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A B S T R A C T   

Background: Rising workflow pressures within the oesophageal cancer (OC) multidisciplinary team (MDT) can 
lead to variability in decision-making, and health inequality. Machine learning (ML) offers a potential automated 
data-driven approach to address inconsistency and standardize care. The aim of this experimental pilot study was 
to develop ML models able to predict curative OC MDT treatment decisions and determine the relative impor
tance of underlying decision-critical variables. 
Methods: Retrospective complete-case analysis of oesophagectomy patients ± neoadjuvant chemotherapy 
(NACT) or chemoradiotherapy (NACRT) between 2010 and 2020. Established ML algorithms (Multinomial Lo
gistic regression (MLR), Random Forests (RF), Extreme Gradient Boosting (XGB)) and Decision Tree (DT) were 
used to train models predicting OC MDT treatment decisions: surgery (S), NACT + S or NACRT + S. Performance 
metrics included Area Under the Curve (AUC), Accuracy, Kappa, LogLoss, F1 and Precision -Recall AUC. Variable 
importance was calculated for each model. 
Results: We identified 399 cases with a male-to-female ratio of 3.6:1 and median age of 66.1yrs (range 32–83). 
MLR outperformed RF, XGB and DT across performance metrics (mean AUC of 0.793 [±0.045] vs 0.757 
[±0.068], 0.740 [±0.042], and 0.709 [±0.021] respectively). Variable importance analysis identified age as a 
major factor in the decision to offer surgery alone or NACT + S across models (p < 0.05). 
Conclusions: ML techniques can use limited feature-sets to predict curative UGI MDT treatment decisions. 
Explainable Artificial Intelligence methods provide insight into decision-critical variables, highlighting under
lying subconscious biases in cancer care decision-making. Such models may allow prioritization of caseload, 
improve efficiency, and offer data-driven decision-assistance to MDTs in the future.   

1. Introduction 

Oesophageal cancer (OC) is a devastating condition. Despite 
improving survival rates, it remains 7th in worldwide incidence and the 
7th most common cause of cancer death [1,2]. Treatment decisions for 
OC cancer patients in the UK are managed by multidisciplinary teams 
(MDT) integrating healthcare expertise for shared decision-making [3]. 
Decisions are driven by tumour features (size, location, spread), as well 
as patient factors (fitness for surgery, co-morbidities and demographics), 
which may impact tolerability of therapy [4]. OC treatment decisions 
thus carry implications for patient quality of life [5]. OC MDTs however 
have been shown to reduce the incidence of open-and-close surgeries, 

reduce operative mortality, increase rates of completed staging and are 
an independent positive predictor for survival in OC [3,6–8]. 

MDTs are inherently informed by individual experience, perception 
and bias. Additionally, multiple clinical and human factors such as case 
complexity, increasing caseload, individual clinician preference or even 
seniority can lead to unexplained variability or suboptimal decision- 
making [9,10]. One Danish study reported clinical impact in as many 
as 60% of test cases on subsequent management because of MDT 
disagreement [11]. 

Predictive modelling to assist decision-making for OC patients has 
demonstrated excellent results when predicting survival post-surgery in 
OC patients [12,13]. These studies have generally accessed both pre- 
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and post-operative data to train such models. At the point of first diag
nosis however, the MDT must act on a relatively restricted pool of in
formation, a scenario in which Machine Learning (ML) modelling 
techniques may offer significant benefit especially if able to pair MDT 
decisions with data-driven evaluation [14,15]. Accurate predictive 
models would provide for consistent clinical assistive decision tools 
(CADT) capable of standardizing such decisions, improving efficiency, 
and positively impacting healthcare equality. 

The aim of this pilot study was to explore whether an accurate ML 
model for predicting which curative patients will receive neoadjuvant 
chemotherapy (NACT), neoadjuvant chemoradiotherapy (NACRT) or 
proceed straight to surgery could be created using a limited pool of 
variables available to a single-centre OC MDT at the time of deciding a 
patient’s final curative treatment pathway. Secondary aims included 
comparison of ML algorithmic performance and investigation of vari
able importance in order to provide model explainability within OC 
decision-making. 

2. Methods 

This study was a retrospective complete-case analysis of potentially 
curative oesophageal cancer patients at a single tertiary referral centre 
(University Hospital Southampton) under the ethical approval of IRAS 

233065. 

2.1. Study cohort 

All patients who underwent an oesophagectomy for OAC or OSCC 
from 2010 to 2020 were identified from a prospectively maintained 
oesophagectomy database. This proof-of-principle pilot study focussed 
on curative patients because reliable high-quality data was available for 
this cohort. Treatment decisions at our institution were made as per 
National Institute for Clinical Excellence (NICE) guidelines [16]. Pa
tients underwent either NACT or NACRT (prior to surgery) or proceeded 
directly to surgery. Variables consistently available to the MDT prior to a 
final treatment decision were included within the models (Table 1). This 
is more reflective of “real world” scenarios where the quality and 
quantity of such data can often vary. Clinical staging was assessed on 
baseline imaging (Computer Tomography (CT) and/or Positron Emis
sion Tomography (PET)) and tissue biopsies in accordance with the 
American Joint Committee on Cancer (AJCC) Tumour-Node-Metastasis 
(TNM) staging system. 

Table 1 
Patient demographics and model predictor variables by sub-group (sub-group comparison of continuous variables by Kruskal-Wallis analysis and categorical variables 
by Chi-Squared test of independence).  

Pre-treatment variables NACT (N = 172) (%) NACRT (N = 127) (%) Surgery (N = 100) (%) Total (N = 399) (%) P Value 

Gender 0.016* 
Male 146 (84.9%) 91 (71.7%) 75 (75%) 312 (78.2%) 
Female 26 (15.1%) 36 (28.3%) 25 (25%) 87 (21.8%) 
Median Age in years (Range) 65.1 (32.4–81.8) 65.9 (40.5–79.0) 72.6 (33.7–83) 66.1 (32.4–83.00) <0.001 
Performance status <0.001*** 

0 87 (50.6%) 83 (65.3%) 33 (33%) 203 (50.9%) 
1 80 (46.5%) 41 (32.3%) 56 (56%) 177 (44.3%) 
2 5 (2.9%) 3 (2.4%) 11 (11%) 19 (4.8%) 
3 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
4 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

ASA grade 0.017* 
1 10 (5.8%) 9 (7.1%) 7 (7%) 26 (6.5%) 
2 107 (62.2%) 89 (70.1%) 49 (49%) 245 (61.4%) 
3 55 (32.0%) 29 (22.8%) 44 (44%) 128 (32.1%) 
4 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

cT stage <0.001*** 
0 1 (0.6%) 0 (0%) 8 (8%) 9 (2.3%) 
1 0 (0%) 0 (0%) 6 (6%) 6 (1.5%) 
2 30 (17.4%) 24 (18.9%) 46 (46%) 100 (25.1%) 
3 124 (72.1%) 91 (71.7%) 38 (38%) 253 (63.4%) 
4 17 (9.9%) 12 (9.4%) 2 (2%) 31 (7.7%) 

cN stage <0.001*** 
0 34 (19.8%) 28 (22.0%) 55 (55%) 117 (29.3%) 
1 120 (69.8%) 83 (65.4%) 40 (40%) 243 (60.9%) 
2 18 (10.4%) 16 (12.6%) 4 (4%) 38 (9.5%) 
3 0 (0%) 0 (0%) 1 (1%) 1 (0.3%) 

Tumour location <0.001*** 
Oesophagus 36 (20.9%) 62 (48.8%) 25 (25%) 123 (30.8%) 
GOJ 136 (79.1%) 65 (51.2%) 75 (75%) 276 (69.2%) 
Tumour Histology <0.001*** 
Adenocarcinoma 159 (92.4%) 83 (65.4%) 91 (91%) 333 (83.5%) 
Squamous Cell 13 (7.6%) 44 (34.6%) 9 (9%) 66 (16.5%) 
Co-morbidities  
History of MI (MI) 9 (5.2%) 6 (4.7%) 9 (9%) 24 (6.0%) 0.344 
Chronic heart failure (CHF) 1 (0.6%) 0 (0%) 2 (2%) 3 (0.8%) 0.211 
Chronic pulmonary disease (CPD) 25 (14.5%) 14 (11.0%) 19 (19%) 58 (14.5%) 0.239 
Connective tissue disease 2 (1.2%) 5 (3.9%) 1 (1%) 8 (2.0%) 0.170 
Peripheral vascular disease (PVD) 2 (1.2%) 0 (0%) 4 (4%) 6 (1.5%) 0.043* 
Cerebrovascular disease (CVD) 6 (3.6%) 3 (2.4%) 8 (8%) 17 (4.3%) 0.091 
History of Peptic Ulcer Disease (XPUD) 6 (3.6%) 2 (1.6%) 5 (5%) 17 (4.3%) 0.344 
Uncomplicated diabetes (DM uncomp) 17 (9.9%) 13 (10.2%) 16 (16%) 46 (11.5%) 0.269 
Complicated diabetes (DM comp) 0 (0%) 0 (0%) 1 (1%) 1 (0.3%) 0.223 
Leukaemia 0 (0%) 0 (0%) 3 (3%) 3 (0.8%) 0.011* 
Lymphoma 1 (0.6%) 1 (0.8%) 3 (3%) 5 (1.3%) 0.191 
Mild liver disease 0 (0%) 0 (0%) 0 (0%) 2 (0.5%) 0.265  
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2.2. Model development 

2.2.1. Data preparation and analysis 
Data analyses were conducted using RStudio (Version 4.1.2) with 

relevant packages described where first used. The choice of final treat
ment pathway was assigned as the outcome variable: Surgery (S), 
(NACT + S), or (NACRT + S). Cases with missing data were removed for 
the purposes of complete-case analysis. The final dataset contained a 
total of 399 complete cases (Table 1). 

2.2.2. Machine learning algorithms 
Four established ML algorithms were selected and implemented via 

the “caret” package; Multinomial Logistic Regression (MLR) [17], 
Random Forests (RF) [18], Extreme Gradient Boost (XGB) [19] and 
Decision Tree (DT) analysis [20]. The MLR model was trained using the 
“nnet” package extension with L2 regularisation. The RF model was 
trained using the “randomForest” package extension. The XGB model 
was trained using the “xgboost” package extension. Decision Trees were 
trained using the “rpart” package. This provided diversity of ML tech
niques (regression-based, tree-based and ensemble). 

2.2.3. Validation and model performance 
All models were developed using nested cross-validation (CV) and 

optimised for accuracy. A 5 × 10 configuration was chosen (10-fold CV 
within the inner loop with 5-fold outer loop). The ROC values for the 
best model from each outer fold (N = 5) were then averaged to generate 
a mean Area Under the Receiver Operator Characteristic curve (AUROC) 
in a one-versus-others approach. This provided a more accurate estimate 
of overall model generalisability at differing probability thresholds. 
Each ROC curve was plotted with confidence intervals of 1x Standard 
Error of the Mean (SEM). Mean out-of-sample predictive performance 
was also compared between algorithms for balanced accuracy, mean 
AUC, Kappa, Log Loss, F1 and precision-recall AUC (PRAUC) using the 
resamples () function (caret package). 

2.2.4. Variable importance analysis 
Variable importance was derived for each algorithm to examine, 

quantify and rank overall importance a given feature provided to the 
final models. This provided insight into variables contributing most 
significantly to current OC MDT treatment decisions. Variable impor
tance was calculated using the varImp () function (caret package) for 
MLR, RF and DT, and the xgb.importance () function (xgboost package) 
for the XGBoost model. Absolute values were scaled (0–100) to allow 
comparison between algorithms. 

2.2.5. Inter-algorithmic and inter-class predictive performance 
For meaningful statistical comparison of AUROCs produced for each 

algorithm all algorithms were further re-trained total of 10 times, (now 
producing a total of 50 “outer-fold” models). In each repeat the set-seed 
was randomized, and the resulting 50 AUROCs were analysed using the 
Kruskal – Wallis test coupled with the Pairwise Wilcoxon Rank Sum Test 
where appropriate (p values were adjusted using the Benjamini- 
Hochberg correction, (p < 0.05 was deemed significant)). This 
allowed robust comparison of differences in predictive performance 
across algorithms for a specific outcome class as well as a comparison of 
all outcome classes from a given algorithm. 

3. Results 

3.1. Cohort demographics 

A total of 436 cases were identified, with 5 cases excluded for missing 
data (Complicated Diabetes (N = 2), cN stage (N = 2) and Tumour 
location (N = 1)) and 32 cases excluded for ineligible histology. This 
produced a final cohort of 399 cases. 

3.2. Algorithm performance 

Predictive performance for each algorithm was assessed on mean- 
model performance and individualised outcome-class prediction. All 
algorithms produced models which performed above random chance 
(AUROC = 0.5). At class-level, all algorithms performed best when 
predicting patients likely to be offered surgery (MLR 0.865, RF 0.859, 
XGB 0.805, DT 0.802). All algorithms perform less confidently in pre
dicting NACRT + S (MLR 0.772, RF 0.699, XGB 0.696, DT 0.651) and 
NACT + S (MLR 0.704, RF 0.651, XGB 0.644, DT 0.704). Individual ROC 
curves for each algorithm are illustrated in Fig. 1 (additional ROC curves 
for models trained solely on adenocarcinoma are in Supplemental 
Fig. 1). 

3.3. Comparison of algorithms 

Repeated, nested-CV was used to assess for statistical differences in 
AUROC between algorithms (Supplemental Table 1). MLR outperformed 
RF and XGB on Kruskal-Wallis analysis when predicting NACT + S (P =
<0.001) and NACRT + S (P < 0.001) but comparably with DT (Pairwise 
Wilcoxon Rank Sum test, P = 0.143). MLR also outperformed XGB and 
DT, and comparably to RF when predicting surgery (Pairwise Wilcoxon 
Rank Sum test, P = 0.001, P < 0.001 and P = 0.134 respectively). On 
mean-model out-of-sample predictive performance MLR performed best 
across all performance metrics (Table 2). RF and XGB performed 
comparably on balanced accuracy (0.679 vs 0.698 respectively), mean 
AUC (0.757 vs 0.740), mean F1 (0.575 vs 0.607), mean PRAUC (0.560 vs 
0.544) and mean kappa (0.352 vs 0.386). XGB was outperformed by 
MLR, RF and DT on mean LogLoss (1.360 vs 0.833, 0.942 and 1.146 
respectively). 

3.4. Inter-class performance 

Statistical difference between outcome-class prediction was assessed 
for each algorithm to determine if overall model performance was 
weighted towards a given treatment decision. A significant difference 
was demonstrated on Kruskal-Wallis and Pairwise Wilcoxon Rank Sum 
test for all classes (Supplemental Table 2). 

3.5. Variable importance 

Variable importance analysis highlighted factors critical to model 
formation (Fig. 2). The MLR model highlighted cT stage as most 
important, but with more salience attributed to co-morbidities such as 
connective tissue disease, lymphoma, leukaemia, and liver disease. 
Within tree-based models (RF, XGB and DT) the single most influential 
variable was age (scaled importance = 100%). DT analysis delineated an 
age cut-off of 77yrs as key within the decision-making pathway (Sup
plemental Fig. 2). Across models, factors such as tumour histology, 
tumour location, cT stage, cN stage, and performance status remained 
important contributors to the final models (this was consistent even 
when trained solely on adenocarcinoma patients). 

3.6. Role of age in predicting treatment decisions 

As age emerged as the most important variable in RF, XGB and DT 
models, all algorithms were retrained without age to assess its overall 
significance by examining the effect its removal produced on mean- 
model AUROC (Fig. 3). 

Differences in AUROC for all algorithms ± age were then compared 
statistically (Kruskal-Wallis test, P values provided in Fig. 3). Across all 
algorithms, the removal of age produced a significant drop in mean 
AUROC when predicting a surgery treatment decision (MLR 0.858 vs 
0.835 (P = 0.017), RF 0.846 vs 0.785 (P < 0.001), XGB 0.828 vs 0.781 
(P < 0.001)), DT 0.747 vs 0.682 (P < 0.001). This was again seen in the 
decision to offer NACT + S for RF and XGB models (RF 0.676 vs 0.647 (P 
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= 0.005), XGB 0.666 vs 0.619 (P < 0.001)) with a non-significant drop 
noted for MLR (0.710 vs 0.692, P = 0.065) and DT models (0.688 vs 
0.670, P = 0.212). Removing age did not impact prediction of NACRT +
S regardless of algorithm (MLR 0.778 vs 0.774 (P = 0.710), RF 0.714 vs 
0.711 (P = 0.679), XGB 0.710 vs 0.707 (P = 0.767)), DT 0.647 vs 0.687 
(P = 0.002). ROC plots for each algorithm and outcome class are pro
vided in Supplemental Fig. 3. This pattern continued to hold when 
models were limited to adenocarcinoma patients with significant drops 
in AUC seen in both NACT + S (P values: MLR 0.034, RF 0.003, XGB 
0.004, DT < 0.001) and Surgery prediction (P values: MLR 0.025, RF <
0.001, XGB <0.001, DT < 0.001) while CRT remains largely unaffected 
(P values: MLR 0.389, RF 0.393, XGB 0.577, DT 0.033). 

4. Discussion 

We have demonstrated feasibility for ML models to predict curative 
OC MDT treatment decisions with limited feature-sets. Importantly, 
these algorithms are computationally inexpensive as any real-world 
clinical assistive decision tool (CADT) needs to operate within current 

Fig. 1. ROC curve for averaged nested, cross-validated model performance given with ± 1x standard error of the mean (SEM), A = Multinomial Logistic Regression, 
B = Random Forests, C = Extreme Gradient Boost and D = Decision Tree. AUROC = Area under Receiver Operator Characteristic. 

Table 2 
Mean performance metrics by algorithm (best performance metric in bold). 
Abbreviations – sd = Standard Deviation, AUC = Area Under Curve, PRAUC =
Precision Recall AUC.   

Mean 
Balanced 
Accuracy 
(±sd) 

Mean 
AUC 
(±sd) 

Mean 
Kappa 
(±sd) 

Mean 
LogLoss 
(±sd) 

Mean 
F1 
(±sd) 

Mean 
PRAUC 
(±sd) 

MLR 0.718 ± 
0.066 

0.793  
± 
0.045 

0.428  
± 0.127 

0.833 ± 
0.080 

0.624  
± 
0.083 

0.594 ± 
0.066 

RF 0.679 ±
0.075 

0.757 
± 0.068 

0.352 
± 0.155 

0.942 ±
0.160 

0.575 
±

0.101 

0.560 ±
0.073 

XGB 0.698 ±
0.050 

0.740 
± 0.042 

0.386 
± 0.101 

1.360 ±
0.235 

0.607 
±

0.062 

0.544 ±
0.052 

DT 0.676 ±
0.027 

0.709 
± 0.021 

0.347 
± 0.012 

1.146 ±
0.110 

0.564 
±

0.038 

0.365 ±
0.025  
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electronic healthcare infrastructure. While MLR performed best, all 
models demonstrated good AUROCs and were confident discriminating 
between patients recommended surgery versus those offered NAT across 
a mixed histology cohort (while this remained so when trained on 
adenocarcinoma alone, the best performances were achieved with the 
full cohort indicating a machine-preference for learning from both 
subtypes). While performance was attenuated when predicting a specific 
NAT subtype, all algorithms performed well above random chance. 
Variable importance analysis offered insight into the critical variables 
underpinning these models, identifying age to be most significant to all 
tree-based models, and to a lesser extent, with MLR. When age was 
removed from the feature-set, all algorithms suffered a reduction in 
predictive performance for surgery or NACT + S though the decision to 
offer NACRT + S appeared unaffected by age. DT analysis highlighted an 
age cut-off of 77 years to be significant with those older, more likely to 
proceed to surgery. 

The consistency in ROC curves across algorithms, irrespective of 
design likely reflects an underlying pattern within the OC patient cohort 
itself and is readily observed in the prediction of NACT versus NACRT. 
Evidence for the survival benefit of NAT in locally advanced OC is well 

established [21–24]. The superior NAT modality (for adenocarcinoma) 
remains unknown. Recent 3-year follow-up data from the NeoAegis trial 
remains equivocal on survival outcomes despite a higher incidence of 
patients with a good primary tumour response to treatment (TRG 1–3) in 
the NACRT arm [25]. It is reasonable to infer that while clinical equi
poise remains within the field, these ML models mirror a similar un
certainty within the MDT. The benefit of explainable ML approaches is 
therefore in offering valuable insight into both the human 
decision-making at play as well as areas of uncertainty which may 
propagate inconsistent decisions within the MDT. 

The contribution of individual variables to our OC MDT ML models is 
a key aspect of this study. It has been postulated previously that some 
factors (biases) inherent to MDT decisions may not be consistently or 
explicitly reflected in that decision-making and by extension into cur
rent models [26]. Significant importance was unsurprisingly assigned to 
T-stage, N-stage, performance status, tumour histology and tumour 
location in all models. Co-morbidities such as chronic pulmonary disease 
and diabetes ranked higher within tree-based models, while haemato
logical cancers, connective tissue disease and liver dysfunction were 
more relevant to regression models. This demonstrates how 

Fig. 2. Scaled Variable Importance plots for nested cross-validated models. “Y” indicates the presence of the stated co-morbidity. A = Multinomial Logistic 
Regression, B = Random Forests, C = Extreme Gradient Boost and D = Decision Tree. (Abbreviations: PVD = Peripheral Vascular Disease, SCC = Squamous Cell 
Carcinoma, GOJ = Gastroesophageal Junction, CHF = Congestive Heart Failure, CVD = Cerebrovascular Disease, xPUD = History of Peptic Ulcer Disease, DM uncom 
= Uncomplicated Diabetes Mellitus, DM comp = Diabetes Mellitus with complications, Gender (M = Male/F = Female), PS = Performance Status, ASA = American 
Society of Anaesthesiologist score, CPD = Chronic Pulmonary Disease, MI = History of Myocardial Infarction). 
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incorporating co-morbidities into models can reflect intuitive human 
decision-making. Most interesting proved the importance contributed 
by age in RF, XGB and DT models where its removal provoked a sig
nificant drop in performance when predicting surgery and NACT + S. 
Historically, clinician bias in cancer management for elderly patients led 
to the UK Department of Health initiative in 2012 to drive personalised 
treatment decisions based on physiological age over chronological age 
[27,28]. Within our cohort a higher median age was seen in patients 
offered surgery versus any NAT, and DT analysis suggests an important 
cut-off at 77 years. This may be explained by the well-recognised risk of 
deconditioning frail patients after NAT and potentially rendering them 
unfit for surgery [29]. A single attempt may be their only chance at cure 
which NAT may compromise. It is less apparent why CRT prediction was 
unperturbed by age and may reflect the broadly held opinion that 
pre-operative CRT (CROSS-style) for OC is less toxic and less debilitating 
versus modern chemotherapy regimens (e.g., FLOT). While median age 
in both NACT + S and NACRT + S groups were comparable, a higher 
proportion of NACRT + S patients presented with robust performance 
status scores when compared with NACT + S patients. In the context of 
an already physiologically fitter cohort, chronological age may prove 
less influential in their resilience for multimodal NAT. While it is 
tempting to assume chronological age is not an automatic blockade to 
aggressive treatments, ML lets us challenge such pre-conceived notions 
by highlighting hidden patterns within MDT decision-data. In charac
terising these patterns, we learn about potential subconscious biases in 
decision-making and address any inequality that may result. 

Acceptability and explainability of CADTs is a major consideration in 
the integration AI-based tools within healthcare where regulatory 
approval will almost certainly hinge upon explainable and interpretable 
solutions [30]. This is problematic for deep-learning platforms which 
are inherently “black-box” solutions [31]. MLR performed best in this 
study and is the most explainable. Decision-trees are also members of 
explainable AI (XAI) approaches, however, once the model training in
volves many hundreds of trees (RF and XGB-models) explainability be
comes challenging, requiring post-hoc explainability methods [32]. 
Simple visual analysis of the scaled variable importance plots in Fig. 2 
might lead treating clinicians towards a tree-based model, as the 
ordering of listed variables fits the intuitive assessment of patients made 
on a day-to-day basis in the clinic. However, as MLR outperformed 
tree-based models it also highlights the pragmatic need to balance per
formance against ease of explainability and acceptability to the end user. 

The long-term clinical implications of this study are most likely to 
relate to health economy (via streamlining of future MDTs which may 
increase caseload efficiency and staffing costs) and health equality (by 
standardizing decision-making for cases with comparable demographics 
and disease staging). At present nuanced treatment decisions such as 
surgical approach are influenced by tumour characteristics combined 
with surgeon preference and experience. Observational evidence for 
minimally invasive surgery favoured improved rates of post-operative 
pneumonia and recovery times although formal trials such as the 
Traditionally Invasive versus Minimally invasive Oesophagectomy 
(TIME) and MIRO trials showed equivalence in survival benefits 

Fig. 3. Boxplot comparison of mean model AUCs for MLR (A), RF (B), XGB (C) and DT (D) models with and without Age. Significant P values denoted with 
and asterisk. 
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compared to open resection [33–37]. Early Indications from the Rand
omised Oesophagectomy: Minimally Invasive or Open (ROMIO) study 
[38] also appear to reiterate comparable recovery and complication 
rates although a formal report is awaited. While robotic oesophagec
tomy offers greater surgeon ergonomics and stereoscopic visualisation, a 
growing evidence base for reduced pulmonary complications must be 
offset against longer operative time and resource-costs for otherwise 
comparable patient outcomes [39,40]. In all scenarios such treatment 
decisions are driven heavily by perceived post-operative outcomes over 
pre-treatment clinicopathological characteristics. Modelling such de
cisions at a pre-treatment time-point thus poses significant challenges 
such as sensitive surgeon-specific data on operative experience and 
preference which in turn risks its own ethical concerns. In the interim, 
broader treatment recommendations by a CADT however remains 
feasible and preserve MDT nuance. 

4.1. Study limitations and future directions 

There are natural limitations to this pilot study. Despite a cohort 
encompassing approximately 10 years within a tertiary referral centre, 
our final dataset comprised 399 patients. By utilising supervised- 
learning techniques which tolerate smaller datasets in conjunction 
with nested cross-validation we attenuated the generalisability error 
within our models. The predictor variables selected were, by design, 
limited to those the MDT could reasonably consider at the time of a final 
treatment decision, with limited granularity in this pilot study. How
ever, these models do not presently incorporate visual data (radiological 
and histopathological imaging), nor key social/human factors (the last 
of which, previous studies have found inconsistent in MDT environ
ments) [9,10]. The authors additionally recognise that OC management 
underwent shifts in oncological practice over the study period, however 
this was primarily focussed on specific adjunctive therapeutic regimens, 
and changes in surgical approaches as opposed to specific indications for 
a given treatment category. While it is also likely that clinician prefer
ences and human factors are relevant to these decisions, such data is not 
routinely recorded and a more simplified proof-of-concept was pursued 
in this instance to ensure model feasibility. 

Nevertheless, we have shown that ML models can use even limited 
feature-sets to produce good predictive models offering proof-of- 
principle of ML-based CADTs. This offers future potential for applying 
semi-automated tools to improve workload and efficiency. Such tools 
may run in parallel with MDTs to provide data-driven recommendations 
for complex patients, provide a means to sense-check decisions and offer 
assessments unaffected by natural variation over time in MDT attendees. 

Future models will need to integrate variables such as lifestyle risk 
factors, BMI, shifts in oncological practice (e.g., NACT regimens or TNM 
classification updates) and even the geographical distribution of patients 
relative to chemotherapy and chemoradiotherapy units. Features can be 
expanded to include more detailed tumour geography, tumour size, 
tumour differentiation, and molecular classification of histological 
subtypes while outcome classes may also include choice of chemo
therapy regimens, newer immunotherapies, as well as palliative in
terventions. Incorporating both imaging data and social variables into 
more sophisticated ‘hybrid’ models that more accurately reflect 
everyday practice is likely to be crucial for trustworthiness by patients 
and clinicians alike. 

5. Conclusions 

We have demonstrated ML – based predictive models trained on pre- 
treatment clinicopathological variables can predict curative oesopha
geal cancer MDT treatment decisions with good accuracy. We have 
shown that age plays a key role, especially when moving straight to 
surgery. The application of ML techniques has not yet been widely 
applied to oesophageal cancer MDTs despite some success in other 
clinical specialties [41–44]. ML tools have the potential to transform OC 

MDT workflow and efficiency with future research recommended to
wards integrated multimodal input datasets and focussed attention to
wards explainable XAI solutions thereby increasing trustworthiness and 
routine clinical use. 
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