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Abstract

The notion of interchangeability was introduced by Nash in one of his
original papers on equilibria in strategic games. It has been recently shown
that propositional theory of this relation is the same as propositional
theories of the nondeducibility relation in the information flow theory,
the independence relation in probability theory, and the noninterference
relation in concurrency theory.

Propositional theories of conditional nondeducibility and conditional
independence have been studied before. This article introduces a notion of
conditional interchangeability and gives complete axiomatization of this
relation with conditioning by a single player.

1 Introduction

In this article we study properties of conditional interchangeability of Nash
equilibria in strategic games. The notion of (non-conditional) equilibria inter-
changeability first appeared in one of Nash’s original papers [16] on equilibria
in strategic games. Interchangeability is easiest to define in a two-player game:
equilibria in such a game are interchangeable if for any two equilibria 〈a1, b1〉
and 〈a2, b2〉, strategy profiles 〈a1, b2〉 and 〈a2, b1〉 are also equilibria. In a mul-
tiplayer game setting, we say that a set of players A is interchangeable with a
disjoint set of players B if for any two Nash equilibria e1 and e2 of the game
there is equilibrium e of the same game such that equilibria e and e1 agree
on strategies of players in set A and equilibria e and e2 agree on strategies of
players in set B. We denote this by A ‖ B.

As shown by Naumov and Nicholls [17], propositional theory of interchange-
ability relation can be completely axiomatized by the following axioms:

1. Empty Set: A ‖ ∅,

2. Symmetry: A ‖ B → B ‖ A,

3. Monotonicity: A ‖ B,C → A ‖ B,
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4. Exchange: A,B ‖ C → (A ‖ B → A ‖ B,C),

where here and everywhere below A,B stand for the union of the sets A and
B. The above axioms 1.-4. were first introduced by Geiger, Paz, and Pearl [4]
to describe properties of independence in the probability theory. They have
shown that this axiomatic system is complete with respect to the probabilistic
semantics.

A property similar to interchangeability, but between two different pieces of
information, was introduced by Sutherland [24]. In the information flow theory
this property became known as nondeducibility. Cohen [2] presented a related
property called strong dependence. More recently, Halpern and O’Neill [7] in-
troduced a variation of nondeducibility, that they called f -secrecy, to reason
about multiparty protocols. Miner More and Naumov [14] generalized nonde-
ducibility to a relation between two sets of pieces of information and have shown
that it can be completely described by the same axioms 1.-4. The axioms 1.-4.
also give a complete axiomatization of a non-interference relation in concurrency
theory [15].

The properties of interchangeability are different in the case of zero-sum
games. It is well-known [16] that the set of all equilibria in any two-player
zero-sum game is interchangeable. Naumov and Simonelli [20] described inter-
changeability properties in multi-player zero-sum games.

Not only is independence a well-studied relation in probability theory, but so
also is conditional independence. We write A ‖B C if sets of random variables
A and C are independent conditionally upon B. Attempts to axiomatize condi-
tional independence relation have been made [22]. Studený [23] has shown that
conditional independence has no finite complete characterization. Similarly,
one can define conditional nondeducibility between sets of pieces of informa-
tion. Unlike their non-conditional counterparts, the propositional properties of
conditional independence and conditional nondeducibility are different. Con-
ditional nondeducibility has been studied in database theory, where it became
known as embedded multivalued dependency. Parker and Parsaye-Ghomi [21]
have shown that this relation can not be described by a finite system of in-
ference rules. Herrmann [10, 11] proved the undecidability of the propositional
theory of this relation. Lang, Liberatore, and Marquis [13] studied the complex-
ity of conditional nondeducibility between sets of propositional variables. More
recently, Grädel and Väänänen discussed incomplete logical systems describ-
ing properties of the conditional nondeducibility in the propositional and the
first order languages [6] and suggested model checking game semantics for these
systems [5]. Naumov and Nicholls [19] gave a complete recursively enumerable
axiomatization of conditional nondeducibility.

So far, we have been assuming that sets A and B in relation A ‖ B are
disjoint. If this assumption is removed, then an additional axiom

5. Determinicity: A ‖ B → (C ‖ C → A ‖ B,C)

should be added to the Geiger, Paz, and Pearl system to make it complete
with respect to probabilistic, information flow, game theory, and concurrency
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semantics. The propositional theory in all four of these cases still remains the
same.

The situation becomes very different, however, in the case of conditional
relations, where, for example, Naumov and Nicholls [19] axiomatization can
not be easily generalized to the case when sets A and C are not disjoint in
the conditional nondeducibility relation A ‖B C. The reason for this is that
conditional nondeducibility statement A ‖B A is equivalent to the statement
that A is functionally dependent on B. Functional dependency of A on B, that
we also denote by B B A, is another well-known relation. This relation was
shown by Armstrong [1] to be completely described by the following axioms:

1. Reflexivity: ABB, if A ⊇ B,

2. Augmentation: ABB → A,C BB,C,

3. Transitivity: ABB → (B B C → AB C).

The above axioms are known in database literature as Armstrong axioms [3,
p. 81]. Thus, any axiomatization of relation A ‖B C, where sets A and C are not
necessarily disjoint, would have to capture properties of both nondeducibility
and functional dependency relations, as well as the properties that connect these
two relations. The only result known to us in this direction is Kelvey, More,
Naumov, and Sapp [12] axiomatic system combining relations a ‖ b and a B b
under information flow and probabilistic semantics.

In this article we introduce conditional interchangeability relation A ‖B C
and give a complete axiomatization of this relation when sets A and C are not
necessarily disjoint. We restrict our consideration, however, to the case when
set B contains exactly one element. We discuss the more general case of an
arbitrary finite set B in the conclusion.

There are at least two different ways to define conditional interchangeability.
One way is to closely follow the information flow definition and say that A ‖1B C
means that for each two Nash equilibria e1 and e2 that agree on players in set
B, there is a Nash equilibrium e of the same game such that e agrees with
e1 on players in sets A and B and e agrees with e2 on players in sets B and
C. The second way is to say that A ‖2B C means that in any restricted game,
where all players in set B publicly commit to some strategies, sets A and C are
interchangeable in the unconditional sense.

To illustrate the difference between these two definitions, consider a game
between players a, b, and c in which each of the players chooses an integer
number. If all three numbers have the same parity, then each of the players
is paid one dollar, otherwise nobody is paid. The Nash equilibria of this game
are all triples (x, y, z) such that either all three numbers are odd or all three
numbers are even. Thus, if (x1, y, z1) and (x2, y, z2) are two Nash equilibria
that agree on strategy of player b, then strategy profile (x1, y, z2) is also a Nash
equilibria. Hence, a ‖1b c.

On the other hand, let player b publicly commit to a strategy ŷ. Then the
game is essentially reduced to a two-player game between players a and c. In
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this new game, Nash equilibria are all pairs (x, z) such that x and z have the
same parity1. Thus, no matter what the value of ŷ is, strategy profiles (1, 1)
and (0, 0) are Nash equilibria and strategy profile (1, 0) is not. Therefore, a ‖2b c
is false.

These two different definitions of conditional interchangeability lead to two
different notions of functional dependency. We denote relation A ‖1B A by BB1A
and relation A ‖2B A by B B2 A. The first of these relations satisfies Arm-
strong axioms. Harjes and Naumov [9] have not only shown the completeness
of Armstrong axioms with respect to this semantics, but have also described
an extension of Armstrong system for games with a fixed dependency graph
for pay-off functions. They also studied the same relation in what they called
cellular games [8]. The second dependency relation has been called rationally
functional dependency by Naumov and Nicholls [18], who gave the following
complete axiomatization of this relation:

1. Reflexivity: AB2 A,

2. Right Monotonicity: AB2 B,C → AB2 B,

3. Union: AB2 B → (AB2 C → AB2 B,C),

4. Weak Transitivity: AB2 B → (A,B B2 C → AB2 C).

As we have seen from the example above, A ‖1B C and A ‖2B C are two
different relations. Propositional properties of these relations are different as
well. For example, the following three principles are valid for relation A ‖1B C:

A ‖1C B ∧A ‖1B,C D → A ‖1C B,D,

A,B ‖1C D → A ‖1B,C D,

B ‖1A C ∧ E ‖1B D ∧ D ‖1C F ∧ E ‖1D F ∧ A ‖1E F → E ‖1A F.

The same principles are also valid for conditional nondeducibility, but none of
them is valid for relation A ‖2B C. We think, although we did not prove this,
that complete axiomatization of relation A ‖1B C could be given by the same
axioms as complete axiomatization of conditional nondeducibility [19].

In relation A ‖1B C we essentially restrict the set of all equilibria of the
original game to those that have specific strategies of players in set B, without
any intuition as to why this restriction should be considered. In the relation
A ‖2B C, on the other hand, the restriction comes from the public commitment
of players in set B. For this reason, we think that A ‖2B C is a more meaningful
relation to consider. Thus, in this article we study only the relation A ‖2B C,
which, from now on, will be denoted simply by A ‖B C and called conditional
interchangeability. Our main result is a complete axiomatization of this rela-
tion when B is a single-element set. In the conclusion we discuss some of the
principles that we have found for the case when set B is an arbitrary set of
players.

1Later in the article, it will be technically more convenient to refer to the Nash equilibria
of the restricted game as (x, ŷ, z).
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2 Syntax and Semantics

In this section we review basic notations and definitions from game theory,
specify the propositional language that we study, and formally define conditional
interchangeability.

Definition 1 A strategic game is a triple G = (P, {Sp}p∈P , {up}p∈P ), where

1. P is a non-empty finite set of “players”.

2. Sp is a non-empty set of “strategies” of a player p ∈ P . Elements of the
cartesian product

∏
p∈P Sp are called “strategy profiles”.

3. up is a “pay-off” function from strategy profiles into the set of real num-
bers.

As is common in the game theory literature, for any tuple a = 〈ai〉i∈I , any i0 ∈ I,
and any value b, by (a−i0 , b) we mean the tuple a in which i0-th component is
changed from ai0 to b.

Definition 2 Nash equilibrium of a strategic game G = (P, {Sp}p∈P , {up}p∈P ),
is a strategy profile s such that up0(s−p0 , s0) ≤ up0(s) for each p0 ∈ P and each
s0 ∈ Sp0 .

The set of all Nash equilibria of a game G is denoted by NE(G).

Definition 3 Let G = (P, {Sp}p∈P , {up}p∈P ) be any strategic game, b ∈ P be

any player, and b̂ be any strategy from set Sb. By restricted game G[b 7→ b̂] we
mean game (P, {S′p}p∈P , {up}p∈P ), where

S′p =

{
{b̂p} if p = b,
Sp otherwise.

Definition 4 For any finite set of players P , the set of formulas Φ(P ) is the
minimal set of formulas such that:

1. ⊥ ∈ Φ(P ),

2. A ‖b C ∈ Φ(P ), where A and C are two subsets of P and b ∈ P .

3. ϕ→ ψ ∈ Φ(P ), if ϕ,ψ ∈ Φ(P ).

If x = 〈xi〉i∈I and y = 〈yi〉i∈I are two tuples such that xa = ya for each a ∈ A,
then we write x ≡A y. Next, we define the truth relation G � ϕ between a game
G and a formula ϕ:

Definition 5 For any game G = (P, {Sp}p∈P , {up}p∈P ) and any formula ϕ ∈
Φ(P ), binary relation G � ϕ is defined as follows:

1. G 2 ⊥,
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2. G � ϕ→ ψ if and only if G 2 ϕ or G � ψ,

3. G � A ‖b C if for each b̂ ∈ Sb and each e1, e2 ∈ NE(G[b 7→ b̂]) there is

e ∈ NE(G[b 7→ b̂]) such that e ≡A e1 and e ≡C e2.

The third part of the above definition is the key definition of this article. It
formally specifies conditional interchangeability relation.

3 Axioms

For any set of players P , our logical system consists of propositional tautologies
in language Φ(P ), Modus Ponens inference rule, and the following axioms:

1. Reflexivity: A ‖b b,

2. Symmetry: A ‖b C → C ‖b A,

3. Monotonicity: A ‖b C,D → A ‖b C,

4. Exchange: A ‖b C → (A,C ‖b D → A ‖b C,D),

5. Determinicity: A ‖b C → (D ‖b D → A ‖b C,D).

The first four of these axioms are a natural adaptation of the Geiger, Paz, and
Pearl axioms mentioned in the introduction. The non-conditional version of
Determinicity axiom has also been mentioned in the introduction. We write
X ` ϕ if formula ϕ is provable in our system using an additional set of axioms
X. We write ` ϕ instead of ∅ ` ϕ.

4 Soundness

In this section we prove soundness of axioms 1.-5.

Theorem 1 For any finite set of parties P and any ϕ ∈ Φ(P ), if ` ϕ, then
G � ϕ for each game G = (P, {Sp}p∈P , {up}p∈P ).

Proof. It will be sufficient to verify that G � ϕ for each axiom ϕ of our logical
system. Soundness of propositional tautologies and the Modus Ponens rule is
trivial.

Reflexivity Axiom. Let b̂ ∈ Sb. Consider any two Nash equilibria e′ = 〈e′p〉p∈P ∈
NE(G[b 7→ b̂]) and e′′ = 〈e′′p〉p∈P ∈ NE(G[b 7→ b̂]). We need to show that there

is e = 〈ep〉p∈P ∈ NE(G[b 7→ b̂]) such that e′ ≡A e ≡b e
′′. Indeed, let e be

equilibrium e′. Then, eb = e′b = b̂ = e′′b and e ≡A e′. Therefore, e′ ≡A e ≡b e
′′.

Symmetry Axiom. Assume G � A ‖b C. Let b̂ ∈ Sb. Consider any two Nash

equilibria e′ ∈ NE(G[b 7→ b̂]) and e′′ ∈ NE(G[b 7→ b̂]). We need to show

that there is e ∈ NE(G[b 7→ b̂]) such that e′ ≡C e ≡A e′′. Indeed, by the
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assumption, there exists e ∈ NE(G[b 7→ b̂]) such that e ≡A e′′ and e ≡C e′.
Therefore, e′ ≡C e ≡A e′′.

Monotonicity Axiom. Assume G � A ‖b C,D. Let b̂ ∈ Sb. Consider any two

Nash equilibria e′ ∈ NE(G[b 7→ b̂]) and e′′ ∈ NE(G[b 7→ b̂]). We need to show

that there is e ∈ NE(G[b 7→ b̂]) such that e′ ≡A e ≡C e′′. Indeed, by the

assumption, there must exist e ∈ NE(G[b 7→ b̂]) such that e′ ≡A e ≡C,D e′′.
Therefore, e′ ≡A e ≡C e′′.

Exchange Axiom. Assume G � A ‖b C and G � A,C ‖b D. Let b̂ ∈ Sb. Consider

any two Nash equilibria e′ ∈ NE(G[b 7→ b̂]) and e′′ ∈ NE(G[b 7→ b̂]). We need

to show that there is e ∈ NE(G[b 7→ b̂]) such that e′ ≡A e ≡C,D e′′. By the

assumption G � A ‖b C, there is a Nash equilibrium e′′′ ∈ NE(G[b 7→ b̂]) such
that e′′′ ≡A e′ and e′′′ ≡C e′′. Since G � A,C ‖b D, there is a Nash equilibrium

e ∈ NE(G[b 7→ b̂]) such that e ≡A,C e′′′ and e ≡D e′′. Thus, e ≡A e′′′ ≡A e′

and e ≡C e′′′ ≡C e′′ and e ≡D e′′. Therefore, e′ ≡A e ≡C,D e′′.

Determinicity Axiom. Assume G � A ‖b C and G � D ‖b D. Let b̂ ∈ Sb.

Consider any two Nash equilibria e′ ∈ NE(G[b 7→ b̂]) and e′′ ∈ NE(G[b 7→ b̂]).

We need to show that there is e ∈ NE(G[b 7→ b̂]) such that e′ ≡A e ≡C,D e′′. By

the assumption G � A ‖b C, there exists e ∈ NE(G[b 7→ b̂]) such that e ≡A e′

and e ≡C e′′. By the assumption G � D ‖b D, there exists e′′′ ∈ NE(G[b 7→ b̂])
such that e′′′ ≡D e and e′′′ ≡D e′′. Thus, e ≡D e′′′ ≡D e′′. Therefore,
e′ ≡A e ≡C,D e′′. �

5 Completeness

We state and prove completeness of our logical system later in the article as
Theorem 2. The proof of the completeness theorem will construct a counter-
example game for each formula not provable in our system. This game will
be defined as a composition of multiple “mini” games played concurrently. We
start first by defining the mini games and proving their basic properties to be
used later in the proof of completeness.

5.1 Game G1(P, a, b)

In the first type of mini game, called G1, there are two special players a and
b. Player a is rewarded for choosing strategy 1. Player b is also rewarded to
choose 1, but only if player a chooses 1 as well. All other players are rewarded
to match the choice of player a.

Definition 6 For any set P and any two distinct a, b ∈ P , by G1(P, a, b) we
mean triple (P, {Sp}p∈P , {up}p∈P ) such that:

1. Sp = {0, 1}, for each p ∈ P ,
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2. For each p ∈ P and each strategy profile 〈sq〉q∈P ∈
∏

q∈P Sq,

(a) if p = a, then up(〈sq〉q∈P ) = sp,

(b) if p = b, then

up(〈sq〉q∈P ) =

{
sp if sa = 1,
0 otherwise,

(c) if p /∈ {a, b}, then

up(〈sq〉q∈P ) =

{
1 if sp = sa,
0 otherwise.

Lemma 1 For any y ∈ P and any ŷ ∈ {0, 1}, game G1(P, a, b)[y 7→ ŷ] has at
least one Nash equilibrium.

Proof. If y = a, then strategy profile 〈ep〉p∈P , where ep = ŷ, for each p ∈ P , is a
Nash equilibrium of the game G1(P, a, b)[y 7→ ŷ]. If y 6= a, then strategy profile
〈ep〉p∈P such that, for each p ∈ P ,

ep =

{
ŷ if p = y,
1 otherwise.

is a Nash equilibrium of the same game G1(P, a, b)[y 7→ ŷ]. �

The next key lemma describes which atomic conditional interchangeability
formulas are true in game G1.

Lemma 2 G1(P, a, b) 2 X ‖y Z if and only if y = a and b ∈ X ∩ Z, for all
subsets X,Z ⊆ P , and all y ∈ P .

Proof. (⇒) : We need to show that if either y 6= a or b /∈ X∩Z, then G1(P, a, b) �
X ‖y Z.

Let us assume first that y 6= a. Consider any ŷ ∈ Sy. By Definition 6, sa = 1
for each Nash equilibrium 〈sp〉p∈P of the game G1(P, a, b)[y 7→ ŷ]. Hence, again
by Definition 6, sp = 1 for each p ∈ P and each Nash equilibrium 〈sp〉p∈P
of the game G1(P, a, b)[y 7→ ŷ]. Thus, game G1(P, a, b)[y 7→ ŷ] has at most
one Nash equilibrium. Then, for each two equilibria s′ and s′′ of this game,
there is equilibrium s of the same game such that s′ ≡X s ≡Z s′′. Therefore,
G1(P, a, b) � X ‖y Z.

Let us now assume that y = a and b /∈ X ∩ Z. By Definition 6, sp = â for
each p ∈ P \ {b}, each â ∈ Sa, and each Nash equilibrium 〈sp〉p∈P of the game
G1(P, a, b)[a 7→ â]. Then,

s′ ≡P\{b} s
′′ (1)

for each two equilibria s′ and s′′ of the game G1(P, a, b)[a 7→ â] and for each
â ∈ Sa.

Recall that b /∈ X ∩ Z. Thus, b /∈ X or b /∈ Z. Without loss of generality,
assume that b /∈ X. To show that G1(P, a, b) � X ‖a Z, consider any two Nash
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equilibria s′ and s′′ of the game G1(P, a, b)[a 7→ â] and an arbitrary â ∈ Sa.
Note that s′ ≡X s′′ due to equality (1) and the assumption b /∈ X. Hence,
s′ ≡X s′′ ≡Z s′′.
(⇐) : Assume that y = a and b ∈ X ∩ Z and, at the same time, G1(P, a, b) �
X ‖y Z. Consider strategy profiles s′ = 〈s′p〉p∈P and s′′ = 〈s′′p〉p∈P such that
s′p = 0 for each p ∈ P and

s′′p =

{
1 if p = b,
0 otherwise.

By Definition 6, s′, s′′ ∈ NE(G1(P, a, b)[a 7→ 0]). Thus, due to the assumption
G1(P, a, b) � X ‖y Z, there must exist s ∈ NE(G1(P, a, b)[a 7→ 0]) such that
s′ ≡X s ≡Z s′′. Hence, s′ ≡X∩Z s′′. Thus, s′b = s′′b due to the assumption
b ∈ X ∩ Z. Therefore, 0 = s′b = s′′b = 1, which is a contradiction. �

5.2 Game G2(P, a,B)

We now introduce the second type of mini game used in the proof of complete-
ness, called G2. This game has a special player a and a set of special players B.
Player a is always rewarded to choose strategy 1. Each player in set B is also
rewarded to choose strategy 1, but only if player a chooses strategy 1 as well;
otherwise all players in set B are rewarded if the sum of their strategies is even.
All other players are rewarded to choose the same strategy as player a.

Definition 7 For any set P , any a ∈ P , and any B ⊆ P , such that a /∈ B and
|B| ≥ 2, by game G2(P, a,B) we mean triple (P, {Sp}p∈P , {up}p∈P ) such that:

1. Sp = {0, 1}, for each p ∈ P ,

2. For each p ∈ P and each strategy profile 〈sq〉q∈P ∈
∏

q∈P Sq,

(a) if p = a, then up(〈sq〉q∈P ) = sp,

(b) if p ∈ B, then

up(〈sq〉q∈P ) =

 sp if sa = 1,
1 if sa = 0 and

∑
b∈B sb ≡ 0 (mod 2),

0 otherwise,

(c) if p /∈ {a} ∪B, then

up(〈sq〉q∈P ) =

{
1 if sp = sa,
0 otherwise.

Lemma 3 For any y ∈ P and any ŷ ∈ {0, 1}, game G2(P, a,B)[y 7→ ŷ] has at
least one Nash equilibrium.
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Proof. If y = a, then strategy profile 〈ep〉p∈P , where ep = ŷ, for each p ∈ P , is a
Nash equilibrium of the game G2(P, a, b)[y 7→ ŷ]. If y 6= a, then strategy profile
〈ep〉p∈P such that, for each p ∈ P ,

ep =

{
ŷ if p = y,
1 otherwise.

is a Nash equilibrium of the same game G2(P, a, b)[y 7→ ŷ]. �

The next lemma is the key lemma about game G2. It describes which atomic
conditional interchangeability properties are true in this game.

Lemma 4 G2(P, a,B) 2 X ‖y Z if and only if y = a, X ∩B 6= ∅, Z ∩B 6= ∅,
and at least one of the following two conditions is satisfied:

1. B ⊆ X ∪ Z,

2. X ∩ Z ∩B 6= ∅,

for all subsets X,Z ⊆ P , and all y ∈ P .

Proof. (⇒) : We consider four cases separately.
Case 1: Assume that y 6= a. Consider any ŷ ∈ Sy. By Definition 7, sa = 1 for
each Nash equilibrium 〈sp〉p∈P of the game G2(P, a,B)[y 7→ ŷ]. Hence, again
by Definition 7, sp = 1 for each p ∈ P and each Nash equilibrium 〈sp〉p∈P
of the game G2(P, a,B)[y 7→ ŷ]. Thus, game G2(P, a,B)[y 7→ ŷ] has at most
one Nash equilibrium. Then, for each two equilibria s′ and s′′ of this game,
there is equilibrium s of the same game such that s′ ≡X s ≡Z s′′. Therefore,
G2(P, a,B) � X ‖y Z.
Case 2: Let X ∩B = ∅ and y = a. Let â be any element of {0, 1}. We need to
show that for any two Nash equilibria s′ and s′′ of the game G2(P, a,B)[a 7→ â],
there is an equilibrium s of the same game such that s′ ≡X s ≡Z s′′.

Due to Definition 7, sp = sa for any p ∈ P \B and for any Nash equilibrium
〈sp〉p∈P of the game G2(P, a,B)[a 7→ â]. Thus, s′ ≡P\B s′′. Therefore, s′ ≡X

s′′ ≡Z s′′ due to the assumption X ∩B = ∅.
Case 3: Let Z ∩B = ∅ and y = a. This case is similar to Case 2.
Case 4: Assume that y = a, that there is b0 ∈ B such that b0 /∈ X ∪ Z, and
that X ∩ Z ∩ B = ∅. We will show that G2(P, a,B) � X ‖a Z. Consider an
arbitrary â ∈ {0, 1}. We need to prove that for any Nash equilibria s′ and s′′ of
the game G2(P, a,B)[a 7→ â] there is equilibrium s of the same game such that
s′ ≡X s ≡Z s′′.

If â = 1, then by Definition 7, sp = 1 for each p ∈ P and for each Nash equi-
librium 〈sp〉p∈P of the game G2(P, a,B)[a 7→ 1]. Thus, game G2(P, a,B)[a 7→ 1]
has at most one Nash equilibrium. Then, for each two equilibria s′ and s′′ of
this game, there is equilibrium s of the same game such that s′ ≡X s ≡Z s′′.
Therefore, G2(P, a,B) � X ‖a Z.

Let now â = 0. Consider any two equilibria s′ = 〈s′p〉p∈P and s′′ = 〈s′′p〉p∈P
of the game G2(P, a,B)[a 7→ 0]. Note that by Definition 7, s′p = s′′p = 0 for
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each p ∈ P \ B. Recall the assumption X ∩ Z ∩ B = ∅. Let strategy profile
s = 〈sp〉p∈P of the game G2(P, a,B)[a 7→ 0] be defined as follows

sp =


s′p if p ∈ X ∩B,
s′′p if p ∈ Z ∩B,
u if p = b0,
0 otherwise,

where u ∈ {0, 1} is such that

u ≡
∑

b∈X∩B

s′b +
∑

b∈Z∩B

s′′b (mod 2).

Thus, due to the assumption X ∩ Z ∩B = ∅,∑
b∈B

sb = sb0 +
∑

b∈X∩B sb +
∑

b∈Z∩B sb +
∑

b∈B\(X∪Z) sb =

u+
∑

b∈X∩B sb +
∑

b∈Z∩B sb + 0 ≡ 2u ≡ 0 (mod 2).

Therefore, by Definition 7, strategy profile s is a Nash equilibrium of the game
G2(P, a,B)[a 7→ 0].
(⇐) : We consider two cases separately.
Case 1: Assume that y = a, that there is b0 ∈ X∩Z∩B, and that G2(P, a,B) �
X ‖a Z. Due to the condition |B| ≥ 2 of Definition 7, there must exist b1 ∈ B
such that b1 6= b0. Consider strategy profiles s′ = 〈s′p〉p∈P and s′′ = 〈s′′p〉p∈P
such that s′p = 0 for each p ∈ P and that

s′′p =

{
1 if p ∈ {b0, b1},
0 otherwise.

By Definition 7, strategy profiles s′ and s′′ are Nash equilibria of the game
G2(P, a,B)[a 7→ 0]. Thus, by the assumption G2(P, a,B) � X ‖a Z, there
exists Nash equilibrium s = 〈sp〉p∈P of the game G2(P, a,B)[a 7→ 0] such that
s′ ≡X s ≡Z s′′. Therefore, 0 = s′b0 = sb0 = s′′b0 = 1, which is a contradiction.
Case 2: Suppose now that X ∩Z ∩B = ∅, that B ⊆ X ∪Z, that G2(P, a,B) �
X ‖a Z, and that there are bX ∈ X ∩ B and bZ ∈ Z ∩ B. Note that bX 6= bZ
due to the assumption X ∩ Z ∩B = ∅. Consider strategy profiles s′ = 〈s′p〉p∈P
and s′′ = 〈s′′p〉p∈P such that s′p = 0 for each p ∈ P and that

s′′p =

{
1 if p ∈ {bX , bZ},
0 otherwise.

By Definition 7, strategy profiles s′ and s′′ are Nash equilibria of the game
G2(P, a,B)[a 7→ 0]. Thus, by the assumption G2(P, a,B) � X ‖a Z, there
exists Nash equilibrium s = 〈sp〉p∈P of the game G2(P, a,B)[a 7→ 0] such that
s′ ≡X s ≡Z s′′. Hence, due to the assumptions X ∩Z ∩B = ∅ and B ⊆ X ∪Z,∑

b∈B

sb =
∑

b∈X∩B

sb +
∑

b∈Z∩B

sb = 0 + sbZ = 1,

11



which is a contradiction to Definition 7 and the assumption that s is Nash equi-
librium of the game G2(P, a,B)[a 7→ 0]. �

5.3 Critical Sets

Any proof of completeness could be viewed as a bridge connecting provability
with semantics. In the previous section we prepared for this bridge construction
on the semantics site by introducing mini games G1 and G2. Let us now turn
to provability site and define the notion of d-critical set. In the proof of com-
pleteness, d-critical set will be used as set of special players B for mini game
G2. We start with a sequence of lemmas in which we assume a fixed finite set
of parties P and a fixed set of formulas X ⊆ Φ(P ).

Definition 8 For any d ∈ P , a set C ⊆ P is called d-critical if there is a
disjoint partition C = C1 ∪ C2, called a “d-critical partition”, such that

1. X 0 C1 ‖d C2,

2. X ` C1 ∩ E ‖d C2 ∩ E, for any E ( C.

Lemma 5 Any d-critical partition is a non-trivial partition.

Proof. It is sufficient to prove that for any set A, we have X ` A ‖d ∅
and X ` ∅ ‖d A. Indeed, by the Reflexivity axiom, ` A ‖d d. Hence, by
the Monotonicity axiom, X ` A ‖d ∅. Therefore, by the Symmetry axiom,
X ` ∅ ‖d A. �

Lemma 6 X 0 A ‖d B, for any non-trivial (but not necessarily d-critical)
disjoint partition C = A ∪B of a d-critical set C.

Proof. Suppose X ` A ‖d B and let C = C1 ∪ C2 be a d-critical partition of C.
By the Monotonicity and Symmetry axioms, X ` A ∩ C ‖d B ∩ C. Thus,

X ` A ∩ C1, A ∩ C2 ‖d B ∩ C1, B ∩ C2. (2)

Since A ∪ B is a non-trivial partition of C, sets A and B are both non-empty.
Thus, A ( C and B ( C. Hence, by the definition of a d-critical set, X `
A ∩ C1 ‖d A ∩ C2 and X ` B ∩ C1 ‖d B ∩ C2.

Note that A∩C is not empty since A∪B is a non-trivial partition of C. Thus,
either A ∩ C1 or A ∩ C2 is not empty. Without loss of generality, assume that
A ∩ C1 6= ∅. From (2) and our earlier observation that X ` A ∩ C1 ‖d A ∩ C2,
the Exchange axiom yields

X ` A ∩ C1 ‖d A ∩ C2, B ∩ C1, B ∩ C2.

By the Symmetry axiom,

X ` A ∩ C2, B ∩ C1, B ∩ C2 ‖d A ∩ C1. (3)
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The assumption A ∩ C1 6= ∅ implies that (A ∩ C2) ∪ (B ∩ C1) ∪ (B ∩ C2) ( C.
Hence, by the definition of a critical set,

X ` B ∩ C1 ‖d A ∩ C2, B ∩ C2.

By Symmetry axiom,

X ` A ∩ C2, B ∩ C2 ‖d B ∩ C1.

From (3) and the above statement, using the Exchange axiom,

X ` A ∩ C2, B ∩ C2 ‖d A ∩ C1, B ∩ C1.

Since A ∪ B is a partition of C, we can conclude that X ` C2 ‖d C1. By the
Symmetry axiom, X ` C1 ‖d C2, which contradicts the assumption that C1∪C2

is a d-critical partition. �

Lemma 7 For any two disjoint subsets A,B ⊆ P , if X 0 A ‖d B, then there is
a d-critical partition C1 ∪ C2, such that C1 ⊆ A and C2 ⊆ B.

Proof. Consider the partial order � on set 2A×2B such that (E1, E2) � (F1, F2)
if and only if E1 ⊆ F1 and E2 ⊆ F2. Define

E = {(E1, E2) ∈ 2A × 2B | X 0 E1 ‖d E2}.

X 0 A ‖d B implies that (A,B) ∈ E . Thus, E is a non-empty finite set. Take
(C1, C2) to be a minimal element of set E with respect to partial order �. �

Lemma 8 If X ` A ‖d B and if C is a d-critical set, then A ∩B ∩ C = ∅.

Proof. Suppose that c ∈ A ∩ B ∩ C. Assumption X ` A ‖d B, by Mono-
tonicity and Symmetry axioms, implies that X ` c ‖d c. Let C1 ∪ C2 be a
d-critical partition such that C = C1 ∪ C2. Without loss of generality, assume
that c ∈ C2. By the definition of a d-critical partition, X ` C1 ‖d C2\{c}. From
X ` c ‖d c and X ` C1 ‖d C2 \ {c}, by Determinicity axiom, we can conclude
that X ` C1 ‖d C2, which is a contradiction to the definition of a d-critical
partition. �

5.4 Combining games G1 and G2

The following lemma, essentially, combines properties of games G1 and G2,
earlier expressed in Lemma 2 and Lemma 4.

Lemma 9 For any set of formulas X in the language Φ(P ), any subsets R, T ⊆
P , and any s ∈ P , if X 0 R ‖s T , then there exists a game G with the set of
players P such that
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1. game G[y 7→ ŷ] has at least one Nash equilibrium for any player y ∈ P
and any strategy ŷ of the player y in the game G,

2. G 2 R ‖s T ,

3. G � E ‖d F for any E,F ⊆ P and any d ∈ P such that X ` E ‖d F .

Proof. By Lemma 7, there exists s-critical partition R′ ∪ T ′ such that R′ ⊆ R
and T ′ ⊆ T . We consider two separate cases.
Case 1: R′ ∩ T ′ is not empty. Let q ∈ R′ ∩ T ′. Then X ` R′ \ {q} ‖s T ′ \ {q}
because R′ ∪ T ′ is an s-critical partition. By Determinicity axiom, X ` q ‖s
q → R′ \ {q} ‖s T ′. By Symmetry axiom, X ` q ‖s q → T ′ ‖s R′ \ {q}. By
Determinicity axiom, X ` q ‖s q → T ′ ‖s R′. By Symmetry axiom, X ` q ‖s
q → R′ ‖s T ′. By the definition of an s-critical set, X 0 R′ ‖s T ′. Thus,

X 0 q ‖s q. (4)

Let G be game G1(P, s, q). By Lemma 1, game G1(P, s, q)[y 7→ ŷ] has at least
one Nash equilibrium for any y ∈ P and any strategy ŷ of the player y in
the game. Note also that q ∈ R′ ∩ T ′ ⊆ R ∩ T . Therefore, by Lemma 2,
G1(P, s, q) 2 R ‖s T . We are now left to show that G1(P, s, q) � E ‖d F for any
E,F ⊆ P and any d ∈ P such that X ` E ‖d F . Assume G1(P, s, q) 2 E ‖d F
for some E,F ⊆ P and some d ∈ P such that X ` E ‖d F . By Lemma 2, d = s
and q ∈ E ∩ F . By the assumption that X ` E ‖d F and the Monotonicity
axiom, X ` E ‖s q. By the Symmetry and Monotonicity axioms, X ` q ‖s q,
which is a contradiction to statement (4).
Case 2: R′ ∩ T ′ is empty. By Lemma 5, R′ and T ′ each contain at least one
element. Therefore, |R′ ∪ T ′| ≥ 2 due to assumption that R′ ∩ T ′ is empty. Let
game G be game G2(P, s,R′ ∪ T ′). By Lemma 3, game G2(P, s,R′ ∪ T ′)[y 7→ ŷ]
has at least one Nash equilibrium for any y ∈ P and any strategy ŷ of the player
y in the game. Note that R∩ (R′ ∪T ′) is not empty because R∩ (R′ ∪T ′) ⊇ R′
and T ∩(R′∪T ′) is not empty because T ∩(R′∪T ′) ⊇ T ′. Also, R′∪T ′ ⊆ R∪T .
Hence, G2(P, s,R′ ∪ T ′) 2 R ‖s T , by Lemma 4.

We are now again left to show that G2(P, s,R′∪T ′) � E ‖d F for any E,F ⊆
P and any d ∈ P such that X ` E ‖d F . Assume G2(P, s,R′ ∪T ′) 2 E ‖d F for
some E,F ⊆ P and some d ∈ P such that X ` E ‖d F . By Lemma 4, d = s,
E ∩ (R′ ∪ T ′) 6= ∅, F ∩ (R′ ∪ T ′) 6= ∅, and one of the following two conditions
is true:

1. R′ ∪ T ′ ⊆ E ∪ F ,

2. E ∩ F ∩ (R′ ∪ T ′) 6= ∅.

Recall that X ` E ‖d F and that R′ ∪ T ′ is an s-critical set. Thus, the sec-
ond of the two conditions above does not hold due to Lemma 8. Hence, we
can assume that R′ ∪ T ′ ⊆ E ∪ F and that (R′ ∪ T ′) ∩ E ∩ F = ∅. The
latter implies that sets E ∩ (R′ ∪ T ′) and F ∩ (R′ ∪ T ′) are disjoint. These
sets form a partition of R′ ∪ T ′ because R′ ∪ T ′ ⊆ E ∪ F . This disjoint par-
tition is nontrivial because E ∩ (R′ ∪ T ′) 6= ∅ and F ∩ (R′ ∪ T ′) 6= ∅. Then,
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X 0 E ∩ (R′ ∪ T ′) ‖d F ∩ (R′ ∪ T ′), by Lemma 6. Therefore, due to Symmetry
and Monotonicity axioms, X 0 E ‖d F , which is a contradiction. �

5.5 Game Composition

Informally, by a composition of several games we mean a game in which each
of the composed games is played independently. Pay-off of any player is defined
as the sum of the pay-offs in the individual games.

Definition 9 Let {Gi}i∈I = {(P, {Si
p}p∈P , {uip}p∈P )}i∈I be a finite family of

strategic games with the same set of players P . By composition game
⊗

iG
i we

mean game (P, {Sp}p∈P , {up}p∈P ) such that

1. Sp =
∏

i S
i
p,

2. up(〈〈sip〉i∈I〉p∈P ) =
∑

i u
i
p(〈sip〉p∈P ).

Lemma 10

NE

(⊗
i

Gi

)
= {〈〈eip〉i∈I〉p∈P | 〈eip〉p∈P ∈ NE(Gi) for each i ∈ I}.

Proof. First, assume that 〈ep〉p∈P = 〈〈eip〉i∈I〉p∈P ∈ NE
(⊗

iG
i
)
. We need to

show that 〈eip〉p∈P ∈ NE(Gi) for each i ∈ I. Indeed, suppose that for some
i0 ∈ I, some p0 ∈ P , and some s0 ∈ Sp0

we have

ui0p0
((〈ei0p 〉p∈P )−p0

, s0) > ui0p0
(〈ei0p 〉p∈P ). (5)

Define strategy profile 〈êp〉p∈P = 〈〈êip〉i∈I〉p∈P of the game
⊗

iG
i as follows:

êip =

{
s0 if i = i0 and p = p0,

eip otherwise.

Note that, taking into account inequality (5),

up0(〈êp〉p∈P ) =
∑
i∈I

uip0
(〈êip〉p∈P ) = ui0p0

(〈êi0p 〉p∈P ) +
∑
i 6=i0

uip0
(〈êip〉p∈P ) =

= ui0p0
((〈ei0p 〉p∈P )−p0

, s0) +
∑
i 6=i0

uip0
(〈eip〉p∈P ) >

> ui0p0
(〈ei0p 〉p∈P ) +

∑
i 6=i0

uip0
(〈eip〉p∈P ) =

=
∑
i

uip0
(〈eip〉p∈P ) = up0

(〈ep〉p∈P ),

which is a contradiction with the assumption that 〈ep〉p∈P is a Nash equilibrium
of the game

⊗
iG

i.
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Next, assume that {〈eip〉p∈P }i∈I is such a set that for any i ∈ I,

〈eip〉p∈P ∈ NE(Gi) (6)

We will prove that 〈〈eip〉i∈I〉p∈P ∈ NE
(⊗

iG
i
)
. Indeed, consider any p0 and

any 〈si0〉i∈I ∈
∏

i∈I S
i
p0

. By assumption (6) and Definition 2, for any i ∈ I

uip0
((〈eip〉p∈P )−p0

, si0) ≤ uip0
(〈eip〉p∈P ).

Thus,

up0
((〈〈eip〉i∈I〉p∈P )−p0

, 〈si0〉i∈I) =
∑
i∈I

uip0
((〈eip〉p∈P )−p0

, si0) ≤

≤
∑
i∈I

uip0
(〈eip〉p∈P ) = up0(〈〈eip〉i∈I〉p∈P ).

Therefore, 〈〈eip〉i∈I〉p∈P ∈ NE
(⊗

iG
i
)
. �

Lemma 11 Let {Gi}i∈I = {(P, {Si
p}p∈P , {uip}p∈P )}i∈I be a finite set of games

with the same set of players P and d be a player in P . If d̂ ∈ Si
d for each i ∈ I,

then ⊗
i

(Gi[d 7→ d̂i]) = (
⊗
i

Gi)[d 7→ 〈d̂i〉i∈I ].

�

Lemma 12 Let {Gi}i∈I = {(P, {Si
p}p∈P , {uip}p∈P )}i∈I be a finite set of games

with the same set of players. For any subsets A and B of the set P and any
d ∈ P , if for each i ∈ I and each d̂ ∈ Si

d game Gi[d 7→ d̂] has at least one Nash
equilibrium, then⊗

i

Gi � A ‖d B iff ∀i (Gi � A ‖d B).

Proof. (⇒) : Suppose that
⊗

iG
i � A ‖d B and consider any i0 ∈ I. We

will prove that Gi0 � A ‖d B. Indeed, let d0 ∈ Si0
d and f = 〈fp〉p∈P ∈

NE(Gi0 [d 7→ d0]) and g = 〈gp〉p∈P ∈ NE(Gi0 [d 7→ d0]). We will construct
h = 〈hp〉p∈P ∈ NE(Gi0 [d 7→ d0]) such that f ≡A h ≡B g.

By Definition 1, set Si
d is not empty for each i ∈ I. Let 〈d̂i〉i∈I be any tuple

in
∏

i∈I S
i
d such that d̂i0 = d0. By the assumption of the lemma, for any i ∈ I

there is at least one Nash equilibrium 〈eip〉p∈P of the game Gi[d 7→ d̂i].

Consider strategy profiles f̂ = 〈〈f̂ ip〉i∈I〉p∈P and ĝ = 〈〈ĝip〉i∈I〉p∈P for the

game
⊗

i(G
i[d 7→ d̂i]) such that

f̂ ip =

{
fp if i = i0,
eip otherwise,

(7)

16



and

ĝip =

{
gp if i = i0,
eip otherwise.

(8)

By Lemma 10, f̂ , ĝ ∈ NE(
⊗

i(G
i[d 7→ d̂i])). By Lemma 11,

f̂ , ĝ ∈ NE

((⊗
i

Gi

)
[d 7→ 〈d̂i〉i∈I ]

)
.

Thus, by assumption
⊗

iG
i � A ‖d B, there must exist

ĥ ∈ NE

((⊗
i

Gi

)
[d 7→ 〈d̂i〉i∈I ]

)
(9)

such that
f̂ ≡A ĥ ≡B ĝ. (10)

From (9) by Lemma 11

ĥ ∈ NE

(⊗
i

(Gi[d 7→ d̂i])

)
.

Define strategy profile h for the game Gi0 to be 〈hi0p 〉p∈P . By Lemma 10,

h ∈ NE(Gi0 [d 7→ d̂i0 ]). Hence, h ∈ NE(Gi0 [d 7→ d0]). From statements (10),
(7), and (8), it follows that f ≡A h ≡B g.

(⇐) : Assume that Gi � A ‖d B for all i ∈ I. Consider any d̂ = 〈d̂i〉i∈I ∈∏
i∈I S

i
d. Let f = 〈〈f ip〉i∈I〉p∈P ∈ NE((

⊗
iG

i)[d 7→ d̂]) and g = 〈〈gip〉i∈I〉p∈P ∈
NE((

⊗
iG

i)[d 7→ d̂]). We will show that there is e ∈ NE((
⊗

iG
i)[d 7→ d̂]) such

that f ≡A e ≡B g.
Indeed, by Lemma 11, f, g ∈ NE(

⊗
i(G

i[d 7→ d̂i])). Thus, by Lemma 10,

〈f ip〉p∈P ∈ NE(Gi[d 7→ d̂i]) and 〈gip〉p∈P ∈ NE(Gi[d 7→ d̂i]) for each i ∈ I.

Hence, by the assumption, for all i ∈ I there is 〈eip〉p∈P ∈ NE(Gi[d 7→ d̂i]) such

that 〈f ip〉p∈P ≡A 〈eip〉p∈P ≡B 〈gip〉p∈P . Thus,

〈〈f ip〉i∈I〉p∈P ≡A 〈〈eip〉i∈I〉p∈P ≡B 〈〈gip〉i∈I〉p∈P .

Pick strategy profile e to be 〈〈eip〉i∈I〉p∈P and notice that e ∈ NE(
⊗

i(G
i[d 7→

d̂i])) by Lemma 10. By Lemma 11, e ∈ NE((
⊗

iG
i)[d 7→ d̂]). �

Theorem 2 (completeness) For any finite P and any ϕ ∈ Φ(P ), if G � ϕ
for each game G with the set of players P , then ` ϕ.

Proof. Suppose that 0 ϕ. Let X be any maximal consistent subset of Φ(P ) such
that X 0 ϕ. By Lemma 9, for all subsets R, T ⊆ P and all s ∈ P , if X 0 R ‖s T ,
then there is a game GR,s,T with the set of players P such that

17



1. game GR,s,T [y 7→ ŷ] has at least one Nash equilibrium for any y ∈ P and
any strategy ŷ of the player y in the game GR,s,T ,

2. GR,s,T 2 R ‖s T ,

3. GR,s,T � E ‖d F for any E,F ⊆ P and any d ∈ P such that X ` E ‖d F .

Consider game

G =
⊗

X0R‖sT

GR,s,T ,

where sets R and T are restricted to subsets of P and s is restricted to players
from set P . Thus, game G is a composition of a finite set of games.

Lemma 13 X ` ψ if and only if G � ψ, for each formula ψ ∈ Φ(P ),

Proof. Induction on structural complexity of formula ψ. If ψ ≡ ⊥, then X 0 ψ
due to consistency of the set X and G 2 ψ by Definition 5. Suppose now that
ψ = A ‖b C.
(⇒) : If X ` A ‖b C, then GR,s,T � A ‖b C for each R, T ⊆ P and each s ∈ P
such that X 0 R ‖s T due to the choice of the game GR,s,T . Thus, G � A ‖b C
by Lemma 12.
(⇐) : If X 0 A ‖b C, then GA,b,C 2 A ‖b C due to the choice of the game
GA,b,C . Therefore, G 2 A ‖b C by Lemma 12.

The case ψ ≡ τ → σ follows from the maximality and the consistency of the
set X in the standard way. �
To finish the proof of the theorem, notice that G 2 ϕ due to Lemma 13 and the
assumption X 0 ϕ. �

6 Conclusion

In this article we introduced the notion of conditional interchangeability of Nash
equilibria in strategic games. Unlike the non-conditional case, the propositional
theory of this relation is different from the propositional theory of conditional
nondeducibility. We gave a complete axiomatization of the conditional inter-
changeability in the case with conditioning by a single player.

If conditioning by an arbitrary set of players is allowed, then new logical
principles must be added to the system to keep it complete. Surprisingly, the
new principles already appear if we allow a mix of atomic formulas conditioned
by a single player and atomic formulas conditioned by an empty set of players.
The latter, of course, is the same as non-conditional interchangeability. For
example, the following property is true in any three-player game with players
a, b, and c:

a ‖ c→ (b ‖ c→ (a ‖b c→ (b ‖a c→ a, b ‖ c))).

Indeed, consider any two equilibria 〈a1, b1, c1〉 and 〈a2, b2, c2〉 of a game G. It
will be sufficient to show that 〈a1, b1, c2〉 is a Nash equilibrium of the same
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game. By assumption a ‖ c, there is a strategy x of player b such that 〈a1, x, c2〉
is a Nash equilibrium of the game G. Note that 〈a1, b1, c1〉 and 〈a1, x, c2〉 are
also equilibria in the restricted game G[a 7→ a1]. Thus, 〈a1, b1, c2〉 is a Nash
equilibrium of the same restricted game, due to the assumption that b ‖a c.
Hence, by Definition 2, for any strategy q of player b and for any strategy r of
player c in the game G,

ub(a1, q, c2) ≤ ub(a1, b1, c2), (11)

uc(a1, b1, r) ≤ uc(a1, b1, c2). (12)

Next, since 〈a1, b1, c1〉 and 〈a2, b2, c2〉 are equilibria of the game G, by assump-
tion b ‖ c, there is a strategy y of player a such that 〈y, b1, c2〉 is a Nash equi-
librium of the game G. Note that 〈a1, b1, c1〉 and 〈y, b1, c2〉 are also equilibria
in the restricted game G[b 7→ b1]. Thus, 〈a1, b1, c2〉 is a Nash equilibrium of the
same restricted game, by the assumption a ‖b c. Hence, by Definition 2, for any
strategy t of player a in the game G,

ua(t, b1, c2) ≤ ua(a1, b1, c2). (13)

Inequalities (11), (12), (13), by Definition 2, imply that 〈a1, b1, c2〉 is a Nash
equilibrium of the original game G.

Similarly, one can show that the following principle is true in any four-player
game with players a, b, c, and d:

a ‖ d→ (b ‖ c→ (a ‖b c→ (a ‖d c→ (b ‖c d→ (b ‖a d→ (a ‖b,c d→
(b ‖a,d c→ a, b ‖ c, d))))))).

The complete axiomatization of propositional properties of conditional inter-
changeability with conditioning by an arbitrary set of players remains an open
question.
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