
Theoretical model of an electrically tunable 
liquid-crystal-based contact lens
O. SOVA1, T.J. SLUCKIN2, S. KAUR3, H.F. GLEESON3, AND V.
RESHETNYAK1,3,*

1Physics Faculty, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64/13, Kyiv 
01601, Ukraine
2School of Mathematics, University of Southampton, SO17 1BJ, UK3
3School of Physics and Astronomy, University of Leeds, LS2 9JT, UK
*victor.reshetnyak@gmail.com

Abstract: Milton et al. (2014) have constructed a model electronic liquid crystal contact 
lenses for the correction of presbyopia. This paper constructs a theoretical model for this lens. 
Good agreement between theory and experimental data is achieved, although the indications 
are that the precise parameters of the lens differ slightly for those prescribed by the designers 
of the lens. We discuss the temperature dependence of the optical power, the sensitivity of the 
device to manufacturing process and the properties of such lenses containing a number of 
different known liquid crystals. The model can be used for engineering optimization of the 
existing prototype.

1. Introduction
Presbyopia is an age-related disease which affects vision acuity. In the light of rapidly ageing 
populations, there is an increasing need for efficient and cheap treatments of this condition. 
Current treatments include presbyopia surgery, GRIN (graded index) lenses or multiple sets 
of correction glasses. The alternative approach of contact lenses has numerous advantages, 
enabling the wearer to maintain an active lifestyle which may be less inhibited than if wearing 
spectacles. However, contact lenses are less suitable in contexts where efficient vision 
requires rapid changes between optical powers.

Milton et al. [1-4] have suggested that tunable LC contact lenses may be a solution to this 
problem. This device should enable a person to perform near-vision tasks (e.g. reading, 
working on computer, etc.) with lenses switched on, while far-vision tasks (e.g. driving) are 
carried out using lenses in the safe unpowered mode.

In a more general context, a number of different tunable LC lens designs have been 
suggested over the last decade. All use spatially shaped electric fields to control director 
reorientation and thus the effective refractive index of the system. By changing the applied 
voltage, it is then possible to change the optical power of the lens. For example, non-planar 
electrodes [5] or optically hidden dielectric layers [6] can be used to induce a parabolic 
refractive index distribution, so that planar LC layers act as an ordinary GRIN lens. The 
common problem of these designs is that they require relatively high operation voltages. This 
does not inhibit, for example, smartphone or web camera applications. But the close 
proximity to the human eye required by contact lenses, and the sensitivity of the eye to 
electric fields, renders these designs unsuitable for contact lens use. Several reviews of the 
field have recently been published [7, 8].

This paper presents a theoretical model of the LC contact lens discussed by Milton et al. 
[1], which operates at a low working voltage (the threshold is ~0.7Vrms). We have considered 
the case of a cylindrical two-dimensional lens with strong surface anchoring. A full three 
dimensional model would be more realistic, but it is a rather challenging task that requires 
considerably deeper theoretical analysis.

Preprint version: publication data: 
Optics Materials Express 13, 1640-1654 (2023). https://doi.org/10.1364/ME.491405 S

mailto:victor.reshetnyak@gmail.com


We have compared the predictions of our model to experimental results. The model is 
rather successful. It thus can be fruitfully extended to make predictions about the properties of 
different kinds of lenses. Specifically, we discuss the properties of a lens in which the active 
material is a high birefringence LC replacing the 5CB LC (pentyl-cyanobiphenyl) used 
experimentally. We have also investigated the dependence of the optical power of the lens on 
temperature and geometry. Consequently our model can be used for engineering optimization 
of the existing prototype.

The plan of the paper is as follows. In section 2 we remind the reader of the details the 
lens design introduced by Milton et al. [1]. In section 3, we present the details of the model. 
In section 4, we present the results of our calculations. In section 5, we discuss our results and 
present some brief conclusions.

2. Device description
The electrically tunable liquid crystal (LC) contact lens (CL) under consideration has been 
discussed by Milton et al. [1]. In order to make this paper self-contained, we reproduce the 
basic features here. A plan is shown in Fig. 1. The lens consists of two mated plastic (PMMA, 
nPMMA=1.49 [9]) lenses.  Between them is a cavity, which is filled with a LC (5CB). In order 
to simplify the numerical calculations, we work with a two-dimensional cylindrical lens, 
rather than a three dimensional spherical lens. This approach was used in related previous 
work [10] and proved to be reliable for modelling liquid crystal lenses.

Fig. 1. Schematic representation of the LC lens. R1-R4 are the radii of curvature of the lenses. 
C1 and C2 are the liquid crystal layer boundaries. The lens dimensions are appropriate for an 
average-sized eye. Electrodes are placed directly onto the boundaries C1, C2; this reduces the 
control voltage required for on-off switching. The LC layer is sandwiched between lenses 
made from poly(methyl acrylate) (PMMA), which is a common material used in the contact 
lens industry.

The tunability of the lens lies in the liquid crystal director reorientation, which takes place 
in xOz plane, as shown in Fig. 2. We suppose strong planar anchoring at both plastic surfaces 
of the LC lens coated with orientation layers, with the director in the xOz plane.

Fig. 2. Director reorientation.

3. Theory
3.1 Optics

When an external voltage is applied, the director in the LC cell reorients in the limit that it 
completely aligns with the electric field (true, strictly speaking, only in the high field limit 
and with straight cell geometry). The refractive index changes from values close to ne, when 
the lens is unpowered, to values close to no. We suppose the incident light to be polarized in 
the reorientation plane. A more detailed analysis, provided below, also includes the curved 
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shape of the lens, and the elasticity of the liquid crystal. The power of the lens is a function of 
the difference between the optical path lengths at different points of the lens. Thus changing 
the refractive index enables the optical power of the device to be tuned [1, 6, 10]. The total 
optical power (OP) in the device consists of contributions from the upper and lower plastic 
lenses, as well as from the tunable LC lens, and can be described as follows:

.PMMA top PMMA bottom LCOP OP OP OP   (1)

The optical powers of the upper and lower plastic lenses can be calculated using the thin lens 
approximation [11]:
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The optical power of the LC lens can be calculated using the following formula [12, 13].
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where (φ(0)+∆(0)) is the optical phase retardation in LC (see eq.(4) below) and air (where ∆ 
is defined similarly to φ in eq. (4), but for the case of neff =nair) respectively, that would occur 
in the middle of the optical zone, while (φ(R0)+∆(R0)) is the analogous quantity at the edge of 
the optical zone. However, we note that the correction for the refractive index of air as 
compared to that of a vacuum is very small; we assume nair ≈ 1, and the radius of optical zone 
R0 =2 mm. The optical retardation φ is calculated using the standard formula [10, 14, 15]
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with the effective refractive index neff [16] defined by
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3.2 Free energy and director reorientation

To describe switching of the liquid crystal lens, we follow the procedure of Sova et al. [10] 
and Subota et al. [15]. The expression for the free energy of the liquid crystal in the lens is:

,elasti electriccF F F  (6)
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is the elastic free energy of the director field. The electrostatic contribution to the free energy 
is:
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where D is the electric displacement vector.



Minimizing the free energy functional gives rise to the following Euler-Lagrange 
equation:
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subject to strong anchoring boundary conditions
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and where θ1, θ2 are the pretilt angles prescribed by the curvatures C1 and C2 on the top and 
bottom surfaces of the liquid crystal layer (see Fig. 1).

The equation for the electric field potential is obtained from Maxwell’s electrostatics 
equations

div
curl 0.
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Assuming that there are no free charges in the LC, eq.(11) can be rewritten as

0( ) 0,U   (12)

where 0 0ˆ i  


  , where ̂  is the permittivity tensor, ω is the electric field frequency, σ is 

the electric conductivity of the liquid crystal and U=Ure+iUim is the electric potential (where 
Ure and Uim are respectively the real and imaginary parts).
The permittivity tensor ̂  is given by:
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Eq. (12) can then be recast as the following set of equations
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Combining eqs. (9) and (14) yields a coupled system of partial differential equations:
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This system of equations has been solved numerically, using the COMSOL-Matlab 
environment [17, 18], with the following boundary conditions:
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3.3 Modelling details

Here we note two points, one concerned with the lens parameters, and one concerned with the 
nematic configuration. With regard to the lens parameters, systematic differences between the 
observed and calculated optical powers suggest that the experimentally defined lens 
parameters are only approximate. In order to optimize the comparison between theory and 
experiment, some fitting is necessary. When this fitting is carried out, good agreement 
between theory and experiment is achieved. Parameter details for the specific apparatus used 
in the experiments [1] are listed in Table 1.

The parameters used for fitting were R2 - R4 and ne. As we can see from Table 1, the 
bottom plastic lens was intended to be a negative one. However, measurements of optical 
powers before assembly suggest that the lens radii differed slightly from their anticipated 
values. For our primary simulations, the radius R4 was adjusted, in such a way that the total 
OP of the lower lens remains equal to +0.5 D. The optimization procedure outlined below 
was then used for fitting. Specifically, R2, R3, and ne were used as actual fitting parameters, 
while R4 was calculated using the assumption that the OP of the lower lens remained 
unchanged after the lens had been assembled. The parametric fitting was carried out using the 
Nelder-Mead optimization algorithm [19, 20, Appendix A]. We have also made several 
assumptions that allow to simplify calculations and decrease computation time. Figure 3 
depicts our simulation strategy:

Fig. 3. General modelling strategy description.

The calculations will show that even small changes in the LC cell radii can significantly 
alter the optical powers arising from both the LC layer and from the plastic lenses. By way of 
example, we find that a 5% increase in R2 at 0 V leads to a 60% change in optical power. 
Further discussion of these effects are given in section 4.5. As a consequence they carry a 
significant influence on the total optical power of the device. The result of this extreme 
sensitivity to the lens parameters is that the fitting process is quite challenging. We have 
obtained optimal R2 - R4 and ne, which all lie within 7% of the experimental values. A further 
engineering consequence is that even small differences from the design parameters can result 
in quite big changes in the optical performance. 

We now turn to the nematic configuration. If this is assumed to be cylindrically 
symmetric, calculation of the optical power requires only that half the device be modeled. 
However, we note that in Fig. 4 below, this assumption will be relaxed. The specific reason 
for the possible lack of symmetry in the lens is as follows.



The most likely zero-voltage configuration is that shown in Fig. 4(a). A continuous 
deformation of this configuration in an applied voltage field is more likely to result in the 
asymmetric configuration shown in Fig. 4 (c). The symmetric configuration in Fig. 4(b) 
involves a defect in the center of the lens.  In this configuration there is a central region of 
unoriented nematic, thus corresponding to a higher elastic free energy state than the 
asymmetric state Fig. 4(c).

If the oriented state is both defect-free and symmetric, as shown in Fig. 4(d), then the 
field-free configuration obtained when the voltage is removed will be as shown in Fig. 4(e). 
But this configuration now contains a defect in the center of the lens. This will then appear 
like a line across the field of view, as shown in Fig. 4(f).

In what follows we discuss simulations of the symmetric lens, and briefly return to the 
asymmetric case only in section 5. We use optimized parameters unless stated otherwise.

Table 1. Apparatus parameters

Parameters Experimenter best value Optimized value

R1 7.7 mm (not optimized)

R2 8.5 mm 9.11 mm

R3 7.9 mm 7.86 mm

R4 7.8 mm 7.92 mm

Upper PMMA layer 
central thickness

100 μm (not optimized)

LC layer central 
thickness

50 μm (not optimized)

Lower PMMA layer
central thickness

100 μm (not optimized)

ne 1.71 1.729

Fig. 4. (a) - Symmetric director distribution at 0 Vrms, with orientation governed by boundary 
conditions. (b) - Symmetric director distribution at 2 Vrms containing central defect. (c) - 
Asymmetric director distribution at 2 Vrms. (d) - Lens containing well-oriented liquid crystal 
without central defect. (e) - Unoriented director distribution containing central defect. (f) - 
Caricature of optical signature of (e). Note that diagrams (a) to (e) should be regarded as 
cartoons indicating the basic topology of the calculated configurations, rather than as an 
accurate representation with particular parameters.  



4. Results
4.1 Director reorientation and electric field

We first note that the shape of the LC cell dictates that, even when no voltage is applied, the 
director orientation angles at comparable points across the cell differ between the middle and 
at the edge of the cell. A comparative pictorial representation of the orientation profiles in the 
on and off states is shown in Fig. 5. This figure depicts director reorientation at several 
applied voltages, showing that the LC director is voltage-controllable.

As a consequence of director reorientation we have voltage-dependent phase retardation, 
that rises with the increase of control voltage. In Fig. 6 we show the theoretically calculated 
optical phase retardation (using eqs. (4) and (5)) as a function of external voltage across the 
LC layer, where the LC parameters are those of the liquid crystal 5CB.

Fig. 5. Director reorientation angle for different applied voltages: (a) 0 Vrms; (b) 1.25 Vrms; (c) 
2.5 Vrms. 
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Fig. 6. Optical phase retardation in the LC cell, as a function of distance from the center of the 
cell x, at various control voltages.

4.2 Comparison with experiment

In this and subsequent sections, to make comparison with experiment, we use LC physical 
parameters given in Table 2. We assume that the LC has very low conductivity of 1·10-15 S/m. 
We first use the theory outlined above to compare with the experiments of Milton et al. [1]. 
The results of this comparison are shown in Fig. 7. We note that in this comparison we have 
modified the given lens characteristics in such a way as to optimize the agreement between 
theory and experiment, following the procedure given in §3.3. The reader can estimate the 
influence of the parameter optimization from Fig. 8, where modelling results before fitting 
(using the original experimental parameters) and after fitting (with optimized lens parameters) 
are compared with experimental data.



Table 2. LC parameters used for modelling

Parameters 5CB E7 E49 W1865

no 1.53 [21] 1.52 [22] 1.52 [26] 1.54 [27]

ne 1.71 [21] 1.73 [22] 1.79 [26] 2.01 [27]

Δn 0.18 0.21 0.27 0.47

Kii (pN):
i=1,3

K11 =4.9 [21]
K33 =7.3 [21]

K11 =11.25 [23]
K33 =17.8 [24]

K11 =13.76 [26]
K33 =23.03 [26]

K11 =10.5 [27] 
K33 =29.4 [27]

ε∥ 16.09 [21] 19.54 [25] 21.14 [26] 23.2 [27]

ε⊥ 6.02 [21] 5.17 [25] 4.98 [26] 5.0 [27]

λ (nm) 589 [21] 633 [22] 632.8 [26] 589 [27]

ν (kHz) 1 [21] 1 5 [26] 1.5 [27]

T (oC) 25[21] 25 [22] 25 [26] 25 [27]

0,0 0,5 1,0 1,5 2,0 2,5
-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

Theory 5CB
Experiment

O
pt

ic
al

 p
ow

er
, D

io
pt

re
s

U0,V

Fig. 7. Voltage dependence of total optical power of lens. Comparison of theory and 
experiment [1].
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Fig. 8. Voltage dependence of total optical power of lens. Comparison of simulations without 
fitting, simulations with optimized fitting parameters (see Table 1) and experiment [1].

We see good agreement between the model with optimal lens characteristics and the 
experimental data, which proves fitting significance. The change in optical power between on 
and off states ∆OP=OP(V=2)-OP(V=0) is approximately 2±0.25 diopters (using eqs. (1) - (3)). 
At voltages sufficiently high that the director has reoriented in most of the cell, the optical 
power remains more or less constant.



There is, however, an intermediate region of voltages (approximately 0.8 Vrms ≤U0≤ 1.3 
Vrms), for which the lens functions poorly. Here defects form as part of the switching process, 
causing scattering [1]. It was not possible to take data in this regime, and no comparison with 
experiment has thus been attempted. We remark that this regime corresponds to a range of 
voltages over which the reorientation has only partially occurred; the outside part of the cell 
has reoriented, whereas the inner part of the cell has not reoriented. It seems likely that a 
more detailed investigation of the properties of the lens in this regime, including aberration, 
would also explain this feature of the results. However, such a study goes beyond the scope of 
this paper.

The comparison with experiment has been quite successful, so we can reasonably ask 
what the effect of changing some aspects of the system would be.

4.3 Other materials

We first discuss the effect of replacing the 5CB used in the experiment with a number of 
different liquid crystals. We compare lenses with otherwise identical characteristics, i.e. with 
best fit parameters corresponding to the experiments modeled in Fig. 7. In Fig. 9 we show the 
predicted behavior of the optical power of a number of such lenses, as a function of external 
voltage.
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Fig. 9. Theoretical prediction of lens power as a function of voltage for various LCs: E7, E49, 
5CB and W1865 LC mixture.

Our results show that one can achieve a bigger optical contrast between low and high 
voltages by using liquid crystals with higher birefringence. In case of 5CB (Δn = 0.18) the 
switch predicted by our theory is approximately 2 diopters, for E7 (Δn = 0.21) and E49 (Δn = 
0.27) the switch is about 2.3 and 2.9 diopters respectively. But for the LC mixture W1865 (Δn 
= 0.47), the switch increases to 5.2 diopters.

4.4 Temperature dependence

Given that liquid crystal parameters are temperature-dependent, it is important to predict the 
temperature characteristics of a lens. Here we make such a calculation, in the case of the 
experimental material 5CB, over the temperature range 25.1oC ≤ T ≤ 33.8oC; we recall that 
TNI ≈ 35.1oC.

To make specific predictions, it is necessary to describe the temperature dependence of 
elastic and dielectric properties ψ = {K11, K33, ε⊥, ε∥} of the LC 5CB over this temperature 
range. We use a parameterization due to Bogi and Faetti [28], who introduced the following 
set of empirical functions:
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where ∆T=TNI-T and A, B, C, D, To are the coefficients obtained from the best fit of the 
experimental data [25].
To parameterize the optical properties of 5CB, we follow Li and Wu [29]:
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where β, G' are fitting parameters, and Tc is a temperature close to the clearing temperature. 
The results of this calculation are shown in Fig. 10. In this figure we concentrate only on the 
optical powers in the off and on states, noting (see Figs.7 and 9), that at high voltages, the 
optical power saturates. We thus consider only two voltages: U0=0 Vrms, corresponding to the 
off state, and U0=2 Vrms, corresponding in all cases to the on-state. The latter voltage is well 
above the Frederiks threshold and thus in all cases can be regarded as a voltage sufficiently 
high to align the liquid crystals except in a thin layer close to the surface.
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Fig. 10. Lens optical power subject to temperature of 5CB LC (TNI=35.1oC).

The effect of the temperature increase between 25.1oC and 33.8oC is to decrease the 
switching optical power significantly. The voltage-induced change in optical power of the 
lens reaches its minimum value of approximately 1.54 diopters at the highest temperature 
investigated. Here and in [1] 5CB was used because its parameters are well known and 
available in the literature.  High birefringence LCs (for example E7, E44) whose optical 
properties are much less temperature-dependent near body temperatures are likely to be more 
useful in engineering prototypes. Overall, however, the tendencies shown in figure 10 would 
remain. We note, however, that the temperature to which the lens is subject also requires 
careful investigation, as the operating temperature of a contact lens involves a delicate 
balance between ambient and body temperature.

4.5 Lens deformation

Numerous factors may affect the lens in practice. The experimental process is that parts of the 
lens are lathed from PMMA blocks and coated with ITO electrodes. Then alignment layers 
are placed on anterior and posterior surfaces of lower and upper plastic lenses. Next the two 
lenses are baked together at temperature of about 50oC. The space between plastic lenses is 
then filled with a LC and finally wires are attached to the device.



One can reasonably assume that at each stage the lens may undergo a variety of 
deformations. As a consequence, despite the best efforts of experimentalists, some lens 
parameters may change. Fig. 11 shows the response of the optical power of the lens to small 
relative changes in the LC cell radii, varied within 20% of their initial dimensions.

Fig. 11. Optical power as a function of changes in lens curvature: (a) R2, (b) R3.

At this point one can conclude that the effect of radii deformation makes a considerable 
contribution into lens optical power. For instance 5% radii variation causes the optical power 
to change by more than 1 diopter. This result stresses the importance of precise fabrication 
methods necessary for lens manufacturing as it is extremely sensitive to deformations.

5. Discussion and Conclusions
We have built a theoretical model of the LC contact lens designed by Milton et al. [1]. The 
calculations show that the voltage-dependent optical power is very sensitive to lens radii, LC 
birefringence and other parameters of the system. In particular, simulations with experimental 
prototype parameters differed considerably from the experimental results. We have discussed 
possible causes of the uncertainties in the lens parameters. We have then used the Nelder-
Mead algorithm to perform parameter optimization. Even though the model is very 
simplified, using a limited number of optimized fitting parameters, we have achieved good 
agreement between the theory and the experimental data.

Our simulations also demonstrate that optical phase retardation may change differently in 
the left and right parts of the lens. The switched configuration then resembles that exhibited in 
Fig. 4(c). In Fig. 12 we show the optical power dependence on applied voltage, calculated for 
both left and right halves of the lens. A free energy  criterion  can be used to predict that one 
configuration of the system will be preferred to the other. At the same time free energy 
redistribution takes place when the control voltage changes. This fact requires deeper 
theoretical analysis and further exploration.
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Fig. 12. Optical power of the lens as a function of voltage. Calculations were made separately 
for left and right parts of the lens using fitting parameters and eqs. (1) - (3).

Generalizing our results outside the range of the experiments that were carried out, we 
predict a bigger optical power change between “on” and “off” states using liquid crystals with 
higher birefringence. The temperature and geometry dependences of LC lens optical power 
have also been investigated. The study shows that for 5CB cells, increasing temperature over 
the liquid crystal range 25.1 oC < T < 33.8 oC decreases the induced optical power change, 
concomitant with the decreasing anisotropy of the liquid crystal system. Given the prediction 
that lens performance is likely to be significantly influenced by ambient temperature, we 
suggest that this effect be included in future experiments.

Another aspect explored in the paper is possible deformation of the lens geometry. The 
theory results predict that change in optical power to be extremely sensitive to PMMA lens 
radii and the shape of the LC cavity. More experimental work should be carried out to ensure 
lens dimensions are not affected (or affected in accordance with a known pattern) during the 
assembly process, which is vital for mass production.

Finally, various other factors affecting lens performance during manufacturing have also 
been discussed. Development of a full three-dimensional model, together with the use of all 
experimental voltages in the optimization process would be a significant improvement of our 
theory.
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Appendix A: Optimization Using Nelder-Mead Algorithm
The Nelder-Mead method is a simplex numerical method used to find a local minimum or 
maximum of a function of several variables [19]. A simplex is a generalized triangle with 
N+1 vertices in N dimensional space. We consider optical power to be a function of three 
variables: R2, R3 and ne. Therefore in our case the simplex is a tetrahedron in three 
dimensional space of fitting parameters.

The method compares function values at the vertices of the tetrahedron. The worst vertex, 
where deviation from experimental result is the largest, is replaced with a new vertex. The 
algorithm creates a sequence of tetrahedrons, the size of each new one is reduced until the 
stopping criteria is fulfilled and a point in parametric space which corresponds to minimal 
deviation from experimental data is found. The method is computationally effective.

The optimization was carried out using only experimental data from the two voltages 1.25 
Vrms and 2.25 Vrms. Considerably more computational resources are required if all data points 
are to be included in the optimization, even if the optimization is restricted to the same set of 
fitting parameters. Even with this restriction, however, our optimization results succeed in 
bringing the modelling results much closer to the experimental points.

http://refractiveindex.info/?shelf=organic&book=poly%28methyl_methacrylate%29&page=Szczurowski
http://refractiveindex.info/


An important extra feature of our optimization technique involves using boundaries of 
±10 % of experimental values to set limits for the deviation of the fitting parameters. If at 
least one of the vertices reached the boundary wall (or all simplex vertices did – flat simplex 
case) we would regard the results as unreliable. However, in fact this does not occur in our 
simulations.

Figure A1 gives a description of algorithm’s logical decisions [19, 20]. The following 
definitions are introduced to explain the algorithm: B = (x1, y1, z1) – coordinates of the best 
vertex (OP is the closest to experiment for this set of fitting parameters), G = (x2, y2, z2) – 
coordinates of good vertex (next to the best vertex), W = (x3, y3, z3) – the worst of four 
vertices. For these points we have an inequality:

      ,f f f B G W (A 1)
where f(X) =|OP(X)-OPexperiment| and X is a point in three dimensional parametric space.
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Fig. A1. Pseudocode for the Nelder-Mead algorithm [20]

The algorithm is repeated until following condition is satisfied:
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Optimal values of R2, R3 and ne were obtained. Comparison with experiment was made 
using these values. Deviation from experimental data was within experimental error bar 
limits.

A figure of merit for the fit of experiment to theory involves the root-mean-square 
deviations:

model exp 2
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(OP OP )

N
eriment

i
iRMSD

N






(A 4)



where N is the number of experimental points. For the model with unoptimized parameters 
RMSD≈1.63, but with optimized parameters we have RMSD≈0.15 which is much closer to 
experiment. Thus indeed the optimized parameters provide considerably better agreement 
with experiment.


