 0.00192255x + 3.99397086

with a gradient of about 0.19%. Figure 7.18e shows the scatter plot of the result of the finger

gesture recognition quality on the white background against the mixed white and yellow LED

lighting level in Lux. Figure 7.18f shows the line of best fit for the scatter plot shown in Figure

7.18e. The equation of the line of best fit in Figure 7.18f was y = 0.00156143x + 3.58726852

with a gradient of about 0.16%.

7.4 Discussion

7.4.1 Speech command phrase

The result of the experiment shows that speech recognition accuracy/success rate falls as noise

levels rises. A regression model was developed from the empirical observation of nearly 3, 108

speech command utterances - that is 12 speech commands, repeated for each of 7 noise levels, by

37 different experiment participants. The polynomial curve fitting characteristic generated for

the custom CMU Sphinx ASR can be used to predict speech recognition performance for aerial

robotic systems where the CMU Sphinx ASR engine is being used, as well as in the performance

comparison with other ASR engines. Also, it was not clear how the length of speech (the number

of speech words in phrase) affects the recognition accuracy, because while there are evidence

supporting single-word poor performance like ‘hover’, there are alternative evidence supporting

single-word good performance for words like ‘land’ and ‘stop’, in the experiment. However, multi-

word speech commands may be more reliable and effective than single-word commands due to the

possibility of introducing a syntax error checking stage in the recognition process to validate the

control command. The composition of multi-word speech commands consists of keywords and

modifiers. For example in the SC7 command “Go Forward Half Metre”, the primary keyword

is ‘Forward’, the secondary keyword is ‘Go’, the primary modifier is ‘Half’, and the secondary

modifier is the unit ‘Metre’. In multi-word speech commands, the primary keyword and the

primary modifier is the most significant, as the failure of these primary parameters would result

in the command execution failure. Secondary modifiers aids system usability particularly for

human operators, and could be used for error checking within the UAV system to ensure fidelity

of command communication.
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7.4.2 Speech command word

From the results of the experiments, it was observed that speech command selection affects

the speech recognition accuracy, as some speech command words were found to be more resilient

to corruption at higher noise levels, maintaining over 90% success rate at 75 dB whereas the

average rate at 75 dB was just over 65%. In other words, the success of speech command

words such as SW4 ‘right’, SW8 ‘land’, and SW12 ‘stop’, at higher noise levels suggests that

some speech command words are more noise resistant than others and that a careful selection

of these as part of the speech command phrase could improve the robustness and accuracy of

speech recognition in spite of high noise levels, thereby contributing to a more successful human

aerobotic speech control interaction.

7.4.3 Aerobot speech interaction

Figure 7.19 shows the comparison of the speech word (SW) and speech command (SC) trend-

line characteristic curve. The red solid line represents the SC curve while the black dash-dot

line represents the SW curve. Observe that the two curve trends are very similar with the SW

curve being below the SC curve, although the SW curve seems to be a replica of the SC curve.

The result of the characteristic curve comparison suggests that the speech command phrase

slightly outperforms the speech command word, thereby supporting the argument in favour of

multi-word commands over single-word commands.

Figure 7.19: SC-SW Trendline characteristic comparison.
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Based on this analysis and the observations in this research, it is recommended that the upper

limit of 75 dB noise application level should be set for practical aerobot speech interaction. This

was because at 75 dB, the speech recognition accuracy/success was about 65%, falling below

average at 80 dB, and below 5% at 85 dB. In other words, speech is not an effective means of

control interaction with an aerobot beyond 75 dB noise level, as the speech control interaction

becomes very unreliable due to poor recognition. However, based on the typical UAV noise level

data presented in Table 4.4, it is clear that this limit is below the application range of most

small multirotor UAVs. Therefore, there is a need to push the upper limit beyond 75 dB to

atleast 80 dB or more. Therefore, the following suggestions are given in order to improve the

aerobot speech application:

1. Alternative ASR engine: Consider the use of alternative speech ASR technology with a

different learning model from the CMU Sphinx’s hidden markov model, such as artificial

neural network or deep learning, for improved noise performance.

2. Low noise design: Improve small multirotor UAV propulsion system design to be low noise.

3. Application environment: Deploy application only in sub-75 dB noise conditions.

4. Speech capture hardware: Consider the use of directional, noise canceling, or array micro-

phones.

5. Speech command selection: Optimise the selection of multi-word and single-word speech

command in favour of more resilient command variant, as observed in this particularly

study.

In Abioye et al. (2018a), it was observed that ambient noise level above 80 dB significantly

affected speech capture. While this conclusion still holds true for the current research work, the

current research work had more experiment data to analyse in order to more precisely determine

the practical application limits, as presented in this section.

Also, note that even as propeller noise level decreases, as in the DJI Mavic pro platinum

drone DJI (2017a), there are other environmental noise factors that may not be controllable,

such as the noise generated by crowds, weather storms, car traffic, heavy duty vehicles on sites,

industrial machines, etc. Therefore, robust speech recognition, in spite of noise, not only in the

absence of noise, is needed for practical real world UAV applications.

7.4.4 Lighting level and background effect on gesture recognition quality

The white lighting experiment emulates outdoor daylight at 5500 K colour temperature, while

the yellow and mixed lighting experiments emulates indoor lighting conditions of 3500 K - 5500



Chapter Conclusion 229

K colour temperatures. The idea is to consider the aerobot gesture application in both indoor

and outdoor (field application) environments. From the varying lighting level experiment results,

it was observed that there was only a little improvement in the quality of gesture recognition

going from lower light levels to higher lighting levels, as indicated by the gradients from the

lines of best fit. Low gradient implies low gesture performance improvement over increasing Lux

lighting levels. This observation was consistent across all lighting source (white, yellow, and

mixed) and for all three backgrounds of green, blue, and white. The line gradients indicated

how much the recognition quality improved from low lighting to higher lighting level, while the

intercept indicated the minimum quality threshold. For the white lighting experiment, the blue

background had the best improvement with a gradient of 0.19% while the white background

had the better minimum quality threshold of 5.38, which means that the finger gestures were

clearly recognised but with high frequency noise fluctuations. The green background had the

least improvement. For the yellow lighting experiment, the green background had the best

improvement with a gradient of 0.34% while the white background had the better minimum

quality threshold of 4.32, which means that the finger gestures were barely distinctly recognised.

But the blue background had the better balance combination of gradient and intercept of 0.30%

and 3.94. For the mixed white and yellow lighting experiment, the blue background had the

best performance with the best improvement gradient of 0.19% and the best minimum quality

threshold of 3.99. The green and white background were similar in their performance.

From these results, the effects of both lighting conditions and the environment background on

the quality of gesture recognition, was almost insignificant, less than 0.5%. Therefore, other fac-

tors such as the gesture capture system design and technology (camera and computer hardware),

type of gesture being captured (upper body, whole body, hand, fingers, or facial gestures), and

the image processing technique (gesture classification algorithms) are more important in success-

fully recognising gesture commands. However, the setup of the gesture capture system and the

recognition processing system would still need to take into account the application environmental

conditions in order to develop an optimum gesture command interface.

7.5 Chapter Conclusion

In this chapter, the result of the experiment study on the effects of varying noise levels

and varying lighting levels on speech and gesture control command interfaces for aerobots,

was presented, analysed, and discussed. It was observed from the results of the experiment

that speech recognition accuracy/success rate falls as noise levels rise. A regression model was

developed from the empirical observation of nearly 3, 108 speech command utterances by 37

participants. Multi-word speech commands with primary and secondary modifier parameters,
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were thought to be more reliable and effective than single-word commands due to the possibility

of syntax error checking. Also, it was observed that some speech command words were more

noise resistant than others, even at higher noise levels, and that a careful selection of these

as part of the speech command phrase could improve the robustness and accuracy of speech

recognition at such high noise levels. Speech, based on the custom CMU Sphinx ASR system

developed, is not an effective means of control interaction with an aerobot beyond 75 dB noise

level, as the speech control interaction becomes very unreliable due to poor recognition. There

is a need to push the upper limit beyond 75 dB to atleast 80 dB or more, based on current UAV

noise ratings (Table 4.4). Suggestions were made on how to push this limit. The importance

of robust speech recognition techniques that perform excellently, in spite of noise, in practical

UAV applications, was highlighted. From the results of the gesture-lighting experiment, the

effects of both lighting conditions and the environment background on the quality of gesture

recognition, was almost insignificant, less than 0.5%, which means that other factors such as

the gesture capture system design and technology (camera and computer hardware), type of

gesture being captured (upper body, whole body, hand, fingers, or facial gestures), and the

image processing technique (gesture classification algorithms), are more important in developing

a successful gesture recognition system.

7.5.1 Limitation

The main limitation of the varying lighting experiment study in this research was that the

lighting level range was constrained between twilight (10 Lux) conditions and an overcast day

condition (1400 Lux), typical for indoor lighting levels, whereas outdoor lighting conditions

could vary up to 100,000 Lux on a very sunny day with direct sunlight, as shown in Table 4.6.

Therefore, the gesture-lighting application described in this study is more applicable to indoor

scenarios such as the domestic application scenario described in Section 1.4.2. The gesture-

lighting application for the outdoor search and rescue scenario described in Section 1.4.1 is

limited to cloudy overcast day conditions.

7.5.2 Further work

In order to improve the application limit of the aerobot speech interface, alternative automatic

speech recognisers with a different learning model from the CMU Sphinx’s hidden markov model,

should be considered. ASRs based on artificial neural network or deep learning such as the IBM

Watson speech to text cloud AI service (IBM, 2010), are suggested. A hardware upgrade to

directional, noise cancelling, and array microphones should also be considered. Multi and single

word speech command selection should be optimised in favour of the more resilient command

variant as observed in this particularly study.



Chapter Conclusion 231

In order to improve the gesture performance, better hardware (cameras and single board

computers) capable of capturing high resolution images and performing complex graphic com-

putation processing in real time, should be used. In addition, instead of the appearance-based

2D-model algorithm used in this research, a more advance 3D-model based AI gesture algorithm

should be developed for capturing and recognising hand, arm, and upper body gestures.
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Chapter 8

The performance and cognitive

workload analysis of the mSVG UAV

control interface

In this chapter, the results of the performance and cognitive workload comparison experi-

ment study between the RC joystick (RCJ) and mSVG (multimodal speech and visual gesture)

interfaces are presented, analysed, and discussed. The RFDS (Real Flight Drone Simulator)

results are first presented, then the Path v02 completion time and navigaiton accuracy results

are presented next. After which the cognitive workload results are presented, and then the SGR

usage ratio of the mSVG interface during the Path v02 flight path navigation. This is followed

by the statistical analysis of the Path v02 flight path navigation result using both the analysis

of variance (ANOVA) and the two-sample t-test for significance testing to validate the result.

Finally, the implications of these results were also discussed.

As discussed in Section 4.5, the experiment study was designed in Section 4.5.2, 37 participants

were recruited in Section 4.5.4, who performed the experiment procedure as described in Section

4.5.3. The Keyboard (KBD) interface was introduce to simulate the RCJ interface in altitude,

atittude, and position (AAP) assist mode, such that a comparison was made between the mSVG

interface and both the standard and AAP-modified RCJ interfaces.

8.1 Task B Experiment Results

A digital spreadsheet copy of the Task B experiment result is submitted with this thesis.

These results are also presented in the Tables in Appendix B.3 for ease of referencing.



234
Chapter 8. The performance and cognitive workload analysis of the mSVG UAV control

interface

(a) Level 1 RFDS scores. (b) Level 1 RFDS time. (c) Level 1 RFDS trials.

(d) Level 2 RFDS scores. (e) Level 2 RFDS time. (f) Level 2 RFDS trials

(g) Level 3 RFDS scores. (h) Level 3 RFDS time. (i) Level 3 RFDS trials

(j) Level 4 RFDS scores. (k) Level 4 RFDS time. (l) Level 4 RFDS trials

(m) Level 5 RFDS scores. (n) Level 5 RFDS time. (o) Level 5 RFDS trials

Figure 8.1: RFDS Level 1 to 5 results.
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8.1.1 RFDS result

Figure 8.1 shows the results of the 37 participants’ RFDS challenge performance for level 1 to

5. Each participant’s result consists of three components - level score, time of completion, and

the number of trials to pass the level. The level score is a function of the completion time. In the

RFDS software, a default upper and lower time threshold are set, beyond which the participants

scores a 100%, below which a participant scores zero, and in between, a linear interpolation is

performed to determine the scores. Figure 8.1a shows the scores of each of the 37 participants for

the RFDS level 1. Figure 8.1b shows the completion time of the RFDS level 1 challenge. It can

be observed from Figure 8.1b and Figure 8.1a that the completion time is inversely proportional

to the score attained, i.e. the shorter the completion time, the higher the score attain, and

vice versa. Figure 8.1c shows the number of trials of each of the 37 participants for the RFDS

level 1 challenge. All participants successfully completed the RFDS level 1 challenge within 7

attempts. Figure 8.1d shows the scores of each of the 37 participants for the RFDS level 2

challenge. Figure 8.1e shows the completion time of the RFDS level 2 challenge. Figure 8.1f

shows the number of trials of each of the 37 participants for the RFDS level 2 challenge. All

participants successfully completed the RFDS level 2 challenge in 2 attempts.

Figure 8.1g shows the scores of each of the 37 participants for the RFDS level 3 challenge.

Figure 8.1h shows the completion time of the RFDS level 3 challenge. Figure 8.1i shows the

number of trials of each of the 37 participants for the RFDS level 3 challenge. Only 32 of the 37

participants successfully completed the RFDS level 3. This accounts for the blank bars in Figure

8.1g and Figure 8.1h, where 5 participants did not complete the level, and therefore had no score

or completion time data to plot. Figure 8.1j shows participants’ scores for the RFDS level 4

challenge. Figure 8.1k shows the completion time of the RFDS level 4 challenge. Figure 8.1l

shows the number of trials of the participants for the RFDS level 4 challenge. The blank bars

in Figure 8.1l are representative of the participants who failed to complete the previous RFDS

level (level 3) and therefore did not attempt the RFDS level 4 and hence have no number of trial

data to indicate. Only 11 participants successfully completed the RFDS level 4. The remaining

21 participants dropped out at this level. Figure 8.1m shows participants’ scores for the RFDS

level 5 challenge. Figure 8.1n shows the completion time of the RFDS level 5 challenge. Figure

8.1o shows the number of trials of the participants for the RFDS level 5 challenge. Only 5

participants successfully completed this level, as 6 participants dropped out.

Figure 8.2 shows the results of the 37 participants’ RFDS challenge performance for level 6

to 10. Figure 8.2a shows participants’ scores for the RFDS level 6 challenge. Figure 8.2b shows

the completion time of the RFDS level 6 challenge. Figure 8.2c shows the number of trials
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(a) Level 6 RFDS scores. (b) Level 6 RFDS time. (c) Level 6 RFDS trials.

(d) Level 7 RFDS scores. (e) Level 7 RFDS time. (f) Level 7 RFDS trials

(g) Level 8 RFDS scores. (h) Level 8 RFDS time. (i) Level 8 RFDS trials

(j) Level 9 RFDS scores. (k) Level 9 RFDS time. (l) Level 9 RFDS trials

(m) Level 10 RFDS scores. (n) Level 10 RFDS time. (o) Level 10 RFDS trials

Figure 8.2: RFDS Level 6 to 10 results.
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of the participants for the RFDS level 6 challenge. All 5 remaining participants successfully

completed this level. Figure 8.2d shows participants’ scores for the RFDS level 7 challenge.

Figure 8.2e shows the completion time of the RFDS level 7 challenge. Figure 8.2f shows the

number of trials of the participants for the RFDS level 7 challenge. Only 4 of the remaining

5 participants successfully completed this level. Figure 8.2g shows participants’ scores for the

RFDS level 8 challenge. Figure 8.2h shows the completion time of the RFDS level 8 challenge.

Figure 8.2i shows the number of trials of the participants for the RFDS level 8 challenge. Only 3

of the remaining 4 participants successfully completed this level. Figure 8.2j shows participants’

scores for the RFDS level 9 challenge. Figure 8.2k shows the completion time of the RFDS

level 9 challenge. Figure 8.2l shows the number of trials of the participants for the RFDS level

9 challenge. All 3 remaining participants successfully completed this level. Figure 8.2m shows

participants’ scores for the RFDS level 10 challenge. Figure 8.2n shows the completion time of

the RFDS level 10 challenge. Figure 8.2o shows the number of trials of the participants for the

RFDS level 10 challenge. None of the remaining participants successfully completed this level,

it was the most difficult challenge, particularly due to the very short time constraint.

Figure 8.3 shows the average performance (score, completion time, and number of trials) for

each level, for the participants who completed those levels. The purple bars shows the average

score performance, the green bar shows the completion time performance, and the yellow bars

shows the number of trials. Note that level 10 has no score nor completion time average due to

the fact that none of the participants completed this, despite the attempted number of trials.

Figure 8.3: RFDS average performances.
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Figure 8.4a shows the average score data for each level. This was only computed for partic-

ipants who completed each level. The average score values are printed on top of each bars in

Figure 8.4a. The maximum score line (at 100%) is shown for comparison. A score of zero in

any level indicates a failure to complete that level by any participants, as observed in level 10.

(a) RFDS average scores. (b) RFDS average time.

(c) RFDS average trial.

Figure 8.4: RFDS average performances shown seperately.

Figure 8.4b shows the average completion time data for each level. This was also only com-

puted for participants who completed each level. The average completion time values are printed

on top of each bars in Figure 8.4b. The perfect time line shown in Figure 8.4b indicates the

fastest time to beat in order to attain a perfect level score of 100%. This aids in the comparison

of the average participant’s performance with the maximum possible performance on the RFDS

simulator. A completion time of zero in any level indicates a failure to complete that level by

any participants, hence the lack of time data as observed in level 10.
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Figure 8.4c shows the average number of trial data for each level. This was only computed

for participants who attempted each level. This included level 10 which was attempted by three

participants but not successfully completed, hence the presence of a plot for level 10 in this

case, although Figure 8.4a and Figure 8.4b has no plot for level 10. The ideal number of trial

to complete any level is one, and is indicated by the perfect trial line in Figure 8.4c, for the

purpose of comparing with the average participant’s performance.

8.1.2 Path v02 performance - completion time and navigation accuracy

In this section, the results of the participants performance in controlling the navigation of

the firefly multirotor UAV through the designed Path v02 environment, is presented. A screen

video clip capture of the UAV navigation along the flight Path v02 environment, using each of

the RCJ, KBD, and mSVG control interface, is included in this thesis CD-R as supplementary

multimedia content. In order to determine the navigation accuracy of the multirotor UAV on

the Path v02 flight path for each of the control methods, the following rules were applied for

consistency.

1. -5% : for each veering off of the UAV from the guided path or touching of the windows

walls/frame.

2. 85% cap : if the UAV glided on the navigation path instead of hovering with a clear

separation from the flight path base layer.

3. 60% cap : if the UAV veers off the elevated navigation area completely onto the ground.

4. 40% cap : for incomplete navigation along the Path v02 flight path i.e. did not finish.

The Path v02 performance results are presented in Figure 8.5. Figure 8.5a is a scatter plot of

each participant’s completion time when using the RCJ interface to complete the Path v02 nav-

igation task. The participants mean completion time is indicated by the red line y = 255.8316 s.

Figure 8.5c shows each participant’s completion time performance for the KBD interface, with

a mean completion time of y = 62.9721 s. Figure 8.5e shows each participants completion time

performance for the mSVG interface, with a mean completion time of y = 179.0984 s.

From this result, it can be observed that for the same task, the completion time of the mSVG

interface is much faster than the RCJ interface but slower than the KBD interface. In other

words, the best time performing interface is KBD, followed by the mSVG, which is then followed

by the RCJ, the slowest of the three interfaces. But the KBD interface emulates a special case of

the RCJ interface with altitude, attitude, and position (AAP) assist, therefore, the completion

time performance of the AAP-assisted RCJ was better (faster) than the mSVG which was equally
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AAP assisted by default because the AAP is essential to its practical operation. In this study,

the AAP-assist RCJ was found to complete tasks three times faster, hence perform three times

better, than the AAP-assist mSVG interface in the designed nCA Tier 1-III task.

(a) RCJ completion time. (b) RCJ navigation accuracy.

(c) KBD completion time. (d) KBD navigation accuracy.

(e) mSVG completion time. (f) mSVG navigation accuracy.

Figure 8.5: Path v02 navigation task performance.
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Figure 8.5b is a scatter plot of each participant’s navigation accuracy when using the RCJ

interface to complete the Path v02 navigation task. The participants mean navigation accuracy

is indicated by the red line y = 71.42%. Figure 8.5d shows each participants navigation accuracy

performance for the KBD interface, with a mean navigation accuracy of y = 96.47%. Figure 8.5f

shows each participants navigation accuracy performance for the mSVG interface, with a mean

navigation accuracy of y = 96.08%. From this result, it can be observed that the navigation

accuracy of the KBD and mSVG is much better than the RCJ, and that the navigational accuracy

of the KBD is similar to the mSVG. But since the KBD emulates a special case of the RCJ when

hover assist and position hold is introduced, it can be concluded that the performance of the

modified RCJ with navigation assist is similar to the mSVG which already has the navigation

assist mode by default, since this is required for it practical operation. Therefore, there is no

difference in the navigational accuracy between the RCJ and mSVG interface for an nCA Tier

1-III task where altitude and position assist is implemented.

8.1.3 Cognitive workload - Nasa TLX

This section presents the results of the NASA TLX survey questionnaire used to estimate the

cognitive workload of the RCJ, KBD, and mSVG interfaces in the Path v02 flight navigation

task. The six NASA TLX components - mental demand (md), physical demand (pd), temporal

demand (td), performance (p), effort (e), and frustration (f) - each asks a question for which

the participant gives a rating from 0 - 20 on a linear scale with low values representing posi-

tive/desirable experiences and high values representing negative/undesirable experiences. Note

that the KBD interface TLX ratings for participants 1-3 are not presented because these data

were not available, as the KBD interface was not part of the preliminary test, but was intro-

duced afterwards, for the significant part of the experiment, as a modified version of the RCJ

with altitude, attitude, and position assist features, for a better like-to-like comparison with the

mSVG interface.

Figure 8.6 presents the results of the TLX survey for the first three components - mental

demand (md), physical demand (pd), and temporal demand (td) - for the RCJ, KBD, and

mSVG components. Figure 8.6a shows the 37 participants rating of how mentally demanding

the task was, when performed using the RCJ interface. Figure 8.6b shows the mental demand

component results for the KBD interface. And Figure 8.6c shows the mental demand TLX

component results for the mSVG interface. The RCJ interface had the higher rating followed

by the mSVG, and then the KBD interface. Figure 8.6d shows the 37 participants rating of

how physically demanding the task was, when performed using the RCJ interface. Figure 8.6e

shows the physical demand component results for the KBD interface. And Figure 8.6f shows the
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physical demand TLX component results for the mSVG interface. Although the rating for the

physical demand component was generally lower than the mental demand component rating,

the trend observed was similar with the RCJ interface being rated higher followed by the mSVG

interface and then the KBD interface. Figure 8.6g shows the 37 participants rating of how

temporally demanding the task was, when performed using the RCJ interface. By temporal

demand, it is meant that how quickly the participant had to react in response to the control

interface action on task, in other words the reaction time pressure on participants. Figure 8.6h

shows the temporal demand component results for the KBD interface. And Figure 8.6i shows

the temporal demand TLX component results for the mSVG interface. Again, the RCJ interface

(a) RCJ mental demand rating. (b) KBD mental demand rating. (c) mSVG mental demand rating.

(d) RCJ physical demand rating. (e) KBD physical demand rating.
(f) mSVG physical demand rat-

ing.

(g) RCJ temporal demand rating.
(h) KBD temporal demand rat-

ing.

(i) mSVG temporal demand rat-

ing.

Figure 8.6: NASA TLX survey questionnaire results for mental demand, physical demand and

temporal demand.
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was rated to be more temporally demanding than the KBD and mSVG interfaces.

(a) RCJ performance rating. (b) KBD performance rating. (c) mSVG performance rating.

(d) RCJ effort rating. (e) KBD effort rating. (f) mSVG effort rating.

(g) RCJ frustration rating. (h) KBD frustration rating. (i) mSVG frustration rating.

Figure 8.7: NASA TLX survey questionnaire results for performance, effort and frustration.

Figure 8.7 presents the results of the TLX survey for the remaining three components -

performance (p), effort (e), and frustration (f) - for the RCJ, KBD, and mSVG interfaces.

Figure 8.7a shows the 37 participants’ rating of their performance on task, when using the

RCJ interface. Figure 8.7b shows the performance component results for the KBD interface.

And Figure 8.7c shows the performance TLX component results for the mSVG interface. The

participants rated their performance with the KBD and mSVG interfaces better than their

performance with the RCJ interface. Figure 8.7d shows the 37 participants rating of how much

effort they invested in order to achieve their perfomance level in the navigation task, when using

the RCJ interface. Figure 8.7e shows the effort component results for the KBD interface. And

Figure 8.7f shows the effort TLX component results for the mSVG interface. From the effort

rating results, the participants clearly invested the most effort on the RCJ interface, followed
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by the mSVG interface, and then the KBD interface which required the least effort. Figure 8.7g

shows the 37 participants rating of how frustrated they felt in using the RCJ interface to achieve

the navigation task. Figure 8.7h shows the frustration component results for the KBD interface.

And Figure 8.7i shows the frustration TLX component results for the mSVG interface. From the

frustration level ratings, the participants generally found the RCJ interface more frustrating to

use, followed by the mSVG interface, and then the KBD interface which was the least frustrating

to use.

In order to compare the cognitive workload for each of the three interfaces, a TLX distribution

was first generated for each of the interfaces, and then compared. This distribution was the

average of the 37 participants’ rating for each TLX survey component, per interface, and was

computed using:

[∑n
i=1 ymd,i

n
,

∑n
i=1 ypd,i
n

,

∑n
i=1 ytd,i
n

,

∑n
i=1 yP,i
n

,

∑n
i=1 ye,i
n

,

∑n
i=1 yf,i
n

]

=
[

ȳmd, ȳpd, ȳtd, ȳp, ȳe, ȳf

]

= TLX (8.1)

Where 1 ≤ i ≤ n is a pointer to the corresponding components rating for each of the n

participants. n = 37 for RCJ and mSVG interfaces, and n = 34 for the KBD interface because

of the non-available participants 1-3 TLX data for the KBD interface.

In addition to comparing the TLX distribution of each of the control interfaces, the non-

weighted mean of each interface’s TLX distribution can also be compared. This is computed

using:

Mean =
TLX

n
=

ȳmd + ȳpd + ȳtd + ȳp + ȳe + ȳf
n

(8.2)

Where ȳmd, ȳpd, ȳtd, ȳp, ȳe, and ȳf represents the average rating of the corresponding TLX

components, and n = 6 is the number of TLX components.

The results for each of the interfaces is presented in Figure 8.8. Figure 8.8a shows the partic-

ipants average rating for each TLX component for the RCJ interface. The non-weighted mean

of the RCJ TLX distribution was computed as:

Meanrcj =
TLXrcj

nrcj
=

ȳmd + ȳpd + ȳtd + ȳp + ȳe + ȳf
n

=
12.5946 + 5.5405 + 8.7432 + 9.2432 + 13.2432 + 7.8514

6
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(a) Average RCJ TLX component

rating.

(b) Average KBD TLX compo-

nent rating.

(c) Average mSVG TLX compo-

nent rating.

Figure 8.8: The mean of the 37 participants’ TLX rating for each of the TLX component with

the non-weighted average of the distribution indicated.

=
57.2162

6
= 9.5360 (8.3)

The non-weighted mean of the RCJ TLX distribution is indicated by the line y = 9.5360 in

Figure 8.8a. Figure 8.8b shows the participants average rating for each TLX component for the

KBD interface. The non-weighted mean of the KBD TLX distribution was:

Meankbd =
ȳmd + ȳpd + ȳtd + ȳp + ȳe + ȳf

n
= 4.1250

The non-weighted mean of the KBD TLX distribution is indicated by the line y = 4.1250 in

Figure 8.8b. Figure 8.8c shows the participants average rating for each TLX component for the

mSVG interface. The non-weighted mean of the mSVG TLX distribution was:

MeanmSV G =
ȳmd + ȳpd + ȳtd + ȳp + ȳe + ȳf

n
= 5.9144

The non-weighted mean of the mSVG TLX distribution is indicated by the line y = 5.9144

in Figure 8.8c. From the non-weighted mean results, the least cognitive demanding interface

was the KBD interface (cognitive workload ≈ 4). This was followed by the mSVG interface

(cognitive workload ≈ 6), which was about 2/3 more demanding than the KBD interface and

also about 3/5 times less demanding than the RCJ interface. The RCJ interface (cognitive

workload ≈ 10) had the most cognitive workload, being about 2.5 times more demanding than

the RCJ interface.

Figure 8.9 provides a side-by-side control interface comparison of the average TLX result per

index component. It can be observed from the participants’ average rating in Figure 8.9 that
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the RCJ interface was consistently rated the highest (most negative/undesirable), while the

KBD interface was consistently rated the lowest (most positive/desirable), whereas the mSVG

interface was consistently in the middle. While the average participants results suggested an

order preference of KBD, then mSVG, and then RCJ, which is supported by the ratings of

a majority of the participants, there exist a number of participants with different order of

preference as indicated in their ratings. For example, participant 32 rated the mSVG interface

effort better (lower effort requirement) than the KBD interface, and participant 27 rated the

RCJ interface mental demand better (less mentally demanding) than the mSVG interface.

Figure 8.9: Side by side comparison of the RCJ, KBD, and mSVG cognitive workload.

The implication of the cognitive workload result presented in this section is that although the

RCJ interface is cognitively more demanding than the mSVG interface, the altitude, attitude,

and position assisted RCJ interface (the KBD interface) affords a lower cognitive workload/de-

mand for an nCA Tier 1-III level UAV. However, the mSVG interface cognitive workload rating

may be better than the AAP assisted RCJ at higher nCA autonomy levels, because of the in-

tuitive and natural control properties of the mSVG over the RCJ. This is suggested as a future

research topic.

8.1.4 Speech Gesture Ratio (SGR)

This section presents the result of the analysis of the speech-gesture usage ratio for the

Path v02 navigation task. In order to do this, the Path v02 navigation flight path was di-

vided into 24 navigation segments, the navigation of which could either be by speech or by

gesture. The participants’ speech-gesture usage dataset for the Path v02 navigation task using

mSVG is included in the results Tables in Appendix B.3 for ease of referencing.
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Figure 8.10 shows the usage distribution of speech and gesture for each of the 24 Path v02

navigation segments. The blue bars represent the speech component for each navigation segment.

The yellow bars, which are stacked on the blue bars, represent the gesture components. Each

stacked bar gives visual representation of the distribution of speech and gesture for each of the

24 navigation segments. From Figure 8.10, it can be observed that navigation stages 1 ‘hover’,

14 ‘climb up’, 18 ‘pan starboard’, 21 ‘climb down’, and 24 ‘land’ were speech only navigation

stages. This was because these stages were only implemented as speech commands and had

no gesture command alternative implemented. The speech-gesture usage ratio based on the

navigation stages was estimated as,

SGRNavStage = 13.9167 : 23.0833 (8.4)

Figure 8.10: Speech Gesture Ratio (SGR) from navigation stage speech-gesture control distri-

bution

Figure 8.11 shows the speech-gesture usage ratio, in the Path v02 navigation task, for each of

the 37 participants. Similar to Figure 8.10, blue bars represent speech, and yellow bars represent

gestures, and the stacked combination gives a visual ratio of the speech-gesture distribution for

each participant. From this result, it can be observed that participant 1, 16, 17, 21, 22, 31,

and 37 used the minimum number of speech and maximum number of gesture possible (SGR

5:19) in completing the mSVG navigation task. Note that there are 5 navigation commands

instances where gesture was not implemented and control could only be issued via speech. It

can also be observed that participant 4 and 23 used the most amount of speech command and

the least amount of gesture (SGR 18:4) in completing the mSVG navigation stage. Although,

the relationship between the SGR ratio and the completion time is inconclusive from this result,



248
Chapter 8. The performance and cognitive workload analysis of the mSVG UAV control

interface

it was considered that higher gesture ratios could lead to faster task completion time, since the

gesture control commands were being captured and processed 3 times faster than the speech

control commands in this research’s mSVG implementation. The speech-gesture ratio based on

the participant’s usage was estimated as,

SGRPtcpt = 9.027 : 14.973 (8.5)

Figure 8.11: Speech Gesture Ratio (SGR) from participants speech-gesture usage distribution

In order to compare the two SGR ratios estimated from the analysis of the navigation stages

and the participants usage, both ratios were normalized,

nSGRNavStage =
13.9167

37
:
23.0833

37
≈ 0.38 : 0.62 (8.6)

Similarly,

nSGRPtcpt =
9.027

24
:
14.973

24
≈ 0.38 : 0.62 (8.7)

From Equation 8.6 and Equation 8.7, the speech gesture ratio was estimated as 0.32 : 0.62,

for the developed mSVG interface, based on its usage for the Path v02 navigation task. Also,

Equation 8.6 and Equation 8.7 shows that the SGR ratio was the same regardless of how the

data was analysed - either per participant or per navigation stage basis.

8.1.5 Statistical significance of the results

From the Path v02 navigation task performance result for each of the three interfaces, it

was observed that the mSVG interface performed better than the RCJ interface, and the KBD
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interface was better than the mSVG interface. However, how statistically significant was this

result? Therefore, in order to determine how significant the results were, and hence the validity

of the conclusion, the analysis of variance (ANOVA) statistical test was performed on the results.

The first ANOVA test was conducted on the completion time result, and the second ANOVA

test was performed on the Path v02 navigation accuracy. A normal approximation was assumed,

sample size n > 30 Ross (2014), the results were drawn from independent events, the variance

of which were homogeneous.

Completion Time

First we define the null hypothesis which states that the mean completion time of the RCJ

(µrcj = µ1), KBD (µkbd = µ2), and mSVG (µmsvg = µ3) are similar, therefore there is no

difference between any of the interfaces, their completion time performances are the same or

very similar. This is stated as

H0 : µ1 = µ2 = µ3 (8.8)

The alternative hypothesis argues that at least one of the means differs from the others

significantly enough to consider some interface performance better than some others. This is

stated as

H1 : not all the means are equal (8.9)

Assuming a confidence interval of 95% is required, then a significance level of 0.05 is implied

and defined as

α = 0.05 (8.10)

Given that the sum of squares within (Error) is

SSw =
m
∑

i=1

n
∑

j=1

(Xij − X̄i)
2 (8.11)

Where

i = 1, 2, 3, . . . ,m is the number of independent samples/columns

j = 1, 2, 3, . . . , n is the ith sample size

Xij ∼ N(µi, σ
2) is a random variable with unknown mean µi and unknown variance σ2

X̄i is the average of the ith sample
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Given that the sum of squares between (Groups) is

SSb = n

m
∑

i=1

(X̄i −
¯̄X)2 (8.12)

Where ¯̄X is the average of all the data values, given as

¯̄X =

∑m
i=1

∑n
j=1Xij

mn
=

∑m
i=1 X̄i

m
(8.13)

But due to the unevenness of the sample size in each sample column, the standard formula is

broken down into its constituent parts, in order to accurately represent the current data being

analysed by this study.

Therefore, the sum of squares within is given as

SSw =

nrcj
∑

j=1

(Xrcj,j − X̄rcj)
2 +

nkbd
∑

j=1

(Xkbd,j − X̄kbd)
2 +

nmsvg
∑

j=1

(Xmsvg,j − X̄msvg)
2

= 670429.1892 (8.14)

And the sum of squares between is given as

SSb = nrcj(X̄rcj −
¯̄X) + nkbd(X̄kbd −

¯̄X) + nmsvg(X̄msvg −
¯̄X)

= 664965.4309 (8.15)

The mean square sum within samples is given as

MSw =
SSw

dfw
=

670429.1892

105
= 6385.0399 (8.16)

Where dfw is the degree of freedom within the sample columns, given as

dfw = (nrcj + nkbd + nmsvg)− 1 (8.17)

Similarly, the mean square sum between samples is given by

MSb =
SSb

dfb
=

664965.4309

2
= 332482.7155 (8.18)

Where dfb is the degree of freedom between the sample columns, given as

dfb = m− 1 (8.19)
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Therefore the test statistic F value needed to reject or validate the null hypothesis H0 is given

as

F =
MSb

MSw
=

332482.7155

6385.0399
= 52.0721 (8.20)

If the value of F ≤ Fcritical, where Fcritical is retrieved from the F-distribution table using the

dfw, dfb and α values, the null hypothesis H0 is accepted. However, if F > Fcritical, the null

hypothesis H0 is rejected, and the alternative hypothesis H1 is validated. Given that (with the

aid of a four-figure table)

Fcritical = 3.0915 (8.21)

Therefore, since F > Fcritical, the null hypothesis H0, which proposed that there was no dif-

ference between the completion time performances between the three interfaces, is rejected. And

the alternative hypothesis H1, which proposes a significant difference between the completion

time performances of each of the three interfaces, is validated. The ANOVA analysis for the

Path v02 completion time results is as summarised in Table 8.1.

Table 8.1: ANOVA Table - RCJ, KBD, and mSVG completion time result analysis.

Sources SS df MS F Prob > F

Groups 664965.4309 2 332482.7155 52.0721 1.9455× 10−16

Error 670429.1892 105 6385.0399

Total 1335394.6201 107

Figure 8.12 is a MATLAB boxplot from the one-way ANOVA analysis of the RCJ, KBD, and

mSVG interface completion time result. From the boxplot, it can be observed that the mean

completion time of the RCJ is higher than the mSVG, and that the KBD interface had the least

completion time. Also, the outlier data are indicated by the red cross, as observed on the RCJ

(∼ 700 and ∼ 540) and the KBD (∼ 160 and ∼ 120) boxplots. The mSVG data had no distinct

outliers.

Navigation Accuracy

For the statistical significance analysis of the navigation accuracy result, the null hypothesis

states that the mean navigation accuracy of the RCJ (µrcj = µ1), KBD (µkbd = µ2), and mSVG

(µmsvg = µ3) are similar, in other words, there is no difference between any of the interfaces’

navigation accuracy performance, they are the same or very similar. This is stated as

H0 : µ1 = µ2 = µ3 (8.22)
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Figure 8.12: ANOVA Boxplot - RCJ, KBD, and mSVG completion time result analysis.

The alternative hypothesis argues that at least one of the means differ from the others signif-

icantly enough to consider some interface performance better than some others. This is stated

as

H1 : not all the means are equal (8.23)

Assuming a confidence interval of 95% is required, then a significance level of 0.05 is implied

and defined as

α = 0.05 (8.24)

The sum of squares within is given as

SSw =

nrcj
∑

j=1

(Xrcj,j − X̄rcj)
2 +

nkbd
∑

j=1

(Xkbd,j − X̄kbd)
2 +

nmsvg
∑

j=1

(Xmsvg,j − X̄msvg)
2

= 7214.9841 (8.25)

The sum of squares between is given as

SSb = nrcj(X̄rcj −
¯̄X) + nkbd(X̄kbd −

¯̄X) + nmsvg(X̄msvg −
¯̄X)

= 15021.7636 (8.26)

The mean square sum within samples is given as

MSw =
SSw

dfw
=

7214.9841

105
= 68.7141 (8.27)
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Similarly, the mean square sum between samples is given by

MSb =
SSb

dfb
=

15021.7636

2
= 7510.8818 (8.28)

Therefore the test statistic F value needed to reject or validate the null hypothesis H0 is given

as

F =
MSb

MSw
=

7510.8818

68.7141
= 109.3062 (8.29)

Given that Fcritical = 3.0915, therefore F > Fcritical, again, the null hypothesis H0, which

proposed that there was no difference between the navigation accuracy performances between

the three interfaces, is rejected. And the alternative hypothesis H1 is validated. The ANOVA

analysis for the Path v02 navigation accuracy results is as summarised in Table 8.2.

Table 8.2: ANOVA Table - RCJ, KBD, and mSVG navigation accuracy result analysis.

Sources SS df MS F Prob > F

Groups 15021.7636 2 7510.8818 109.3062 2.1683× 10−26

Error 7214.9841 105 68.7141

Total 22236.7477 107

Figure 8.13 is a MATLAB boxplot from the one-way ANOVA analysis of the RCJ, KBD,

and mSVG interface navigation accuracy result. From the boxplot, it can be observed that the

accuracy for the RCJ interface was lower than the KBD and mSVG interfaces, and that the

KBD and mSVG interface had very similar navigation accuracy performance.

Figure 8.13: ANOVA Boxplot - RCJ, KBD, and mSVG navigation accuracy result analysis.
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Two-sample t-test analysis for KBD and mSVG interfaces navigation accuracy

From the navigation accuracy ANOVA analysis, it was clear that the RCJ is significantly

different from the KBD and mSVG interfaces. This was clearly observed in the one way ANOVA

boxplot of Figure 8.13. However, the navigational accuracy performance of the KBD and mSVG

interfaces seemed quite similar and indistinguishable in the MATLAB ANOVA boxplot in Figure

8.13. The variances were similar. Therefore, an unpaired two-sample t-test with equal variance

was conducted to confirm if KBD and mSVG interface performance were indeed similar.

The null hypothesis states that the mean navigation accuracy of the KBD (µkbd) and mSVG

(µmsvg) interfaces are similar, in other words, there is no difference between their navigation

accuracy performance, they are the same or very similar. This is stated as

H0 : µkbd − µmsvg = 0 (8.30)

The alternative hypothesis simply argues that their navigation performances are not similar.

H1 : µkbd − µmsvg 6= 0 (8.31)

Assuming a confidence interval of 95% is required, then a significance level of 0.05 is implied

and defined as

α = 0.05 (8.32)

Sum of squares for the KBD interface is given as

SSkbd =

nkbd
∑

i=1

(Xkbd,i − X̄kbd)
2 = 426.4706 (8.33)

Where X̄kbd = 96.4706 is the mean, nkbd = 34 is the sample size, and 1 ≤ i ≤ nkbd points to

the elements in the sample.

Sum of squares for the mSVG interface is given as

SSmsvg =

nmsvg
∑

i=1

(Xmsvg,i − X̄msvg)
2 = 506.7568 (8.34)

Where X̄msvg = 96.0811 is the mean, nmsvg = 37 is the sample size, and 1 ≤ i ≤ nmsvg

points to the elements in the sample.
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The pooled variance is given as

S2
p =

SSkbd + SSmsvg

dfkbd + dfmsvg
= 13.5250 (8.35)

Where the degrees of freedom, dfkbd = nkbd − 1 = 33 and dfmsvg = nmsvg − 1 = 36. The

standard error of the mean is given as

SEX̄kbd−X̄msvg
=

√

S2
p

nkbd

+
S2
p

nmsvg
= 0.8737 (8.36)

The test statistic t value

t =
X̄kbd − X̄msvg

SEX̄kbd−X̄msvg

= 0.4458 (8.37)

The effect size is determined using Cohen’s d as

d =
X̄kbd − X̄msvg

√

S2
p

= 0.1059 (8.38)

Since d < 0.2, the effect size is considered small. By using df = dfkbd+ dfmsvg = 69, α = 0.05,

and a two-tail t-table from a four-figure table, the critical t value is determined as

tcritical = 1.9997 (8.39)

Therefore, since t < tcritical, the null hypothesis H0, which proposed that there was no sig-

nificant difference between the navigation accuracy performance of the KBD and the mSVG

interface, is valid. By replacing the KBD interface with the altitude, attitude, and position

(AAP) assisted RCJ interface, it can be concluded that: the navigation accuracy performance

of the AAP-assisted RCJ interface (M = 96.47, SD = 3.59) is similar to the performance of the

mSVG interface (M = 96.08, SD = 3.75) (t(66) = 2.00), p < 0.05,Cohen’s d = 0.11).

8.2 Discussion

8.2.1 RC skill classification

The RFDS performance result showed that 30% of the study population were skilled and

experienced RC UAV pilots. The criteria being the ability to successfully complete Level 1 - 4

of the RFDS challenge. It can also be observed from the participants demographic that 30%

of the population had a previous UAV flying experience of more than 10 hours. In addition

to this, only 30% of the participants have been flying for more than 24 months. From this

analysis, it is therefore proposed that: the flying hours, the number of months flying, and the

RFDS Level 4 challenge performance, can be used to estimate the skill and experience level of a
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remote controlled UAV pilot. For example, a classification threshold of 10 flying hours, over a 24

months period, and the successful completion of the RFDS Level 4 challenge, could be used as

a skill benchmark for remote controlled UAV pilots performing typical navigation control task

with a small UAV, in a non-congested area, carrying a small payload such as a camera, medical

supply, etc.

8.2.2 RCJ vs mSVG performance comparison

From the result of the performance analysis in Section 8.1.2, later verified by the statistical

analysis in Section 8.1.5, it was observed that the mSVG control interface performed better

than the RCJ UAV control interface, completing the Path v02 flight path 30% faster than the

RCJ interface and 25% more accurately than the RCJ interface. Clearly, the mSVG is a better

interface in this context.

However, by endowing the RCJ interface with some of the special features of the mSVG inter-

face, which included altitude, attitude, and position (AAP) assist, the results were interpreted

differently. The KBD interface was used to emulate this special case of AAP-assisted RCJ inter-

face. From the KBD interface performance results, it was observed that the AAP-assisted RCJ

interface was three times faster than the mSVG interface for completing the Path v02 flight

path, and the AAP-assisted RCJ interface navigation accuracy matched the mSVG interface

navigation accuracy. In this context, the AAP-assisted RCJ interface is a better interface than

the mSVG interface.

In order to understand the implication of this two-way result, the navigational control au-

tonomy (nCA) model presented in Chapter 5 was used. The nCA model consists of six nCA

levels divided into three tiers in a pyramidal structure. The RC joystick controller usability was

constrained to the bottom tier levels of rate control mode (nCA Tier 1-I), attitude stabilised

control mode (nCA Tier 1-II), and attitude position and heading assist control mode (nCA Tier

1-III). The mSVG interface was more suitable for tier two and tier three applications such as

waypoint navigation (nCA Tier 2-I), autonomous navigation (nCA Tier 2-II), and full auton-

omy mode (nCA Tier 3-I). The Path v02 flight path was an nCA Tier 1-III task. Therefore, the

AAP-assist RCJ was expected to operate effectively at this level, as was observed in the results.

However, at higher nCA autonomy levels, the mSVG interface is recommended.

8.2.3 Human factors - cognitive workload and usability

From the result of the cognitive workload analysis, it was observed that the RCJ interface

was cognitively more demanding than the mSVG interface. However, similar to the performance
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analysis, the AAP-assisted RCJ was also found to be less cognitively demanding than the mSVG

interface, for the nCA Tier 1-III Path v02 navigation task. But the mSVG interface is considered

to be natural, intuitive, easy to learn, and does not require the use of a tangible device. These

soft qualities are considered more valuable at higher UAV autonomy level applications, such as

the Alps scenario described in Section 1.4.1.

8.2.4 The bias in mSVG speech-gesture ratios

From the SGR ratio result and analysis, the usage ratio of speech to gesture for the mSVG

interface was found to be 0.38 : 0.62. But it was then clarified that the mSVG implementation

had constrained the minimum speech threshold to a ratio of 5 : 19, because of the 5 speech

command with no gesture command equivalent, requiring all participants to use speech only for

such navigational manoeuvre. The implication of this is that the SGR ratios upper and lower

thresholds could be intentionally or unintentionally designed into the mSVG implementation to

skew the SGR outcome, such as showing a balanced or an unbalanced speech-gesture usability

ratio. Biased SGR may result from the need to constrain speech or gesture component in order

to eliminate noise, to regulate control speed, or for a quicker deployment of the mSVG interface

as in the case of this study.

The ideal/unbiased mSVG implementation is one where all commands are available as both

speech and gesture, are formed with equal ease, and are processed at an equal rate. But this may

be impractical because equal rate of processing could be an elusive target, due to the inherent

nature of the speech and gesture components. Speech consists of a string of utterances captured

over a time lapse period, whereas gesture can be processed from a single-instant-image capture,

often resulting in different processing rates.

However, the SGR result shows that there was an overall preference for gesture usage over

speech. This was due to the difference in their processing rate, as the gestures were being pro-

cessed three times faster than the alternative speech command. Perhaps without the minimum

speech threshold of 5 : 19 of the developed mSVG interface, the ratio for gesture usage may have

been much higher.

8.3 Chapter Conclusion

This chapter presented the result of the experiment study comparing the performance and

cognitive workload of the RC joystick and mSVG UAV control interfaces. The RFDS test was

used to estimate the UAV flying skill level of the participants. It was shown that the flying hours,

the number of months flying, and the RFDS Level 4 challenge performance was a good estimator
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for this. A two-way result was obtained in the comparison of the RCJ and mSVG interfaces.

While the mSVG interface was considered better than the standard RCJ interface, the AAP-

assisted RCJ interface was often found to be better or at least as effective as the mSVG interface.

Therefore, the conclusion of which interface performed better or which interface required more

cognitive workload was found to be context dependent. It was also shown that for an mSVG

interface, gesture is likely to be the predominantly used mode.

8.3.1 Further work

In this study, the research was constrained to laboratory experiments with a ROS Gazebo

simulated UAV. Therefore this research could be advanced further by coupling the mSVG inter-

face onto a real UAV and by performing a field test to demonstrate the practical effectiveness

of the mSVG interface in a real world UAV application.

In addition to this, it was considered that at higher nCA levels, the mSVG interface should

perform better than the AAP-RCJ interface. Therefore, an nCA Tier 2-I task could be designed

to test this hypothesis in a future study. Also, the relationship between the SGR ratio and the

task completion time for the mSVG interface could be investigated further using an improved

mSVG implementation.
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Conclusion

This chapter provides an overarching summary of this research’s contribution by providing a

chapter-by-chapter summary, highlighting the major research findings/contributions, presenting

the research limitations, and making suggestions for further research works. The main objective

of this research was to review current HCI interfaces that can be used for the control of small

multirotor UAVs and to propose an effective alternative interface for the small multirotor UAV

that could perform better than the standard RC joystick controller, by designing and develop-

ing the alternative interface and comparing the performance of the alternative interface with

the standard RC joystick (RCJ) controller. The literature review in Chapter 2 reviewed the

HCI interfaces, aiding in the proposition of the multimodal speech and visual gesture interface

(mSVG) proposed in Chapter 1, which was supported by the Alps search and rescue scenario

and the domestic robot assistant scenario. The mSVG interface was designed and developed in

Chapter 6 and the comparison was conducted in Chapter 8 using methods described in Chapter

4.

From the research questions, it was found that the mSVG interface was an effective alterna-

tive to the RCJ interface, although its effectiveness is constrained by the application context

and environment. The effective application limit of the speech component of the mSVG imple-

mentation was found to be 75 dB; beyond which the speech recognition deteriorates below 65%

becoming unreliable for practical control application. Also, gestures were found to be clearly

recognisable for 10 Lux (twilight conditions) and higher Lux levels on distinct backgrounds. The

mSVG interface was found to perform better than the RCJ interface at higher navigation control

autonomy (nCA) application levels. The mSVG interface was found to be 1 minute faster and

25% more accurate than the RCJ interface. Also, the RCJ interface was found to be 1.4 times

more demanding than the mSVG interface.
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9.1 Chapter-by-Chapter Summary

Chapter 1 begins by introducing this research work and placing it within the context of

current and evolving UAV applications. Some research problems were presented from which this

research’s aim and objectives were formulated. An alpine search and rescue application scenario

was developed as a reference application for this research. The concept of the aerobot was

presented. The research questions and hypothesis were clearly defined. Additional application

areas were highlighted.

Due to the expanded nature of the literature review, this was split into two chapters. The

first literature review chapter, Chapter 2, was more descriptive and it discusses HCIs for small

multirotor UAVs under various unimodal and multimodal themes with their limitations. It was

quite clear that there exists a plethora of HCI control interfaces for the control of small multirotor

UAVs. Although each of these interfaces were also known to have their limitations for any given

application. It identified the multimodal combination of speech and visual gesture as being an

intangible, intuitive, natural, and HHI-like interaction technique that was easy to learn and

easy to use. It highlighted the fact that humans tend to combine verbal and non-verbal gestures

in their HHI communication, the techniques of which were considered adaptable and useful in

human robot interaction. Other researchers working at different layers/levels of aerial robotics

multimodal speech and gesture interaction, were also identified. These researchers included Ng

and Sharlin (2011), Harris and Barber (2014), Nagi et al. (2014), Cauchard et al. (2015), Hill

et al. (2015), Cacace et al. (2016), Fernandez et al. (2016), Barber et al. (2016), Kattoju et al.

(2016), Obaid et al. (2016), Schelle and Stutz (2016), Gubcsi and Zsedrovits (2018), Schelle and

Stütz (2018), and Cauchard et al. (2019).

The second literature review chapter, Chapter 3, was more theoritical and focused on the

mathematics behind the speech and gesture processing techniques used in this research. In this

chapter, the discrete Markov model was discussed as a first order Markov process explained using

an ergodic model. The hidden Markov model was described as a doubly embedded stochastic

model in which the underlying stochastic processes is not directly observable, although it can

be observed through another set of stochastic process that produces the second observation.

For speech recognition using the hidden Markov model, stochastic models from known utter-

ances were first created, and the probability that an unknown utterance was generated by each

stochastic model, were then evaluated. Examples of practical HMM-based automatic speech

recognition systems included the CMU Pocket Sphinx (CMU Sphinx, 2009), HTK (Young et al.,

2006; Gales and Young, 2007), and Julius (Lee et al., 2001). The Haar cascade object detection

technique was discussed as a method that uses a machine learning approach for training cascade
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functions, which were then used in object detection. The convex hull defect for finger gesture

recognition was also discussed.

Chapter 4 discusses the research method used and the rationale for selecting the method

and components. The interface development section discussed the keyboard interface (as a

symbol generator), the speech capture and processing operation, visual gesture recognition, and

RC joystick selection. Three hardware platforms were discussed, the ImmersionRC XuGong,

iQuad Jade, and Unicorn multirotor platforms. Two hardware in the loop simulation were

also discussed, the RealFlight Drone Simulator and the RotorS ROS Gazebo simulator. The

method used in this research work was to conduct an experiment study. The details of the

experiment design were presented and discussed. The experiment procedure was enumerated.

The participant recruitment method and the demography of the recruited participants were

discussed. The method considered for the analysis of the experiment result was also presented.

It also described the NASA TLX survey tool used for cognitive workload anlysis. The chapter

concluded by comparing this research’s method with other researchers in this area.

In Chapter 5, the limitations of the existing autonomy models (such as the AFRL and ONR), in

aerobot navigational control autonomy classification, led to the development of a new autonomy

classification model called the navigational control autonomy (nCA) model. The nCA model

was used to identify a control void beyond the tier-one components of the nCA model.

In Chapter 6, the multimodal speech and visual gesture system model was designed and

developed with the aid of the nCA Tier 1-III navigation and nCA Tier 2-I scenario application

examples. In developing the model, mathematical notations and logic were used. These were

then converted into computer programs, from which some useful code snippets were presented.

The mSVG development was discussed in functional blocks of speech input unit, gesture input

unit, multimodal control processing unit, and ROS Gazebo simulator unit. The operations of

the multmodal control processing unit was simulated using both MATLAB and Python-ROS-

Gazebo.

In Chapter 7, the result of the experiment study on the effects of varying noise levels and

varying lighting levels on speech and gesture control command interfaces for aerobots, was pre-

sented, analysed, and discussed. It was observed from the results of the experiment that speech

recognition accuracy/success rate falls as noise levels rises. A regression model was developed

from the empirical observation of nearly 3, 108 speech command utterances by 37 participants.

Speech, based on the custom CMU Sphinx ASR system developed, is not an effective means of

control interaction with an aerobot beyond 75 dB noise level, as the speech control interaction
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becomes very unreliable due to poor recognition. From the results of the gesture-lighting exper-

iment, the effects of both lighting conditions and the environment background on the quality

of gesture recognition, was almost insignificant, less than 0.5%, which means that other factors

such as the gesture capture system design and technology (camera and computer hardware), type

of gesture being captured (upper body, whole body, hand, fingers, or facial gestures), and the

image processing technique (gesture classification algorithms), are more important in developing

a successful gesture recognition system.

In chapter 8, the result of the experiment study comparing the performance and cognitive

workload of the RC joystick and mSVG UAV control interfaces, were presented, anlysed, and

discussed. It was shown that the flying hours, the number of months flying, and the RFDS Level

4 challenge performance was a good estimator for UAV RC flying skill level. A two-way result

was obtained in the comparison of the RCJ and mSVG interfaces. Even though the mSVG

interface performed better than the standard RCJ interface, the AAP-assisted RCJ interface

was better or at least as effective as the mSVG interface. It was concluded that the application

context would determine what interface is the most effective for any given scenario.

9.2 Major Research Contributions

The major contribution of this research are highlighted as follows:

1. The development of the nCA model discussed in Chapter 5 (Abioye et al., 2017).

2. The design and development of a functional mSVG system as presented in Chapter 6

(Abioye et al., 2018b).

3. The development of an understanding of the limitations of the mSVG technique in terms

of noise level effects on both speech and gesture within the context of an aerobot type

application, and its implication for future research (Chapter 7) (Abioye et al., 2019a,

2018a).

4. Performing a comparison between the mSVG interface with the standard RCJ interface in

terms of performance and human factors – Chapter 8 (Abioye et al., 2019b).

5. Unimodal aerial robot HCI classification into software-agents computing devices, elec-

tromechanical, vision, bioelectrical, and speech in Chapter 2 (Abioye et al., 2017).

9.3 Research Limitations

The main limitations of this research work are highlighted below:
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1. The main limitation of the varying lighting experiment study in this research was that

the lighting level range was constrained between twilight (10 Lux) conditions and an

overcast day condition (1400 Lux), typical for indoor lighting levels, whereas outdoor

lighting conditions could vary up to 100,000 Lux on a very sunny day with direct sunlight,

as shown in Table 4.6. Therefore, the gesture-lighting application described in this study is

more applicable to indoor scenarios such as the domestic application scenario described in

Section 1.4.2. The gesture-lighting application for the outdoor search and rescue scenario

described in Section 1.4.1 is limited to cloudy overcast day conditions.

2. From the SGR ratio result and analysis, the usage ratio of speech to gesture for the

mSVG interface was found to be 0.38 : 0.62. But it was then clarified that the mSVG

implementation had constrained the minimum speech threshold to a ratio of 5 : 19, because

of the 5 speech command with no gesture command equivalent, requiring all participants

to use speech only for such navigational manoeuvre, as explained in Section 8.2.4. But the

SGR result shows that there was an overall preference for gesture usage over speech, which

agrees with the conclusion that for the developed mSVG system, the gesture component

was preferred, even though the result of the SGR ratio in favour of gesture may have been

under-reported due to the mSVG implementation constraint.

9.4 Further Research

Further research work suggested from this research are as highlighted below:

1. The problem of contradictory commands as presented in Section 2.8.6, could potentially

be an area for further research. For example, what happens when two unimodal interfaces

receive contradictory commands, or when two contradictory actions result from individ-

ual interpretation by the unimodal interfaces of the same control command repeated for

different modes? What should be the conflict resolution model for such cases - avoid or

address the control conflict?

2. The development of a natural multimodal human-like speech and gesture communication

method for UAV is a challenging task. One of which could be, how the UAV determines

(and learn to ignore) gesture or speech communications that are not directed towards it.

Acting on such un-directed communications could potentially lead to accidents hurting

the operator, damaging the UAV, or destroying other objects in the environment. An

operator was demonstrating natural gesture interaction with the aid of the Kinect in

Waibel (2011), when he switched his attention to the audience, and mistakenly directed

a gesture at the audience while the UAV was still flying and active. The UAV responded
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to this gesture, which was not meant for it, and it nearly hurt the demonstrator. Another

obvious challenge is how to eliminate ambient noise for the speech interface, both that

due to the multirotor propulsion system and that due to other environment variables. In

addition to these is this projects goal of achieving on-board capture and processing of the

multimodal control elements (speech and visual gesture) through single board computers.

This frees the operator from wearing, holding, or handling any control device.

3. User acceptance: depending on the adoption rate of technologies in this area and users

expectation of new technologies, or the prevailing minimum functionality threshold. While

this research has focused on determining it’s functionality level, there is the question of how

close this is to the minimum expectations of stakeholders in this space, for the adoption

of this technique.

4. The continued development of the custom UAV developed in this research, and the integra-

tion of the mSVG interface as deployed in the HITL ROS Gazebo simulation experiments,

can be continued to the realisation of a fully practical operational mSVG controlled mul-

tirotor aerobot.

5. In this study, the research was constrained to laboratory experiments with a ROS Gazebo

simulated UAV. The next phase of this research could couple the mSVG interface onto a

real UAV and a field test could be conducted to demonstrate the practical effectiveness of

the mSVG interface in real world UAV applications.

6. In addition to this, it was considered that at higher nCA levels, the mSVG interface should

perform better than the AAP-RCJ interface. Therefore, an nCA Tier 2-I task could be

designed to test this hypothesis in a future study. Also, the relation between the SGR

ratio and the task completion time for the mSVG interface could be conducted alongside

this.

7. In order to improve the application limit of the aerobot speech interface, alternative au-

tomatic speech recognisers with different learning model from the CMU Sphinx’s hidden

markov model, could be considered next. ASR’s based on artificial neural network or deep

learning are of particular interests, such as the IBM Watson speech to text cloud AI service

IBM (2010). An hardware upgrade to directional, noise canceling, and array microphones

could be considered. Multi and single word speech command selection could be optimised

in favour of the more resilient command variant as observed in this particularly study.

8. In order to improve the gesture performance, better alternative hardware (cameras and

single board computers) capable of capturing high resolution images and performing com-

plex graphic computation processing in real time, could be used. In addition, instead of
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the appearance-based 2D-model algorithm use in this paper, a more advance 3D-model

based AI gesture algorithm could be developed for capturing and recognising hand, arm,

and upper body gestures.
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Appendix A

Aerial Robot Applications

Table A.1 presents some detailed application areas of the multi-rotor UAV.
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Table A.1: Applications of Autonomous and Remotely Piloted Unmanned Aerial Systems

S/No UAV/RPAS Application Examples Benefits Stakeholders

1

Aerial Inspection • Remotely Operated Aerial Vehicles (ROAV) inspection for onshore

oil, gas & chemical industries

• ROAV inspection for the offshore oil & gas industry

• UAV inspection for the Power and Utility industries

• Maersk Oil North Sea gruelling environment aerial inspection

• Save money

• De-risk planned shutdowns and mainte-

nance

• No plant outage

• Minimum Health & Safety issues

• High quality information

• Close flare tip inspection

• CYBERHAWK Innovations Ltd

• Maersk Oil

2

Aerial Survey • UAV land surveys for Utility industries: Topographic surveys, En-

vironmental impact assessments, As-built surveys, Construction

progress photography, Flood risk surveys, Volumetric analysis, Line

of sight surveys, Site design, Route surveys, Marketing images

• UAV land surveys for Civil Engineering industries: Topographic

surveys, Volumetric surveys, Construction progress photography,

Flood risk surveys, Quarry/Landfill Surveys, Route surveys, As-

built surveys, Marketing images, Site design

• UAV land surveys for Government & Public Bodies: Flood risk

surveys, Storm damage report, Archaeological site recording, His-

toric building surveys, Coastal erosion surveys, Ecological surveys,

Forestry management surveys, 3D modelling

• Reduce costs

• Save time

• Improve Safety

• Better information

• Improve decision making

• CYBERHAWK Innovations Ltd

3

Agriculture Application • Drone set to tackle pest problem: Embention programme working

on eradication of tsetse fly

• Quantum VRT drones used for detailed monitoring and evaluation

of crop conditions

• Low cost delivery technique

• Less Fertiliser

• Increased crop yield

• Reduce pollution of ground water

• Embention & IAEA

• Florian Seibel, Quantum Sys-

tems

4

Environmental Application • Detecting nuclear radiation with drones • Prevents humans from radiation expo-

sure & the resulting health risk such as

radiation poisoining, cancer, etc.

• Real time radioactive incident report on

nuclear sites

• Confirming safe zones

• Bristol-Oxford Nuclear Re-

search Centre

5

Field Application • Rescue drones for off-roaders: Drone flare to search for network

and send SOS messages with GPS coordinates

• Emergency SOS comapanion • Kenneth Wong et al

Applications of Autonomous and Remotely Piloted Unmanned Aerial Systems - Continued on the next page...
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6

Open-Water Applications • Loon set to take on air and sea: Loon copter that can fly, swim,

and dive

• Shark spotter

• Air aid: The Migrant Offshore Aid Station (MOAS), M.Y.

Phoenix, an emergency rescue vessel in the Mediterranean, uses

drones to save lives

• Eye in the sky set to save lives: Search and rescue drone reduces

risk for NZ Coastguard crews

• Save the Whales with Drone technology

• Search-and-rescue operations

• Bridge foundation inspections

• Underwater pipeline inspections

• Tracking of oil spills at different depths

Marine life studies

• Shark monitoring and Shark spotters

• Prevent whale culling

• Osamah A. Rawashdeh, Oak-

land University

• Australia Government Shark

Strategy

• Christopher and Regina

Catrambone

• New Zealand Coastguard

• Sea Shepherd Conservation

Society

7

Mapping • Crisis Mapping in Nepal • Aids re-building efforts • DJI

• UAViators

• Pix4D

8

Firefighting Applications • Drones to the rescue: via Aerial Imagery Reconnaissance (AIR)

units

• Monitor the safety of firefighters

• Better information about fast-moving situ-

ations such as fires, burned out buildings,

floods and road accidents

• Helps commander’s plan strategy

• Find missing persons

• Useful incident footage for training

• Improving safety

• Providing firefighters with real-time infor-

mation

• GMFRS - The Greater Manch-

ester Fire and Rescue Service

9

Flood Monitoring • Flood protection targeted by Malaysian drone • Easy access to flood hurt areas

• Relay real-time data

• Supplement satellite flood monitoring

• Monitoring fire hotspots

• Monitoring Illegal logging and farms

• Malaysian Government

• MSTIRSA, Malaysia

• Multimedia University

• Unmanned Systems Technology

10

Entertainment Applications • SPARKED: A Live Interaction Between Humans and Quadcopters

• Robots Perform in Shakespeare’s ”A Midsummer Nights Dream”

• Flying Robot Dance

• Sophisticated real time play effects

• Complex spectacular aerobic choreography

• Cirque du Soleil

• ETH Zurich

• Verity Studios

• Texas A&M University

• KMel Robotics

• Yuneec International

Applications of Autonomous and Remotely Piloted Unmanned Aerial Systems - Continued on the next page...
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S/No UAV/RPAS Application Examples Benefits Stakeholders

11

Commercial Newsgathering • Major news network trials drone coverage

• Sport coverage

• Report file footage

• Broadcast live footage

• Live event coverage

• Natural disaster, riots, and war zone cover-

age

• Live sports video feeds

• CNN

• NFL

• Royal Ascot horse racing

12

Drone Delivery • Amazon prime air

• DHL’s Parcelcopter

• Airmail: Drones looking to deliver across tricky Swiss terrain

• On demand delivery could mark new future for retail

• VertiKUL: A Delivery Drone capable of delivering packages to a

destination 30 Kilometers away

• Rural or remote delivery

• High priority consignment delivery

• Medical supplies

• Reduced carbon emissions

• Cheaper delivery alternatives

• High-speed delivery

• Amazon

• DHL

• Swiss Post

• Google Australia

• University of Leuven, Belgium

13

Rail Network Applications • Railway track inspection

• Monitoring rail track safety

• UAV inspection for the Power and Utility industries

• Maersk Oil North Sea gruelling environment aerial inspection

• Potentially quicker inspection

• Reduces rail downtime due to maintenance

• Continuous monitoring

• Deterrent to rail-crossing offenders

• BNSF Railway

• GCC-wide rail network

14

Exam Invigilation • Chinese government uses high-tech drones to catch cheating stu-

dents

• Detect radio communication signals

• Highlight suspicious radio signals

• Dynamic video recording

• Chinese Government

15

Photography • Aerial Views: Photography contest showcases creativity through

drones

• Rare aerial shots

• Magical photos

• Rare views of nature

• Professional and Amateur Pho-

tographers

16

Health care applications • Dronlife: making organ delivery for transplant easier

• Medical drone delivers

• Drones help save lives

• Drone rural healthcare services via Matternets network of flying

drones ferrying lightweight medical supplies and information

• Quick organ transportation

• Medicines delivery to the elderly or special

needs patients

• Blood delivery to hospitals

• Medical kits transportation

• Medical supplies to rural and remote com-

munities

• Tests and diagnostic information trans-

portation in rural areas of developing

countries

• University of A Coruña, Spain

• Mishaal Almarzouqui, Dubai

Health Authority

• Main Hospital, Bhutan

• Andreas Raptopoulos, Matter-

net

Applications of Autonomous and Remotely Piloted Unmanned Aerial Systems - Continued on the next page...
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17

Wild life conservation • Wildlife conservation tool: drones track poaching and populations,

and for filming wildlife unobtrusively

• Drones help the Endangered List: used by Sumatra researchers in

protecting elephants and beleaguered orangutuans

• Preventing Poaching with domestic Drones: by monitoring the

health and security of the rare tigers, elephants and rhinoceri that

roam their national parks

• Track animal poaching

• Track wildlife population

• Filming wildlife

• Track wildlife behaviour and movements

• Monitor illegal deforestation in wildlife

areas

• Stamp out poaching of endangered species

• Create awareness evidence of poaching

• World Wildlife Fund (WWF)

• Conservation Drones

• Sumatra Wildlife Researchers

• Nepalese and Indian conserva-

tionists

18

Drone Rides • Ride on drone gets lift off

• Will we see Hover-bikes in the near Future?

• Pilotless aerial travel

• Quadrotor Hover-bike motorcycle

• Thorstin Crijns

• Malloy Aeronautics

19

Indoor Inspection • Collision tolerant drone gimbal used in Bridges, tunnels, power

plants, boats, ships and vessels inspection

• Reduced accident impacts

• Reduced health risks & hazards

• Access through little holes or crevices

• Access to confined spaces

• Safely fly close to humans

• Collision tolerant

• Patrick Thevoz, Flyability

20

Mountaineering expedition • Sprite: the world’s most portable and rugged unmanned aerial

vehicle Sprite challenges drone design with new approach

• Portability

• Rugged

• Ascent Aero Systems

21

Search and Rescue • Nepal quake disaster puts drones to the test • Locating victims

• Surveying damages

• NGOs

22

Habitat exploration • Henri A Waterproof Drone for surveying habitats above and below

water

• Map reefs and coastal zones

• Survey small underwater habitats

• Haiti

23

Sport Videography • Air Dog: follows and films your every move

• A Pet Drone That Follows You Everywhere

• Capture personal sporting moments

• Amateur sport videography

• Follow athletic autonomously

• Captures Pro-athletes training video for

improvement analysis

• Helico Aerospace Industries

• Falkor Systems

Applications of Autonomous and Remotely Piloted Unmanned Aerial Systems - Continued on the next page...
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S/No UAV/RPAS Application Examples Benefits Stakeholders

24

Law enforcement applica-

tions

• Thermal-Imaging Drones to catch vandals on German Railways • Deterrents to law breaking

• Tailing law breakers

• Providing video evidence to prosecute

offenders

• Deutsche Bahn, Germanys

national railways company

25

Disaster Relief • Disaster relief aided by drone support in India Uttarakhand re-

gion’s flood

• Direct delivery of food and medical sup-

plies

• Mapping affected areas

• Delivering first aid kits to the more iso-

lated areas

• Social Drones

Applications of Autonomous and Remotely Piloted Unmanned Aerial Systems - End



Appendix B

Experiment Result Tables

B.1 Participants Demographic

S/N Participant Number
Flying Experience 

(hrs)

No. of Months Flying 

(month)
Age Category Gender Ethnicity

Employment / 

Educational Status

1 A1 20 41 18 - 21 yrs Male White - European Student - UG - Yr3

2 A2 4 37 18 - 21 yrs Male White - British Student - UG - Yr3

3 A3 54 39 18 - 21 yrs Male White - British Student - UG - Yr3

4 A4 50 15 22 - 25 yrs Male White - Middle Eastern Student - UG - Yr3

5 A5 35 106 18 - 21 yrs Male White - British Student - UG - Yr3

6 A6 15 93 22 - 25 yrs Male White - European Student - UG - Yr3

7 A7 5 118 22 - 25 yrs Male White - British Student - UG - Yr2

8 A8 50 32 26 - 30 yrs Male White - Middle Eastern Student - UG - Yr3

9 A9 0 0 18 - 21 yrs Female White - British Student - UG - Yr2

10 A10 4 59 18 - 21 yrs Female White - European Student - UG - Yr2

11 A11 0 0 18 - 21 yrs Male White - Middle Eastern Student - UG - Yr2

12 A12 0 0 18 - 21 yrs Female Black - African Student - UG - Yr2

13 A13 2 5 18 - 21 yrs Female White - British Student - UG - Yr3

14 A14 2 23 18 - 21 yrs Female White - British Student - UG - Yr3

15 A15 0 0 18 - 21 yrs Male Asian - Chinese Student - UG - Yr2

16 A16 0 0 18 - 21 yrs Female White - British Student - UG - Yr3

17 A17 0 0 18 - 21 yrs Female White - British Student - UG - Yr3

18 A18 66 48 18 - 21 yrs Male White - British Student - UG - Yr3

19 A19 1 8 18 - 21 yrs Male White - British Student - UG - Yr3

20 A20 20 124 18 - 21 yrs Male White - British Student - UG - Yr3

21 A21 0 0 22 - 25 yrs Male White - British Student - UG - Yr3

22 A22 0 0 18 - 21 yrs Male White - British Student - UG - Yr3

23 A23 10 9 22 - 25 yrs Male White - British Student - UG - Yr3

24 A24 30 2 22 - 25 yrs Male White - European Student - PG - MSc

25 A25 0.5 8 18 - 21 yrs Female White - British Student - UG - Yr3

26 A26 0 0 18 - 21 yrs Male White - British Student - UG - Yr3

27 A27 2 17 18 - 21 yrs Female White - British Student - UG - Yr3

28 A28 10 20 18 - 21 yrs Female White - British Student - UG - Yr3

29 A29 0 0 31 - 35 yrs Female White - British Student - UG - Yr3

30 A30 2 21 22 - 25 yrs Male White - British Student - UG - Yr3

31 A31 0 0 18 - 21 yrs Female White - British Student - UG - Yr3

32 A32 0 0 18 - 21 yrs Female White - British Student - UG - Yr3

33 A33 0 0 18 - 21 yrs Male White - European Student - UG - Yr2

34 A34 2 12 18 - 21 yrs Female White - British Student - UG - Yr3

35 A35 1 24 22 - 25 yrs Male Asian - Chinese Student - PG - MSc

36 A36 0 0 22 - 25 yrs Male Asian - Chinese Student - PG - MSc

37 A37 20 33 26 - 30 yrs Male Black - African Student - PG - PhD

Average Participant's Data 10.95945946 24.16216216

Participants Demographic

Figure B.1: Participants demographics.
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Task A Results Table B-3

B.2 Task A Results Table



B-4 Chapter B. Experiment Result Tables

B.2.1 Speech Command

sub-SN Noise LevelSpeech Command No. of Words A1a A2a A3a A4a A5a A6a A7a A8a A9a A10a A11a A12a A13a A14a A15a A16a A17a A18a A19a A20a 

1 55 Go Forward 2 - 2 2 2 2 2 2 2 2 2 2 2 - - - - - - 2 2

2 55 Go Backward 2 - 2 2 2 2 2 2 2 2 2 2 2 - - - - - - 2 2

3 55 Step Left 2 - 2 2 2 2 2 2 2 2 2 2 2 - - - - - - 2 2

4 55 Step Right 2 - 2 2 2 2 2 2 2 2 2 2 2 - - - - - - 2 2

5 55 Hover 1 - 0 0 1 1 1 0 1 1 1 1 1 - - - - - - 1 1

6 55 Land 1 - 1 1 1 1 1 1 1 1 1 1 1 - - - - - - 1 1

7 55 Go Forward Half Metre 4 - 4 4 4 4 4 4 4 4 4 4 4 - - - - - - 4 4

8 55 Go Backward One Metre 4 - 4 4 4 4 4 4 4 4 4 4 4 - - - - - - 4 4

9 55 Hover One Metre 3 - 2 2 3 3 3 2 3 3 3 3 3 - - - - - - 3 3

10 55 Step Left Half Metre 4 - 4 4 4 4 4 4 4 4 4 4 4 - - - - - - 4 4

11 55 Step Right One Metre 4 - 4 4 4 4 4 4 4 4 4 4 4 - - - - - - 4 4

12 55 Stop 1 - 1 1 1 1 1 1 1 1 1 1 1 - - - - - - 1 1

1 60 Go Forward 2 - 2 2 2 2 2 2 2 0 2 2 2 2 1 2 2 2 2 2 2

2 60 Go Backward 2 - 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2

3 60 Step Left 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

4 60 Step Right 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

5 60 Hover 1 - 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0

6 60 Land 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 60 Go Forward Half Metre 4 - 4 4 4 4 4 4 4 3 2 4 4 4 4 4 4 4 4 4 4

8 60 Go Backward One Metre 4 - 4 4 4 4 4 4 4 4 3 4 4 3 3 4 4 4 4 4 4

9 60 Hover One Metre 3 - 2 2 3 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3

10 60 Step Left Half Metre 4 - 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4

11 60 Step Right One Metre 4 - 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

12 60 Stop 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 65 Go Forward 2 - 2 2 2 2 2 2 2 2 1 2 2 1 0 2 2 1 2 2 2

2 65 Go Backward 2 - 2 2 2 2 2 2 2 1 1 2 2 1 0 2 2 1 2 2 2

3 65 Step Left 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2

4 65 Step Right 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

5 65 Hover 1 - 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0

6 65 Land 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 65 Go Forward Half Metre 4 - 3 3 4 3 4 4 4 2 2 3 2 3 3 4 4 2 4 4 4

8 65 Go Backward One Metre 4 - 3 4 4 4 4 4 4 4 2 4 4 3 2 3 4 3 4 4 4

9 65 Hover One Metre 3 - 1 2 3 3 3 2 3 2 2 3 3 3 2 3 3 2 3 2 2

10 65 Step Left Half Metre 4 - 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

11 65 Step Right One Metre 4 - 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

12 65 Stop 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 70 Go Forward 2 - 0 2 2 1 2 2 2 0 0 1 1 0 1 0 0 0 2 2 1

2 70 Go Backward 2 - 1 2 2 2 2 2 2 0 1 0 1 1 0 1 1 0 2 2 2

3 70 Step Left 2 - 0 2 1 2 2 2 1 2 2 1 1 1 1 2 2 1 1 2 1

4 70 Step Right 2 - 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2

5 70 Hover 1 - 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0

6 70 Land 1 - 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 70 Go Forward Half Metre 4 - 0 3 4 3 4 4 4 3 2 2 2 0 3 2 2 2 4 4 2

8 70 Go Backward One Metre 4 - 2 4 4 4 4 4 4 2 1 2 2 3 2 3 2 3 4 4 4

9 70 Hover One Metre 3 - 1 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 3 2 2

10 70 Step Left Half Metre 4 - 3 4 4 4 4 4 4 3 4 4 4 3 4 4 3 3 4 4 4

11 70 Step Right One Metre 4 - 1 4 3 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4

12 70 Stop 1 - 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

1 75 Go Forward 2 - 0 2 2 1 2 2 1 0 0 0 1 0 0 0 0 0 1 2 1

2 75 Go Backward 2 - 1 2 2 2 2 2 1 0 1 1 1 0 0 1 0 0 1 2 2

3 75 Step Left 2 - 0 2 1 1 2 2 2 1 1 2 2 1 0 2 1 2 1 2 2

4 75 Step Right 2 - 1 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2

5 75 Hover 1 - 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

6 75 Land 1 - 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

7 75 Go Forward Half Metre 4 - 0 1 4 3 3 4 2 2 2 2 3 0 2 2 2 0 3 3 3

8 75 Go Backward One Metre 4 - 2 1 4 4 4 4 3 2 3 3 2 0 2 1 3 2 4 4 3

9 75 Hover One Metre 3 - 1 3 2 2 3 2 3 2 2 2 3 1 2 2 2 2 2 3 2

10 75 Step Left Half Metre 4 - 3 3 4 2 2 4 4 3 2 2 3 0 2 4 3 2 4 4 2

11 75 Step Right One Metre 4 - 1 4 3 4 4 4 4 4 3 3 4 2 4 4 4 4 4 4 4

12 75 Stop 1 - 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1

1 80 Go Forward 2 - 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1

2 80 Go Backward 2 - 0 1 1 2 2 0 1 1 0 0 1 0 0 0 0 0 2 2 1

3 80 Step Left 2 - 1 0 1 0 2 1 2 0 1 1 0 0 0 1 0 0 1 1 1

4 80 Step Right 2 - 1 1 1 1 2 2 2 2 1 2 1 1 1 1 1 1 2 2 2

5 80 Hover 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 80 Land 1 - 0 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0 0

7 80 Go Forward Half Metre 4 - 0 2 3 1 2 2 2 1 1 2 2 0 0 2 0 2 3 0 1

8 80 Go Backward One Metre 4 - 0 2 3 2 4 3 4 0 0 2 1 1 1 2 2 2 2 1 2

9 80 Hover One Metre 3 - 0 2 2 2 2 1 2 2 0 1 2 1 2 2 1 2 1 1 2

10 80 Step Left Half Metre 4 - 1 1 2 1 2 3 3 0 1 3 2 2 2 3 2 2 3 4 1

11 80 Step Right One Metre 4 - 0 4 3 2 4 4 4 2 2 3 4 3 2 2 3 1 2 3 2

12 80 Stop 1 - 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1 0

1 85 Go Forward 2 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 85 Go Backward 2 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 85 Step Left 2 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 85 Step Right 2 - 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

5 85 Hover 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 85 Land 1 - 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

7 85 Go Forward Half Metre 4 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 85 Go Backward One Metre 4 - 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0

9 85 Hover One Metre 3 - 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0

10 85 Step Left Half Metre 4 - 0 0 0 1 1 0 2 1 2 0 0 0 0 0 0 0 0 0 0

11 85 Step Right One Metre 4 - 0 0 0 1 3 0 3 0 3 0 0 0 0 0 0 0 0 0 0

12 85 Stop 1 - 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

No of Hits

Varying Noise Levels - Commands

Figure B.2: VNLC result table.



Task A Results Table B-5

Speech Command - Continues

Level 0a A21a A22a A23a A24a A25a A26a A27a A28a A29a A30a A31a A32a A33a A34a A35a A36a A37a Average

2 - 2 - - - - 2 - 2 2 2 2 2 2 2 - 2.0000

2 - 2 - - - - 2 - 2 2 2 2 2 2 2 - 2.0000

2 - 2 - - - - 2 - 2 2 2 2 2 2 2 - 2.0000

2 - 2 - - - - 2 - 2 2 2 2 2 2 2 - 2.0000

1 - 1 - - - - 1 - 1 1 1 1 1 1 1 - 0.8696

1 - 1 - - - - 1 - 1 1 1 1 1 1 1 - 1.0000

4 - 4 - - - - 4 - 4 3 4 4 4 4 2 - 3.8696

4 - 4 - - - - 4 - 4 3 4 4 4 4 4 - 3.9565

3 - 3 - - - - 3 - 3 3 3 2 3 3 3 - 2.8261

4 - 4 - - - - 4 - 4 4 4 4 4 4 4 - 4.0000

4 - 4 - - - - 4 - 4 4 4 4 4 4 4 - 4.0000

1 - 1 - - - - 1 - 1 1 1 1 1 1 1 - 1.0000

2 2 2 - 2 2 2 2 2 2 1 1 2 2 2 1 2 1.8286

2 2 2 - 2 2 2 2 1 2 2 1 2 1 2 1 2 1.8571

2 2 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2.0000

2 2 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2.0000

1 1 0 - 1 1 1 0 1 1 1 1 1 0 0 0 1 0.6857

1 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1.0000

4 4 4 - 4 4 4 4 4 4 3 3 4 4 4 2 4 3.8000

4 4 4 - 3 4 4 4 4 4 3 3 4 4 4 2 4 3.7714

3 3 3 - 3 3 3 3 3 2 3 2 2 3 3 2 2 2.7429

4 4 4 - 4 4 4 4 4 4 4 4 4 4 4 4 4 3.9714

4 4 4 - 4 4 4 4 4 4 4 4 4 4 4 4 4 4.0000

1 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1.0000

2 2 2 2 2 2 2 2 2 2 0 0 2 1 1 0 2 1.6389

2 2 2 2 2 2 1 2 1 2 1 0 2 1 1 0 2 1.5833

2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1.9444

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2.0000

1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0.2222

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.0000

4 4 4 4 4 4 4 3 4 2 3 2 4 4 2 2 3 3.3056

4 4 4 4 4 4 3 4 3 3 3 2 4 3 4 2 4 3.5278

3 3 2 3 3 2 3 2 3 2 2 2 3 2 2 2 2 2.4444

4 4 4 4 4 4 4 4 4 4 3 3 4 4 4 4 4 3.9444

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3.9722

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0.9722

2 2 0 2 2 0 0 1 1 1 1 0 1 1 0 0 1 0.9444

2 2 2 2 0 2 0 0 1 1 0 0 2 1 1 0 2 1.1667

2 2 2 1 1 2 1 1 2 2 1 2 2 2 2 2 2 1.5556

2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1.9167

1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0.2222

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.9722

4 4 2 4 3 2 2 3 3 2 3 2 3 2 2 2 2 2.6389

4 4 4 4 2 1 2 3 3 2 2 2 4 3 4 2 4 3.0000

2 3 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2.1389

4 4 4 4 4 4 4 4 4 4 2 3 4 4 4 4 4 3.7778

4 4 4 4 4 4 4 4 4 3 3 4 4 4 4 4 4 3.8056

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.9722

1 2 0 2 0 0 0 0 0 2 0 0 1 0 0 0 0 0.6389

2 2 1 2 0 1 0 0 0 1 0 0 2 1 0 0 0 0.9167

2 2 2 2 1 2 1 0 2 2 0 1 2 2 2 0 2 1.4444

2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 1.8333

0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0.1389

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0.9167

2 2 2 3 0 2 2 2 2 2 2 2 2 2 2 2 2 2.0556

4 4 3 4 2 3 2 3 2 2 2 2 4 2 2 2 2 2.6667

2 2 2 3 2 2 2 2 2 1 2 2 2 2 0 2 2 2.0278

4 4 4 4 2 3 2 3 3 4 2 3 4 4 4 3 4 3.0556

4 4 4 4 4 4 4 4 4 4 3 4 4 4 3 3 4 3.6944

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0.9167

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.1667

0 1 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0.5278

1 1 2 1 0 1 0 1 1 2 0 0 2 1 0 0 1 0.7500

2 1 2 1 1 2 1 2 2 2 1 1 2 1 0 0 2 1.3889

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0.0556

1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 0.6667

1 2 2 2 1 2 2 1 1 2 1 1 3 1 2 0 2 1.4444

2 2 2 4 0 0 1 2 2 1 2 0 4 1 0 1 0 1.6111

0 2 2 2 1 0 2 2 2 0 2 2 2 2 1 1 2 1.4722

3 2 4 1 1 0 2 1 1 4 2 2 3 2 2 1 2 1.9722

2 4 4 3 2 2 3 3 3 3 3 3 4 2 2 1 3 2.6944

1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0.6389

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0000

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0000

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0000

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0.1111

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0000

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0833

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.0556

1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0.2222

2 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0.2222

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2222

4 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0.4722

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0556

its

Figure B.3: VNLC result table continues.



B-6 Chapter B. Experiment Result Tables

B.2.2 Word Freqency

sub-SN Noise Level Word Frequency A1a A2a A3a A4a A5a A6a A7a A8a A9a A10a A11a A12a A13a A14a A15a A16a A17a A18a A19a A20a A21a A22a A23

1 55 Go 4 - 4 4 4 4 4 4 4 4 4 4 4 - - - - - - 4 4 4 - 4

2 55 Forward 2 - 2 2 2 2 2 2 2 2 2 2 2 - - - - - - 2 2 2 - 2

3 55 Backward 2 - 2 2 2 2 2 2 2 2 2 2 2 - - - - - - 2 2 2 - 2

4 55 Right 2 - 2 2 2 2 2 2 2 2 2 2 2 - - - - - - 2 2 2 - 2

5 55 Left 2 - 2 2 2 2 2 2 2 2 2 2 2 - - - - - - 2 2 2 - 2

6 55 Step 4 - 4 4 4 4 4 4 4 4 4 4 4 - - - - - - 4 4 4 - 4

7 55 Hover 2 - 0 0 2 2 2 0 2 2 2 2 2 - - - - - - 2 2 2 - 2

8 55 Land 1 - 1 1 1 1 1 1 1 1 1 1 1 - - - - - - 1 1 1 - 1

9 55 Half 2 - 2 2 2 2 2 2 2 2 2 2 2 - - - - - - 2 2 2 - 2

10 55 One 3 - 3 3 3 3 3 3 3 3 3 3 3 - - - - - - 3 3 3 - 3

11 55 Metre 5 - 5 5 5 5 5 5 5 5 5 5 5 - - - - - - 5 5 5 - 5

12 55 Stop 1 - 1 1 1 1 1 1 1 1 1 1 1 - - - - - - 1 1 1 - 1

1 60 Go 4 - 4 4 4 4 4 4 4 3 2 4 4 3 1 4 4 4 4 4 4 4 4 4

2 60 Forward 2 - 2 2 2 2 2 2 2 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2

3 60 Backward 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

4 60 Right 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

5 60 Left 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

6 60 Step 4 - 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

7 60 Hover 2 - 0 0 1 2 2 0 2 1 2 1 2 2 2 2 2 2 2 2 1 2 2 1

8 60 Land 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 60 Half 2 - 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

10 60 One 3 - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

11 60 Metre 5 - 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

12 60 Stop 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 65 Go 4 - 4 4 4 4 4 4 4 2 0 4 3 1 0 4 4 0 4 4 4 4 4 4

2 65 Forward 2 - 1 2 2 1 2 2 2 1 1 1 1 1 1 2 2 1 2 2 2 2 2 2

3 65 Backward 2 - 1 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2

4 65 Right 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

5 65 Left 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2

6 65 Step 4 - 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

7 65 Hover 2 - 0 0 1 2 1 0 2 0 0 1 2 1 1 1 1 0 2 0 0 2 1 0

8 65 Land 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 65 Half 2 - 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

10 65 One 3 - 2 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3

11 65 Metre 5 - 5 5 5 5 5 5 5 5 5 5 5 5 3 5 5 5 5 5 5 5 5 5

12 65 Stop 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 70 Go 4 - 0 4 4 4 4 4 4 1 0 1 0 0 0 0 0 0 4 4 4 4 4 2

2 70 Forward 2 - 0 2 2 0 2 2 2 0 0 0 1 0 2 0 0 0 2 2 0 2 2 0

3 70 Backward 2 - 1 2 2 2 2 2 2 0 2 0 1 2 0 2 1 1 2 2 2 2 2 2

4 70 Right 2 - 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2

5 70 Left 2 - 1 2 2 2 2 2 2 1 2 1 2 0 1 2 1 0 1 2 1 2 2 2

6 70 Step 4 - 0 4 2 4 4 4 3 4 4 4 2 4 4 4 4 4 4 4 4 4 4 4

7 70 Hover 2 - 0 0 0 0 2 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 2 0

8 70 Land 1 - 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 70 Half 2 - 1 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 2

10 70 One 3 - 1 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3

11 70 Metre 5 - 3 5 5 5 5 5 5 5 4 5 5 4 5 5 5 5 5 5 5 5 5 5

12 70 Stop 1 - 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

1 75 Go 4 - 0 2 4 4 4 4 0 0 0 0 1 0 0 0 0 0 1 4 4 3 3 0

2 75 Forward 2 - 0 1 2 0 2 2 1 0 0 0 1 0 0 0 0 0 2 1 0 0 1 0

3 75 Backward 2 - 1 1 2 2 2 2 2 0 2 2 1 0 0 2 1 0 2 2 1 2 2 2

4 75 Right 2 - 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2

5 75 Left 2 - 1 2 2 0 1 2 2 0 0 1 2 0 1 2 0 1 1 2 1 2 2 2

6 75 Step 4 - 0 4 2 3 4 4 4 3 4 4 3 2 2 4 4 3 4 4 4 4 4 4

7 75 Hover 2 - 0 1 0 0 1 0 2 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0

8 75 Land 1 - 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

9 75 Half 2 - 1 0 2 2 0 2 2 2 2 1 2 0 1 2 2 1 2 2 1 2 2 2

10 75 One 3 - 1 2 3 3 3 3 3 3 2 3 3 2 3 2 3 3 3 3 3 3 3 3

11 75 Metre 5 - 3 5 5 5 5 5 5 5 4 5 5 0 4 4 5 4 5 5 5 5 5 5

12 75 Stop 1 - 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

1 80 Go 4 - 0 0 2 2 3 0 1 1 0 0 0 0 0 0 0 0 2 2 4 2 0 0

2 80 Forward 2 - 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

3 80 Backward 2 - 1 1 2 2 2 1 2 1 0 0 1 0 0 0 0 0 1 2 0 1 1 0

4 80 Right 2 - 1 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2

5 80 Left 2 - 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 2

6 80 Step 4 - 0 1 1 0 3 4 4 1 4 4 1 2 0 2 0 0 4 4 2 4 3 4

7 80 Hover 2 - 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

8 80 Land 1 - 0 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0 0 1 1 1

9 80 Half 2 - 1 1 2 2 1 2 2 0 1 2 2 1 1 2 1 2 2 1 0 1 1 2

10 80 One 3 - 0 3 3 2 3 2 3 2 0 1 3 3 3 2 2 2 2 2 3 0 3 3

11 80 Metre 5 - 0 4 5 0 5 5 5 1 0 5 3 0 3 4 4 4 3 1 1 1 5 5

12 80 Stop 1 - 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1 0 1 1 1

1 85 Go 4 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 85 Forward 2 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 85 Backward 2 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 85 Right 2 - 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0

5 85 Left 2 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

6 85 Step 4 - 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0

7 85 Hover 2 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 85 Land 1 - 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

9 85 Half 2 - 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0

10 85 One 3 - 0 0 0 1 3 0 3 0 1 0 0 0 0 0 0 0 0 0 0 3 0 0

11 85 Metre 5 - 0 0 0 0 1 0 4 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0

12 85 Stop 1 - 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Varying Noise Levels - Word Frequency

Hits Frequency

Figure B.4: VNL-WF result table.



Task A Results Table B-7

Word freqency result - continues

A23a A24a A25a A26a A27a A28a A29a A30a A31a A32a A33a A34a A35a A36a A37a Average

4 - - - - 4 - 4 2 4 4 4 4 3 - 3.8696

2 - - - - 2 - 2 2 2 2 2 2 1 - 1.9565

2 - - - - 2 - 2 2 2 2 2 2 2 - 2.0000

2 - - - - 2 - 2 2 2 2 2 2 2 - 2.0000

2 - - - - 2 - 2 2 2 2 2 2 2 - 2.0000

4 - - - - 4 - 4 4 4 4 4 4 4 - 4.0000

2 - - - - 2 - 2 2 2 1 2 2 2 - 1.6957

1 - - - - 1 - 1 1 1 1 1 1 1 - 1.0000

2 - - - - 2 - 2 2 2 2 2 2 2 - 2.0000

3 - - - - 3 - 3 3 3 3 3 3 3 - 3.0000

5 - - - - 5 - 5 5 5 5 5 5 5 - 5.0000

1 - - - - 1 - 1 1 1 1 1 1 1 - 1.0000

4 - 3 4 4 4 3 4 1 0 4 3 4 2 4 3.4571

2 - 2 2 2 2 2 2 2 2 2 2 2 0 2 1.8571

2 - 2 2 2 2 2 2 2 2 2 2 2 0 2 1.9429

2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2.0000

2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2.0000

4 - 4 4 4 4 4 4 4 4 4 4 4 4 4 4.0000

1 - 2 2 2 1 2 1 2 1 1 1 1 0 1 1.4286

1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1.0000

2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 1.9714

3 - 3 3 3 3 3 3 3 3 3 3 3 3 3 3.0000

5 - 5 5 5 5 5 5 5 5 5 5 5 5 5 5.0000

1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1.0000

4 4 4 4 2 3 2 2 0 0 4 1 3 0 4 2.8611

2 2 2 2 2 2 2 1 1 0 2 2 0 0 1 1.5000

2 2 2 2 2 2 2 2 2 0 2 2 1 0 2 1.7778

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2.0000

2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1.9167

4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 3.9444

0 2 2 0 1 0 1 0 0 0 2 0 0 0 0 0.7222

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.0000

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1.9722

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2.9444

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4.9444

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0.9722

2 4 1 1 0 0 0 0 0 0 4 0 1 0 3 1.7222

0 2 2 0 0 2 2 1 2 0 0 1 0 0 0 0.9167

2 2 0 2 0 1 2 1 0 0 2 2 2 0 2 1.3889

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1.9722

2 1 1 1 1 1 2 2 0 1 2 2 2 2 2 1.4722

4 4 4 4 4 4 4 4 2 4 4 4 4 4 4 3.6944

0 2 0 0 1 0 1 0 0 0 0 0 1 0 0 0.3889

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.9722

2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1.8611

3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 2.8611

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4.8889

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.9722

0 4 0 0 0 0 0 1 0 0 3 0 0 0 0 1.1667

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0.4167

2 2 0 2 0 1 0 1 0 0 2 2 0 0 0 1.1389

2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1.9444

2 2 0 1 0 0 1 2 0 0 2 2 2 1 2 1.1667

4 4 2 4 4 3 4 4 0 4 4 4 2 3 4 3.3333

0 2 0 0 0 0 0 1 0 0 0 1 0 0 0 0.3056

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0.9167

2 2 1 2 1 2 2 2 2 2 2 2 2 1 2 1.6111

3 3 3 3 3 3 3 2 3 3 3 2 2 3 3 2.7500

5 5 4 5 5 5 5 5 5 5 5 5 4 5 5 4.6389

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0.9167

0 3 0 0 0 0 0 0 0 0 4 0 0 0 0 0.7222

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0556

0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0.6111

2 2 2 2 2 2 2 2 2 2 2 1 1 0 1 1.7778

2 1 0 0 0 1 0 2 0 0 1 0 0 0 0 0.3611

4 2 0 3 0 3 2 4 0 0 4 3 0 0 4 2.0278

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0.1111

1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 0.6667

2 0 2 1 2 1 0 2 2 2 2 2 2 1 1 1.3889

3 2 2 0 3 3 3 0 3 2 3 3 0 3 2 2.1111

5 4 0 1 4 2 5 4 4 3 5 1 4 0 4 2.9167

1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0.6389

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0000

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0000

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0000

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0.1944

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0278

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.1667

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0000

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0833

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.1667

0 3 0 0 2 0 0 0 0 0 3 0 0 0 0 0.5278

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2222

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0556

Figure B.5: VNL-WF result table continues.



B-8 Chapter B. Experiment Result Tables

B.2.3 Gesture result

sub-SN Lighting Stage Lighting Colour Parameters A1a A2a A3a A4a A5a A6a A7a A8a A9a A10a A11a A12a A13a A14a 

1 1 Lighting Intensity 6.6 8.9 10.5 10.7 8.0 9.7 8.5 11.5 16.5 - 15.1 13.1 7.9 13.6

2 1 Room Temperature 23.0 23.0 23.1 23.1 23.6 22.3 23.1 21.4 22.6 - 22.9 23.3 24.0 23.8

3 1 Finger Gesture Outcome 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 0.0 0.0 0.0 0.0

4 1 Green Background Quality - - - - - 2.0 2.0 2.0 2.0 - 2.0 2.0 3.0 2.0

5 1 Blue Background Quality - - - - - 2.0 2.0 2.0 2.0 - 2.0 2.0 4.0 4.0

6 1 White Background Quality 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 - 2.0 2.0 2.0 3.0

1 2 Lighting Intensity 38.0 82.0 83.0 110.0 127.0 129.2 101.5 124.3 115.0 - 115.0 142.7 109.9 112.7

2 2 Room Temperature 23.1 23.2 23.2 23.2 23.7 22.5 23.2 21.5 23.1 - 23.0 23.4 24.1 23.9

3 2 Finger Gesture Outcome 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 - 1.0 1.0 0.0 0.0

4 2 Green Background Quality - - - - - 4.0 3.0 3.0 3.0 - 3.0 3.0 3.0 2.0

5 2 Blue Background Quality - - - - - 6.0 6.0 6.0 6.0 - 6.0 3.0 4.0 4.0

6 2 White Background Quality 7.0 7.0 7.0 7.0 5.0 6.0 5.0 5.0 3.0 - 6.0 7.0 2.0 3.0

1 3 Lighting Intensity 40.0 95.9 103.3 150.0 160.0 156.0 137.0 159.2 132.6 - 157.1 157.1 150.0 108.8

2 3 Room Temperature 23.2 23.1 23.3 23.3 23.8 22.4 23.3 21.6 23.6 - 23.1 23.5 24.2 24.0

3 3 Finger Gesture Outcome 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 - 1.0 0.5 0.0 0.0

4 3 Green Background Quality - - - - - 4.0 3.0 3.0 3.0 - 3.0 3.0 3.0 2.0

5 3 Blue Background Quality - - - - - 6.0 5.0 6.0 6.0 - 6.0 5.0 3.0 3.0

6 3 White Background Quality 7.0 7.0 7.0 7.0 5.0 6.0 6.0 5.0 3.0 - 6.0 4.0 4.0 4.0

1 4 Lighting Intensity 45.0 95.0 103.3 90.0 119.0 170.0 101.5 121.6 126.2 - 140.0 137.8 122.6 102.1

2 4 Room Temperature 23.1 23.1 23.5 23.5 24.0 22.9 23.5 21.8 23.9 - 23.3 23.7 24.4 24.2

3 4 Finger Gesture Outcome 0.0 0.5 0.0 0.0 0.0 1.0 0.0 0.0 1.0 - 0.0 1.0 0.0 0.0

4 4 Green Background Quality - - - - - 4.0 3.0 3.0 3.0 - 3.0 5.0 3.0 2.0

5 4 Blue Background Quality - - - - - 6.0 3.0 3.0 6.0 - 3.0 6.0 3.0 3.0

6 4 White Background Quality 3.0 5.0 3.0 3.0 4.0 5.0 3.0 3.0 3.0 - 3.0 7.0 3.0 4.0

1 5 Lighting Intensity 50.0 101.0 126.2 120.0 121.0 170.0 133.1 164.6 128.2 - 182.5 157.6 135.7 125.8

2 5 Room Temperature 23.1 23.1 23.6 23.6 24.1 22.7 23.6 21.9 24.0 - 23.4 23.8 24.5 24.3

3 5 Finger Gesture Outcome 0.0 0.5 0.0 0.0 0.0 1.0 0.5 1.0 1.0 - 0.5 1.0 0.5 0.5

4 5 Green Background Quality - - - - - 4.0 3.0 4.0 3.0 - 5.0 5.0 3.0 3.0

5 5 Blue Background Quality - - - - - 6.0 5.0 6.0 6.0 - 3.0 7.0 5.0 5.0

6 5 White Background Quality 3.0 5.0 3.0 3.0 3.0 5.0 4.0 5.0 3.0 - 3.0 6.0 3.0 4.0

1 6 Lighting Intensity 80.0 295.0 210.0 155.0 300.0 285.0 293.5 262.0 285.0 - 297.0 282.0 249.0 225.0

2 6 Room Temperature 23.2 23.6 23.8 24.2 24.3 23.0 23.8 22.1 24.1 - 23.6 24.0 24.7 24.5

3 6 Finger Gesture Outcome 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 - 1.0 1.0 0.5 0.0

4 6 Green Background Quality - - - - - 5.0 4.0 4.0 3.0 - 5.0 5.0 2.0 2.0

5 6 Blue Background Quality - - - - - 7.0 6.0 6.0 6.0 - 6.0 7.0 5.0 4.0

6 6 White Background Quality 7.0 7.0 7.0 7.0 6.0 6.0 6.0 5.0 3.0 - 7.0 6.0 4.0 3.0

1 7 Lighting Intensity 600.0 575.4 619.8 545.0 835.0 910.0 745.0 794.0 654.0 - 835.0 750.0 765.0 607.0

2 7 Room Temperature 23.1 23.1 23.4 23.4 23.9 22.6 23.4 21.7 23.7 - 23.2 23.6 24.4 24.1

3 7 Finger Gesture Outcome 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 - 1.0 0.5 1.0 0.5

4 7 Green Background Quality - - - - - 5.0 4.0 4.0 3.0 - 4.0 3.0 2.0 2.0

5 7 Blue Background Quality - - - - - 6.0 6.0 4.0 6.0 - 4.0 5.0 5.0 5.0

6 7 White Background Quality 7.0 7.0 7.0 7.0 6.0 7.0 5.0 6.0 3.0 - 7.0 4.0 6.0 4.0

1 8 Lighting Intensity 500.0 420.0 520.0 430.0 610.0 650.0 596.0 608.0 590.0 - 630.0 569.0 623.0 565.0

2 8 Room Temperature 23.1 23.5 23.7 24.0 24.2 22.8 23.7 22.0 24.0 - 23.5 23.9 24.6 24.4

3 8 Finger Gesture Outcome 0.5 0.5 0.0 0.5 0.0 1.0 0.5 1.0 1.0 - 0.5 0.5 1.0 1.0

4 8 Green Background Quality - - - - - 4.0 4.0 4.0 3.0 - 5.0 4.0 6.0 3.0

5 8 Blue Background Quality - - - - - 6.0 5.0 6.0 6.0 - 5.0 3.0 7.0 6.0

6 8 White Background Quality 5.0 5.0 3.0 5.0 3.0 5.0 4.0 5.0 3.0 - 3.0 5.0 3.0 5.0

1 9 Lighting Intensity 1125.0 1180.0 1260.0 850.0 1200.0 1140.0 1174.0 1340.0 1164.0 - 1352.0 1300.0 1274.0 1129.0 12

2 9 Room Temperature 23.2 23.6 23.9 24.3 24.3 23.1 23.8 22.2 24.2 - 23.7 24.1 24.8 24.6

3 9 Finger Gesture Outcome 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 - 1.0 0.5 0.0 0.5

4 9 Green Background Quality - - - - - 5.0 4.0 4.0 3.0 - 7.0 4.0 1.0 2.0

5 9 Blue Background Quality - - - - - 7.0 6.0 6.0 6.0 - 6.0 5.0 4.0 6.0

6 9 White Background Quality 7.0 7.0 7.0 7.0 6.0 6.0 6.0 5.0 3.0 - 8.0 3.0 3.0 2.0
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Figure B.6: VLL result table.



Task A Results Table B-9

Gesture result - continues

A14a A15a A16a A17a A18a A19a A20a A21a A22a A23a A24a A25a A26a A27a A28a A29a A30a A31a A32a A33a A34a A35a A36a A37a Average

6 11.8 15.6 7.2 12.2 14.5 16.5 10.0 8.7 12.6 10.5 13.5 7.0 6.5 9.5 11.2 9.2 13.7 13.5 7.7 8.0 9.5 8.5 11.3 10.8139

8 23.6 23.8 23.8 24.0 23.8 24.2 23.7 23.8 22.6 23.5 23.1 23.4 23.3 23.4 23.1 23.6 23.5 23.7 22.3 22.9 23.2 23.2 23.1 23.2722

0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.5 0.5 0.0 0.5 0.0 0.0 0.0 0.5 0.5 0.0 0.5 1.0 0.0 0.5 1.0 0.1806

1.0 2.0 1.0 1.0 1.0 4.0 4.0 1.0 5.0 5.0 1.0 1.0 1.0 1.0 1.0 4.0 2.0 0.0 6.0 7.0 0.0 5.0 6.0 2.4839

1.0 2.0 1.0 1.0 1.0 4.0 4.0 1.0 4.0 3.0 1.0 1.0 1.0 1.0 1.0 3.0 2.0 0.0 4.0 6.0 0.0 6.0 8.0 2.4516

1.0 3.0 1.0 1.0 1.0 4.0 4.0 1.0 3.0 4.0 3.0 5.0 1.0 1.0 1.0 5.0 5.0 0.0 5.0 5.0 0.0 4.0 7.0 2.5556

2.7 114.9 95.6 110.0 95.6 129.2 125.9 120.0 90.4 121.5 73.4 121.2 99.2 88.8 88.7 96.6 88.8 106.5 91.3 92.8 93.3 100.5 105.0 108.5 104.1111

9 23.7 23.9 23.9 24.1 23.9 24.4 23.9 23.9 22.8 23.6 23.2 23.5 23.5 23.5 23.2 23.8 23.6 23.8 22.8 23.0 23.5 23.3 23.3 23.4222

0.0 1.0 1.0 0.0 1.0 1.0 1.0 0.5 0.5 1.0 0.5 1.0 0.5 0.0 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.6944

2.0 6.0 8.0 1.0 4.0 4.0 5.0 2.0 3.0 5.0 2.0 5.0 2.0 2.0 2.0 4.0 3.0 1.0 4.0 5.0 2.0 4.0 8.0 3.4839

2.0 8.0 9.0 2.0 6.0 4.0 7.0 2.0 3.0 6.0 2.0 6.0 2.0 2.0 2.0 5.0 3.0 1.0 4.0 5.0 2.0 5.0 7.0 4.3871

2.0 7.0 10.0 3.0 5.0 6.0 6.0 5.0 5.0 7.0 5.0 7.0 5.0 4.0 5.0 6.0 5.0 4.0 6.0 7.0 5.0 6.0 6.0 5.4722

8.8 140.1 120.5 120.4 127.3 135.7 136.0 140.4 123.7 124.6 97.5 127.4 117.2 96.4 110.0 114.4 110.8 122.0 107.6 117.1 114.7 119.8 128.7 127.3 124.6278

0 23.8 24.0 24.0 24.2 24.0 24.5 24.0 24.0 23.0 23.7 23.4 23.8 23.6 23.6 23.3 23.9 23.7 24.1 23.0 23.3 23.7 23.4 23.4 23.5500

0.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 0.5 1.0 1.0 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.0 0.5 1.0 0.6806

2.0 7.0 8.0 1.0 4.0 4.0 5.0 2.0 3.0 5.0 3.0 5.0 2.0 2.0 2.0 4.0 3.0 1.0 3.0 4.0 1.0 4.0 10.0 3.5161

2.0 8.0 9.0 2.0 6.0 4.0 7.0 2.0 3.0 6.0 5.0 6.0 2.0 2.0 4.0 5.0 3.0 1.0 5.0 6.0 1.0 5.0 8.0 4.5806

2.0 6.0 10.0 3.0 5.0 6.0 6.0 4.0 5.0 7.0 6.0 7.0 5.0 5.0 5.0 6.0 5.0 4.0 6.0 7.0 1.0 6.0 7.0 5.4167

2.1 98.7 93.0 117.3 105.8 112.0 100.0 120.1 102.0 109.2 90.6 131.8 85.5 100.4 111.6 98.7 98.9 118.4 99.1 120.4 113.5 111.3 103.8 117.6 109.2722

2 24.1 24.3 24.3 24.4 24.2 24.8 24.3 24.2 23.3 23.8 23.7 23.9 23.8 23.8 23.6 24.1 24.0 24.3 22.3 23.5 23.7 23.5 23.6 23.7333

0.0 0.0 0.5 0.0 1.0 1.0 1.0 0.5 0.0 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.5 0.5 0.5 1.0 1.0 0.4306

2.0 4.0 4.0 1.0 4.0 4.0 5.0 2.0 1.0 3.0 6.0 2.0 2.0 4.0 3.0 2.0 4.0 1.0 4.0 4.0 4.0 8.0 8.0 3.4839

2.0 3.0 6.0 1.0 6.0 5.0 7.0 2.0 1.0 4.0 5.0 2.0 2.0 5.0 3.0 4.0 5.0 1.0 5.0 6.0 5.0 6.0 7.0 4.0645

2.0 2.0 5.0 1.0 5.0 6.0 6.0 5.0 1.0 5.0 7.0 5.0 5.0 6.0 5.0 5.0 6.0 1.0 6.0 5.0 6.0 7.0 6.0 4.3611

5.8 130.9 116.1 124.8 122.0 129.0 120.0 125.9 116.7 112.8 109.5 132.4 116.2 112.5 116.4 120.8 113.7 137.7 114.6 136.0 130.1 128.4 133.4 137.9 126.4861

3 24.2 24.4 24.4 24.5 24.3 24.9 24.3 24.3 23.4 23.8 23.8 24.0 23.9 23.8 23.7 24.2 24.1 24.4 22.5 23.6 23.9 23.6 23.7 23.8167

0.0 0.5 1.0 0.0 1.0 1.0 1.0 0.5 0.0 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.5 1.0 0.5 0.5 1.0 0.5417

2.0 4.0 5.0 1.0 4.0 5.0 3.0 2.0 3.0 3.0 7.0 2.0 2.0 4.0 3.0 3.0 4.0 1.0 5.0 5.0 4.0 3.0 10.0 3.7097

2.0 5.0 7.0 1.0 6.0 7.0 4.0 2.0 1.0 4.0 5.0 5.0 2.0 5.0 4.0 4.0 6.0 1.0 6.0 7.0 5.0 3.0 8.0 4.6129

2.0 3.0 6.0 1.0 5.0 6.0 6.0 5.0 2.0 5.0 6.0 5.0 5.0 6.0 5.0 5.0 5.0 1.0 5.0 6.0 6.0 5.0 7.0 4.3889

5.0 225.0 205.0 230.0 234.0 212.0 225.0 233.0 234.0 225.0 215.0 258.0 201.0 203.0 220.0 206.0 229.0 256.0 215.0 256.0 233.0 249.0 255.0 249.0 235.7361

5 24.5 24.6 24.6 24.7 24.5 25.2 24.4 24.4 23.6 23.9 24.0 24.0 24.0 24.0 24.0 24.3 24.3 24.5 23.1 23.7 24.1 23.8 23.9 24.0278

0.5 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 1.0 0.5 0.5 0.5 0.5 1.0 0.5 1.0 1.0 0.8194

2.0 5.0 6.0 4.0 4.0 4.0 6.0 5.0 5.0 6.0 6.0 7.0 4.0 4.0 7.0 4.0 4.0 1.0 4.0 5.0 4.0 8.0 8.0 4.6129

5.0 7.0 8.0 4.0 6.0 6.0 7.0 7.0 7.0 7.0 7.0 8.0 6.0 6.0 8.0 5.0 6.0 4.0 5.0 7.0 6.0 9.0 9.0 6.3548

2.0 4.0 7.0 1.0 5.0 4.0 3.0 6.0 6.0 5.0 6.0 6.0 5.0 5.0 6.0 2.0 5.0 1.0 6.0 6.0 5.0 9.0 10.0 5.2500

7.0 660.0 616.0 712.0 709.0 658.0 623.0 644.0 686.0 620.0 620.0 714.0 645.0 688.0 706.0 698.0 636.0 708.0 650.0 755.0 740.0 737.0 783.0 753.0 694.3389

1 23.9 24.2 24.1 24.3 24.1 24.7 24.1 24.1 23.2 23.7 23.6 23.8 23.7 23.7 23.3 24.0 23.9 24.1 23.0 23.5 23.7 23.5 23.6 23.6500

1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.0 0.5 1.0 0.5 1.0 1.0 0.8056

3.0 7.0 5.0 2.0 4.0 4.0 5.0 3.0 5.0 6.0 4.0 6.0 3.0 2.0 3.0 3.0 3.0 1.0 5.0 5.0 3.0 7.0 10.0 4.0645

6.0 8.0 7.0 3.0 6.0 4.0 7.0 5.0 6.0 7.0 6.0 7.0 4.0 4.0 4.0 4.0 5.0 1.0 6.0 6.0 6.0 9.0 10.0 5.5484

3.0 6.0 6.0 4.0 5.0 6.0 6.0 4.0 7.0 5.0 7.0 8.0 5.0 5.0 5.0 5.0 6.0 1.0 5.0 7.0 5.0 9.0 10.0 5.7222

5.0 522.0 505.0 615.0 553.0 462.0 528.0 603.0 543.0 570.0 494.0 572.0 500.0 505.0 508.0 530.0 557.0 577.0 522.0 587.0 593.5 551.0 602.0 584.0 552.6250

4 24.4 24.5 24.5 24.6 24.4 25.0 24.4 24.4 23.5 23.9 23.9 24.0 24.0 24.0 23.8 24.3 24.1 24.5 22.7 23.7 24.0 23.8 23.8 23.9333

0.5 1.0 1.0 0.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5 1.0 0.6944

5.0 6.0 6.0 3.0 5.0 5.0 6.0 5.0 7.0 7.0 7.0 7.0 7.0 4.0 4.0 3.0 4.0 1.0 4.0 7.0 4.0 6.0 10.0 5.0323

2.0 4.0 8.0 4.0 7.0 7.0 7.0 4.0 6.0 6.0 6.0 6.0 5.0 5.0 5.0 4.0 6.0 4.0 5.0 8.0 6.0 4.0 8.0 5.5161

2.0 4.0 7.0 2.0 6.0 6.0 3.0 3.0 5.0 5.0 5.0 4.0 6.0 6.0 4.0 5.0 5.0 1.0 6.0 6.0 5.0 5.0 7.0 4.5000

.0 1259.0 1052.0 1204.0 1195.0 1214.0 1105.0 1204.0 1325.0 1236.0 1112.0 1228.0 1057.0 1135.0 1230.0 1205.0 1195.0 1332.0 1163.0 1315.0 1314.0 1197.0 1336.0 1267.0 1204.6667

6 24.6 24.7 24.7 24.8 24.6 25.2 24.5 24.5 23.7 24.0 24.1 24.1 24.1 24.1 24.1 24.4 24.4 24.6 23.1 23.8 24.1 23.9 24.0 24.1083

0.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 0.5 0.0 0.5 0.5 0.5 0.5 1.0 0.7917

2.0 7.0 6.0 5.0 4.0 4.0 6.0 5.0 5.0 7.0 5.0 7.0 3.0 4.0 6.0 4.0 4.0 1.0 4.0 5.0 3.0 5.0 10.0 4.5806

2.0 6.0 8.0 5.0 6.0 6.0 7.0 7.0 7.0 6.0 6.0 8.0 7.0 6.0 8.0 6.0 6.0 1.0 5.0 5.0 6.0 6.0 10.0 6.0000

2.0 4.0 7.0 4.0 5.0 4.0 5.0 5.0 6.0 3.0 7.0 6.0 6.0 5.0 7.0 5.0 5.0 1.0 6.0 7.0 3.0 7.0 8.0 5.2222

ting Levels - Finger Gestures

Parameter values

Figure B.7: VLL result table continues.



B-10 Chapter B. Experiment Result Tables

B.3 Task B Results Tables
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Figure B.8: RFDS result table.
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Figure B.9: NASA TLX survey result table.
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Figure B.10: Speech gesture ratio result table.



Appendix C

Program Codes

C.1 Teensy 3.2 Flight Controller Codes

The flight test video can be found in the accompanying thesis CD-R “./multimedia/ ” folder.

C.1.1 iQuad Jade v08.ino

Available on thesis CD-R “./Appendix C - Program Codes/iQuad Jade v08/ ” folder.

C.1.2 calibration.h

Available on thesis CD-R “./Appendix C - Program Codes/iQuad Jade v08/ ” folder.

C.1.3 iQuad Jade speech and keyboard control modified code

Available on thesis CD-R “./Appendix C - Program Codes/speech to quad/ ” folder.

C.2 MATLAB MCPU Operation Simulation Codes

Available on thesis CD-R “./Appendix C - Program Codes/matlab/ ” folder.

C.3 Python Gazebo simulation - graphical MCPU Operation

Simulation Codes

Available on thesis CD-R “./Appendix C - Program Codes/msvg nav/ ” folder.



C-2 Chapter C. Program Codes

C.4 Speech capture and processing into control symbol program

code

Available on thesis CD-R “./Appendix C - Program Codes/msvg speech cmds/ ” folder.

C.5 Gesture capture and processing into control symbol pro-

gram code

Available on thesis CD-R “./Appendix C - Program Codes/msvg finger gestures/ ” folder.

C.5.1 Gesture capture and processing - Haar cascade fist gesture program

code

Available on thesis CD-R “./Appendix C - Program Codes/haar cascade fist/ ” folder.

C.5.2 Gesture capture and processing - uEye camera frame sequence pro-

gram code

Available on thesis CD-R “./Appendix C - Program Codes/frame sequence/ ” folder.

C.6 keyboard control symbol processing program code

Available on thesis CD-R “./Appendix C - Program Codes/msvg v3 odroid sbc/ ” folder.

C.7 ROS Gazebo input control symbol processing and execution

program code

Available on thesis CD-R “./Appendix C - Program Codes/msvg v4 linux desktop/ ” folder.



Appendix D

Ethics Application

D.1 Risk Assessment



RECORD OF RISK ASSESSMENT

Title of the risk assessment An investigation into the use of novel human-computer interfaces in the control of a small unmanned 
multirotor aircraft

Date risk assessment carried out 11/22/2017

Describe the work being assessed To determine the effect of varying noise levels and varying visibility levels on a proposed mSVG UAV 
control interaction method. To compare the mSVG and RCJ interface training time, navigational control, 
and cognitive workload for a small nCA Tier I-III autonomy level UAV (aerial robot). NB: mSVG – 
multimodal Speech and Visual Gesture interface; RCJ – RC Joystick controller.

Describe the location at which the work is 
being carried out

Autonomous System Labs for Multirotor UAVs, Boldrewood B176 Labs.

Where appropriate list the individuals doing the 
work and the dates/times when the work will be 
carried out

I would be the only person conducting the study, and would be expecting participants to attend between 9 
am to 6 pm, Mondays to Fridays, from 01/12/2017 to 30/06/2018.

List any other generic or specific risk 
assessments or other documents that relate to 
this assessment-use hyperlinks if possible

Very short loud noise (80 dB - 90 dB) exposure. Lab experiment setup.

Name and post of risk assessor Ayodeji Abioye, PhD Researcher

List the names and posts of those assisting in 
compiling this risk assessment

N/A

Name, post and where required, signature of 
the responsible manager/supervisor approving 
the risk assessment

Dr Stephen Prior

Reference number and version number of risk 
assessment

Version 0.1

Page 1 of 4 HS/UOS/FR/038/02

D-2 Chapter D. Ethics Application



ref Task/Aspect of work Hazard Harm and how it could 
arise

Who could be 
affected? Existing measures to control risk

Short loud noise levels (80 dB - 
90 dB)

hearing damaged hearing damage over 
very long exposure

Both the 
experiment 
participant and 
experiment 
conductor

Such loud noises are limited to no more 
than 30 seconds, with a recovery time of at 
least 2 min. Total exposure under 5 min for 
the whole 3 hours experiment.

1 3 3 No

LED lighting systems Weariness Weariness my arise if 
participant is sensitive 
to LED lighting systems

Subject Default to the use of normal lighting 1 1 1 No

Multi-screen computer setup Eye damage Long exposure to 
simulator display screen 
with varying screen 
brightness and texture

Subject Sit a good distance from screen, adjust 
screen level and angles to suitable levels 
for participant, and recommend screen 
breaks every 40 min.

1 1 1 No

Use of electrical wires Possibility of 
electrocution

Electrocution could 
occur if participant 
comes in contact with 
exposed electrical wires 
or faulty connectors.

Both Subject and 
Conductor

Ensure no exposed wiring, and tidy Lab 
workspace, and walk path wiring.

1 1 1 No
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Risk 
Factors

An investigation into the use of novel human-computer interfaces in the control of a small unmanned multirotor aircraftTitle of risk assessment

Risk Acceptability

Risk to be reduced if readily possible4-6
Risk to be reduced if reasonably practicable7-14
Risk unacceptable15-25

Risk acceptable1-3
Risk Acceptability

Risk to be reduced if readily possible4-6
Risk to be reduced if reasonably practicable7-14
Risk unacceptable15-25

Risk acceptable1-3

2520151055certainty

Likelihood

Severity

543211improbable

1086422less likely

15129633possible

201612844likely

54321

very 
high

highmediumlowvery 
lowRisk Matrix

2520151055certainty

Likelihood

Severity

543211improbable

1086422less likely

15129633possible

201612844likely

54321

very 
high

highmediumlowvery 
lowRisk Matrix
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Wires attached to equipment Tripping over 
wires

Equipment wires in walk 
paths could cause a fall

Both Subject and 
Conductor

Remove all wires from walk path or neatly 
tape to ground and make participants 
aware of such potential trip wires

1 1 1 No

Other Lab components Tripping over 
other Lab 
equipments

Participant may trip over 
other lab equipments if 
they choose to walk 
around beyond the 
experiment designated 
area

Subject Advise participants to remain within 
experiment designated area. Also, clearly 
mark off "NO GO" areas.

1 1 1 No
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Have any of the specialist control measures listed below been identified as required during this risk assessment? - 
indicate yes or no - if yes then include details on the post assessment action list below.

yes/no

is any exposure monitoring required? no
Is any occupational health monitoring required? no
Are there any hazards or other factors that could affect pregnant or nursing mothers? no

Is any specfic training required before people can carry out this work? no
Site local safety induction

Are any additional procedures or risk assessments required as a result of this asssessment? no

ref action by whom by when

Post Risk Assessment Actions

Post Assessment actions

Title of risk assessment
An investigation into the use of novel human-computer interfaces in the control of a small unmanned multirotor aircraft
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ERGO application form – Ethics form 
 
All mandatory fields are marked (M*). Applications without mandatory fields 
completed are likely to be rejected by reviewers. Other fields are marked “if 
applicable”. Help text is provided, where appropriate, in italics after each 
question. 

1. APPLICANT DETAILS 

1.1 (M*) Applicant name: Ayodeji Opeyemi ABIOYE 

1.2 Supervisor (if applicable): Dr Stephen D. PRIOR 

Dr Glyn T. THOMAS 

Dr Sarvapali D. RAMCHURN 

Dr Peter SADDINGTON 

1.3 Other researchers/collaborators 
(if applicable): Name, address, email, 
telephone 

- 

 

2. STUDY DETAILS 

 
Abbreviations 
 
mSVG Multimodal Speech and Visual Gesture 
NASA-TLX NASA Task Load Index 
nCA Navigation Control Autonomy 
RC Radio Controlled 
RCJ RC Joystick 
ROS Robotic Operating System 
UAV Unmanned Aerial Vehicle 

 
 
2.1 (M*) Title of study: An investigation into the use of novel human-

computer interfaces in the control of a small 
unmanned multirotor aircraft 

2.2 (M*) Type of study (e.g. 
Undergraduate, Doctorate, 
Masters, Staff): 

Doctorate 

2.3 i) (M*) Proposed start date: 18/12/2017 
2.3 ii) (M*) Proposed end date: 31/07/2018 

 
 
2.4 (M*) What are the aims and objectives of this study? 
To determine the effect of varying noise levels and varying visibility levels on a 
proposed mSVG UAV control interaction method. To compare the mSVG and RCJ 
interface training time, navigational control, and cognitive workload for a small 
nCA Tier I-III autonomy level UAV (aerial robot).  
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2.5 (M*) Background to study (a brief rationale for conducting the study): 

The most popular HCI control interface for small multirotor UAVs, is the RC 
joystick controller (RCJ), which may be difficult to learn, require long training 
hours, and may demand too much of the operators cognitive effort to operate in 
task. After investigating many existing HCI alternatives, a multimodal speech and 
visual gesture (mSVG) control interface was proposed as a more intuitive and 
natural high-level control alternative for small multi-rotor UAVs. According to 
Green et al. (2007), “It is clear that people use speech, gesture, gaze and non-
verbal cues to communicate in the clearest possible fashion.” Therefore, this 
research attempts to adopt the human-human interaction method for human-
aerobotic interaction. 

 
 

2.6 (M*) Key research question (Specify hypothesis if applicable): 

Q1: Identify the visibility and noise level range of mSVG effectiveness and the peak 
mSVG performance conditions. 
H1: The mSVG training time should be significantly shorter than the RCJ training 
time (estimated to be less than one-tenth). 
H2: mSVG and RCJ may have a similar performance level for an nCA Tier I-III 
autonomy level task. However at higher autonomy levels mSVG may outperform 
RCJ, whereas at lower autonomy levels RCJ may outperform mSVG. That is nCA Tier 
I-III autonomy level may be the equilibrium point of these two interfaces. 

 
 
2.7 (M*) Study design (Give a brief outline of basic study design) 
Outline what approach is being used, why certain methods have been chosen. 
This study would be conducted on a computer-based UAV simulator, augmented 
with external hardware-in-the-loop components (single-board computers, cameras, 
microphones, speakers, and lighting systems), in order to interact with the 
physical world, and to provide the natural alternative method of mSVG interaction 
with the UAV operator participant. The study participants would be mostly sited in 
front of a three-screen UAV simulation computer workstation for no more than 
three hours (total experiment duration), during which the participant would be 
asked to perform two major experiments – Task A and Task B, each of which are 
about 80 minutes long. Task A measures the effect of varying noise levels and 
varying visibility levels on mSVG interaction method by varying ambient noise level 
across five intervals between 50 dB and 90 dB while fixing lighting levels through 
five intervals between 5500 Lux to 50 Lux. Task B compares the mSVG and RCJ 
interface training time, navigational control, and cognitive workload for a small 
nCA Tier I-III autonomy level UAV. In order to do this, Task B is divided into two 
sub categories B1 and B2, with B1 focused on collecting RCJ comparison data, and 
B2 on capturing mSVG data to be compared with RCJ. This is to be performed in 
the order B1B2 by one-half of the participants and B2B1 by the other half of the 
participants in order to counter-balance potential first exposure bias or fatigue 
effect when performing the second part of Task B. Experiment is designed to last 
no more than 3 hours with 5 min breaks every 40 min. Participants would not be 
exposed to any dangerous sound level (sounds above 90 dB), and loud noises (80 
dB – 90 dB) may only be used in short burst of 30 seconds or less, just enough to 
corrupt speech capture input, and exposure would not exceed a total of 5 min in 
the 3 hours experiment. Should a participant find the noise level inconvenient, 
noise cancelling headphones would be provided. Subject must have good hand 
dexterity and be between the ages of 18 to 69 years inclusive. Full consent must 
be given by each participant, and each participant has the right to withdraw at any 
time. Also, the experiment would be video and audio recorded, capturing visual 
gesture inputs, speech inputs, RC joystick inputs, instruments (sound meter and 
light meter) readings, and the corresponding tasks output as displayed on the 
workstation. These recordings would be used to document and confirm 
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observations, and also aid in the analysis and discussions of the results such as 
the sources of errors which could be human, environmental, or system. 

 

3. SAMPLE AND SETTING 

 
3.1 (M*) How are participants to be approached? Give details of what you will do 
if recruitment is insufficient. If participants will be accessed through a third party 
(e.g. children accessed via a school) state if you have permission to contact them 
and upload any letters of agreement to your submission in ERGO. 

Subjects must be volunteers and must willingly want to be part of the project. The 
participants would be recruited via word of mouth and via an announcement at a 
session of the MSc Unmanned Aircraft System Design “SESA6078 – UASD Group 
Design Project” course, with the permission of the module lead, Dr Stephen Prior 
(my supervisor) and in a second year undergraduate module session “FEEG2001 – 
System Design and Computing”, where I am a demonstrator. Ideally, half the 
participants should have UAV RCJ flying experience, and the other half, no prior 
UAV RCJ flying experience. But a ratio of 1:5 to 5:1 would also be acceptable. If the 
number of participants is insufficient, or an acceptable ratio of experienced to 
non-experienced UAV RCJ flying participants is not reached, a pilot study may then 
be conducted instead. 

 
 
3.2 (M*) Who are the proposed sample and where are they from (e.g. fellow 
students, club members)? List inclusion/exclusion criteria if applicable. NB The 
University does not condone the use of ‘blanket emails’ for contacting potential 
participants (i.e. fellow staff and/or students). 
 
It is usually advised to ensure groups of students/staff have given prior permission 
to be contacted in this way, or to use of a third party to pass on these requests. 
This is because there is a potential to take advantage of the access to ‘group 
emails’ and the relationship with colleagues and subordinates; we therefore 
generally do not support this method of approach.  
 
If this is the only way to access a chosen cohort, a reasonable compromise is to 
obtain explicit approval from the Faculty Ethics Committee (FEC) and also from a 
senior member of the Faculty in case of complaint. 
Participants may or may not be student and staff members of the University, but 
must be between the ages of 18 to 69 years inclusive. Participants may or may not 
have prior UAV RCJ flying experience, but a good distribution of both may be 
required. 
Exclusion criteria:  
1) Inability to fly a UAV via a handheld RC joystick controller, probably due to hand 
dexterity problems, fidgety hands, hand disabilities, etc.  
2) Sensitivity to short exposure (< 30 s) to loud noise levels (80 dB – 90 dB)  
3) Sensitivity to LED based lighting systems 

 
 
3.3 (M*) Describe the relationship between researcher and sample (Describe 
any relationship e.g. teacher, friend, boss, clinician, etc.) 
Participants must be volunteers, however participants may be friends, colleagues, 
or students of the researcher. UAV researchers/developers can also participant in 
the study as their prior knowledge, experience, or bias would not affect the results 

 
 
3.4 (M*) Describe how you will ensure that fully informed consent is being 
given: (include how long participants have to decide whether to take part) 
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Signed written consent will be obtained from any participant who wishes to part 
take in the study. Upon showing interest, a participant information sheet would be 
sent to the participant and the participant would have at least 48 hours to decide 
whether they would like to part take or not, and have the right to withdraw from 
the project at any time without the need for any justification, even during the 
experiments. 

 
 

4. RESEARCH PROCEDURES, INTERVENTIONS AND 
MEASUREMENTS 

 

4.1 (M*) Give a brief account of the procedure as experienced by the 
participant  
(Make clear who does what, how many times and in what order. Make clear the 
role of all assistants and collaborators. Make clear total demands made on 
participants, including time and travel). Upload any copies of questionnaires 
and interview schedules to your submission in ERGO. 

First the participants will be provided with a printed copy of the participant 
information sheet. If the participants is satisfied and wishes to continue with the 
tests, then a consent form would be provided the participant must give written 
consent before the test can begin. 
 
The participant starts with a control experiment (A.1) as setup by the experiment 
conductor, to test that the participant can interact with the UAV simulator via 
speech, gestures and a combination of both under optimum conditions (quiet 
environment and good lighting). Sitting in front of the UAV simulator:  
A.1) The participant requests nearest shelter/crevice location using speech only, 
then using visual gesture only, and finally using a combination of both speech and 
visual gesture. The participant writes down the UAV response in each case in a 
participant logbook, which is then checked by the conductor. This should last no 
longer than 20 min 
A.2) Then the first test experiment to observe the effect of ambient noise levels on 
speech interaction is conducted. The participant requests nearest shelter/crevice 
location using speech only at 50 dB ambient noise level, This is then repeated for 
60 dB, 70 dB, 80 dB, and 90 dB ambient noise levels. In each case, the participant 
writes down the UAV response in the participant logbook, which is then checked 
by the conductor. This should last no longer than 15 min. 
A.3) Then the second test experiment to observe the effect of ambient lighting 
levels on visual gesture interaction is conducted. The participant requests nearest 
shelter/crevice location using visual gestures only at 5500 Lux ambient visibility 
level, This is then repeated for 3500 Lux, 1500 Lux, 500 Lux, and 50 Lux ambient 
lighting levels. In each case, the participant writes down the UAV response in the 
participant logbook, which is then checked by the conductor. This should also last 
no longer than 15 min. 
A.4) Then the third test experiment to observe the effect of simultaneously varying 
ambient noise levels and ambient lighting levels on multimodal speech and visual 
gesture interaction is conducted. Again, the participant requests the nearest 
shelter/crevice location using any or both of speech and visual gestures at 5500 
Lux ambient lighting level and at 50 dB ambient noise level. This is then repeated 
for 60 dB, 70 dB, 80 dB, and 90 dB ambient noise levels at 5500 Lux ambient 
lighting level. The lighting level is then changed to 3500 Lux, and then to 1500 
Lux, and then to 500 Lux, and finally to 50 Lux, in each case varying the ambient 
noise levels from 50dB to 90 dB as previously done. For each iteration, the 
participant writes down the UAV response in the participant logbook, which is then 
checked by the conductor. This should last no longer than 30 min. 
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The participant then continues onto the second part of the study which is aimed at 
comparing the mSVG and RCJ interfaces in terms of training time, nCA Tier I-III 
navigation control, and cognitive workload metrics. 
B.1.1) Here, the participant confirms their previous flying experience and then 
perform the RealFlight Drone Simulator level challenges using an RCJ, with the aim 
of measuring participant’s skill levels, if they have previous flying experience, or 
quick training the participant if not. The participant starts from Level 1, noting 
down their score, time, and number of trials performed in order to pass this level 
on the participant logbook. This is repeated for Level 2, Level 3, Level 4, etc. until 
either the participants gets stuck at a Level or finishes Level 10. In each case, 
recording the score, time, and number of trials, which is then checked by the 
conductor. This should last no longer than 20 min. 
B.1.2) The participant then performs a ROS Gazebo based UAV Simulator flight test 
using the RCJ control interface for navigation control. The flight test path begins at 
the start position, with the UAV navigating along straight lines, making right angle 
or acute angles turns, and going through hanging rings, to finish at the goal 
position. The flight test is to be repeated two more times to determine 
average/best performance, in each case recording the finishing time, the path 
accuracy score, the turning score, and the ring hoops score in the participant 
logbook, which is then checked by the conductor. The participant then completes 
the NASA-TLX survey to estimate cognitive workload for the RCJ-based navigation. 
This should last no longer than 20 min. 
 
B.2.1) The participant is then introduced to the mSVG Tier I-III UAV navigation 
control syntax, which the participant then learns by using them to control a UAV in 
a ROS Gazebo Simulator open world environment. This should last no longer than 
20 min. 
B.1.2) The participant then performs the ROS Gazebo based UAV Simulator flight 
test, same as the one in B.1.2,  using the mSVG control interface for navigation 
control. The flight test path begins at the start position, with the UAV navigating 
along straight lines, making right angle or acute angles turns, and going through 
hanging rings, to finish at the goal position. The flight test is to be repeated two 
more times to determine average/best performance, in each case recording the 
finishing time, the path accuracy score, the turning score, and the ring hoops 
score in the participant logbook, which is then checked by the conductor. The 
participant then completes the NASA-TLX survey to estimate cognitive workload for 
the mSVG-based navigation. This should last no longer than 20 min. 
 
In total, the study should last no longer than 3 hours, i.e. ~2 hrs 40 mins 
experiment with 20 mins break distributed across the experiment. 

 
 

5. STUDY MANAGEMENT 

 
5.1 (M*) State any potential for psychological or physical discomfort and/or 
distress? 
Some participants may potentially find the noise levels between 80 dB – 90 dB 
uncomfortable, even though such exposure does not exceed normal everyday 
experience. If so, the participants may be issued with noise cancelling headphones 
to dampen the noise or the noise level generator may be limited to 80 dB for such 
participants. 

 
 
5.2 (M*) Explain how you intend to alleviate any psychological or physical 
discomfort and/or distress that may arise? (if applicable) 
Participants sensitive to loud noise levels between 80 dB – 90 dB would be issued 
noise cancelling headphones to dampen the noise, also the noise level generator 
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may be limited to 80 dB for such participants. In addition to these, testing can be 
stopped for such participants at any time upon alerting the researcher, and if 
preferred by the participant, experiment Task A, involving such noise levels, can 
be skipped completely. 

 
 
5.3 Explain how you will care for any participants in ‘special groups’ (i.e. those 
in a dependent relationship, vulnerable or lacking in mental capacity) (if 
applicable)? 

N/A 
 
 
5.4 Please give details of any payments or incentives being used to recruit 
participants (if applicable)? 
£20 Amazon vouchers, sourced from the research fund. 

 
 

5.5 i) How will participant anonymity and/or data anonymity be maintained (if 
applicable)? 
Two definitions of anonymity exist: 
i) Unlinked anonymity - Complete anonymity can only be promised if 
questionnaires or other requests for information are not targeted to, or received 
from, individuals using their name or address or any other identifiable 
characteristics. For example if questionnaires are sent out with no possible 
identifiers when returned, or if they are picked up by respondents in a public 
place, then anonymity can be claimed. Research methods using interviews cannot 
usually claim anonymity – unless using telephone interviews when participants dial 
in. 
ii) Linked anonymity - Using this method, complete anonymity cannot be promised 
because participants can be identified; their data may be coded so that 
participants are not identified by researchers, but the information provided to 
participants should indicate that they could be linked to their data. 
Linked anonymity. Participants data would be coded by assigning a unique 
identification number, archived as a zip file, which is then password protected, 
and then stored on a University password protected computer, backed up on a 
BitLocker encrypted external hard drive. These would be the only place whereby 
the participant’s personal data and identification number can be linked and 
identified. Only the researcher can access the password protected file on the 
password protected computer and BitLocker encrypted hard drive, and therefore 
only the researcher can identify participants by their personal data and 
identification numbers. 

 
 
5.5 ii) How will participant confidentiality be maintained (if applicable)? 
Confidentiality is defined as the non-disclosure of research information except to 
another authorised person. Confidential information can be shared with those who 
are already party to it, and may also be disclosed where the person providing the 
information provides explicit consent. 

Participant’s confidentiality will be maintained through the use of participant 
identification number and all confidential information will be stored on a 
University password protected computer, backed up on a BitLocker encrypted hard 
drive. Only the researcher named above have access to the password protected 
computer and encrypted backup hard drive. 

 
 
5.6 (M*) How will personal data and study results be stored securely during 
and after the study? Researchers should be aware of, and compliant with, the 
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Data Protection policy of the University. You must be able to demonstrate this in 
respect of handling, storage and retention of data. 
All data collected from every participants during and after the study will be stored 
and secured on a password protected University computer and backed-up on an 
external hard drive encrypted with BitLocker using a strong password mixing 
uppercase, lowercase, numbers, and symbols. This will be completed and kept in 
compliance with the Data Protection Policy of the University. In accordance with 
the University of Southampton Research Data management Policy, all significant 
research data should be held for a minimum of ten years. 

 
 
5.7 (M*) Who will have access to these data? 
The researcher and primary supervisors only. 

 
 
N.B. – Before you upload this document to your ERGO submission remember to: 
 
1. Complete ALL mandatory sections in this form 
 
2. Upload any letters of agreement referred to in question 3.1 to your ERGO 
submission 
 
3. Upload any interview schedules and copies of questionnaires referred to in 
question 4.1 
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Participant Information Sheet 

 
 
Study Title: An investigation into the use of novel human-computer interfaces in the control of a 
small unmanned multirotor aircraft 
 
Researcher: Ayodeji Abioye 
ERGO number: 30377       
 
Please read this information carefully before deciding to take part in this research.  It is up to 
you to decide whether or not to take part. If you are happy to participate you will be asked to 
sign a consent form. 
 
Abbreviations 
 
mSVG Multimodal Speech and Visual Gesture 
NASA-TLX NASA Task Load Index 
nCA Navigation Control Autonomy 
RC Radio Controlled 
RCJ RC Joystick 
ROS Robotic Operating System 
UAV Unmanned Aerial Vehicle 

 
 
What is the research about? 
Could a human interact with an aerial robot via speech and gestures, as one would with another 
human? This research aims to investigate such alternative human-computer control interfaces that 
could be used to control small multirotor UAVs (aerial robots).This study is part of a PhD research, 
which is investigating novel control interfaces for small unmanned multirotor aircraft, conducted at 
the University of Southampton, and partly supported by the PTDF Fund (Nigeria).  
 
This particular study is aimed at determining the effect of varying noise levels and varying visibility 
levels on a proposed mSVG UAV control interaction method. And to compare the mSVG and RCJ 
interface training time, navigational control, and cognitive workload for a small nCA Tier I-III 
autonomy level UAV (aerial robot). NB: mSVG – multimodal Speech and Visual Gesture interface; RCJ 
– RC Joystick controller. 
 
Why have I been asked to participate? 
You have been asked to participate in order to observe your experience using a proposed 
multimodal speech and visual gesture control method and to compare this with the popular RC 
joystick controller used to fly and control small multirotor UAVs (unmanned aerial vehicles). 
 
What will happen to me if I take part? 
This study would be conducted on a computer-based UAV simulator, augmented with external 
hardware-in-the-loop components (single-board computers, cameras, microphones, speakers, and 
lighting systems), in order to interact with the physical world, and to provide the natural alternative 
method of mSVG interaction with the UAV operator participant. You would be mostly sited in front 
of a three-screen UAV simulation computer workstation for no more than three hours (total 
experiment duration), during which the you would be asked to perform two major experiments – 
Task A and Task B, each of which are about 80 minutes long. Task A measures the effect of varying 
noise levels and varying visibility levels on mSVG interaction method by varying ambient noise level 
across five intervals between 50 dB and 90 dB while fixing lighting levels through five intervals 
between 5500 Lux to 50 Lux. Task B compares the mSVG and RCJ interface training time, 
navigational control, and cognitive workload for a small nCA Tier I-III autonomy level UAV. In order 
to do this, Task B is divided into two sub categories B1 and B2, with B1 focussed on collecting RCJ 
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comparison data, and B2 on capturing mSVG data to be compared with RCJ. Experiment is designed 
to last no more than 3 hours with 5 min breaks every 40 min. 
 
Please note that audio and video information are captured and recorded by the microphone and 
cameras, which are being used by the researcher to analyse experiment results. 
 
Also, your total time commitment should be no longer than 3 hours, limited to just a single visit, 
NO follow up visit, and you should NOT be contacted again.  
 
Are there any benefits in my taking part? 
Yes, you would have an opportunity to try out an alternative HHI-like UAV control interface, and get 
an opportunity to test your RCJ flying skill level. Data obtained from your participation could inform 
the design of future UAV control interfaces. In addition to these, a £20 Amazon voucher is given at 
the end of the experiment to compensate for time and travel. 
 
Are there any risks involved? 
There is a risk of slight discomfort that may be caused by a short exposure to loud noise levels (80 
dB – 90 dB). Such loud noises are limited to no more than 30 seconds, with a recovery time of at 
least 2 min. Total exposure is under 5 min for the whole 3 hours experiment. 
 
Two LED lighting systems are used to vary ambient visibility level, for visual gesture capture, some 
persons may be sensitive to this and may get weary, if so, alert researcher and normal lighting 
would be restored. 
 
The use of multi-screen computer may be uncomfortable for some persons. Some measures put in 
place to reduce any discomfort includes good sitting arrangement, good distance from screen, 
adjustable screen level and angles, and recommend screen breaks every 40 min. 
 
Use of electrical wires could result in the possibility of electrocution. To avoid this, the researcher 
would make sure there are no exposed wires around experiment areas. 
 
There is a risk of tripping over equipment wiring. To avoid this, the researcher would remove all 
unnecessary wiring, and tape wires neatly to the ground, walls, or appropriate supporting frames. 
 
There is a risk of tripping over other lab equipment. You are therefore advised to remain within 
designated experiment area and avoid clearly marked “no go” areas of the lab. 
 
Will my participation be confidential? 
Yes, all data collected will be kept confidential in compliance with the Data Protection Act and 
University of Southampton data protection policy. To keep data confidential, all written data would 
be stored in a locked cabinet, and all electronic data will be stored on password protected 
computers and backed up on a BitLocker encrypted hard drive, that only the researcher have access 
to. Video and audio data will be stored on a password protected University computer, and backed 
up on a BitLocker encrypted external hard drive. Your data would be anonymised by assigning a 
unique ID number to your data. No one, other than the researcher and primary supervisors, will be 
able to link your name with the unique ID number. Data that would be published in journal articles, 
conferences, or meetings will not report any names or unique ID numbers to maintain the 
anonymity of the data. All data will be kept for 10 years. 
 
What should I do if I want to take part? 
You can complete the participant signup form on https://www.hai-research.com/participate or 
contact the researcher directly via email at aoa2g15@soton.ac.uk  
 
What happens if I change my mind? 
Participation in the study is entirely voluntary and you may withdraw at any point during the study 
without giving a reason for doing so and without affecting your rights. Upon withdrawal, you also 
reserve the right to request that data collected up to the point of withdrawal may or may not be 
used or should be destroyed immediately. 
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What will happen to the results of the research? 
The results of the research would be written up as part of the researchers PhD thesis, published in 
relevant academic journals, and presented in relevant conferences. The anonymised data may be 
made available for future research projects. All publications and anonymised data relating to the 
research would be made available through the university research repository. Research results and 
collected anonymised data would be stored for 10 years. 
 
What happens if something goes wrong? 
In the unlikely event that you wish to make a complaint or express a concern, you should contact 
the University’s Research Integrity and Governance Management on 023 8059 5058 or via email at 
rgoinfo@soton.ac.uk  
 
Where can I get more information? 
If you require any further information or have any question regarding taking part in this study, 
please contact the researcher, 
 
Ayodeji Abioye 
PhD Student | Computational Engineering and Design Group 
Aeronautics, Astronautics and Computational Engineering 
Faculty of Engineering and the Environment 
Building 176/5001 (104), Boldrewood Campus 
University of Southampton | Southampton SO16 7QF 
United Kingdom. 
 
Email: aoa2g15@soton.ac.uk  
 
Website: https://www.hai-research.com/ 
 
 
Thank you for considering participating in this study and for taking the time to read through 
this participant information sheet. 
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D.4 Participant Consent Form



 

[10-Jan-2018] [Version 0.3]  [Ethics/IRAS reference: 30377] 

 

CONSENT FORM  
 
 
Study title: An investigation into the use of novel human-computer interfaces in the control of a 
small unmanned multirotor aircraft 
 
Researcher name: Ayodeji Abioye 
ERGO number: 30377 
 
Please initial the box(es) if you agree with the statement(s):  
 
 
I have read and understood the information sheet (10-Jan-2018 / Version 0.3 of 
participant information sheet) and have had the opportunity to ask questions about 
the study. 
 

 

 
I agree to take part in this research project and agree for my data to be used for the 
purpose of this study. 
 

 

 
I understand my participation is voluntary and I may withdraw at any time for any 
reason without my rights being affected. 
 

 

 
I understand that my experiment will be audio and video recorded. 
 

 

 
I understand that the information collected about me may be anonymised and used 
in future ethically approved research studies. 
 

 

 
I agree to be contacted regarding future unspecified ethically approved research 
projects. I therefore consent to the University retaining my personal details, kept 
separately from the research data detailed above. I understand that I can request my 
details be deleted at any time. 
 

 

 
I understand that information collected about me during my participation in this 
study will be stored on a password protected computer and that this information will 
only be used for the purpose of ethically approved research studies.  
 

 

 
 
Name of participant (print name)…………………………………………………………………………… 
 
Signature of participant………………………………………………………………………………………. 
 

Date……………………………………………………………………………………….. …………………. 
 
 
Name of researcher (print name)…………………………………………………………………………… 
 
Signature of researcher ………………………………………………………………………………………. 
 
Date……………………………………………………………………………………………………………….. 

Participant Consent Form D-19



D-20 Chapter D. Ethics Application

D.5 Participant Logbook



 

Participant Name:      

Date:        

Participant No.:      

 

7.8.1 hai-research experiment handbook 

 

7.8.1.1 Preliminary setup (few hours before) 

 

a. Print and post “Experiment in Progress” sign onto lab entrance glass door 

b. Clean lab if needed – sweep, clear tables, remove food, clear bags 

c. Setup camera – tested and ready to record 

d. Start Linux desktop computer, queuing the RotorS ROS Gazebo Simulator 

e. Start Speech and Gesture capture programs on Odroid XU4 SBC 

f. Setup flight test on Laptop queuing Real Flight Drone Simulator 

7.8.1.2 Experiment (to be completed within 3 hours) 

a. Participant briefing: 

i. What to expect during the experiments – quickly talk through the 

activities to be conducted in Task A and Task B sections of the experiments 

(reference – participant info sheet) 

ii. Go through the consent form together 

iii. Signing of consent if happy 

iv. Start camera recording 

b. Begin TASK A.1 – checking that participant’s speech and gesture can be 
appropriately captured using the following commands 

 

Preliminary measurements: 

 

 Participant to microphone: _________________________ cm 

 

 Microphone to speaker: _____________________________ cm 

 

 Participant to camera: _______________________________ cm 

 

 Ambient noise level: _________________________________ dB 

 

 Participant voice level: ______________________________ dB 

 

 Ambient Lighting level: _____________________________ Lux 
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Control Mode S/No. Commands Success/Failure Comment (no. of trials...) 

Speech 

1 Go Forward   

2 Go Backward   

3 Step Left   

4 Step Right   

5 Hover   

6 Land   

7 Go Forward Half Metre   

8 Go Backward One Metre   

9 Hover One Metre   

10 Step Left Half Metre   

11 Step Right One Metre   

12 Stop   

     

Gesture 

1 Forward   

2 Backward   

3 Right   

4 Left   

5 Stop   

     

 

c. Begin TASK A.2 – Vary noise level 

i. Start noise program and vary from 50 dB to 90 dB and record in table 

below. Circle successes and strike out failures at louder noise levels 

 

Control Mode S/No. Commands Success/Failure Comment (no. of trials...) 

55 dB 

1 Go Forward   

2 Go Backward   

3 Step Left   

4 Step Right   

5 Hover   

6 Land   

7 Go Forward Half Metre   

8 Go Backward One Metre   

9 Hover One Metre   

10 Step Left Half Metre   

11 Step Right One Metre   

12 Stop   

60 dB 

1 Go Forward   

2 Go Backward   

3 Step Left   

4 Step Right   

5 Hover   

6 Land   

7 Go Forward Half Metre   

8 Go Backward One Metre   

9 Hover One Metre   

10 Step Left Half Metre   

11 Step Right One Metre   

12 Stop   
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65 dB 

1 Go Forward   

2 Go Backward   

3 Step Left   

4 Step Right   

5 Hover   

6 Land   

7 Go Forward Half Metre   

8 Go Backward One Metre   

9 Hover One Metre   

10 Step Left Half Metre   

11 Step Right One Metre   

12 Stop   

70 dB 

1 Go Forward   

2 Go Backward   

3 Step Left   

4 Step Right   

5 Hover   

6 Land   

7 Go Forward Half Metre   

8 Go Backward One Metre   

9 Hover One Metre   

10 Step Left Half Metre   

11 Step Right One Metre   

12 Stop   

75 dB 

1 Go Forward   

2 Go Backward   

3 Step Left   

4 Step Right   

5 Hover   

6 Land   

7 Go Forward Half Metre   

8 Go Backward One Metre   

9 Hover One Metre   

10 Step Left Half Metre   

11 Step Right One Metre   

12 Stop   

80 dB 

1 Go Forward   

2 Go Backward   

3 Step Left   

4 Step Right   

5 Hover   

6 Land   

7 Go Forward Half Metre   

8 Go Backward One Metre   

9 Hover One Metre   

10 Step Left Half Metre   

11 Step Right One Metre   

12 Stop   

85 dB 

1 Go Forward   

2 Go Backward   

3 Step Left   

4 Step Right   
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5 Hover 

6 Land 

7 Go Forward Half Metre 

8 Go Backward One Metre 

9 Hover One Metre 

10 Step Left Half Metre 

11 Step Right One Metre 

12 Stop 

d. Begin Task A.3 – vary visibility

i. Vary room visibility with Start noise program and vary from 50 dB to 90

dB and record in table below. Circle successes at louder noise levels

Light Temperature Light Intensity Fingers Commands Success/Failure Comments 

White 

Minimum Room 

Lux 

___________ 

1 Forward 

2 Backward 

3 Right 

4 Left 

5 Stop 

_______ Lux 

1 Forward 

2 Backward 

3 Right 

4 Left 

5 Stop 

_______ Lux 

1 Forward 

2 Backward 

3 Right 

4 Left 

5 Stop 

_______ Lux 

1 Forward 

2 Backward 

3 Right 

4 Left 

5 Stop 
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Light Temperature Light Intensity Fingers Commands Success/Failure Comments 

Yellow 

_______ Lux 

1 Forward   

2 Backward   

3 Right   

4 Left   

5 Stop   

     

_______ Lux 

1 Forward   

2 Backward   

3 Right   

4 Left   

5 Stop   

     

_______ Lux 

1 Forward   

2 Backward   

3 Right   

4 Left   

5 Stop   

     

_______ Lux 

1 Forward   

2 Backward   

3 Right   

4 Left   

5 Stop   

     

 

 

Light Temperature Light Intensity Fingers Commands Success/Failure Comments 

Both  

(White + Yellow) 

_______ Lux 

1 Forward   

2 Backward   

3 Right   

4 Left   

5 Stop   

     

_______ Lux 

1 Forward   

2 Backward   

3 Right   

4 Left   

5 Stop   
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e. Begin Task B1.1 – flight test 

 

Table 7-3: Participant       with    hrs /       years’ flight 
experience RealFlight drone simulator flight test results. Flying since (month/year)   

 

Date Level Score Time (s) No. of 

trials 

Outcome Time to 

beat (s) 

 1      

 2      

 3      

 4      

 5      

 6      

 7      

 8      

 9      

 10      

 

 

f. Begin Task B1.2 – RC Joystick flight path_v02 control test task 

i. Queue UAV in starting area and start vokoscreen capture 

ii. Queue participant to start navigation and Start Stopwatch 

iii. Record Task B1.2 completion time 

 

 Completion Time:    Minutes    Seconds 

 

Completion Time (in seconds only):     Seconds 

 

iv. Stop vokoscreen capture 

v. Participant completes the NASA TLX cognitive workload survey 

questionnaire for Task B1.2 

 

 

 

 

g. Begin Task B1.3 – RC Joystick flight path_v02 control test task with hover thrust 

control (similar to mSVG) 

i. Queue UAV in starting area and start vokoscreen capture 

ii. Queue participant to start navigation and Start Stopwatch 

iii. Record Task B1.3 completion time 
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 Completion Time:    Minutes    Seconds 

 

Completion Time (in seconds only):     Seconds 

 

iv. Stop vokoscreen capture 

v. Participant completes the NASA TLX cognitive workload survey 

questionnaire for Task B1.3 

 

 

 

 

 

 

 

 

h. Begin Task B2.1 – familiarization with speech and gesture commands 
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Figure 7-26 : mSVG navigation control command syntax 
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i. Begin Task B2.2 – mSVG flight path_v02 control test task 

i. Queue UAV in starting area and start vokoscreen capture 

ii. Queue participant to start navigation and Start Stopwatch 

iii. Note when and where speech only, gesture only, or both commands were 

issued simultaneously, and perhaps why. 

 

 

Figure 7-27: Flight Path_v02 design 

 

 

S/No. Navigation Stage Speech 

only 

Gesture 

only 

Speech + 

Gesture 

Time to 

marker pts (s) 

Comments 

1 Start - hovering      

2 Start-A (1/4)      

3 Start-A (2/4)      

4 Start-A (3/4)      

5 Start-A (4/4)      

6 A - Orient/step      

7 A-B (1/4)      

8 A-B (2/4)      

9 A-B (3/4)      

10 A-B (4/4)      

11 B - Orient/step/none      

12 B-C (1/6)      

13 B-C (2/6)      

14 B-C (3/6) Window ascent/descent      

15 B-C (4/6) Window go through      

16 B-C (5/6)      

17 B-C (6/6)      

18 C - Orient      

19 C-Goal (1/6)      

20 C-Goal (2/6)      

21 C-Goal (3/6) Window ascent/descent      

22 C-Goal (4/6) Window go through      

23 C-Goal (5/6)      

24 C-Goal (6/6) - landing      
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iv. Record Task B2.2 completion time 

 

 Completion Time:    Minutes    Seconds 

 

Completion Time (in seconds only):     Seconds 

 

Room visibility (lux):    Room Noise Level (dB):   Room Temperature (oC):   

 

 

v. Stop vokoscreen capture 

vi. Participant completes the NASA TLX cognitive workload survey 

questionnaire for Task B2.2 

 

 

 

 

 

 

 

 

7.8.1.3 Post-experiment (data verification, storage, set down, clear up, analysis) 

 

a. Stop camera recording 

b. Amazon voucher 
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D.6 NASA TLX Survey Questionnaire



Name   Task    Date

   Mental Demand How mentally demanding was the task?

   Physical Demand How physically demanding was the task?

   Temporal Demand How hurried or rushed was the pace of the task?

   Performance How successful were you in accomplishing what

you were asked to do?

   Effort How hard did you have to work to  accomplish

your level of performance?

   Frustration How insecure, discouraged, irritated, stressed,

and annoyed wereyou?

Figure 8.6

NASA Task Load Index

Hart and Staveland’s NASA Task Load Index (TLX) method assesses
work load on five 7-point scales. Increments of high, medium and low
estimates for each point result in 21 gradations on the scales.

Very Low Very High

Very Low Very High

Very Low Very High

Very Low Very High

Perfect     Failure

Very Low Very High
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