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S U M M A R Y
The elastic and anelastic structures of the Earth offer fundamental constraints for understanding
its physical and chemical properties. Deciphering small variations in the velocity and amplitude
of seismic waves can be challenging. Advanced approaches such as full-waveform inversion
(FWI) can be useful. We rewrite the anelastic Fréchet kernel expression of Fichtner & van Driel
using the displacement–stress formulation. We then derive the full Hessian kernel expression
for viscoelastic properties. In these formulations, the anelastic Fréchet kernels are computed by
the forward strain and a shift of the adjoint strain. This is complementary to the quality factor
Q (i.e., inverse attenuation) Fréchet kernel expressions of Fichtner & van Driel that are explicit
for the velocity–stress formulation. To reduce disk space and I/O requirements for computing
the full Hessian kernels, the elastic full Hessian kernels are computed on the fly, while the
full Hessian kernels for Q are computed by a combination of the on-the-fly approach with the
parsimonious storage method. Applications of the Fréchet and full Hessian kernels for adjoint
tomography are presented for two synthetic 2-D models, including an idealized model with
rectangular anomalies and a model that approximates a subduction zone, and one synthetic 3-D
model with an idealized geometry. The calculation of the full Hessian kernel approximately
doubles the computationally cost per iteration of the inversion; however, the reduced number
of iterations and fewer frequency stages required to achieve the same level of convergence
make it overall computationally less expensive than the classical Limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) FWI for the 2-D elastic tested models. We find that the
use of full Hessian kernels provides comparable results to the L-BFGS inversion using the
improved anelastic Fréchet kernels for the 2-D anelastic models tested for the frequency stage
up to 0.5 Hz. Given the computational expense of the Q full Hessian kernel calculation, it is
not advantageous to use it in Q inversions at this time until further improvements are made. For
the 3-D elastic inversion of the tested model, the full Hessian kernel provides similar image
quality to the L-BFGS inversion for the frequency stage up to 0.1 Hz. We observe an improved
convergence rate for the full Hessian kernel inversion in comparison to L-BFGS at a higher
frequency stage, 0.1–0.2 Hz, and we speculate that at higher frequency stages the use of full
Hessian kernels may be more computationally advantageous than the classical L-BFGS for the
tested models. Finally, we perform 3-D elastic and Q L-BFGS inversions simultaneously using
the rederived Q kernels, which can reduce the computational cost of the inversion by about 1/3
when compared to the classical anelastic adjoint tomography using the additionally defined
adjoint source. The recovered Q model is smeared when compared to the recovered elastic
model at the investigation frequencies up to 0.5 Hz. Q inversion remains challenging and
requires further work. The 2-D and 3-D full Hessian kernels may be used for other purposes
for instance resolution analysis in addition to the inversions.
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1 I N T RO D U C T I O N

1.1 The anelastic Earth and full-waveform inversion

Imaging of the seismic structure of the Earth has improved continuously over the past four decades with rapid advances in high-performance
computing, fast expansions in global and regional seismic networks, and continuous developments in waveform inversion approaches (e.g.
Bamberger et al. 1977, 1982; Lailly 1983; Tarantola 1984; Gauthier et al. 1986; Tarantola 1988; Igel et al. 1996; Pratt et al. 1998; Tape et al.
2009; Fichtner et al. 2009; Virieux & Operto 2009; Liu & Gu 2012; Zhu et al. 2012; French & Romanowicz 2015; Bozdağ et al. 2016; Tromp
2020; Harmon et al. 2020; Rychert et al. 2021; Agius et al. 2021). Although regional arrays provide high resolution imaging, full waveform
approaches can further increase resolution, imaging structure smaller than a seismic wavelength (e.g. Chen et al. 2007a; Tape et al. 2009;
Fichtner et al. 2009; Zhu et al. 2012; Zhu & Tromp 2013; Fichtner & Villaseñor 2015; Gao 2018).

The elastic and anelastic seismic structures of the Earth are important and fundamental constraints. The two are invaluable in determining
the properties of the Earth, although anelasticity is more rarely investigated. At a global scale in the mantle, the observed attenuation structures
from surface waves highlight regions of relatively high and low temperatures, with low Q observed beneath most of the Earth’s ridges and
rifts and high Q beneath the ancient stable continental interiors (Dalton et al. 2008). Regional and global surface wave studies also distinguish
low attenuation lithosphere over high attenuation asthenosphere beneath the oceans (Yang et al. 2007; Dalton et al. 2008; Ruan et al. 2018;
Saikia et al. 2021). Q anomaly observations in subduction zone mantle wedges have been used to infer the locations of water and partial melt
(Myers et al. 1998; Takanami et al. 2000; Tsumura et al. 2000; Schurr et al. 2003; Stachnik et al. 2004; Pozgay et al. 2009; Ko et al. 2012;
Wei et al. 2015; Eberhart-Phillips et al. 2018). Finally, shallow Q may be used to estimate seismic hazard (Cornell 1968).

Anelasticity is particularly important because it provides a complementary constraint to typical velocity tomography. Laboratory
experiments predict unique relationships between attenuation and velocity depending on the physical and chemical properties of the Earth
(Jackson & Faul 2010; McCarthy et al. 2011; Yamauchi & Takei 2016; Havlin et al. 2021). Joint consideration of velocity and attenuation
observations in subduction zone settings can more tightly constrain the properties of the Earth including the locations and pathways of water
and melt through the mantle wedge (Rychert et al. 2008; Syracuse et al. 2008; Abers et al. 2014; Wei et al. 2015; Wei & Wiens 2018). In
addition, experimental constraints suggest that the frequency dependence of attenuation may be different in the lithosphere in comparison to
the asthenosphere, possibly because of different physical properties such as the presence of partial melt (Faul & Jackson 2015; Jackson 2015).
This phenomenon has been observed via comparison of oceanic attenuation studies that used waveforms at different periods and interpreted
in terms of either partial melt and/or pre-melt conditions (Yamauchi & Takei 2016; Takeuchi et al. 2020). Therefore, attenuation constraints
play a key role in determining the factors that control subduction zone dynamics and associated hazards and also understanding the physical
and chemical properties that define the plate, a fundamental question for plate tectonic theory (Rychert et al. 2005, 2007, 2010, 2012, 2014,
2018a, 2018b, 2018c, 2020, 2021; Rychert & Harmon 2017; Rychert and Shearer 2009, 2011; Fischer et al. 2010, 2020; Tharimena et al.
2016, 2017a, 2017b; Chichester et al. 2018; Lavayssiere et al. 2018; Harmon et al. 2018, 2020, 2021a, 2021b; Wang et al. 2020; Possee
et al. 2021; Saikia et al. 2021).

Full-waveform inversion (FWI) has the potential to improve constraints on the velocity and attenuation structures of the Earth given
that it uses less approximations to the wave simulation than typical seismic techniques (e.g. Virieux & Operto 2009; Fichtner 2010; Tromp
2020). FWI uses sensitivity kernels which indicate the sensitivity of seismograms to model parameters. Typically, Fréchet kernels, the first
order derivatives of the seismological data functionals (e.g. Dahlen et al. 2000; Tromp et al. 2005) are used. Full Hessian kernels, the second
order partial derivatives of the data functionals applied to an arbitrary model perturbation (e.g. Fichtner & Trampert 2011), have the potential
to increase convergence rate and/or mitigate inter-parameter trade-offs, but full Hessian kernels are not frequently used owing to their higher
computational cost and the large disk space and I/O requirements to save and transmit the required wavefields (see e.g. Xie et al. 2021).
Specifically, computation of Fréchet derivatives can be accomplished with two simulations per event, in which the forward fields may be
recomputed on the fly (Liu & Tromp 2006) or adaptively stored or compressed and stored to the disk space (Fichtner et al. 2009; Boehm
et al. 2016). In contrast, the full Hessian kernel requires four simulations (Fichtner & Trampert 2011; Xie et al. 2021). Full Hessian kernel
calculations using the classical storage approach require large amounts of disk space to store multiple wavefields with increased associated I/O
expense. The approach generally saves each kth (k ≥ 1) time step of the required wavefields during the forward simulations and then reads each
kth time step of the stored wavefields for the kernel constructions. To reduce the disk space and I/O requirements, Boehm & Ulbrich (2015)
applied the lossy compression methods of Boehm et al. (2016) to the required wavefield for the elastic Hessian kernel construction, resulting
in a trade-off between the accuracy of the Hessian kernels and the compression factors. The lossy compression and decompression approach
is promising for the Fréchet kernel calculation. For the full Hessian kernel calculation, errors may be propagated into the two small perturbed
wavefields because the decompressed wavefields also appear as a distributed source term in the two auxiliary wave equations (Boehm &
Ulbrich 2015). To reduce computational expense, Epanomeritakis et al. (2008) computed approximate elastic Hessian kernels with lower
storage requirements, using checkpointing to recompute the forward fields during the adjoint simulation. The checkpointing was used to
compute each part of the approximate Hessian kernels. Pakravan et al. (2016) computed the Gauss–Newton Hessian vector product for
material profile reconstruction in viscoelastic semi-infinite solid media. Luo et al. (2014) rewrote the Hessian kernel formulas and then used
the diagonal terms of the Hessian to construct four pre-conditioners for FWI and resolution analysis. The finite-difference (FD) approximation
of the elastic Hessian kernel is sometimes computed for resolution analysis in FWIs (e.g. Zhu et al. 2012, 2015; Bozdağ et al. 2016; Tao et al.
2018; Gao et al. 2021), which is usually constructed by two gradients under the linear assumption: H�m ≈ g(m + �m) − g(m), where the
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gradient g in the classical sense is given by the projection of the sensitivity Fréchet kernel onto the model basis functions. More recently, the
storage and I/O requirements of calculation of the full Hessian kernels were reduced by the introduction of an on-the-fly approach, otherwise
known as QuadSEM (Xie et al. 2021). This approach is accurate since the forward and adjoint fields are computed exactly and used on the
fly with two additional forward simulations (Xie et al. 2021).

Hessian kernels may be advantageous for determining anelastic properties as well, although this also doubles the storage and I/O
requirements in comparison to the use of Fréchet kernels alone. Previous work has developed viscoacoustic Hessian kernels for use in
active source applications, where S waves are not often measured or used. Yang et al. (2018) computed the viscoacoustic Hessian kernels
in the time domain via checkpointing implementation (Yang et al. 2016a, b) for truncated Newton FWIs, achieving promising results in
comparison to the classical L-BFGS FWIs. Yong et al. (2020) reduced the computational effort and storage requirement for constructing
the viscoacoustic Hessian kernels by compressing the wavefields approximately in the Fourier domain. As previously discussed, wavefield
compression methods may involve trade-offs between accuracy and the level of compression or approximation (Boehm & Ulbrich 2015;
Boehm et al. 2016). Xing & Zhu (2020) computed the viscoacoustic Hessian kernels via a fractional viscoacoustic wave equation (Xing &
Zhu 2019). In earthquake seismology, fully elastic and anelastic waveforms and consideration of all components of the wavefield including P
waves, S waves, surface waves, etc. are required and are the focus of the work here. Although using full Hessian kernels theoretically improve
resolution and convergence rates over approaches using Fréchet kernels, the improvement achieved by the on-the-fly approach has yet to be
demonstrated or quantified.

Given the irreversible nature of the anelastic wave equation and the large disk space required to save the set of forward fields, Komatitsch
et al. (2016) developed the parsimonious storage method, also known as checkpointing, for anelastic Fréchet kernel calculations. The method
saves the forward fields at some discrete points, known as checkpoints, and then uses the fields at these checkpoints to recompute the
necessary time steps of the forward field for the kernel calculation during the adjoint simulation. The method reduces the storage requirement
by down-sampling the number of time steps. It is numerically accurate using the exactly computed fields, but there is a trade-off with
computational costs, which are increased by recalculating wavefields in between the checkpoints. Because of its accuracy, we extend the
parsimonious storage method of Komatitsch et al. (2016) to calculate the full Hessian kernels for viscoelastic media, which we refer to as the
QuadSEM-Q. The QuadSEM-Q is complementary to the on-the-fly QuadSEM approach (Xie et al. 2021). The QuadSEM-Q simultaneously
computes two forward fields and saves them at the checkpoints during the forward simulation, then recomputes the two forward fields while
computing two adjoint fields during the adjoint simulation.

In the following, we demonstrate the approximation between the frequency-independent Q Fréchet kernels of Fichtner & van Driel
(2014) and the frequency-independent Q Fréchet kernels of Tromp et al. (2005) (Section 2.1). The frequency-independent Q Fréchet kernels
of Fichtner & van Driel (2014) are used with a slight extension for displacement–stress formulation and are computed and implemented based
on the public SPECFEM2D package (Tromp et al. 2008). In Section 2.2, we derive the full Hessian kernels for frequency-(in)dependent Q
based on the work of Fichtner & Trampert (2011) and Fichtner & van Driel (2014). For the full Hessian kernel calculations for viscoelastic
properties, we combine the on-the-fly approach (Xie et al. 2021) with the parsimonious storage method (Komatitsch et al. 2016) to reduce
the disk space and I/O requirements. We apply the kernels using the adjoint tomography workflow (e.g. Zhu et al. 2015, Section 3) for the
elastic and viscoelastic inversion. We consider isotropic elastic and anelastic parameters and their trade offs here, but we neglect anisotropy.
We use two 2-D models for the demonstration of the elastic and anelastic tests, one with an idealized source–receiver geometry example with
a few box-shaped anomalies, and the other with a realistic source–receiver geometry example with the structure of the Nicaragua subduction
model (Section 4). We then demonstrate the Hessian kernel recovery of elastic and anelastic structure using the idealized 2-D synthetic model
and the more realistic Nicaragua subduction model.

Two 3-D inversions are considered in this work. The 3-D model is an extension of the 2-D idealized block model. One is the 3-D
elastic FWI using the full Hessian kernels on the fly. The 3-D elastic inversion is compared with the classical elastic FWI that uses the
Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm. The purpose of this comparison is not to compare the L-BFGS
and the Newton-CG algorithms but to see the performance of full Hessian kernel for FWI while using the L-BFGS FWI as a reference.
The second 3-D inversion is a simultaneous recovery of the 3-D elastic and attenuated properties with the Q Fréchet kernels computed by
checkpointing using the improved Q Fréchet kernels rederived in this work based on the L-BFGS algorithm. The 3-D Q inversion that uses the
Q full Hessian kernels have not been performed because (1) It is computationally prohibitive at present and (2) It has comparable performance
in comparison to the L-BFGS inversion as the 2-D case for the frequency up to 0.5 Hz. In this work, the 3-D elastic full Hessian kernels
are computed on the fly with QuadSEM3D (https://github.com/yujiangxie/QuadSEM3D).The QuadSEM3D is an extension of the QuadSEM
(Xie et al. 2021) based on the open-source SPECFEM3D Cartesian package (Komatitsch et al. 1999; Peter et al. 2011).

2 F R É C H E T A N D F U L L H E S S I A N K E R N E L S F O R V I S C O E L A S T I C M E D I A

Full Hessian kernels for viscoelastic media may be computed in a similar way as the Fréchet kernels for viscoelastic media (Tromp et al.
2005; Fichtner & van Driel 2014). One approach the calculation relies on defining an additional adjoint source for the Q Fréchet kernel
calculations (Bozdağ et al. 2011; Zhu et al. 2015). The other approach uses the forward strain and the adjoint memory variable (Fichtner
& van Driel 2014). The latter is more computationally efficient since the adjoint memory variable is a by-product of the adjoint simulation
for the viscoelastic properties. The Q Fréchet kernels can be computed while computing the Fréchet kernels for elastic properties. The full
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Hessian kernels computed for elastic properties are constructed by the expressions of Appendix A. In this section, starting from the link
between the work of Tromp et al. (2005) and Fichtner & van Driel (2014) for the Q Fréchet kernel calculations, we derive the full Hessian
kernels for Qμ and Qκ , based the method of Fichtner & Trampert (2011) and the method of Fichtner & van Driel (2014).

In the adjoint method for viscoelastic media, the variation in δχ of the measurement functional may be defined as (e.g. Fichtner & van
Driel 2014)

δχ = −
∞∫

−∞

∫
V

δρ ṡ†i (t)ṡi (t) d3x dt +
∞∫

−∞

∫
V

[ ∞∫
−∞

ε
†
i j (t) δĊi jkl (t − t ′)εkl (t

′) dt ′
]

d3x dt, (1)

where ρ is the mass density, εkl and ε
†
i j are the forward and adjoint strain, respectively. The Ċi jkl represents the time derivative of the elastic

tensor Ci jkl that can be simplified for an isotropic medium as Ci jkl = (κ − 2μ

3 )δi jδkl + μδikδ jl + μδilδ jk , where μ and κ are the shear and
bulk moduli. For the shear modulus variation, eq. (1) reduces to

δχ = 2

∞∫
−∞

∫
V

∞∫
−∞

ε̃
†
i j (t) δĊμ(t − t ′) ε̃i j (t

′) dt ′ d3x dt, (2)

where ε̃i j and ε̃
†
i j are the deviators of εi j and ε

†
i j , respectively. We denote Cμ here for the convenience of deriving the Q kernels in the following

sections. The integral interval depends on the simulation system.

2.1 Fréchet kernels from frequency and time space

The shear modulus μ(ω) may be written in the form (Kolsky 1965; Liu et al. 1976)

μ(ω) = μ(ω0)

[
1 +

(
2

π Qμ

)
ln

( |ω|
ω0

)
− i sgn(ω)

1

Qμ

]
, (3)

where μ(ω0) indicates the shear modulus at the reference frequency, ω0 = 2π f0, which can be set accordingly. The ω and Qμ are the angular
frequency and quality factor, respectively. Considering the change in the shear modulus δμ(ω) due to perturbation in shear attenuation δQ−1

μ ,
one may write

δμ(ω) = μ(ω0)

[(
2

π

)
ln

( |ω|
ω0

)
− i sgn(ω)

]
δQ−1

μ , (4)

where sgn(ω) denotes the sign of ω. With one Fourier transform and one inverse Fourier transform, eq. (2) may be equivalent to

δχ = 2μ

∫
V

[ ∞∫
−∞

ε̃
†
i j

˜̄εi j dt

]
δQ−1

μ d3x =
∫
V

KQ−1
μ

δQ−1
μ d3x =

∫
V

KQμ

δQμ

Q
d3x, (5)

where KQμ
= −KQ−1

μ
/Qμ and the shifted forward strain, ε̄i j , may be computed by the shifted forward field (Tromp et al. 2005),

s̄(t) = 1

2π

∞∫
−∞

[(
2

π

)
ln

( |ω|
ω0

)
− i sgn(ω)

]
s(ω) exp(iωt) dω. (6)

The ˜̄εi j is the deviator of ε̄i j . The s(ω) is a Fourier transform of the regular forward field without the shift. The shift operator may be applied
in an equivalent way to the adjoint field, where the Q adjoint field may be computed by an additionally defined adjoint source (Bozdağ et al.
2011; Zhu et al. 2015).

Following exactly the steps described for the formulation of K Q−1
μ

in eq. (5), the KQ−1
κ

can be similarly derived by replacing the μ with κ

and omitting the number ‘2’. If the reference frequency is selected to be the central frequency of the simulation band and Q is constant over
a frequency range, eq. (3) may approximate the complex modulus M(ω) (e.g. Emmerich & Kornm 1987; Carcione 1988; Moczo & Kristek
2005) in terms of μ within the simulated frequency band. See eq. (17) to eq. (38) of Liu et al. (1976) for a proof. Note that the work of Liu
et al. (1976) uses the creep function, an inverse of the relaxation function, and the 1/N difference has been discussed in the work of Zhang
et al. (2016). As an equivalent expression between the Zener and Maxwell body, the complex modulus may be written as (e.g. Moczo &
Kristek 2005)

M(ω) = Mr

N

N∑
l=1

1 + iwτ(l)
ε

1 + iwτ
(l)
σ

= Mr

⎡
⎢⎣1 + 1

N

N∑
l=1

ω2τ(l)
σ

(
τ(l)

ε − τ(l)
σ

)
1 + ω2

(
τ

(l)
σ

)2
+ i

1

N

N∑
l=1

ω
(
τ(l)

ε − τ(l)
σ

)
1 + ω2

(
τ

(l)
σ

)2

⎤
⎥⎦ , (7)

where Mr denotes the relaxed modulus, τ(l)
ε and τ(l)

σ are the relaxation times and N is the maximum number of relaxation mechanisms. Eq. (7)
shows the shift operator which includes the real and imaginary parts to shift the relaxed modulus Mr . Invoking the convolution and Fourier
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transform properties, the misfit function of eq. (2) may be written as

δχ = 2

∞∫
−∞

∫
V

ε̃
†
i j (t)

[ ∞∫
−∞

ε̃i j (t
′)δĊμ(t − t ′) dt ′

]
d3x dt = 2

∞∫
−∞

∫
V

ε̃
†
i j (t)F−1

[
ε̃i j (ω)δMμ(ω)

]
d3x dt, (8)

where Mμ(ω) represents the frequency domain of the time derivative of the elastic tensor Cμ(t − t
′
). Eq. (8) is equivalent to eq. (5) and

shows that the kernels may also be computed by using a shift operator δMμ(ω) to the adjoint strain in the frequency domain and back to the
time domain. The shift operator may be used in the time domain. The time domain modulus, M(t), of the complex modulus M(ω) may be
computed from the relaxation function (e.g. Liu et al. 1976; Emmerich & Kornm 1987; Carcione 2001; Moczo & Kristek 2005; Fichtner &
van Driel 2014)

C(t) = Cr

[
1 + 1

N

N∑
l=1

(
τ(l)

ε

τ
(l)
σ

− 1

)
e−t/τ

(l)
σ

]
H (t) = Cr

[
1 + τ

N∑
l=1

D(l)e−t/τ
(l)
σ

]
H (t) (9)

where Cr denotes the relaxed modulus, τ controls the strength of viscoelastic attenuation, and D(l) represents the weights of the relaxation
mechanisms. By setting a constant τ = 1/Q, the change of D(l) and τ(l)

σ could be enough to approximate the input Q in a wide frequency
band (Fichtner & van Driel 2014). Differentiating the right hand side of eq. (9) with respect to time t yields

M(t) = Mr

[
1 + 1

Q

N∑
l=1

D(l)e−t/τ
(l)
σ

]
δ(t) − Mr 1

Q

N∑
l=1

D(l)

τ
(l)
σ

e−t/τ
(l)
σ H (t), (10)

where δ(t) is the delta function. The time domain modulus of eq. (10) corresponds to the frequency domain modulus of eq. (7). Differentiating
eq. (10) with respect to Q−1 leads to

∂ M(t)

∂ Q−1
= Mr

N∑
l=1

D(l)e−t/τ
(l)
σ δ(t) − Mr

N∑
l=1

D(l)

τ
(l)
σ

e−t/τ
(l)
σ H (t). (11)

By the chain rule δM = (∂ M/∂ Q−1)δQ−1 and substituting eq. (11) into eq. (2), the misfit function may be written as

δχ = 2Mr
μ

∫
V

∞∫
−∞

[( N∑
l=1

D(l)ε̃
†
i j + Qμ R̃†

i j,μ

)]
ε̃i j (t

′)dt ′δQ−1
μ d3x. (12)

The auxiliary term, R̃†
i j,μ, that relates to the N summation of the deviator of the adjoint strain, may be defined by

R̃†
i j,μ = − 1

Qμ

N∑
l=1

D(l)

τ
(l)
σ

∞∫
−∞

e−(t ′−t)/τ
(l)
σ H (t ′ − t) ε̃

†
i j dt ′. (13)

The R̃†
i j,μ may be called the adjoint memory variable although there are many alternative expressions that exist in the literature. Based on

eq. (12), we obtain the Fréchet Q kernels for Q−1
μ ,

KQ−1
μ

= 2Mr
μ

∞∫
−∞

[ N∑
l=1

D(l)ε̃
†
i j + Qμ R̃†

i j,μ

]
ε̃i j dt. (14)

Eqs (13) and (14) indicate that the Q kernel can be computed by the forward strain deviator (ε̃i j ) and a shift of the adjoint strain deviator (ε̃†i j )

with the shift operator given by [
N∑

l=1
D(l) −

N∑
l=1

D(l)

τ
(l)
σ

∞∫
−∞

e−(t ′−t)/τ
(l)
σ H (t ′ − t) dt ′]. The second term in the bracket relates to the adjoint memory

variable depending on how the memory variable is parameterized. Following exactly the same steps as derived for eq. (14), the Fréchet kernel
for Q−1

κ may be written as

KQ−1
κ

= Mr
κ

∞∫
−∞

[ N∑
l=1

D(l)ε
†
kk + Qκ R†

κ

]
εkk dt, (15)

where εkk and ε
†
kk are the traces of the strain for the forward and adjoint field, respectively. The summed adjoint memory variable is

R†
κ = − 1

Qκ

N∑
l=1

D(l)

τ
(l)
σ

∞∫
−∞

e−(t ′−t)/τ
(l)
σ H (t ′ − t) ε

†
kk dt ′. (16)

The Q Fréchet kernels can be similarly derived for Qμ and Qκ using the derivative of 1/Q, that is KQμ
= −KQ−1

μ
/Qμ and KQκ

= −KQ−1
κ

/Qκ ,

which is derived for δQ/Q instead of δQ−1. The KQμ
and KQκ

here are equivalent (or approximately equivalent) to eqs (35) and (40) of
Fichtner & van Driel (2014) when the perturbation of the time derivative of C(t-t’) is equal (or approximately equal) to the time derivative of
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the perturbed C(t-t’). Note that these Q kernels derived in this work are computed by the displacement–stress formulation without the time
derivative of the adjoint strain and its associated memory variables. Either the relaxed or unrelaxed modulus can be used to compute the Q
kernels since the relaxation times are already computed. A short note of how the Q kernels are computed by the public SPECFEM2D and
SPECFEM3D Cartesian packages is given in Appendix C.

Eqs (14) and (15) are frequency-independent kernels that assume a constant Q within a frequency range, similar to that of the frequency-
independent Fréchet kernels presented in the work of Fichtner & van Driel (2014). Keeping the Q0 for a specific targeted frequency range
fixed, the Q can be considered as a function of α by (e.g. Müller 1983; Fichtner & van Driel 2014)

Qtarget (ω) = Q0

(
ω

ω0

)α

≈ Qsimulated (Q0, ω, D(l), τ(l)
σ ). (17)

Based on the chain rule, δM/δα = (∂ M/∂ Q)(∂ Q/∂α), the misfit function of eq. (2) leads to

δχ = 2
∫
V

[ ∞∫
−∞

α
∂ Qμ

∂α

(−Mr
μ

Q2
μ

N∑
l=1

D(l)ε̃
†
i j − Mr

μ

Qμ

R̃†
i j,μ

)
ε̃i j (t

′) dt ′
]

δα

α
d3x, (18)

which forms the frequency-dependent KQμα
due to the perturbation of δα as

KQμα
= −2Mr

μα
∂ Qμ

∂α

∞∫
−∞

(
1

Q2
μ

N∑
l=1

D(l)ε̃
†
i j + 1

Qμ

R̃†
i j,μ

)
ε̃i j dt, (19)

where the ∂ Q
∂α

may be computed by a finite-difference approximation similar to that used in eq. (47) in the work of Fichtner & van Driel
(2014). The D(l) and τ(l)

σ are recomputed for a slightly perturbed α, which is computationally cheap in the meshing stage in comparison to
the subsequent wave simulations. Fréchet kernels for fractional perturbations in shear α are orders of magnitude smaller than kernels for
fractional perturbations in shear Q, which means that the frequency-dependence of Q in the Earth is difficult to constrain (Fichtner & van
Driel 2014). Similar derivations form the frequency-dependent KQκα

,

KQκα
= −Mr

κα
∂ Qκ

∂α

∞∫
−∞

(
1

Q2
κ

N∑
l=1

D(l)ε
†
kk + 1

Qκ

R†
κ

)
εkk dt. (20)

2.2 Hessian kernels for frequency-(in)dependent Q

Based on previous work (Fichtner & Trampert 2011; Fichtner & van Driel 2014; Xie et al. 2021), the full Hessian kernel with respect to Q−1
μ

may be written as

HQ−1
μ

= 2Mr
μ

∞∫
−∞

[( N∑
l=1

D(l)ε̃
†
i j + Qμ R̃†

i j,μ

)
δ1ε̃i j +

( N∑
l=1

D(l)δ1ε̃
†
i j + Qμδ1 R̃†

i j,μ

)
ε̃i j

]
dt, (21)

where δ1 R̃†
i j,μ denotes the perturbation of the deviator of the adjoint memory variable, which can be computed by a similar implementation

of eq. (13) by substituting ε̃
†
i j with δ1ε̃

†
i j . It is worth noting that there are two sets of relaxation times for two models used in the calculation of

the perturbation. By using a similar derivation as used for eq. (21), we have HQμ
= −HQ−1

μ
/Qμ. Implementation of eq. (21) requires access

to these strains and variables simultaneously. It can be done by combining the on-the-fly approach (Xie et al. 2021) with the checkpointing
parsimonious storage approach (Komatitsch et al. 2016) for recomputing the viscoelastic forward fields during the adjoint simulation.
Similarly, the full Hessian kernels for the Q−1

κ may be expressed as

HQ−1
κ

= Mr
κ

∞∫
−∞

[( N∑
l=1

D(l)ε
†
kk + Qκ R†

κ

)
δ1εkk +

( N∑
l=1

D(l)δ1ε
†
kk + Qκδ1 R†

κ

)
εkk

]
dt. (22)

A similar derivation for eq. (22) can be used for HQκ
= −HQ−1

κ
/Qκ . Frequency-dependent Hessian kernels, that is those related to perturbations

in α, are not likely to be well constrained in the Earth. Frequency-dependent Hessian kernel HQμα
and HQκα

may be similarity constructed by

HQμα
= −2Mr

μα
∂ Qμ

∂α

∞∫
−∞

[(
1

Q2
μ

N∑
l=1

D(l)ε̃
†
i j + 1

Qμ

R̃†
i j,μ

)
δ1ε̃i j +

(
1

Q2
μ

N∑
l=1

D(l)δ1ε̃
†
i j + 1

Qμ

δ1 R̃†
i j,μ

)
ε̃i j

]
dt, (23)

HQκα
= −Mr

κα
∂ Qκ

∂α

∞∫
−∞

[(
1

Q2
κ

N∑
l=1

D(l)ε
†
kk + 1

Qκ

R†
κ

)
δ1εkk +

(
1

Q2
κ

N∑
l=1

D(l)δ1ε
†
kk + 1

Qκ

δ1 R†
κ

)
εkk

]
dt. (24)

The two frequency-dependent full Hessian kernels can be computed by perturbing α. The ∂ Q/∂α here may be computed by eq. (47) in the
work of Fichtner & van Driel (2014). Note the difference between the Fréchet and Hessian kernels in terms of the power-law exponent α as
indicated by their expressions, where the latter takes the perturbed forward and perturbed adjoint fields into account.
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The above Fréchet and Hessian kernels can be similarly derived for the Generalized Maxwell Body, GMB-EK, defined in the work of
Emmerich & Kornm (1987). The work of Moczo & Kristek (2005) presents an equivalent expression between the Zener and Maxwell body.
For the Q kernel calculation, it requires enforcing Q into eq.(5) of Moczo & Kristek (2005), which ensures the input Q is approximated closely
for the simulations. The associated stress and memory variables can be computed similarly for the wavefield and kernel calculations.

3 A D J O I N T T O M O G R A P H Y U S I N G K E R N E L S

The total misfit for an isotropic anelastic inversion may be defined as (e.g. Zhu et al. 2015)

χ = ωφχφ + ωAχA, (25)

where ωφ and ωA are the weighting factors for phase and amplitude misfit. The initial two weighting factors may be computed by the phase
and amplitude normalised misfit with respect to model parameters. Multiple misfit functions and associated adjoint sources may be used (e.g.
Bozdağ et al. 2011; Karaoğlu & Romanowicz 2018; Pan & Wang 2020; Pan et al. 2021). The perturbation in the misfit may be expressed as

δχ =
∫
V

[
KC

δC

C
+ KQ

δQ

Q

]
d3x =

∫
V

[
KC

δC

C
+ KQ−1δQ−1

]
d3x, (26)

where KC and KQ (or KQ−1 ) denote the elastic and Q Fréchet kernels, and δC/C and δQ/Q represent the relative model perturbations in
terms of the elastic and Q properties. Optimization algorithms are commonly used for solving the full-waveform inverse problem, which are
typically designed for solving the Newton linear system:

H(mk)�mk = −∇mχ (mk), (27)

where H and ∇mχ denote the Hessian matrix and gradient (Fréchet kernels), respectively. The k represents the iteration index. Different
optimization algorithms differ in the search for the model update �m. In each inversion step, we update the model by

mk+1 = mk + ak�mk, (28)

where ak is a scalar parameter computed through a line-search or a trust-region procedure (e.g. Bonnans et al. 2006; Nocedal & Wright
2006). For different optimization and search algorithms, we refer to the work of Nocedal & Wright (2006). We use the Newton-CG algorithm
(see Nocedal & Wright 2006, p. 112 and p. 119) for the Hessian kernel inversion and its results are primarily compared with that of the
L-BFGS FWIs implemented in the SeisFlows package (Modrak et al. 2018). We call this the L-BFGS inversion throughout this work as a
reference since there are many possible different L-BFGS implementations with possible differences in performance in the literature. For the
Newton-CG implementation, for example, for stop criterion and threshed update, one can refer to the codes of Métivier & Brossier (2016).
We use the bracket line search to find the step length. In the implementation of the line search, the step length for velocity and Q might vary
due to the distinct scales of velocity and Q, where the step length is a vector. A comparison of the L-BFGS and the Newton-CG algorithm
and the use of different step search methods are not the purpose of this work. We use the L-BFGS inversion as a reference for comparison to
see the performance of the full Hessian kernel inversion. For simplicity in the following sections, inversions that use the full Hessian kernels
that utilize the Newton-CG algorithm are called full Hessian kernel inversions or Hessian kernel inversions, while the approximate Hessian
inversions that use the gradient-based L-BFGS algorithm are called L-BFGS inversions. Here we demonstrate the approach with synthetics
as an initial step. Although other factors like anisotropy are also likely important in the real Earth, we leave this as a topic for future work.

4 M O D E L S

4.1 2-D models

We initially examine two 2-D synthetic examples (Figs 1 and 2) to explore the effectiveness of the full Hessian kernel inversion schemes. The
first model has an idealized setup designed to demonstrate the potential of the inversion schemes (Fig. 1). It has sources at regularly spaced
intervals near the bottom of the model and regularly spaced receivers at the top. The model has a uniform background shear wave velocity of
3900 km s–1, compressional wave velocity of 6800 km s–1, Qμ of 125, Qκ of 3000, a density of 2600 kg m–3 at shallower than 50 km depth
and a density of 2900 kg m–3 at deeper depths. Within the model there are five rectangular low velocity zones (5, 10 and 3.3 per cent low for
Vp, Vs and ρ, respectively) and three rectangular Qμ anomalies (Qμ = 30) that are not co-located with the velocity anomalies. The difference
in the Qμ and velocity anomaly locations allows us to examine parameter trade-off. The second model is based on an attenuation study from
the Central American subduction zone (Rychert et al. 2008), where a temporary seismic network was deployed for 2 yr by the TUCAN
(Tomography and other things Under Costa Rica And Nicaragua) experiment. The deployment consisted of two dense arc, perpendicular
lines, one in Nicaracua and one in Costa Rica, and two more broadly spaced arc parallel lines, one in the forearc, and one in the backarc. We
use stations in the dense arc perpendicular Nicaragua line here. The goal of testing using this model is to examine the ability of the method
to recover structure with realistic source–receiver geometry and approximately real Earth structures. The source locations are taken from real
source locations in the subducting slab and overriding plate used in the study, as well as the receiver locations from the deployment. The
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Figure 1. The idealized synthetic model is shown for the true Vp (a), Vs (b) and Qμ (c). The models are constructed using background models in which
rectangular anomalies are imbedded. We use a density of 2600 kg m–3 at depths shallower than z = –50 km and a density of 2900 kg m–3 at depths deeper
than z = –50 km. The background models are used as the initial elastic models. The Q background models are set to Qκ = 3000 and Qμ = 125 and used as
the initial anelastic models. The white dots in each subfigure denote the source locations, while the red inverted triangles on the top of the model represent the
receivers.
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Figure 2. The more realistic Nicaragua subduction model is shown for the true Vp (a), Vs (b) and Qμ (c). We use a constant Qκ model of 3000, and a two-layer
density model with its upper part set to 2800 km m–3 and bottom part set to 3300 km m–3, separated at z = –50 km. The white dots within the dark red slab
denote the earthquakes and the red inverted triangles represent the stations.

model has a Q structure taken from the minimum parameterization inversion results from the work of Rychert et al. (2008; Fig. 2). The model
has a Vs structure with the same anomaly shapes as those in the Q model, but with velocities based on the shear wave velocities derived
from a regional surface wave model (Harmon et al. 2013). The velocity and attenuation structures generally reflect the pertinent features of a
subduction zone, including a slab, overriding plate, cold nose and arc and backarc anomalies.

The two 2-D synthetic models have the same dimensions of 380 km × 200 km in the horizontal and vertical directions, respectively
(Figs 1 and 2). Before the forward or adjoint simulation, we generate the database and mesher using the QuadSEM-Q package (https:
//github.com/yujiangxie/QuadSEM). The package was developed for computing the 2-D full Hessian kernels on the fly (elastic) or partially
on the fly (anelastic, via checkpointing) based on the public SPECFEM2D package (Tromp et al. 2008). We use 5 × 5 Gauss-Lobatto-Legendre
(GLL) points for each element and place 190 elements in the horizontal direction and 200 elements in the vertical direction, resulting in
approximately 500 m and 250 m grid spacings in the horizontal and vertical directions, respectively. We use 10 000-time steps and a time
interval of dt = 0.01 s for the forward and adjoint simulations. For the viscoelastic wave simulations, we use 100 time steps for each chunk in
order to recompute the forward fields for a chunk between two snapshots. Please see the work of Komatitsch et al. (2016) for an explanation
of the chunk. This leads to 100 checkpoints for one forward simulation. For the first box model (Fig. 1), 14 events based on the same
moment tensor solution are used. They are located at z = –180 km, and every 25 km in the x-direction between 25 km and 350 km. The
three components of the moment tensor solution are, Mxx = 8.14e + 12, Mzz = 3.93e + 13 and Mxz = 1.96e + 13. The same triangle
source wavelet with the period of 1 s is used for all events. We use thirty five evenly-spaced receivers at the top of the model, separated by
10 km, ranging from x = 20 to 360 km (see Fig. 1). To simulate the anelastic properties, we use three (i.e., N = 3) standard linear solids. The
reference frequency for shifting the velocities in the viscoelastic simulation is set to the central frequency of the simulation frequency band
based on the 2-D implementation, instead of the infinite frequency that corresponds to the unrelaxed modulus. For the subduction model, all
required starting setups for the simulations are set as the same as the box model, except the number of events is increased to 69 to simulate
the earthquakes distributed along the slab. We use eighteen receivers on the top of the model (Fig. 2).
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Figure 3. 3-D synthetic model. (a) the compressional wave speed, Vp (m s–1), with –5 per cent perturbation relative to the background model setting for the
five scatterers. (b) the source and receiver geometry used for the inversion. The blue dots indicate the source locations buried at z = –85 km. The source
interval is set to 38.85 km in both the x- and y-directions. The green dots indicate the station locations at an interval that is set to 11.1 km in the x-direction and
27.75 km in the y-direction. (c) the shear wave speed, Vs (m s–1), with –10 per cent perturbation relative to the background model. (d) the attenuation quality
factor, Qμ, where the background is set to Qμ = 125 and the anomaly is set to Qμ = 30. The perturbation to density, ρ, is set by the following relationship:
δp/p = 0.33 δVs/Vs. The perturbation of Qκ shares the same shape and location as that of the Qμ but with the background set to Qκ = 3000 and the anomaly
set to Qκ = 102.

4.2 3-D models

The 3-D model has the same model properties and perturbations as the 2-D idealized model except the dimension and size of the model
and perturbations are different (Fig. 3). We use 15 events and 100 receivers for the inversion. We use a moment tensor source for all events
and the six components of the moment tensor are set to Mrr = –4.100000e+22, Mtt = 1.990000e+23, Mpp = –1.580000e+23, Mrt =
–7.170000e+22, Mrp = 1.220000e+23, Mtp = –2.910000e+23. An external triangle source time function with the period of 1.2 s is used.
The time step, dt, is set to 0.02 s based on an estimation of wave speeds and grid spacing of mesher. The total number time step is of NT =
5000, which leads to a 100 s seismogram record. The model is set to 222 km in the x-direction and 111 km in the y-direction witha maximum
depth of 100 km in the vertical direction. We use 60 elements in the x-direction, 30 elements in the y direction, and 50 elements in the depth
direction. Each element covers 3.7 km of model space horizontally and 2 km vertically (Fig. 3). We use 5 × 5 × 5 GLL points for each
element. We first invert for an elastic model and then simultaneously invert for an elastic and Q model. The reference frequency for shifting
the velocities in the 3-D viscoelastic simulation is also set to the central frequency of the simulation frequency band although it can be set to
other frequencies. We use 50 checkpoints (50 × 100 = 5000 time steps) for the 3-D viscoelastic simulations.

5 R E S U LT S A N D D I S C U S S I O N S

5.1 2-D example I: the idealized scatterer model

5.1.1 Qμ and Vs approximation

We check the Q and Vs approximation before the anelastic wave simulations to ensure the relaxation times are reasonably determined. Fig. 4
shows the Q and velocity approximations in terms of angular frequency, ω. The Q is approximated by eq. (10) of Fichtner & van Driel (2014),
which is equivalent to solving an optimization problem using the objective function of eq. (12) of Fichtner & van Driel (2014). We solve the
optimization problem by the SolvOpt optimization (Kappel & Kuntsevich 2000) as developed by Blanc et al. (2016) in the SPECFEM2D
package, enforcing D(l)/Q = τ(l)/N . It can be seen from Fig. 4 that the Q is approximated well within the frequency band while using three
standard linear solids. The shear wave velocity (Vs; Fig. 4b) is computed in terms of ω by the frequency-dependent viscoelastic modulus
M(ω). The relaxed, unrelaxed and reference modulus can be transformed among each other once the τ (l)

σ and D(l) are determined. We use a
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Figure 4. Approximation of the Qμ and Vs in terms of angular frequency ω. (a) Q as a function of angular frequency as approximated with three standard
linear solids for two models. (b) The viscoelastic shear wave velocity Vs(ω) versus the shear wave velocity of Liu et al. (1976) for two models, where the
Vs(ω) is computed by the viscoelastic modulus M(ω) of eq. (7). The vertical dash lines indicate the simulated frequency boundary. At lower frequencies the
velocities of m1 and m2 are relatively constant and correspond to the fully relaxed velocity. At higher frequencies the m1 and m2 velocities are similarly
constant, corresponding to the unrelaxed velocity.
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Figure 5. Optimal weights D(l) for approximating Qμ of Fig. 1(c), where the three optimal relaxation times are τ
(1)
σ = 1.5915, τ (2)

σ = 0.1592 and τ
(3)
σ = 0.0159.

The minimum and maximum frequency search range is set from 0.01 to 10 Hz, and ω0 = 2π . The weights D(l), l = 1, 2, 3, are used for the three standard
linear solids.

reference frequency of f0 = 1 Hz and the associated reference velocity is V(ω0), where ω0 = 2π f0 (Fig. 4b). The relaxed modulus is computed
from the relaxed velocities from the input that can be prepared before the simulation. One key point here is to ensure the two lines are matched
within the simulated frequency band as shown in Fig. 4(b). The optimal weights D(l) and the relaxation times for approximating the Qμ of
Fig. 1(c) are shown in Fig. 5. These are consistent with the input Qμ model, and this indicates that the Q is approximated accurately.

5.1.2 Fréchet and full Hessian kernels for Q−1
μ

In Section 2 we presented a way to calculate the Fréchet and full Hessian kernels for variations in Q using a shifted adjoint wavefield. The
calculation is also presented for using a shifted adjoint source in Appendix A. Using a shifted adjoint wavefield reduces the number of
simulations required for the calculation of the Fréchet kernel by one or two in comparison to the unshifted approach. For the full Hessian
kernel calculation, the number of simulations is reduced by two or four.

We now proceed to compare and contrast the kernels calculated using the shifted adjoint source with the kernels calculated using the
shifted adjoint wavefield to quantify the differences that result from two different calculations. We also compare the full Hessian kernels with
the Hessian kernels calculated by a finite-difference approximation.

Fig. 6 shows the waveforms and adjoint sources for the Q Fréchet kernel calculations for one source-receiver geometry using the model
of Fig. 1, where the source is located at x = 125 km and z = –180 km, and the receiver is located at x = 130 km and z = 0 km. We use a
standard Ricker wavelet with the dominant frequency of 1 Hz to compute the kernels. The regular adjoint sources in Fig. 6(b) are computed
by eq. (67) of Tromp et al. (2005) and the shifted adjoint sources in Fig. 6(b) are computed by eq. (52) of Bozdağ et al. (2011) once the
regular adjoint sources are computed. Fig. 7 shows the Q Fréchet kernels, where Fig. 7(a) shows the Q Fréchet kernel computed using the
shifted adjoint source [see eq. (5) for the KQ−1

μ
kernel], which is approximately numerically equivalent to Fig. 7(b) computed by eq. (14)

using the shifted adjoint wavefield. The two kernels are slightly different in amplitude. The kernel computed by eq. (14) is a factor of –1.02
and 1.51 larger than the kernel computed by eq. (5) when comparing the minimum and maximum kernel values. This may be due to the lower
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Figure 6. Waveforms and adjoint sources are shown for the x-components. (a) Displacement waveforms computed for m1 and m2. (b) Regular and shifted
adjoint source due to attenuation anomalies for the two models. (c) Regular adjoint sources and regular adjoint waveforms and their shifts for m1. The
waveforms have been normalized for comparison. (d) The difference between the shifted and regular adjoint sources for m1 (green) and the difference between
the shifted and regular adjoint waveform for m1 (red). This demonstrates that if the shift operator is applied to the adjoint source it leads to a deviation in
comparison to applying it to the adjoint wavefield (eqs 6 and 8). The adjoint waveform here represents the adjoint field recorded at the receiver.

(a)

50 100 150 200
x [km]

-200

-150

-100

-50

0

z 
[k

m
]

-5

0

5

K
1/

Q
 [1

/m
2
]

10-8

(b)

50 100 150 200
x [km]

-200

-150

-100

-50

0

z 
[k

m
]

-5

0

5

K
1/

Q
 [1

/m
2
]

10-8

Figure 7. Comparison of Q Fréchet kernels for two shift operators. (a) The kernel calculated using the shifted adjoint source. (b) The kernel calculated by
eq. (14) using the shifted wavefield. The original kernel values range from −4.09 × 10−7 to 1.53 × 10−7 and −4.01 × 10−7 to 2.31 × 10−7, respectively. The
first Fresnel zone (negative values) of the two kernels are similar but the second Fresnel zone (positive values) are much different, with panel (b) being about
1.5 times than that in (a) due to the different accuracies of the shift operators. The colour bar is clipped for visualization purposes.

accuracy that is achieved by applying the shift to the adjoint source (Fig. 7a) in comparison to applying it to the adjoint field (Fig. 7b). In
practice, small differences in the kernel amplitudes may affect the convergence rate, but may not necessarily the final result.

The full Hessian kernel is composed of three components (Fichtner & Trampert 2011; Xie et al. 2021). Fig. 8 shows the three components
of the full Hessian kernel computed for a viscoelastic media. The first row shows the three components computed by the full Hessian kernel
expression in Appendix A using the shifted adjoint source with Qμ perturbation set from Qμ = 125 to Qμ = 60 within the two boxes (Fig. 1c).
The second row of Fig. 8 shows the same as the first row, but computed using eq. (21) using the shifted adjoint wavefield, where the second
term of eq. (21) sums the kernels shown in Figs 8(e) and (f). These strains and perturbations are simultaneously computed to reduce disk
space and I/O requirements based on the QuadSEM-Q implementation, which is a combination of the on-the-fly approach (Xie et al. 2021)
incorporated with the parsimonious storage method (Komatitsch et al. 2016). The components of the full Hessian kernels are about one order
of magnitude smaller than the Fréchet kernels. The size of the difference is related to the magnitude of the perturbation. For more details
about these components and their physical meaning, we refer the reader to previous papers (Fichtner & Trampert 2011; Xie et al. 2021).

A comparison of the full Hessian kernels with the finite-difference (FD) approximate Hessian kernels for both the shifted adjoint source
and the shifted adjoint wavefield is shown in Fig. 9. The similarity in the shape and magnitude of the full Hessian kernel calculations and
the FD calculations verifies the Hessian approach. The positive kernel lobes are nearly the same, with only a small difference in amplitude
between the two (Figs 9a vs. c or b vs. d). The magnitudes of the negative portions of the kernels within the box anomaly are similar with
some small differences in localized areas. The exact size of the differences depends on the size of the Q anomaly and step size of the FD. The
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Figure 8. Three components of the Q full Hessian kernels. (a) The first component that is owing to the perturbation of the forward field. (b) The second
component that is owing to the perturbation of the adjoint field because of the model perturbation in the adjoint simulation. (c) The last component, which
is owing to the perturbation of the adjoint source because of the model perturbation in the forward simulation. The first row is computed using eq. (A3) of
Appendix A, which uses the shifted adjoint source. The second row is same as the first row but computed by eq. (21) using the shifted wavefield. Each row
shares the same colour bar, and the subscript ‘i’ indicates the Hessian kernel component.
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Figure 9. A comparison of the approximate Hessian kernels computed by the finite-difference (FD) approximation with the full Hessian kernels computed
here. The Fréchet kernels used in (a) are computed by the kernel expression of eq. (5) using the shifted adjoint source. The Fréchet kernels in (b) are computed
by the kernel expression of eq. (14) using the shifted adjoint wavefield. The full Hessian kernels in (c) are computed by the elastic Hessian kernel formulation
(Appendix A) using the attenuated forward and adjoint fields, in which the adjoint field is computed by the shifted adjoint source. The full Hessian kernels in
(d) are computed by eq. (21) using the shifted adjoint wavefield. The dash box areas indicate the location of the perturbation that the Hessian kernel will use
for the model update.

kernels calculated using the shifted adjoint wavefield (Figs 9b and d) are larger than those calculated using the shifted adjoint source (Figs 9a
and c). This is because of the greater accuracy of the shifted adjoint wavefield kernels.

5.1.3 Search direction, inverted elastic and Qμ models

Fig. 10 shows the gradient descent direction p computed from the Fréchet and Hessian kernels for the first iteration of the inversion. The

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/234/2/1205/7080141 by guest on 26 July 2023



QuadSEM-Q full Hessian anelastic tomography 1217

(a)

0 100 200 300
x [km]

-200

-100

0

z 
[k

m
]

-20 -10 0
p,Vp 10-11

(b)

0 100 200 300
x [km]

-200

-100

0

-4 -2 0
p,Vs 10-10

(c)

0 100 200 300
x [km]

-200

-100

0

-2 -1 0 1
p,Q 10-14

(d)

0 100 200 300
x [km]

-200

-100

0

z 
[k

m
]

-80 -60 -40 -20 0 20
p,Vp

(e)

0 100 200 300
x [km]

-200

-100

0

-200 -100 0
p,Vs

(f)

0 100 200 300
x [km]

-200

-100

0

-5 0 5
p,Q

Figure 10. A comparison of the model update direction p computed from the Fréchet kernels (L-BFGS, top row), and from the Fréchet and full Hessian kernels
(bottom row). They are obtained from the first iteration of the inversion. Note the different colour scale of the top and bottom rows.

full Hessian kernel shows an improved search direction in comparison to L-BFGS at the first iteration . The Q update in the first iteration
is large, but it is updated in very small increments in subsequent iterations, compared to the elastic update (see the inversion result below).
The computation of the Fréchet kernels in terms of Vp and Vs is the same as that of Tromp et al. (2005). For the computation of full Hessian
kernels in terms of Vp and Vs, one can refer to the work of Fichtner & Trampert (2011) and Xie et al. (2021). The Fréchet and full Hessian
kernels in terms of Q−1

μ are computed by eqs (14) and (21) for each event. We do not include the frequency dependence of Q, that is the
power-law exponent α, in the computation of the Fréchet and Hessian kernels since in reality this value would not likely be resolvable in the
Earth (see e.g. Fichtner & van Driel 2014).

Fig. 11 shows the FWI recoveries and Fig. 12 shows the difference between the inversion recoveries and the original models. Figs 11(a)–
(c) shows the L-BFGS inversion recovery of Vp, Vs and ρ for the second frequency stage (0.1–0.2 Hz) after 12 iterations. The Vs model is
constructed reasonably well based on the L-BFGS optimization, but the Vp model is poorly recovered, in particular, for the bottom rectangle
scatterer (Fig. 11a). Figs 11(d)–(f) shows the Hessian kernel inversion for the first frequency stage of 0.01–0.1 Hz, after 6 iterations, which
has better structural model recovery in comparison to the L-BFGS inversion for the second frequency stage (0.1–0.2 Hz) after 12 iterations
(Figs 11a–c). Figs 11(g)–(i) shows the Hessian kernel inversion after 2 iterations for the frequency stage of 0.01–0.2 Hz, which has the same
misfit reduction as that of the L-BFGS inversion shown in the first row of Fig. 11 (intersections with the black line of Fig. 13b, bottom). The
Hessian shows better structural recovery than the L-BFGS for this example. Figs 11(j)–(l) shows the Hessian kernel inversion after 4 iterations
for the frequency stage of 0.01–0.2 Hz. It takes the same computational cost as the L-BFGS inversion (Figs 11 a–c) but has a lower misfit
(Fig. 13b, bottom). The same phenomena is observed when 50 per cent coherent Gaussian noise is added to each trace of the simulated true
data (Figs 14 and 15). The test demonstrates that the elastic inversion either with or without using the full Hessian kernels can still recover
the structure of this model even with up to 50 per cent coherent Gaussian noise.

The Hessian kernel inversion increases the convergence rate. For each specific iteration (i.e. the external iteration of the Newton-CG
algorithm), the Hessian kernel inversion via the Newton-CG algorithm is more expensive than the gradient-based L-BFGS algorithm. This
is because the inner CG iteration requires the computation of the full Hessian kernel where additional forward and adjoint simulation are
required. In this example, each iteration of the L-BFGS inversion takes about 8 simulations including 3 simulations for computing the
wavefields and Fréchet kernels and about another 5 simulations to compute the step length in the line search. The Hessian kernel inversion
requires about 18 simulations since 3 inner CG iterations are used for this example, where each CG iteration takes 6 simulations to compute
one full Hessian kernel. The number of simulations required also depends on the implementation strategies related to the way in which the
line search is used in either the L-BFGS or the Newton-CG algorithm. In practice, a balance of the number of inner and external iterations
in the Newton-CG algorithm may be required. We use 3 inner CG iterations, similar to the one previous FWI example (Métivier et al. 2014).
However, this also means that more external iterations are needed to solve the Newton equation. The use of more inner CG iterations (N)
will increase the computational cost of full Hessian kernel calculation by the factor of 6N, but the number of external iterations can be
reduced due to the increased number of inner CG iterations to improve the Newton direction. The convergence rate also depends on how
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Figure 11. A comparison of full-waveform inversions using gradients only (L-BFGS) and using both gradients and full Hessian kernels (Hessian). The first
row (a)–(c) shows the L-BFGS inversion for the frequency from 0.01 to 0.2 H after 12 iterations, where the first frequency stage was 0.01–0.1 Hz with 12
iterations. Each subfigure shows the relative model variation in terms of velocity and density with respective to the initial model. The second row (d)–(f) shows
the Hessian inversion for the frequency stage from 0.01 to 0.1 Hz after 6 iterations, which has the same computational cost as the first stage of the L-BFGS
inversion after 12 iterations. The third row (g)–(i) show the Hessian inversion for the frequency stage from 0.01 to 0.2 Hz after 2 iterations, which has the same
misfit as the L-BFGS inversion of the two stages (see Fig. 13). The bottom row (j)–(l) shows the Hessian inversion recovery for the frequency stage from 0.01
to 0.2 Hz at the 4th iteration, which has the same computational cost as used by the L-BFGS inversion after the second requency stage shown in the first row.
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Figure 12. A comparison of the true model with the FWI-recovered models shown in Fig 11. The first row (a)–(c) shows the model difference for the L-BFGS
inversion for the frequency stage of 0.01–0.2 Hz after 12 iterations. The second row (d)–(f) shows the model difference for the Hessian inversion for the
frequency range of 0.01–0.1 Hz after 6 iterations. The third row (g)–(i) shows the model difference for the Hessian inversion for the frequency range of 0.01
to 0.2 Hz after 2 iterations (same misfit as first row). The bottom row (j)–(l) shows the model difference for the Hessian inversion for the frequency range of
0.01–0.2 Hz after 4 iterations (same computational cost as first row).
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Figure 13. Waveform misfit versus iterations for the two methods both with and without 50 per cent coherent Gaussian noise contamination randomly added
to each trace. Left-hand panel: a comparison between L-BFGS and full Hessian at the frequency stage of 0.01–0.1 Hz . The ‘LBFGS’ indicates the classical
L-BFGS inversion. Right-hand panel: the same as left but for the frequency stage of 0.01–0.2 Hz. The reference lines illuminate iterations where the two
methods have the same misfit.
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Figure 14. The same as Fig 11 but with 50 per cent coherent Gaussian noise randomly added to each trace of the synthetic data that are generated from the
true model.

each iteration is implemented. There is a trade-off between the number of inner and external iterations in practical usage. Regardless, we are
most interested in the total computational cost and best convergence. In our implementation, the Newton-CG algorithm we used degenerates
to be approximately equal to the non-linear conjugate gradient method when the number of inner CG N set to 1. The classical Newton-CG
algorithm returns a negative gradient if there is a negative curvature. We avoid negative gradients by using the non-linear conjugate gradient
method for one step movement of the search direction. For positive curvature cases, the classical newton-CG algorithm is used. Future work
will focus on the use of negative curvature information for the search direction update.

We calculate the relative computational cost in this work based on the number of simulations instead of the absolute clock time since
each run could be affected by the node I/O due to multiple users on the clusters, where pending job submissions are difficult to account for.
Fig. 13 shows the convergence rate curve between the two inversions for this example. The L-BFGS inversion takes a total of 96 (8×12)
simulations while the Hessian kernel inversion takes 90 (18×5) simulations. Therefore, the full Hessian inversion provides an improved
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Figure 15. The same as Fig 12 but with 50 per cent coherent Gaussian noise randomly added to each trace of the data generated from the true model.

structural recovery over the L-BFGS inversion with a smaller computational cost for this example. In other words, the use of full Hessian
kernel improves the convergence rate, regardless of the high computational cost of each iteration. For the comparison here we use a dense grid
for all frequency stages. However, since the Hessian converges closer to true model at an earlier frequency stage than L-BFGS, additional
computational savings could be achieved, given that increasingly dense grids are required for higher frequency stages. In FWI multiple stages
of inversion are used, typically, with an initial low frequency stage to get the broad scale structure. Then subsequent stages incorporating higher
frequency information are used to resolve finer scale structure. In spectral element methods, the computational costs increase exponentially (
f 4 – f 5 ) with increased frequency ranges.

This conclusion only applies to this model. However, we hypothesize that the use of full Hessian kernel is likely similarly beneficial for
other models with small-scale scatterers or strong heterogeneity, since the full Hessian kernel aids in accounting for second-order scattering
wavefields (Fichtner & Trampert 2011).

Fig. 16 shows the simultaneous elastic and Q inversion for the idealized model recovered by the L-BFGS inversion and the full Hessian
kernel inversion based on the Newton-CG algorithm. The third iteration of the full Hessian kernel inversion and the seventh iteration of
the L-BFGS inversion are compared as these correspond to similar computational costs. The L-BFGS and full Hessian kernel inversions
generally recover the magnitude of the Q perturbations, achieving Q values as low as the input value of 30. However, the shape of the
Q anomalies are less well-constrained compared to the elastic anomalies. The full Hessian kernel inversion shows similar patterns to the
L-BFGS inversion, both characterized by smearing. This agrees with previous FWI work that previously reported the difficulty in recovering
Q anomalies (e.g. Askan et al. 2007; Fabien-Ouellet et al. 2017; Pan & Wang 2020; Yang et al. 2020) in comparison to recovering elastic
anomalies. The full Hessian kernel inversion shows slightly lower misfit values in comparison to L-BFGS because the result of the elastic
full Hessian kernel inversion is used as the start model, which is more accurate than the result of the elastic L-BFGS inversion as the start
model (Fig. 17). Q recovery would likely improve at higher frequencies. However, here we have only used frequencies up to 0.5 Hz owing to
the high computational cost of using higher frequencies. Doubling the investigated frequency f will exponentially increase the computational
cost (at least f3, e.g. doubling the mesh in multiple directions and half the time step) in the spectral-element method inversion.

5.2 2-D example II: Nicaragua model

Fig. 18 shows the results for the L-BFGS and full Hessian inversions (on-the-fly QuadSEM) for the elastic parameters for 0.01–0.2 Hz and
15 iterations. The starting model is a smooth version of the true model (Figs 18a and d), similar to what might be the expected output from
classical tomography approaches (Syracuse et al. 2008; Harmon et al. 2013). The inversion result for the L-BFGS has good agreement with
the true model (Figs 18b,e versus Figs 2a,b) for the Vp and Vs models. The edges of the slab are well defined, although the deeper parts of
the slab retain vestiges of the smooth starting model. The cold nose anomaly is not visible in the Vp model but is visible and close to the
true value in the Vs model. The arc and backarc anomalies are well recovered by the L-BFGS, with the sharp edges recovered well. In the
recovered L-BFGS model there are artefacts visible due to smearing into the upper plate and the surrounding mantle wedge that are visible.
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Figure 16. Simultaneous inversion of the elastic parameters (Vp, Vs and ρ) and the two attenuation quality factors Qκ and Qμ using the L-BFGS inversion
(top row) and the full Hessian kernel inversion (bottom row). The black frames indicate the location of the attenuation anomalies. For visualization purposes,
relative elastic parameters and the absolute Q parameters are shown. The Q parameters trade-off with the elastic parameters. Less trade-off issues are observed
for the case in which we compute the elastic and Q kernels simultaneously while using the updated kernel formulation. The Q recoveries are less concentrated
around the anomaly locations in comparison to the elastic parameter recoveries due to the different sensitivity of the parameters at this frequency stages.
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Figure 17. Misfit curves of the anelastic inversion of Fig 16. The initial misfit difference between the two curves is because of the initial input model. For the
inversion with full Hessian kernel, the starting model is the result of the elastic full Hessian kernel inversion. We use the third iteration of the full Hessian
kernel inversion which has a similar misfit to the L-BFGS.

The full Hessian kernel recovery also has good agreement with the true model. The slab is well recovered, with sharper edges visible, and the
slab anomaly is also recovered better at greater depths than recovered by L-BFGS. The cold nose anomaly is visible in both the recovered Vp
and Vs models. The arc and backarc anomalies are also well recovered both in terms of their shapes and magnitudes. The full Hessian kernel
inversion also has artefacts visible in the upper plate and underlying mantle. There are some subtle differences between the L-BFGS and
the full Hessian kernel inversion. The full Hessian kernel inversion does better at recovering some of the finer details such as the cold nose
and deeper and shallower parts of the slab (Fig. 19). In general both methods do better at recovering the Vs structure than the Vp structure.
Similar convergence behaviour is observed for this example to what was observed in the ideal source–receiver geometry examples, with the
full Hessian kernel inversion converging faster than the L-BFGS (Fig. 20).
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Figure 18. Elastic full-waveform inversion for the Nicaragua subduction models for the frequency range of 0.01–0.2 Hz. The top row shows the inverted Vp
models and the bottom row shows the inverted Vs models. The left-hand column (a and d) shows the smooth start models. The second column (b and e) shows
recovery using the classical L-BFGS inversion, and the last column (c and f) shows recovery using full Hessian kernel inversion.
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Figure 19. Differences between the recovered models and the true models shown in Figs 2 and 18. Panel (a) shows the difference between the true model and
the smoothed Vp model. Panel (b) shows the difference between the true Vp model and the L-BFGS inversion recovery. Panel (c) shows the difference between
the true Vp model and the Hessian inversion recovery. Panels (d)–(f) are the same as (a)–(c) but for the Vs model differences. The use of full Hessian kernels
improves the recovery of the edges.

The inversion recoveries for the anelastic parameters using L-BFGS and the full Hessian kernel are shown in Fig. 21. The magnitudes of
the subarc and backarc Qμ anomalies (40 and 30, respectively) are recovered by L-BFGS and by the full Hessian, but with a range between
10 and 110. The Qμ magnitude of the upper plate (1000) is recovered by L-BFGS and the full Hessian as 900–1000. The shapes of the subarc
anomalies are not well-recovered, in particular the deepest corner towards the backarc is not recovered likely owing to a lack of ray paths.
The sharp boundary between the upper plate Q and the subarc anomalies is well recovered by L-BFGS and the full Hessian. The slab is not
very well recovered by either L-BFGS or the full Hessian. The cold nose Qμ anomaly is not well-recovered by L-BFGS or the full Hessian.
The anelastic recovery may be imperfect for several reasons. For example, the high Q values in the slab may be difficult for the inversion to
recover because the difference between the Q of 1000 in the slab relative to the 600 in the background might not produce enough variation
in the amplitude of the waveform to be recoverable. The low Q structures are also poorly resolved, although the inversions do recover the
anomalies in a broad sense, albeit with smearing. We speculate that better recovery of the anelastic properties could be achieved by including
higher frequencies. For instance, regional subduction zone studies sometimes consider frequencies as high as 15–20 Hz (Rychert et al. 2008).
Yet, achieving such high frequencies is still very computationally expensive in full waveform modelling. This hypothesis is supported by FWI
studies that used approximate Hessian kernels and recovered Q anomaly shapes and sharp edges by using very high frequencies, for example
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Figure 20. A comparison of the misfit convergence rates between the L-BFGS and the Hessian kernel inversions. The latter improves the convergence rate
substantially (a). Panel (b) shows the misfit for the frequency stage of 0.01–0.2 Hz, where the misfit of the Hessian kernel inversion is consistently lower than
that of the L-BFGS inversion, including the first iteration.
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Figure 21. A comparison of the L-BFGS inversion with the full Hessian kernel inversion for the Qμ model. Panel (a) shows the Qμ recovered using L-BFGS
inversion. Panel (b) shows the Qμ model recovered by using the full Hessian kernel. Panel (c) shows the convergence of the Hessian (red) and L-BFGS (blue
dashed). The misfit of the two inversions is equivalent for this model after using 10 Qμ perturbations for the full Hessian calculation. The recovered structures
are also very similar. The black dots indicate the earthquake locations and the black inverted triangles indicate the stations.

up to 30 or 50 Hz (e.g. Fabien-Ouellet et al. 2017; Pan & Wang 2020; Yang et al. 2020). However, the size of models that were interrogated
were also very small, sometimes smaller than 1 km by 1 km, given the computational costs.

5.3 3-D example: the 3-D scatterer model

5.3.1 3-D elastic inversion

Fig 22 shows the 3-D elastic L-BFGS FWI and the full Hessian kernel inversion with kernels calculated computed on the fly with the
QuadSEM3D package for the frequency stage up to 0.1 Hz at the 12th iteration. We find that the full Hessian kernel inversion and the L-BFGS
FWI perform similarly for the first frequency stage, up to 0.1 Hz. The Vp magnitudes are updated to values that range from –15 to 10 m s–1

relative to the background models, i.e., much less than the true anomaly perturbation from the background model of –340 m s –1. The Vs
magnitudes are better recovered, with values ranging from –400 to 10 m s –1, encapsulating the true model perturbation from the background
model of –390 m s –1. Additional iterations or higher frequency stages may need to be performed to image the edges of the scatterers for the
Vp and Vs models. The densities magnitudes are updated by –100 to 50 kg m–3, which encapsulates the true density perturbation of –95.7 to
0 kg m–3. However, the shapes of the anomalies are not very well-recovered, particularly for Vp and density. For the investigated frequency
stage, up to 0.1 Hz, the full Hessian kernel inversion is about 2.25 times more computationally expensive than the L-BFGS FWI.

Fig 23 shows that the Vp and Vs model recovery for the frequency stage of 0.2 Hz is better than that of the first frequency stage of 0.1 Hz
(Fig 22). However, the recovered density from the frequency stage of 0.2 Hz is worse than that of the frequency stage of 0.1 Hz. Compared
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Figure 22. A comparison of the 3-D L-BFGS inversion with the 3-D full Hessian kernel inversion for the frequency range from 0.01 to 0.1 Hz for the 3-D
elastic model. Panels (a)–(c) show the L-BFGS inversion for compressional wave speed, Vp [m s–1], shear wave speed, Vs [m s–1] and density, ρ [kg m–3],
respectively. The second row shows the corresponding inversion results using the full Hessian kernels. We show relative model perturbation to the background
model for visualization purposes.
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Figure 23. The same as Fig 22 but for the frequency range from 0.01 to 0.2 Hz.

to the Vs model recovery, the Vp model recovery is still less well-imaged due to the lower sensitivity of the small P-waves in comparison to
that of the larger S-wave phases. We then perform one additional P-wave inversion to recover the Vp model while using the inversion at the
stage of 0.2 Hz as an initial input. The left-hand column of Fig 23 shows the recovered Vp model after the P phase inversion. The decreased
recovery of density structure at higher frequency likely reflects the interparameter trade-off with Vp .

Fig 24 shows the inversion difference to the true model, and we find that the Hessian kernel inversion recovers the Vp model better
than the L-BFGS inversion, although they show similar misfit values (Fig 25). For the frequency stage of 0.2 Hz, the full Hessian kernel
inversion shows the same level of misfit reduction at the 9th iteration as the L-BFGS inversion shows at the 13th iteration (Fig 25). The full
Hessian kernel inversion is about 1.55 times expensive than the L-BFGS inversion at this point. This is an improvement over the 2.25-fold
computational cost at the end of the first frequency stage. Given this and the improved convergence rates that we observe at higher frequencies,
we speculate that the full Hessian kernel may show greater convergence properties at higher frequencies than we were able to test here. The
full Hessian kernel inversion may be computationally advantageous after a good low-frequency model has been determined using L-BFGS.

For the 3-D FWI using the full Hessian kernels, we use the classical Newton-CG algorithm (Nocedal & Wright 2006, p. 112 and p. 119).
The Newton-CG inversion also depends on variations in the Newton-CG algorithm version that is used. In this algorithm the updated CG
direction, p, is normalized to a fixed scalar value for the Hessian kernel calculation. This algorithm works well for 2-D inversions, as evidenced
by the testing performed here. However, we find that this approach fails in the 3-D tests as the product of the p with the Hessian vector
product Hp, that is the pTHp, can be negative around the initial model or around one iteration of the inverted model during the inversion. If
negative curvature is detected at the beginning, the classical Newton-CG algorithm will return the negative gradient as the Newton direction.
To partially deal with this issue, we use a line search to find the optimal p value for the model update. We store a previous search direction after
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Figure 24. A comparison of the 3-D inversions to the true models for the investigated frequency range from 0.01 to 0.2 Hz. Panels (a)–(c) show the difference
of the L-BFGS inversion to the true model for Vp, Vs and ρ. Panels (d)–(f) show the difference from the true model for the full Hessian kernel inversion. We
show relative model perturbation to the background model for visualization purposes.
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Figure 25. 3-D waveform misfits versus iterations for the frequency range from 0.01 to 0.1 Hz (left-hand panel) and from 0.01 to 0.2 Hz (middle panel) and
Vp only from 0.01 to 0.2 Hz (right-hand panel). The blue dashed reference line shows the same misfit for the two methods. The full Hessian kernel inversion
improves the convergence rate when the maximum investigated frequency is increased from 0.1 to 0.2 Hz.

the first iteration. The previous and current search directions can be used to calculate a new CG direction as well, in case the p optimisation
does not work. Alternative Newton-CG algorithms or similar algorithms that use the Hessian vector product may be developed in the future
for using the negative curvature of the Hessian. For the inversion, we constrain the updated model within physical limits. In other words, we
constrain each updated model with a –2000 unit smaller than the minimum of the initial and true model, and a +2000 unit greater than the
maximum of the initial and true model.

5.3.2 3-D simultaneous elastic and Q inversion

In the work, we perform a simultaneous inversion of the 3-D elastic and Q models using the improved Q Fréchet kernels rederived in this
work. The improvement can save about 1/3 of the computational cost in comparison to the classical anelastic adjoint tomography that uses
the shifted adjoint source. Fig 26 shows the simultaneous elastic and Q inversion, with the initial model provided by the 3-D elastic L-BFGS
inversion. We observed that the Q amplitude and the anomaly shape are less well-recovered in comparison to the elastic inversion for the
frequency investigated, up to 0.5 Hz. Fig 26(c) shows the misfit function of the simultaneous inversion, in which the misfit converges after
three iterations. The left upper Q anomaly is recovered due to sufficient S-wave illumination. The right bottom anomaly is not well-recovered
since only one event is located at the bottom of the Q anomaly, which is also very close to the event location. The source and receiver geometry
is very important in Q inversion, in particular for the S-waves illuminations.

A simultaneous inversion of the elastic and Q models is challenging since Q has a smaller effect on the waveforms than the elastic
parameters. Attenuation trades-off with velocity owing to dispersion. The elastic perturbations superimposed upon an anelastic reference
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Figure 26. A simultaneous inversion of the five model parameters. Panels (a), (b) and (d) show the inversion for the compressional wave speed, Vp [m/s],
shear wave speed, Vs [m s–1] and the density, ρ [kg m–3], respectively. Panel (c) shows the misfit varied with iterations. Panels (e) and (f) show the inversion
for quality factors Qκ and Qμ.

model may be computed like those of the elastic case provided the required wavefields are calculated in the anelastic reference model (Liu
& Tromp 2008). Unlike the elastic inversion where the kernels are computed using the phase and amplitude difference or the full waveform
difference, in the simultaneous elastic and Q inversion, we compute the elastic kernels using the phase difference. There are four sets of elastic
moduli in the viscoelastic simulation: that is the moduli at the reference and central frequency, and the relaxed and unrelaxed moduli. In the
inversion, the initial and true models should be considered under the same moduli state, that is, assuming which moduli of the initial and true
models were specified. In the codes, the moduli are initially shifted from the reference frequency to the central frequency, then shifted to the
unrelaxed state for stress calculation. In the simultaneous inversion, one may invert the elastic properties first, then perform a simultaneous
inversion of the elastic and Q models. Alternatively, one may also perform a simultaneous inversion of the elastic and Q models from the
beginning of the inversion. In the latter case, a larger weight (ωφ) may be used to enhance the elastic contribution in comparison to a smaller
weight (ωA) used for the Q. These weights are applied to the misfit, adjoint sources, and possibly the kernels to balance the two contributions.
We estimate the initial weights (χφ and χA) by the relative phase and amplitude difference of the misfit when normalized at the same level
in magnitude. The weights are then adaptively estimated via the phase and amplitude misfits (χφ and χA) with respect to the elastic and Q
models during the inversion. The line search also needs to be adjusted for the elastic and Q inversion. The use of the same step length for the
elastic and Q update may fail because of the different magnitudes of the velocity versus the attenuation parameters.

The Q inversion for real data would be very challenging. One reason is that the uncertainty in the elastic model typically remains high
even in well-resolved models with good source receiver geometries. The second reason is that the source and receiver geometry, in which
the Q inversion may require more ray illumination in comparison to the elastic inversion. This requires more investigations in the future.
In this work, we fix all source parameters, which could be fine for active source seismology, since these parameters are known. For passive
source seismology, the uncertainty of source parameters would further increase the difficulty of the Q inversion. We perform the simultaneous
elastic and Q inversion using the Q kernel rederived in this work for efficiency purposes. As the 3-D elastic and Q inversions are very
expensive at the regional scale, we show the inversions only up to 0.5 Hz. The 3-D full Hessian kernel inversion for Q would again double
the computational cost, which is computationally prohibitive for most medium-scale high-performance computing platforms at present. The
associated inversions require applying for larger computing grants for supporting the computation. Given its very high computational cost, it
may not be advisable to use it at this time.

6 C O N C LU S I O N S

We revisit the Q Fréchet kernels via the perturbation of the modulus in both the frequency and the time domain and show that the frequency-
independent Q Fréchet kernels of Fichtner & van Driel (2014) are approximately equivalent to the Q Fréchet kernels of Tromp et al. (2005)
when derived for δQ/Q or δQ−1. The Q Fréchet kernels are computed while computing the regular kernels for the elastic properties, using the
forward strain and a shift of the adjoint strain. This is explicit for the displacement-stress formulation that uses the strain without recomputing
its time derivative and associated memory variable, as an extension of the work of Fichtner & van Driel (2014). This development reduces
the need for an additional simulation in the computation of frequency-independent Q Fréchet kernels and extends it to the computation of
frequency-dependent Q Fréchet kernels for the spectral element and adjoint methods. We found that the use of the shifted adjoint source is less
accurate than the shifted adjoint field. We then derive the full Hessian kernels for frequency-(in)dependent Q based on the work of Fichtner
& Trampert (2011) and Fichtner & van Driel (2014), and compute the frequency-independent Q full Hessian kernels by a combination of the
on-the-fly QuadSEM approach (Xie et al. 2021) with the checkpointing parsimonious storage method (Komatitsch et al. 2016), in which the
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two forward fields are simultaneously recomputed from the checkpoints while simultaneously computing two adjoint fields during the adjoint
simulation. We call this approach QuadSEM-Q.

For the idealized case with many sources and receivers and small anomalies with sharp edges and also for the more realistic Nicaragua
subduction zone example, the on-the-fly QuadSEM inversion for 2-D elastic properties demonstrates improved structure and amplitude
recovery in comparison to the L-BFGS inversions. For the L-BFGS inversion, we limit our implementation to the publically available
Seisflows, and we slightly adjust the internal parameters to obtain optimal performance of the L-BFGS algorithm. We observed that the use
of full Hessian kernels improves the convergence rate, and this improvement effectively compensates for the higher computational cost per
iteration in comparison to the L-BFGS. This results in smaller computational costs for the same level of misfit for the tested models. The full
Hessian kernel also recovers structure at lower frequency than that required for the L-BFGS, which could further reduce the computational
costs for the two examples. The 2-D Qμ anomalies are recovered using both L-BFGS and the full Hessian kernel, albeit with some smearing .

The 3-D elastic full Hessian kernel inversion shows similar misfits as the L-BFGS inversion after the first frequency stage, up to 0.1 Hz.
The use of full Hessian kernel increases the convergence rate at the second frequency stage, up to 0.2 Hz, although the computational cost is
still 1.5 times that of L-BFGS to achieve the same level of misfit. We speculate that this trend will continue and that at higher frequency stages
the full Hessian kernel inversion will be more computationally advantageous than the L-BFGS for models with small scatterers or small-scale
heterogeneity as the Hessian kernels are better accounting for second-order scattered fields. The investigations at higher frequencies would
be very computational expensive in 3-D. This will be investigated in the future when further computing sources are available. One of the
reasons why the performance of the 3-D full Hessian kernel inversion is not as good as the 2-D case may be because the negative curvature
of the Hessian in this 3-D case, which requires a development of new algorithms to use the negative curvature information. A simultaneous
inversion of the elastic and Q models via the spectral-element and adjoint method in the 3-D case is very challenging even for synthetic
models due to the small scale of the Q relative to the elastic properties. Compared to the classical anelastic adjoint tomography that uses the
additionally defined adjoint source, the proposed method using the rederived Q kernels reduces the computational cost at a factor of 1/3 as no
additional adjoint simulations are performed for the Q kernel calculations. The recovery of Q in 3-D is similar to the recovery we observed
in 2-D, with many artefacts visible for our tests up to 0.5 Hz. Inversions at higher frequencies will exponentially increase the computational
cost, which will be investigated in the future.

DATA A N D R E S O U RC E S

No field data were used in this work. We use the QuadSEM (https://github.com/yujiangxie/QuadSEM) for 2-D full Hessian kernel calculations
for elastic and anelastic properties, which were developed based on the public SPECFEM2D package (https://github.com/geodynamics/s
pecfem2d). The 2-D elastic full Hessian kernels are computed on the fly via the QuadSEM and the 2-D anelastic full Hessian kernels
are computed partially on the fly via checkpointing implemented in QuadSEM-Q, as a complementary to the elastic QuadSEM. We use
QuadSEM3D (https://github.com/yujiangxie/QuadSEM3D) for 3-D elastic full Hessian kernel calculations, which were developed based on
the public SPECFEM3D Cartesian package (https://github.com/geodynamics/specfem3d). The 3-D elastic full Hessian kernels are computed
on the fly. The reformulated Q Fréchet kernels computed by the forward strain and a shift of the adjoint strain (or the adjoint memory
variable) in the 2-D and 3-D cases are initially included in the QuadSEM-Q and QuadSEM3D packages. We use the Seisflows package
(https://github.com/rmodrak/seisf lows) for the inversion workflow, with adding a few lines for the simultaneous elastic and Q inversion. For
the full Hessian kernel inversion, we use the Newton-CG algorithms (Nocedal & Wright 2006).
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Bozdağ, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Hill, J.,
Podhorszki, N. & Pugmire, D., 2016. Global adjoint tomography: first-
generation model, Geophys. J. Int., 207, 1739–1766.
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A P P E N D I X A : A G E N E R A L F O R M O F T H E F U L L H E S S I A N K E R N E L

The Hessian operator H applied to two arbitrary model perturbations may be expressed as (see Fichtner & Trampert 2011)

H (δm1, δm2) =
∫
V

K 1
mδm2 d3x =

∫
V

(
K 1→2

m + K 2↔1
m + K 1→1

m

)
δm2d3x, (A1)
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where V denotes the model volume. K 1
m = K 1→2

m + K 2↔1
m + K 1→1

m denotes the full Hessian kernels, which may be expressed by the forward
displacement field, s, the adjoint displacement field, s† and their perturbed fields, δ1s and δ1s†,

K 1
m =

T∫
0

[
s†∇mL(δ1s) + δ1s†∇mL(s) + s†∇m∇mL(s)(δm1)

]
dt. (A2)

The δ1s† may be decomposed into δ1s†m and δ1s†s with δ1s†= δ1s†m + δ1s†s , which corresponds to the separation of the total perturbation that is
owing to the model perturbation and adjoint source perturbation, respectively. Hence, eq. (A2) may be rewritten to

K 1
m =

T∫
0

[
s†∇mL(δ1s) + δ1s†m∇mL(s) + δ1s†s∇mL(s) + s†∇m∇mL(s)(δm1)

]
dt. (A3)

For the sake of simplicity, spatial and temporal dependencies of the vectors or matrices are omitted unless stated otherwise. The δm1 and
δm2 are two model perturbations. The δ1s is the perturbed forward field due to the perturbation of the model, δm1. The two portions, δ1s†m
and δ1s†s , are the perturbed adjoint fields related to the perturbed model and perturbed adjoint source, respectively. They can be computed
separately or simultaneously in two or one adjoint simulation(s) by substituting the adjoint source term. See the work of Xie et al. (2021) for
implementation of the elastic case. A similar derivation of the Hessian kernels (also called Hessian vector product) was given by Métivier
et al. (2013, 2014) using the derivation ideas of the adjoint method, which are typically computed by the velocity-stress wave equations using
the finite-difference approach for wave simulations and the associated adjoint state method for gradient calculations. Once the forward and
adjoint fields are computed from the two models m1 and m1 + vδm1 are available, construction of the full Hessian kernels for the elastic
media is straightforward using eqs (A1)–(A3). However, practical challenges include the large disk space and I/O requirements to store and
transmit these wavefields during a single Hessian kernel construction or iterative Hessian kernel constructions for full-waveform inversion.
Therefore, the wavefield compression approach (Boehm & Ulbrich 2015; Boehm et al. 2016) or the on-the-fly approach (Xie et al. 2021)
may be used to decrease the storage and I/O issues. The Hessian kernel expressions with a specific parametrization of model parameters can
be found from the kernels with another parametrization through the chain rule (see e.g. Fichtner & Trampert 2011; Xie et al. 2021).

A P P E N D I X B : P O S T - P RO C E S S I N G O F F U L L H E S S I A N K E R N E L S

B1 Removing strong artefacts around the source and receiver locations

For simplicity, the full Hessian kernel is written as H in this section. We remove the strong amplitude around the sources and receivers for the
full Hessian kernels based on a Gaussian typed function, which is defined by

H(xi ) =
∫

V
Hraw(xi )

[
1 − exp

[
−1

2

D∑
d=1

(xi,d − xsr,d )2

R2
d

]]
dV, (B1)

where Hraw(xi) indicates the raw Hessian kernel computed by the SEM and second-order adjoint method directly at position xi where i indicates
the spatial index. The Rd controls the semi-axis of the ellipse (2-D) or ellipsoid (3-D) from the centre point, xsr, d (source or receiver location).

The semi-axes are selected by several candidates tested from a few earthquakes. The exponential factor,
[
1 − exp

[
− 1

2

∑D
d=1

(xi,d −xsr,d )2

R2
d

]]
∈

[0 1), has the minimum value of zero at the centre point. A smaller Rd is selected for the receivers than that of the sources due to the strong
source injection. The computation of Hessian kernels includes the computation of Fréchet kernels in which the operator eq. (B1) is applied to
the Fréchet kernels as well. The Hessian kernel is multiplied by the exponential factors for all receivers of one event and that is repeated for
all events, which takes a few seconds for the 2-D examples as discussed in Section 5. We apply this operator to each event kernel separately
before the kernel summation for all events. Once the summed Hessian kernels are obtained, the smoothing operators are applied to stabilize
the inversions. In this work, we remove the source–receiver artefacts for both the Fréchet and Hessian kernels using the above operator. The
radius R for these kernels are set to 30(dx + dz)/2 and 15(dx + dz)/2, respectively, where dx and dz represent the grid spacing for the model
mesher.

B2 Smoothing

Similar to the post-processing for Fréchet kernels, we smooth full Hessian kernels in order to solve the Newton equation of eq. (27). The
Gaussian function used to smooth the Fréchet kernels (e.g. Zhu et al. 2015) is used to smooth the raw full Hessian kernels Hraw(x

′
), which

may be regarded as a regularization procedure,

H(x) = 1

W (x)

∫
V

Hraw(x′) exp
[−(x ′ Da)2/

(
2σ 2

a

)]
exp

[−(x − x ′)2/
(
2σ 2

x

)]
d3x′, (B2)

W (x) =
∫

V
exp[−(x ′ Da)2/(2σ 2

a )] exp[−(x − x ′)2/(2σ 2
x )]d3x′, (B3)
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where Da denotes the azimuthal distance between points x and x
′
. The x = ||x|| and x

′ = ||x′ ||. The two quantities σa and σx controls the
half-width of the Gaussian function in the azimuthal and radial direction, respectively. The operator degrades to 2-D while omitting the
azimuthal terms. Different from eq. (B1) which applies to the source and receiver locations, respectively, the operator of eq. (B2) applies
to each of the GLL points within the kernels, making its implementation more expensive than eq. (B1) if the same smoothing aperture is
applied. The half widths of the Gaussian function are chosen based on the wavelengths of structure which can be resolved by the investigated
frequency bands. We use the same smooth aperture of σa = 14 000 and σx = 3500 for both the Fréchet and Hessian kernels at the low
frequency stage.

At high frequency stages or if the model includes heterogeneity, the raw Hessian kernel may not be simply smoothed by the Gaussian filter
that correlates varies only with distance, without a variation in direction for each GLL point. Therefore, we introduce the structure-oriented
smoothing operator (Weickert 1999; Fehmers & Höcker 2003; Hale 2013) to preserve structure features for the Hessian kernel in our codes.
Equivalently, next to the convolution with the exponential coefficient as in eq. (B2), smoothing the Hessian kernel at each point x may be
defined as

H(x) = C(x) Hraw(x), (B4)

where C(x) denotes the kernel covariance operator. Similar to the work of Hale (2013), we apply the covariance operator C(x) by solving the
following partial differential equations (Hale 2013),

|D|− 1
4 (x)(1 − α∇ · D(x) · ∇)l (1 − β∇ · D(x) · ∇)|D|− 1

4 H(x) = γ Hraw(x). (B5)

eq. (B5) may be efficiently solved by solving the following sequence of equations instead (Hale 2013):

H0(x) = |γ 2D(x)| 1
4 Hraw(x),

(1 − α∇ · D(x) · ∇) Hl (x) = Hl−1(x),

(1 − β∇ · D(x) · ∇) HL (x) = Hl (x),

H(x) = |γ 2D(x)| 1
4 HL (x), (B6)

where the Hl can be computed sequentially based on its previous Hl−1 with l = 1, 2, 3,..., L − 1. The tensor field D(x) may be computed from
the input Hessian kernel Hraw(x) by

D(x) = [∇Hraw(x)] [∇Hraw(x)]T . (B7)

We use l = 2, α = 1 and β = 0 for the 2-D examples. Besides the two operators for the kernel post-processing, no other pre-conditioner or
regularization terms are used in this work. In the 3-D case, we have not yet used this smoothing method since the Gaussian smoothing codes
provided by the SPECFEM3D worked well for the investigated frequency up to 0.2 Hz in our tests. We may consider this smoothing method
in the 3-D in the future.

A P P E N D I X C : A N E L A S T I C K E R N E L C A L C U L AT I O N S U S I N G S P E C F E M 2 D / 3 - D
B A S E D O N T H E A D J O I N T M E M O RY VA R I A B L E S

C1 SPECFEM2D using the adjoint memory variables for kernel calculations.

To compute the Fréchet kernels for viscoelastic media, the method presented by Fichtner & van Driel (2014) performs well and it does not
require additional computational cost to compute the Q Fréchet kernels. . In this section, we show how to compute the Fréchet kernels for
viscoelastic properties based on the adjoint memory variables using the public SPECFEM2D package and the associated codes are published
with this work. To do this, we revisit the stress–strain relation in a viscoelastic media (e.g. Emmerich & Kornm 1987; Blanch et al. 1995;
Carcione 2001, and therein). The stress–strain relation in a viscoelastic medium may be written as

σi j (t) =
∞∫

−∞

Ci jkl (t − t ′) ε̇kl (t
′) dt ′ =

∞∫
−∞

Ċi jkl (t − t ′) εkl (t
′) dt ′ =

∞∫
−∞

Mi jkl (t − t ′) εkl (t
′) dt ′, (C1)

where Ci jkl (t − t
′
) represents the elastic tensor and the dot · above the letter denotes the time derivative. The integral interval depends on the

simulation system. The C(t) for the generalized Zener model may be defined as (e.g. Liu et al. 1976; Carcione 2001; Moczo & Kristek 2005;
Fichtner & van Driel 2014)

C(t) = Mr

[
1 + 1

N

N∑
l=1

(
τ(l)

ε

τ
(l)
σ

− 1

)
e−t/τ

(l)
σ

]
H (t) = Mr

[
1 + 1

Q

N∑
l=1

D(l)e−t/τ
(l)
σ

]
H (t), (C2)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/234/2/1205/7080141 by guest on 26 July 2023



QuadSEM-Q full Hessian anelastic tomography 1233

where Mr indicates the relaxed modulus, τ(l)
ε and τ(l)

σ are the relaxation times and H(t) is the Heaviside function. Differentiating eq. (C2) with
respect to time t, yields

M(t) = Mr

[
1 + 1

Q

N∑
l=1

D(l)e−t/τ
(l)
σ

]
δ(t) − Mr

[
1

Q

N∑
l=1

D(l)

τ
(l)
σ

e−t/τ
(l)
σ

]
H (t), (C3)

where δ(t) is the delta function. For an isotropic media, inserting eq. (C3) into eq. (C1) leads to

σi j (t) = Mr
κ

[
1 + 1

Qκ

N∑
l=1

D(l)
κ

]
εkk(t)δi j + 2Mr

μ

[
1 + 1

Qμ

N∑
l=1

D(l)
μ

]
ε̃i j (t) + Mr

κ

N∑
l=1

R(l)
κ δi j + 2Mr

μ

N∑
l=1

R̃(l)
i j,μ, (C4)

where Mr
κ and Mr

μ denote the relaxed elastic modulus for κ and μ, respectively. The SPECFEM2D uses the unrelaxed elastic modulus, for
the adjoint simulation, eq. (C4) may be written as

σ
†
i j = MU

κ ε
†
kkδi j + 2MU

μ ε̃
†
i j + MU

κ

[
1 + 1

Qκ

N∑
l=1

D(l)
κ

]−1 N∑
l=1

R(l)†
κ δi j + 2MU

μ

[
1 + 1

Qμ

N∑
l=1

D(l)
μ

]−1 N∑
l=1

R̃(l)†
i j,μ, (C5)

where MU
κ and MU

μ are the unrelaxed elastic modulus, respectively. The last two terms in eq. (C5) include the adjoint memory variables,
which may be defined as

E (l)†
κ =

[
1 + 1

Qκ

N∑
l=1

D(l)
κ

]−1

R(l)†
κ = −

[
1 + 1

Qκ

N∑
l=1

D(l)
κ

]−1 1

Qκ

D(l)
κ

τ
(l)
σ,κ

∞∫
−∞

ε
†
kke−(t ′−t)/τ

(l)
σ,κ H (t ′ − t) dt ′, (C6)

Ẽ (l)†
i j,μ =

[
1 + 1

Qμ

N∑
l=1

D(l)
μ

]−1

R̃(1)†
i j,μ = −

[
1 + 1

Qμ

N∑
l=1

D(l)
μ

]−1 1

Qμ

D(l)
μ

τ
(l)
σ,μ

∞∫
−∞

ε̃
†
i j e

−(t ′−t)/τ
(l)
σ,μ H (t ′ − t) dt ′. (C7)

Before the forward and adjoint simulation, for each grid point of the model, the D(l)

Q and τ(l)
σ are searched for in order to approximate the input

Q. Eqs (C6) and (C7) link to Eqs (16) and (13). The Q kernels can be computed when the adjoint memory variable and the D(l) and τ (l)
σ are

available (see Section 2). Note that in the 2-D case, we use κ = λ + μ. Alternatively, the memory variables computed by the SPECFEM2D
can be transformed to the memory variables R̃ used in this work based on eqs (C6) and (C7). These expressions are only valid for the
displacement–stress formulation that uses the adjoint strain for the adjoint memory variable calculations. For the adjoint memory variable
that is computed by the time-derivative of the adjoint strain, one can refer to the work of Fichtner & van Driel (2014).

C2 SPECFEM3D Cartesian using the adjoint memory variables for the kernel calculations.

The relaxation times in the SPECFEM3D Cartesian package are computed differently in comparison to that of the SPECFEM2D package due
to the efficient Q simulation, which the 3-D version uses the same, N evenly spaced stress relaxation times, τσ , for the Qκ and Qμ simulation,
and the optimization is performed only to find the τε for Qκ and Qμ. This strategy can be updated to optimize the τσ and τε (or D(l) and
τ (l)
σ ) simultaneously for Qκ or Qμ in the subroutine of the τε optimization, as similarly done in the SPECFEM2D. We then slightly update the

‘get attenuation model’ to get the two scaling factors for κ and μ using D(l) and τ (l)
σ , in which the κ and μ are scaled from the reference to

the central frequency then to the unrelaxted state for the stress calculation later. The two relaxation times are also stored together with the
two scaling factors at the attenuation.bin. The relaxation times are then used for the Q kernel calculation in the adjoint simulation. When
the reference frequency is set to the central frequency, it is equivalent to scaling the modulus from the central frequency to the unrelaxted
state. The 3 × 3 symmetric matrix memory variable R̃ is computed in the subroutine of the memory variable calculation. Note that the
SPECFEM3D Cartesian computes the memory variable based on the relaxation spectrum (Komatitsch & Tromp 1999; Savage et al. 2010).
The memory variable of the SPECFEM3D Cartesian is numerically equivalent to the memory variable computed in this work assuming the
stress terms are numerically accurately computed in both the two implementations: one in the SPECFEM3D Cartesian and one via eq. (C4)
or eq. (C5). We compute five components (R11, R22, R12, R13 and R23) of the memory variable R̃ for the stress and Q kernel calculation.
The trace of R̃ equals to zero. Once the relaxation times, scaling factors and the memory variables are computed, the memory variables
are then used in the stress calculation based on eq. (C4) or eq. (C5), and also used for the Q kernel calculation in the ’compute kernels’
subroutine. Alternatively, instead of recomputing the memory variable, R̃, in this work, one can still use the memory variables computed from
the SPECFEM3D Cartesian, which are then transformed to the R̃ based on eq. (C4) to eq. (C7) for the Q kernel calculation. In the 3-D case,
we use κ = λ + 2μ/3. The memory variables are expressed as trace for κ and as the deviator for μ. We have the moduli from the reference
and the central frequency as well as the relaxed and unrelaxed moduli when attenuation is used in the simulation. We compute the stress terms
using the unrelaxed modulus and the Q kernels can be computed via the relaxed or unrelaxed modulus. These moduli can be transformed into
each other when the relaxation times are computed. Codes are given in the QuadSEM3D.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/234/2/1205/7080141 by guest on 26 July 2023



1234 Y. Xie, C. Rychert and N. Harmon

A P P E N D I X D : C O M P U TAT I O NA L C O S T S

D1 2-D full Hessian kernel construction on the fly or via checkpointing

Construction of the anelastic Hessian kernel using the QuadSEM-Q requires a 2-fold CPU time and memory cost in comparison to the
construction of the anelastic Fréchet kernels alone, assuming the same number of computer cores are used. Double disk space is required
when compared to the construction of the anelastic Fréchet kernels since two models are used. Due to the computer cluster used for the
simulations and also to stabilize the run for the anelastic wave equations for recomputing the two anelastic forward fields in this work,
we use 100 checkpoints to save the attenuated forward fields during the forward simulation, resulting in 100 chunks for the forward field
reconstruction during the adjoint simulation. Each chunk includes 100 time steps (100 × 100 = 10 000). A different number of checkpoints can
be considered as well, for instance, by increasing the number of cores when the anelastic wave simulation is stable. The cost for constructing
the anelastic Hessian kernels is mostly taken up by the anelastic wavefield computation, which takes about 7 min the forward simulation and
about 14 min for the adjoint simulation using 10 CPU cores (Intel R© Xeon R© Gold 6138 CPU @ 2.00GHz). For the wavefield storage, only
about 1.5 GB of disk space is required by the QuadSEM-Q, which reduces the disk space requirement to two orders of magnitude smaller
than the classical wavefield storage approach which would take about 230 GB of disk space for the full Hessian kernel calculations. The
parsimonious storage implementation (Komatitsch et al. 2016) that is used for the anelastic Fréchet kernel calculations would take about
152 GB of disk space since two sets of fields still need to be stored for the full Hessian kernel calculations. Note that the calculation of the
disk space requirements here accounts for only 100 checkpoints for computing one full Hessian kernel. If the classical full wavefield storage
approach is used, more than 10 times the disk space (i.e. 2300 GB) and 20 times the I/O overhead (i.e. 4600 GB) would be required if the
waves are simulated for 1000 seconds (∼16.6 min). In each iteration, the full Hessian kernels need to be computed three times if three CG
iterations are used, which requires 3 times the I/O.. The disk space and I/O requirements are still very high while using the parsimonious
storage method alone. A combination of the on-the-fly approach (Xie et al. 2021) with the parsimonious storage method (Komatitsch et al.
2016) can be used to reduce the disk space and I/O requirements.

One snapshot of a forward field takes about 7.8 MB of memory per core when 10 cores are used. The more cores that are used, the
smaller the memory that is used on each core. The 7.8 MB of memory per core is much smaller than the 4000 MB of memory per core in
most present-day HPC computing platforms. Large HPC clusters or supercomputers are readily available nowadays, where users typically
use only a small portion of the memory per core, typically between 5 and 30 per cent, as generally a relatively large number of processor
cores are used to keep the calculation relatively fast (see Komatitsch et al. 2016, for more discussions). The cost for recomputing the forward
fields may be compensated by the fewer number of iterations due to the fact that the full Hessian kernels are used to improve the convergence
rate. As an extension of the traditional parsimonious storage method (Komatitsch et al. 2016), we do not adopt the solution that doubles the
parsimonious storage method in a parallel fashion because it still has the massive I/O issue for transmitting the large numbers of wavefields
over computing nodes or cores in order to access these required fields simultaneously. We use all wavefields simultaneously in the computer
memory because they are simultaneously computed for each time step.

D2 3-D Fréchet and full Hessian kernel construction

In the 3-D case, wavefield storage and I/O costs become challenging, making the classical wavefield storage method computationally
prohibitive. In the 3-D example of this work for one forward simulation, about 32.22 MB disk space is required to store the Database.bin,
and about 386.19 MB is required to store the model parameters (e.g. vp.bin) and the coordinates (e.g. x.bin). About 880 MB disk space is
required to store the external mesh.bin and about 680 MB disk space to store the attenuation.bin. The attenuation.bin typically stores the
scaling factors for Mκ and Mμ when attenuation is used in the simulation. Hence, the total disk space requirement excluding the storage of
the wavefields and waveforms is about 1.6 GB.

In the elastic case, the wavefield storage is used by the last snapshot of the forward fields and the absorbing boundary fields. The former
uses about 210 MB disk space and the latter uses about 21.37 GB disk space. The waveform storage for all stations is only about 5.75 MB.
The storage requirement for the elastic Fréchet kernels in terms of Vp, Vs and ρ is about 128.75 MB. The same storage is required for the
full Hessian kernel since both are stored at the same GLL level. Thereby, the total disk space for the elastic Fréchet kernel calculation uses
about 23.30 GB disk space, of which most of the disk space is used to store the absorbing boundary fields. A simultaneous computation of
the 3-D elastic Fréchet and full Hessian kernels on the fly would approximately double the disk space requirement, which would need about
46 GB disk space under the on-the-fly feature. The disk space requirement here is calculated for one event. If the on-the-fly approach is not
used, the disk storage requirements will be greater.

In the viscoelastic case, the wavefields are stored at the checkpoints, and a storage of the last snapshot of the forward fields and the
absorbing boundary fields is not required. The disk space requirement for all forward fields at the checkpoints is about 60.54 GB for 50
checkpoints, where each checkpoint uses 1.21 GB disk space. If all 5000 time steps (simulated for 100 s) are stored, it would be taken about
5.91 TB disk space. The 50 evenly spaced checkpoints (100 time steps per chunk) may be enough for this case. The possible minimum
number of checkpoints, Ncp, can be estimated via a comparison of the waveforms computed from several different Ncp. Except for the storage
requirement for the wavefields, most of the other disk space requirements are the same as that of the elastic case. The viscoelastic simulation

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/234/2/1205/7080141 by guest on 26 July 2023



QuadSEM-Q full Hessian anelastic tomography 1235

needs to store the attenuation.bin, and the kernels are stored for Vp, Vs, ρ, Qκ and Qμ. The disk space requirement for the viscoelastic case
is calculated for one event.

The computational time for computing the elastic Fréchet kernels is about 33 min, which includes about 8.47 min for the forward
simulation and about 24.10 min for the adjoint simulation when 10 CPUs are used (Intel R© Xeon R© Gold 6138 CPU @ 2.00GHz). A
simultaneous computation of the elastic Fréchet and full Hessian kernels doubles the computational time when compared to the computation
of the Fréchet kernel alone. The computational time here is calculated for one event. The viscoelastic simulation again approximately doubles
the computational time when compared to the pure elastic simulation. The forward simulation with attenuation takes about 15 min and the
adjoint simulation takes about 40 min. The computation times may be influenced by the method of implementation.

D3 Cost of the 2-D and 3-D inversions

The cost of the 2-D and 3-D inversions can be estimated approximately based on the cost of kernel calculation for one event, the number of
events, the number of frequency stages, and the number of iterations for each frequency stage. Additional costs are needed for debugging,
parameter testing, and the calls in the inversion workflow, etc. The maximum disk space and memory requirements can be estimated via one
iteration. We remove the temporary files or useless files when moving to next iteration and next frequency stage.
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