The University of Southampton
University of Southampton Institutional Repository

Finite element modelling and optimization of solenoid actuators

Cheng, Yew Bie (1994) Finite element modelling and optimization of solenoid actuators University of Southampton, School of Engineering Sciences, Doctoral Thesis .

Record type: Thesis (Doctoral)


This thesis is concerned with the application of electromagnetic finite element (FE) analysis, using a general purpose package, OPERA-2d, and optimization techniques to the design of solenoid actuators used in hydraulic control valves.
Different methods of force calculations are reviewed, including Maxwell Stress Tensor (MST), multi-solution Virtual Work Principle (VWP), and single-solution based VWP methods. While the MST method enables the calculation of force using a single solution and provides the distribution of force transmitted across various sections of the integration surface enclosing the armature of the actuator, it requires a finer mesh for accurate force calculation compared to VWP. There is no advantage of MST and single-solution VWP methods over multi-solution VWP technique in computing force-displacement characteristics of a d.c. solenoid actuator with constant current source because in all methods a set of FE solutions has to be found anyway at several armature displacements. However, for solenoids where current varies with displacement, e.g. a.c. solenoids, the multi-solution VWP requires a large number of solutions. In this thesis both multi-solution VWP and MST methods are used. Implementation of single-solution methods is not possible using the current version of OPERA-2d.
To understand the effect of armature geometry on the shape of the force-displacement characteristic, a parametric study using OPERA-2d has been conducted. A customized design shell environment (CusOP) is developed to aid and simplify the repetitive process of using OPERA-2d. The results of this study were used to design a new proportional solenoid actuator, which was built and tested. It was found that more desirable force displacement characteristics have indeed been achieved.
A comprehensive review of available optimization techniques is presented. The most promising of these techniques, including Broyden-Fletcher-Goldfarb-Shanno (BFGS) variable metric procedure, Nelder-Mead simplex method, Gauss-Newton method, Levenberg-Marquardt procedure, Trust region method and Simulated Annealing, have been extensively evaluated by comparing their performance (in terms of number of function evaluations) in the optimization of eighteen general unconstrained problems and eighteen nonlinear least-squares problems. The Levenberg-Marquardt procedure shows clear advantage, displaying consistent performance over the range of problems tested. This method which can only find local optima is preferred to the Simulated Annealing global optimization method, because it does not require too many function calls. Finding local optima is usually sufficient in optimization of solenoid actuators and, therefore, it is chosen for this application.
A program called Electromechanical Actuator Modelling and Optimization (EAMON) has been created for the implementation of constrained automated optimization by interfacing the Levenberg-Marquardt technique to OPERA-2d. The program has been used successfully to optimize the design of a proportional solenoid actuator to produce a specified force-displacement characteristic. It has also been used in optimizing an actuator, which was subsequently successfully tested, where the area under the force-displacement characteristic is maximized.
The research demonstrates the advantages of using FE modelling and optimization techniques to improve the performance of practical solenoid actuators.

Full text not available from this repository.

More information

Published date: 1994
Organisations: University of Southampton


Local EPrints ID: 47958
PURE UUID: f767bbd4-d0bc-4816-960a-6128f5cbdac2

Catalogue record

Date deposited: 16 Aug 2007
Last modified: 17 Jul 2017 15:01

Export record


Author: Yew Bie Cheng

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.