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Abstract
Ombrotrophic peatlands are important long-term sinks for atmospheric carbon as plant productivity exceeds litter decompo-
sition. Changes in plant community composition may alter decomposition rates through alterations in microbial communi-
ties and activity. Such plant community driven changes in decomposition rates may however differ between microhabitats. 
Nevertheless, the microhabitat-context-dependency of plant community composition effects on decomposition remains 
poorly understood. We used a long-term (> 10 year) plant removal experiment to study how vascular plant functional types 
(PFTs, i.e. graminoids and ericoids) influence decomposition processes in wet lawns and hummocks. We employed the Tea 
Bag Index (TBI) as an indicator for early litter decomposition and carbon stabilization and assessed the potential activity 
of five hydrolytic extracellular enzymes (EEAs) as indicators for microbial activity. PFT removal had no effect on the TBI 
decomposition rate constant (k), nor on the stabilization factor (S). Yet, k increased slightly when both PFTs were absent. 
In the lawns, we observed higher values of k and S as compared to hummocks. PFT composition influenced four out of five 
hydrolytic EEAs that can drive decomposition. Yet, this influence was non-pervasive and microhabitat dependent. In wet 
lawns, PFT removal generally increased enzyme activities, while opposite trends were detected in the hummocks. Our results 
suggest an important role for vegetation change, through their influence on enzyme activity, along the lawn-hummock gradient 
in regulating decomposition processes in northern peatlands. This implies that potential consequences of vegetation changes 
on organic matter turnover, hence the peatland carbon sink function, cannot be generalized across peatland microhabitats.
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Introduction

Northern peatlands are important terrestrial carbon (C) 
stores that for millennia have accumulated non-decom-
posed plant material as peat (Gallego-Sala et  al 2018)  

and formed the organic C reservoirs that are currently esti-
mated to hold 600-700Gt of carbon (Yu 2012; Ratcliffe et al. 
2021). These values are equivalent to 25–30% of the global 
soil carbon stock (Gorham 1991). Peatlands are, therefore, 
key in regulating the global climate and their continued 
presence is one of the best natural lines of defense against 
climate change. The peatland C sink function results from 
the production of decay-resistant plant litter, in combination 
with low average temperatures and waterlogged conditions 
that constrain microbial metabolic activity and lead to slow 
decomposition rates (Yu 2012). Currently, peatlands are 
undergoing rapid changes in enviro-climatic conditions that 
puts pressure on the ecological processes supporting their 
C sink function (Gallego-Sala et al. 2018; Swindles et al. 
2019). To anticipate the impact of global change on peatland 
C dynamics it is essential we understand what drives the 
decomposition process.
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Ombrotrophic bogs often display distinct patterns in 
microhabitats that differ in their position along the water 
table: hummocks and wet lawns (sometimes also referred to 
as carpets). Hummocks are raised mounds where the peat-
moss surface is relatively far from the water table, while 
the surface of wet lawns are situated closer to, and often 
move with, the water table (Rydin and Jeglum 2013). Moreo-
ver, the distance to the water table is known to influence 
decomposition (Wang et al. 2021; Górecki et al. 2021) and 
has been reported to greatly influence the microbial activity 
(Fisk et al. 2003; Jassey et al. 2018). Apart from being posi-
tioned differently along the water table, microhabitats differ 
in biotic community composition. Moreover, hummocks and 
wet lawns are each dominated by a distinct vegetation. The 
vascular plant community is comprised of two functional 
types, graminoids and ericoids, that differ in their mecha-
nisms for nutrient acquisition (e.g. radial oxygen loss, myc-
orrhizal associations, rhizodeposition) (Gavazov et al. 2018; 
Kaštovská et al. 2018) and have a distinct effect of the com-
position of the microbial community (Martí et al. 2015) and 
its functionality (Bragazza et al. 2015; Robroek et al. 2015). 
Moreover, these vascular plant types shape belowground 
microbial communities and associated EEA (Robroek et al. 
2015; Parvin et al. 2018) by providing different quality and 
quantity of litter (Hobbie 1992; Gartner and Cardon 2004; 
Handa et al. 2014) and various exudates released from roots 
(Bais et al. 2006; Kardol et al. 2010; Mastný et al. 2021). 
These litter deposits and root exudates serve as microbial 
substrates and stimulate microbial EEA and respiration with 
subsequent effects on decomposer community composition 
and consequential C cycling (Van der Heijden et al. 2008; 
De Deyn et al. 2008; Wiedermann et al. 2017). Hence, it is 
well established that plant functional types, and changes in 
their composition, can have considerable effects on decom-
position processes (Johnson and Damman 1991; Ward et al. 
2015; Zeh et al. 2020; Mastný et al. 2021).

Decomposition in peatlands is largely driven by soil 
microbial activity (Fenner et al. 2005; Preston et al. 2012; 
Briones et al. 2022). In peatlands, there is clear evidence that 
microbial community composition and activity is strongly 
dependent on abiotic conditions, including water table depth 
(Juszczak et al. 2013; Robroek et al. 2015; Jassey et al. 2018; 
Asemaninejad et al. 2019; Lamit et al. 2021). In addition 
to directs effect of abiotic condition of decomposition 
rates, decomposition can be affected indirectly through 
the composition of the plant community (Andersen et al. 
2013; Ritson et al. 2021). Relationships between plant and 
microbial communities, in addition, can drastically alter in 
nature along enviro-climatic gradients (Robroek et al. 2021). 
What is more, warmer and drier conditions increase the 
abundance of graminoids and ericaceous shrubs in peatlands 
(Walker et al. 2006; Breeuwer et al. 2010; Antala et al. 
2022; Malhotra et al. 2020). Hence, enviro-climatic change 

is expected to have unprecedented impact on microbial 
community composition and activity and can potentially 
convert peatlands as global C sinks to sources of greenhouse 
gasses (Loisel et al. 2021).

Whether northern peatlands will remain to act as C sinks 
depends on the extent to which peatland plant communi-
ties and biological interactions respond to enviro-climatic 
change. Despite the recognized influence of PFTs and micro-
habitat on decomposition (Ward et al. 2015), their interactive 
effects are still unclear. Yet, studying the contribution of 
PFT on decomposition in the context of microhabitats could 
provide much needed insights into peatland carbon dynamics 
in the light of a warmer and drier future climate. Here, we 
investigate how alterations in vascular plant functional types 
in an ombrotrophic bog influence decomposition across two 
contrasting microhabitats in peatlands: hummocks and wet 
lawns. This work aims to address two specific objectives: 
to investigate the relative and interactive effect of vascular 
plant functional types and microhabitat on i) early decom-
position by incubating standard substrates; and more spe-
cifically on ii) microbial activity by measuring the activity 
of five hydrolytic extracellular enzymes. We hypothesized 
that PFT composition and microhabitat affect decomposition 
and microbial activity. We postulate lawns to have higher 
hydrolytic enzyme activity compared to hummocks, which 
translates into increased decomposition rate but lower levels 
of stabilization of labile organic compounds. In addition, 
we expected that removal of graminoids and ericoids would 
decrease microbial activity leading to a decreased decompo-
sition rate but increased organic C stabilization.

Materials and Methods

Study Area and Experimental Design

This work has been performed in the Store Mosse National 
Park (57°17′54 N, 14°00′39 E), the largest peatland com-
plex in the south of Sweden and representative of ombro-
trophic peatlands in the nemo-boreal zone. Specifically, in 
2011 we established a vascular plant removal experiment in 
a Sphagnum-dominated ombrotrophic bog comprising 80 
experimental plots of 0.5 × 0.5 m (c.f. Robroek et al. 2015) 
that where equally divided over wet lawns (c.f. Rydin & 
Jeglum 2013; n = 40) and hummocks (n = 40). The bryophyte 
layer in the wet lawns was dominated by Sphagnum cus-
pidatum Ehrh. ex Hoffm. with sparse cover of S. balticum 
(Russow) C.E.O. Jensen, while the hummocks were largely 
covered by S. medium Limpr. and S. rubellum Wilson. The 
vascular plant cover in the wet lawns consisted of Eriopho-
rum vaginatum L., Trichophorum cespitosum (L.) Hartm., 
Rhynchospora alba (L.) Vahl., Vaccinium oxycocccos L., 
Erica tetralix L. and Andromeda polifolia L. The hummock 
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vascular plant community mainly consisted of E. vaginatum 
L., E. tetralix, V. oxycoccos, Calluna vulgaris (L.) Hull and 
A. polifolia. Water tables in the wet lawns were close to (i.e. 
1–3 cm below) the Sphagnum surface, and relatively stable 
throughout the year – even in dry periods – as the Sphagnum 
surface moves with apparent water table fluctuations. The 
water table in the hummocks is variable between 20 and 
35 cm below the Sphagnum surface.

In each microhabitat (wet lawn and hummock) four plant 
functional group removal treatments – undisturbed control, 
graminoids removed (– Gram), ericoids removed (– Eric), 
ericoids + graminoids removed (– Gram / – Eric) – were 
established by selectively clipping aboveground vegetation 
flush to the Sphagnum layer. Regrowth (roots included) was 
removed at least twice per year since the start of the treat-
ments. The experiment was laid out in a randomized block 
design, with all treatments replicated ten times within block 
(4 PFT communities × 2 microhabitats × 10 blocks). This 
method allowed us to evaluate the influence of plant func-
tional types on below ground ecology in situ (Díaz et al. 
2003). During the summer of 2019, preceding the installa-
tion of standardized litter for this experiment (see below), we 
estimated the cover (%) for the vascular plant and Sphagnum 
community on a subset – i.e. 40 PFT removal plots (4 treat-
ments × 2 microhabitat × 5 replicates) – using the pinpoint 
intercept method (Jonasson 1988) with a 100-point frame. At 
every point, a needle was lowered to the Sphagnum surface 
and all contacts with vascular plants were recorded, speci-
fying taxonomic identity for each hit. Every point ended at 
the Sphagnum layer, resulting in each grid point to account 
for one individual of a certain Sphagnum species. Results 
from these surveys highlight that the PFT removal treat-
ments were successful in creating distinct plant community 
compositions in the experimental plots (Supplementary 
Information Fig. S1). Noteworthy is that the natural vas-
cular plant cover, hence the cover in the control plots, was 
twice as high in the hummocks (66%) as compared to the 
lawns (31%) (F1,8 = 25.31, P ≤ 0.001), primarily caused by 
the higher ericoid species abundance in the hummock plots. 
Consequently, the removal of ericoids or graminoids played 
out differently for the total vascular plant cover in hummocks 
and lawns (Fig. S1).

Decomposition Rate Constant (k) and Stabilization 
Factor (S)

We used the Tea Bag Index (TBI) method to estimate the 
role of vascular PFTs and microhabitat on early decom-
position and organic matter stabilization in the peat. 
The TBI method makes use of commercially available 
green tea (EAN 8,722,700 05,552) and rooibos tea (EAN 
8,722,700 188,438) with contrasting carbon fractions 
(Keuskamp et al. 2013). The TBI method is currently 

widely applied (see also http:// www. teati me4sc ience. 
org) and has been proven to be suitable as a standard 
method to study the influence of environmental drivers 
on decomposition processes, as the tea and local litters 
were found to behave comparably (Didion et al. 2016;  
Macdonald et al. 2018; Duddigan et al. 2020). In July 
2019, we buried a pair of tea bags (one green and one 
rooibos tea bag, accordingly labelled) in all plots. Tea 
bags were inserted vertically 10 cm apart and at a depth 
of c. 8 cm. The tea bags were recovered in September 
2019 after an incubation time of 76 days. After initial 
air-drying, tea bags were oven-dried (48 h at 60  °C) 
in the laboratory, after which, adhered peat and roots 
were removed. Tea bags were then dried again, and 
the remaining tea was weighed. The initial weight was 
taken as the average of ten unused tea bags for each  
type of tea.

We estimated the rate of early decomposition as constant k 
and the stabilization factor S following Keuskamp et al. (2013). 
While an estimation of k would require a time series, the TBI 
calculations make use of the contrasting litter quality of green 
tea and rooibos tea and are based on the two-step decomposi-
tion model by Wieder and Lang (1982), which assumes that 
labile compounds decompose faster than recalcitrant fractions. 
After two to three months incubation, the faster decomposing 
green tea will have lost its labile fraction, while in rooibos tea 
the most labile compounds are still being consumed. Based on 
the green tea mass loss S is calculated as:

S (Eq. 1) is defined by the ratio of actual decomposable 
fraction of green tea litter lost during incubation (ag) to the 
expected fraction, namely the hydrolysable fraction (Hg= 
0.842 g  g−1) (Keuskamp et al. 2013). Hence, high values of S 
are thought to indicate a larger storage capacity of organic C 
attributable to local conditions (Fujii et al. 2017; Macdonald 
et al. 2018). Once S is determined, Eq. 2 can be used to deter-
mine the decomposable fraction of rooibos tea (ar) using the 
chemically determined hydrolysable fraction of rooibos tea 
(Hr = 0.552 g  g−1) (Keuskamp et al. 2013):

Assuming that the weight loss of the recalcitrant litter 
fraction during the incubation period is negligible (Berg and 
Meentemeyer 2002), k can be calculated as:

where,  Wr is the fraction of rooibos tea remaining, t denotes 
incubation time (days). Thus, the final k value is an estimate 
of the early decomposition rate  (day−1).

(1)S = 1 − ag∕Hg

(2)ar = Hr(1 − S)

(3)k = ln

ar

wr−(1−ar)

t
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Hydrolytic Enzyme Activity

The activity of the decomposer community has a large influ-
ence on the decomposition of peat material (Preston et al. 
2012). Therefore, we measured the activity of five hydrolytic 
enzymes (Table 1) in the rooting zone (0–15 cm) of 40 plots 
(4 treatments × 2 microhabitats × 5 replicates) following Jas-
sey et al. (2011). In brief, 3 g homogenized fresh peat was 
added to 50 mL 0.1 M  CaCl2 solution with 0.05% Tween 80 
and 20 g of polyvinylpolypyrrolidone and shaken at room 
temperature on a shaker for 90 min at 150 rpm. The mixture 
was centrifuged at 10,000 rpm for 5 min at 4 °C and the 
supernatant was filtered using Whatman GF/C of 1.2 μm. 
Next, the filtrate was poured into a cellulose dialysis tube 
of 10-12 kDa molecular mass and then concentrated using 
polyethylene glycol. The concentrated solution was added 
to 10 mL of phosphate buffer (pH 5.6) and divided into two 
equal aliquots. One aliquot – active enzyme extract – was 
stored at 4℃ overnight, while the other aliquot – inacti-
vated enzyme extract – was boiled for 3 h at 90℃. For each 
sample, four technical-replicate assay wells (using opaque 
96-well micro-plates) received 38 µl of enzyme extract 
and 250 µl of substate. As a control, the same procedure 
was followed but with 38 µl of inactivated enzyme extract. 
Incubation was performed in the dark at 25℃ for 3 h, after 
which the reactions were halted with 1 µl of 0.5 M NaOH. 
Fluorescence intensity was measured spectrophotometri-
cally at 365 nm excitation wavelength and 450 nm emis-
sion wavelength (BMG LABTECH Omega multidetector 
plate reader). Potential activity of hydrolytic enzymes was 
expressed as nmol of MUF/MUC released per gram of dry 
soil per hour (nmol  g−1  h−1).

Data Analysis

Difference in vascular plant cover between wet lawns and 
hummocks was assessed by fitting a linear model with gen-
eralized least squares (gls) on the data from the control plots, 
using microhabitat as a fixed factor, and after testing for 
block effects. The addition of block as a random factor was 
not significant (P > 0.05) in any of the models and therefore 

not included in downstream models. Likewise, the effects of 
the PFT removal treatment, microhabitat and their interac-
tion on the early decomposition rate (k), labile carbon sta-
bilization (S), and the activity of five hydrolytic enzymes 
(ALA, BG, NAG, PHOS, SUL) were tested by fitting gls 
models. Heterogeneity across PFT removal treatment and 
microhabitat in the k data was accounted for by using a Var-
Comb variance structure in the model. All models were fit-
ted with restricted maximum likelihood estimation (REML) 
and following the protocols outlined in Zuur et al. (2009). 
Residuals of the final model were analyzed for normality and 
homogeneity, with a Kolmogorov–Smirnov test and Lev-
ene’s test. All statistical analyses and visualizations were 
performed in the R software environment for statistical com-
puting and graphics (version 4.1.2.)

Results

Decomposition Rate Constant and Stabilization 
Factor

Mass loss of the two types of litter (green tea and rooibos 
tea) differed between the wet lawn and hummock micro-
habitats (P ≤ 0.05). The green tea in the hummocks lost 
71.6% ± 0.04 (mean ± SD) of its initial weight, which was 
higher (F1,72 = 30.59,  P < 0.001) than the 64.1% ± 0.07 
mass loss in the lawns. As expected, the mass loss from 
the rooibos tea bags was lower, but not significantly differ-
ent (F1,72 = 3.42, P = 0.068) in the wet lawns (20.1% ± 0.03) 
as compared to the hummocks (21.4% ± 0.03). We found 
no effect of PFT removal treatments on the mass loss 
of green tea (F3,72 = 0.99,  P = 0.403) or rooibos tea 
(F3,72 = 0.35, P = 0.786).

The decomposition rate constant k was higher in lawns 
as compared to k-values in the hummock microhabitats 
(F1,72 = 4.55, P = 0.036). PFT removal did not influence 
k, neither as an overall effect (F3,72 = 1.77, P = 0.160) nor 
in interaction with microhabitat (F3,72 = 0.24, P = 0.864). 
Despite the non-significant PFT treatment results, k appeared 
to increase with the combined removal of graminoids and 

Table 1  Description of the peat extracellular enzymes, the substrates labelled with fluorophore methylcoumarin (MUC) or methylumbelliferone 
(MUB) used for the hydrolytic enzyme activity measurements

Enzyme Abbr Substrate Hydrolysis type Targets

Alanine-aminopeptidase ALA L-Alanine7-amido-4-MUC N-acquisition Oligopeptides
β-glucosidase BG β-D-glucoside-4-MUC C-acquisition Cellulose, starch 

and disaccharides
β-glucosaminidase NAG N-acetyl-β-D-glucosaminide-4-MUB N-acquisition Chitin
Acid phosphomonoesterase PHOS Phosphate-4-MUC P-acquisition Organic phosphorus
Sulfatase SUL Sulphate-4-MUB S-acquisition Organic sulphur
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ericoids (Fig. 1; – Gram / – Eric). The stabilization factor 
S, that is the potential of the labile fraction of the green 
tea litter to become stabilized, was higher in lawns than 

hummocks (F1,72 = 30.59, P ≤ 0.001). However, no effect of 
PFT removal on S was observed, neither as overall effect 
(F3,71 = 0.99, P = 0.403) nor in interaction with microhabitat 
(F3,72 = 0.79, P = 0.501). Nevertheless, S tended to increase 
slightly in the absence of vascular plants (– Gram / – Eric).

Hydrolytic Enzymatic Activity

To assess the relative and interactive effect of microhabi-
tats and vascular PFT treatments on belowground enzyme 
activities, five hydrolytic EEA were measured. The hydro-
lytic enzyme activity of alanine-aminopeptidase (ALA), 
β-glucosidase (BG), and acid phosphomonoesterase (PHOS) 
seemed not to be affected by microhabitat. On the other hand 
β-glucosaminidase (NAG) activity was higher in lawns 
compared to hummocks, while sulfatase (SUL) activity was 
highest in the hummocks (Table 2, Fig. 2, Table S1). PFT 
removal treatment did not affect ALA activity, but the activ-
ities of the other enzymes did vary significantly between 
PFT removal treatments and were microhabitat dependent 
(P < 0.05, Table 2, Fig. 2). In lawns, the removal of all vas-
cular PFTs (– Gram / – Eric) resulted in an increase in BG 
(22%), NAG (13%), PHOS (77%) and SUL (26%) activi-
ties compared to the control, while in the hummocks this 
resulted in a decrease in activities of BG (50%), NAG (46%), 
PHOS (30%) and SUL (48%) (Table S1). NAG and SUL 
activity in the lawns were lowest when only graminoids were 
removed (Fig. 2).

Discussion

Peatland ecosystems face changes in enviro-climatic condi-
tions that may evoke shifts in the vegetation. While knowl-
edge on the role of plant functional types (PFTs) on peatland 
processes is mounting (Ward et al. 2009; Lang et al. 2009; 
Rupp et al. 2019; Chroňáková et al. 2019), their influence 
in the context the microtopography in peatlands is less well 
understood. Here, we studied how plant functional types 
(graminoids and ericaceous shrubs) influence decomposi-
tion in two contrasting microhabitats (wet lawns and hum-
mocks). Our results demonstrate that PFTs greatly influence 
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Fig. 1  Boxplots of the effects of vascular plant removal treatments 
and microhabitat (white panels = wet lawns, grey panels = hummocks) 
on decomposition rate constant (k  [d−1]) and organic matter stabili-
zation factor (S), derived from mass loss data according to Eqs. 1–3 
(n = 10). Control = undisturbed control, – Gram = graminoids removed, 
– Eric = ericoids removed, – Gram / – Eric = ericoids + graminoids 
removed. Outputs for statistics are presented in text

Table 2  Statistical analysis from the ANOVA, testing the influence 
of vascular plant functional type (PFT) removal treatment and micro-
habitat (MH) on the hydrolytic enzymes alanine-aminopeptidase 

(ALA), β-glucosidase (BG), β-glucosaminidase (NAG), acid phos-
phomonoesterase (PHOS) and sulfatase (SUL). Significant P-values 
(P ≤ 0.05) are shown in bold values (n = 5)

Variables ALA BG NAG PHOS SUL

d.f F P F P F P F P F P

PFT 3 0.02 1.00 16.13  ≤ 0.001 210.3  ≤ 0.001 16.50  < 0.001 13.54  ≤ 0.001
MH 1 0.90 0.35 2.88 0.10 1159.8  ≤ 0.001 0.00 0.97 148.42  ≤ 0.001
PFT: MH 3 1.03 0.39 84.53  ≤ 0.001 355.3  ≤ 0.001 69.85  < 0.001 45.32  ≤ 0.001
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microbial metabolic processes (i.e. hydrolytic enzyme activ-
ity), and that this effect is microhabitat dependent. Despite 
these effects of PFTs on potential process rates, this result 
was not mirrored in standardized indices for early decompo-
sition (decomposition rate constant k and stabilization factor 
S), which only differed between lawns and hummocks.

Effects on Decomposition Rate Constant 
and Stabilization Factor

The lack of response of indices k and S to the plant removal 
treatments goes against our expectations. Yet, the values 
for k (0.008 – 0.010  day−1) and S (0.118 – 0.256) are in 
the range reported in other studies (Keuskamp et al. 2013; 
Macdonald et al. 2018; Górecki et al. 2021). Previous studies 
have documented the role of the plant community composi-
tion as well as spatial variation in microhabitats on below-
ground decomposition processes (Dorrepaal 2007; Laiho 
2006; Mäkilä et al. 2018; Ward et al. 2010, 2015). Also, 
previous research concluded that vegetation composition 
was the main driver for decomposition processes and C flux 
in peatlands (Basiliko et al. 2012; Linkosalmi et al. 2015). 
Shifts in the microbial community in response to the PFT 
removal treatments found earlier at the same experimental 
site (Robroek et al. 2015) make microbial adaptation a likely 
mechanism. While the responses of the enzymatic activity 
support this (as discussed below), our TBI results do not. 
Djukic et al. (2018) propose that microbial influence on 
decomposition may only become apparent in later stages 
of decomposition, during which more specialized microbes 
are responsible for the break-down of the recalcitrant com-
pounds. This argument is supported by observations of Lin 
et al. (2020) who point out that microbial driven differences 
in decomposition, home-field advantage specifically, vary 
with incubation time and are stronger at later decomposition 
stages. Additionally, the TBI method relies on a standard 
substrate which is foreign in most ecosystems. While several 
studies conclude that the TBI method is suitable for replac-
ing local litter for detecting responses to general decomposi-
tion drivers, such as temperature and precipitation (Didion 
et al. 2016; Duddigan et al. 2020; MacDonald et al. 2018), 
it may fail to pick-up local adaptation of the microbial com-
munity to specific litter inputs.

In our study, we found a significant influence of hum-
mock-wet lawn microhabitat on the decomposition rate con-
stant and stabilization factor. According to Keuskamp et al. 
(2013) and Fanin et al. (2020), k indicates early decomposi-
tion rates while S shows the stabilizing effect of the environ-
ment on the labile fraction of the litter. Both k and S values 
were significantly higher in lawns compared to hummocks. 
The combination of a higher k and S in lawns could indicate 
that high mass loss coincides with incomplete break-down, 
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Fig. 2  Boxplots of the effects of vascular plant removal treatments 
and microhabitat (white panels = wet lawns, grey panels = hummocks) 
on the hydrolase activity of the enzymes alanine-aminopeptidase 
(ALA), β-glucosidase (BG), β-glucosaminidase (NAG), acid phos-
phomonoesterase (PHOS) and sulfatase (SUL) (n = 5). Outputs for 
statistic are presented in Table 2
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during early decomposition and a higher potential for labile 
carbon to become stabilized within the ecosystem. Tem-
perature and soil moisture are known to promote decom-
position of green tea and rooibos tea (Fanin et al. 2020). 
At the experimental site, lawns are warmer than hummocks 
(Robroek et al. 2014), and the water table is closer to the 
surface. Earlier decomposition studies in peatlands recorded 
highest decomposition rates of litter placed in or just above 
the zone with fluctuating water levels (Belyea 1996), which 
explains the higher k values found in the lawns. Moreover, a 
higher proportion of fungal biomass to bacterial biomass in 
hummocks (Robroek et al. 2014) may result in a more com-
plete break-down of litter and explain the higher S values, 
indicative of incomplete break-down, found in lawns. Further 
research on the decomposer community and litter chemistry 
during decomposition would be needed to confirm this.

Effects on Extracellular Enzyme Activity

In line with our hypothesis, the vascular plant functional 
community composition influenced belowground potential 
EEAs in contrasting microhabitats for four out of five hydro-
lytic enzymes. Previous findings from the same experiment 
demonstrated that removal of vascular plants results in dis-
tinct alteration of microbial community composition in the 
different microhabitats (Robroek et al. 2015). Moreover, 
Basiliko et al. (2013) and Matulich and Martiny (2015) link 
a change in microbial community composition to a shift in 
the activity of EEAs. The observed changes in EEAs under 
different PFT removal treatments in wet lawn-hummock 
microhabitats are likely the result of shifts in microbial com-
munity composition.

The influence of vascular PFTs on hydrolase activity 
showed opposite effects in the two microhabitats. In hum-
mocks, the removal of PFTs decreased hydrolytic enzyme 
activity, however in lawns PFT removal increased it, reflect-
ing perhaps the direct effect of plant litter and rhizosphere 
inputs (or absence thereof). Earlier observations demon-
strated lower overall potential microbial activity in hum-
mocks than in lawns, while PFT removal treatment effects 
were only observed in hummocks (Robroek et al. 2016). The 
higher vascular plant cover in hummocks was suggested to 
have resulted in a higher dependency of the microbial com-
munity on plant-derived substrates. Indeed, this may play 
a role in our observations as vascular plant cover in hum-
mocks are twice as high as compared to lawns, with a more 
pronounced influence on belowground hydrolytic enzyme 
activity in hummocks. As hummock’s vascular plant cover 
enhanced the hydrolase activity of four out of five enzymes, 
this shows that microbial EEAs were greatly influenced by 
vegetation inputs (labile rhizosphere inputs) as well as dis-
tinct microhabitats. In addition, drier hummocks are usually 

nutrient poor environments due to dominance of recalci-
trant shrubs. To meet the nutrient demands, soil microbes 
might produce more hydrolytic enzymes towards internal 
cues of nutrition stoichiometry (Allison and Vitousek 2004). 
It has been shown already that aerobic microbial respira-
tion is faster as compared to anaerobic microbial respira-
tion, that requires a higher degree of microbial metabolic 
processes (potential EEAs) (Freeman et al. 2001; Blodau 
et al. 2004; Jungkunst et al. 2012). In lawns, the removal of 
all vascular PFTs resulted in a general increase in EEA. In 
other words, the presence of vascular plants seems to restrict 
belowground potential microbial EEAs. Previous research 
has shown that in hummocks with aerobic conditions, rhizo-
sphere PFT inputs are essential source of substrate and met-
abolic energy for hydrolytic enzyme activities (Dieleman 
et al. 2017). However, in lawns, microbial activity is largely 
restricted by anaerobic conditions (Fisk et al. 2003). The 
combined removal of graminoid and ericoid plants increased 
hydrolase activity, which may be caused by the absence of 
shrub-derived phenolics (Wang et al. 2021). Interestingly, 
the removal of graminoids alone had a larger negative effect 
on hydrolytic enzyme activity in the wet lawns, particularly 
in NAG and SUL activities. As wet lawns are mostly domi-
nated by the graminoid Eriophorum vaginatum, which pos-
sess aerenchymatic tissue (open air canals in stem and roots), 
this promotes the diffusion of oxygen to deep roots (Greenup 
et al. 2000). Absence of graminoids may therefore decrease 
microbial metabolism due to reduced peat oxygenation, this 
being more pronounced in the lawn microhabitat.

We found clear differences between microhabitats in the 
activities of hydrolytic enzymes, which is consistent with 
other wetland studies (Parvin et al. 2018; Minick et al. 2019). 
Two out of five EEAs (NAG and SUL) showed significant 
difference in activities between hummock and lawns. Previ-
ous research has reported that drier hummocks had higher 
activity of NAG compared to wet lawns (Wang et al., 2021). 
In addition, Xu et al. (2021) reported that NAG activity was 
significantly higher in the aerated zone of drained peat as com-
pared to activities in the water-saturated zone. Contradicting 
these studies, we found that NAG activity was greater in lawn 
microhabitats, which are closer to the water table. This may 
be explained by the lawns being extraordinarily dry during 
the warm summer of 2019 This may have decreased the water 
table and improved the peat aeration (increased oxygen diffu-
sion), resulting in enhanced NAG activity, as microbial nec-
romass is rapidly mineralized by the extant microbial commu-
nity under dry conditions. In contrast, we also observed that 
SUL activity was higher in hummocks than in lawns. It has 
been reported that sulphatase activity was stimulated due to 
enhanced nutrient mineralization upon water table drawdown. 
Furthermore, the vascular plant cover in hummocks was more 
than twice as high as that in lawns, which is likely reflected 
belowground and may have increased hydrolytic activity.
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Conclusions

In response to global climate warming, vascular plant cover 
is expected to increase. We highlight that the role of plant 
functional type composition is important for belowground 
decomposition processes through their impact on enzyme 
activity along with microhabitats. Our result indicate that 
vascular plants control microbial activity in peat with spe-
cific roles of plant functional types varying between lawns 
and hummocks. Moreover, microhabitat controls over the 
decomposition process were more pronounced as compared 
to that of the vegetation. This shows that carbon turn-over in 
peatland ecosystems is vulnerable to changes in plant com-
munities as well as hydrological conditions. Our results 
emphasize the need to focus on carbon dynamics of peatland 
ecosystem in the light of climate change, and particular-
ity the role of changes in the plant community composition 
therein.
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