

University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis and the accompanying data cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content of the thesis and accompanying research data (where applicable) must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]

University of Southampton

Faculty of Arts and Humanities

Winchester School of Art

**And Travelling Often In The Cut We Make:
Diffracting Art and Archaeology Practices**

by

Ian Dawson

ORCID ID 0000-0002-3695-8582

Thesis for the degree of Doctor of Philosophy

June 2023

University of Southampton

Abstract

Faculty of Arts and Humanities

Winchester School of Art

Thesis for the degree of Doctor of Philosophy

**And Travelling Often In The Cut We Make:
Diffracting Art and Archaeology Practices**

Ian Dawson

And Travelling Often In The Cut We Make explores a performative and relational approach towards the use of digital imaging technologies such as Reflectance Transformation Imaging, Structure from Motion, and Fused Filament Deposition printing.

Through a series of iterative artworks, exhibitions and writings created over an eight-year period the research explores the entanglements of technical images and materiality. Drawing upon a diffractive methodology the work chronicles a continuous collaboration between artists and archaeologists which interlaces different theoretical, methodological, and disciplinary practices through one another; like overlapping ripples, to co-constitute productive situations where the effects of difference appear.

And Travelling Often In The Cut We Make takes its title from Ralph Waldo Emerson's poem Blight (1899) which bemoans the pervasiveness of new scientific methods in relation to innate experiences inside landscape itself. This seems to aptly raise the phenomena of Karen Barad's agential cut which rather than marking an absolute separation proposes a cutting together/apart. The iterative nature of the artistic practice which underpins this body of research sees Dawson re-turning to this cut to perform it differently so that the environments where people and digital imaging meet cannot be disjoined from the mediations that occur within them.

Table of Contents

Research Thesis: Declaration of Authorship

Commentary

Strand 1: Annihilation Event

- 1.2 Residency Documentation
- 1.3 Exhibition and workshop documentation
- 1.4 Iterations
- 1.5 'Dirty RTI'

Strand 2: Phygital Assemblages

- 2.2 'Object Lessons: Copying and Reconstruction as a Teaching Strategy'
- 2.3 The Wanderer's Nightsong II
- 2.4 'Old Minster'
- 2.5 Metalithic Sculpture Series
- 2.6 'Messy Assemblages, Residuarity and Recursion within a Phygital Nexus'
- 2.7 Track and Trace, and Other Collaborative Art/Archaeology Bubbles in the Phygital Pandemic

Appendix

Bibliography

Collaborators Letters

Research Thesis: Declaration of Authorship

Print name: Ian Dawson

Title of thesis: And Travelling Often In The Cut He Makes: Diffracting Art and Archaeology practices

I declare that this thesis and the work presented in it are my own and has been generated by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree at this University;
2. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated;
3. Where I have consulted the published work of others, this is always clearly attributed;
4. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work;
5. I have acknowledged all main sources of help;
6. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself;
7. Parts of this work have been published as:-

Dawson, Ian and Minkin, Louisa (2014) 'Object Lessons: Copying and Reconstruction as a Teaching Strategy', Art, Design & Communication in Higher Education, Vol. 13, No. 1, pp.197-29.

Jones, A., Cochrane, A., Carter, C., Dawson, I., Díaz-Guardamino, M., Kotoula, E., & Minkin, L. (2015). Digital imaging and prehistoric imagery: A new analysis of the Folkton Drums. *Antiquity*, 89(347), 1083-1095. doi:10.15184/aqy.2015.127

Dawson, Ian (2015) *The Wanderer's Nightsong* // [Artwork/Exhibition/Curation], featuring the work of Gavin Turk, Neil Gall, Kate Atkin, Cathy De Monchaux, Chris Hawtin, and Ian Dawson, at C&C Gallery, London, 3 April - 10 May 2015.

Dawson, I (2015) (Artist and Curator) Elbow and Gallery Residency C&C Gallery London_ 01.08.15-01.09.15 and 4.09.2014-04.10.2015

Dawson, Ian and Minkin, Louisa (2015-17) Taplow House/ Pictures Not Homes / Gestures of Resistance (Artwork/Exhibition/Installation)

Taplow House 29.06.2015-21.08.2015 ASC Gallery, London

Pictures Not Homes 12.01.17- 27.01.17, Winchester School of Art Gallery, UK

Gestures of Resistance 20.04.2017-30.04.2017 Centre Romantso, Athens, Greece

Dawson, Ian (2016-19) 'I.D.2.7.1816' [Artwork], exhibited at Artist Boss, curated by Jenny Dunseath and Mark Wilsher. New Art Centre, Roche Court, Salisbury, 19 November 2016 – 29 January 2017 and Itinerant Objects, curated by Birkin, J. Cid, D, Dawson, I. Manghani, S, Tate Exchange, Tate Modern, London, 5-7 April 2019.

Dawson, Ian and Minkin, Louisa (2017) 'Grave Goods / Objetos funerarios', in Azor, I., Grijalva Maza, L.F., and Gómez Rossi, A.A.R. (eds.) *Más allá del texto: Cultura digital y nuevas epistemologías*. San Andrés Cholula, Puebla, México Ciudad de México: Universidad de las Américas, Puebla ; Editorial Itaca, pp. 205-221.

Dawson, Ian (2017) Annihilation Event RTI artworks (Exhibition) Annihilation Event, Lethaby Gallery London, 22.03.17- 29.03.17

Dawson, Ian (2017) 'Old Minster' [Artwork], exhibited at *Along the Riverrun*, curated by Alex Goulden and George Watson, at ArtSway, 24-30 July 2017 and Lethaby Gallery London, 22.03.17- 29.03.17

Dawson, Ian and Minkin Louisa (2019) 'Terminal Hut', in A.M. Jones and M. Díaz-Guardamino, *Making a Mark: Image and Process in Neolithic Britain and Ireland*. Oxford: Oxbow Books, pp 214-257.

Dawson, Ian and Reilly, Paul (2019) 'Messy Assemblages, Residuality and Recursion within a Phygital Nexus', *Epoiesen: A Journal for creative engagement in history and archaeology* [online] <http://dx.doi.org/10.22215/epoiesen/2019.4>

Dawson, Ian (2019) 'Gnomon One' [Artwork], exhibited at Backyard Sculpture, curated by Neil Gall and David Gates, at Domo Baal Gallery, London, 21 June – 20 July 2019

Dawson, Ian (2019) 'Brain Damage' [Artwork], exhibited at Figura; Micro Macro, curated by Alison Woods, David Leapman, Carlos Beltran Arechiga, and Ivana Cekovic, Durden and Ray,

Los Angeles USA, 3-24 August 2019, and Neimenster, Centre Culturel de Rencontre
Abbaye de Neumünster Luxembourg, 6-29 September 2019.

Dawson, Ian (2020) 'Dirty RTI', in I-M. B. Danielsson and A. M. Jones (eds.) *Images in the Making: Art, Process, Archaeology*. Manchester: Manchester University Press, pp 51-64

Dawson, Ian 2020-22 Metalithic Sculpture Series (Artwork) exhibited in
Autumn Attic, Flowers Gallery, Shoreditch London, 12th August -18th September 2021
Patternicity, ASC Gallery London 26th March - 23rd April and Exeter Phoenix Galleries 30th
April - 26th June 2022
Crucible Thameside Studio's Gallery, London 8th- 23rd April 2022

Dawson, Ian, Reilly, Paul, Minkin, Louisa, Jones, Andrew. (2021) What is a diffractive digital image? In Dawson, et al. (Eds.), Diffracting digital images. Art, archaeology and cultural heritage. London: Routledge.[10.4324/9781003042129-7](https://doi.org/10.4324/9781003042129-7)

Dawson, Ian, and Minkin, Louisa. (2021) Interstitial Images in Dawson, et al. (Eds.), Diffracting digital images. Art, archaeology and cultural heritage. London:
Routledge.[10.4324/9781003042129-7](https://doi.org/10.4324/9781003042129-7)

Dawson, Ian, Reilly, Paul and Callery, Simon. (2021). Temporal ripples in art/archaeology images. In Dawson, et al. (Eds.), Diffracting digital images. Art, archaeology and cultural heritage. London: Routledge.[10.4324/9781003042129-7](https://doi.org/10.4324/9781003042129-7)

Reilly, P., Callery, S., Dawson, I. & Gant, S. (2021). Provenance Illusions and Elusive Paradata: When Archaeology and Art/Archaeological Practice Meets the Phygital. *Open Archaeology*, 7(1), 454-481. <https://doi.org/10.1515/opar-2020-0143>

Dawson, I and Reilly, P. (2021) Towards a Virtual Art Archaeology
Keynote paper at the 4th International Conference on Virtual Archaeology (VA2021-
Krasnoyarsk) hosted by The Siberian Federal University & the State Hermitage Museum,
September 20 -22 2021 in Krasnoyarsk

Dawson, Ian and Reilly, Paul (2021) Track and Trace, and Other Collaborative
Art/Archaeology Bubbles in the Phygital Pandemic. *Open Archaeology*, Vol. 7 (Issue 1), pp.
291-313. <https://doi.org/10.1515/opar-2020-0137>

Dawson, Ian. (2021) The Polymer Chain: plastic itineraries and plastic images in
a sociomaterialist assemblage in Parry, B. Jeffery, G. (Eds.), *Waste Work: the art of survival in
Dharavi*. Bath Wunderkammer. ISBN 9780993551178

Dawson, I.; Jones, A.M.; Minkin, L.; Reilly, P. Temporal Frankensteins and Legacy Images. *Digital* (2022), 2, 244-266. <https://doi.org/10.3390/digital2020015>

Dawson, Ian. And Travelling Often In The Cut He Makes, installation and digital video (2022) exhibited at Horizon (Landscape and Beyond). Group Exhibition curated by Alexander Hinks, Cello Factory London 30th June - 10th July 2022

Dawson, I. Back Danielsson, I-M. Jones, A M. Minkin, L. & Reilly, P. (2022) Diffracting Digital Images in the Making, Visual Resources, DOI: [10.1080/01973762.2022.2123629](https://doi.org/10.1080/01973762.2022.2123629)

Signature: Ian Dawson Date: 30/10/2022

And Travelling Often In The Cut We Make: Diffracting Art and Archaeology practices

Ian Dawson

Commentary

Ian Dawson RTI RTI 2017 (performative RTI, Annihilation Event, Lethaby Gallery, London)

Introduction

This research represents a multi-stranded, collaborative, transdisciplinary body of work. This comprises both physical and digital items created through collaboration with archaeologists, artists, and curators. The body of work includes multiple iterations of artworks, exhibitions and texts. The research submitted spans an eight-year period from 2014 to 2022. Due to the interdisciplinary and emergent nature of the research 9 outputs have been attached in the appendix. All these works should be viewed as having an interlaced relationship between each other, however for the benefit of this commentary¹¹ research outputs have been organised together which will act as a metonym for the larger body of work.

The submissions have also been separated into two strands, the first of these is called *Annihilation Events* and includes exhibitions and artworks variously staged as *Taplow House (2015)*, *Pictures Not Homes (2017)*, *Gestures of Resistance (2017)* as well as artworks presented in the exhibition *Annihilation Event (2017)*. This strand also includes the book chapter *Dirty RTI (2020)*. In this first strand synthetic imaging technologies such as Reflectance Transformation Imaging (RTI) are explored in various situations giving rise to questions about how one might re-conceive relationships between space and representation. Here the nature of a technospace is explored, taking this term from Frederica Timeto (2015) who describes the technospace as the dynamic environment where humans and machines intersect. A key part of the research resides in the performative methods applied whereby representation is not refused but instead rehearsed and re-enacted in reciprocity with the technospace itself. This puts into practice the theoretical position that Timeto raises when describing the structure of the technospace as 'a dynamic and contingent formation whose emergence cannot be disjoined from the generativity of the mediations that traverse them' (Timeto 2015, 1)

The second strand, titled *Phygital Assemblages* continues to explore archaeological and cultural heritage imaging practices. In this strand images and objects also participate in the unfolding of technospaces and continue to emerge from remediated and performed positions but the emphasis shifts towards following the movement of matter between physical and digital states. This is described as a phygital nexus, less of a 'site' and more of a 'state' where objects mutate, shift, disperse, colonise, and rematerialize in new complex and unforeseen relationships. This strand charts various iterations of predominantly 3D printed sculptures in various guises (*Old Minster* (2018) and the *Metalithic Sculpture Series* (2019-21)) including the curated exhibition *The Wanderer's Nightsong II* (2015). These exhibitions are accompanied by two texts, *Messy Assemblages, Residuality and Recursion within a Phygital Nexus* (2019) and *Track and Trace, and Other Collaborative Art/Archaeology Bubbles in the Phygital Pandemic* (2021). Both texts situate the work within the 'material turn' and a post-discursive stance influenced and guided by numerous scholars of new materialism (e.g., DeLanda, 1997; Barad, 2007; Bennett, 2010), who refer to a much broader *material* ontology of subjectivity.

//Warblers.Native.Segmented

Dawson and Minkin, Avebury from Interstitial Images (2021)

Aim of the Research

And Travelling Often In The Cut We Make represents a complex, collaborative, and sustained undertaking. Its iterative process has tested and re-tested various notions relating to material practices. In *Annihilation Events*, field trips with archaeologists to study portable lithic artefacts across the UK are crucially hinged with an artistic residency on a South London Housing Estate which becomes a site to warp and bend those archaeological and cultural heritage methods. By drawing together the research in *Annihilation Events*, the following questions can be identified to have guided the project:

- By *diffracting* the formal techniques of archaeological digital imaging through a creative practice, what differences are exposed and how can these differing practices and approaches enrich and inform each other? Crucially, the aim is not simply to adapt techniques from archaeology to art practice, but to establish a new, shared discourse that allows for an interdisciplinary and critical interrogation of the methods, modes, and affordances of digital imaging.
- Under the artist's gaze, what happens to the supposed fidelity of the new digital imaging, and through dialogue with archaeologists, physicists, and other practitioners, what contribution can this make to our understanding of object making and new materialism?
- How can critical approaches and creative practices inform the future 'reading' of digital imaging across disciplines most notably within archaeology and cultural heritage?

In *Phygital Assemblages* the collaboration with archaeological practice creates an ever-growing bundle of physical and digital art/archaeological objects. At one point in this strand a recovered reconstruction of the Anglo-Saxon Old Minster Cathedral in Winchester is appropriated, remixed, and remediated through various processes to test the possibility of uncontrollable mutations, glitches and other accidents of context or reproduction. In this instance objects travel and oscillate along various axis, from containment to exposure, enchainment to dispersal and from colonization to dissipation. *Phygital Assemblages* explores a wide range of insights, findings, and emergent properties, which have been continually reflected upon and drawn back into the process of enquiry. Several high-level insights or findings can be highlighted from this strand.

- *Practice Research as Assemblage*: In exploring the notion of assemblage through deliberately practical, cross-disciplinary material means, the collaboration of artists and archaeologists itself is revealed through a form of assemblage. As worked through a range of (im)material entities, this has been shown to be an emerging, dynamic, and an intra-active conversation involving many actants. The focus and meaning of this conversation are contingent on the shifting relationships of all actants which unfolds over time. These include the developing intentions of the makers involved (both archaeologist and artist), diffracted through distinct and combined practices, the materials worked with, the application of modes of perception and expression, and various instruments of inquiry and presentation. Crucially all are agential participants and co-producers in this collaboration. In the use of digital imaging technologies, the signatures of all the main actants and their intra-actions have been auto-archived interstitially as aesthetic paradata within this assemblage.
- *Sociomateriality Research*: The field of sociomateriality (as informed by the debates of new materialism) is an enquiry into how we interact (and come into being) with the material world, sociomateriality is concerned with the affordances in and between material processes, technology, and objects. It necessarily seeks to break with discursive methods, but, to date, this area of research is still primarily accessed via textual, theoretical accounts. To change approaches to knowledge it is necessary to develop and apply new methods, otherwise we remain within a hermeneutic loop. *Phygital Assemblages* contributes specifically by applying a *practice research* approach towards working directly with materials, showing this as a *requirement* of sociomaterialist research.
- *Digital practices and cultural heritage*: the sustained testing and adapting of the underpinning digital imaging techniques has helped consolidate key knowledge and skills for future applications. Borrowing from the feminist scholar Barad (2007), this body of research refers to this as a *diffracting* of formal techniques across

different disciplinary lines. In this case, archaeological methodology and digital imaging have been applied across an artistic practice of 3D imaging and printing. The 'assemblage practice' has led to new projects: (1) a long-term collaborative project with Blackfoot Elders and a team of researchers at University of Lethbridge (Canada), which draws upon 'phygital' practices to skill share and provide virtual access to historical Blackfoot objects held in British museums (a project supported by Canada's federal 'New Frontiers in Research Fund' and also the *Concepts Have Teeth, And Teeth That Bite Through Time: digital imaging and Blackfoot material culture in UK museums*, the AHRC network funded project; and (2) an artist residency for a project led by Bath Spa University, 'Rethinking waste and the logics of disposability', which focuses on the heuristic knowledge politics of the informal waste management industry in India, in the 13th Compound in Dharavi, Mumbai's largest informal settlement.

Dawson and Reilly, 2020 Dirty RTI performance in a plastic studio

Diffraction

Taken Literally diffraction describes the scattering and breaking apart (*diffingere*) of light as it bends around obstacles. This is one of the overarching themes of the research as a whole and is returned to at successive points either in practice or methodologically. Diffraction describes the interference of light waves when they hit blockages and it is the images that are created by this interaction of light with these secondary sources that resonates throughout the project. Diffraction patterns were first observed in the seventeenth century as the effects of light passing through a medium were discovered and latterly studied in relation to quantum mechanics.

Physicists and philosophers have further explored the important implications of diffraction patterns since the quantum experiments by Heisenberg and Bohr in the early twentieth century. The Physicist Carlo Rovelli (2017 & 2020) describes his own experiences of witnessing a quantum superposition experiment, when two contradictory properties are present together, pointing out that one does not see a ‘superposition’, it is the *interference* of the consequences of the experiment that is only ever visible. In the ‘which-path’ experiment constituting a laser and two pathways of prism mirrors, Rovelli describes his confusion at trying to describe and understand how photons of light can be in two positions at once or completely absent, these different positions being entirely dependent upon how the experiment has been observed.

‘What does a particle care if we are observing it or not?’ Rovelli muses in his support of a ‘relational’ interpretation of quantum theory and the interference patterns that it creates. The scientist and their measuring equipment are *all* part of nature in a continuous interaction thus for Rovelli, diffraction patterns are a way to describe how one physical object manifests itself to any other physical entity. “Any interaction between two physical objects can be seen as an observation. We must be able to treat any object as an ‘observer’ when we consider the manifestation of objects to one another” (Rovelli 2020; 69)

This folding of the observer into a more entangled and complex relationship echoes that of Donna Haraway’s (1997) application of diffraction as a way to break from methods of reflexivity. She argues that

the traditional reflexive loops of researcher and researched mirrors the geometrical optics of reflection and that it only serves to displace the same elsewhere (Haraway 1997: 273). She proposes that diffraction, through its tracing of dissimilar situations can make *difference* visible, thus counteracting the preferencing of sameness that occurs within any two-way reflective approach. “To make a difference” she says we should seek “to diffract the rays of technoscience so that we get more promising interference patterns on the recording films of our lives and bodies” (ibid.:16). These themes are enlarged upon by Barad who, as a physicist, seeks to account for diffraction as more than a metaphor, when arguing that diffraction patterns are patterns of difference that make a difference. “Diffraction not only brings the reality of entanglements to light, it is itself an entangled phenomenon” (Barad 2007 P73). Taking Rovelli’s and Barad’s relational interpretation of the which-path experiment and the images of difference that it creates *And Travelling Often In The Cut We Make* also seeks *to be* diffractive by drawing *through* techniques and concepts within the different fields of contemporary art practice, cultural heritage, and archaeology. Acting as an interwoven assemblage to highlight the importance of the performative, non-representational and relational not just in the formation of knowledge but of the making of the subjects of knowledge. (further details on diffraction can be found in the chapter “What is a Diffractive Image” (Dawson et al 2021))

Reflectance Transformation Imaging as Diffractive Practice

In *And Travelling Often In The Cut We Make*, one example of the use of diffraction can be found in the extended experimentation with the archaeological imaging technology of Reflectance Transformation Imaging (RTI). RTI is a synthetic two-and-a-half-dimensional image fabricated through the extraction of light information taken from hundreds of digital photographs. An orthodox RTI is created by using a Digital SLR camera, fixed in a static position upon a tripod and remotely tethered to a portable light source such as a flash. Sequences of photographs are taken whilst the lighting conditions between each shot are incrementally altered by tracing an arc or dome around the subject. Requiring a ‘set’, it is a technique that sits somewhere between *making* a photograph and

a silent movie whereby a sequence of actions is composed, framed and recorded. However, unlike moviemaking where the performative action mostly happens in front or behind the camera, the action here is situated in between the frames as the light source is moved after each successive *cut* of the shutter.

For archaeologists the compiled RTI images are commonly used to facilitate a *chaine-operatoire* analysis of objects. This adds to a processual understanding of the object in view (Jones et al 2015) The RTI image in itself is a processual artefact; the software output is a PTM file (a polynomial texture map) which remains interactive and enables subsequent viewers the opportunity to re-enter, review and re-manipulate the lighting conditions within the scene (see Dawson et al 2021c) Furthermore the shadows that surround any scene act like classic diffraction patterns and as such are the material trace which make visible the operational sequence of the gestures and actions of the practitioners producing the RTI images. Thus, RTI's can be de-constructed to reveal stimulating space-time diffraction patterns in which 'different times bleed through one another'. (Barad 2017 68). This ability for RTI to be 'volatile' (Beale 2018) enables the images to be thought of as 'images in the making' (Back Danielsson and Jones 2021, 5). This term is used to comprehend RTI images as ongoing events, RTI as an 'image in the making' has a condition of possibility inherent within it. RTI can be thought of as a gestural mark, 'where futurity and presentness coincide, to invoke the memory not of what was, but of what will be' (Manning 2016, 47)

In *And Travelling Often In The Cut We Make* RTI was first adopted as an experimental process inside Taplow House, a derelict south London estate in 2014. In response to the evocative architectural spaces of the housing estate, RTI, was stretched to document more than flat textured surfaces and instead these "Dirty RTI" image files began to capture the conditions of their own making within them. Thereafter RTI was performed in various settings including workshops and events so that all aspects of the process could become visible from the construction of the RTI images to the subsequent mediation and remediation of these images which become a representation of a different kind. This performative and productive status of RTI imaging invokes Karen Barad's (2007:3) term:

'mattering' in which the material world and its meaning are co-constituted by reiterative practices.

Dawson and Reilly; experiment with RTI as auto archiving paradata (2019)

Marta Diaz Guardamino making a presentation in front of a reconstruction of the Partially Buried Woodshed WSA October 2015

The Core Collaborators

And Travelling Often In The Cut We Make is a result of a set of parallel long-term collaborations. Firstly, as an artistic collaboration with Louisa Minkin which was initially fostered through a series of student-centred projects to remake and restage historical works of art. These projects revisited the methodology of reconstruction as a learning tool and the projects often worked towards a single collective outcome. In tracing precedents, the practice of transcription that used to be a staple both of apprenticeship training and art schools were revisited. Emphasizing an understanding by doing the goal was not to produce an exact facsimile or replica; rather to work out, refigure, to focus attention, to discover complex intentionalities, folding in failures and discontinuities. What Bernard Stiegler [2012] would call “working against the loss of knowledge, against passivity, for responsibility, a return of agency, against consumerism.”

The initial aim was simple, to foster connections across siloed departmental structures and reconnect academic and technical conversations that had been separated through studio and workshop workflow and line-management reorganisations. Reconstruction is also familiar as a speculative tool within archaeological practice. Replicas of structures and objects are often fabricated using historically specific techniques and materials, and a dialogue between the University of Southampton Archaeology department and WSA began with the acquisition of its first 3D printer in 2013. Archaeologists Simon Keay, Greame Earl and Gareth Beale were working on the archaeological site of the Roman Port of Portus and were experimenting with archaeological computing as a method for recording and presentation (Earl et al 2011). A carving known as the Portus Head had been digitized which became the conduit for a set of conversations between the art and archaeology departments. Following the same methods as used in the student-centered projects, shared workshops between archaeology and art practitioners were devised which initially included etching workshops with archaeological tools and digital imaging open days. The project developed characteristics akin to Brecht's *Lehrstück* or learning play: “We tried a type of... performance that could influence the thinking of all the people engaged in it. It was, so to speak, art for the producer, not art for the consumer ... in this way collaboration

develops between participant and apparatus, in which expression is more important than accuracy." (Brecht 1958)

In 2014 a 'bottom up' re-exploration of Neolithic portable art was embarked upon by Andrew Meiron Jones and Marta Diaz Gaurdamin which integrated RTI and SfM techniques into field trips across the UK. Bringing to light Neolithic carvings that might have been overlooked (Jones et al 2019; 11) this project embraced collaborative visits to Orkney, Avebury, and major museum collections as well as experimental workshops which folded field trips into studio practice.

Reconstruction of Willème's Photosculpture Apparatus WSA 2012

Strand 1: Annihilation Event

The developmental work in the strand *Annihilation Event* can be traced initially to a series of large-scale collaborations undertaken at Winchester School of Art (WSA). In 2012, a student-centred project rebuilt and restaged François Willème's Photosculpture, dating back to 1863 this was an apparatus for turning photographs into sculpture. The device (the size of a room) produced 3D models of sitters using 24 cameras triggered simultaneously around their entire periphery. The images were projected sequentially to allow a craftsman to pantographically produce a 3D rendering in a block of clay. As outlined in the chapter 'Grave Goods' (Dawson, Minkin 2017), the project was inspired by (and helps verify) the thesis that the apparatus is an antecedent for parallel processing; it *spatializes* synchronous images, using a model of simultaneity, rather than

deploying the serial frames of chrono-photography, which historically leads to the dominant *cinematic* model of the image (Galloway, 2012; Sobieszek, 1980). This project sets in train a series of enquiries into the procedures and affordances of imaging techniques and technologies with a particular interest in the *spatial* dimensions of imaging.

This interest in various imaging technologies and new forms of reproducibility, is also placed within a reading (and re-fashioning) of art history. In 2013, the WSA group reconstructed Eduardo Paolozzi and Alison and Peter Smithson's installation 'Terminal Hut', from *This is Tomorrow*, the show staged by the Independent Group at the Whitechapel Gallery in 1956. As is well documented, this exhibition mobilised teams of artists, architects, and designers to work in collaboration. 'Terminal Hut', as a collaboration between a sculptor and architects, raised questions about the ruins always at the centre of our habitation (informed at the time by post-war London, still scarred from the war-time bombing). This historical context fed into the broader considerations of the research, which is concerned with the topologies and 'landscapes' in which work is made, as much as individual pieces of work. In 2014, the group's attention turned to a full-scale rendering of the raft from Gericault's *Raft of the Medusa*. In this case, a key point of interest was the fact Gericault reconstructed a raft to scale from survivor testimony (and famously locked himself in the studio with body parts from the hospital morgue). Here again are procedures and politics of reproduction, scaling, and re-recording. What these three projects have in common is *collaborative* problem-solving and knowledge sharing, but also a 'creative testing' of imaging technologies, and as a result the thinking through of materials, scale, and fidelity to 'original' objects.

Raft of the Medusa Re:make WSA 2014.
2013.

Carved stone balls workshop WSA

The importance of these projects was articulated firstly in *Grave Goods* (Dawson and Minkin 2017) and then more extensively in *Terminal Hut* (Dawson and Minkin 2019). *Terminal Hut* was written as a sequence of postcards which mixed timelines and events, a precursor to the *diffractively* written works of 2021 and 2022 (see appendix). *Terminal Hut* situated the media archaeological methods of reconstruction alongside an unfolding dialogue with the Archaeologists Andrew Jones and Marta Diaz Guardamino as they embarked on *The Making a Mark* project. This was a five-year study of portable lithic artefacts which enabled the artists to travel alongside Jones and Guardamino as they sought to make a new record of these objects across Britain and Ireland. During the project a carved stone ball making workshop was convened in the WSA Sculpture studio to test the possible making sequence for these objects. Performing a reconstruction of these objects enabled a reconsideration of the *chaine opératoire* of the carved stone balls and to reassess their function as a 'pedagogical hinge' (Jones 2019 112- 121) These workshops performed as

a *pivot place*, a space for knowing differently as the knowledge, thoughts and concepts of the learner are put into relation with other events, histories, and social ideas.

During the Making a Mark project enquiries into different materialities of objects, including chalk, stone, bone, antler, and wood from three key regions: southern England and East Anglia; the Irish Sea region; and Northeast Scotland and Orkney were deeply observed. Working through this project, over an extended period, in a controlled, yet also exploratory manner, a technical understanding and application of Reflectance Transformation Imaging (RTI) was developed. This then allowed the technology to be repurposed in new ways within the boundaries of a creative artistic practice. This began when RTI was applied to the closed-off spaces of a South London housing estate undergoing a process of 'regeneration'. This allowed for a form of 'archaeology of our times' and became the basis for several iterations of an exhibition and workshops. The *situating* of RTI within the present-day politics of regeneration is an important dimension of the work, helping to reveal and augment socio-political narratives. Indeed for Haraway diffractive images have a strong link to the locations that they inhabit, they are material discursive meeting points or 'commonplaces' that are both *topoi* and *tropoi* (Haraway 1997 & 2008a) They not only map the world as it appears but also highlight the changes in what they map and at the same time that they change what they map, they also change while mapping (Haraway 1997:12) 'No Layer of the practice is outside the reach of technologies and critical enquiries about positioning and location' (Haraway 1991:37)

Taplow House is a housing block within the Aylesbury Estate in South London. Built between 1963 and 1977, the estate was one of the most imposing in Europe with its dramatically extended and raised walkways which created forms akin to huge ocean liners: Concrete Cunard's as Owen Hatherley would describe them (Hatherley 2009). The Aylesbury Estate had been constructed to rehouse Londoners from earlier slum clearances which in turn had been built on common land, the Walworth Common. The architecture of the Aylesbury almost immediately became synonymous with decline. The community didn't arrive as planned, failing to cohere along the elevated gangways and the communal levels of

Taplow House had been boarded up for thirty years. These spaces became informally accessible for the briefest of moments (10 days in 2014) during their transformation into artist studios. The construction company Lendlease had purchased the land from Southwark Council to demolish and redevelop the Aylesbury and the neighbouring Heygate estate into the Elephant Park development. The Lendlease contract stipulated that these derelict spaces in Taplow House were to be rented at a peppercorn rate to not-for-profit arts organisation. As a registered charity ASC (Artist Studio Company) took on a lease to convert the spaces into a complex of artist studios, galleries, and artist workshops, populating the area during the phases of demolition and transition. The area is expected to be repopulated in 2032.

Thinking through Hatherley's ocean liner metaphor it was productive to think of Taplow House as having been *scuttled*; of intentionally made irretrievable. However, at sea alongside the jetsam and flotsam there is also the *ligan*, which is the marking of any site to ensure that any abandonment can later be recovered.

How is a modernist architectural site whose importance is determined by its own hostility to heritage to be mapped and remembered? Can RTI be an acting participant in performing the *ligan* and ask how values for the lost, the forgotten and the discarded are to be endured.

Dawson 2017 RTI workshops during Taplow2

The experiments in Taplow House enabled the technology to be pushed, which raised new questions and dialogues with archaeological technique and a sense of the underlying *physics* of imaging. This exchange was articulated (and accelerated) in the hybrid exhibition/workshop programme, *Annihilation Event* (Lethaby Gallery, London, 2017), which, in the context of participatory testing of 3D imaging, brought together a diverse range of artists, archivists, archaeologists, historians, technical experts and theorists from all over Europe including Michael Doser, a physicist from CERN.


Annihilation Event folded the testing of imaging technologies into an exhibition, at its centre was a neolithic chalk object which had featured in the Making a Mark project, during the exhibition RTI and SfM workshops created fluid evental data sets and images of the unfolding assemblages of object and audience. Guest speaker, object-oriented discussions, and imaging workshops would intersect creating an expanded co-constitution of the kinds of practices that had been rehearsed during the Making a Mark project.

The term 'annihilation event' - drawn from particle physics - operates as a key critical concept; underlining a problematic shared across the disciplines of art, archaeology, and physics, regarding how we choose to 'cut' into the matter and materials around us as the means to formulate and understand our surrounding conditions. Technically, annihilation occurs when a subatomic particle collides with its respective antiparticle to produce other particles. Importantly, the total energy and momentum of the initial pair are conserved and distributed among a set of new particles in the final state. The idea of something forming out of what is already present can be considered in a material sense within archaeological digs, whereby objects are both recovered and created from the surrounding soil. Here 'annihilation' is a process of extraction, the forming of objects through *removal* of what else surrounds. Low-energy annihilation events typically produce photons, as these particles have no mass. We can understand light not only as a medium (in the way that McLuhan (1997) reminds us that the electric light is like the message of electric power), but as part of a more radical interconnection of materialities. This leads to a reappraisal of the state and status of our material conditions, with light arguably a form of waste product. We might think of the 'green' of

nature as the colour of life, for example, but in physical reality it is the colour that life *throws away*, the waste photons from the photosynthesis process reflecting back into our eyes. How we ‘cut’ into this reality is dependent upon the means of recording (whether the naked eye, camera, or electron microscope etc.). As developed in the chapter, ‘Dirty RTI’ (Dawson 2020), what transpires is that our use and study of imaging is a study into the devices that create our visualizations. As Carlo Rubbia, the particle physicist, puts it: ‘Detectors are really (just) a way to express yourself’ (cited in Cubitt 2014); or, put another way: ‘The world does not exist as data: it must be produced as data’ (Cubitt 2014). Additionally, consideration of high-energy annihilations, which produce a wide variety of heavier particles (a phenomenon that helps us to understand the big-bang model of the early universe), takes us into further philosophical quandaries as to what we even refer to as ‘original’ materials.

An important development in imaging technology, and key to the contextualising of this strand, is a shift from visual to ‘avvisual’ technologies (Lippit, 2005; Cubitt, 2014). Of the former, there is a long history of the development of lens-based techniques and apparatus that function within the electromagnetic spectrum as experienced in any given moment. However, avvisual technologies such as deep field imaging in astronomy and the scanning probe microscope allow us to ‘image’ states we are unable to experience for ourselves in any way. These are technologies of data, not images, but which can be rendered visually with stunning results. While Reflectance Transformation Imaging uses light as its means of recording, it is in fact aligned with these new avvisual technologies. It is the means of a *composite* spatial recording of objects. By looking at RTI images, which help reveal elements invisible to the naked eye, we can adopt Derrida’s (1995) term of ‘in-visibility’, being ‘an invisible order of the visible’. Yet, equally, these ‘images’ are actually datasets of light recordings, and as such equate to Derrida’s notion of ‘absolute invisibility’, as that which ‘falls outside the register of sight’. If we imagine a typical RTI ‘image’ providing a composite and *dynamic* dataset of all light reflectance within a determined ‘dome’ of light we can begin to understand that the ‘visuality’ of RTI is always a recording of all light and locations (within a specified dimension of space). Instead of the simple image plane of a picture, RTI provides access to a complex,

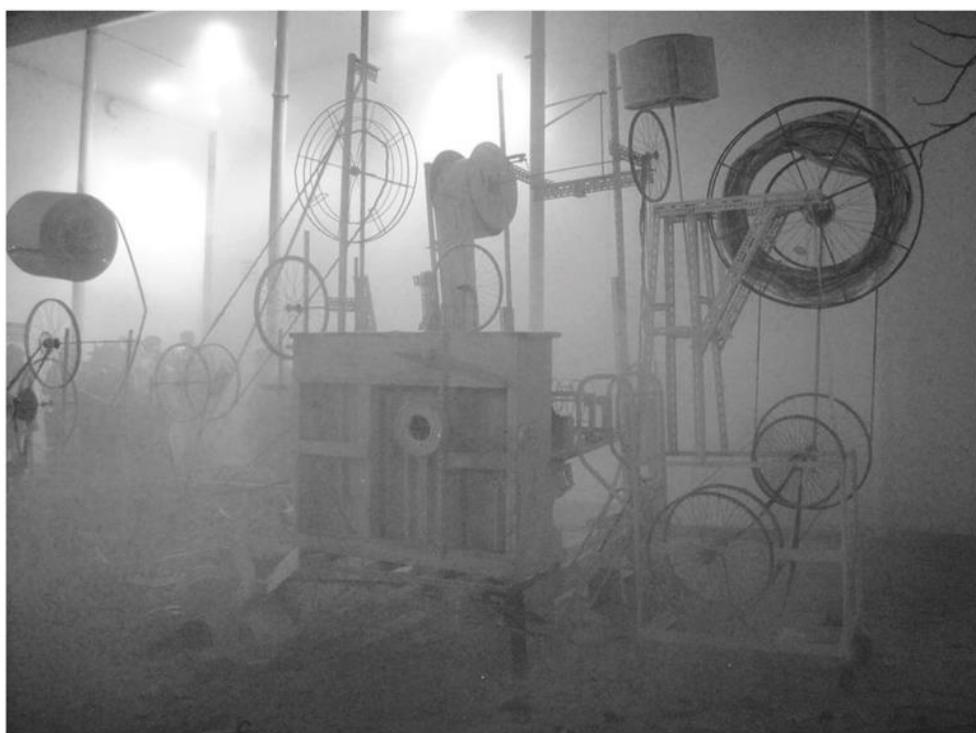
three-dimensional set of relations. It ‘extracts’ materiality from a given space in a sequential way, akin to how an MRI scanner will ‘slice’ through our bodies and then combine all layers to offer a rich three-dimensional rendering. The creative mis-practice of RTI adds a further dynamic element, whereby the *movement through* the dome of light is also recorded. This, along with other creative manipulations comes to be described by the members of the archaeological team as ‘Dirty RTI’ and opens a critical dialogue about the prospects and affordances of the technology. Dirty RTI and Remote RTI (creating RTI images by utilising remote meeting software) are then further expanded upon in *Temporal ripples in art/archaeology images* (Dawson *et al* 2021) and *Track and Trace, and Other Collaborative Art/Archaeology Bubbles in the Phygital Pandemic* (Dawson *et al* 2021).

Dawson 2017 Annihilation Event Dirty RTI performance (still screenshot)

In reference to critical questions within new materialism (foregrounded, for example with *Annihilation Event* at the Lethaby Gallery, which included direct dialogue with particle physicists), ontological and agential questions emerge as the boundaries are blurred between one body and the next (when all is held through continual annihilation particle events). In the ‘dome of light’ captured through RTI imaging, there is a way in which, at least computationally, all points are interconnected, the visible and invisible, the material and the immaterial are no longer clearly defined, which in turn disrupts our everyday sense of time and space (in the sense that

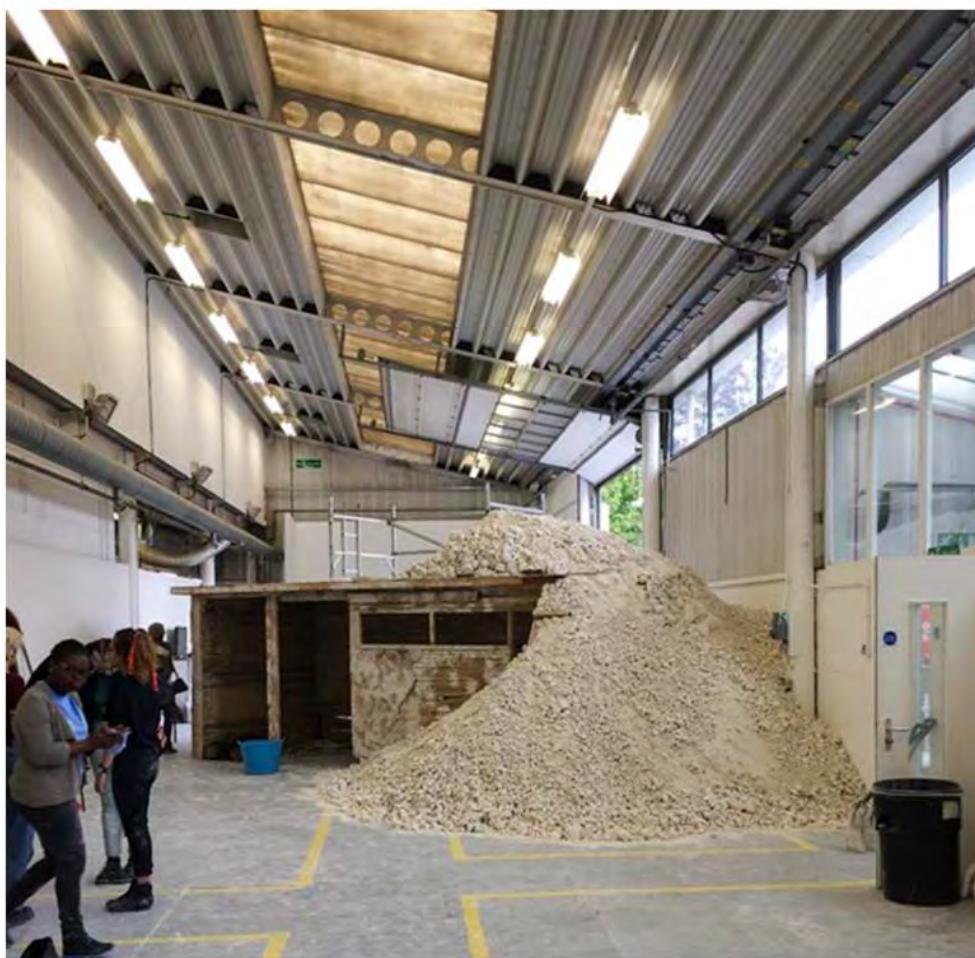
matter is more of a continuum than a series of discrete events). It is in this vein, for example, that the feminist scholar, Karen Barad (2007), draws upon a reading of quantum physics to outline an empirical approach to agential ‘intra-actions’ of matter. For Barad: ‘Matter and meaning are not separate elements. It is a position that differs from the Cartesian cut in that she does not seek to ‘disentangle’ phenomena. Instead, what the agential cut provides ‘is a contingent resolution of the ontological inseparability within the phenomenon hence the conditions for... description: that is, it enables an... account of marks on bodies, but only within the particular phenomenon.’ In this way, and again thinking about the dome of light as a set of interconnections in an expanded sense, bodies are forces or gatherings, which are always already gathering and connecting with multiplicities. They are nodes in spacetime, congealing together through forces intra-acting. It is this sense of intra-action - the entanglement of matter and meaning - that underpins the work brought together within this strand.

The written components associated with this project first developed from a technical article on the analysis of the Folkton Drums (Jones, et al., 2015), but the text *Dirty RTI* (Dawson 2019) is much more discursive and art/archaeological in nature. Here the text is not mere documentation of the visual practice, but rather a part of the iterative process overall, and ‘performs’ a certain reading of image- and object-making. Weaving together various accounts in an essayistic style, it provides a further ‘lens’ upon this project, a form of ‘cultural imaging’ as a corollary to the physical imaging of RTI, which demonstrates an intra-action or gathering of images, objects, and their making (or associations). This method culminated in the editing of the volume *Diffracting Digital Images* (Dawson et al 2021) which combined co-written chapters by all the collaborators as well as contributors from a larger group of specialists within the fields of art, archaeology, and cultural heritage. The research methods for this book are further explored in the chapter *What is a Diffractive Digital Image* (Dawson et al 2021)


Dawson, ID 2.7.1816, (Detail) 2016, as exhibited in *Artist Boss*, New Art Centre, Roche Court

Strand 2: Phygital Assemblages

Phygital Assemblages has several antecedents. The first of which is historical and biographical, as evidenced in the Group exhibition, *Artist Boss* (2016-17), which marked the influence of the British sculptor Anthony Caro upon contemporary sculptors who he had developed a close relationship with during their time as assistants to him. Readings of Caro in *Artist Boss* refer to the Triangle Workshops of the 1980s when Caro had led, along with Robert Loder, workshops over extended periods within a shared studio setting, allowing for the making of new work through an exchange of ideas and the sharing of knowledge and skills. A similar combination of collaborative methods whilst focusing on materials and material processes underpins the research for *Phygital Assemblages*, which expands into the use of new material processes in the form of digital 3D print technologies whilst also making a consideration of the virtual 'materiality' of digital objects and objecthood.


Dawson and WSA students- Remake of Early One Morning 2010

Dawson and WSA students- remake of Homage to New York 2011

Dawson and WSA students remake of This is Tomorrow 2013

Dawson and WSA students remake of Partially Buried Woodshed 2015

Dawson and WSA students reperforming JG Ballard's Assassination Weapon 2017

Dawson and WSA students constructing Francoise Willeme's Pantograph Apparatus 2012

Akin to *Annihilation Event*, *Phygital Assemblages* can be seen to develop from the same series of copy projects undertaken within the teaching context of WSA (2010-2017). Firstly, written up as a journal article, 'Object Lessons' (Dawson and Minkin, 2014), these projects involved working collaboratively with student groups to remake historic art objects. These projects produced remakes of works such as Anthony Caro's Early One Morning, Jean Tinguely's Homage to New York and Robert Smithson's Partially Buried Woodshed. As described in Strand 1 it included, for example, a complex reconstruction of François Willème's Photosculpture technique, which was a nineteenth century apparatus for making 3D copies from multiple, carefully calibrated photographs. This was explored as a paradigm for nineteenth-century modernity, offering a genealogy for 3D prototyping (Galloway, 2014). As part of developing a material historiography, as well as seeking to understand current culture, a third key influence and underpinning collaboration for *Phygital Assemblages* is a partnership with archaeologists at the University of Southampton. This relationship began with a specific project to examine Neolithic artefacts (Meirion et al., 2015) which involved sharing various practice and knowledge around both contemporary visualization technologies and ancient processes.

In bringing these contextual strands together, *Phygital Assemblages* can be understood to be situated within the 'material turn', which breaks with discursive, linguistic-based frameworks. It draws influences from numerous scholars of new materialism (e.g., DeLanda, 1997; Barad, 2007; Bennett, 2010), who, while not discounting social constructions, nonetheless refer to a much broader *material* ontology of subjectivity. More specifically, *Phygital Assemblages* relates to considerations of 'sociomateriality', which refers to social and material aspects of technology and organization (Orlikowski, 2007). Key connections can be made to practice and learning. Fenwick (2015), for example, notes how everyday practices are 'constituted through entangled social and material forces that continually assemble and reassemble'. She argues that objects, events, identities, and knowledge are all performed through these social and material relations. As such, she writes: 'Effects such as capacity and 'skill' are understood to be distributed, not located as agency within human beings. One task for analysts is to trace just how these relations work: how human and more-than-human forces act upon one another in ways that mutually transform

their characteristics and activity, how they produce assemblages that become stabilized, and sometimes become extended and powerful.' (Fenwick, 2015; 83)

In contributing to the debates *and practices* of the material turn, the research investigation within this strand centres upon two interacting terms: the 'phygital' and 'assemblage'. The latter term has various connotations. In art it typically refers to the compositional combination of found and collected objects associated, for example, with collage as method (Craig 2008). In archaeology, assemblage has two overlapping meanings. As Gavin Lucas (2012) explains, it refers to 'a collection of objects associated on the basis of their depositional or spatial find-context', in this sense it is termed 'midden assemblage'. It also refers to 'a collection of one type of object found within a site or area', termed 'pottery assemblage'. In the archaeological sense assemblage is a more technical term, concerned with various 'object itineraries', relating to positionality, formations, timelines, and context etc. (Joyce and Gillespie, 2015). These specific considerations have been applied back into art practice as a way of opening a more extensive understanding of what happens when we work with objects, object processes, and, crucially, how we come to relate to the 'positionailities' and materialities that lie *between* the various defined states of objects and their fabrications (and degradations). In connection to which, reference can be made to Manuel DeLanda's (2006) assemblage theory, who in turn draws residually on the philosophy of Giles Deleuze and Felix Guattari (1987). Here we find the concept of archaeological assemblages rearticulated to foreground external relationships, in effect greatly *expanding* the very concept of the 'object'. Objecthood is opened out to a wider set of relational, environmental aspects, as opposed to the internal configurations of component parts. The work situates itself at this level which enables different ways of relating to an object's 'autonomy'; allowing for movement between assemblages, which continually recombine elsewhere in other spatiotemporal contexts. Here, specifically, the term 'phygital' is put forward as a way of understanding objects that are digitally defined but that can be invoked, instantiated, and brought into constellation with other entities both physically and virtually - giving shape to a new terrain of *digital* relationships of 'midden' and 'pottery' assemblages.

A ‘phygital nexus’ (Dawson and Reilly, 2019) can be thought of as a no-place and an every-place where digital and physical worlds intersect; a space where novel, ‘messy assemblages can emerge. Underling this consideration is the influence of new media theorist Friedrich Kittler (1999), who, contrary to the position taken by Marshall McLuhan, whereby media is viewed as ‘extensions’ of the human, Kittler argues for an *autonomy in technology*. In reference to digital, internet-based culture, whereby information constantly circulates, he makes the case that humans become a reflection of their technologies, not the other way round. A key claim, for example, is that the last ‘historic act of writing’ occurs in the late 1970s when Intel engineers produced the architecture of the first integrated microprocessor (Kittler, 2013). Now that we are placed ‘within’ its circuits, we are in effect inhabiting *perpetual phygital assemblages*. It is this understanding of our ‘mediation’ (and of its materialities) that forms the *site of investigation* for the project. As such, through art-archaeological practices of building and re-building, a key critical question regards the (de-)ontology of the object. E.g., Where does the object begin and end? How does information pass through assemblage, and what are the longer trajectories and itineraries of information? Pursuit of these questions - as explored through these collaborative engagements challenge the notion of origins, heritage, authenticity, and surrogates. Along with questioning what happens to future versions of objects, we are continually drawn back to critical debates about physical, digital, and ‘phygital’ states and their interstitial spaces.

Spanning from 2014-2022, *Phygital Assemblages* involved working with numerous artists and curators for a series of exhibitions and was underpinned by a sustained collaboration with a team of archaeologists. There is an iterative process, whereby the same key ideas and research problematics are explored, tested, and reflected upon in multiple and accruing ways. Broadly, however, there are three main phases. Firstly, a series of ‘copy projects’ were written up as a journal article and an exhibition was curated and dedicated to questions of the technical evolution and translation of 3D objects. Secondly, artworks were made and re-made for a series of exhibitions and projects, which furthered the material practices of 3D scanning and printing, and which perform a series of physical and virtual assemblages and object itineraries. Finally, in collaboration with the archaeologist Paul Reilly the project’s key critical

considerations have been explored through a sequence of Art/Archaeology projects and articles on the ‘phygital nexus’ (Dawson and Reilly, 2019, 2021).

(1) *Objects Lessons*: The research investigation begins with the writing up of the article, ‘Object Lessons’ (Dawson and Minkin, 2014), which, as noted, reflects on a series of copy projects conducted at WSA over a four-year period, including the remaking of historic art objects such as Anthony Caro’s *Early One Morning* (1962) and Jean Tinguely’s *Homage to New York* (1960); as well as the aforementioned Willème photosculpture apparatus. These projects are characterised in the article as a form of material historiography and help initiate a working relationship with members of the Archaeology Computing Research Group at the University of Southampton, which goes onto underpin the development of *Phygital Assemblages*. A critical consideration of ‘Object Lessons’ regards how information travels, translates, and transforms through material processes, and how we can approach the idea of the ‘generations’ of objects – referring both to the creating and fabrication of objects, and process of copying and remaking.

The chapter argues that image culture in art schools has shifted from observation and transcription through modes of measurement, trace, and projection, to the swift transfer of data, active on multiple platforms and with many potential outputs. New tools of production and reproduction have been introduced into the set of tools and processes available to artists. Rapid prototyping and 3D scanning present us with questions of technique. They give us a direct imperative to understand the potential of new fabrication methods, new ways of materializing and constructing, copying, and reconstructing. In this vein, these copy projects are a reminder that the subject matter of a work of art is limitless, that it remains incomplete and that ‘the language of art is with an unfinished event’ (Gadamer, 1975). Echoing the contemporary arguments of new materialism (as breaking with the linguistic turn), Gadamer is critical of the established role of modern theory where ‘theoretical knowledge is conceived in terms of the will to dominate what exists’. Instead, reopening the unfinished event contributes to the re-articulation of theory as contemplation (*theoria*) and participation (*theoros*). Here ‘the aim is not to recover the forgotten per se but use the difference between past and

present usage to create a space in which new meanings might arise' (Davey, 2006).

Explorations with the object, copying and new imaging technologies are taken further in the curation of the exhibition *The Wanderer's Nightsong II* (2015). Showing the work of Gavin Turk, Neil Gall, Kate Atkin, Cathy De Monchaux, and Chris Hawtin, the exhibition raises questions about technical evolution and translation of objects through the *ambiguous* role as 'curator'. The curator role is extended further to that of technician and collaborator by 'translating' the artists' work via 3D scanning and printing, creating copies of their work as a means to ask questions of mediation, re-mediation, authorship, and originality. The title of the exhibition is taken from Goethe's classic eight-line poem which was scratched into the walls of a mountain lodge and describes a progression from mineral through animal to human, of a natural process becoming language. As Kittler (1992) has argued, the poem's power lies in three simple factual statements followed by an assertion for the future, which, without the use of simile, metaphor, or symbol, is *untranslatable*. Kittler's interest in the poem is its status as 'object'; that the mechanisms of the development of language are wholly bound within the essence of the poem. The medium itself is very much the message, but - as in the terms of sociomateriality - it is an *extended* medium through which we pass (rather than apply). It is this reading of object processes and translations that persists through the later stages of this project.

The Wanderer's Nightsong II (installation view) 2015 C&C gallery London

(2) *Phygital Assemblages*: A central component to the research process for Phygital Assemblages are studio-based sculptural works. These are constituted from multiple 3D printed objects made from a corn-starch derivative bioplastic (PLA) using a Fused Filament Deposition process. Works vary from being conglomerates of hundreds of prints dispersed in various ways or fused together as a single unified object in the instance of the Metalithic object series as exhibited in Autumn Attic (2021) and Patternicity (2022).

The first iterations of *The Phygital Assemblage* comprised of 3d prints affixed to an architectural scaled aluminium-framework which developed through four main iterations. Additionally time-based digital works are constantly constructed and created and reedited. Of the former, following a commission to produce a work for the exhibition, *Artist Boss* (2017) a large-scale 'assemblage' combined several hundred individually 3D-printed objects along an aluminium frame. The brightly coloured corn-starch derived prints were an assortment of miniature models, derived from signature artworks and archaeological artefacts (including Neolithic objects from Orkney and the British Museum, and prints from modern and contemporary art objects held in the collection of Tate Modern). Other objects include elements from Cody Wilson's infamous 3D-printed gun (distributed as part of a 'Wiki Weapon Project'), and Nasa satellite data

of asteroids. The objects are all scaled to the same handheld miniature size and printed with the same material, acting as souvenirs or trinkets. The title of the work, 'I.D.2.7.1816', as shown for *Artist Boss* (and later for 'Itinerant Objects' at Tate Exchange, Tate Modern, April 2019), is in reference to the date the French frigate 'The Medusa' ran to ground on the Senegalese coast, an event remediated through Gericault's shipwreck scene. (Gericault's work was the inspiration for one of the WSA copy projects), and which, for Gericault, involved constructing a life-sized raft from which to paint. Through a persistent process of working and re-working material and digital objects, Dawson's assemblage work evocates a massive archive of objects and of their copying, transmission, and translation. The aluminium framework acts as a holding form, as an apparatus, as if at once a flatbed 3D printer and the *raft* as a site to remediate new forms of cannibalism.

Dawson, ID 2.7.1816, (Detail) 2019, as exhibited in Itinerant Objects, Tate Exchange

When shown at Tate Modern, in April 2019, as part of a programme of events around the theme of 'itinerant objects', the artwork was displayed within the context of open workshops using 3D scanning and printing, and Reflectance Transformation Imaging, techniques of imaging increasingly adopted in archaeology, using varying lighting conditions to reveal surface phenomena. Extending the artwork directly into these participatory events

furthered a sociomaterialist agenda *through practice*. In effect, this was to activate the material archive of the artwork, to foreground how we engage in objects that surround us and to provide a means of re-articulating these forms through process of digital reproduction (which then can re-emerge as material objects through 3D printing).

A version of 'I.D.2.7.1816' was shown as 'Gnomon One' at *Backyard Sculpture*, an exhibition curated by Neil Gall and David Gates, at Domo Baal Gallery (2019). It was an artist-curated survey of sculptural objects created with an ethos for utilizing an independent eccentric fabrication as a means of production (a 'backyard aesthetic'). The exhibition charted experimental approaches, particularly within British Sculpture (though it also referenced an East Coast American strand, including upstate New York traditions evidenced through the early Triangle Workshops). The exhibition asked the viewer to consider a suburban method of making work rather than an urban aesthetic - of assemblages involving repurposed equipment, materials, and processes that while informed by contemporary art, might well sit outside the usual frames of reference. In this context, the cubic aluminium frame again supported the display of 3D prints, providing a variety of x, y, and z planes. The artwork's title is a reference to the Greek 'Gnomon' (the one that knows everything) and is the technical term for the part of the sundial that casts the shadow. Like the echo of the flatbed printer, the reference here is to technologies of marking and measuring. From the humble yardstick to other more extended forms of mapping and projection, gnomonic maps are used to chart seismic waves, for example. The gnomon in geometry is the piece that needs to be added to create a larger piece yet is created through fragmentation.

Further renderings of these assemblages involved a direct collaboration with archaeologist Paul Reilly. In this case the aluminium structure was again the holding form for the work and continued to support the eclectic mix of 3D printed objects (including Goethe's death-mask, a starfish, and Neolithic carved balls), the framework was also configured to support a digital screen. This was used to show images of a recovered digital file from the 1980s, specifically IBM's commissioned digital reconstruction of an Anglo-Saxon building, the Winchester Minster. This file represents an early form of digital archaeology which itself had to be recovered (Reilly, et al.,

2016). On top of the screen was shown a 3D print, a further reconstruction of the reconstructed IBM digital file. The work was shown at Annihilation Event (2017) and *Along the Riverrun* (2017), an exhibition curated by Alex Goulden and George Watson, at ArtSway. The title of the show was taken from the opening line of *Finnegans Wake*, Joyce's final novel which eschews conventional narratives and blends portmanteau words with lexical items and neologisms in a cyclical work whose last line recirculates as the opening line. As in *The Wanderers Nightsong II*, the naming of the exhibition alludes to ideas about both objects and language.

The aluminium framework disappears completely in a final important collaboration with Reilly in the Metalithic sculpture series of phytal objects (2019-2022) with a set of assemblages that become pluritemporal, that is having multiple overlapping pasts, ongoing presents, and imminent futures (Olivier 2011). During the Covid 19 lockdown Reilly had discovered a hoard of Mesolithic flint hand tools close to his home in Mottisfont, England. Reilly began to share sequences of these digital photographs as data sets for these mesolithic flint tools to be remodelled using SfM software hundreds of miles away in Dawson's London studio. A complex dialogue began between the discovered mesolithic flint artefacts, the data transfer processes, and the corn-starch printed models ensued. Invoking the cognitive assemblage as described by Katheryn Hayles (Hayles 2017), the compiled SfM data were cleaned in MeshLab and Meshmixer and then sliced and sent as gcode to be 3D printed. The silica flint tools found initially in a cornfield, then turned into images in a home office in Hampshire, were now (re)instantiated in colourful polylactic acid (cornstarch) using a FFD printer. More than any other process, 3D printing exemplifies the idea of object-as-trace, as a continuous plastic line is drawn across a three-dimensional field. This 3D printing performance recalls the assembly section of Willème's photosculpture process where the silhouettes of his daguerreotypes were translated by pantograph into a block of clay. In a similar manner the 3D print software slices a model into a sequence of silhouetted profiles which are printed one ontop of another. Both processes reveal the uneasy interface, or rather complex intraface, between artisan and the machinic array. In the Metalithic series the print process is actively acknowledged as the machine is spontaneously turned on and off

to introduce different colours of filament thereby creating stochastic interruptions within the merging patterns that develop on the surface of the print. The stop-starting was arbitrary and often conducted between video conferencing meetings, marking both the day and the duration of the printing process. Each metalithic surface that emerged was a colourful, indeed dazzling, plastic amalgam of prehistoric flint tooling and post historic 3D fabrication.

At one point printed versions of the metalithics were posted back to the location of the find to implicate an extended assemblage (Deleuze and Guattari 1987; DeLanda 2006). This process thus involved a much messier, ontologically itinerant, phygital assemblage (see Reilly and Dawson 2019) which included a post box, the Post Office, a Royal Mail distribution depot, the cardboard box and tape, a barcode, a barcode reader, postcodes, gcodes, 3D printer, office and studio environments, digital cameras and jpeg images, a step ladder, in addition to the human actants (i.e., the delivery driver, depot workers, postman, the artist and the archaeologist). Following Bennett's vibrancy of matter (2010, p. 36) the consideration is toward the agency of this extended human and nonhuman assemblage as distributed over a 'confederacy' of intersecting and resonating actants existing separately and together, bringing order and disorder, assembly and disassembly, to the material world.

Dawson and Reilly, *Track and Trace - Ontological itineraries (Wrapper detail and contents)* 2021

(3) *Phygital Nexus*: As a final stage in the research process the collaboration with Reilly is formalised in the publication of a series of Journal articles (see appendix). In 'Messy Assemblages, Residuality and Recursion within a Phygital Nexus' (Dawson and Reilly 2019), the term 'assemblage' with its different applications to both art and archaeology practices (and drawing substantially on new materialist discourse) is considered along with the concept of the 'phygital nexus'. The approach is to reflect on the movement of objects and images within the *phygital* (i.e., across the physical and the virtual) to consider how different components of assemblages meet, mingle, and sometimes experience ontological shifts, when an artist and an archaeologist, and those differing practices and apparatus intra-act (cf. Barad 2007). The essay identifies the phygital nexus as a 'state', which can be in various states of flux. These articles draw out a shared methodology as underpinning of their exploration of the phygital (whereby the nexus is subverted to enable the remixing of multifaceted, multi-(im)material, and multi-temporal phygital artefacts that recall themselves). And in *Track and Trace, and Other Collaborative Art/Archaeology Bubbles in the Phygital Pandemic* (Dawson and Reilly 2021) they chart their art/archaeology collaborations during the Covid19

pandemic using the idea of ‘bubbles’ to explore Hayles’ (2017) “cognitive assemblages” in which human and nonhuman decision, or choice-making functions are distributed across, and link together. Hayles’ cognition is a broad capacity that extends beyond consciousness into other processes, life forms and complex technical systems including scanning devices. Hayles refers to these broader and more widespread cognitive capacities as operating below the level of consciousness as unthought or nonconscious cognition. What is perhaps most noteworthy in *Track and Trace, and Other Collaborative Art/Archaeology Bubbles in the Phygital Pandemic* is how the art/archaeology artefacts are produced through an intraacting cognitive assemblage in which the cognitive components do not simply interact in parallel or in tandem. Rather they are part of a conscious diffraction of different modes of cognition through one another, human with nonhuman, conscious with nonconscious, artistic with archaeological practice and techniques, with the hopeful intention of producing surprising and unexpected results.

Importantly both articles are placed in open access, online journals that (in the case of *Messy Assemblages*) allows them to present a written text with actual existing components of the phygital, so including various digital (animated) files as part of the article’s layout and argumentation

Objects as Curriculum workshop at University of Lethbridge with the Indigenous Art Programme

Artist Residency, Compound 13 Lab, Mumbai, India 2019

CONCLUSION

In writing this final section it is important to emphasize that concluding is a task which the project has actively sought to refuse. At Ing-Marie Back Danielsson and Andrew Jones's 'Making images, making worlds: Art-Process-Archaeology' session at the Art, Materiality and Representation Conference hosted by the Royal Anthropological Institute at the British Museum in 2018 the practice and ethics that surround closure were discussed. How could archaeologists and artists explore the difficulties which occur with foreclosure when messy forms of practice are inevitably excluded. Jones had just presented a new critique on the 387 carved stone balls which have been found in various locations across mostly Scotland but now reside in museum collections across the UK. He reflected on the numerous 'unfinished' versions which are hidden from view in archive spaces and posited the idea that through a processual unfolding of these carved stone balls they could be seen as didactic objects which teaches technique (Garrow and Wilkin 2022). This narrative suggests that despite the current marginal status of these *unfinished* stone balls, when considered together they are better able to aid future possibilities by being open to reinterpretation through subsequent remaking.

Unlike the finished smoothed and perfected versions as presented in isolation, the whole body of stone balls can offer a greater potential for constructive dialogue that includes what is outside and beyond the object itself.

Like the carved stone balls, the work presented within this thesis evidence various stages of making and unmaking to maintain its own open-ended reiterative qualities so that it too can usefully engage with the intrinsic role of exclusion. The performative production of matter is used as a complimentary process, it is understood that when objects manifest through assemblages they do so at the expense of other possibilities and as such are reminders that things could be otherwise if the assemblage was composed in another way. The work not only seeks to remember other possibilities it makes those accessible for future reuse, Here the work can be thought of as a ‘capacity-building’ practice (Stephansen and Trere 2019) where the dual aspect of capacity is explored. The work expands people’s capacity to actively participate as well as broadening the possibility for the assemblage to continue to grow.

In Tiquun’s text *How is it to be done?* (Tiquun 2010) they call for new cartographies, ‘We need maps. Not maps of what is off the map [...] Tools for orientation. That don’t try to say or represent what is within different archipelagos of desertion but show us *how* to meet up with them.’ Taking the polemic of Tiquun’s text which advocates the importance of the *how*, the adoption of diffractive methods has enabled the decision making of boundary forming practices and the excluded other possibilities to be messily connected. The integral role of exclusion as both a component and consequence of how images are brought into being is both evidenced and traced and left responsibly for future generations to pick up.

As Giroud notes in *What Comes After Entanglement?* (Giroud 2019) when she raises the necessity to heed the tools that are entangled within the production of knowledge it is the constant act of warping RTI and mutating 3D prints which shifts the focus from what is being expressed to how these expressions are crafted. Throughout this roaming body of work from Taplow House to Messy Assemblages the pursuit has been to

consider the non-neutral aspect to image making (Dawson et al 2021) asserting through practice the principle that any apparatus that generates knowledge about the world is inextricably intertwined with its object of study. As Barad articulates this has a profound influence on the ethics and ontology of the practice of image making. RTI images change at each viewing and photogrammetric models develop distinct occlusions when recompiled at different times, whilst 3d prints have substantially varied qualities depending upon the shifting environmental conditions of each workshop and studio.

By setting each work in relation to other works, each piece of work has become a layer within a set of layers which considers the exclusions that have come to emerge. By disrupting the illusionary nature of a clean framework and to contest the notion of smooth transitions between forms and formats the work productively engages with how exclusions could be made to matter. Crucially the work (as practiced) can make the hierarchies of decision making visible which proffers from Harraway's writings that figure the *relation* as the fundamental 'unit of analysis' (Harraway 2003 20) As illuminated earlier by the example of the carved stone balls the presentation of artefacts within empty spaces in Galleries, libraries, archives, and museums is often misleading and divisive. The framing of artefacts in a disembodied featureless vacuum ensures that exhibits and accessions can obscure and hide many things including the gestures from people who have applied their considerable skill sets, knowledge, and experience into the making of the work. The diffraction patterns which have evolved and continue to evolve out of the processual nature of the work can be seen to embody layers of paradata which would otherwise be inaccessible. These admittedly complex images take considerable effort to unpick but what becomes clear is that the apparently inert, empty, space surrounding the object under study is an intersubjective space full of energy, light, movements, gestures, equipment, and people. These interactive intersubjective spaces are laden with meaning-mattering decisions and become a form of 'autographic' image (Offenhuber 2020) which contains "a trace of the process itself: it retains some interpretive authority, and it is taken as a product of the phenomenon at its face value" (Likavčan and Heinicker 2021, p.212).

By finding creative ways to render the apparatus of image making visible, to challenge them *and* by engaging in a practice which spreads expertise the work has built productively towards an ethics of image making which accounts for the complexity of working in an entangled position where agency is often fraught with difficulty. The development of these diffractive methods has led to a large-scale collaborative project with the Blackfoot Confederacy and The Digital Blackfoot Library. In this project the methods developed have been applied to ask if indigenous digital objects can be crafted and handled responsibly, and if so how. Museum archive visits with Blackfoot Elders were combined with RTI and SfM imaging sessions, these viewings were complex as they involved multiple discussions from various voices and the handling of objects occurred during the creation of their digital relatives. The aim was to create digital objects that were not 'oblivious to the indeterminacies of encounter' (Tsing 2015, 40) Narrating across and through the physical and digital objects was a way to develop an '*ethics of storytelling*' for digital imaging as a productive way to articulate the situated entanglements within the contested space of the archive room. During these sessions particular details of beadwork and quillwork were illuminated through RTI allowing for a knotting-together of narratives, the customs and practices of a bead worker were described alongside the instructional unfolding of the process of RTI. Paying attention to the *process* of weaving together these stories thus allowed for an assemblage to form which created the space for different knowledges to be heard collectively.

What has been discovered is that it is not enough to acknowledge the noninnocence in image making, this recognition alone only serves to naturalize exclusionary aspects to the practice. Instead, the diffractive messy image-making in this project has worked towards a productive relationship with the inevitability of the agential cut. This requires an openness that is only afforded through constant work *and* constant re-working as the artefacts and images of In Travelling Often in The Cut We Make constantly fold into their own omissions so that the work can respond to the politics and ethics of image making.

References

Beale, G., (2018). Volatile images: authenticity and representation and multi-vocality in digital archaeology, in P. Di Giuseppantonio Di Franco, G. Galeazzi and V. Vassallo (eds.) *Authenticity and Cultural Heritage in the Age of 3D Digital Reproductions*. Cambridge: McDonald Institute of Research, 83-94.

I.-M. Back Danielsson and A.M. Jones (2021) Introduction in I.-M. Back Danielsson and A.M. Jones (eds.) *Images in the Making: Art, Process, Archaeology*. Manchester: Manchester University Press, 1-17.

Barad, K., (2007) *Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Meaning*. London: Duke University Press.

Bennett, J., (2010) *Vibrant Matter: A Political Ecology of Things*. London: Duke University Press.

Craig, B. (ed.) (2008) *Collage: Assembling Contemporary Art*. Black Dog Publishing: London.

Dawson, I., Reilly, P, and Callery, S., (2021). Temporal ripples in art/archaeology images. In Dawson, et al. (Eds.), (2021a) Diffracting digital images. Art, archaeology, and cultural heritage. London: Routledge.[10.4324/9781003042129-7](https://doi.org/10.4324/9781003042129-7)

Dawson, Ian, Reilly, Paul, Minkin, Louisa, Jones, Andrew. (2021b) What is a diffractive digital image? In Dawson, et al. (Eds.), Diffracting digital images. Art, archaeology, and cultural heritage. London: Routledge.[10.4324/9781003042129-7](https://doi.org/10.4324/9781003042129-7)

Dawson, Ian, Reilly, Paul and Callery, Simon. (2021c). Temporal ripples in art/archaeology images. In Dawson, et al. (Eds.), Diffracting digital images. Art, archaeology, and cultural heritage. London: Routledge.[10.4324/9781003042129-7](https://doi.org/10.4324/9781003042129-7)

Davey, N. (2006) 'Art and Theoria', in K. Macleod and L. Holdridge (eds.) *Thinking on Art Reflections on Art as Research*. London: Routledge, pp. 20-29.

DeLanda, M., (1997) *A Thousand Years of Nonlinear History*. New York: Zone Books.

DeLanda, M., (2006) *A New Philosophy of Society: Assemblage Theory and Social Complexity*. London: Bloomsbury.

Deleuze, G., Guattari, F., (1987) *A Thousand Plateaus: Capitalism and Schizophrenia*, trans. by B. Massumi. Minneapolis: University of Minnesota Press.

Earl, G., Beale, G. and Keay, S. (2011), 'Archaeological computing for the recording and presentation of Roman Portus', in S. Keay and Paroli, L. (eds.), *Portus and Its Hinterland. Archaeological Monographs of the British School at Rome* 18. London: British School at Rome, pp. 101-26.

Fenwick, T., (2015) 'Sociomateriality and Learning: A Critical Approach', in D. Scott and E. Hargreaves (eds.) *The Sage Handbook of Learning*. London: Sage, pp.83-93.

Gadamer, H., (1975) *Truth and Method*. London: Continuum.

Garrow and Wilkin (2022) The World of Stonehenge, The British Museum Press, London

Giroud, E., (2019), What Comes After Entanglement? Duke University Press, London

Hamilakis, Y, and Jones, A., (2017) 'Archaeology and Assemblage'. *Cambridge Archaeological Journal*, Vol. 27, No. 1, pp.77-84.

Haraway, D., (1997). *Modest_Witness@Second_Millenium.FemaleMan©_Meets_OncoMouseTM: Feminism and Technoscience*. London: Routledge.

Haraway, D., (2003). The Companion Species Manifesto. Prickly Paradigm Press, Chicago, II

Hayles, K. (2017) *Unthought: The Power of the Cognitive Nonconscious*. Chicago; London: The University of Chicago Press.

Galloway, A., (2014) 'On the Cybernetic Hypothesis', *differences*, Vol. 25, No. 1, pp. 107-131.

Jones, A.M., Cochrane, A., Carter, C., Dawson, Ian, Díaz-Guardamino, M., Kotula, E., and Minkin, L. (2015) 'Digital Imaging and Prehistoric Imagery: a new analysis of the Folkton Drums', *Antiquity*, 89 (347), pp. 1083-1095.

Joyce, R.A. and Gillespie, S.D., (eds.) (2015) *Things in Motion: Object Itineraries in Anthropological Practices*. Santa Fe: School for Advanced Research Press.

Kittler, F., (1992) *Discourse Networks, 1800/1900*, trans. by Michael Metteer and Chris Cullens. Stanford: Stanford University Press.

Kittler, F., (1999) *Gramophone, Film, Typewriter*, trans. by G. Winthrop-Young and M. Wutz. Stanford: Stanford University Press.

Kittler, F., (2013) *The Truth of the Technological World: Essays on the Genealogy of Presence*, trans. by E. Butler. Stanford: Stanford University Press.

Lucas, G., (2012) *Understanding the Archaeological Record*. Cambridge: Cambridge University Press.

Lucas, G., (2017) 'Variations on a Theme: assemblage theory', *Cambridge Archaeological Journal*, Vol. 27, No. 1, pp. 187-90.

Likavčan L. Heinicker P. (2021) Planetary Diagrams: Towards an Autographic Theory of Climate Emergency. In: Dvořák T, Parikka J. (eds.), *Photography Off the Scale: Technologies and Theories of the Mass Image*; EUP: Edinburgh, pp. 211-230.

Manning, E., (2016) *The Minor Gesture*. Durham, NC: Duke University Press.

Offenhuber D. (2020) Data by Proxy—Material Traces as Autographic Visualizations. *IEEE Trans. Vis. Comput. Graph.*, 26: 98-108

Olivier, L. (2011) *The Dark Abyss of Time: Archaeology and Memory*. Translated by A. Greenspan. Walnut Creek: Altamira.

Orlikowski, W. J. (2007). Sociomaterial Practices: Exploring Technology at Work. *Organization Studies* (28)9, pp. 1435-1448.

Reilly, P., Todd, S., Walter, A. (2016) 'Rediscovering and Modernising the Digital Old Minster of Winchester', *Digital Applications in Archaeology and Cultural Heritage*, No. 3, pp. 33-41. DOI: <http://dx.doi.org/10.17613/M66293>

Rovelli, C., 2018. *The Order of Time*. London: Penguin.

Rovelli, C., 2020. *Helgoland*. London: Penguin.

Stephansen, H.C. and Treré, E. (2019) 'Practice what you preach? Currents, connections, and challenges in theorizing citizen media and practice'. In: Stephansen, H. C. and Treré, E. (eds) *Citizen media and practice: currents, connections, challenges*. London: Routledge,

Stiegler, B., (2012), 'Relational ecology and the digital pharmakon', *Culture Machine*, 13, pp. 1-19.

Timeto, F., (2015) *Diffractive Technospaces*. London: Routledge.

Tiquun (2010) Introduction to Civil War. trans. Galloway, A. Semiotext(e) CA

Tsing, A., (2015) *The Mushrooms at the end of the World: On the Possibility of Life in Capitalist Ruin*. Princeton University Press. Princeton NJ.

STRAND 1: ANNIHILATION EVENT

1.2 Residency Documentation

1.3 Exhibition and workshop documentation

Dawson, Ian and Minkin, Louisa (2015)

Taplow House and **Taplow 2** 29.06.2015-21.08.2015

ASC Gallery, London

1.4 Iterations

Dawson, Ian and Minkin, Louisa (2017)

Pictures Not Homes 12.01.17- 27.01.17,

Winchester School of Art Gallery, UK

Dawson, Ian and Minkin, Louisa (2017)

Gestures of Resistance, 20.04.2017-30.04.2017

Centre Romantso, Athens, Greece

Dawson, Ian and Minkin, Louisa (2017)

Annihilation Event, 22.03.17- 29.03.17

Lethaby Gallery, CSM London

1.5. Dawson, Ian (2019) ‘**Dirty RTI**’, in I-M. B. Danielsson and A. M. Jones (eds.) *Images in the Making: Art, Process, Archaeology*. Manchester: Manchester University Press, pp 51-64

TAPLOW HOUSE RESIDENCY DOCUMENTATION

TAPLOW HOUSE RESIDENCY DOCUMENTATION

RESIDENCY PERIOD: 9 days between 9th May and 2nd June 2014. Each day was spent inside various spaces at Taplow House, London SE17 2UH. Access was gained to 3 units on the raised walkway, these units had been boarded up more than 13 years. The units are named

1. Cab office
2. Cuevas
3. Derelict Unknown Unit

This is an itemised document of the areas that were recorded during this residency

In total 75 Reflectance Transformation Imaging Data sets were made. 13 areas were Laser scanned and 1 photogrammetric/structure from motion model was compiled.

Visits were made by Dr Paul Reilly, Gareth Beale and Nicole Smith.

DAY 1

Friday 9th May 2014

Day 1 was spent in Cuevas. The Unit was given the name due to the layer of fine soot that had covered all the surfaces. The soot was a consequence of an electrical fire within this space.

A Total of 10 RTI data sets were recorded. The focus of these recordings were the first thin layers of deposition in the space and the marks that had been left in them.

1. Bannister
2. Ceiling
3. Circle on wall
4. Floor
5. Plug and wall
6. Tap
7. Wall and scratches
8. Wall (DJ stickers)
9. Wall and Porn

Bannister

Circle on wall

Ceiling

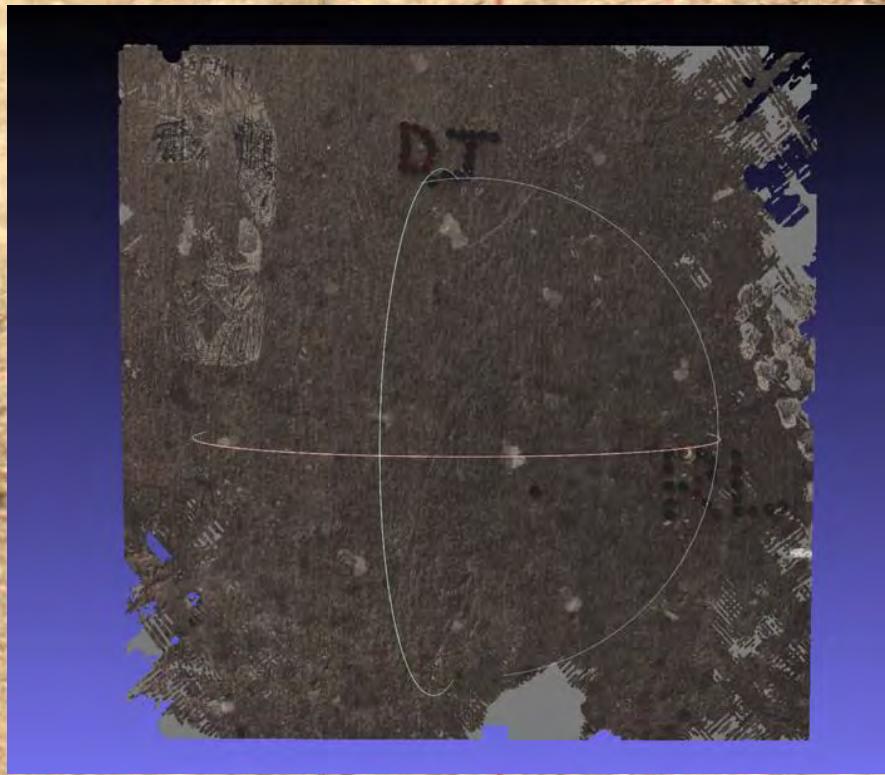
Floor

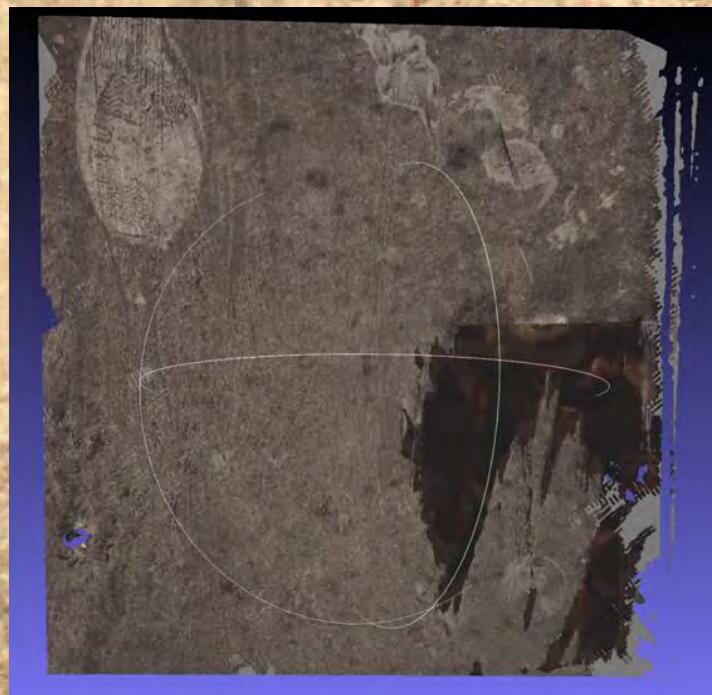
Plug on wall

Wall and Scratches

Tap

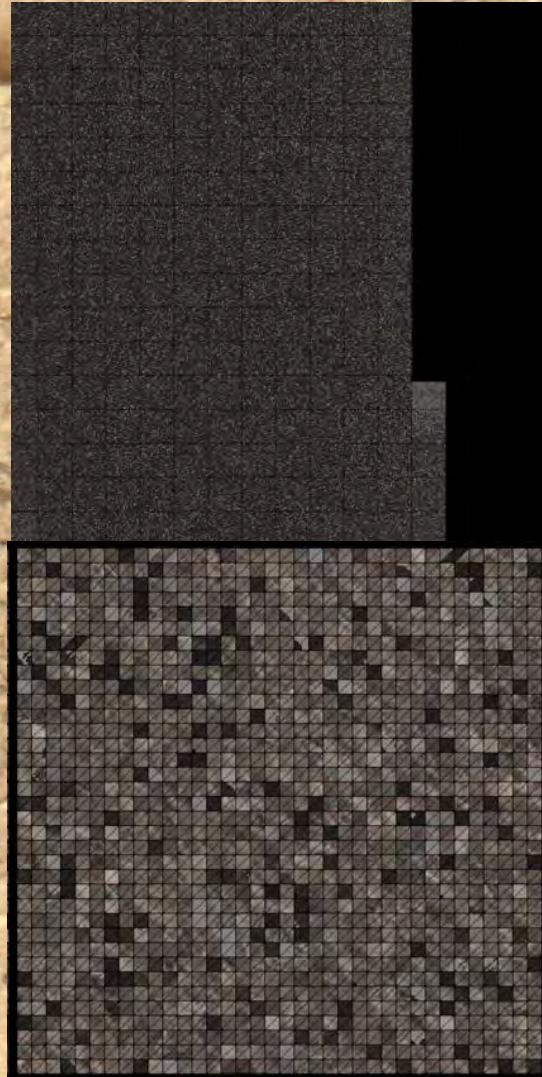
Wall DJ stickers


Wall Porn


DAY 2

Wednesday 14th May 2014

Day 2 was spent inside Cuevas using the Laser scanning equipment 3 scans were made of the walls where the soot had been disturbed by human contact. .OBJ, MTL and .BMP filetypes were saved for each scan


Wall DJ

Wall 1

Wall 2

Example a bmp map.
Detail of BMP map

DAY 3

Friday 16th May 2014

Day 3 was spent inside the cab office, which had been closed boarded up between 2001 and 2014. A combination of RTI and Laser scanning was conducted.

RTI of The Cab Office. 9 RTI data sets were collected.

1. Broken window
2. Yellow room
3. Corridor
4. Stairs
5. Floor5
6. Floor4
7. Floor3
8. Floor2

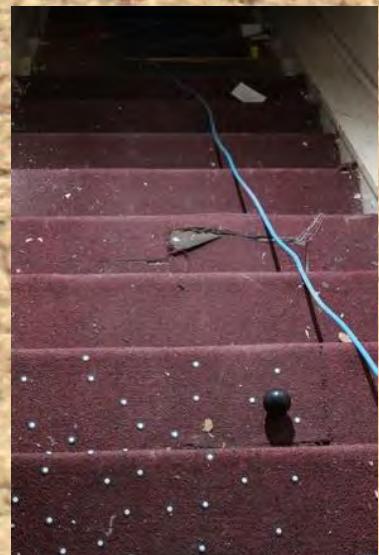
9. Floor1

Laser scan of 5 areas in the cab office

1. calendar
2. door
3. floor1
4. floor2
5. stair

RTI data sets:

Broken window



Yellow room

Corridor

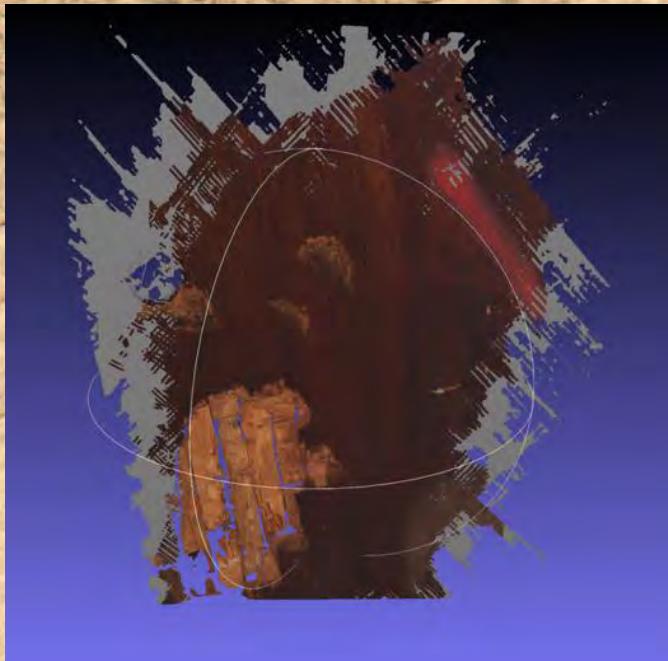
stairs

Floor5

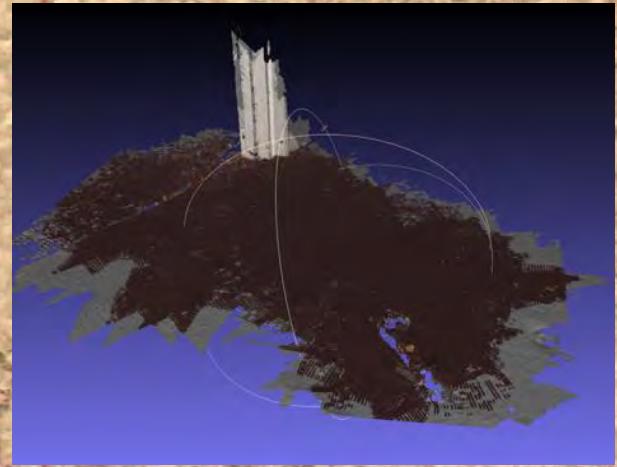
Floor4

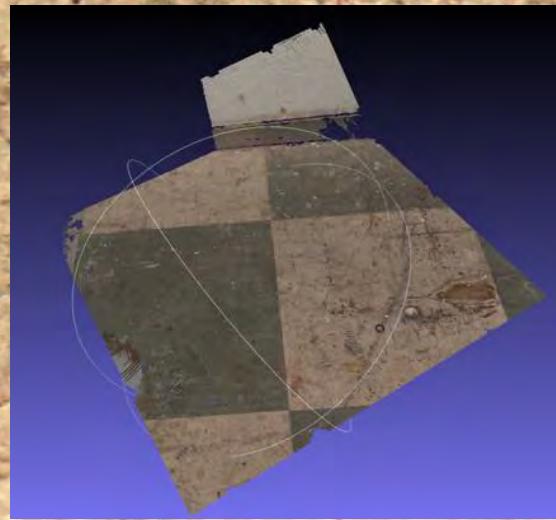
floor1

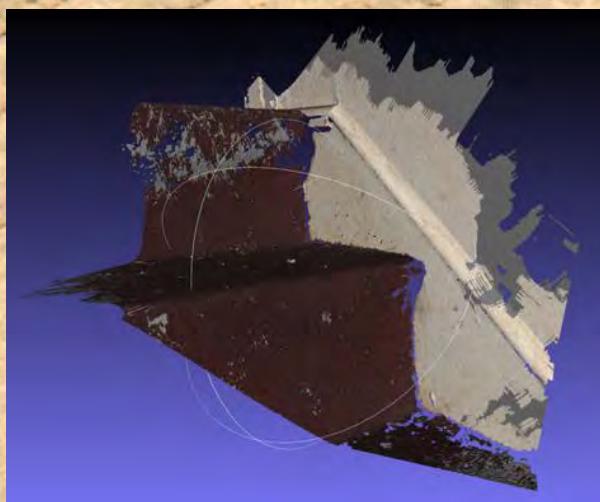
Floor3



Floor2


laser scan data sets:


calendar


Door

Floor

Floor2

stairs

Day 4
Monday 19th May 2014

Day 4 was spent inside the 'derelict unknown unit'. 5 scans were made of various surfaces inside the unit.

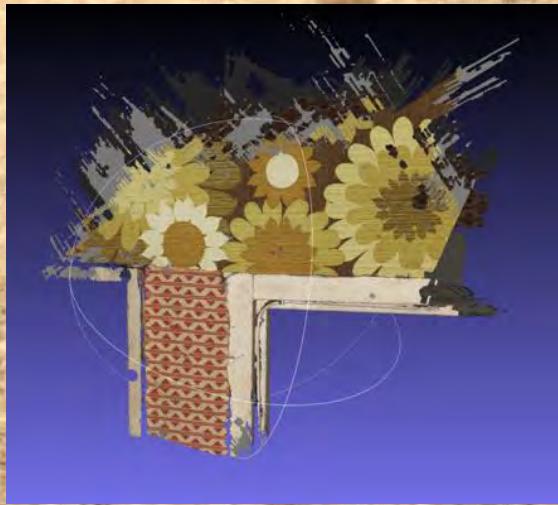
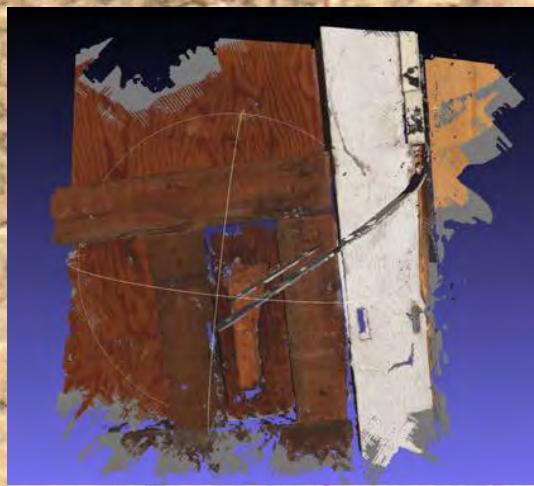


Image: Scan targets

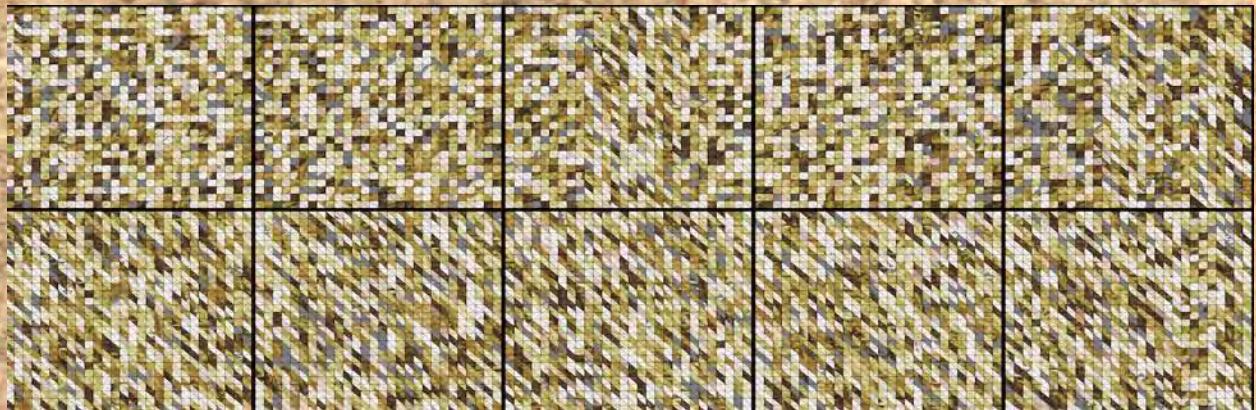

Laser scans in 'derelict unknown unit'.

1. Hoarding
2. Doorframe
3. Wallpaper
4. Wallpaper 2

5. Wallpaper 3

Doorframe

Hoarding


Wallpaper1

Wallpaper2

Wallpaper3

BMP filetype

Day 5

Wednesday 21st May 2014

Day 5 was spent in the 'unknown derelict room' recording with RTI. In this space there was significant evidence of human and animal activity that had occurred in the decades that the space had been boarded up. Initially the RTI focused on these areas within the space. The dirt on the

glass and windows however provided the impetuous to allow the shadows and reflections into the RTI process. Re

RTI data sets:

1. Corner arrangements 1
2. Corner arrangements 2
3. Corner arrangements 3
4. Corner arrangements 4
5. Floor 1
6. Floor 2
7. Poo
8. Poo 2
9. Floor
10. Ceiling tiles
11. Ceiling circle
12. Window
13. Chair
14. Hoarding
15. Door
16. Door 2

Corner arrangement 1

Corner arrangement 2

Corner arrangement 3

Corner arrangement 4

Ceiling circle

Ceiling tiles

Chair

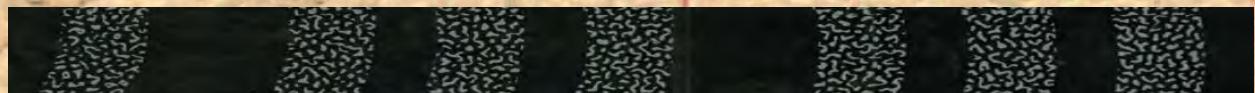
Door1

Door2

Floor1

floor2

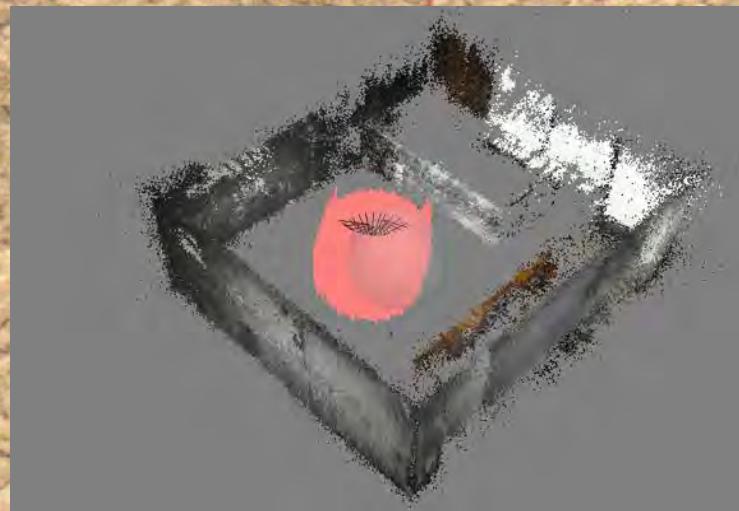
Hoarding


Poo1

Poo2

Window

Day 6


Friday 23rd May 2014

Day 6 was spent inside Cuevas; a photogrammetric data set was created. 4 further RTI data sets were made focusing upon the fire damage. And 3 RTI data sets were created of tiles on the external facing side of the unit.

1. photogrammetric data set of cuevas

RTI data sets


1. yellow room
2. no smoking sign 1
3. no smoking sign 2
4. fire damage
5. external tiles 1
6. external tiles 2
7. external tiles 3

Point cloud of Cuevas unit

Texture Map Filetype

Fire damage

Yellow room

No smoking sign1

No smoking sign 2

External tiles 1

External tiles 2

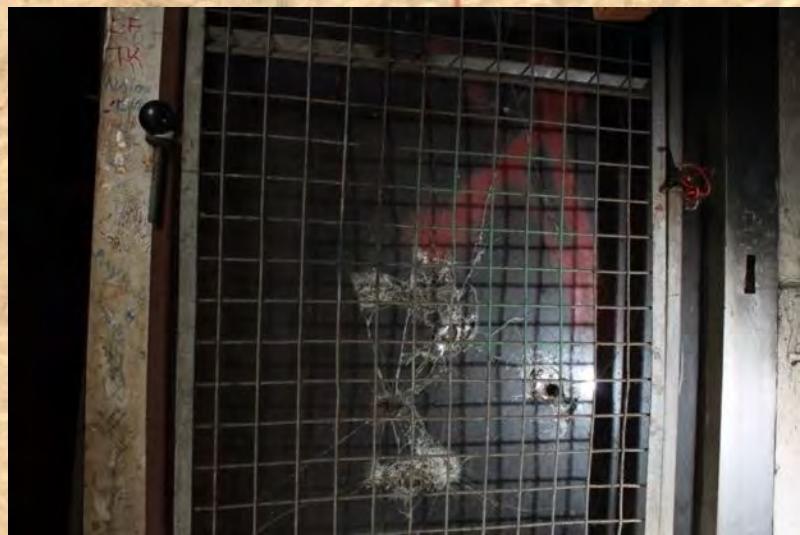
External tiles 3

Day 7

Wednesday 28th May 2014

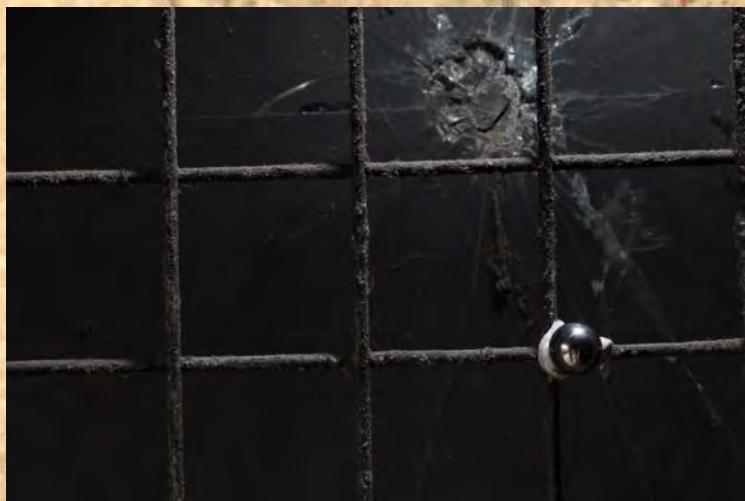
Day 7 focused in the downstairs area of Cuevas. 13 RTI data sets were collected of various areas including more fire damaged parts of the space, and the different layers of security grill and hoardings. RTI Date sets:

1. Front window1
2. Front window2
3. Front window3
4. Grill 1
5. Grill 2
6. Grill 3
7. Grill 4
8. Grill 5
9. Grill 6
10. Grill 7
11. Melted cable 1
12. Melted cable 2
13. Shattered window


Front window

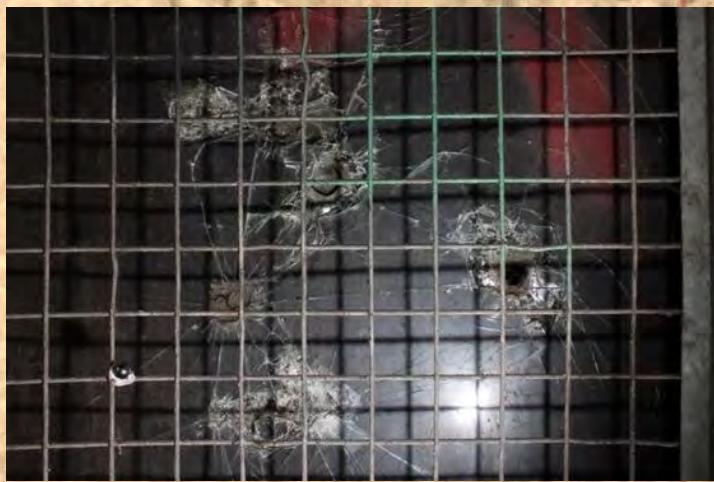
Front window2

Front window3


Grill1

Grill2

Grill3


Grill4

Grill5

Grill6

Grill7

Melted cable1

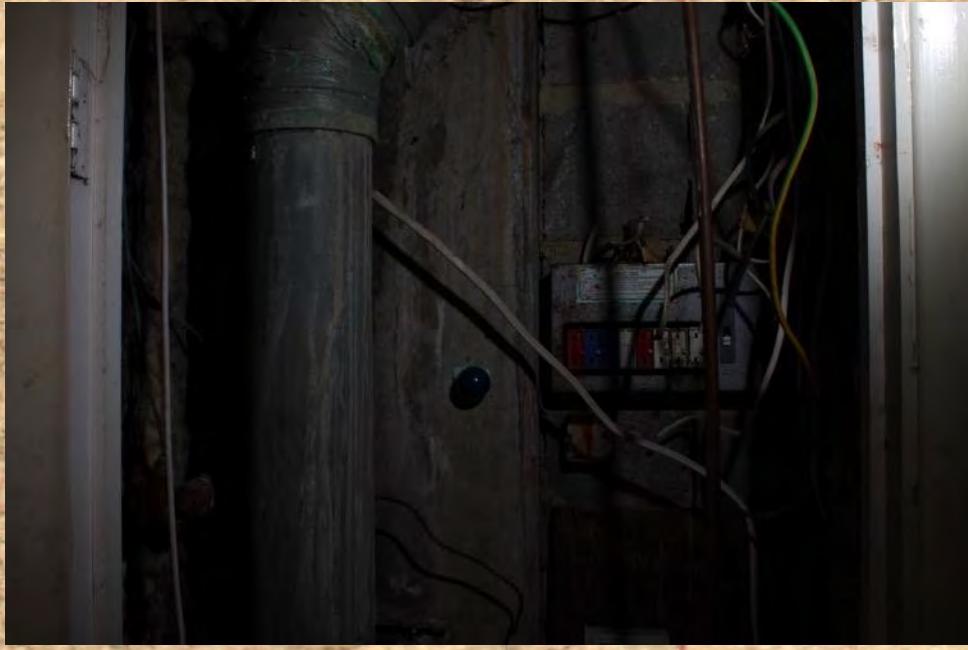
Melted cable 2

Shattered window

Front window

Day 8

Friday 30th May 2014


Day 9 was spent in the Cab Office, 9 further RTI data sets were recorded.

Significantly the geometry of the architecture was used to affect the RTI capture conditions.

RTI data sets:

1. Stairs1
2. Stairs 2
3. Service box

- 4. Cab office
- 5. Broken window
- 6. Broken window 2
- 7. Loft
- 8. Wall
- 9. corridor

Service box

Cab office

Broken window 2

Broken window

Loft

Wall

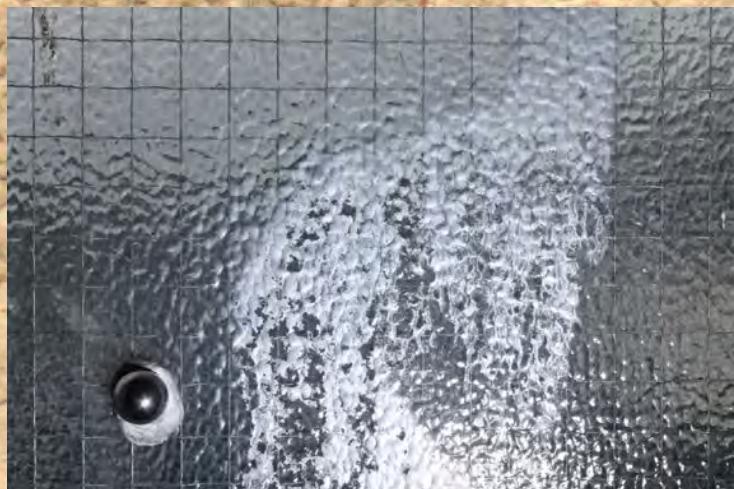
Stairs

Stairs2

Corridor

Day 9

Monday 2nd June 2014


Day 9 was spent on the mezzanine level of the cab office. A total of 12 RTI data sets were collected. These RTI's focused upon the accumulation of dust in areas of the unit. A small ball bearing was used as the key ball. An additional set of RTI's were created of the outside surfaces of the unit.

RTI data sets:

1. window 1
2. window 2
3. window 3
4. window ledge 1
5. window ledge 2
6. window ledge 3
7. window ledge 4
8. corner 1
9. corner 2
- 10.corner 3
- 11.tarmac
- 12.external tiles

Windows3

Windows2

Windows1

Windowledge4

Windowledge3

Windowledge2

Windowledge1

Corner3

Corner2

Corner1

Tarmac

External tiles

TAPLOW HOUSE

EXHIBITION DOCUMENT

EXHIBITION PART 1:

TAPLOW HOUSE, ASC GALLERY, TAPLOW HOUSE, SE17 2UL
19th June 2015- 21st August 2015

INSTALLATION PHOTOS

RTI documentation:

<https://www.youtube.com/channel/UCUPMsWUApJTkPDrRtGeo3A/videos>

Corridor <https://www.youtube.com/watch?v=R4TgREg6tyU>

Broken Window <https://www.youtube.com/watch?v=LciksFrd8CQ>

Chair <https://www.youtube.com/watch?v=qH58KfzSSIY>

Ceiling <https://www.youtube.com/watch?v=dbeLok3OdN4>

Wall Porn. <https://www.youtube.com/watch?v=rTDB1Pstk2U>

Ceiling Circle <https://www.youtube.com/watch?v=rTDB1Pstk2U>

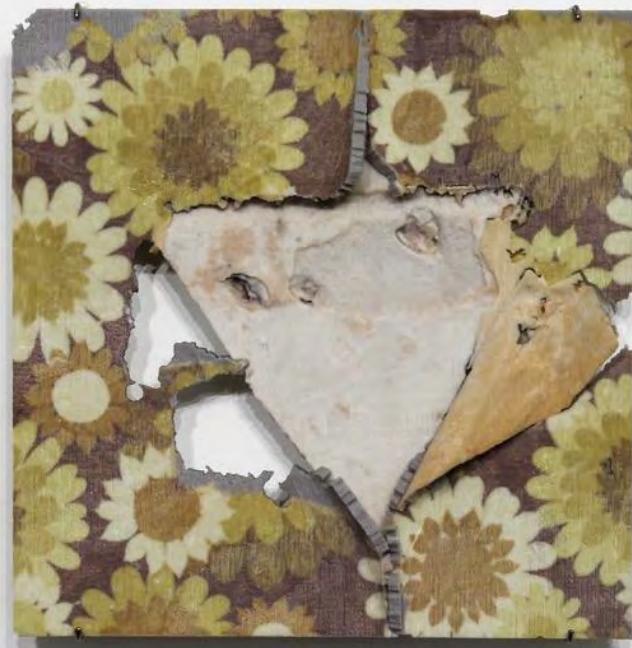
Front Window <https://www.youtube.com/watch?v=ISFNgHMMJWc>

Corner <https://www.youtube.com/watch?v=yOOPJbrQxA0>

Grill 6 https://www.youtube.com/watch?v=9jB00HC_OFY

Floor <https://www.youtube.com/watch?v=4pG7xctbIJ0>

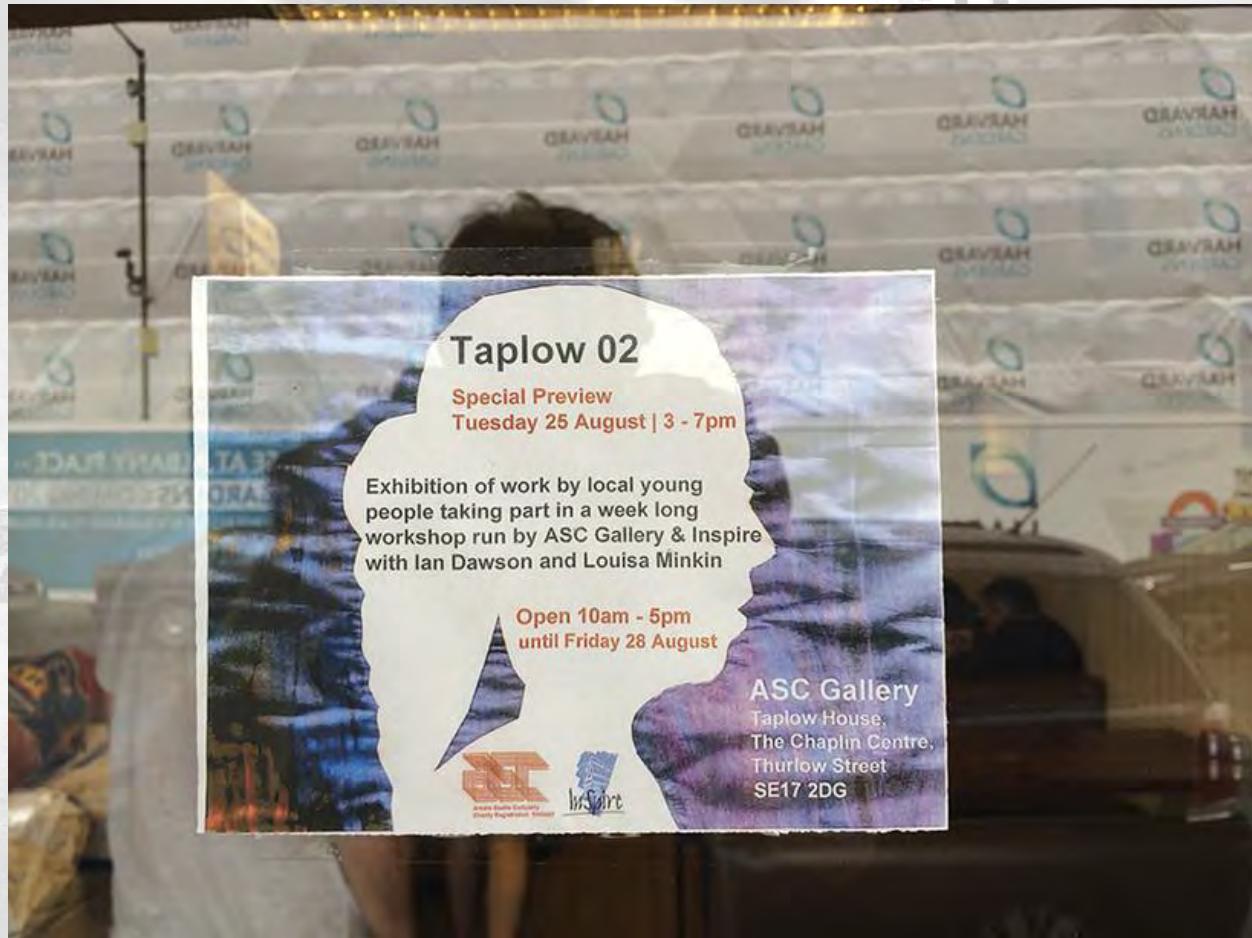
Corner Arrangement <https://www.youtube.com/watch?v=7EX0-02fEhI>


Cab Office <https://www.youtube.com/watch?v=AX2DyMzWHlo>

Photogrammetry Film of Cuevas

<https://www.youtube.com/watch?v=eONUzunS6O0>

3D Printed objects



TAPLOW 02

WORKSHOP and EXHIBITION TRANSFORMATION

EXHIBITION PART 2: Taplow 02: ASC Gallery Taplow House
SE17 2DG

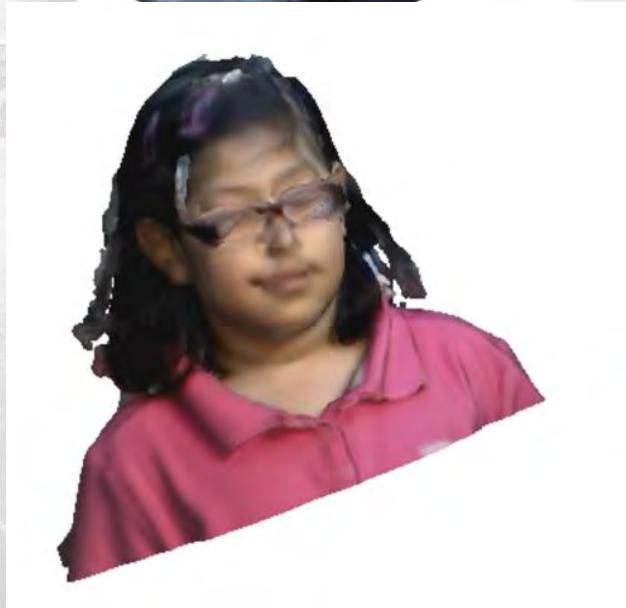
Workshops and Gallery Takeover 17th August 2015- 28th August 2015

WORKSHOP RESIDENCY LOG

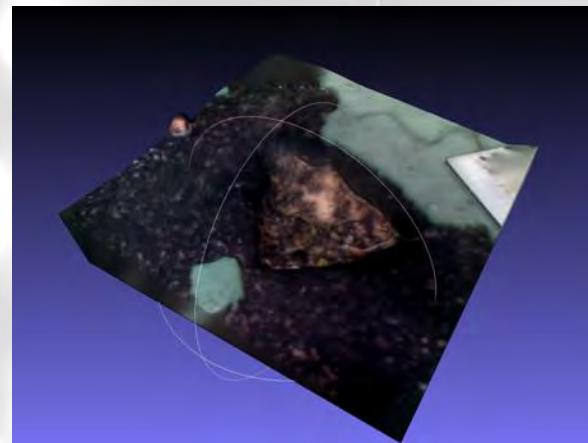
DAY1

Monday 17th August

Day 1 activities: scanning and documentation of Wendover House, the neighbouring estate to Taplow House.


Scanning of the Play area and External surroundings of Wendover. 3 digital cameras, 1 digital SLR, 1 digital camcorder and 1 Sense laser scanner used to collect data. Visit to the neighbouring Taplow House.

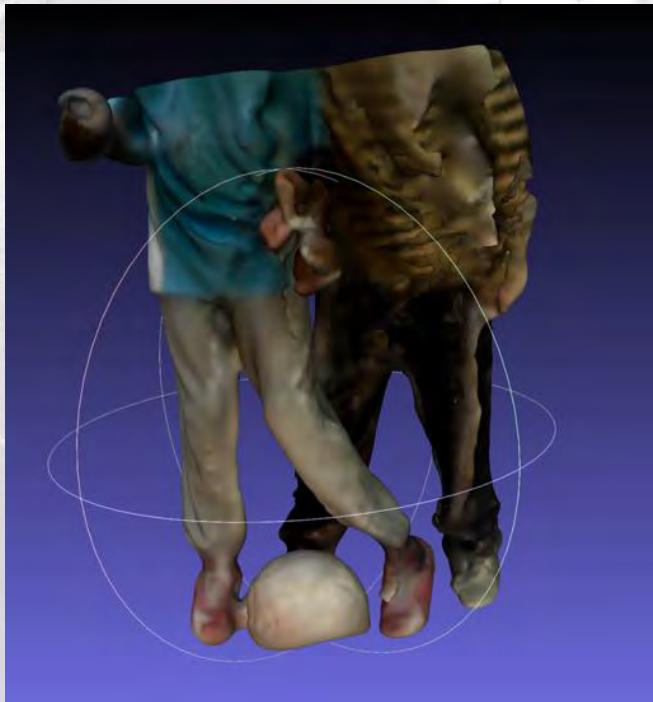
Screenshot of the photogrammetric model made from the play area



Recording in the play area

Laser scan portraits

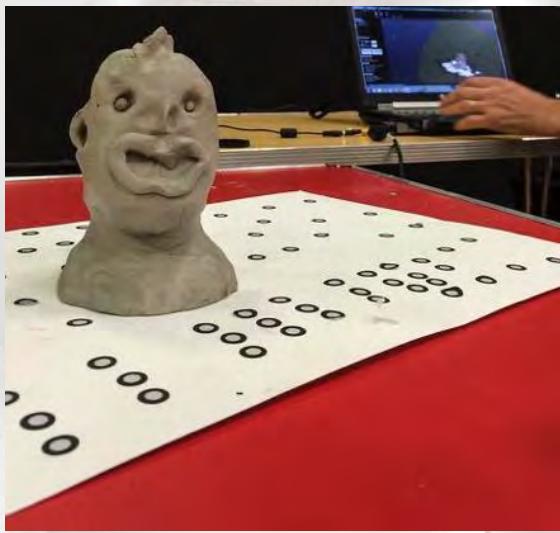
Documentation of the Play area scans


Photogrammetric scan of Wendover made in the play area

DAY 2

Tuesday 18th August

Day 2 activities inside Wendover Youth centre included photogrammetry workshops, laser scanning portraits in conjunction with clay modelling portraits. The clay model portraits were also laser scanned.



Documentation of day 2

Documentation of day 2

DAY 3

Wednesday 20th August 2015

Day 3 Activities. Created floor rubbings of the walkway at Taplow House. Photogrammetry of the walkway. Silk screen demonstration.

Making rubbings at Taplow House

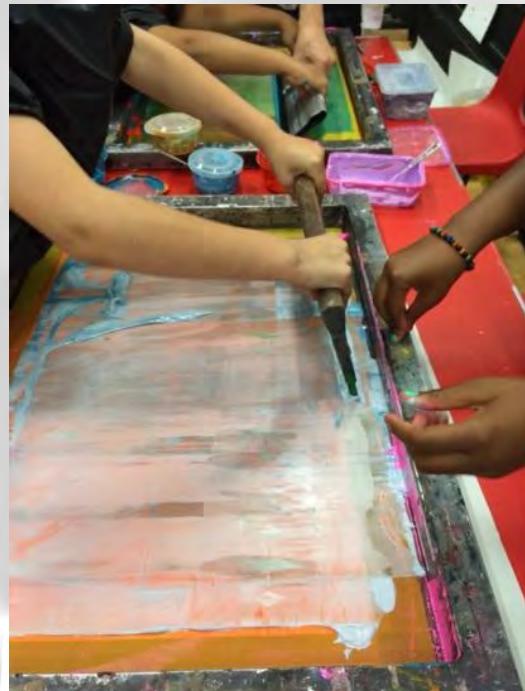
Making rubbings at Taplow House

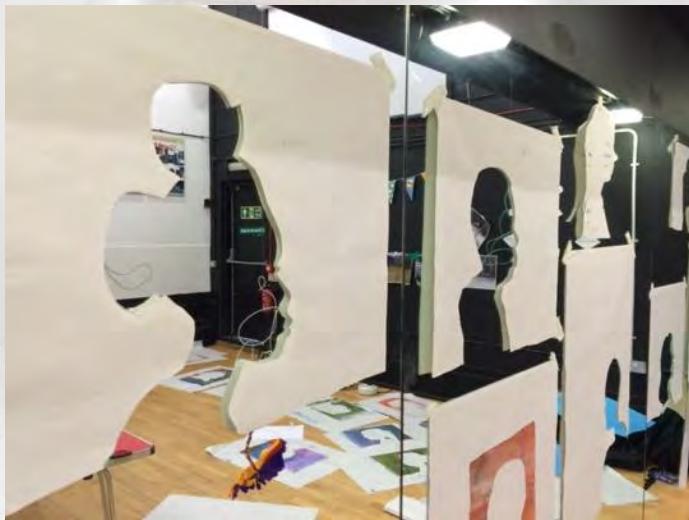
Photogrammetric scans on Taplow House walkway

Photogrammetric scans on Taplow House walkway

DAY 4

Thursday 21st August 2015


Day 4 activities: Photogrammetry portraits, Silk screen profiles RTI workshop with 2 data sets recorded of the external walls of Wendover Youth Centre



RTI outside Wendover House

RTI Data sets of Wendover House

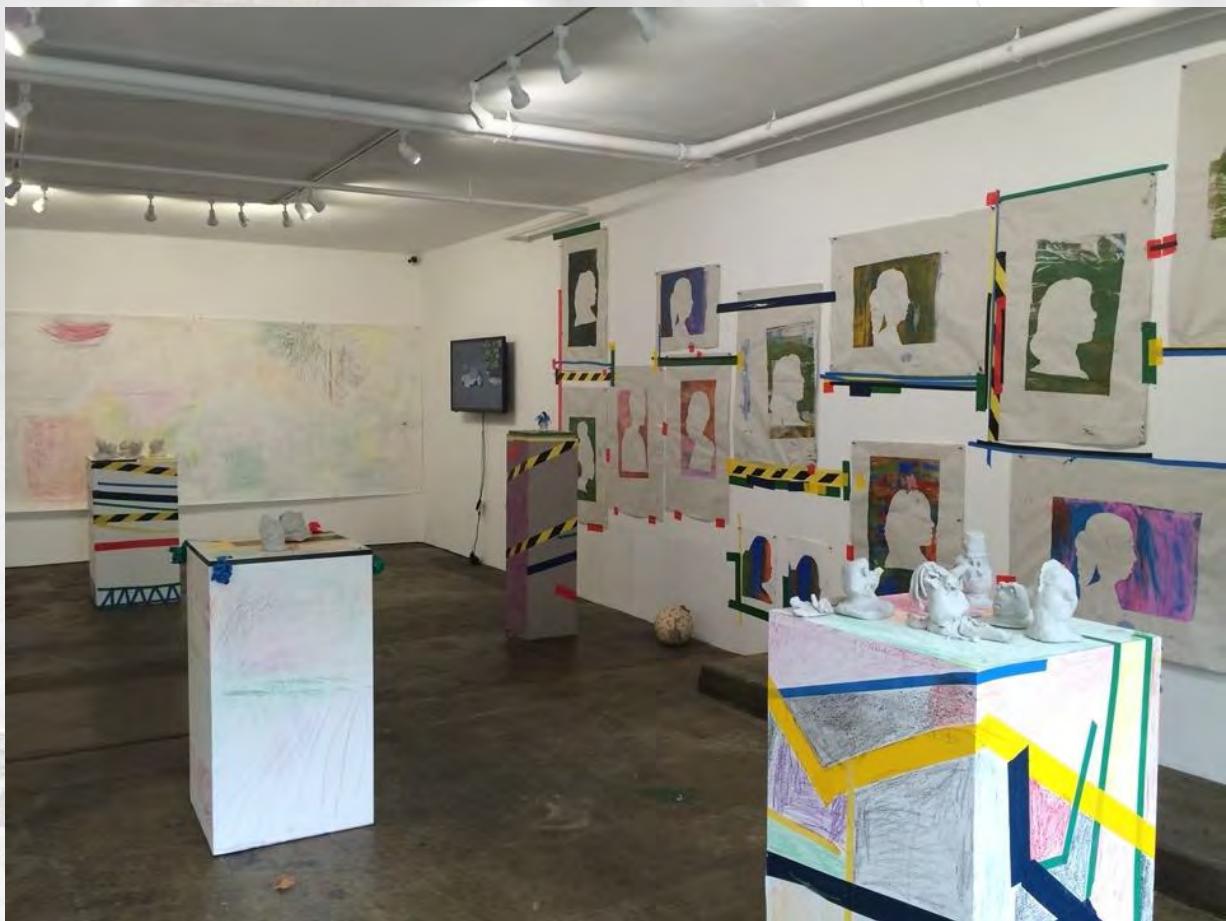
Silkscreen project

DAY 5

Friday 22nd August 2015

Day 5 Activities: Exhibition architecture preparation, scanning and screen recording, Taplow gallery transformation.




Exhibition preparation

Taplow Exhibition Takeover

Taplow Exhibition Takeover

Taplow Exhibition Takeover

Taplow Exhibition Takeover

TAPLOW HOUSE

ITERATIONS

Pictures Not Homes

Winchester School of Art Gallery

12th Jaunuary - 28th January 2017

Gestures of Resistance

Centre Romantso, Athens, Greece

20th April - 30th April 2017

Annihilation Event

Lethaby Gallery, Central Saint Martins, London

22nd March - 29th March 2017

PICTURES NOT HOMES

Winchester School of Art Gallery

12th January - 28th January 2017

Exhibition of artworks generated from the Taplow House Project.

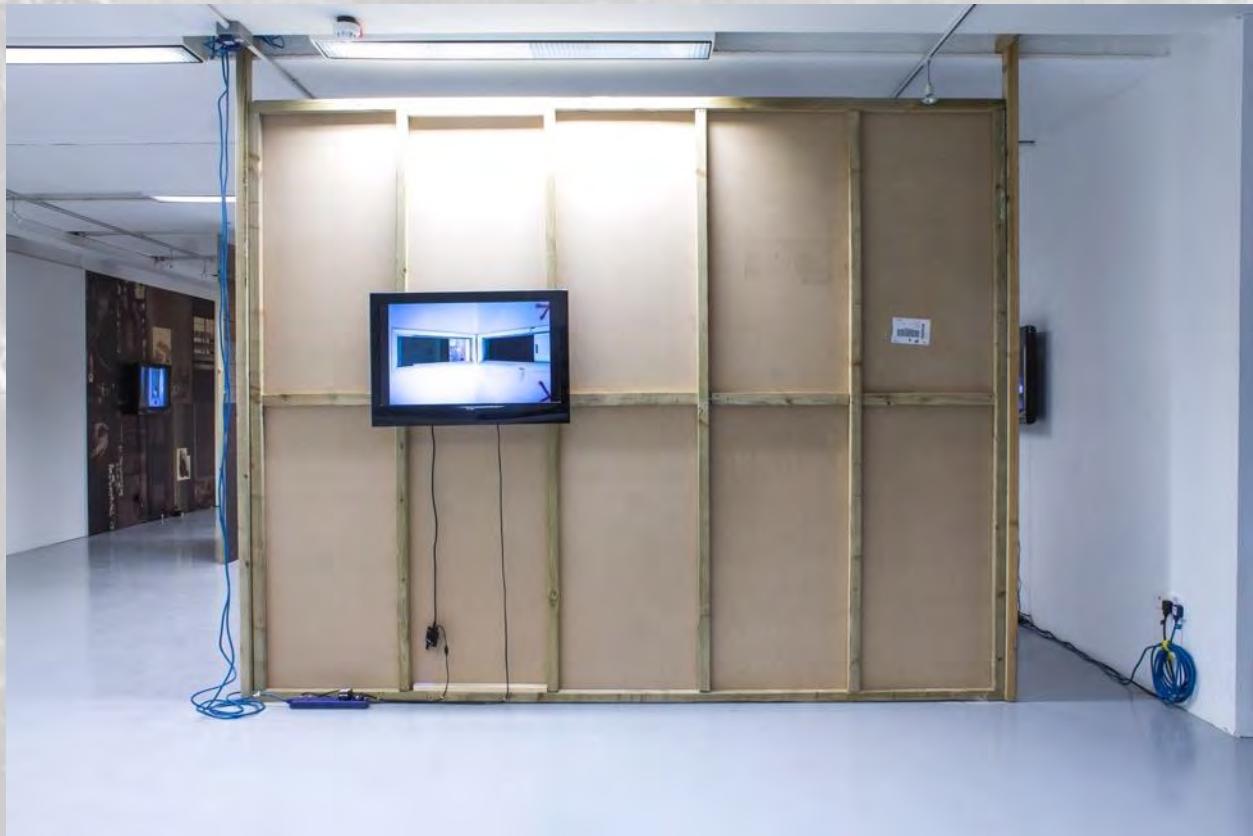
Exhibition consisted of:

Hoarding structures, printed panels on timber frames.

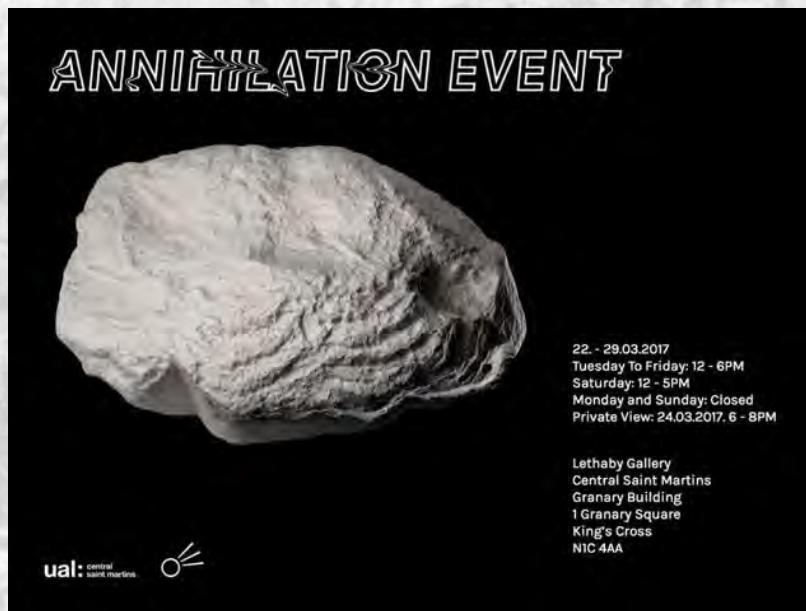
10 monitors playing RTI animated sequences.

1 digital projection of Cuevas Photogrammetric model

3D printed objects


6 Printed fabric sandbags

1 black RTI capture ball

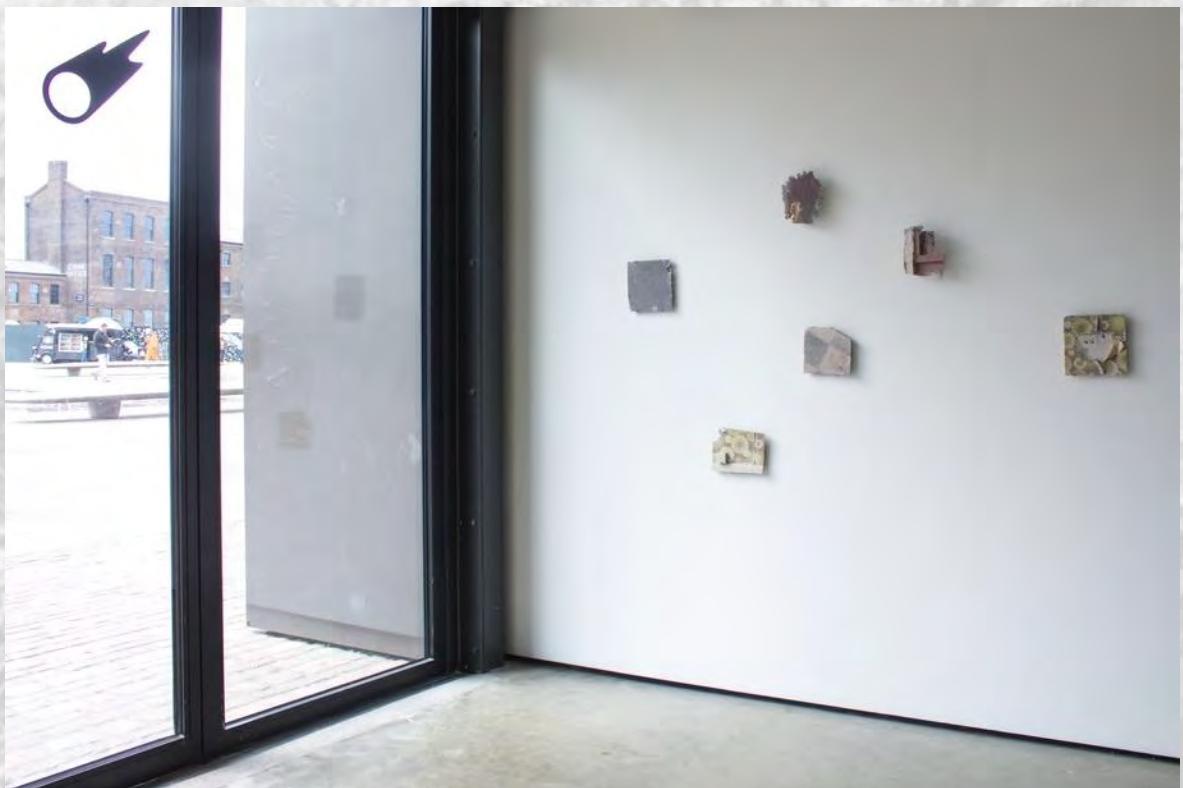


Annihilation Event

Lethaby Gallery, Central Saint Martins London

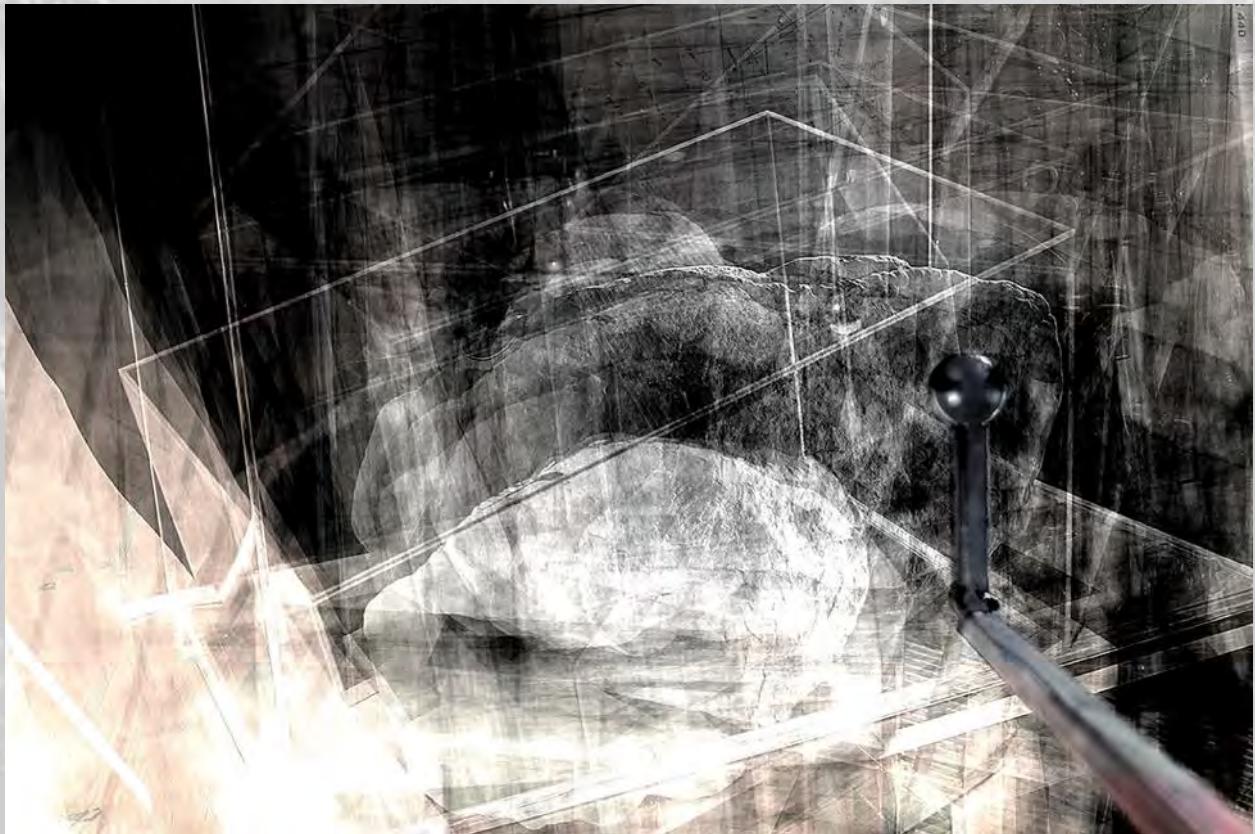
22nd March - 29th March 2017

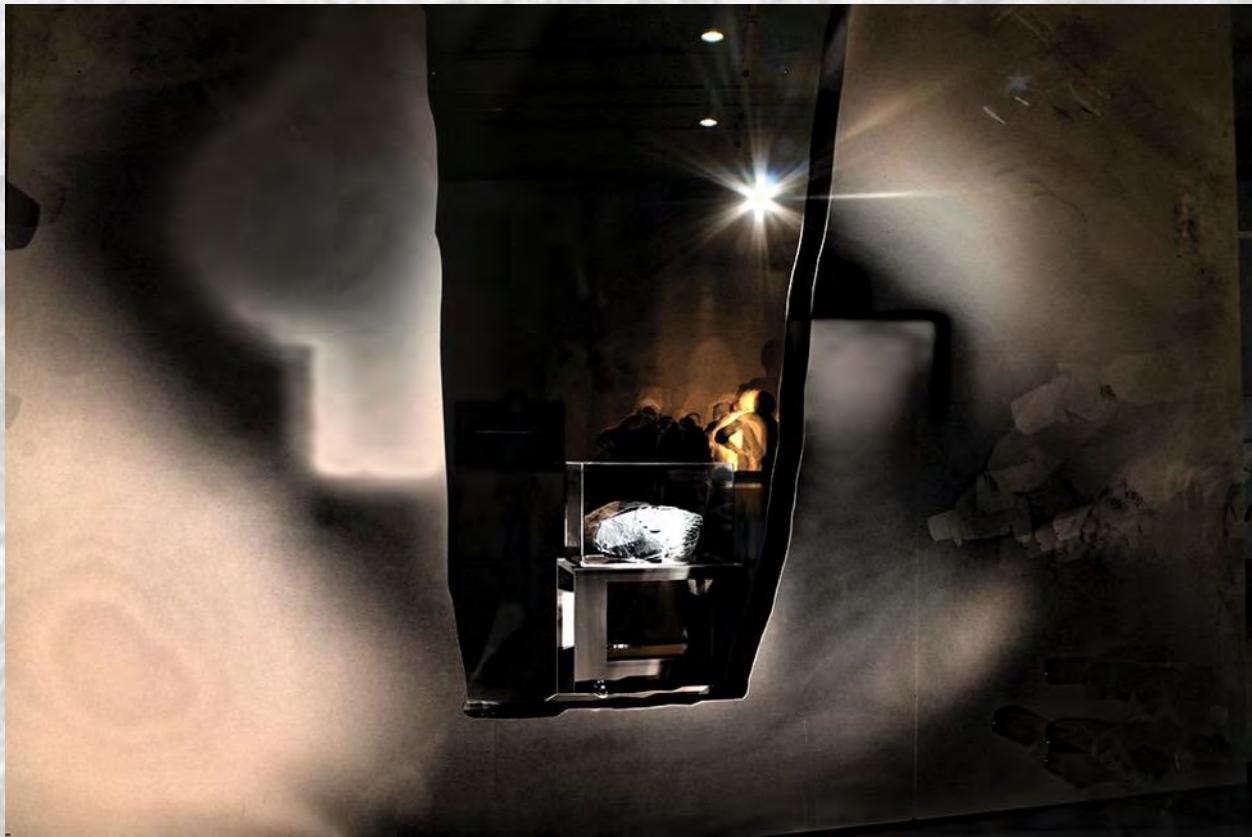
Group Exhibition and workshop event curated by Minkin, Dawson and Jones.


Contributors: Thomas Allison - Harry Badrick - SE Barnet - Bernd Behr - Belgian Litho Stone - Bilderfahrzeuge - British Museum - Victor Buchli - the Campari Fountain - Sarah Campbell - CCW Digital Derive Group - Central Saint Martins - Steven Claydon - Ami Clarke - Georgia Clemson - Stephen Cornford - Nelson Crespo - Anthony Davies - Ian Dawson - Naomi Dines - Michael Doser (CERN) - English/ British Art and the Mediterranean - ENSAV La Cambre Brussels - Mick Finch - Sion Fletcher - Marta Diaz Guardamino - Marc Hulson - Pierre Huyghebaert - Kate Jarvis and Claudia Zehrt - Jet Jet - Andy Jones - Eric King - Alex Landrum - Nicola Lorini - Anna McSweeney - Louisa Minkin - Monkton Up Wimborne chalk block - Sally Morfill and Ana Cavic - Jean-Pierre Muller - Digital Old Minster - Greg Nijs - Portolan Chart - Paul Reilly - Paul Simon Richards - Daniel Rubinstein - Shadow without Object - Alex Schady - Sounds and Spaces - The Department of Subjective Archaeology - Pete Smithson - John Stezaker - Mia Taylor - Jim Thrower - Susan Trangmar - U+2604 - UAL Archives and Special Collections - David Usborne's Collection - Athanasios Velios - Christelle Viviers - Johannes Von Müller - Waend - Alexandra Warwick - Jo Wheeler - Winchester School of Art - John Wollaston - Elizabeth Wright

Exhibited works consisted of:

2 monitors playing RTI animated sequences


3D printed objects of Taplow House


Performance day with RTI, creating RTI live within the exhibition space

Links to film documentation:

Underpass RTI <https://www.youtube.com/watch?v=DHCmOLt5TEo>

Candle RTI <https://www.youtube.com/watch?v=1w6WnUWSo1E>

Static Flash RTI (Kylie) <https://www.youtube.com/watch?v=zxlaqNMoghl>

Static Flash RTI (Jackson) https://www.youtube.com/watch?v=KwJcR_W5RTw

RTI (documentation of the black ball position)

<https://www.youtube.com/watch?v=FM9PcF4wfgE&t=11s>

RTI (Theta 360) <https://www.youtube.com/watch?v=2tPNDJcXjql&t=46s>

RTI camera <https://www.youtube.com/watch?v=0HadnpYkzOk>

Gesture of Resistance

Centre Romantso, Athens, Greece

20th April - 30th April 2017

Group Exhibition curated by curated by Jean Wainwright.

Exhibition contribution consisted of:

Hoarding structures, printed panels on timber frame.

2 monitors playing RTI animated sequences.

1 monitor playing Cuevas Photogrammetric model

1 3D printed object of Cuevas

6 Printed fabric sandbags

Other exhibiting Artists: Bill Balaskas, Pavel Büchler, Broomberg and Chanarin, Edward Chell, Ian Dawson, Craig Fisher, Alfredo Jaar, Peter Kennard and Cat Phillipps, Steffi Klenz, Małgorzata Markiewicz, Louisa Minkin, Francis Summers, Terry Perk, Julian Rowe, Yorgos Sapountzis, Bob and Roberta Smith, Socratis Socratous, Wolfgang Tillmans, Jessica Voorsanger, Stuart Whipps

Images in the making

Art, process, archaeology

**Ing-Marie Back Danielsson
and Andrew Meirion Jones (eds)**

Images in the making

Art, process, archaeology

Edited by

Ing-Marie Back Danielsson and Andrew Meirion Jones

Contents

List of figures

List of contributors

Preface

Acknowledgements

1 Introduction – Ing-Marie Back Danielsson and Andrew Meirion Jones

Part I: Emergent images

2 The Nile in the hippopotamus: being and becoming in faience figurines of
Middle Kingdom ancient Egypt – Rune Nyord

3 An archaeology of anthropomorphism: upping the ontological ante of Alfred
Gell’s anthropology of art through a focus on making – Ben Alberti

4 Dirty RTI – Ian Dawson

Commentary on Part I – Tim Ingold

Part II: Images as Process

5 Rock art as process: Iberian Late Bronze Age ‘warrior’ stelae in-the-making
– Marta Díaz-Guardamino

6 Images and forms before Plato: the carved stone balls of Northeast Scotland
– Andrew Meirion Jones

7 Connectivity and the making of Atlantic Rock Art – Joana Valdez-Tullett

8 Neolithic and Copper Age stamps in the Balkans: a material and processual account of image making – Agni Prijatelj

Commentary on Part II – Chantal Conneller

Part III: Unfolding images

9 Pattern as patina: Iron Age ‘kintsugi’ from East Yorkshire – Helen Chittock

10 The act of creation: tangible engagements in the making and ‘re-making’ of prehistoric rock art – Lara Bacelar Alves

11 ‘Guldgubbars’ changing ontology: Scandinavian Late Iron Age gold foil figures through the lense of intra-action – Ing-Marie Back Danielsson

12 The partial and the vague as a visual mode in Bronze Age rock art – Fredrik Fahlander

Parts and holes: a commentary – Louisa Minkin

Index

4

Dirty RTI

Ian Dawson

One night I was, as usual observing the sky with my telescope. I noticed that a sign was hanging from a galaxy a hundred million light-years away. On it was written: I SAW YOU.

Italo Calvino, 'The Light-Years', *Cosmicomics*

Introduction

Light is our window on the universe and the condition for all life on earth. Light deposits energy into matter and fills the universe with radio-waves and X-rays as thousands of watts per square metre of filtered solar radiation are absorbed upon the surface of the world. The catalyst for molecular vibration that scatters wavelengths of visible light across the landscape as plants across the planet harness light using chlorophyll to harvest the photons in a complex process that delivers sugar for growth, whilst painting tranches of the natural landscape green. We might think of green as the colour of life but in physical reality it is the colour that life throws away, the waste photons from the photosynthesis process reflecting back into our eyes.

The spectrum of colours that illuminate our environment; from the cold blue emanating from water molecules to the pink projecting from hydrogen gases in the Milky Way is all a result of the complex interactions between electrically charged particles within all matter and the light-emitting photons that are created as energy – which bathes the world and the whole cosmos in colour.

Light thus becomes the 'condition of all vision' (Cubitt 2014), as the arc of the sun crosses rock art formations, the flicker of flame illuminates

the painted inscriptions of Chauvet, and outlines are tracked and traced around human shadow. There are long histories of the desire to control light culminating in Newton's law of optics which becomes the root of modernity setting a dialectic that Goethe would grapple with when saying 'we can never directly see what is true, ... we look at it only in reflection' (Cubitt 2014: 127).

Light, which for millennia has been a celestial medium, has properties which are now converted by 'reason and experiment'. Fragmented through a prism, its meaning is relocated into the laws of physics. The contradictions between those positions were best illustrated by the Impressionist painters of the late nineteenth and early twentieth century in whose work the tensions between the impact of natural light and colour on the eye – an aesthetic based on truth to nature – is in opposition to an equally absolute assertion of the individual eye of the artist at the moment of perception (Cubitt 2014: 128). The tussle for meaning continues, and synthetic images, including Reflectance Transformation Imaging (RTI), are a new generation of image making. Producing a cam-puter image that glows brightly on a liquid crystal display in which subject and object are intra-acted; the RTI apparatus acts as a boundary forming practice that is 'formative of matter and meaning' (Barad 2007: 146).

4.1 Ian Dawson, RTI RTI, 2017 (performative RTI, Annihilation Event, Lethaby Gallery, London)

Reflectance Transformation Imaging

In 2015, fellow artist Louisa Minkin and I accompanied the archaeologists Andrew Jones, Marta Díaz Guardamino, Eleni Kotoula and Andrew Cochrane to the British Museum. We were there to study the Folkton Drums, three remarkable decorated objects from Neolithic Britain (Jones *et al.* 2015). The Folkton Drums; three solid cylinders of chalk decorated with sequences of crosshatched chevrons and sets of eye-like indentations below eyebrows denoting rather melancholic-looking faces. One wonders if these objects, excavated from a child's grave in North Yorkshire between 1866 and 1868, were ever intended to be viewed by the living at all. We were there to scrutinise these artefacts with a new form of imaging technology to probe an object that predates script by technologies that succeed script (Dawson and Minkin 2017). RTI, developed by Hewlett Packard Laboratories, is one of the technologies adopted by the cultural heritage industries to record historical artefacts and objects of archaeological interest. Concealed pockmarks on carvings can be reanimated (Jones and Smith 2017) as the technology accentuates the perception of surface deformations. The realism of the image enhanced through a process of interreflection (Malzbender *et al.* 2001) as jpg and pixel information is converted to a synthetic polynomial texture map.

The customary RTI process involves taking multiple photographs from a static digital camera installed upon a tripod, upwards of seventy shots from a single point of view while repositioning a photographic flash for each shot. This dataset, each photograph with its own unique light condition, is inputted into the RTI software to create an interactive image which can be traversed on a computer screen. The RTI of the Folkton Drums revealed evidence of erasure and reworking, of motifs being rubbed out, removed and replaced, suggesting that the form of the Folkton Drums was arrived at through experimentation and revision, akin to a drawing and artistic process (see Dawson 2012).

In addition to the images-revealing process, the act of performing RTI is processual in itself. Both the data capture stage and the image viewing phase involve complex intra-actions between environment, camera, object, image, computer and operator (Jones and Smith 2017). In this instance the Folkton Drums were thrust into the limelight, caught in the glare, their faces startled by the media spotlight, continuing the arc of their exhumation: 'An artificial "exhibition of firelight" where the living commemorate the annual return of the departed from the land of the shades' (Stafford and Terpak 2001).

Limelight, the combustion of a lump of calcium oxide, originally known as koniaphostic lighting; was used on the Herne Bay Pier in 1836 (During 2004), to illuminate the magic acts of Ching Lao Lauro, possibly

a Cornish man, and the first European to practise sitting in the air upon nothing, also known as the ethereal suspension illusion. The whole pier was 'overwhelmed by a flood of beautiful white light' illuminating and capturing the act of magic. Limelight 'transformed night to day as a special effect' sharpening images and enriching colour; used to raise and set the sun across theatrical panoramas (Klein 2004).

Dirty RTI

Limelight – the term endures even after the obsolescence of koniaphostic lighting – describes the focus of attention on a mediated object and I too was caught in the RTI spell, watching the Folkton Drums absorb and reflect the glare of the camera flash asking the question; what can RTI bring to light again, what can it revive and restore? This question was posed when Louisa Minkin and I took the RTI process into some derelict spaces within a South London housing estate, Taplow House.

Many of the rooms in Taplow House had been closed since the 1970s, a cab office, a butcher's and a launderette. The dust and grime had settled on places and spaces unused for forty years. In the darkness Louisa and I traversed these rooms, still lives revealed through the stroboscopic activity of the photographic flash. There were arrangements of midden accumulation, flotsam, jetsam and lagan architecture, spaces waiting to be salvaged, the first layers and stratigraphy of the onset of the archaeological process.

The relationship between these RTI images and the reflections, refractions and spatialisation in Edouard Manet's *Bar at the Folies-Bergère* (1882) became apparent (the balcony at Taplow House points northwards towards the Courtauld Institute and the painting's current home). The painting, and Foucault's 1971 lecture, describe its well-known features: the entanglement of three components, the space, the lighting and the viewer which occurs through a mirror (the lens) situated parallel to the picture plane and encompassing the whole canvas, so that everything in front of the mirror and within the painting is also found within the reflection. Yet, owing to the impossibility of the position of all the components, the painting becomes an image that 'the viewer can move around'.

The distortions that arise between the reflection and the represented point of view of the painting are 'simultaneously two incompatible places' (Foucault 2009).

The RTI images at Taplow House appeared to raise similar questions; here is an illusory image file that is navigable, that resembles something else – an amalgamated time-lapse image – yet with inherent temporal

4.2 Ian Dawson and Louisa Minkin, RTI Taplow House, 2015

disparity as if the traditional logic of the visual is being superseded by a new logic, that of data-smart image processing.

Shadow

somewhere in the waste. The Shadow sits and waits for me

Alfred Lord Tennyson

The RTI experimentation at Taplow House caught shadows cast through discarded bottles and broken windows. Outlines of deflected shade aggregated into cloudy smears, catching glimpses of phantom images: a hand holding the flashgun appearing out of the haze. The Shadow is a vast penumbra in Western art, used to conjure what's not there and to prophesy with ghost stories of demons and hobgoblins. The Shadow was adopted as early as the second century to pictorially explain structure: Roman and Hellenistic floor mosaics would depict litter, discarded fishbones and fruit, titbits on the floor, the shadow becoming the foremost way to describe form, and it has continued ever since. This mosaic image plane is a precursor to the fragmentary subjectivity of the encoded pixelated image that occurs nearly two millennia later (Lazaratto 2014). The shadow, and its alignment with ideas of a geometric space, is typified by *trompe*

l'oeil where shadows are part of a history of animation that converts the image into deceptive figments of the real world, 'devoted to the replication of appearance and to the power of technique to produce illusion' (Cubitt 2014: 170)

In these second-century mosaics, as well as Man Ray's silver gelatin photograph *Dust Breeding* (1920), which pictures Marcel Duchamp's *Large Glass* with a year's worth of grime settled on its surface, we see the shadow and the detritus itself functioning as a physical index for the passage of time. The accumulation of dirt and dust is both an index and a projection; the shadow and spatial measurement inextricably linked as the pre-eminent technique for creating relations between objects and their environment.

Metric photography

'We can only see what we are looking for,' wrote Alphonse Bertillon in the late nineteenth century, 'and we look for what is already in our minds.'
(Dufour 2015: 19)

Nineteenth-century Paris, the city of light, 56,000 gas lamps illuminating its streets, home to the Folies-Bergère, a city which was absorbed with *ombremanie* (Gombrich 1995). At *Le Chat Noir*, shadow plays such as *L'Epopee* would use four thousand silhouettes performing thirty scenes. The silhouette, the image of austerity, made epic. Bertillon was a Parisian police clerk, who had started to assort and arrange with photography, dividing facial features into discrete units of information, thus introducing biometrics and anthropometry. At this time psychology was further questioning the reliability of human memory and scepticism was placed on eyewitness accounts. Bertillon continued to pioneer forensic science by merging metric measurements, plans and calculations with the camera to create a systematised procedure for photography.

Bertillon, from a family of statisticians, developed a formal structure of photography allowing for re-investigation of the crime scene with the aim to 'produce directly with no instrument other than the lens, photographs which could be utilized as actual geometric plans in cross-section, elevation and horizontal projection, and which, with the aid of simple rules and calculations would be capable of providing the shapes and exact dimensions of the objects shown' (Dufour 2015: 19). By using an overhead camera fitted with a wide-angle lens, recordings were made by Bertillon under strict standardised conditions from atop a two-metre-tall tripod. These images take on a supra-human point of view: looking down on to murder scenes, the victims are framed within the converging lines created by the apparatus. These photographs are then fused with

4.3 Ian Dawson Louisa Minkin, RTI Taplow House (Cab Office), 2015

a *perspectometric* measurement grid to enable a transformation of the image into *planimetric* drawings. This elaborate representation system was even applied to the morgue, where the floor was divided with a sequence of cross-hatched, isometric lines in order that all photography could be used as a metric analytic tool.

Back at Taplow House, in the cab office, a room set out in quadrants, a letterbox aperture divides the rooms, once used to communicate one's desired destination to the controller.

RTI is designed to record a flat narrow depth of field but was used to describe a whole space, the RTI software ordering the shadows into a synthetic sundial, the architecture of the space acting as the gnomon. Gnomon: Greek for the 'one that examines', the emblem for French notaries (Schwartz 1996) and the orientation tool on three-dimensional visualisation software.

Optical tricks

Any studying of imaging is a study into the devices that have created them; visualisations, whether digital or analogue, are always constructions, as Carlo Rubbia the particle physicist said: 'Detectors are really (just) a way to express yourself ... The detector is the image of the guy who designed it' (Cubitt 2014: 245). There is a fundamental uncertainty to

images when produced by contraptions; apparatuses create experimental impressions: they are not unmediated truths. From torch light to optical boxes, lenticular images and holography, mediation affects the event itself – visual media are also interventions into the physical processes of the world. ‘The world does not exist as data: it must be produced as data’ (Cubitt 2014: 246).

Optical tricks were often byproducts of scientific endeavour; the solar microscope of the eighteenth century was used by both scientists and swindlers, with quasi-scientific shows, involving necromantic cats and influenza lice, being presented before dubious remedies were peddled. The noble pursuit to understand nature brought fashion to lenses. London’s famous diarist Samuel Pepys chronicles the shop of Richard Reeve’s, which he frequented, where microscopes, telescopes, magic lanterns were avidly sought. Spectacles, invented in Pisa in the thirteenth century, and eyeglasses to fix faulty vision were in general use by the seventeenth century (by the wealthy) and these were offered alongside sextants, telescopes and compasses. One could also find fantastical eyeglasses with faceted lenses, cut from crystal and mounted in gilded metal frames, devices that multiply an object’s view as the saying went at the time: ‘These are pleasurable spectacles for avaricious persons that love Gold and Silver, for one piece will seem many, or one heap of money will seem a treasury’ (Stafford and Terpak, 2001: 185).

These particular lenses influenced a type of optical painting that could be viewed through a special perspective glass; here the image didn’t just proliferate but instead the broken elements of the scene would realign into a coherent new image. The busts of twelve Ottoman rulers combine to form a portrait of King Louis XIII, for example, as a tuft of hair from one, a nose from another, are drawn together. The influence of this form of imaging can be seen on Hobbes’s title-page for *Leviathan* (1651) as the body of the towering figure of Leviathan is composed of innumerable smaller figures. ‘There is no power on earth to be compared to him’, it states, as Hobbes’s frontispiece illustrates the translation of new optical technology into political and religious spheres (Stafford and Terpak 2001: 186).

One might say Taplow House is twinned with Taeppas Low, the seventh-century Anglo-Saxon burial mound located sixty miles upstream on the river Thames. This mound dominates the local environment and must have been the focus of legend and curiosity. In 1883 a group of antiquarians excavated the mound ‘with a zeal only outmatched by their incompetence’ (Webster 2001), producing contradictory plans of the burial chamber and failing to keep any systematic records of their observations. The extraordinary array of grave goods from the Kentish east lay around the body indicating the dead man’s power and hinting at the politics and power struggles of the early Anglo-Saxon period.

Eastwards and firmly in Kentish territory, Taplow House has its own political dimensions. Built between 1963 and 1977, the estate was one of the most imposing in Europe, one of the last to be built using the now defunct LPS (large panel system) of prefabricated concrete slabs. This style, along with its raised walkways, almost immediately became synonymous with its decline. And it is here that Tony Blair gave his first public speech as Prime Minister, with his 'Will to win' speech, standing high on a balcony, saluting out towards the country.

Like the antiquarians', our own archaeology of the forgotten rooms on this estate was similarly problematic; the estate is under regeneration, artists' projects are the first wave of gentrification – as new blocks of incremental housing and dispersal architecture are constructed. As Taplow waits for its own demolition, how does one remember buildings whose importance lies in their very own hostility to heritage (Hatherley 2009)? The very same imaging techniques used to explore the site from within are those used to advertise renewal, and revival from outside with the pixel-bright hoardings and panels featuring cleansed regeneration sunsets. Perhaps our images of the interior of Taplow House can be classed as beautiful images that counter the an-esthetic subordinating images of mass media so that they can be used to communicate and ascribe a common value and used to discuss relationships to the machinery of production?

4.4 Ian Dawson, RTI Underpass, 2016

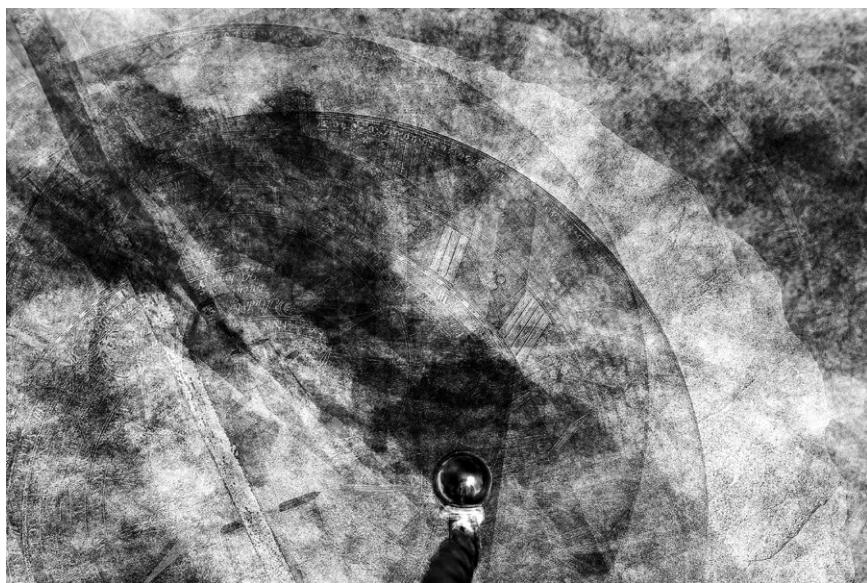
The self-swallowing camera

In 1971 with the aid of a couple of mirrors John Hilliard photographed a camera using seven different apertures and ten different shutter speeds. The resultant work – a grid of seventy photographs that disperses the dark black underexposed images in the bottom right-hand corner to the overexposed bleached images in the top left part of the grid – is a shimmer of cameras. This is a recording of the phase space of the 35 mm camera as apparatus. Titled ‘A camera recording its own condition’, these photographs impart a teleology (Hofstader 2007): a system endowed with desire to describe its own status and illustrating the dialectical position that ‘with every photograph, the photographic program becomes poorer by one possibility, while the photographic universe becomes richer by one realization’ (Fuller 2005). What would happen if the RTI process were to be turned in on itself, to create a recursive feedback loop? How would RTI evidence its own phase space? The RTI software doesn’t like reflective surfaces, so what would be generated by the flashlight reflecting through the lens and on to the film? Or more accurately, what do multiple electronic discharges of xenon (the flash) do when captured on the metal oxide semiconductor of the DSLR image sensor? The process commences with an electronic charge of flash-emitting photons which rebounds from a mirror before entering the lens and reaching the image sensor at the rear of the camera; these photons then react with the photosensitive capacitors of the chip to release electrons thus to produce a charge. What starts with an electronic charge returns to an electronic charge.

The charge couple device (CCD), a relative of the solar panel, stores these incoming photons. There is a further dialogue around the existence of photons in the first place; photons are emitted when electrons jump, and electrons exist only when they are being interacted with (Rovelli 2014: 14). These photons are organised at the back of the camera in a grid-and-column structure, holding the heat charge until a system of gates and barriers enables an orderly discharge and conversion via voltage to information. At this point the CCD performs its function as if like a clock (Cubitt 2014: 100). After the output as lines of numeric code, the RTI software calculates the directionality of the light source of each pixel and extracts the reflectance information translating these data into a polynomial texture map. Here the directionality of the light source for each single pixel is converted, producing a surface normal for those pixels whilst discarding all other pixel and jpeg information. The RTI Viewer acts as the interface that allows for a visual representation of this information. At this point the world of visible surfaces have transitioned from geometrical and grammatical structures to mathematical organisation.

Polynomial, a conjunction of the Greek for 'many' and Latin for 'term', is an algebraic function: wherever there is proliferation a polynomial will be used to relate the data from one to another; it encodes information about objects into curves. Polynomials process variables that are easily smoothed; and because they are 'many termed' they obey all the rules. Polynomials are used to design rollercoasters or to plot the trajectory of projectiles, and in the stock market to strategise demand against pricing. In the polynomial imaging of RTI we can see that, once converted into numbers, light can be subjected to the kind of manipulation that we observe in the financial sector, where the abstraction rather than the actuality is massaged and manipulated: a system in which any light, any charge, any voltage can be exchanged for any other, creating an externality out of the very substance of image making. The image is not only fashioned mathematically, it can also be refashioned mathematically.

Unstable RTI


The standard spherical cue ball is a constant in RTI: it contains the highlight information used to extract the directional light information, the crystal ball for the software. In conventional RTI this black sphere is eventually cropped out of the image, redundant and superfluous. The black ball became an ever more central part in our experimentation, expanding in scale, to the size of a beachball when capturing oversized environments, the situation for the cue ball ever more significant as thresholds between architectural spaces were used to explore the limits and tolerances in the software itself.

Firstly, the sphere was supplanted by the reflective domes of the security mirror, the eye of the underpass, before the camera was pointed (Peeping Tom style) at the fish-eye lens of a 360-degree camera, itself becoming the tool for reordering the temporal and spatial configurations of the process, allowing for multiple processing of the latency of each camera. The 360-degree camera footage bears witness to the omni-point of view of the sphere, the ensuing film inducing the latency of the digital image: the disappearance and reappearance of the technical image and the transformation of time into space, the spherical coding of the camera creating images organised for a post-optical point of view. In a final untethering, a jig was constructed to conjoin the camera to the ball in order to release the camera from the tripod. The apparatus was now able to align photographic data derived from different viewpoints; the subsequent polynomial texture maps present dematerialised images, merged compound images of dissipated data.

An experiment with this unstable RTI was also conducted in the grounds of Lacock Abbey, Wiltshire, a movie location for Hogwarts, the

school of wizardry and magic in the *Harry Potter* film franchise. Lacock Abbey is also the erstwhile home to William Fox Talbot, one of the inventors of photography. Lacock Abbey was where the earliest photographic experiments were performed. By the latticed oriel window, an image of which is the earliest surviving photographic negative, a sundial is captured by RTI. The jig allows the camera to become the re-locatable and re-quantifiable component in the system in order for sunlight to be utilised as the light source.

The first experiments at Taplow House were dubbed as 'Dirty RTI' (Eleni Kotoula coined the term during a field trip to record Neolithic chalk carvings at Monkton Up Wimborne), describing the bending, stretching and unfolding of the spatial capacities of the RTI process. These latest experiment with unstable RTI continue the dialogue about image making where the apparatus continually enslaves and ensnares us and asks us to challenge its boundaries. The complex temporalities of these unstable RTI processes produce images that are like tree rings. They are not evenly spaced moments, where matter is tracked regularly; rather the properties 'that come to matter' in the image are 're(con)figured in the very making/marketing of time'. To follow the metaphor of the RTI image as tree ring is to consider these images as 'enfolded participants in matters iterative becoming' (Barad 2007: 181). These are images that celebrate and revel in having no such exterior observational point of view.

4.5 Ian Dawson, Unstable RTI, Lacock Sundial, 2017

Light years

The quotation which began this chapter is taken from a short story by Italo Calvino, which is a tale of a galaxy. This galaxy spots a sign from another galaxy 100 million light years away which references an embarrassing moment 100 million light years previously. The story then unfolds, of the comic and ever more frantic escapades of the universe to reconcile the moment when it had been spotted and how to resolve that moment when light had sent a message into space and time. No matter what it did, the universe couldn't satisfactorily alter its message; and its only respite was the knowledge of a ten-billion-light-year horizon where no object can be seen again. The galaxy said, 'I suddenly felt a kind of relief, as if peace could come to me only after the moment when there would be nothing to add and nothing to remove in that arbitrary ledger of misunderstandings' (Calvino 1968).

References

Barad, K. (2007). *Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Meaning*. Durham, NC, and London: Duke University Press.

Calvino, I. (1968). *Cosmicomics*. New York: Harcourt, Brace & World.

Cubitt, S. (2014). *The Practice of Light: A Genealogy of Visual Technologies from Prints to Pixels*. Cambridge, MA: MIT Press.

Dawson, I. (2012). *Making Contemporary Sculpture*. Marlborough: Crowood Press.

Dawson, I. and L. Minkin. (2017). 'Objetos funerarios', in I.A. Hernández, L.F.G. Maza and A.R.G. Rossi (eds), *Más allá del texto: cultura digital y nuevas epistemologías*. Más allá del texto Mexico. San Andrés Cholula: Editorial Itaca.

Díaz-Guardamino, M. and D. Wheatley. (2013). 'Rock art and digital technologies: the application of Reflectance Transformation Imaging (RTI) and 3D laser scanning to the study of Late Bronze Age Iberian stelae', *MENGA: Journal of Andalusian Prehistory* 4, 187–203.

Dufour, D. (2015). *Burden of Proof: The Construction of Visual Evidence*. London: Photographers Gallery.

During, S. (2004). *Modern Enchantments: The Cultural Power of Secular Magic*. Cambridge, MA: Harvard University Press.

Foucault, M. (2009). *Manet and the Object of Painting*. London: Tate Publishing.

Fuller, M. (2005). *Media Ecologies*. Cambridge, MA: MIT Press.

Gombrich, E.H. (1995). *Shadows: The Depiction of Cast Shadows in Western Art*. London: National Galleries Publications.

Hatherley, O. (2009). *Militant Modernism*. Arlesford: John Hunt Publishing.

Hofstader, D. (2007). *Strange Loops*. New York: Basic Books.

Jones, A., A. Cochrane, C. Carter, I. Dawson, M. Díaz-Guardamino and L. Minkin (2015). 'Digital imaging and prehistoric imagery: a new analysis of the Folkton Drums', *Antiquity* 89 (347), 1083–95.

Jones, J. and N. Smith. (2017). 'The strange case of Dame Mary May's tomb: the performative value of Reflectance Transformation Imaging and its use in

deciphering the visual and biographical evidence of a late 17th-century portrait effigy', *Internet Archaeology* 44. Doi.org/10.11141/ia.44.9 (accessed 3 April 2019).

Klein N.M. (2004). *The Vatican to Vegas: A History of Special Effect*. London: The New Press.

Lazaratto, M. (2014). *Signs and Machines*. Cambridge, MA: MIT Press.

Malzbender, T., D. Gelb and H. Wolters. (2001). 'Polynomial texture maps', *Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '01)*. New York: ACM (pp, 519–28).

Rovelli, C. (2014). *Seven Brief Lessons on Physics*. London: Penguin.

Schwartz, H. (1996). *The Culture of the Copy*. New York: Zone Books.

Stafford B.M. and F. Terpak. (2001). *Devices of Wonder*. Los Angeles: Getty Research Institute.

Webster, L. (2001). 'The rise, fall and resuscitation of the Taplow Burial', *Saxon* 35. <http://suttonhoo.org/wp-content/uploads/2016/02/Saxon35withInsert.pdf> (accessed 3 April 2019).

STRAND 2: PHYGITAL ASSEMBLAGES

2.2 Dawson, Ian and Minkin, Louisa (2014) 'Object Lessons: Copying and Reconstruction as a Teaching Strategy', *Art, Design & Communication in Higher Education*, Vol. 13, No. 1, pp.197-29.

2.3 Dawson, Ian (2015) *The Wanderer's Nightsong* // [Artwork/Exhibition/Curation], featuring the work of Gavin Turk, Neil Gall, Kate Atkin, Cathy De Monchaux, Chris Hawtin, and Ian Dawson, at C&C Gallery, London, 3 April - 10 May 2015.

2.4 Dawson, Ian (2017) 'Old Minster' [Artworks], exhibited at *Along the Riverrun*, curated by Alex Goulden and George Watson, at ArtSway, 24-30 July 2017 and Lethaby Gallery London, 22nd March 2017- 29th March 2017

2.5 Dawson, Ian 2020-22 **Metalithic Sculpture Series** (Artworks) exhibited in
Autumn Attic, Flowers Gallery, Shoreditch London, 12th August -18th September 2021
Patternicity, ASC Gallery London 26th March - 23rd April and Exeter Phoenix Galleries 30th April - 26th June 2022
Crucible Thameside Studio's Gallery, London 8th- 23rd April 2022

2.6 Dawson, Ian and Reilly, Paul (2019) 'Messy Assemblages, Residuality and Recursion within a Phygital Nexus', *Epoiesen: A Journal for creative engagement in history and archaeology* [online]
<http://dx.doi.org/10.22215/epoiesen/2019.4>

2.7 Dawson, Ian and Reilly, Paul (2021) **Track and Trace, and Other Collaborative Art/Archaeology Bubbles in the Phygital Pandemic**. Open Archaeology, Vol. 7 (Issue 1), pp. 291-313. <https://doi.org/10.1515/opar-2020-0137>

LOUISA MINKIN

Central Saint Martins

IAN DAWSON

Winchester School of Art

Object lessons: Copying and reconstruction as a teaching strategy

ABSTRACT

As tutors at Winchester School of Art we have worked through a series of copy projects over the past four years. We began remaking historic art objects including Anthony Caro's Early One Morning (1962) and Jean Tinguely's Homage to New York (1960). Works were fabricated collectively with undergraduate fine art students and staged at an end of term event. The project developed to reconstruct apparatus to make copies, including François Willème's Photosculpture apparatus: a paradigm for nineteenth-century modernity that provides a genealogy for three-dimensional (3D) prototyping and is arguably an antecedent of cybernetic culture. Obsolete technological positions were restaged in order to better understand current cultures. Over this process, which we characterize as a material historiography, we have worked collaboratively with archaeologists at the University of Southampton to share practice and knowledge around both contemporary visualization technologies and ancient processes, most recently working speculatively through the production process of carved Neolithic artefacts. Both projects draw together technical and contextual teaching and define new uses of space and collective research structures.

KEYWORDS

trans-disciplinarity
3D prototyping
copy
archaeology
technics
reconstruction

We tried a type of ... performance that could influence the thinking of all the people engaged in it. It was, so to speak, art for the producer, not art for the consumer.

(Brecht 1964: 80)

INTRODUCTION

An object lesson is a practical or concrete illustration of a principle. As a teaching method its associations are with Victorian religious instruction, a rigid proof of doctrine that operates to reinforce orthodoxies and to separate instruction from pleasure. The objects we are concerned with here serve rather to trace a process of learning through its operational framework. They are copies, mediators, technical objects and have different and multiple materialities, existing as data or script as well as granite or resin.

Image culture in art schools has shifted from observation and transcription through modes of measurement, trace and projection, to the swift transfer of data, active on multiple platforms and with many potential outputs. Broken master-plaster casts prop open computer room doors and the practice of pains-taking transcription has been substituted by the pleasures of appropriation, 'copypasta' culture, dragging and dropping source to sauce. At the same time re-enactment and reconstruction have become familiar tropes in mainstream contemporary art practice, operating as rhetorical forms, as public education, as super-intense commodity production. New tools of production and reproduction have been introduced into the set of tools and processes available to artists. Rapid prototyping and three-dimensional (3D) scanning present us with questions of technique. They give us a direct imperative to understand the potential of new fabrication methods, new ways of materializing and constructing, copying and reconstructing. The specific context for these questions at Winchester School of Art (WSA) has been determined by a research culture that emphasizes technical histories and a growing relation with the wider community of the University of Southampton, through dialogue across the Digital Humanities and in particular with the Archaeological Computing Research Group (ACRG).

Over the past four years we have worked through a series of copy projects in the undergraduate Fine Art studios. We began by remaking historic art objects including Anthony Caro's *Early One Morning* (1962) and Jean Tinguely's *Homage to New York* (1960).

Rather than an orthodox relation to the copy that could be mapped back to an academic Beaux Arts tradition, we have placed a critical emphasis on understanding by doing. Our goal was not to produce an exact facsimile or replica; rather to work out, refigure and to focus attention, folding in our failures and discontinuities along the way. These projects became a channel to reveal and discuss the complex intentionalities around contemporary ideas of copy and original, data and material, object and representation. Beyond making versions of art objects, we began to construct the tools and apparatus of practice. Camera cranes and tracks were built from open source plans, alongside an ingenious rotational moulder and portable print workshop devices. Processes included the hacking and repurposing of domestic objects, presses built from carjacks and pasta machines. The ethos of communal working and skill sharing extended to the preparation and delivery of practical workshops by students, initially within college and focused around a publication event on World Book Day, but latterly to a broader public including workshops at Winchester

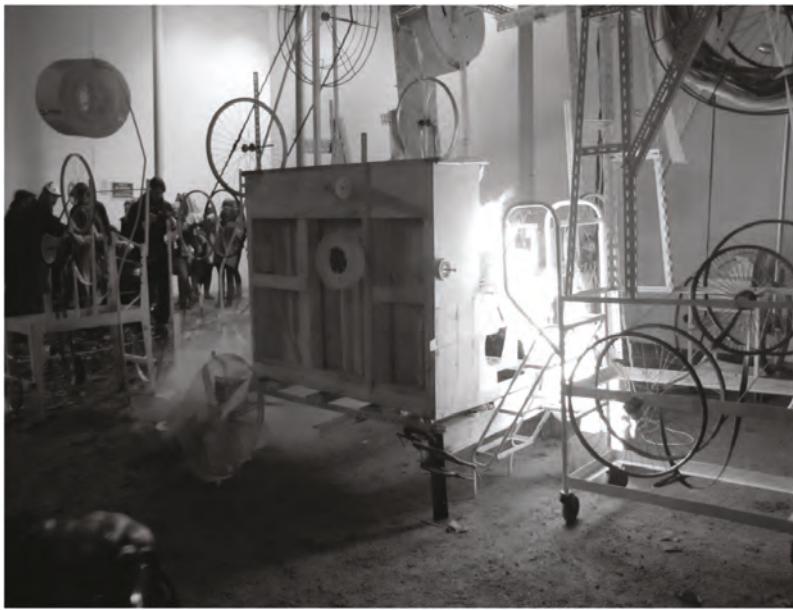


Figure 1: Homage to New York reconstructed at WSA, 2011.

Discovery Centre, Chapel Arts Andover and the East Festival at London's Olympic Park in 2013.

Our reconstructions of technical apparatus include the drawing machine pictured in Albrecht Dürer's *Man Drawing a Lute* from 1525. Dürer's machine functions like a laser scanner, accurately measuring the point between 'eye' and

Figure 2: Drawing machine, WSA, 2011.

object and neatly inscribing it into a picture plane. The eye is effectively externalized, the point of view disembodied. In restaging obsolete technological positions we found that we gained a better understanding of current image cultures.

PHOTOSCULPTURE

A research lecture by Alexander Galloway from New York University inspired us to rebuild François Willème's Photosculpture apparatus: an obscure machine that provides a genealogical ancestor for 3D prototyping. This device produced a 3D model of a sitter quickly and seemingly by enchanted means. The sitter entered a top-lit room and posed on a central podium for a few moments. Three days later they collected a perfect, detailed portrait statue. How was it done? Twenty-four hidden cameras, triggered simultaneously around the periphery of the space produced a set of silhouettes. Each was projected sequentially onto a screen where a craftsman used a pantograph to trace the outline into a block of clay, rotating it 15° each time. The pantograph is rational, a device of ratio, it scales mathematically, producing image via vector, a kind of abstract data visualization. The sum of the profiles produces a 3D model, an accurate likeness, efficiently achieved and at little cost. The principles of assembly are interesting here. This is already a multimedia process, a spatial articulation of image. Aggregated images are turned into a 3D object. Galloway's thesis is that it provides an antecedent for parallel processing, it effectively spatializes synchronous images rather than deploying the serial frames of chronophotography, which form the more familiar cinematic model of image.

Archival research into Willème's process was worked through practically in the studio to re-imagine his apparatus. It was a 'hands on' way to experience and understand different ideologies of making. The process itself raised questions of craft, manufacture and the 'signature' of the artist; questions that have a renewed currency in relation to contemporary technologies of visualization and fabrication. Photosculpture was a novel invention, popular in its time, with studios established in Paris, London and the United States. Sitters included the

Figure 3: Experiments with synchronizing cameras, WSA, 2012.

King of Spain and the President of the United States, but it was celebrated less for representations of sovereignty than for democratizing the portrait, privileging the mundane 'realism' of buttons and crinolines over the signature or gesture of the virtuoso artist. The critic Théophile Gautier remarked: 'Photosculpture is not so daunting as statuary ... [it] is used to modest proportions and is content with a set of shelves for pedestal' (Benjamin 1999: 689). It operates as souvenir. This quotation is located in Konvolut Y of Walter Benjamin's encyclopaedic Arcades Project, where diverse material is structured through the methods of a rag-picker to produce a 'primal history' of the nineteenth century. Benjamin situates Photosculpture appropriately between Marx and The Automaton. Photosculpture was an articulated process, functioning by division of labour. Procedural and mechanistic, it has an uneasy interface between artisan and operator.

Willème's device is an assemblage of machines and machinic arrays: prescriptions are embodied within it. It presents a production system. To build our version we organized the students into communities of practice: data capture, data processing, environment, documentation. Students worked collaboratively to investigate and construct an ambitious, functioning apparatus, deducing its operation from photographs and period descriptions. In the process they acquired construction techniques, documentation skills and practice-based research methodologies. One aspect of a practice-based research methodology is how to credit the errors, the blunders made when working from a point of incomplete knowledge. In this instance difficulties and mistakes produced some curious outcomes, objects produced within this enquiry were novel, a misapplied camera setting for example, would generate new implications that were shared and discussed by the group.

An operational structure was set in place with one day a week set aside for the collective project. On this day the workshop space was extended temporarily into the studio allowing groups to cohere around tasks in a 'public' space, promoting exchange and making research in progress visible and open to

Figure 4: Pantograph construction, WSA, 2012.

interrogation. Technical and academic staff worked alongside students. We also brought specialists from other fields into the workshops, historians, media theorists and archaeologists, who discussed the tasks at hand and their contexts whilst students worked. The aim was to establish a practice that operates seamlessly to explore making, history and theory in a collective studio context. Alongside the physical space we developed an active social media community, a forum where images, references and questions were posted. This social space both documented and developed the ongoing project, adding cohesion to the weekly sessions. The process as a whole served to chase an idea into material by introducing students to skill sets, to deductive and inductive thinking, to engaging with and sharing research questions and moving a collective enquiry into inventive solutions within individual practice. This process emphasized in the first place cultural experience, in Winnicott's terms 'shared reality', the opposite trajectory to conventional tutorial teaching, where attention is first focused on the articulation of 'psychic reality', a drawing out of the personal and inward. The project emphasized communal learning by establishing temporary spaces within the timetable and in the studio, reconvening over a period of weeks to explore and develop work as a kind of hive activity:

A nomadic hive is an aesthetic practice, not just a means of survival but an aesthetic mode of existence that proceeds through producing networks, means of communications, protest, relations and assemblages: collective machines and situations for thinking and acting.

(The Hive 2010)

The work was then staged at an end of term event, giving a celebratory impetus to the project and providing a forum for participants to make their research public. The term moved from the implementation of research methodologies to the exploration of structures for dissemination: publication, exhibition and performance.

The process shares characteristics with a Brechtian Lehrstück or learning play:

[The Lehrstück] is an *object of instruction* and falls into two parts. The first part ... is meant to help the exercise, i.e. introduce it and interrupt it – which is best done by an apparatus. The other, *pedagogical* part [...] is the text for the exercise [...] in this way collaboration develops between participant and apparatus, in which expression is more important than accuracy.

(Brecht 1964: 31, original emphasis)

The Photosculpture apparatus itself became a means of production. Once built it could be used, its structure revised for different environments. It functions to set the scene for an event that draws operators and subjects together, it brings 'consumers' directly into contact with the production process, turning the spectator into a collaborator. It also produces an interesting reversal of the paradigm of the panopticon as an ideological space. Within the architecture of this device the subject is surveilled from every point.

Assembling the still images produced by the mechanism as gifs rather than sculpture demonstrates the 360° spin looping recursively at the heart of automation. Data from the nineteenth century capture process was also pushed through an array of consumer level software, including 123D Catch,

Figure 5: Capture apparatus installed at Central Saint Martins, 2013.

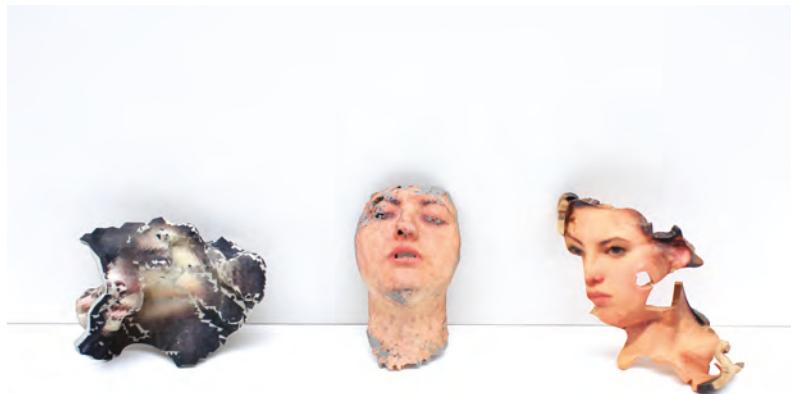


Figure 6: Lorna Barnshaw, B.A. Sculpture student, experiments with 3D scanning and printing WSA, 2013.

Blender and Cinema 4D, the process was updated to a crowd-sourced version using smart phones, constructing further data objects and revealing the characteristics of different data processing software. One characteristic of 3D modelling applications is the production of a hollow body, so that the data itself takes on a new presence as skin; a digital flaying or appropriation that leads us to think of data capture as a form of spoliation; a form subject both to algorithmic aestheticization and to reuse and reconfiguration through the procedures of collage.

NEOLITHIC STONE BALLS

Reconstruction is familiar within archaeological practice. Replicas of structures and objects are fabricated using historically specific techniques and materials. The process tests hypotheses and by working through how things might have been done, produces material solutions to problems of method. Questions of context make it a speculative and unreliable tool in the field of experimental archaeology, nevertheless, by extension it provokes a question, one familiar in political terms and aimed very much at the future: how is it to be done? The aim of our projects is not to produce a replica, but through communal deduction, systematic description and lines of flight, to engage with the system of transformations that constitutes change. Our copies are essentially and not accidentally inexact – you could call them vague or vagabond. What we are doing works with paradigmatic transformations, a method of substitution or transposition.

Over this process, which we characterize as a material historiography, we have worked collaboratively with archaeologists at the University of Southampton to share practice and knowledge around both contemporary visualization technologies and ancient processes, most recently working speculatively through the production process of Neolithic carved stone balls. In working and talking with archaeologists from both the Archaeological Computing Research Group and the Centre for the Archaeology of Human Origins at Southampton, we have come across useful models to think about art practice: the complexity of objects, process and ensembles – theories of operations and in particular how the mediating object marks out social structures and performative operations.

If the Photosculpture project represented an axis between industrial manufacture, craftsmanship and art practice, carving the stone balls operated by rule of thumb. We discovered it to work as an enactment, a processual remaking, rather than producing replica objects. Over the initial one-day project we worked together with archaeologists in the sculpture studio. The day was structured around working into precast plaster blocks to produce a sphere and then using reductive methods on clay balls to think though the shapes we would produce from the sphere. The Neolithic balls have multiple nodes, most have six but some as many as 200. They are consistent in size, being handheld, portable objects carved mostly from the granites and basalts local to North East Scotland. As the group prepared to carve, archaeologists introduced their research on the stone balls. These objects have no firm interpretation or use. They are stumbling blocks to signifying practices, their inscrutability makes us pay attention and take care. As opposed to the consistent objects of modernity produced by the process of manufacture in Photosculpture, the Neolithic stone balls show iteration and variation, repetition here has a diversifying effect. They are persistent objects, demonstrating a technique of transmission, arguably a spatialization of memory.

Figure 7: Carving stone balls, WSA, 2013.

Having set the scene, the carving itself proved a social activity: it began to constitute a society where innovation was shared quickly and active trans-disciplinary discussion ensued. 'Social space, the support of social time, is ceaselessly re-run, recommenced, reformed, deformed and transformed by the individuals who re-temporalise it' (Stiegler 2012: 4). The initial task of making a sphere proved more intuitive than we would have thought, turning and turning as a measure of equivalence, the process itself engrossing and metronomic. The process of making could be figured, after Ernst Bloch, as *objective fantasy*: the capacity to develop the latency in an object. The objects revealed themselves as stages in a developing process.

If the media record of visualization belongs to reality testing, so does throwing stones. We speculated that these carved, stone balls were thrown by the ancestor to develop our imagination; a fragment of their labour, a time bomb. Throwing a stone can startle us. It is a moment of hope – the jump or start, or jolt which is a leap from the ground, a change in circumstance that must be adjusted for, the Benjaminian jolt of an image passed. In practice, considering an object produced so far outside the orthodoxies of contemporary art discourse provides a useful jolt for artists to reconsider why and how and what we make. For archaeologists the event provides a form of paradata: information about human processes of understanding and interpretations of objects. Trans-disciplinary readings can help to work against the passivity that

can sometimes act as a short circuit within a subject area, questioning our too easily accepted orthodoxies. Bernard Stiegler describes instead:

... an unconscious space of long circuits. These unconscious spaces link generations along very, very long spans of time. What is produced within these long circuits is the material of the dream, for example, which is at stake in Freud's interpretation of dreams, as well as clearly being the matter from which artists operate and produce.

(Stiegler and Rogoff 2010: 2)

The long circuit back to the Neolithic may offer exemplary object lessons: ways forward in the reorganization of perception we currently experience, the reconstitution of forms of knowledge and new educational spaces.

Together these copy projects practically propose that the subject matter of a work of art (*Die Sache*), *the concern or matter in hand*, is limitless, that it remains incomplete and that 'the language of art is with an unfinished event' (Gadamer 1975: 99). Gadamer is critical of the established role of modern theory where 'theoretical knowledge is conceived in terms of the will to dominate what exists' (Gadamer 1975: 454) whereas perhaps reopening the unfinished event contributes to the re-articulation of theory as contemplation (*theoria*) and participation (*theoros*). Here 'the aim is not to recover the forgotten *per se*, but use the difference between past and present usage to create a space in which new meanings might arise' (Davey 2006: 26). Both projects are encounters with the development of *Die Sache* where everyone involved experiences and participates in the ongoing manipulation of the subject.

REFERENCES

Benjamin, W. (1999), *The Arcades Project* (trans. H. Eiland and K. McLaughlin), London: The Belknap Press of Harvard University Press.

Brecht, B. (1964), *Brecht on Theatre: The Development of an Aesthetic* (trans. J. Willett), London: Eyre Methuen.

Davey, N. (1999), *The Hermeneutics of Seeing*, London Routledge.

_____. (2006), 'Art and *theoria*', in K. Macleod and L. Holdridge (eds), *Thinking on Art Reflections on Art as Research*, London: Routledge, pp. 20–29.

Gadamer, H. (1975), *Truth and Method*, London: Continuum.

Galloway, A. (2012), 'On the Cybernetic Hypothesis', <http://vimeo.com/45978167>. Accessed 2 January 2014.

The Hive (2010), 'Manifesto: Written in Room 43', National Gallery, London, 9 December, <http://criticallegalthinking.com/2010/12/11/the-nomadic-hive-manifesto/>. Accessed 2 January 2014.

Jones, A. (2007), *Memory and Material Culture*, Cambridge: Cambridge University Press.

Minkin, L., Phegley, J., and Baxter, A. (2013), 'Video documentation of the WSA Photosculpture project', Winchester School of Art, University of Southampton, <http://vimeo.com/56902910>; <https://www.youtube.com/watch?v=go8MGtnYpS8>; https://www.youtube.com/watch?v=UG4BWS_P67Nw; <https://www.youtube.com/watch?v=Ftytkbcy9dA>. Accessed 6 March 2014.

Simondon, G. (1958), 'On the mode of existence of technical objects' (trans. Ninian Mellamphy, Dan Mellamphy and Nandita Biswas Mellamphy), *Deleuze Studies*, 5: 3, pp. 407–24.

Sobieszek, R. A. (1980), 'Sculpture as the sum of its profiles', *The Art Bulletin*, 62: 4, pp. 617–30.

Stiegler, B. (2012), 'Relational ecology and the digital pharmakon', *Culture Machine*, 13, pp. 1–19.

Stiegler, B. and Rogoff, I. (2010), 'Transindividuation', <http://www.e-flux.com/journal/transindividuation/>. Accessed 2 January 2014.

Winnicott, D.W. (1971), *Playing and Reality*, London: Routledge.

SUGGESTED CITATION

Minkin, L. and Dawson, I. (2014), 'Object lessons: Copying and reconstruction as a teaching strategy', *Art, Design & Communication in Higher Education* 13: 1, pp. 19–29, doi: 10.1386/adch.13.1.19_1

CONTRIBUTOR DETAILS

Louisa Minkin is Course Leader M.A. Fine Art at Central Saint Martins. Previously, she was Head of Printmaking at Winchester School of Art. She is a member of Five Years, a collectively organized artist-led space in London. Awards include the Art Foundation Fellowship in Painting and an Abbey Fellowship at the British School in Rome.

Contact: Central Saint Martins, Granary Building, 1 Granary Square, King's Cross, London N1C 4AA, UK.

E-mail: l.minkin@csm.arts.ac.uk

Ian Dawson is Head of Sculpture at Winchester School of Art. He is a regular contributor to House of Fairytales, creating live material workshops and performances. His most recent book *Making Contemporary Sculpture*, Crowood (2012) surveys the practical methodologies of a generational mix of British artists.

Contact: Winchester School of Art, University of Southampton, Park Avenue, Winchester, Hampshire, SO23 8DL, UK.

E-mail: i.dawson@soton.ac.uk

Louisa Minkin and Ian Dawson have asserted their right under the Copyright, Designs and Patents Act, 1988, to be identified as the authors of this work in the format that was submitted to Intellect Ltd.

intellect

www.intellectbooks.com

publishers
of original
thinking

Craft Research

ISSN: 2040-4689 | Online ISSN: 2040-4697

1 issue per volume | Volume 4, 2013

Aims and Scope

Craft Research is the first peer-reviewed academic journal dedicated to developing and advancing contemporary craft practice and theory through research. Its purpose is to portray and build the crafts as a vital and viable discipline that offers a vision for the future through its ability to explore and challenge technology, to question and develop cultural and social practices, and to interrogate and affirm philosophical and human values.

Call for Papers

Craft Research welcomes contributions from new and established researchers, scholars, and professionals around the world who wish to make a contribution to advancing the crafts.

- Contributions may include research into materials, technology, processes, methods, concepts, aesthetics and philosophy in any discipline area of the applied arts and crafts, including craft education.
- Accepted formats include full research papers, position papers, reports on research linking craft and industry, craft-researcher portraits, and reviews of research exhibitions and conferences.

Editors

Kristina Niedderer
University of Wolverhampton, UK
k.niedderer@wlv.ac.uk

Katherine Townsend
Nottingham Trent University, UK
katherine.townsend@ntu.ac.uk

Intellect is an independent academic publisher of books and journals, to view our catalogue or order our titles visit www.intellectbooks.com or E-mail: journals@intellectbooks.com. Intellect, The Mill, Parnall Road, Fishponds, Bristol, UK, BS16 3JG.

THE WANDERER'S NIGHTSONG II

THE WANDERER'S NIGHTSONG II

CURATED BY AND IN COLLABORATION WITH IAN DAWSON

KATE ATKIN

CATHY DE MONCHAUX

CHRIS HAWTIN

NEIL GALL

GAVIN TURK

C&C GALLERY

03.04.2015 - 10.05.2015

GAVIN TURK, THE SWIMMER, 2003, EARTHENWARE, 10 X 10 X 12CM

NOTES ON THE WANDERER'S NIGHTSONG II

(1) BABIES ARE ILLLOGICAL;
(2) NOBODY IS DESPISED WHO CAN MANAGE A CROCODILE;
(3) ILLLOGICAL PERSONS ARE DESPISED.
(CONCL.) BABIES CANNOT MANAGE CROCODILES.
LEWIS CARROLL, SYMBOLIC LOGIC

(1) I REMEMBER TRYING TO MIMIC MY ELDER BROTHER WHEN I WAS A TEENAGER- SNEAKING INTO HIS ROOM, FLICKING THE SWITCHES ON HIS MUSICAL EQUIPMENT AND AMPLIFIER, BECOMING ENTRANCED IN THE TRIPPY NOISES CREATED FROM HIS MOOG AND ROLAND SYNTHESIZERS - ALTERING THE WAVELENGTH AND PITCH SETTINGS- I REMEMBER THE ECHO PEDAL- THE RIGHT MIX OF FREQUENCY, DELAY AND INTENSITY AND THERE WOULD BE A HEADY MIX OF SOUND ADDING TO ITSELF CREATING WAVE AFTER WAVE OF NEW REVERBERATIONS BUILT FROM THE PREVIOUS ONE- A SELF SWALLOWING CREATURE THAT COPIED, ENVELOPED AND EVOLVED. I REMEMBER THIS BUZZ, ITS A SENSATION THAT RETURNS WHENEVER ENCOUNTERING AN ARTWORK THAT IS BOTH OF AND ABOUT ITSELF; SELF-REFERENCING- RECURSIVE - LANGUAGE ABOUT LANGUAGE.

(2) IN ARGYLL, SCOTLAND, SOME FOUR-THOUSAND YEARS AGO, NEOLITHIC HUMANS PERFORMED ACTS OF CARVING ONTO SELECTED ROCKS ACROSS THE LANDSCAPE; EMBEDDING AND INTERWEAVING AN ARRAY OF RING, CUP, AND TRIANGULAR MARKS INTO THE EXISTING NETWORK OF CRACKS AND FISSURES. 'RATHER THAN A PROCESS OF IMPOSITION' AS THE ARCHAEOLOGIST ANDREW JONES EXPLAINS THESE ROCK ART MOTIFS, 'ARE WORKED *INTO* THE PRE-EXISTING GEOLOGICAL FEATURES OF THE ROCK'(1). PATTERNS OF GLACIAL EROSION WERE EVEN COPIED, REPPLICATING THE NATURAL ROCK FOR IT TO BECOME PART OF THE ANCESTRAL DESIGN.

(3) A PIECE OF QUARTZ AS THE TOOL, AN EXAMPLE OF WHAT IT IS TO BE HUMAN, OF POSSESSING AN INADEQUATE BODY NEEDING ADDED TECHNOLOGY TO BOTH SURVIVE AND MAKE SENSE OF THE WORLD, WHAT BERNARD STIEGLER WOULD CALL 'ORIGINARY PROSTHETICITY'(2). THIS PIECE OF QUARTZ LIKE ALL OTHER TOOLS IS EXPLOITED BECAUSE IT HAS A CAPACITY TO HAVE AN EFFECT, OF 'INFlicting SOME KIND OF BLOW ON REALITY', ONE COULD SAY A TOOL ISN'T 'USED' IT 'IS' (3). THE CHISEL DOESN'T NEED TO BE RE-INVENTED FOR US TO CARVE. TOOLS, EQUIPMENT AND THE TECHNOLOGIES THEY SUPPORT, THEY AMASS INFORMATION, FROM THE EARLIEST TIMES UNTIL NOW, PASSING ITS PRACTICES ACROSS THE GENERATIONS.

(CONCL.) "...THE FOOD-GATHERER REAPPEARS INCONGRUOUSLY AS THE INFORMATION-GATHERER"
MARSHAL McLUHAN 1967(4)

(1) INFORMATION. PHYSICISTS WONDER WHETHER IT IS A PRINCIPAL FACTOR, MORE ESSENTIAL THAN MATTER, THE ESSENCE OF EXISTENCE, 'ALL THINGS PHYSICAL ARE INFORMATION THEORETIC,' WROTE JOHN ARCHIBALD WHEELER, IT'S NOW 'A PARTICIPATORY UNIVERSE.'(5) WE ARE NO LONGER MERELY BLOOD AND GUTS, MORE SIX BILLION ENCODED BITS.

2) VERONESE'S THE WEDDING AT CANA, A DEPICTION OF JESUS' PARTY-TRICK MIRACLE OF TURNING WINE INTO WATER, PAINTED FOR A BENEDICTINE MONASTERY IN VENICE IN 1563, PLUNDERED 235 YEARS LATER BY NAPOLEON AND HANGING IN THE LOUVRE, NOW HAS MULTIPLE LIVES; 210 YEARS AFTER ITS ABDUCTION AN EXACT FACSIMILE WAS UNVEILED ON THE ORIGINAL SITE- THE REFECTORY OF SAN GIORGIO. HERE VISITORS CAN NOW CONSIDER AN EXACT COPY IN RELATION TO ITS AUTHENTIC SURROUNDINGS, WHILST SIMULTANEOUSLY VISITORS TO THE LOUVRE ARE EXPERIENCING THE ORIGINAL WORK OF ART.

(3) THE KIND OF MEDIATION THAT PRODUCES EXACT COPIES IS NOT EFFICIENT- THE TRANSLATION OF DATA IS A TRAJECTORY THAT LEADS INEXORABLY TO MUTATION. IT IS AN ENTROPIC PROCESS - CREATING A COUNTER-INTUITIVE POSITION- THE INSTINCT TO CREATE ORDER- OF REGIMENTING THE TRANSLATION OF DATA - WILL TEND TOWARDS A FINAL ENTROPIC STATE AND THE DEATH OF INFORMATION- WHEN IT IS NO LONGER MEANINGFUL. COPYING THAT SEEKS TO ERADICATE MUTATION COMES AT A HIGH PRICE AS IT INCREASES NOISE WITHIN THE SYSTEM TO THE EXTENT THAT FUTURE EMERGENCE AND INVENTION BECOMES PROBLEMATIC.(6)

(CONCL.) 'CRIPPLES AND HANDICAPS LIE LIKE CORPSES ALONG THE TECHNICAL PATH TO THE PRESENT' FRIEDRICH KITTLER 2010 (7)

(1) THE 'KNOTTY PROBLEM OF MIMESIS'(8) IS CENTRAL TO WESTERN NOTIONS OF REPRESENTATION; CONCERNED WITH MAKING THROUGH IMITATION, IT IS, AS SUCH A BLIND ACTIVITY, A PARASITIC ACTION THAT NONETHELESS AUGMENTS THROUGH DEPICTION. APPROPRIATION AND MIMESIS PERMEATE GAVIN TURK'S WORK- HERE FIVE CERAMIC STUDIES OF ARIADNE, ARE PRESENTED ON COLUMNS. IN HISTORY ARIADNE POPS UP, OVER AND OVER, ROMAN COPIES OF HELLENISTIC SCULPTURES, DE CHIRICO, THE RECLINING RECURRENCE - AND TURK TAKES THE FORM AGAIN, BUT THIS TIME LEGLESS, IN THE SHAPE OF A ROUGH SLEEPER IN A SLEEPING BAG.

(2) THE EMERGENCE OF ANY NEW ART-FORM SEEKS TO SIMULTANEOUSLY INSPIRE AN IMITATION, AN ECHO, CONSTRUCTED TO RESPOND, DISRUPT, MESS WITH THE ORIGINAL- AND IN PARODY, THERE IS SOMETHING MORE THAN JUST MERE IMITATION FOR A COMIC RESPONSE, THE REITERATION BECOMES EXAGGERATED, EXPOSING THE CONVENTIONS OF A GENRE, QUESTIONING ITS MODES OF PRODUCTION. WHEN RULES ARE MOMENTARILY REVEALED AS RULES.

(3) A PHOTGRAMMETRIC SCAN HAS PRODUCED A PRINT OF TURK'S STUDIO, ONE CAN PEER INSIDE THE OBJECT AND JUST ABOUT MAKE OUT TWO SMALL ARIADNE SCULPTURES ABOUT THE SIZE OF PEAS, PETRIFIED WITHIN THIS CAVE. THIS AMORPHOUS LOOKING LUMP CONVERTS TURK'S STUDIO INTO A MEMETIC HENRY MOORE VERSION OF ARIADNE.

(CONCL.) 'IT IS HUMOR THAT MAKES LANGUAGE STAMMER' GILLES DELEUZE (9)

(1) HUMAN MEMORY IS FRAGILE AND FINITE(10), AND HUMAN SOCIETIES HAVE CONSTANTLY CREATED DEVICES FOR STORING MEMORIES VIA EXTRA BODILY FORM, FROM STONE TABLETS TO CUNEIFORM TO THE PRINTING PRESS AND THE COMPUTER, 3D PRINTING AND SCANNING HAS NOW ENTERED THE FRAY.

(2) IN THE WANDERER'S NIGHTSONG II, I WANTED TO EXPLORE SOME OF THE ISSUES THAT ARISE OUT OF OUR CURRENT POSITION, AS SMART PHONES BECOME DIGITAL DEVOTIONAL OBJECTS, AND IT EMERGES THAT MEDIA ARE NOT EXTENSIONS OF THE HUMAN BUT ARE EXTENSIONS OF THE PLANET. WHAT IS THE FUNCTION OF REPRESENTATION WHEN IMAGE MAKING DEPENDS ON THE ALGORITHM? DATA DOES NOT NEED TO BE VISUAL.

(3) *STATISTICAL IMAGERY*- USED BY PAUL VIRILIO TO DESCRIBE ARTIFICIAL IMAGES THAT ONLY EXIST THROUGH ACCELERATED COMPUTER PROCESSING POWER. 'SUCH IMAGES CREATE 'RATIONAL' VISUAL ILLUSIONS THAT DAMAGE PEOPLES COMPREHENSION AS WELL AS THEIR ABILITY TO INTERPRET THE REAL WORLD'(11)

(4) I WANTED TO COLLABORATE WITH ARTISTS TO EXPLORE WHAT WOULD HAPPEN IF A PART OF THESE NEW TECHNOLOGIES INTRUDED INTO THEIR PRACTICE. I WAS TO BE AN AGENT IN THIS PROCESS, WANTING TO ACT AS A TECHNICIAN OF SORTS. AND I AM INDEBTED TO THE ARTISTS- TO THEIR OPENNESS AND WILLINGNESS TO MAKE SUCH A CONSIDERATION. GAVIN TURK SUGGESTED THAT IT WAS PERHAPS LIKE PULLING UP A LADDER TO A BRICK WALL AND PEERING OVER. AND I ENJOYED THAT SENTIMENT, WHILST BEING UNEASY ABOUT THE IMPLICATION- OF WITNESSING THE DRIVERLESS CAR DEPARTING THE FORECOURT.

(CONC.) '., HAVE YOU HEARD OF A WRITER WHO WRITES FOR HIS PEN...?' PAUL VIRILIO, VISION MACHINE (12)

(1) IT WAS ARIADNE WHO GIFTED THESEUS WITH THE BALL OF STRING TO ESCAPE THE LABYRINTH, AND IT IS THE STORY OF HIS SHIP THAT GIVES RISE TO THESEUS' PARADOX; OF WHETHER AN OBJECT IS REAL IF ALL ITS CONSTITUENT PARTS ARE EVER REPLACED.

(2) CHRIS HAWTIN'S PAINTINGS PRESIDE OVER THE SHOW- POST-HUMAN -MUTANT-CYBERNETIC- FIGUREHEADS RENDERED WISTFULLY, GLAZED OIL ON CANVAS, THESE ARE PORTRAITS- SETH, CLIO, GREGOR, PHOTEUS, -STANDARDS- THAT ACT AS BOTH AN ANCHOR AND EXTENSION OF OURSELVES- FOR BOTH REMEMBRANCE AND RECONNAISSANCE(13). THESE PAINTINGS THAT ARE PART FIGURED IN OUR OWN IMAGE, PART MACHINIC PERHAPS COME TO REPRESENT A FAUSTIAN IMPULSE, TO CONVERGE ART WITH A UNIVERSAL DESIRE TO RE-CREATE LIFE NON-BIOLGICALLY. THESE ARE DIMLY HUED PAINTINGS- WITH DEEP SHADE- THE FIGURE BLANKETED IN DARKNESS AND SILHOUETTED IN A SHAFT OF LIGHT. LIGHT, THE BASIS FOR ALL IMAGE MAKING- ENERGIZES THE FIGURES WHILE THE SURROUNDING DIMNESS PERHAPS MANIFESTS A FEAR OF THE DARK, THE MOST PRIMORDIAL OF PHOBIAS.

(4) GHOSTLY WHITE 3D PRINTS, ARE ARRANGED AS BOTH FRAGMENTS RECOVERED FROM AN ASEPTIC ARCHAEOLOGICAL DIG- MINIATURE ANCESTORS TO THOSE FROM LUXOR- WHILST ALSO OPERATING AS PROTOTYPES- DO THE PAINTINGS ACT AS A GENOTYPES TO THE PHENOTYPES OF THE PRINTED COPY?

(CONCL.) AS WALTER BENJAMIN NOTED IN THE ARCADES PROJECT 'IN NATURE THE NEW IS MYTHIC BECAUSE ITS POTENTIAL IS NOT YET REALIZED; IN CONSCIOUSNESS, THE OLD IS MYTHIC, BECAUSE ITS DESIRES NEVER WERE FULFILLED.' (14)

1) A RANGE OF CULTURAL AND ART HISTORICAL REFERENCES OPERATE WITHIN NEIL GALL'S WORK, HIS PAINTINGS MAKE REFERENCE TO VELAZQUEZ, BRONZINO, MAGRITTE AND POUSSIN, WHILST PAINTING ILLUSORY, LIFE-LIKE DEPICTIONS OF ASSEMBLAGES OF A PARTICULAR RANGE OF POOR MATERIALS- PINGPONG BALLS- ELECTRICAL TAPE- CARDBOARD. THIS PRECISE VISUAL STYLE IS ACHIEVED IN SOME PART BY DISCARDING THE IRREGULARITY OF THE OBJECT IN FAVOUR OF PAINTING FROM A METICULOUSLY LIT PHOTOGRAPHIC PRINT. HERE A MAQUETTE BONDED BY RED ELECTRICAL TAPE WAS LASER SCANNED -AND PRINTED- THE COPY WAS DENSE, STABLE- THE TAPE SOLIDIFIED AND SMOOTHED INTO GENTLE UNDULATIONS- BECOMING A LANDSCAPE HIGHLIGHTING THE TOPOGRAPHY OF THE PRINTING PROCESS -THE Z-DEPTH.

2) GALL, PHOTOGRAPHED THE 3D PRINT AND PAINTED WALPURGIS NACHT (2015) WHILST AN ALTOGETHER DIFFERENT MESH WAS BEING CONSTRUCTED- THE ORIGINAL MODEL WAS BEING RE-PHOTOGRAPHED AGAIN- MULTIPLE TIMES FROM MULTIPLE ANGLES- THESE PHOTOGRAPHS THEN ALIGNED, THE COMMON POINTS LOCATED THE CAMERA POSITIONS IDENTIFIED, AND A MESH CONSTRUCTED, THE DISTANCE AND GEOMETRY EXTRAPOLATED FROM THE COMBINED JPEG INFORMATION- A MUCH MORE COMPLEX MODEL WAS RENDERED.

3) THIS VIRTUAL MODEL SPINS ON A MONITOR- IN ITS CURRENT STATUS TOO IMPERFECT TO PRINT. THE ROTATION OF THE OBJECT, LIKE THAT OF A POTTER'S WHEEL, OR A PIZZA IN A MICROWAVE; ILLUSTRATIVE OF THE PROCESS OF DATA CAPTURE, THE SPIN AS A PREVAILING GESTURE IN THE RENDERING OF 3D DATA. CAN THE LOOP BE A NEW NARRATIVE FORM? INSTEAD OF A NARRATIVE THAT PROGRESSES THROUGH A LINE OF UNIQUE EVENTS- THAT AVOIDS REPETITION, CAN THE LOOP BE THE 'ENGINE' THAT PUTS A DIFFERENT NARRATIVE IN MOTION(15).

4) THE MONITOR IS THE BLACK BOX FROM INSIDE WHICH A PIECE OF MAGIC IS CONJURED. IN FOLKLORE WALPURGIS NACHT IS THE MYSTICAL MEETING OF WITCHES ON A GERMAN MOUNTAIN- HERE TWO ACCOUNTS OF THE MODEL CONGREGATE- CREATING A COMPLEX CHRONICLE OF EVENTS IN AND BETWEEN THEMSELVES.

(CONCL.) 'IN THE UNIVERSE NOW THERE WAS NO LONGER A CONTAINER AND A THING CONTAINED, BUT ONLY A GENERAL THICKNESS OF SIGNS SUPERIMPOSED AND COAGULATED, OCCUPYING THE WHOLE VOLUME OF SPACE...THE GALAXY WENT ON TURNING BUT I COULD NO LONGER COUNT THE REVOLUTIONS, ANY POINT COULD BE THE POINT OF DEPARTURE, ANY SIGN HEAPED UP WITH THE OTHERS COULD BE MINE, BUT DISCOVERING IT WOULD HAVE SERVED NO PURPOSE, BECAUSE IT WAS CLEAR THAT, INDEPENDENT OF SIGNS, SPACE DIDN'T EXIST AND PERHAPS HAD NEVER EXISTED.'

ITALO CALVINO(16)

(1) ON THE EVENING OF SEPTEMBER 7TH (OR 6TH) 1780, (OR 1783) HISTORIANS ARE STILL DEBATING, GOETHE SCRATCHED AN EIGHT-LINE POEM ONTO THE WALLS OF A MOUNTAIN LODGE. THIS POEM KNOWN AS 'THE WANDERER'S NIGHTSONG II' DESCRIBES A PROGRESSION FROM MINERAL THROUGH ANIMAL TO HUMAN, OF A NATURAL PROCESS BECOMING LANGUAGE. THE POEMS POWER- THREE SIMPLE FACTUAL STATEMENTS FOLLOWED BY AN ASSERTION FOR THE FUTURE IS CONSTRUCTED WITHOUT THE USE OF SIMILE, METAPHOR OR SYMBOL.(17)

ÜBER ALLEN GIPFELN
IST RUH,
IN ALLEN WIPFELN
SPÜREST DU
KAUM EINEN HAUCH;
DIE VÖGELEIN SCHWEIGEN IM WALDE.
WARTE NUR, BALDE
RUHEST DU AUCH.

(2) A CONSTRUCTED ENVIRONMENT OF PRINTED WOOD ON MDF ECHOES THE MOUNTAIN LODGE. THE COLLAGE OF WOOD, GARNERED FROM SCRAPS FROM MY STUDIO- HAS BECOME LAVISH- INSTEAD OF THE POEM ETCHED ON THE SURFACE, BITMAPS- A MEMORY ORGANIZATION FILE- FROM THE 3D SCANS - ARE JUXTAPOSED IN STRIPS ALONGSIDE THE WOOD-GRAIN; THE ARTWORK MIGRATING INTO THE FABRIC OF THE SPACE.

(3) THE MOUNTAIN LODGE- THE GROUND FOR THE POEM- BURNT DOWN IN 1870 AND WAS REBUILT FOUR YEARS LATER, A PERSPEX PLAQUE WITH AN ENGLISH LANGUAGE TRANSLATION CURRENTLY RESIDES IN THE REBUILT CABIN. IT GOES;

OVER ALL OF THE HILLS
PEACE COMES ANEW,
THE WOODLAND STILL,
ALL THROUGH;
THE BIRDS MAKE NO SOUND ON THE BOUGH.
WAIT A WHILE,
SOON NOW
PEACE COMES TO YOU.

(CONCL.) 'THE CERTITUDE THAT EVERYTHING HAS BEEN WRITTEN TURNS US INTO PHANTOMS'
JORGE LUIS BORGE, THE LIBRARY OF BABEL(18)

(1) IT IS EASY TO FORGET THAT COPYING ISN'T PRIMARILY THE PRESERVE OF THE MECHANICAL PROCESS, IT IS THE BASIC TENET BEHIND LIFE- A CELL COPIES AND SPLITS- REPRODUCES- WE ARE ALL COPIES- ITS HOW ORGANIC INFORMATION PASSES DOWN THE GENERATIONS. KATE ATKIN EVOCATIVELY CAPTURES THIS IN THE ELABORATELY TITLED DRAWING '..AND ALL THE TIME THE FORMS KEPT GROWING OUT OF MY EGG LIKE CRACKER SNAKES'/MEIN FREUND DER BAUM IST TOT', AN ARC OF NOW DEAD GROWTH EXTRUDES FROM A TREE TRUNK, THIS OUTER BARK- THE DEAD CELLS OF THE TREE ARE SCRUTINIZED AND RENDERED IN PENCIL. REPRESENTING AN ORGANISM THAT DISPLAYS ITS DAMAGE IN SUCH A WAY MIGHT BE CONSIDERED A STUDY OF FUNCTION. THIS ARC APPEARS TO CAPTURE ANOTHER PART OF THE LIFECYCLE, ITS SHAPE CLEARLY REMINISCENT OF LARVAE, AN IMMATURE FORM NOT YET READY FOR METAMORPHOSIS AND IN ANOTHER TWIST- THE IMAGE IS FADED, BLURRED, AND IT TURNS OUT THAT IN A FINAL PHASE THE DRAWING HAS BEGUN TO BE ERASED BY THE ARTIST. A BUZZ RETURNS AGAIN- AS THE ACTION RE-INSCRIBES THE CONTENT.

(2) REMINISCENT OF RAUSCHENBERG'S ERASED DE KOONING DRAWING OF 1956. THE EFFECT OF LIGHT ON THE SHEET OF PAPER IS HEIGHTENED AS ERASURE REVEALS THE DEEPLY EMBEDDED LINES ETCHED ON THE PAPER. WHAT REMAINS IS A SHADOW, ADDRESSING THE NOTION THAT SOMETHING NEGATIVE MIGHT HAVE POSITIVE CONSEQUENCES, OF DETERMINING FUNCTION BY WAY OF MALFUNCTION.

(3) ON HER STUDIO SHELF, SAT A SMALL SCULPTURE, A MODEL OF A PRAWN- WIRE BOARD TAPE AND GLUE- THATS HOW I REMEMBER IT- THOUGHTFULLY CONSTRUCTED- AS IF TO UNDERSTAND THE LOGIC OF THE STRUCTURE, WIRE SNAKING ALONG THE SPINE THE CARD DESCRIBING THE VERTABRAE- LINE AND PLANE, HERE THE 3D PRINTED COPY BECOMES ANIMAL AGAIN, THE MODERNIST CONSTRUCTION UNDERGOING A METAMORPHOSIS OF ITS OWN.

(CONCL.) 'A NIGHTMARE HAS HAUNTED ME SINCE CHILDHOOD: I AM LOOKING AT A TEXT I CAN'T READ, OR ONLY A TINY PART OF IT DECIPHERABLE. I PRETEND TO READ IT, AWARE THAT I'M INVENTING IT; THEN SUDDENLY THE TEXT IS COMPLETELY SCRAMBLED, I CAN NO LONGER READ ANYTHING OR EVEN INVENT IT, MY THROAT TIGHTENS AND I WAKE UP' MICHEL FOUCAULT (19)

(1) A SKEUOMORPH; AN ARCHAEOLOGICAL TERM THAT DENOTES ARTEFACTS MADE FROM ONE MATERIAL TO IMITATE THE FORM OF ANOTHER, IT'S A CURIOUS COPY, AT TIMES THOUGHT TO BE DECEPTIVE, THE 'APING' OF SHAPES THAT ARE PROPER IN ONE MEDIUM THAT THEN BECOME AMISS IN ANOTHER⁽²⁰⁾. AN AXE-HEAD FABRICATED FROM CHALK - A VIOLENT OBJECT SAFELY DISPLACED INTO THE SYMBOLIC; A FOSSIL⁽²¹⁾, THE SOUND OF A CAMERA SHUTTER ON A SMART PHONE. A SKEUOMORPH CAN BE ABOUT ACCEPTANCE- FORMS FROM A TRADITIONAL TECHNIQUE CAN BE EMPLOYED ON A NEW MATERIAL IN ORDER FOR IT TO BECOME CONVENTIONAL. OTHERS MIGHT TRY TO BETRAY, ATTEMPTING TO ERASE THEIR ORIGINS IN THEIR IMITATION OF A HIGHER STATUS. AN ALCHEMICAL PROCESS, THE 3D SCANNER MAKES SKEUOMORPHS- EXTRACTING ITS PRECISE GEOMETRIC COORDINATES AND POINTS AND RECONSTRUCTING THOSE IN VECTOR FORM.

(2) A FIGURINE- APPEARS CALCIFIED AS IF LITERALLY UNEARTHED FROM CHAUVE, THE CAVE OF FORGOTTEN DREAMS⁽²²⁾. THIS IS A COPY OF CATHY DE MONCHAUX'S NEW WORKS WHERE TINY FIGURES HANDMADE FROM COPPER WIRE AND PAPER PULP ARE AMASSED INTO NETWORKS, THE IMAGE BECOMING SLOWLY RETRIEVEABLE FROM THE DEPTHS AND TANGLE OF FILAMENT. THESE ARE FRAGILE SCULPTURES OFTEN HOUSED WITHIN A 3 DIMENSIONAL FRAME, AND HERE THE SCANNER DISMANTLED A SINGLE FIGURE, INTO A BLIZZARD OF POINTS- REFORMING THE ROOT COMPLEX AS A LINEAR NETWORK, TETHERING THE FIGURE IN ANOTHER WAY.

(3) WITHIN THE EXHIBITION THIS PREGNANT PRINT HAS NO ASSOCIATE.

(CONCL.) "...THE MACHINE DOES WORK, BE SURE OF IT. THERE IS NO DANGER OF THIS MACHINE GOING MAD, IT HAS BEEN MAD FROM THE BEGINNING AND THAT IS WHERE ITS RATIONALITY COMES FROM." DELEUZE⁽²³⁾

(1) WHO IS ADDRESSING THE WANDERER? IN DISCOURSE NETWORKS, KITTLER ASKED THAT SIMPLE QUESTION OF GOETHE'S POEM, WHOSE IS THE VOICE 'SPEAKING TO THE WANDERER OF THE WAY THAT NATURE IS SPEAKING TO HIM' ⁽²⁴⁾. KITTLER BEGINS BY LOCATING THE VOICE AS THAT OF A 'MOTHER', THAT THE POEM'S MIMICRY OF A SAXONY LULLABY RECREATES THE PROMINENT FEATURES OF A VOICE TEACHING A CHILD LANGUAGE, OF IMBUING PROFOUND MEANING ONTO THE MOST MINIMAL OF UTTERANCES. THUS TRIGGERING IN THE WANDERER, AND THE READER, A RESPONSE SIMILAR TO THAT OF AN INFANT LISTENING TO HUSH-A-BYE-BABY. THE POEM THUS BOTH DESCRIBES AND BRINGS ABOUT A SENSE OF POETIC BLISS PRECISELY BECAUSE IT RE-STAGES THAT WHICH MADE US RECEPTIVE TO IT IN THE FIRST PLACE. IN REVEALING HOW THE MECHANISMS OF THE DEVELOPMENT OF LANGUAGE ARE WHOLLY BOUND WITHIN THE ESSENCE OF THE POEM KITTLER EXPOSES HOW THE MEDIUM IS THE MESSAGE.⁽²⁵⁾

(2) A BARE WHITE PIECE OF PAPER HANGS ON A FINAL PANEL, KATE ATKIN'S SELF PORTRAIT, AN INCISED COPY OF A PREVIOUS DRAWING. INDENTED MARKS ON THE SHEET DEPICT THE BACK OF HER HEAD, THE TWIRLS AND EDDY'S OF HER HAIR SUCKS THE VIEWER INTO THE PICTURE-PLACING THE VIEWER IN THE SAME POSITION AS THE SUBJECT IN THE DRAWING. I IMAGINE A MIRROR BOTH INFRONT AND BEHIND.

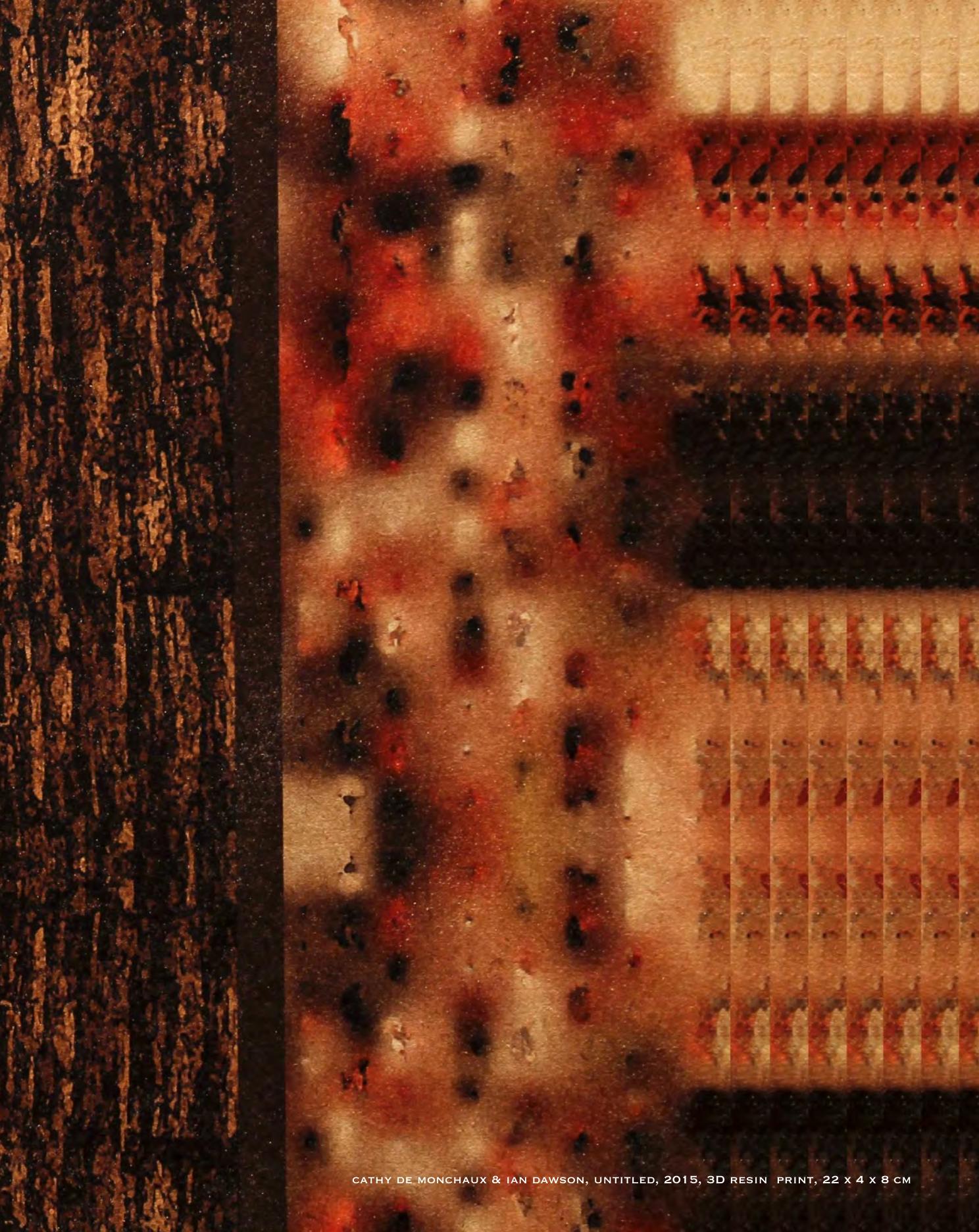
(3)


(CONCL.) WHOEVER WROTE IN BLOCK LETTERS WOULD NOT BE AN INDIVIDUAL. KITTLER⁽²⁶⁾

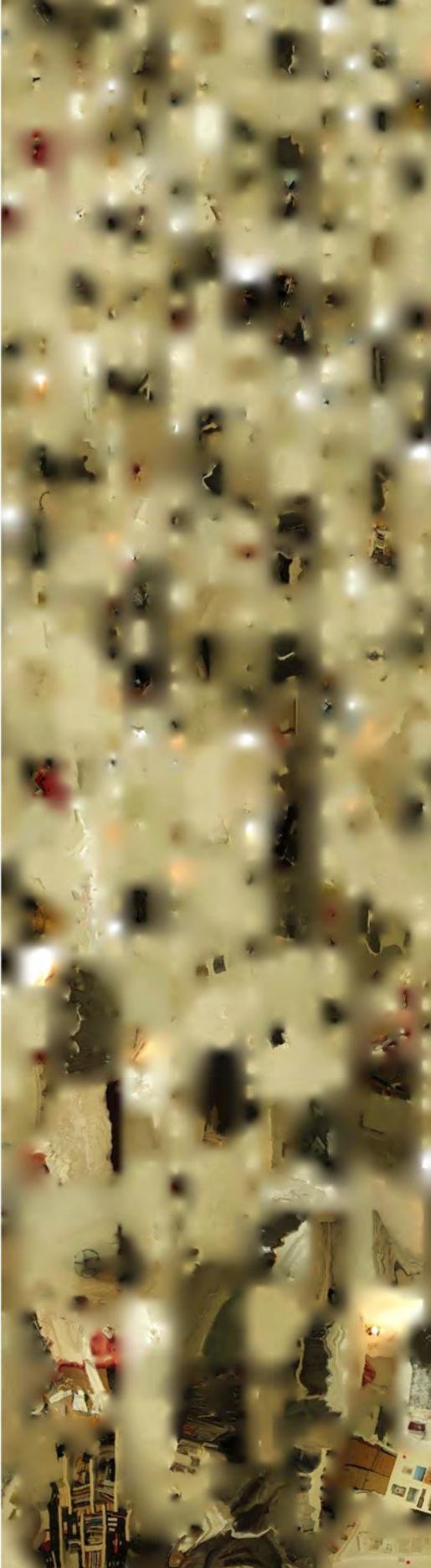
IAN DAWSON 2015

NOTES

- 1 JONES, A. 2014 PREHISTORIC MATERIALITIES, BECOMING MATERIAL IN PREHISTORIC BRITAIN. OXFORD UNIVERSITY PRESS.
- 2 STEIGLER, B. 1998 TECHNICS AND TIME 1: THE FAULT OF EPIMETHEUS STANFORD UNIVERSITY PRESS
- 3 HARMAN, G. 1999 TOOL BEING, UMI PRESS
- 4 GLEICK, J. 2011 THE INFORMATION, THE FOURTH ESTATE
- 5 IBID
- 6 CUBITT, S. 2015 THE PRACTICE OF LIGHT, MIT PRESS
- 7 KITTLER, F 2010 OPTICAL MEDIA CAMBRIDGE POLITY
- 8 BISHOP, R. 2013 COMEDY AND CULTURAL CRITIQUE IN FILM, EDINBURGH UNIVERSITY PRESS
- 9 IBID
- 10 JONES, A. 2007 MEMORY AND MATERIAL CULTURE
- 11 ARMITAGE 2012 VIRILIO AND THE MEDIA, POLITY BOOKS
- 12 VIRILIO P, 1994 THE VISION MACHINE, INDIANA UNIVERSITY PRESS
- 13 SCHWARTZ, H. THE CULTURE OF THE COPY, ZONE BOOKS
- 14 BUCK-MORRS, S. THE DIALECTICS OF SEEING. MIT PRESS
- 15 MANOVICH, L. 2001 THE LANGUAGE OF NEW MEDIA MIT PRESS
- 16 CALVINO, I. 1963 COSMICOMICS
- 17 WINTHROP-YOUNG, G. 2011 KITTLER AND THE MEDIA, POLITY BOOKS
- 18 GLEICK, J. 2011 THE INFORMATION, THE FOURTH ESTATE
- 19 KLUITENBERG, E. 2008 DELUSIVE SPACES NAI PUBLISHERS
- 20 CONNELLER, C. 2013 DECEPTION AND (MIS)REPRESENTATION, IN BEYOND REPRESENTATION, LEFT COAST PRESS
- 21 DAWSON MINKIN, 2014 GRAVE GOODS, UALRESEARCHONLINE.ARTS.AC.UK/7023/
- 22 HERZOG, W. 2010, CAVE OF FORGOTTEN DREAMS, IFC FILMS
- 23 BISHOP, R. 2013 COMEDY AND CULTURAL CRITIQUE IN FILM, EDINBURGH UNIVERSITY PRESS
- 24 WINTHROP-YOUNG, G. 2011 KITTLER AND THE MEDIA, POLITY BOOKS
- 25 IBID
- 26 IBID



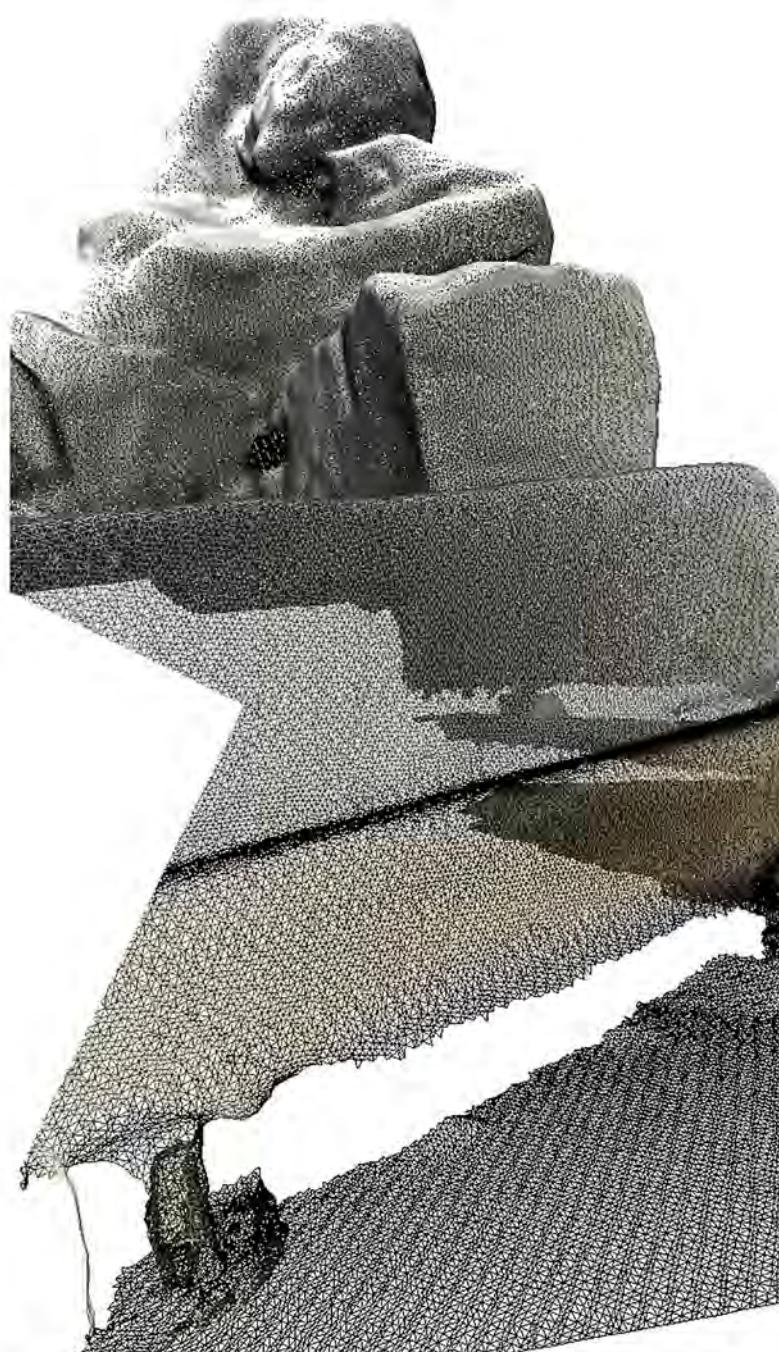
C&C
GALLERY

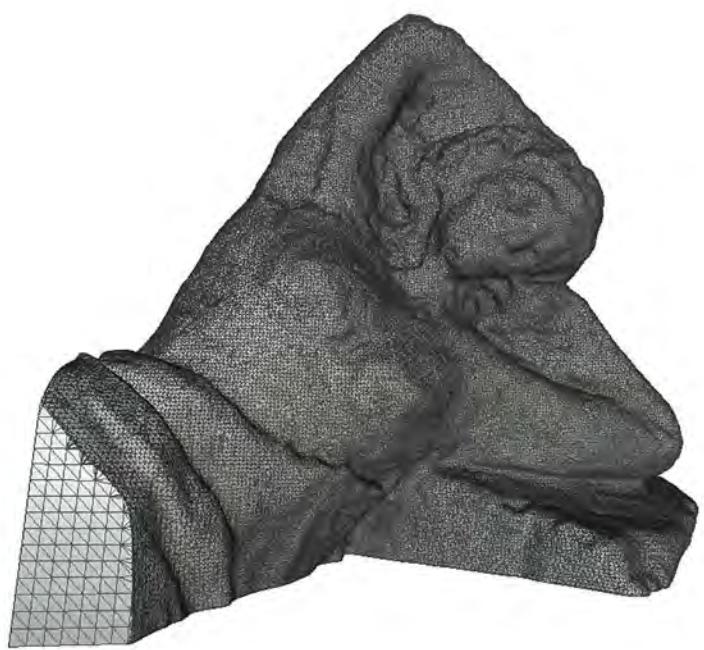


CATHY DE MONCHAUX & IAN DAWSON, UNTITLED, 2015, 3D RESIN PRINT, 22 X 4 X 8 CM

NEIL GALL, WALPURGIS NACHT, 2015, OIL ON LINEN, 55.3 x 48.6cm

NEIL GALL & IAN DAWSON, UNTITLED, 2015, DIGITAL HD VIDEO

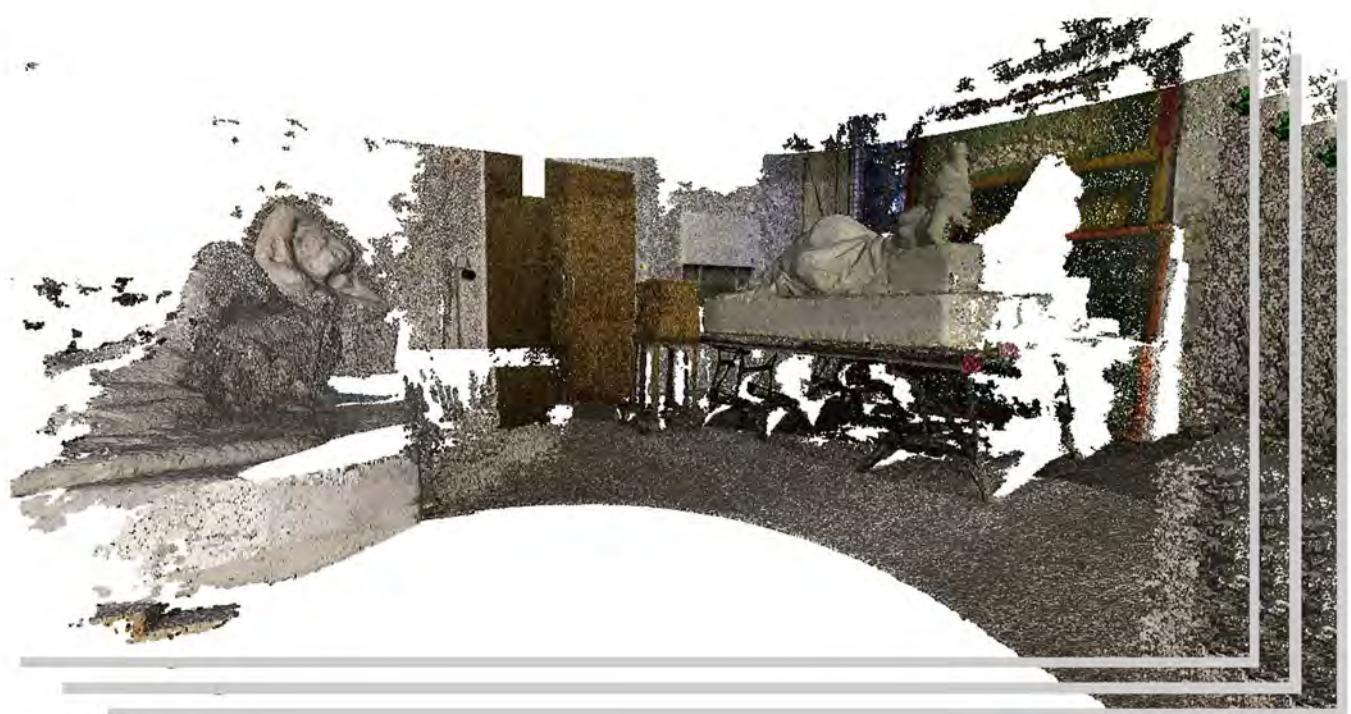



GAVIN TURK, CYCLOPS, 2003, EARTHENWARE, 7 X 7 X 16.6 CM

GAVIN TURK, RECLINING FIGURE, 2003, EARTHENWARE, 7 X 9 X 20 CM

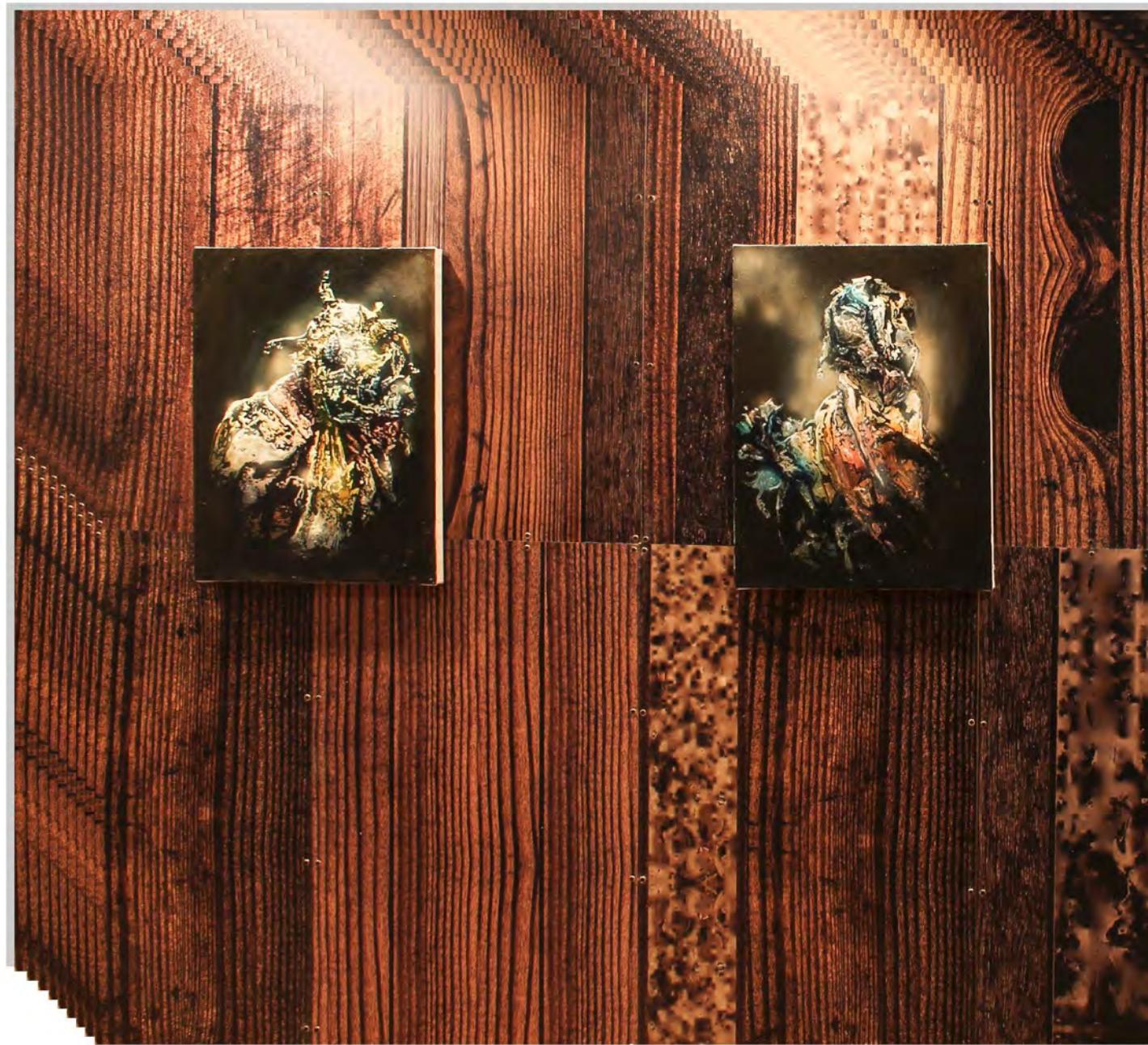
GAVIN TURK, ROUGH SLEEPER, 2003, EARTHENWARE, 9 x 8 x 17.5cm

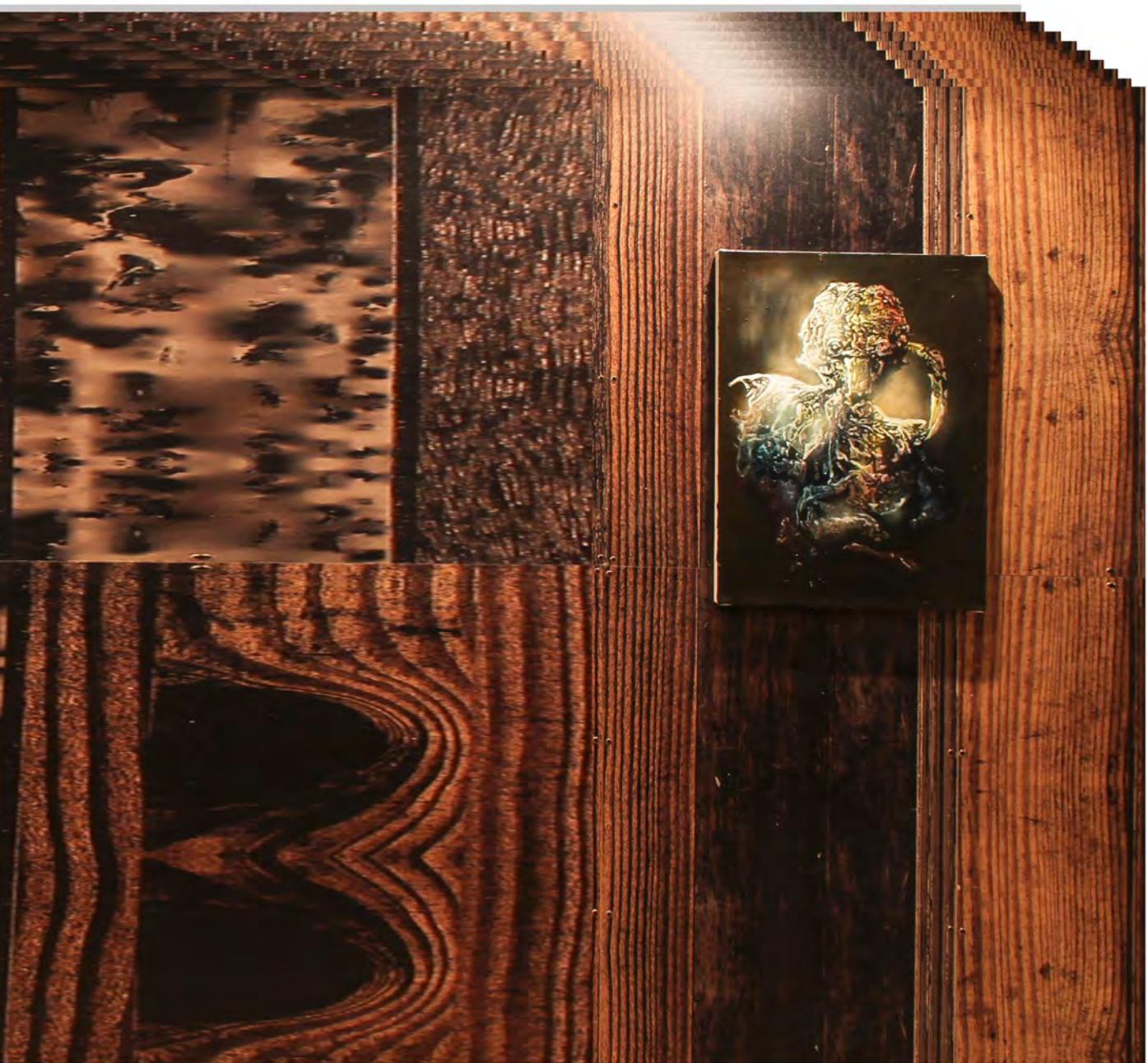
GAVIN TURK, MATISSE WOMAN, 2003, EARTHENWARE, 6 X 7 X 20CM



IAN DAWSON & GAVIN TURK, UNTITLED, 2015, RESIN 3D PRINT, 12 X 8 X 8CM

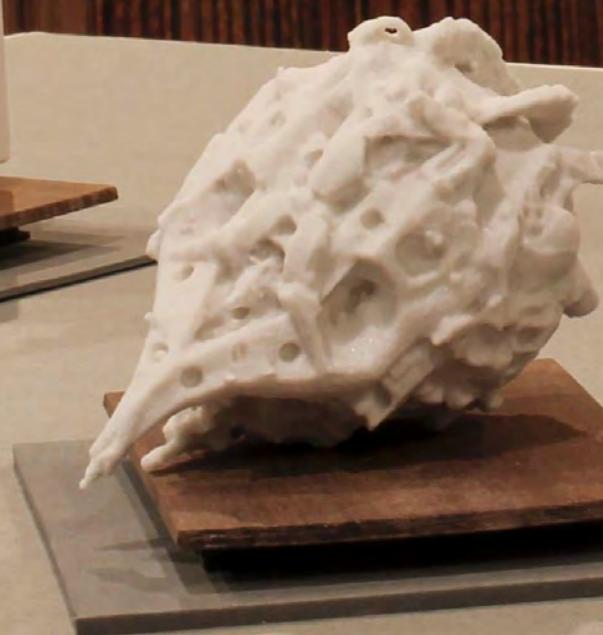
IAN DAWSON & GAVIN TURK, UNTITLED, 2015, 3D RESIN PRINT AND MIXED MEDIA 15 X 20 X 18CM

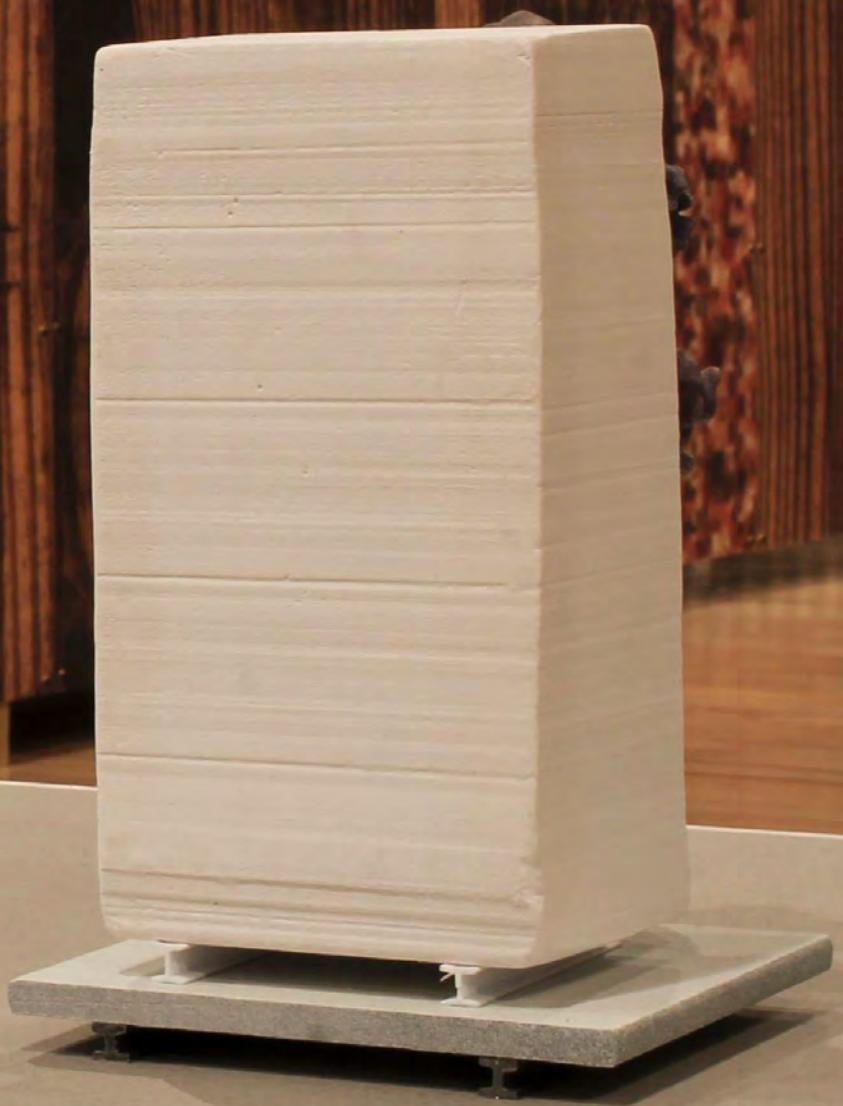




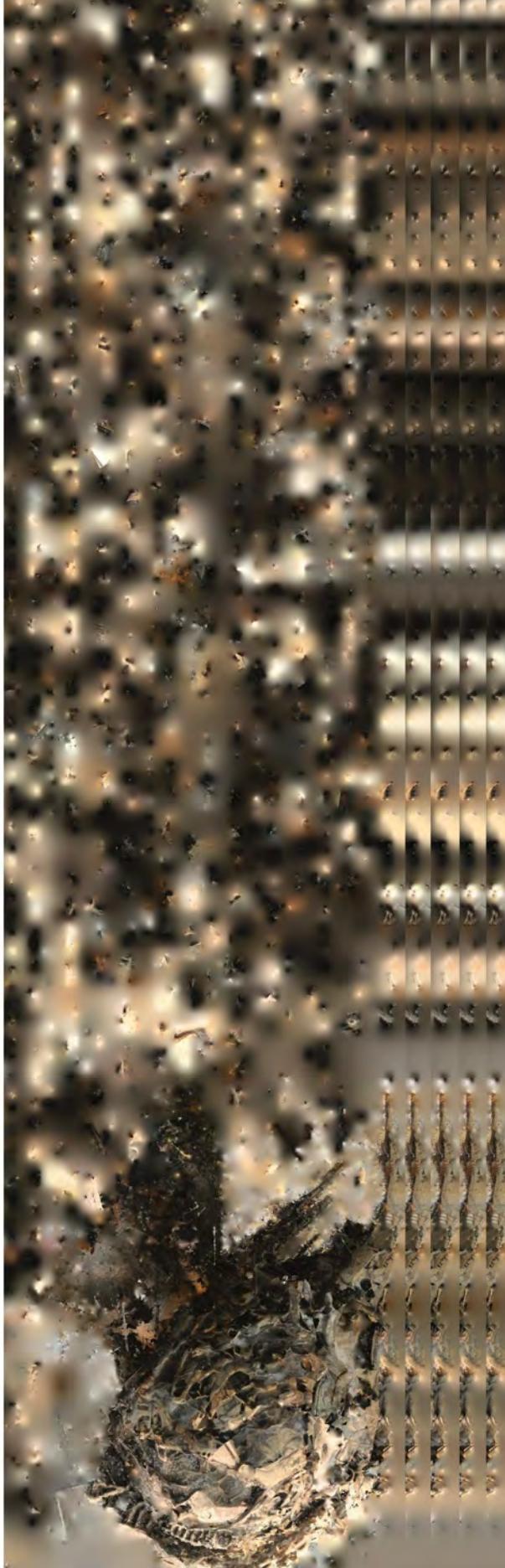
GAVIN TURK, THE SWIMMER, 2003 AND CHRIS HAWTIN, GREGOR, 2015

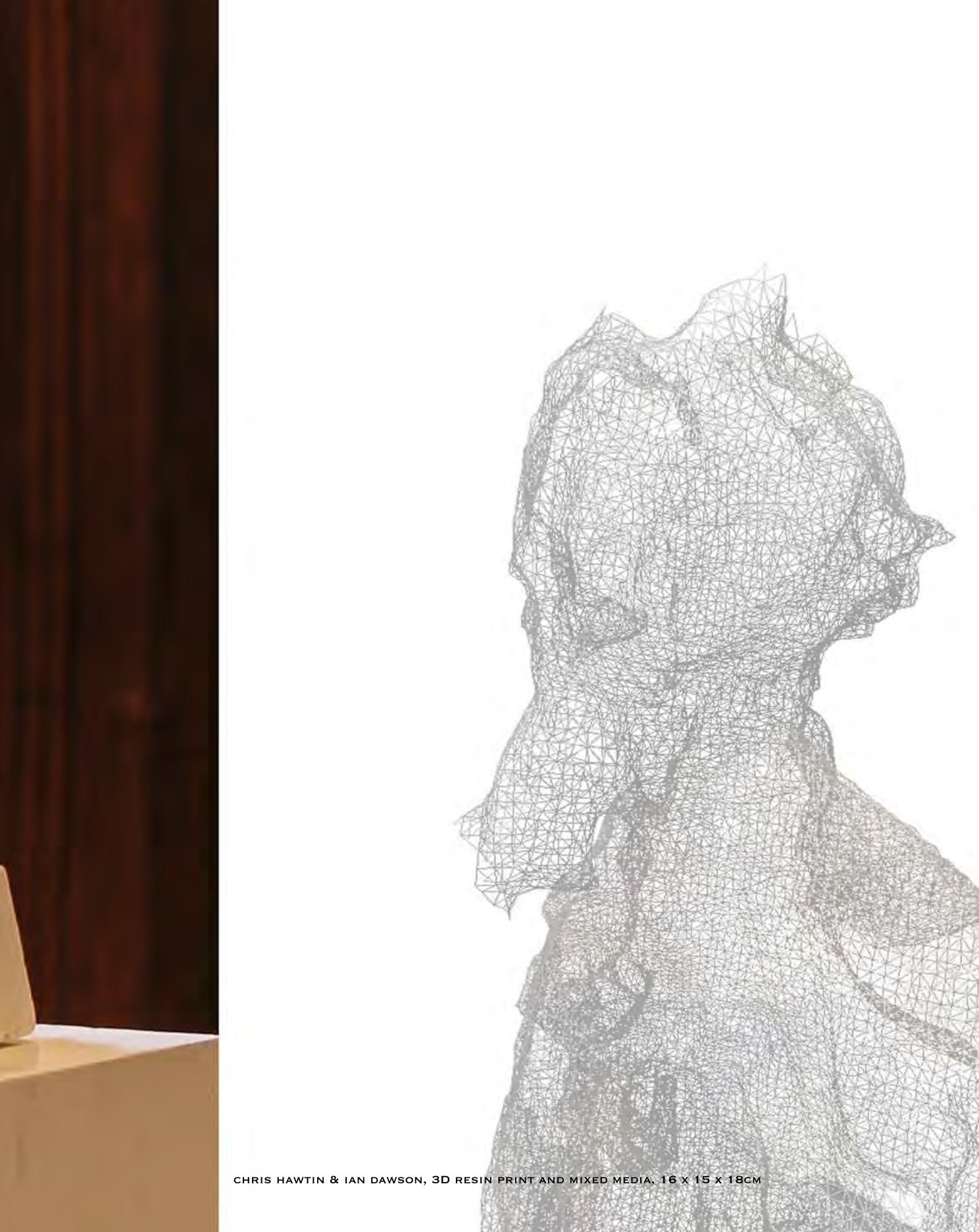
CHRIS HAWTIN, PHOTEUS, 2015, OIL ON CANVAS, 60 X 40CM


CHRIS HAWTIN, CLIO, 2015, OIL ON CANVAS, 60 X 40CM

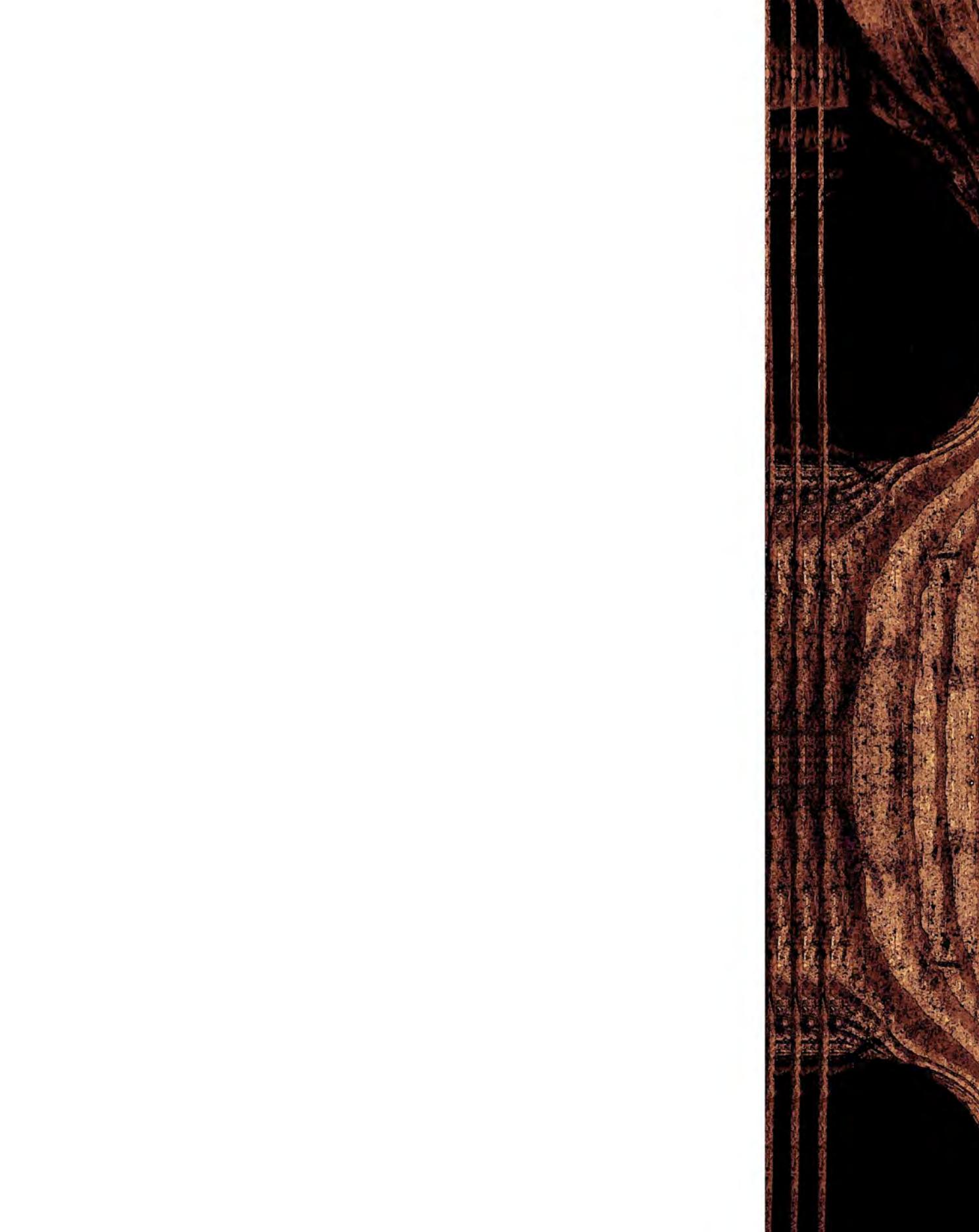


CHRIS HAWTIN, SETH, 2015, OIL ON CANVAS, 60 X 40CM




CHRIS HAWTIN & IAN DAWSON, 3D RESIN PRINT AND MIXED MEDIA, 13 X 12 X 18 CM

CHRIS HAWTIN & IAN DAWSON, 3D RESIN PRINT AND MIXED MEDIA, 10 X 13 X 8CM



CHRIS HAWTIN & IAN DAWSON, 3D RESIN PRINT AND MIXED MEDIA, 16 x 15 x 18CM

KATE ATKIN, '..AND ALL THE TIMES FORMS KEPT GROWING OUT OF MY EGG LIKE CRACKER SNALES' /MEIN FREUND DER BAUM
IST TOT, 2009-20015, PENCIL ON PAPER/ NO PENCIL ON PAPER, 136.5 X 202CM

KATE ATKIN, '...AND ALL THE TIMES FORMS KEPT GROWING OUT OF MY EGG LIKE CRACKER SNALES'/MEIN FREUND DER BAUM IST TOT, (DETAIL)

KATE ATKIN & IAN DAWSON, UNTITLED, 2015, 3D PRINT AND MIXED MEDIA, 38 X 18 X 20cm

KATE ATKIN, A FAINTEST IMPRESSION OF 'REVERSE SELF PORTRAIT', PAPER, 2015, 61 x 55cm

ACKNOWLEDGEMENTS

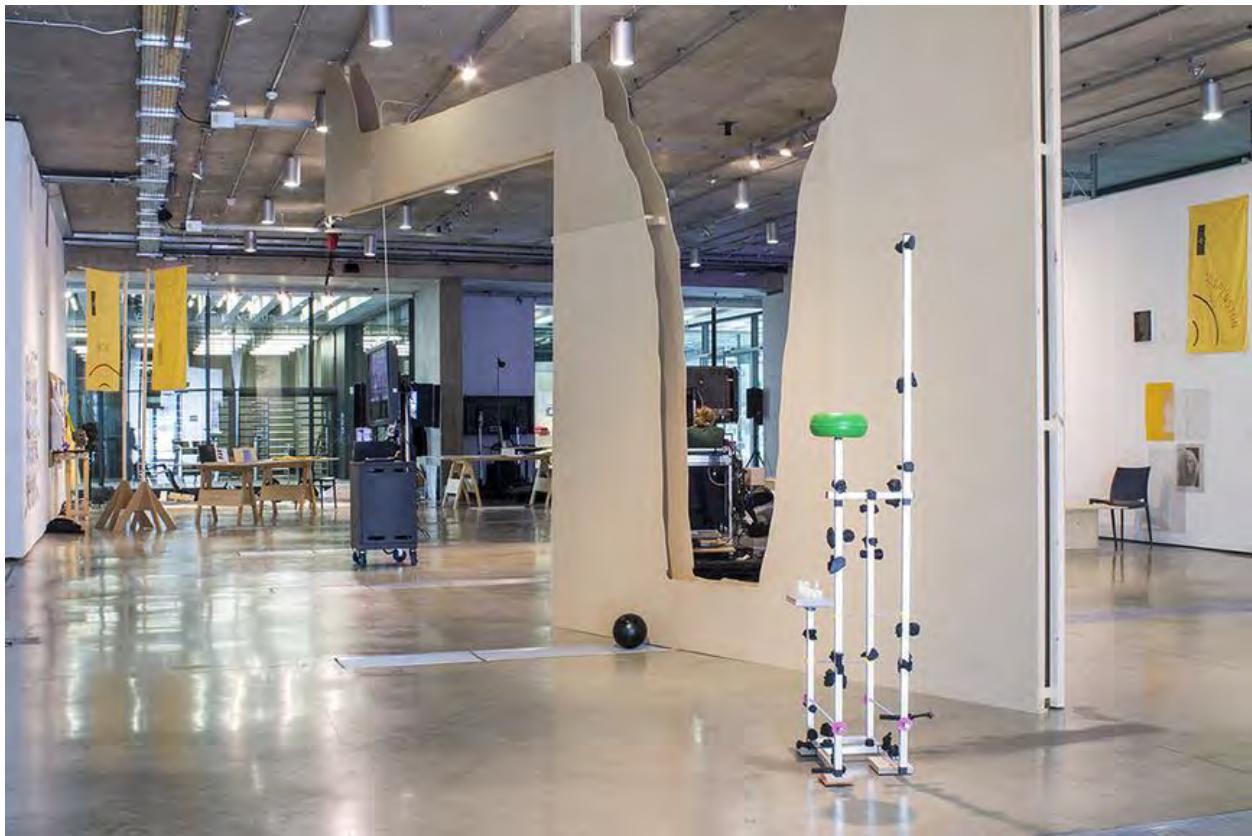
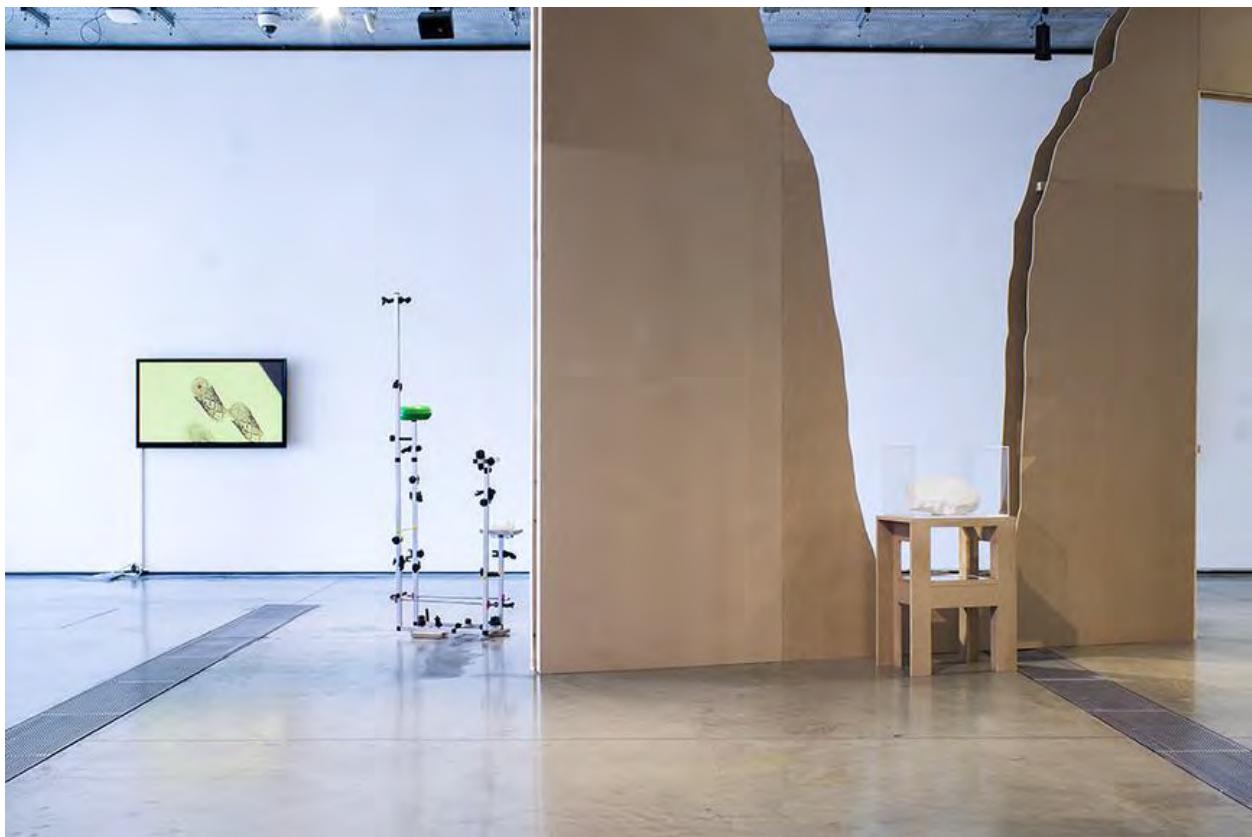
C&C GALLERY AND IAN DAWSON WOULD LIKE TO THANK THE ARTISTS FOR THEIR CONTRIBUTIONS, THEIR COMMITMENT, ENERGY AND ENTHUSIASM IN HELPING DEVELOP AND REALIZE THE WANDERER'S NIGHTSONG II. IT WAS A REMARKABLE EXPERIENCE TO BE INFORMED BY THEIR UNIQUE PERSPECTIVES AND BE ENCOURAGED BY THEIR VISIONS'; THROUGHOUT THE PROCESS THEY HAVE BEEN A CONSTANT SOURCE OF INSPIRATION. THANK YOU!

THANKS ALSO TO SERENA ZACHEO, PAUL RUSHWORTH, GEORGE WATSON, GEORGE THOM, JAMES BRIGGS, ALEX GOULDEN, CHRISTIAN CARTER, ANDREW BROOK, CELESTE CARLETON, ADRIAN BAXTER AND MERI ATKIN, FOR MAKING THE SHOW POSSIBLE. GRATEFUL THANKS MUST ALSO GO TO HELEN HAYWARD, MARTIN WESTWOOD, ANDREW JONES, LOUISA MINKIN AND RYAN BISHOP FOR STIMULATING, SUPPORTING AND SPURRING IN INNUMERABLE WAYS.

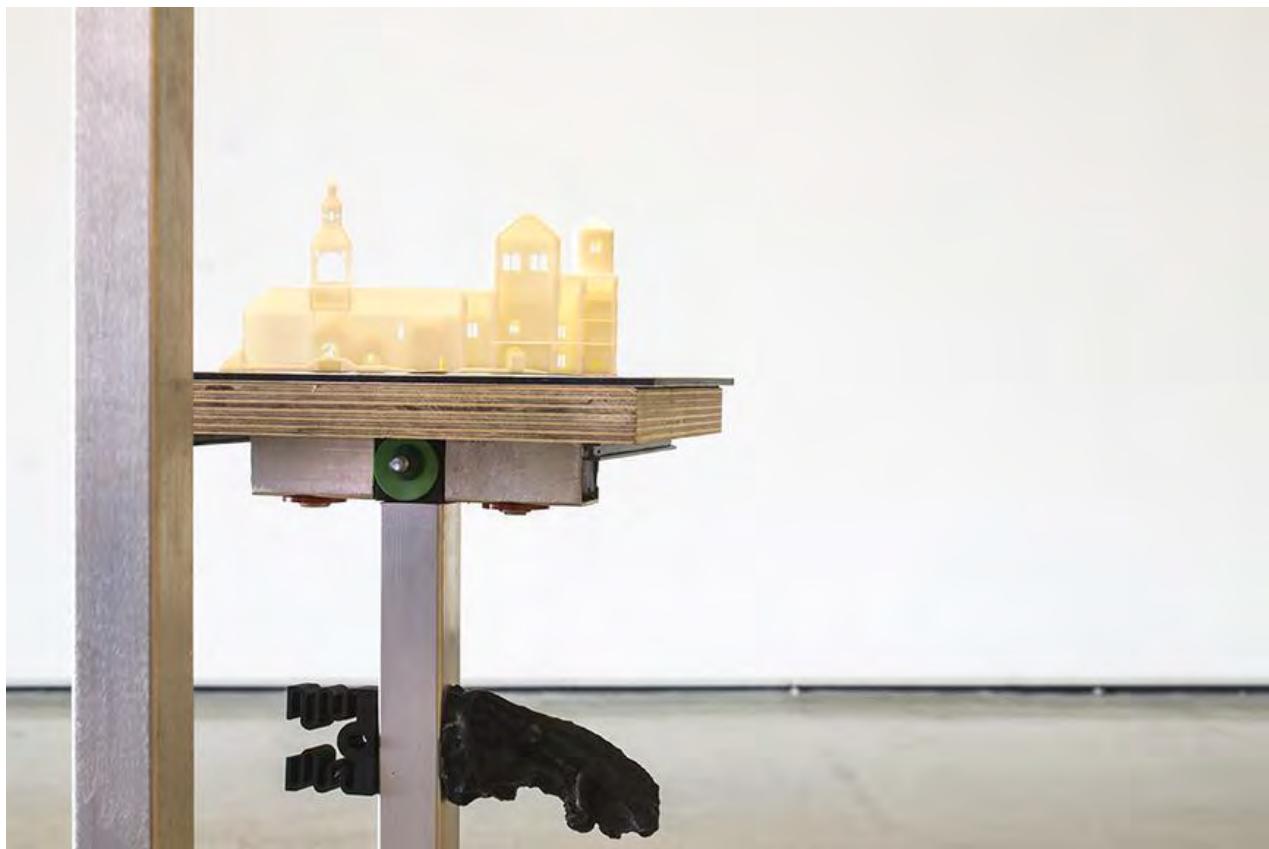

PHOTO CREDITS:

GAVIN TURK, THE SWIMMER © ANDY KEATES
GAVIN TURK, CYCLOPS © ANDY KEATES
GAVIN TURK, ROUGH SLEEPER © ANDY KEATES
GAVIN TURK, RECLINING FIGURE © ANDY KEATES
GAVIN TURK, MATISSE WOMAN © ANDY KEATES
ALL OTHER PHOTOGRAPHS © IAN DAWSON

18 London Road
Forest Hill
London SE23 3HF
www.ccgallery.co.uk



Old Minster (2017)
dimensions variable, aluminium, 3d prints and digital files.

Exhibited at Along the Riverrun, curated by Alex Goulden and George Watson
ArtSway, 24.07.17-30.07.17
Annihilation Event, Lethaby Gallery, London, 22.03.17- 29.03.17



<http://www.iandawsonstudio.com/ian-dawson-along-the-riverrun.html>
<http://www.iandawsonstudio.com/annihilation-event.html>

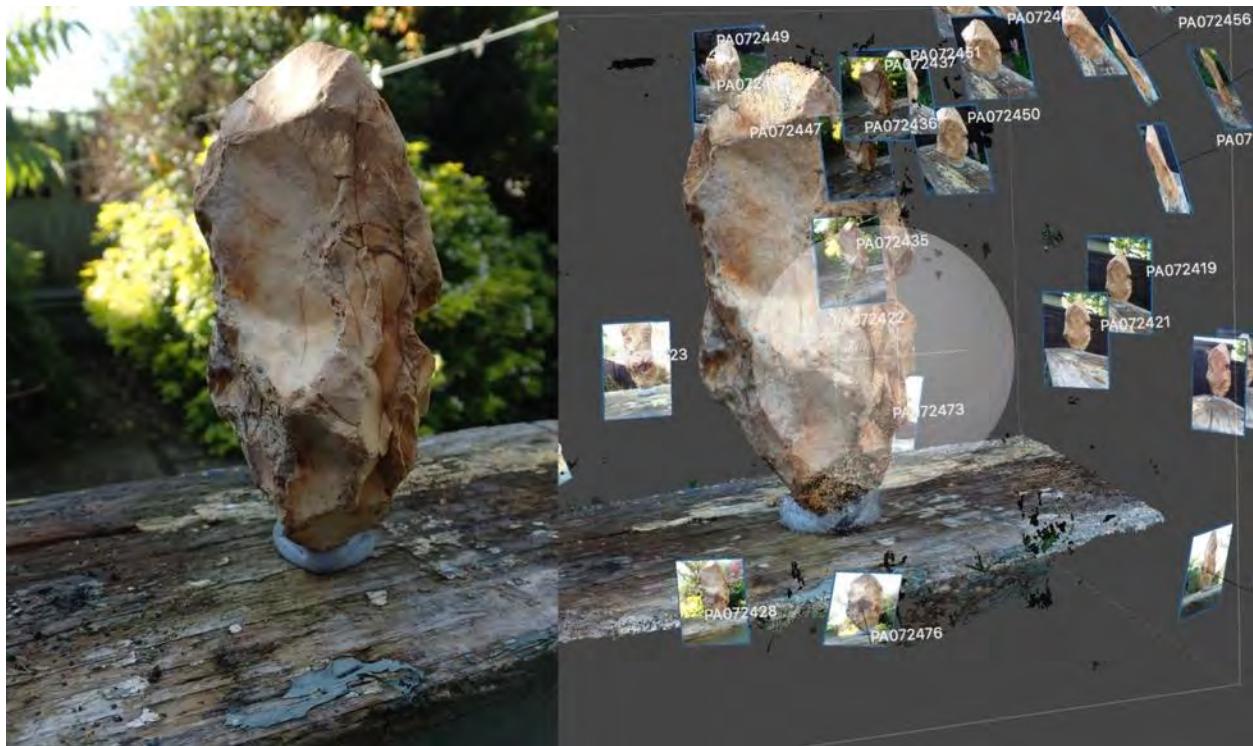
Metalithic Sculpture Series 2019-2022

C328remix, 2022, 3d printed PLA, 170x100x100cm

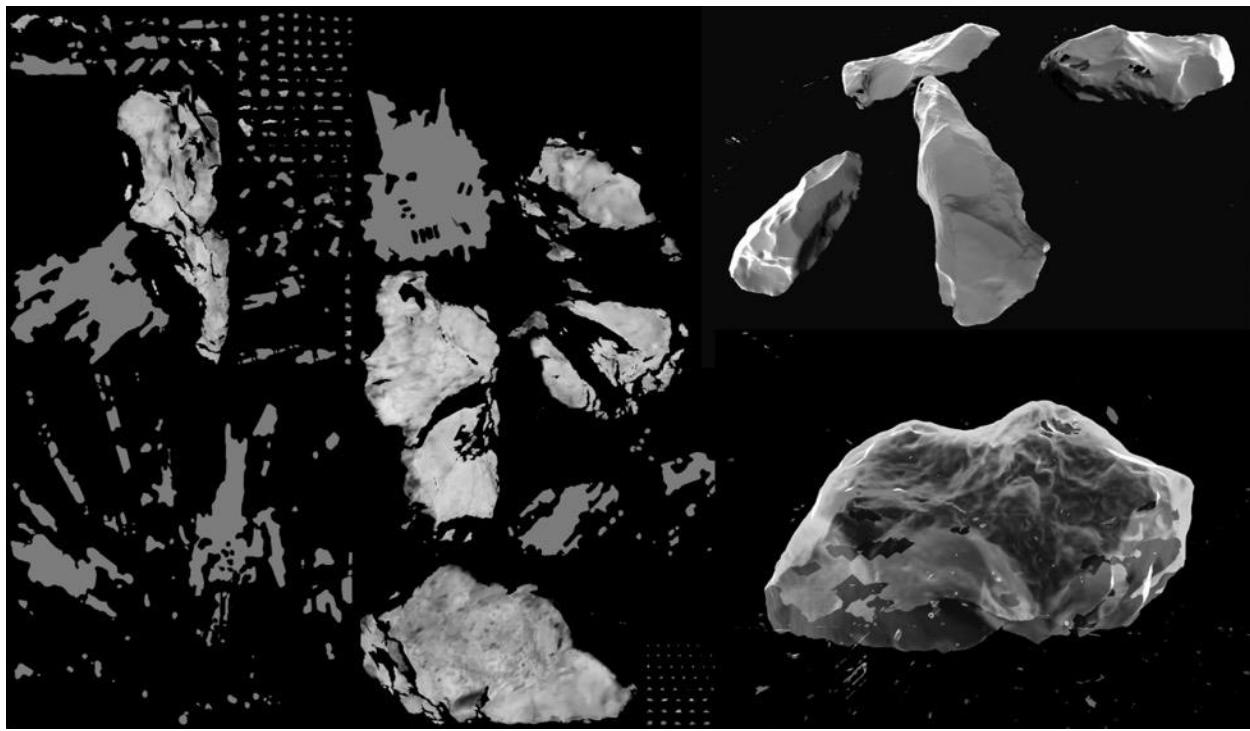
Orkney Star Stone 2021, 3D Printed PLA, 60cm x 50cm x 25cm

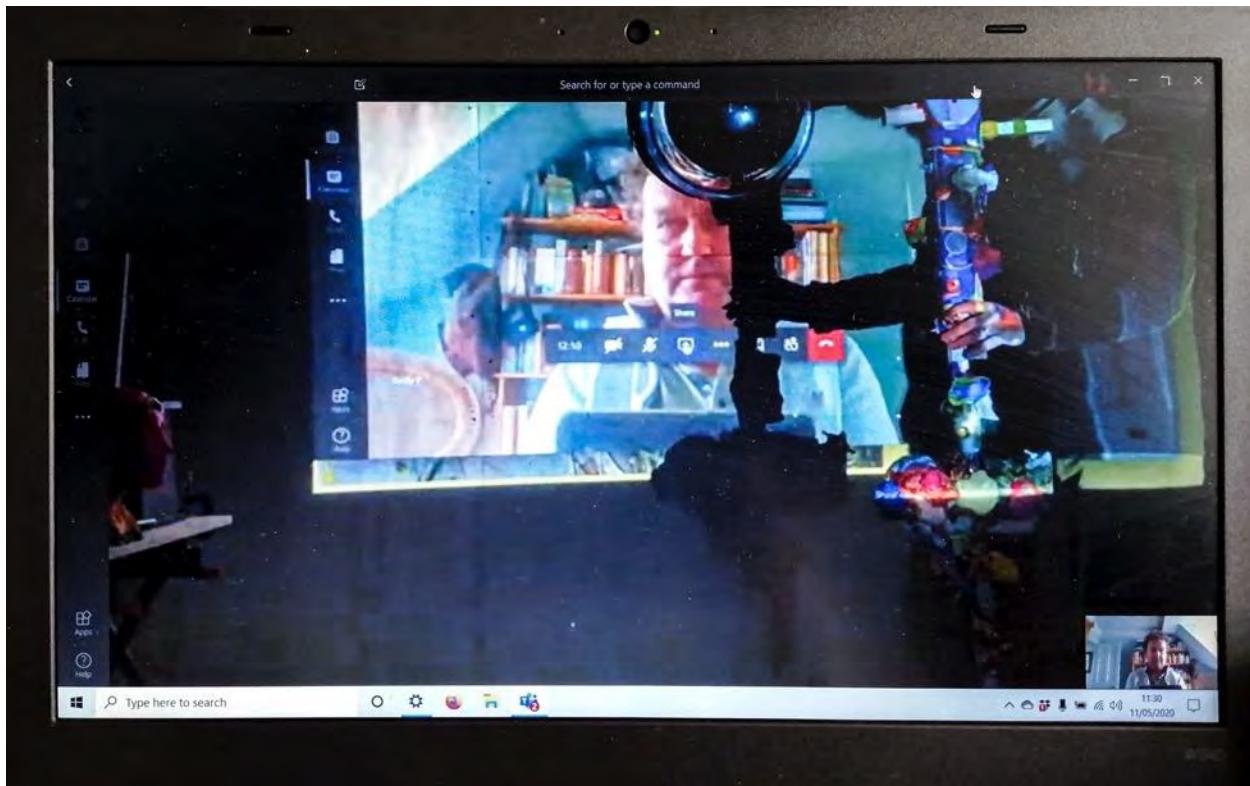
Motisfont 4, 2021, 3D printed PLA, 30 x 54 x 29 cm

Dawson, Cornpick 2021, 3D printed PLA 85 x 40 x 50 cm


Autumn Attic Installation view

Patternicity, installation view


Dawson and Reilly Postcard 1: A silica entangled act of discovery. Image montage 2021


Dawson and Reilly Postcard 2: Structure from Motion (SfM), image montage. Left side; photographic still. Right side; screenshot using Agisoft Metashape. 2021

Dawson and Reilly, Postcard 6: Gaze of the Machines; grasping the artefact remotely. Creaform EXAscan. 2021

Dawson and Reilly, Postcard 7: Robot Vision meets Lucretius; collage of sloughing off digital skins. Composite image. Left side; BMP file. Right side; screenshot of the render mode on MeshLab. 2021

Dawson and Reilly, Postcard 12: Spacetimemattering in a digital mise en abyme; recursive RTI 2021

Dawson and Reilly, Postcard 8: Track and Trace - Ontological itineraries (Wrapper detail and contents)

Dawson and Reilly Postcard 9: Ontological Crossroad 2021

Dawson and Reilly, Motifont 1, 2019

Works exhibited in:

Autumn Attic, Flowers Gallery, Shoreditch London, 12th August -18th September 2021

Patternicity, ASC Gallery London 26th March - 23rd April 2022 and Exeter Phoenix Galleries 30th April - 26th June 2022

Crucible, Thameside Studio's Gallery, London 8th- 23rd April 2022

<http://www.iandawsonstudio.com/dawson-crucible.html>

<http://www.iandawsonstudio.com/dawson-patternicity.html>

<http://www.iandawsonstudio.com/autumn-attic.html>

<http://www.iandawsonstudio.com/metalithics.html>

Messy Assemblages, Residuarity and Recursion within a Phygital Nexus

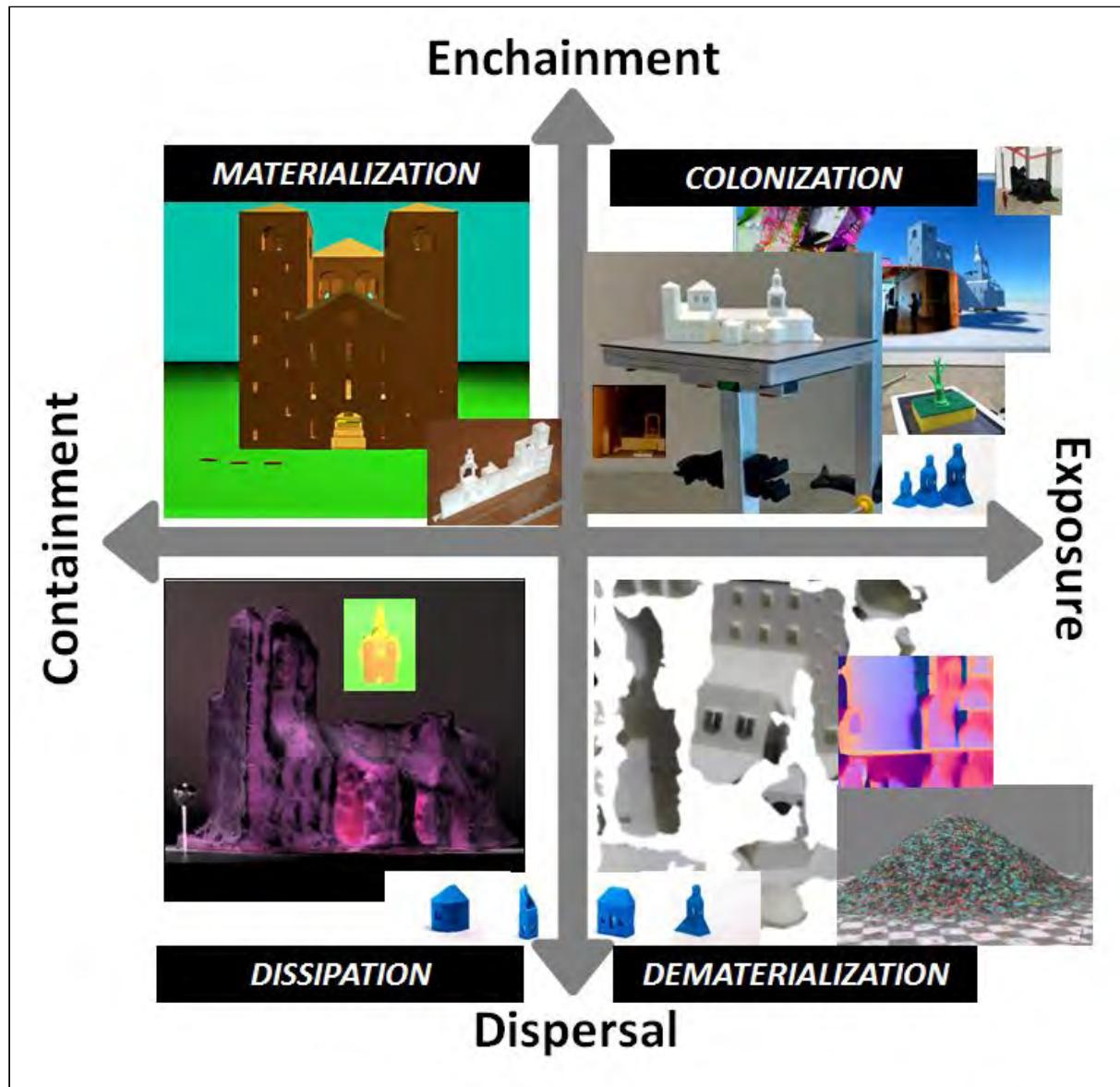
Ian Dawson¹ and Paul Reilly²

Abstract

This visual essay is a reflection on the movement of objects and images within the *phygital* and, in particular, how different components of assemblages meet, mingle and sometimes experience ontological shifts, when an artist and an archaeologist, and their practices and apparatus, intra-act within a 'phygital nexus'. Phygital objects are digitally defined but can be invoked, instantiated and brought into constellation with other entities both physically and virtually. A phygital nexus can be thought of as a no-place and an every-place where digital and physical worlds intersect; a space where novel, 'messy assemblages' can emerge. In our collaboration, we constantly subvert the phygital nexus to appropriate and remix components of multifaceted, multi-(im)material, and multi-temporal phygital objects that recall themselves - nested and extended assemblages of persistent (im)material artefacts and other residues - and refract them through both our distinct, and combined interdisciplinary, critical practices, to produce new *ontological assemblages*, further residues of an ongoing collaboration.

The residues and traces of this reflexive collaboration, includes this essay and an assemblage of art/archaeology forms that comment, recursively, on both previous and subsequent assemblages, and our practices.

Keywords: art/archaeology; collaging; lossyness; messy; ontological assemblages; paradata; phygital.


¹ Winchester School of Art, Faculty of Arts and Humanities, University of Southampton.

ORCID: <https://orcid.org/0000-0002-3695-8582>

² Department of Archaeology, Faculty of Arts and Humanities, University of Southampton.

ORCID: <https://orcid.org/0000-0002-8067-8991>

Visual Abstract

Introduction

This visual essay is a reflection on the movement of objects and images within the *phygital* and, in particular, how different components of assemblages meet, mingle and sometimes experience ontological shifts, when an artist and an archaeologist, and their contrasting practices and apparatus intra-act (sensu Barad 2007) within a *phygital nexus* (e.g., Gant and Reilly 2017). A phygital nexus can be thought of as a no-place and an everyplace in which the boundaries between what is physical and what is virtual are blurred, where digitally-defined objects (actants) are susceptible to transmutations and may be (re)deposited within multiple parallel or intersecting physical and digital assemblages (e.g. Reinhard 2019a), and are able to 'jump' almost anywhere in our digitally hyper-connected universe. In addition, phygital objects can be invoked, instantiated and brought into constellation with other practices³ and entities both physical and virtual, and 'messy' assemblages can, and do, emerge from these interventions. Phygital transformations, moreover, may be multi-directional: digital objects can become physical and, conversely, material instantiations can be virtualised.

In our collaboration, we constantly subvert the phygital nexus to enable us to appropriate and remix components of multifaceted, multi-(im)material, and multi-temporal phygital artefacts that recall themselves - nested and extended assemblages of persistent (im)material artefacts⁴ and other residues - and refract them through both our distinct, and combined interdisciplinary, critical practices, to produce new *ontological assemblages*, further residues of an ongoing collaboration. The residues and traces of this reflexive, *team SHaG*-like collaboration, has evolved iteratively as we each handed over work in progress to the other (Figure 1) to be enriched and developed (see Sillman, Humphrey and Green n.d.), and includes this essay and an assemblage of art/archaeology pieces that comment, recursively, on both previous and subsequent assemblages, and our practices.

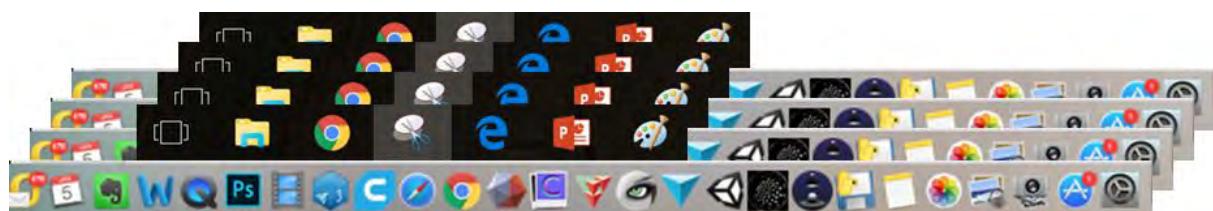


Figure 1: Interlaced studios

³ Although it will not be explored at this stage, we recognise and embrace the potential to learn from the embodied practices of other maker communities in the phygital. For example, Bettina Nissen (2014) used small 3D sensors to track the gestures of crochet makers and 3D printed their creative movements. Elsewhere, another maker, Janelle Shane (2018), trained a neural net to create new knitting instructions, which members of the online knitting community *Ravelry* interpret in creative ways into physical creations.

⁴ Being (im)material is a grey zone where material and immaterial aspects of an entity coalesce. An example of an (im)material entity would be the combination of the immaterial code definition of an object and its 3D material printed output (Buchli 2015). See also Figure 27.

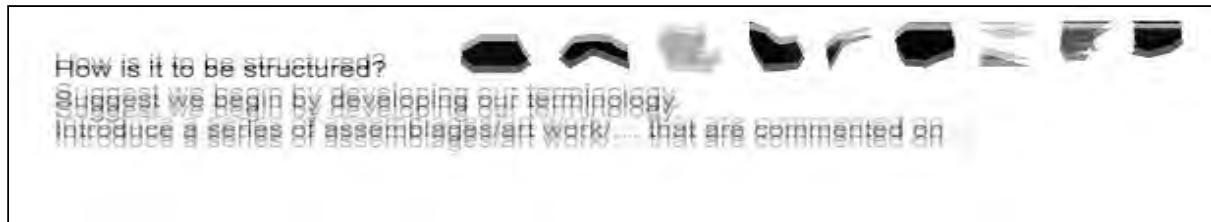


Figure 2: phygital Old Minster UV fragments collage

Assemblages and Residuality

The term 'assemblage' has many connotations. In art it refers to the combination of found and collected objects into a composition (e.g. Figure 2). In western tradition, it is commonly asserted to have begun with Picasso in 1918 and extends like collage as a methodology (e.g. Craig 2008) to take images and objects away from their proper function so as to see them for what they might be (Hamilakis and Jones 2017, 77-79). As Theodor Adorno would say "Art is magic delivered from the lie of being truth". In archaeology, the concept of assemblage has traditionally had two main distinct, but overlapping, meanings. It can refer to "a collection of objects associated on the basis of their depositional or spatial find-context (e.g. midden assemblage) and a collection of one type of object found within a site or area (e.g. pottery assemblage)" (Lucas 2012, 193-4). However, Gavin Lucas, building on Manuel DeLanda's assemblage theory, who draws, residually, on the philosophy of Giles Deleuze and Felix Guattari, has rearticulated the concept of archaeological assemblages to foreground their external relationships, such as their relations to their environment and other assemblages, as opposed to the internal configurations of their component parts, which are recognized as having a certain amount of autonomy, insofar as they can move between assemblages and recombine elsewhere in other spatiotemporal contexts.

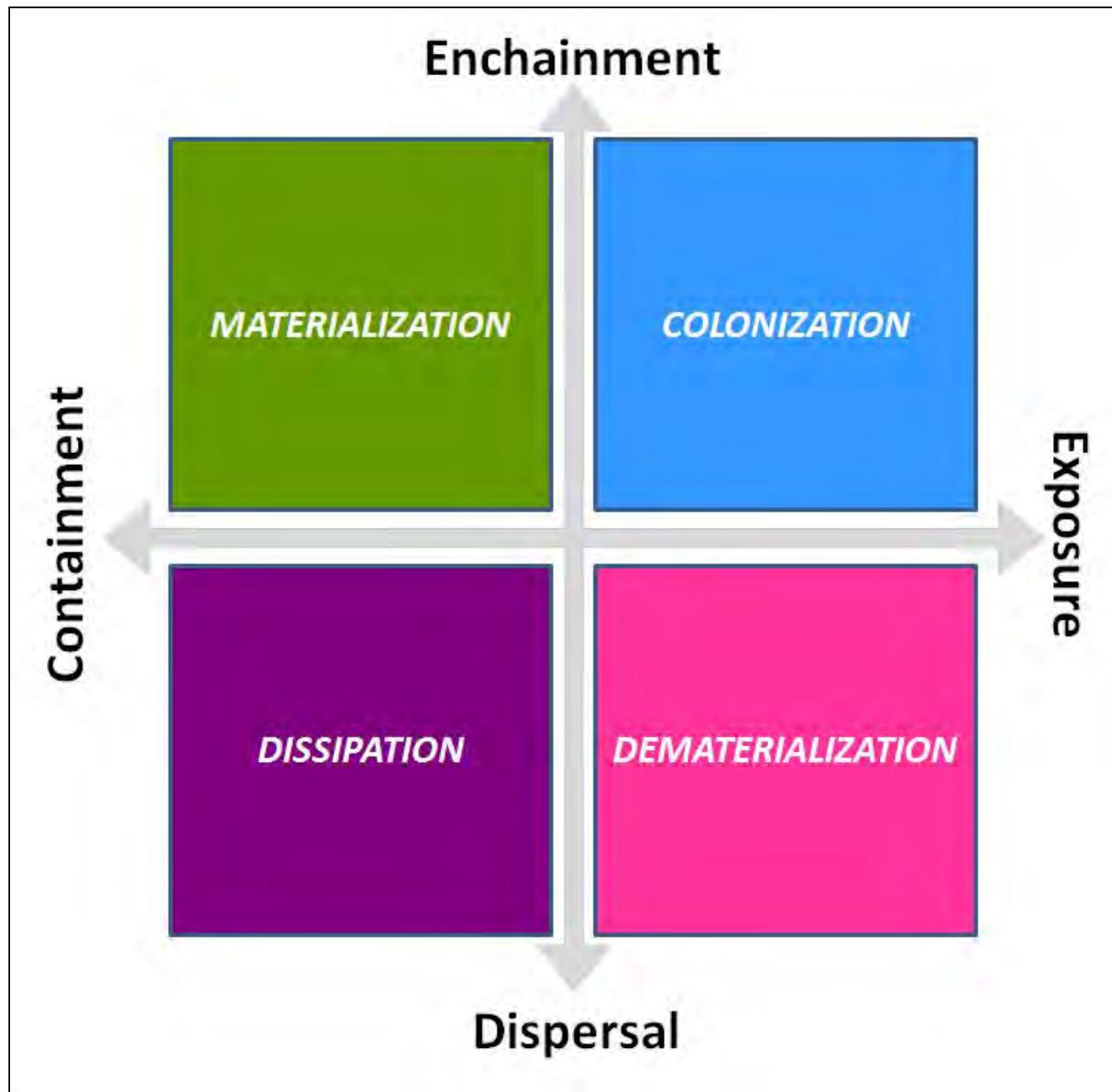


Figure 3: Modified Enchainment versus Containment Grid of Forces (after Lucas 2012, Fig. 16, p.213)

As Lucas (2012, 204) observes, '[a]lmost all, if not all, objects are strictly speaking residues of prior assemblages'. He deploys two analytical frameworks he describes as 'grids of forces' in order to inject theoretical depth into the study of archaeological assemblages: the first grid analyses *permeability* versus *persistence*, the second allows us to investigate the tension between the forces of *assembly* versus *disassembly*. It is this latter grid of forces operating on assemblages that our collaboration is currently most concerned with. Within this framework (see Figure 3) Lucas' focus of attention is firmly on the tension between the processes of (re)materialization and dematerialization (Lucas 2012, p. 213, Fig. 16). However, Reilly (2015) also foregrounded the two other active forces operating in the complimentary spaces of this framework. *Colonization* and *dissipation* also have vital roles to play within assemblages, principally in reconfiguring or extending them, particularly in the phygital. Colonization is shaped by the dual processes of enchainment (also described as coding, or citation) and exposure (or deterritorialization). This force maintains the material coherence of the assemblage even though it might be displaced, perhaps far away, in time and space from its original setting. However, the vastly accelerated rates of recursion and

residuality enabled in the phygital nexus opens up the possibility of uncontrollable mutations and glitches, both minuscule and major, and other accidents of context or reproduction (e.g., Virilio 2003; Minkin 2016). Colonization can thus radically reconfigure the topology and boundaries of assemblages. By contrast, the entropic force of *dissipation* harnesses the twin processes of containment and dispersal, meaning that elements of an assemblage break up and disintegrate, but largely remain close to their original setting. Whether or not the assemblage is subject to the processes of containment or deterritorialization, persistent components that transfer into new contexts and assemblages can also be considered both 'itinerant objects' (Joyce and Gillespie 2015) and residuals.

'Residuality' refers to the phenomenon of objects, fragments or materials that persist and reoccur in contexts other than those they originated in (e.g., Brown 1995; Lucas 2017).

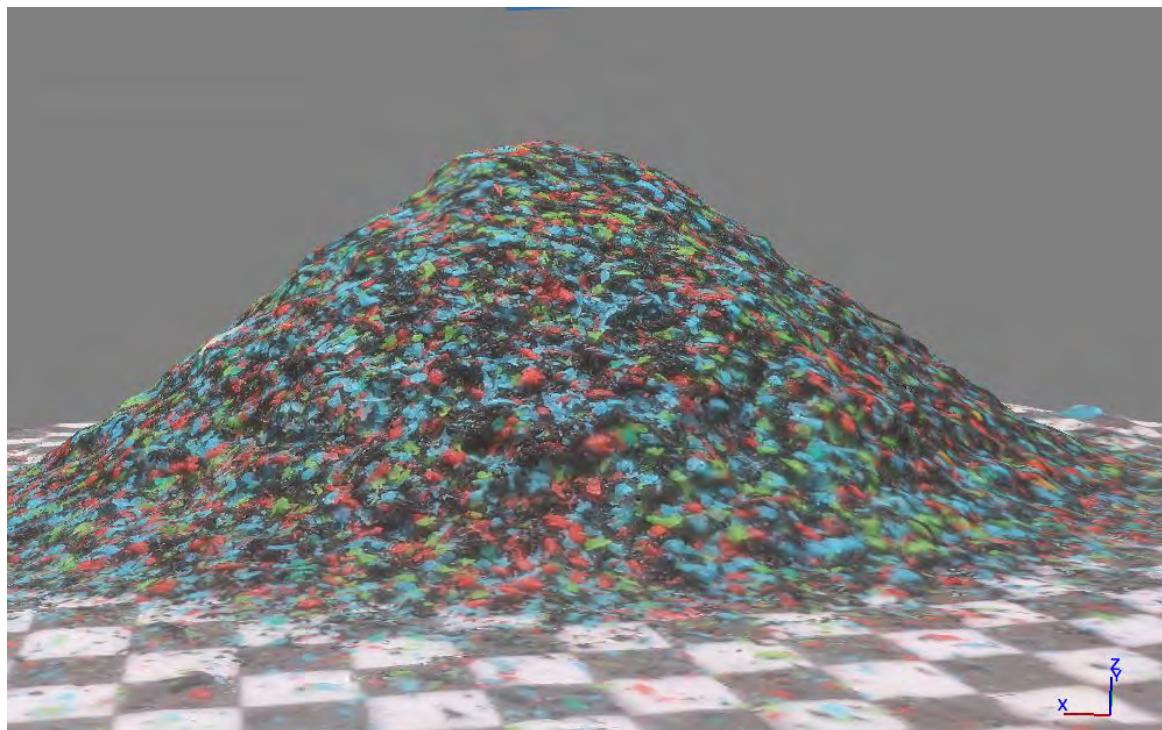


Figure 4: PLA spoil heap - a study in phygital Disassembly/Assembly

Residuality introduces an element of stochastic variability into assemblages as new relational properties, and alternative agentic impact may develop depending on the (re)configuration of their components (e.g., Figure 4) and the particular capacities and agencies of the elements from which it is composed (see Hamilakis and Jones 2017; Jones 2018, 23).

Some things last longer than others and may acquire quite extensive biographies. Pottery and plastics, for example, are particularly persistent and are constantly being dug up from one context and removed into new ones. Consider the sinking of a well. The excavator cuts through pre-existing deposits, redepositing materials from earlier temporal horizons into subsequent, increasingly messy, assemblages and contexts containing (re)mixed, or reworked, components originating from multiple temporal horizons. In this shift of context some residual objects within the assemblage may experience ontological transformations. For instance, a flat, circular ceramic object may originally serve as a plate, but if it is broken its material residues - principally sherds - can start to disperse. Every residual object has the

potential to become a fresh component of one or more subsequent new contexts in which the ceramic material might become, for example, pieces in a mosaic, or rubbish items in a pit, rubble in a trampled floor, packing material in a posthole, and archaeological evidence.

The residual objects outlined above are more or less materially persistent. Their shape may have been radically altered, but some of the original material they were composed of is still present. However, sometimes it is only the form of the object that persists, while the material in which it was previously instantiated is recursively replaced. Reilly (2015a), for instance, traces different objects made from the voids encountered at Pompeii (e.g., casts, effigies, pseudomorphs, skeuomorphs and 3D prints, amongst others). The recursive, or self-referencing, component here is the form of the original or prototype. Consider the maintenance of an ancient church. Over the centuries elements of the fabric and furniture of the building degrade and must be replaced. Probably every major minster still in use in Europe has a team of masons replacing elements of the persistent conformation we share with previous generations, but using freshly quarried stone.

Figure 5: PLA reprint iteration 3

Figure 6: UV fragments II

Phygital assemblages can be both, or either, residual or recursive in nature, since phygital objects are easily replicated, aggregated, augmented, resampled, processed, or transcoded into other formats, and can be redeposited in different materials and at different scales (e.g., Figures 4, 5, 6, 7, 8 & 9). Moreover, dimensions can be flattened (e.g., Loyless 2018), and planes turned (e.g., Figure 10), recalling the strange loops and paradoxes of the recursive structures and processes that fascinated the likes of Gödel, Escher, and Bach (Hofstadter 1979).

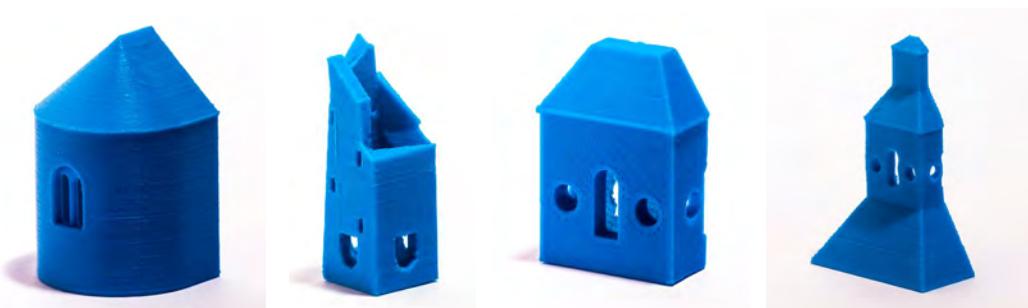


Figure 7: Hack Minster Hoard

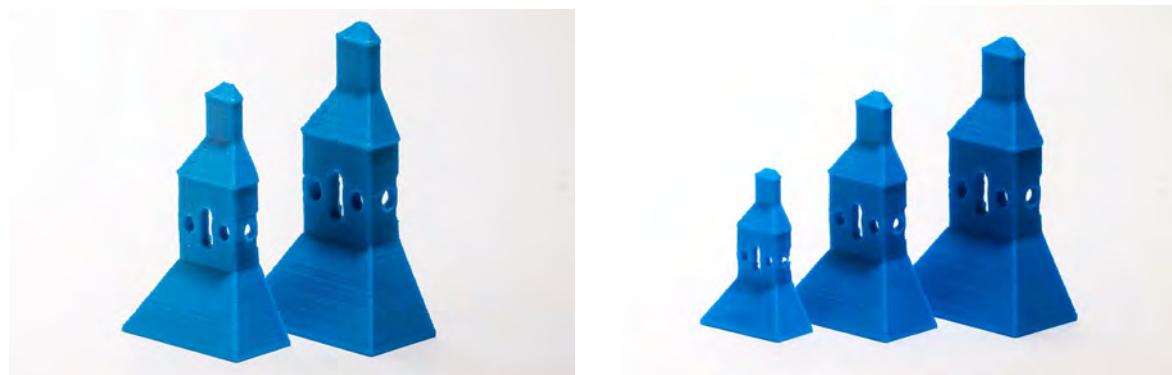


Figure 8: Scale as recursion +/- 1

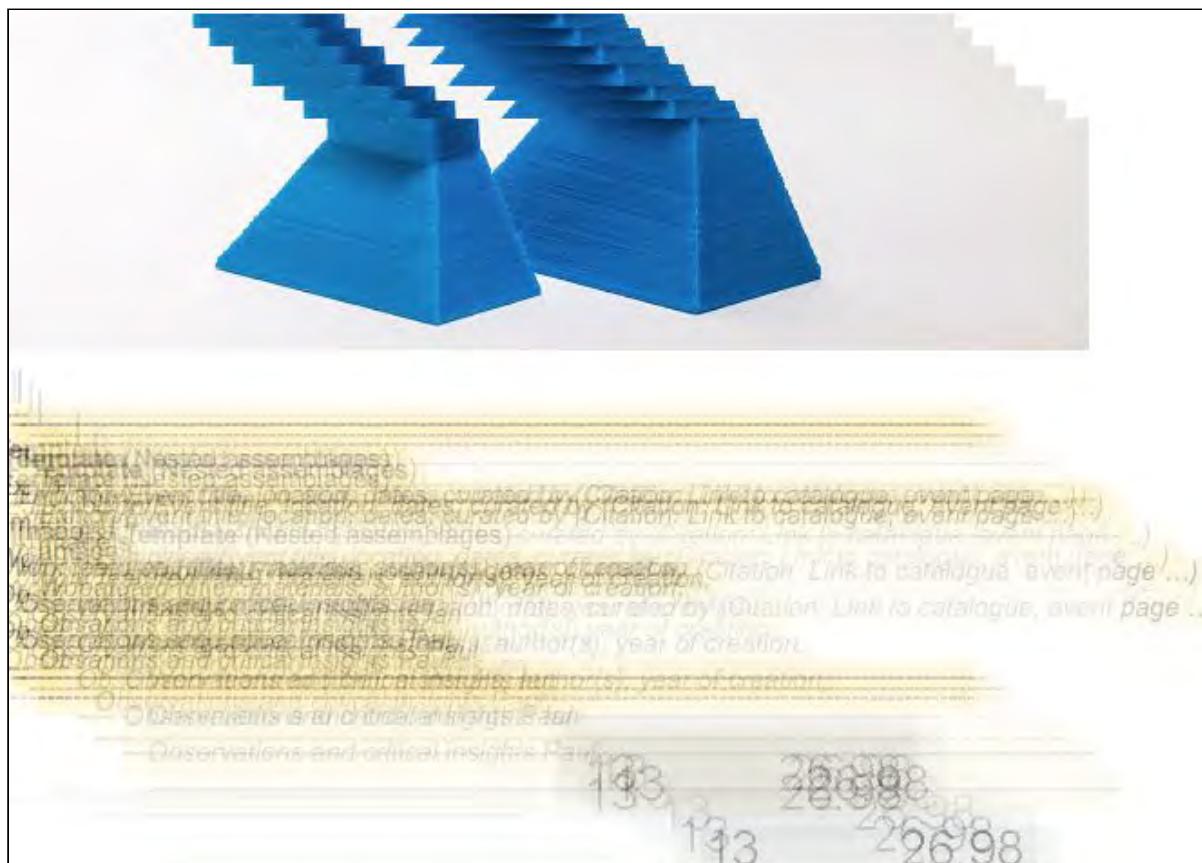
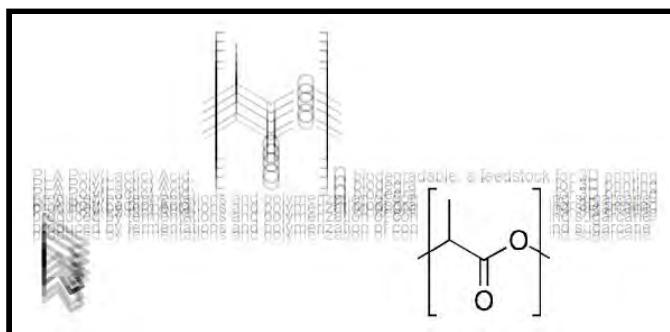
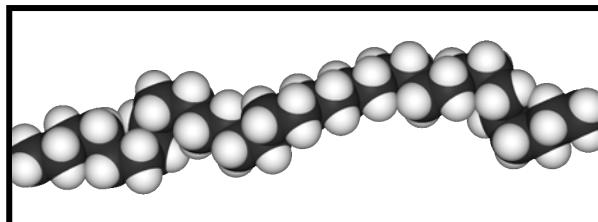
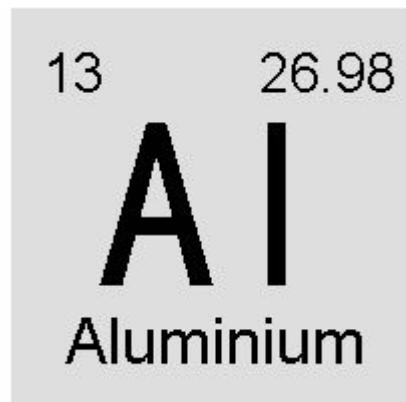



Figure 10: Stair of churches


Thus extended, these phygital assemblages are susceptible to new kinds of exploration and analysis, and may be productively recontextualized, reiterated, (re)materialized, reconceptualized, re(con)figured, and (re)discovered. For instance, a digitally rendered edifice may at one moment shrink away as the virtual explorer flies - angel-like - around it, but in the next instant the virtual pedestrian explorer can be enveloped by the interior of the same so-called 'solid' model. Both journeys can also be endlessly transformed by adjusting lighting schemes and the resolution used. Equally, the identical digital solid model definition code may produce a 3D material print. Here too myriad perspectives disclose themselves and new registers of intra-action emerge. At one end of the scale, such a physical model might be 3D printed as a hand-holdable and discoverable plastic miniature which might furnish a small-scale diorama. At the other, it is also theoretically possible to 3D fabricate the same digitally defined assemblage in almost any material (e.g. Figures 11, 12, 13 & 14), or indeed multiple, or composite, materials, at any scale, including life size (Reilly, 2015b).


Starch substrate

Layered Polylactic Acid (PLA)

Polyethylene chain

Aluminium Powder

Figure 8: 3D printing deposits

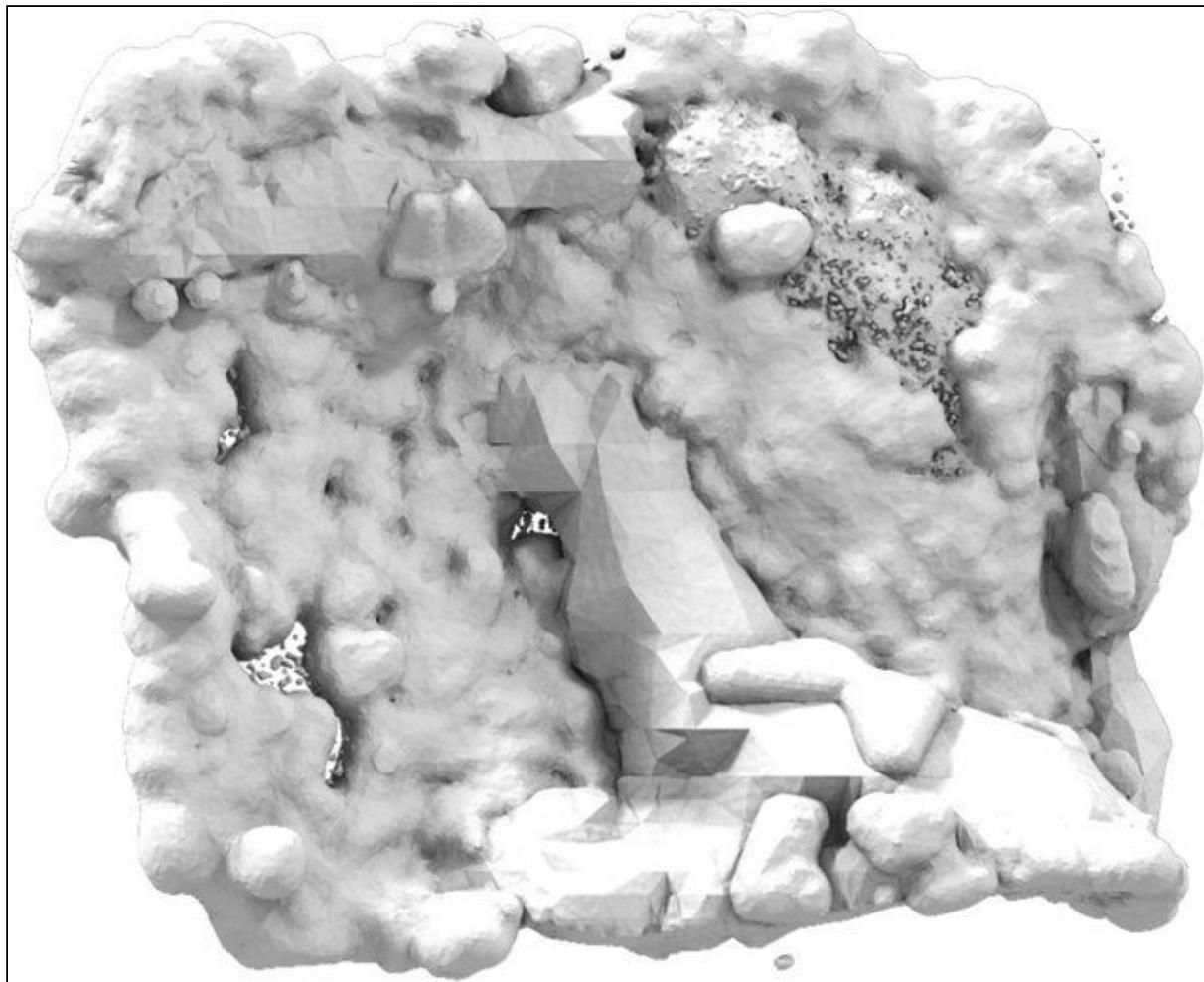


Figure 10: Plastic Print derived from aggregated images of the Devil's Chair, Avebury (Louisa Minkin 2015, with permission)

Many other ontological transformations abound in the phygital and can occur in very rapid succession. Consider Louisa Minkin's *Plastic Print derived from aggregated images of the Devil's Chair, Avebury* (2015). For this piece (reproduced in Figure 10), Minkin aggregated images taken by tourists adopting the same pose at this iconic megalith over many years to produce a 3D material 'souvenir object of uncertain spatio-temporal status' (Minkin 2016, p.122, & figure 3, p.123). This disturbing temporal-frankenstein-like simulacrum is also a phygital coloniser. Reversing the same technology flows, born-digital physical instantiations can break back into the virtual realm via computational photography, such as photogrammetry (Figure 16) or Reflectance Transformation Imaging (RTI) (e.g., Figures 11 & 12), and a rapidly expanding assemblage of other scanning technologies. Such apparatus has been characterised by Jeremy Huggett (2017) as 'cognitive artefacts' that encapsulate *hidden* recursions of the practices, techniques, calculations, and interventions that help us explore, reveal, capture, and characterise archaeological objects (see also Jones 2002; Latour and Woolgar 1986). Black-boxes or not, such instruments (of colonisation) are now commonplace in both archaeological (e.g., Beale and Reilly 2017; Graham 2018; 2019; Jones and Díaz-Guardamino 2019) and artist practice (e.g., Beale *et al.* 2013; Minkin 2016; Petch 2019; Dawson in press). However, all DSLR images and digital scans are based on point measurements and no matter what resolution is adopted they are still only digital *surface samples*, and consequently always less than the original subject under examination. When such point readings are interpolated into meshes for 3D renders or 3D printing a significant proportion of these sampled data are discarded algorithmically. In other words

more detail is being lost with each new recursive rendering, print or scan. We also explore this phenomenon in our collaboration which presents itself in second or third generation print-outs as a gradual softening of form as once sharply defined conformations are digitally eroded (e.g. compare Figures 5 and 17).

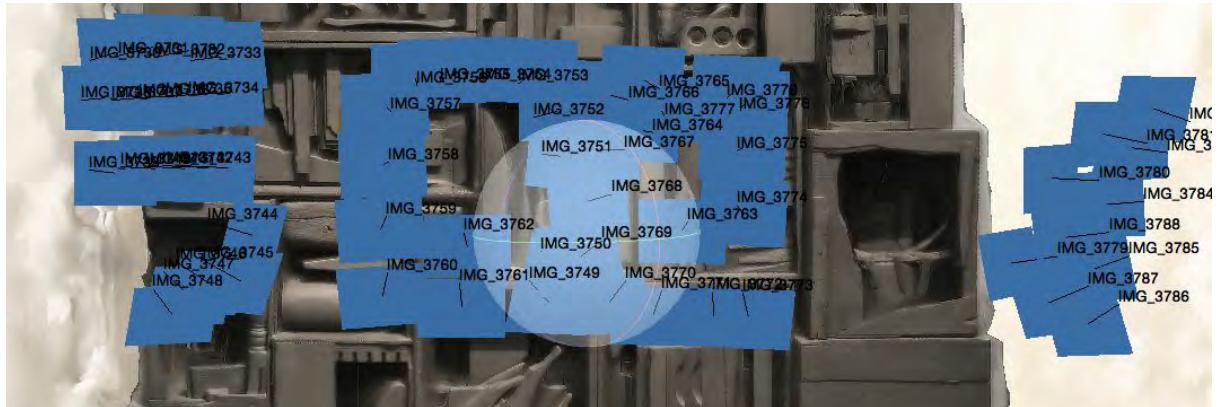


Figure 11: Double assemblage

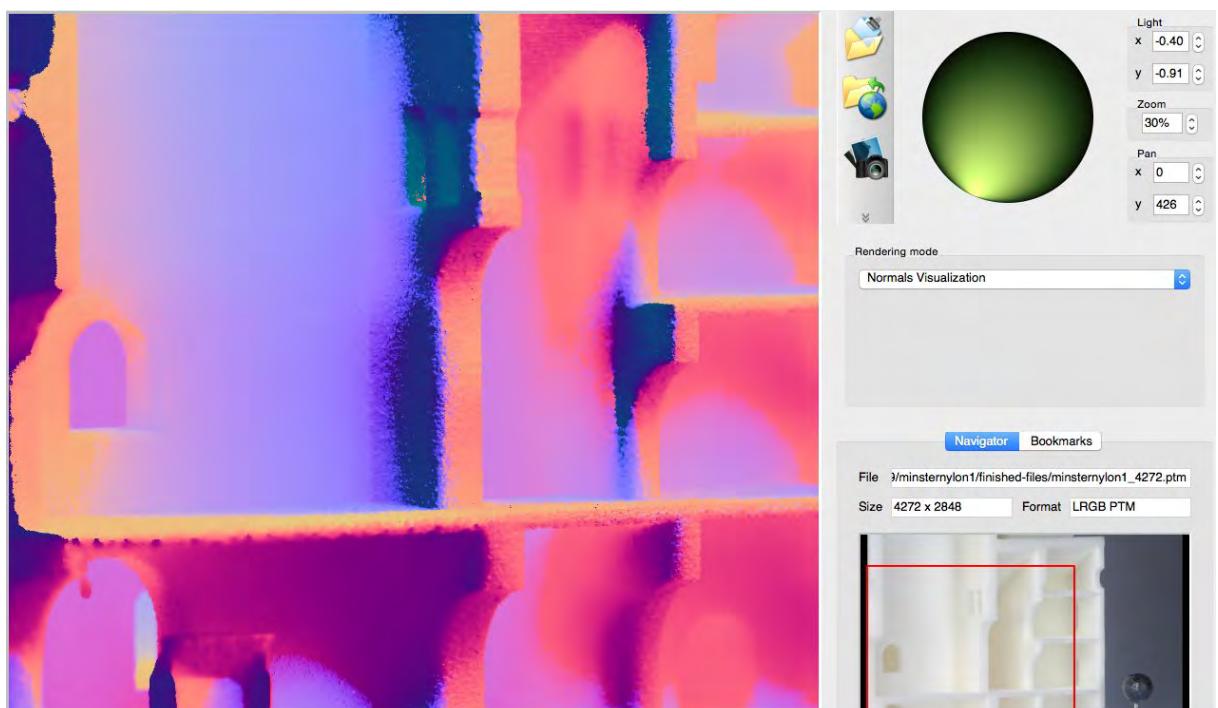
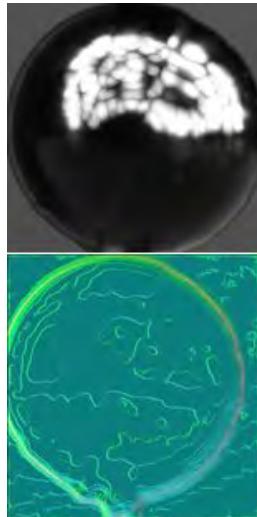



Figure 12: Triple spoof chameleon architecture: interior RTI image of a 3D print of an archaeological Constructive Solid Geometry (CSG) modelled re-imagination of a building annihilated in CE 1093/4

Many of RTIs featured in this essay virtually (re)presence a 3D printed re-imagination of the digital Old Minster of Winchester. RTI is a computational photography technique in which known lighting information derived from multiple digital photographs is mathematically synthesised to build a model of the subject's surface shape and properties⁵. However, as Andy Jones and Marta Díaz-Guardamino (2019, 213) make clear, “[i]t would be a mistake to assume that RTI images were simply photographs; they are ontologically complex composite

⁵ Refer to Cultural Heritage Imaging for an excellent up-to-date introduction to, and state of the art examples of, RTI practices (@chi): <http://culturalheritageimaging.org/Technologies/RTI/>

constructed images, with a certain kinship to the photographic". In a sense, the initial geometry and surface properties of the object of study retreat, or dissipate, into residual 'surface normals' and morphing shadows as the RTI algorithms generate a kind of mathematical mirage, yet another recursion accompanied by another ontological shift, and representing a second or third order 'spoof' of the initial geometric re-imagination (Figure 12).

When viewer, subject and RTI parameters playfully intra-act, the mirage is continually reinvented, chameleon-like, producing a stream of surrealist visualisations, radically altering our apprehension of light, space and surface⁶. For example, applying specular enhancement to a previously dull matt surface has the effect of shining harsh raking lights across a now shiny surface, producing almost haptic highlights and shadows (e.g., Figure 13), which can often reveal surface information that is not immediately disclosed under direct empirical examination of the original physical object or, indeed, the individual initial digital photographs. Key to the production of RTIs is the inclusion of a highly polished sphere in the assemblage; the highlights produced on the sphere by each differently positioned flash of the strobe are used to derive the surface geometry of the subject of study.

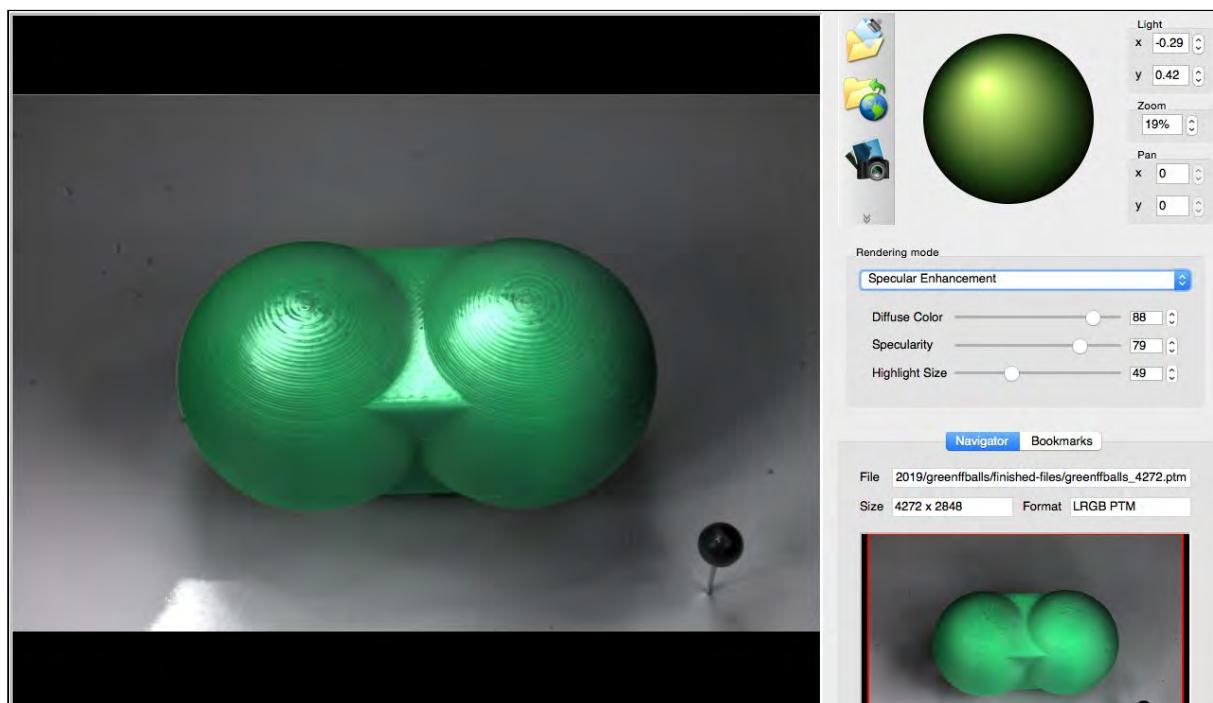


Figure 13: Specular RTI Balls

Another significant set of recursions emerges through the mirror-surface of the sphere with every strobe of the flash. During each of these entangled intra-actions, the 3D object, the camera, the flash, the reflective sphere itself, and the photographer (archaeologist/artist) mark one other with residual traces of light. In fact, the recursive reflections caught in the surface of the sphere create the total assemblage's spontaneous and co-authored signature. The entangled traces of light embedded in the RTI may also be conceptualised as

⁶ Recalling the work of film collage artist Joseph Cornell (1942).

auto-archived paradata⁷ (Bentkowska-Kafel, Baker and Denard 2012) recording, as they do, the circumstances, environment, relative position, and the condition of all the actants and their intra-actions in this emerging polynomial assemblage as it unfolds from frame to frame (Figure 14).

Figure 14: Meeting the assemblage halfway with auto-archived paradata

In summary, by placing assemblages within a phygital nexus, we open up fresh possibilities for digitally creative, and perhaps productive disarticulations, repurposing, and disruptive interventions (Bailey 2017), offering phygital ‘acts of discovery’ beyond the spade and the screen (see Edgeworth 2014), and in so doing unleash new potential for novel and, perhaps, productively provocative conceptions of residuality and recursion.

In the next section we develop our case study: the extending phygital assemblage of the Old Minster of Winchester.

Initial residues and recursions of the Old Minster of Winchester

In CE 1092, the Anglo-Saxon cathedral of Winchester known as the “Old Minster” was probably the most imposing building in pre-Norman Britain. However, in 1093/4, the Old Minster was completely obliterated to make way for the construction of the Norman complex

⁷ To be distinguished from intentional metadata, that is the explicitly defined descriptions or attributes of the logged data (e.g., camera model, image size and format, date and time, specularity, diffuse gain parameters etc.) and the recorded reasoning and evidence embedded in the virtual anastylosis.

we can still visit today. A substantial part of the site of the Old Minster was excavated by archaeologists in the early 1960s who discovered that this once imposing ecclesiastical edifice had been entirely dismantled down to, and including, its foundations (Biddle 2018; Kjølbye-Biddle and Biddle forthcoming). Indeed, by 1963, the only trace of the Old Minster was its footprint and some rubble, captured by the robber trenches left and subsequently buried after the Old Minster's foundations had been removed at the end of the 11th century. A decade after these excavations had closed, the principal archaeological investigators wanted to convey the scale and form of the Old Minster to the general public in an easily accessible way. They turned to what was then cutting-edge digital technology and, in 1984-6, several software encoded models describing distinct phases in the development of the Old Minster were created and rendered using IBM proprietary experimental solid-modelling software to produce the first digital recursions (Reilly 1989; 1992; 1996).

Expanding the Old Minster Assemblage into a Phygital Nexus

By recursively generating single view static images ('frames') from incremental simulated viewpoints (e.g. Figure 15) the world's first computer-animated virtual tour of an archaeological re-imagination emerged. Versions (further recursions) of *The Old Minster, Winchester* 'movie' were shown on TV and exhibited at the British Museum, others were encoded in PAL, NTSC, and SECAM and distributed initially on VHS, U-matic and Betamax video cassette (tape) formats, and later using CD and DVD formats burned into the next generation of material substrates.

Figure 15: Old Minster *frame*, 1984/5

Figure 16: Lossy Old Minster PAL-U-matic-VHS copy

Figure 17: Re-imagined final phase c.1092 Old Minster CSG model using OpenSCAD, 2015

Unfortunately, the only surviving residue of the first minster movie is a JPEG3 recursion of a VHS PAL tape video, which itself was copied from a U-matic video tape master. It serves to remind us that while the initial geometric definition of the re-imagined Old Minster may have been orthothetic in nature (Stiegler n.d.), each instantiation, re-registration (e.g. scan, JPEG photographs, video, or 3D print) and, more often than we might realise, every time such digital instantiations are compressed for transmission, introduces a degree of digital decay or entropy (e.g., Figures 16, 21 & 22). With each new codec decoding/encoding recursion the video image resolution was decreased, and more information dissipated through the inherent *lossyness* of each successive encoding (see Horowitz 1998; Cubitt 2014, 249).

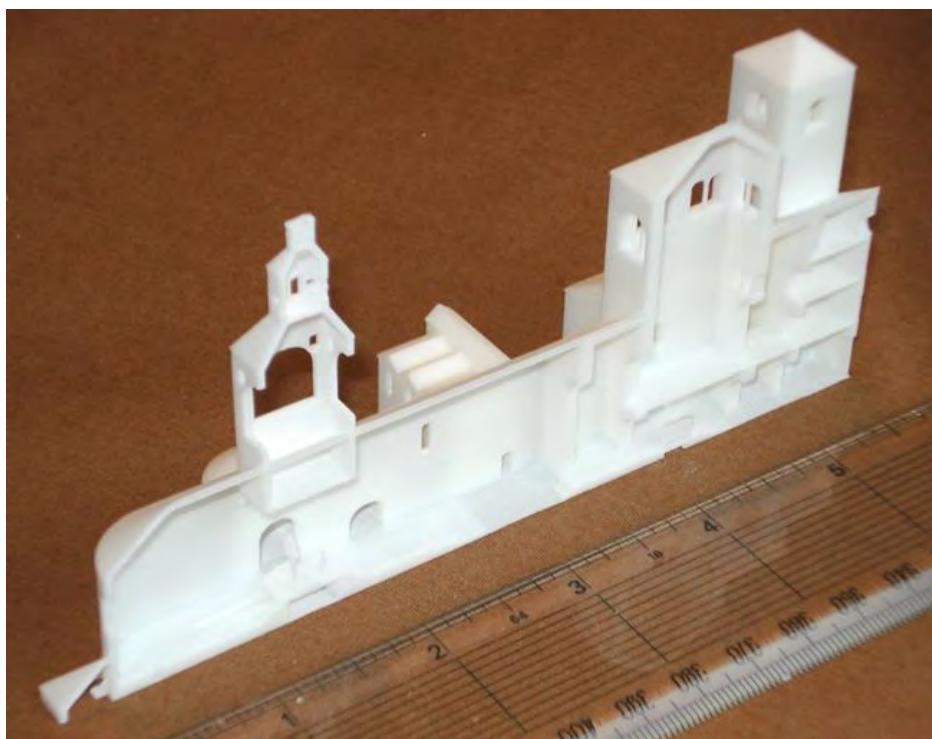
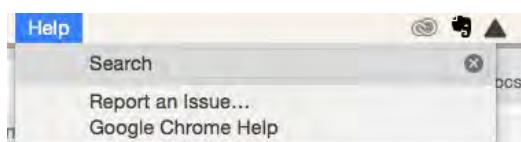



Figure 18: Initial phygital Old Minster, 2015.

However, as technology advanced, the experimental software, hardware and distribution media standards that the digital Old Minster model was built on became obsolete, and the models retreated into the background. Actually, the makers thought them to be lost. However, in 2015 residues of the digital Old Minster in the form of the original proprietary model definition files were rediscovered buried within layers of unsupported experimental code and recovered⁸. Fortunately, although the models were written in a dead language, these seminal virtual artefacts could be restored and reaccessed by translating them into a modern orthothetic definition using open source code⁹ (Figure 17). Such open code and digital technology offers many new and productive affordances for exploring and recontextualising the digital Old Minster. For example, besides supporting virtual settings in interactive graphical contexts (e.g., programbits.co.uk/minster/minst.html), the same digital objects can be explored in VR (e.g., Figure 29) or materialised in different and multiple materials as 3D prints (Figure 23), effectively moving the setting off the screen and onto the stage as it were, and giving substance to digital objects which would otherwise be, as Monika Stobiecka (2019) wryly puts it, 'deprived of their matter'. Critically, in this latest ontological shift, we gain multisensorial, multimodal, and embodied experiences with tangible objects of increased cognitive depth.

The digital Old Minster is thus an expanding, constantly morphing, ontological assemblage of (im)material digital objects within our phygital nexus. To recap, its geometric properties were initially presented virtually, that is on screen using ray-casting algorithms, but decades later the same geometry was instantiated as a material 3D print. As we have already observed, 3D prints, like any other artefact, can be photogrammetrically (re)captured or scanned and (re)virtualised as, for example, point-clouds or mesh recursions which can in their turn be (re)deposited and recontextualised (e.g., Figures 19, 20, 21, 22 & 23).

For the remainder of this visual essay we will intra-act with several ontological assemblages drawn from the phygital nexus of the digital Old Minster.

⁸ Increasingly, digital archaeologists are starting to explore the archaeology of code (e.g., Reinhard 2019b) and obsolete hardware and media platforms (e.g., Moshenka 2014; Perry and Morgan 2015; Beale, Schofield and Austin 2019).

⁹ A detailed account of the making of both the original and the new open digital models can be found in Reilly, Todd and Walter 2016.

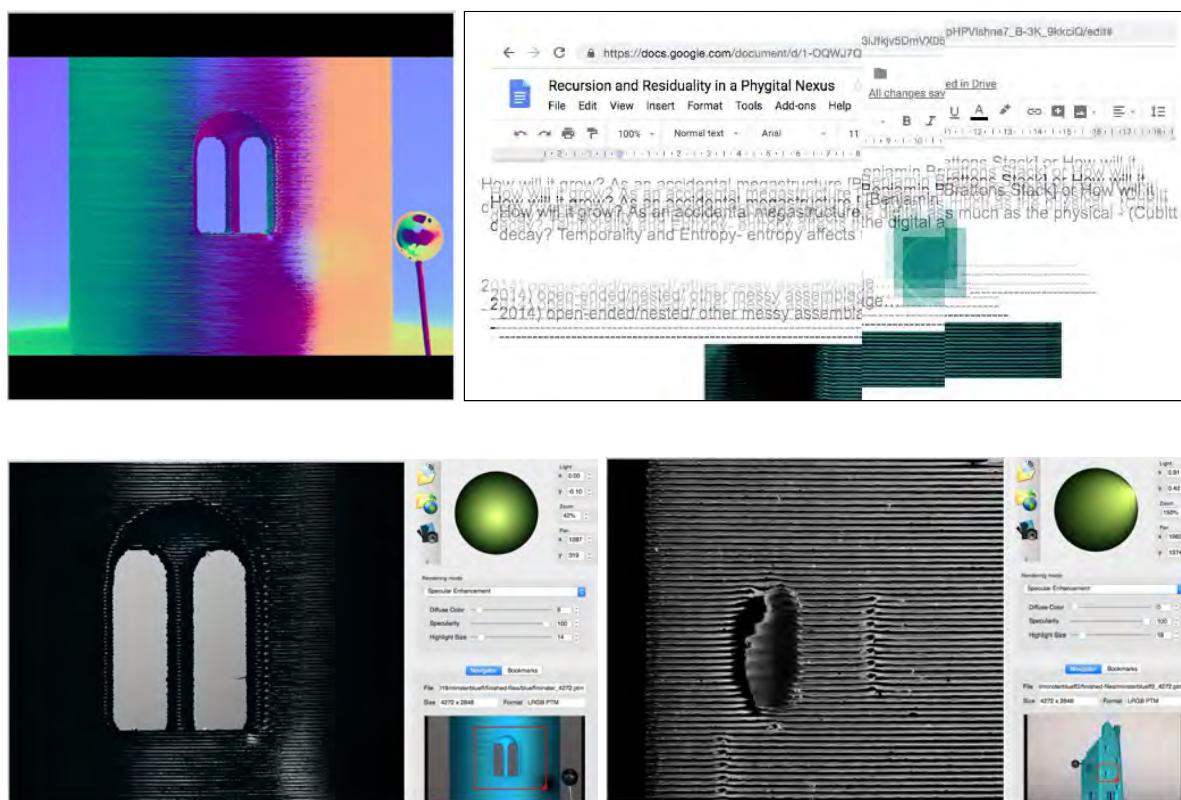


Figure 19: Phygital Old Minster Synthetic Sundial (RTI GIF 3D)

Figure 20: Old Minster section RTI Mirage (RTI and RTI GIF detail)

Figure 21: Dissipating Phygital Old Minster v.3 (RTI GIF 3D print)

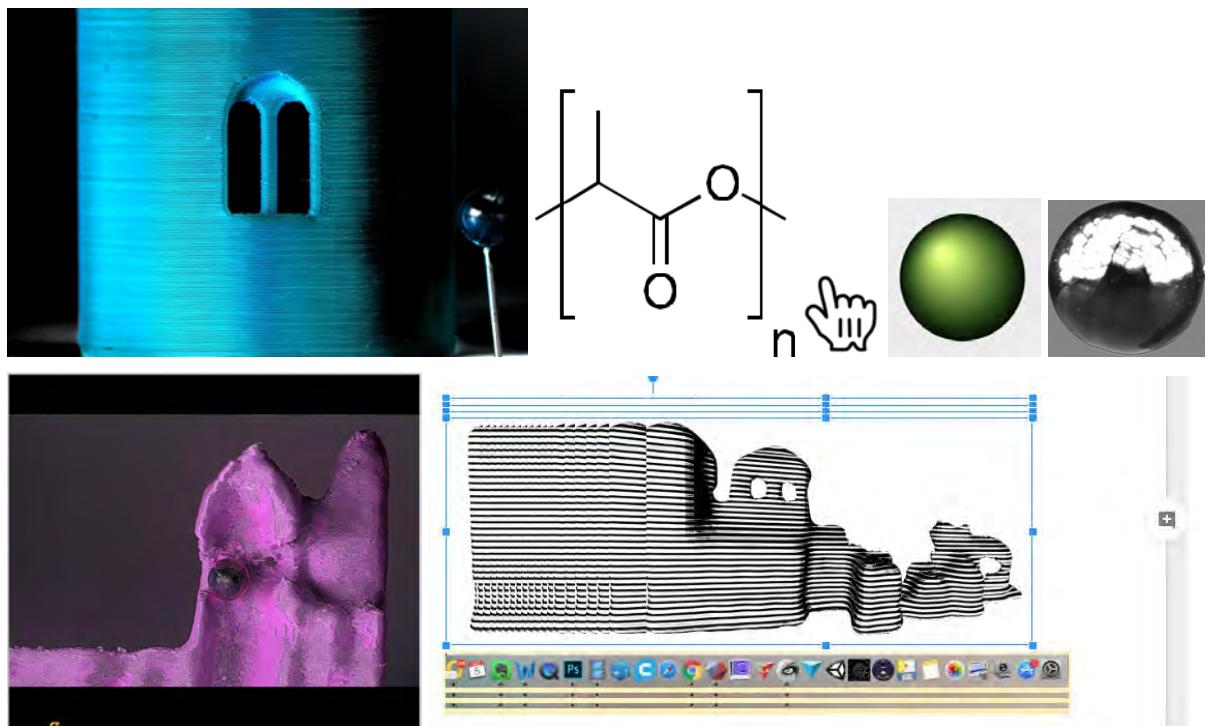


Figure 22: Messy Ontological Assemblage Collage

Further Recursions and Residues: Exhibitions

Throughout this collaboration, our interdisciplinary (art/archaeology) conversation about assemblages has been, and continues to be, syncopated with exhibitions in which we attempt to distil some of our insights into art forms, and yet further recursions and residues from prior assemblages. Like the assemblages we feature, our commentary is messy, as we interject our reflections using a combination of text and collaging.

Sightations, TAG 2016, Southampton (19.12.16 –21.12.16)

Curated by Joana Valdez-Tullett, Helen Chittcock, Kate Rogers, Eleonora Gandolfi, Emilia Mataix-Ferrandiz, and Grant Cox

The *Sightations* exhibition¹⁰ at the Theoretical Archaeology Group conference held at the University of Southampton in December 2016 provided an important focal point where art and archaeology practices could come into constellation. The work featured by Ian Dawson was called *ten* (Figure 23).

¹⁰ See also <https://www.southampton.ac.uk/tag2016/events/art-exhibition.page>, https://www.academia.edu/28934530/Sightations_Caf%C3%A9_session_Theoretical_Archaeology_group_TAG_Southampton_19-21_december_2016, and <https://drpaulreilly.wordpress.com/2017/03/27/annihilation-event-digital-old-minster-the-archaeology-of-a-digital-file/>

Figure 23: *ten* (Ian Dawson, 2016, Aluminium, fused filament 3D prints and ranging rod)

Despite being exhorted by an artist 'not to over analyse it', it is difficult for an archaeologist not to respond to *ten* other as an treatise on archaeological excavation recording. At a distance, the succession of red, white and black marks, evenly distributed down the length of the square-profiled aluminium bar, shouted out 'levelling staff' - a surveying companion on many excavations. The juxtaposition with the 2m red and white ranging rod, typically used as a photographic scale on site, reinforces this reading. Looking closer, the archaeological excavation narrative really seems to come alive as the 'graduation marks' resolve themselves into well-known artefacts, physical memories, waymarking temporal horizons, being registered by the staff (Figure 24).

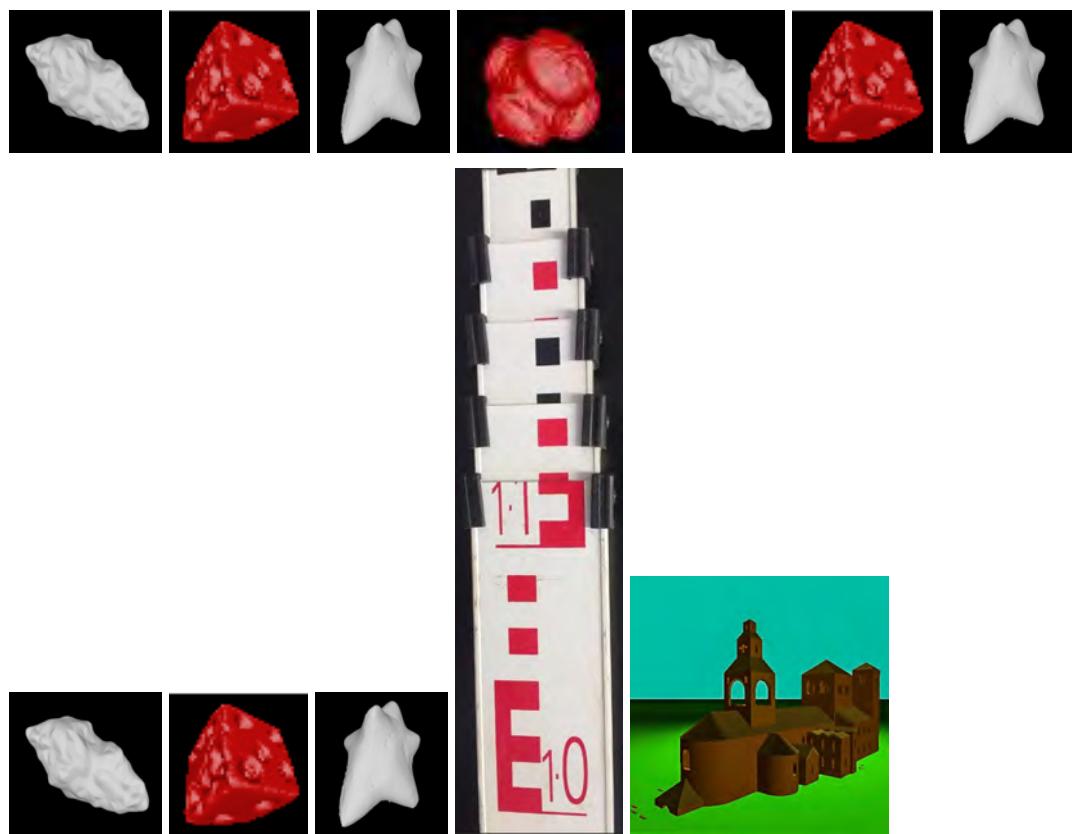
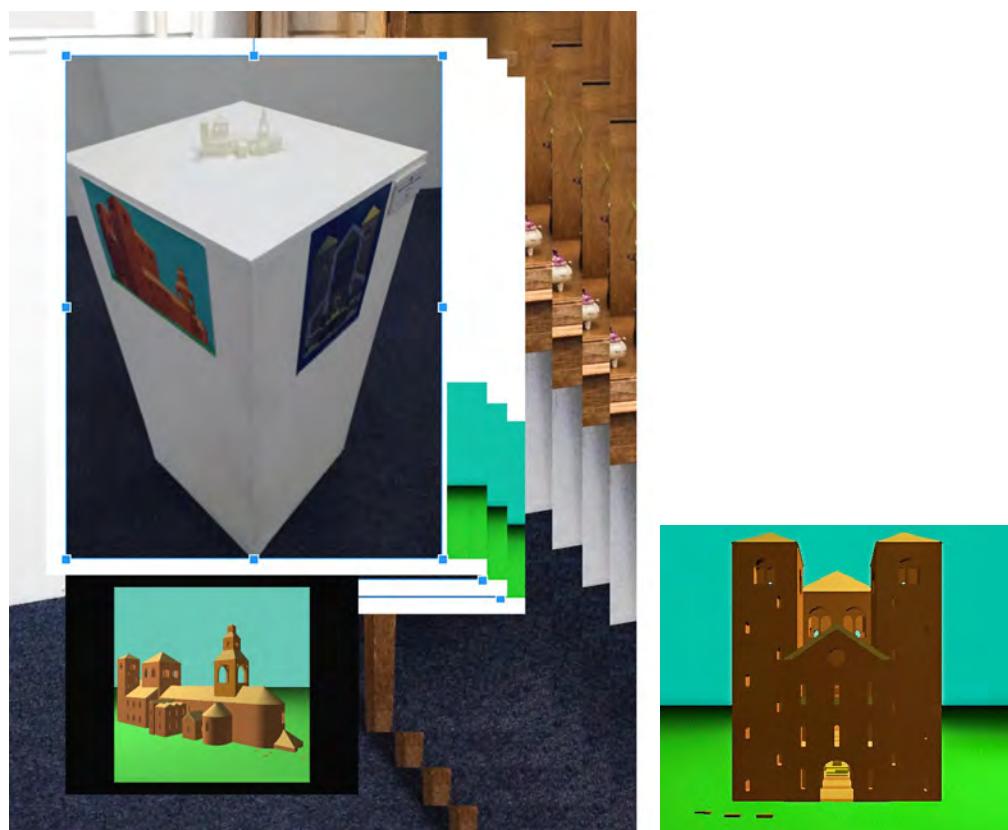
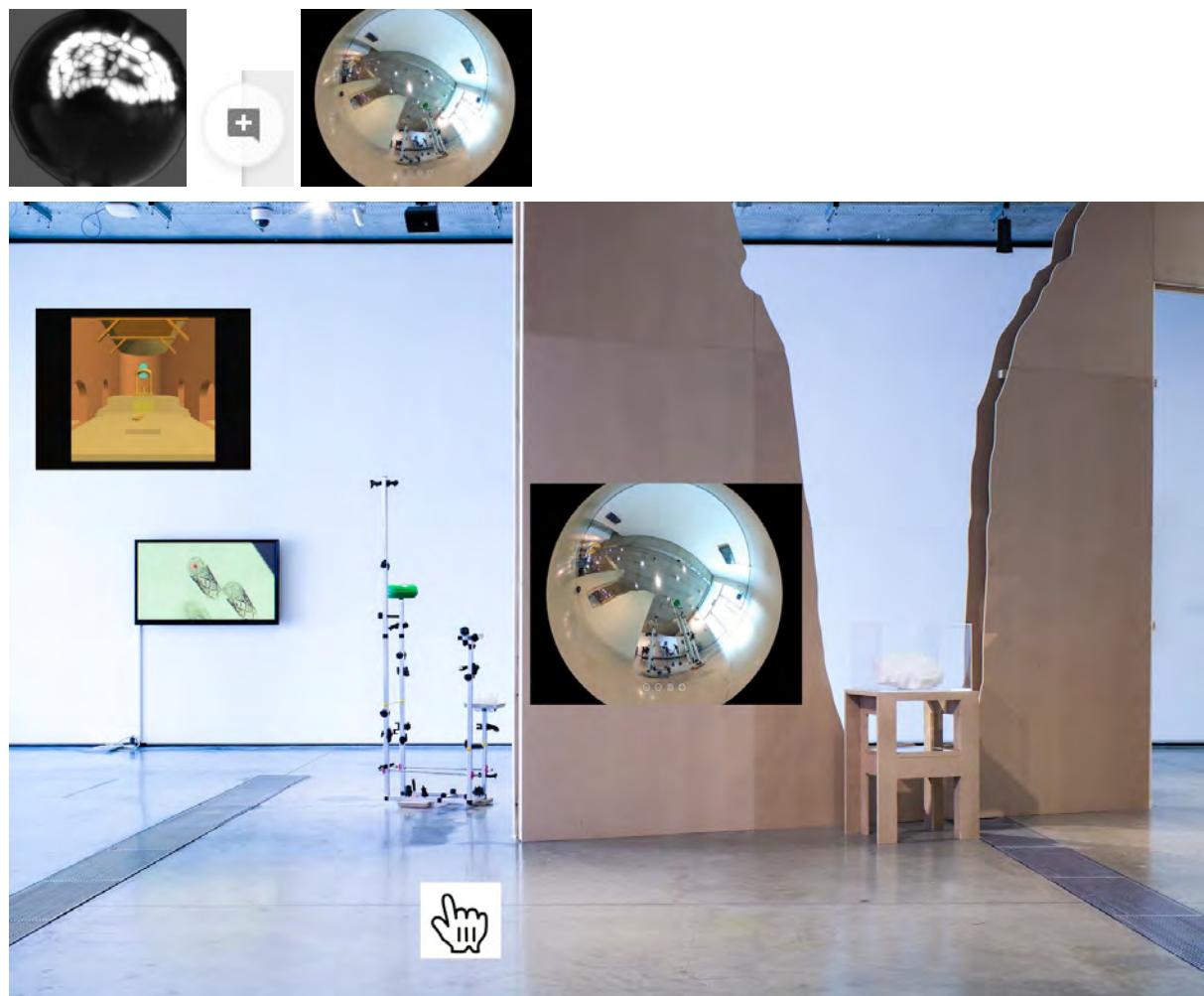


Figure 24: *ten* temporal horizons




Figure 25: (Im)material Old Minster (Winchester) 2016 continued (Fused filament 3D print and printed photographs on paper)


In the same room, Paul Reilly's featured work was called: *(Im)material Old Minster (Winchester)*, 2016. This piece also alluded to time depth and persistence (Figure 25). The little white mono-material 3D print, fabricated via the web using shapeways.com in 2016, was accompanied by two 2D colour prints of the same digital object as it was rendered 30 years previously, each residual artefact, from different time horizons, a recursion embedded in a shared, but fleeting present, beckoning new residual assemblages to emerge.

***Annihilation Event*, Lethaby Gallery London (22.03.17- 29.03.17)**

Curated by Louisa Minkin and Elizabeth Wright

The next opportunity to develop our conversation, was the Annihilation Event, held in the Lethaby Gallery, UAL, London. The assemblage was billed as having “no singular origin, but many strands and streams ... a project about copies, prints, scans, derivations, reconstructions, casts, and virtual models”. The work we featured was titled Digital Old Minster, the archaeology of a digital file (Paul Reilly & Ian Dawson, 2017, Aluminium and fused filament 3D prints). Here aluminium bars affixed with residual 3D printed objects frame the plastic Saxon minster in a rather gothiquesque assemblage of gargoyles and flying-buttresses.

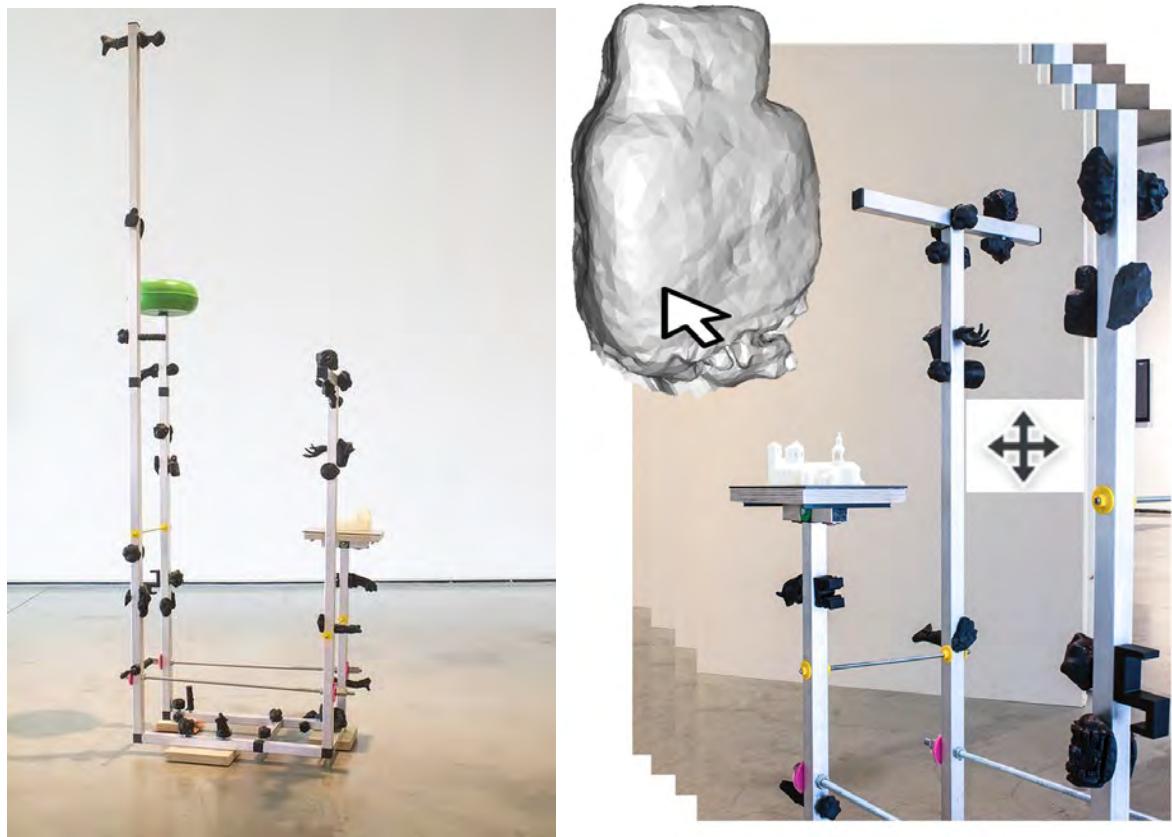


Figure 26: *Digital Old Minster, the archaeology of a digital file*, 2017 (Paul Reilly & Ian Dawson, Aluminium, fused filament 3D prints)

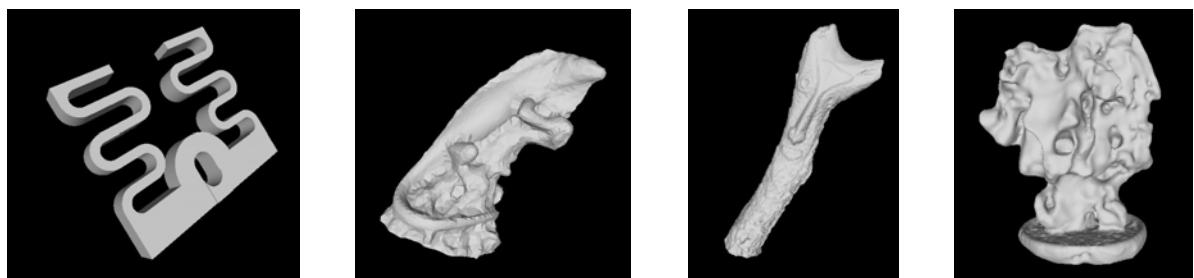


Figure 27: Material prints embodying immaterial code introduce the (im)material grey zone

Figure 28: Recursive Assemblage (exhibition space). Screengrab from Unity VR build, *Annihilation Event*, 2017 (Louisa Minkin, with permission)

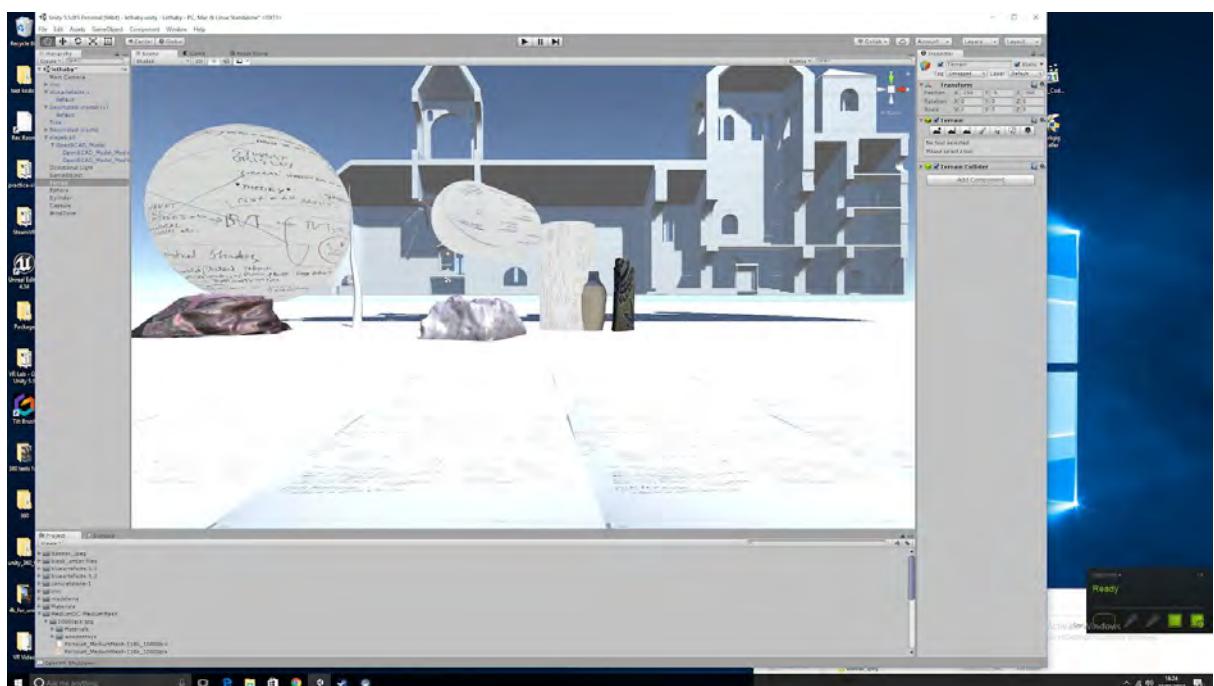


Figure 29: Recursive Assemblage (guest exhibits) Screengrab from Unity VR build, *Annihilation Event*, 2017 (Louisa Minkin, with permission)

As part of the *Digital Old Minster, the archaeology of a digital file* exhibit, we extended the assemblage, in collaboration with Louisa Minkin, by creating a virtual reality installation of the Old Minster (Figures 28 & 29). Visitors were allowed to deposit virtual objects within the VR Old Minster, thus creating a recursive exhibition space within the exhibit itself, which was of course also within the main exhibition space, and so producing a kind of Old Minster 'Tardis'¹¹, where space and scale were weirdly warped.

¹¹ The TARDIS is a cult British TV Sci-Fi time and space craft that appears much bigger inside compared to its outward appearance and possesses innumerable rooms, corridors and spaces within.

***Along the Riverrun*, ArtSway, Sway (24.07.17-30.07.17)**

Curated by Alex Goulden and George Watson

Figure 30: *Old Minster, 2017* (Ian Dawson and Paul Reilly, Aluminium, fused filament 3D prints, digital picture frame, scouring pads, G-clamps, dimensions variable)

Our evolving assemblage was again reconfigured and augmented for the *Along the Riverrun* exhibition at ArtSway¹². In *Old Minster, 2017* a version of the 'Minster Movie' is played through a tablet incorporated into this artwork, the looping guided tour endlessly returning to its opening frame. The tablet is laid horizontally, and the viewer needs to lean over to see the screen, but the screen has been partially occluded by a scouring pad, on top of which stands a plastic tree. This seemingly ecceletic assemblage recalls an 'archaeological site' prior to excavation; the stratigraphic sequence seemingly lifted whole from the trench and implicating an unseen void of the archaeologist's trench, pre-translation into very *mutable mobiles*.

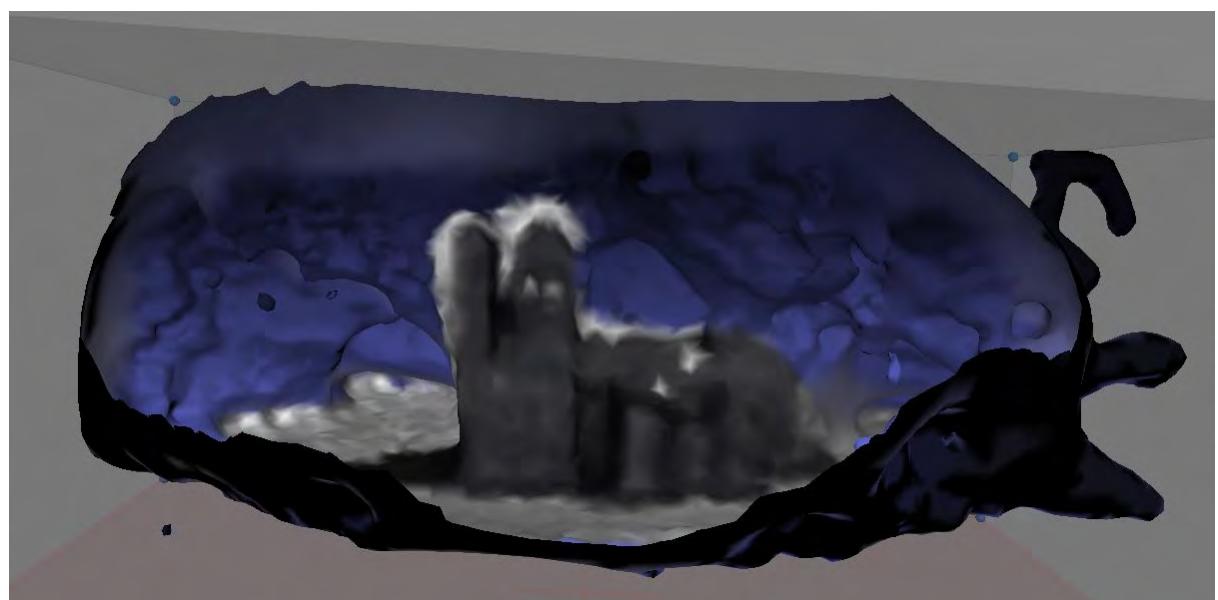
¹² <http://www.iandawsonstudio.com/ian-dawson-along-the-riverrun.html>

Figure 31: *Old Minster, 2017 details* (Ian Dawson and Paul Reilly)

Groock's Gallery, Cyberspace (11.11.18-)

Curated by George Peter Thom

Our most recent collaboration is a cyberpunk piece of conceptual art on display in Groock's Gallery. This unique cloud-based VR gallery is housed in a converted digital temple, designed around an archetypal building (that is non-archeological), aimed at contemporary participatory mythological practice in cyberspace¹³. In this piece, titled "*Minster*" - *Obj with black tone* (Paul Reilly and Ian Dawson 2018), the phygital Old Minster has broken back in to the virtual once again.



¹³ One portal into Groock's Gallery is: <https://robotgroock.wordpress.com/groocks-gallery-free-entry/>

Figure 32: “Minster” - *Obj with black tone* (Paul Reilly and Ian Dawson 2018)

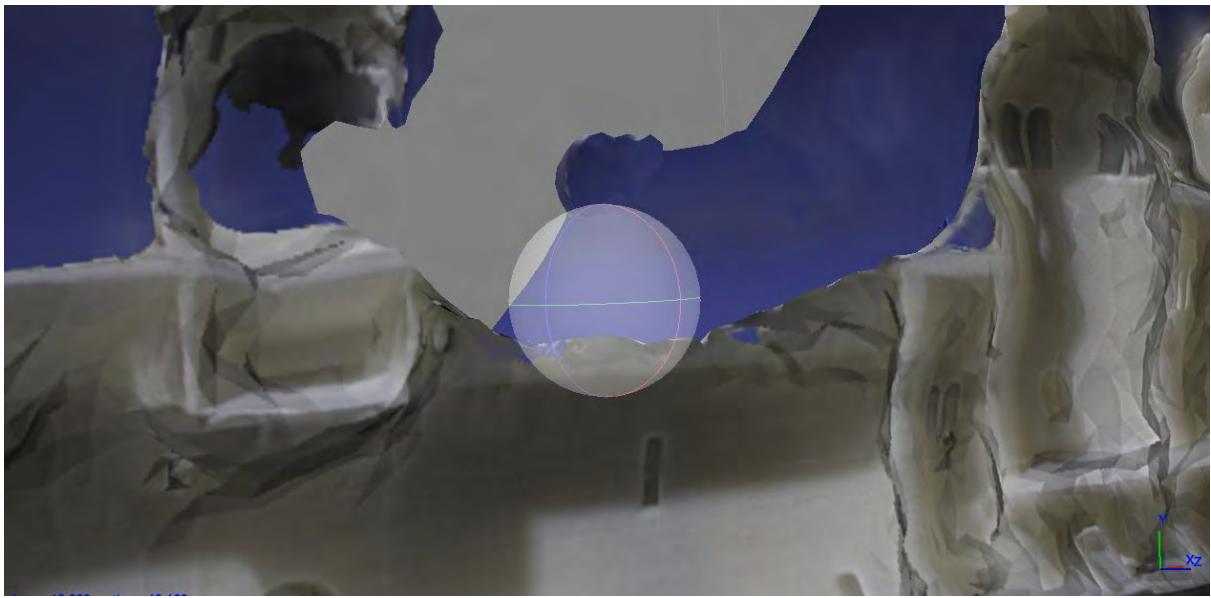


Figure 33: A recursive photogrammetric model reconstructed from meshlab screenshots of previous photogrammetric models

Provisional Reflections on a Messy Assemblage

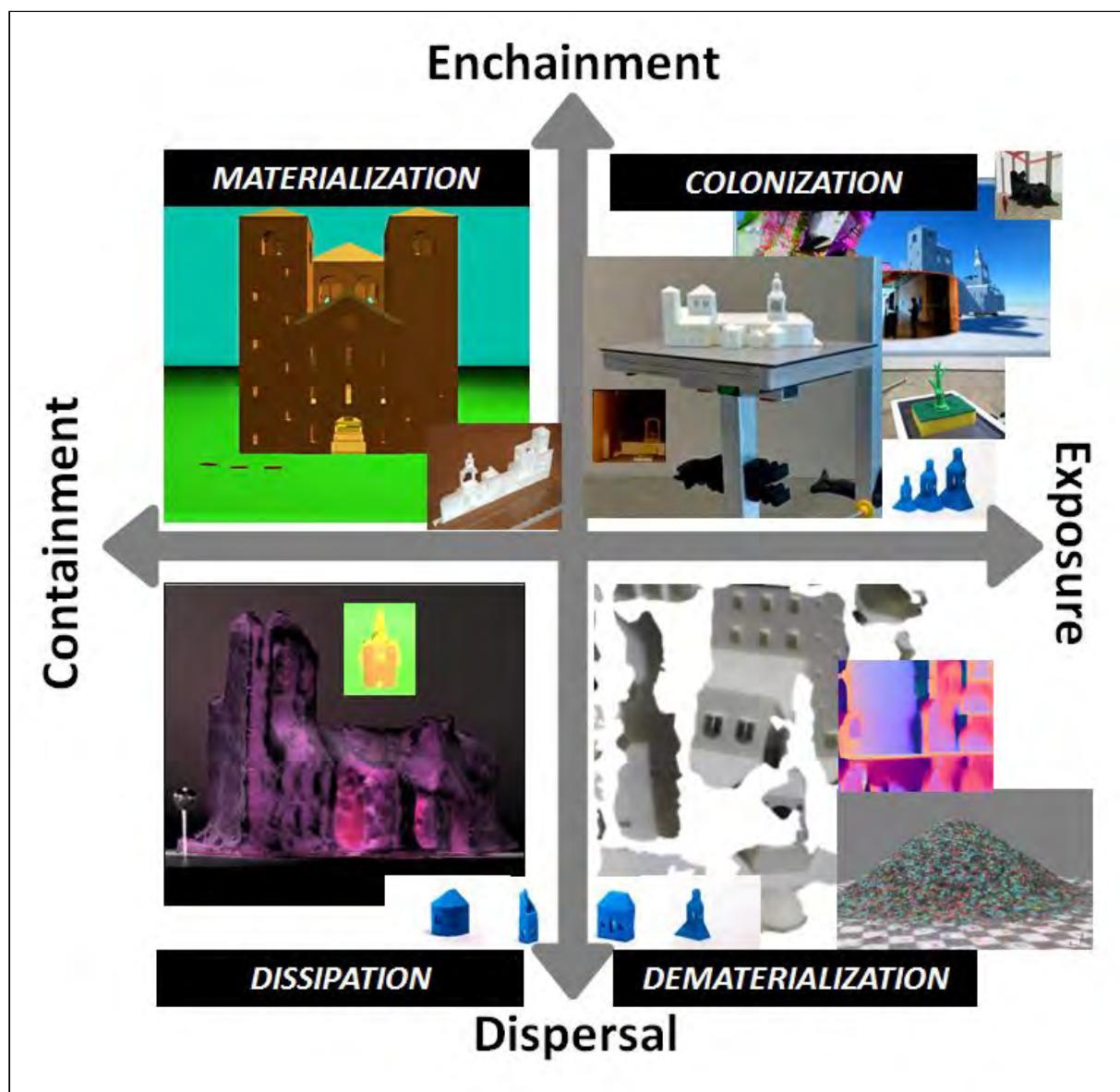
In subverting the phygital nexus, our collage of (im)material art/archaeology has spread across the entire assembly versus disassembly grid of forces, with certain elements participating residually or recursively in several, sometimes overlapping, sub-assemblages where their ontological status is not necessarily settled (Figure 34).

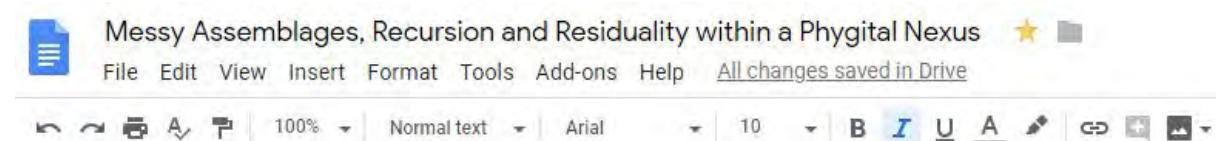
Integral to this reflexive collaboration has been the re-imagination of the Saxon Old Minster of Winchester as it may have looked just before it was demolished in CE 1093. In principle, the geometric definition of any assemblage is immutable and may be retained in digital stasis indefinitely. One such geometric hypothesis (the digital Old Minster) went into digital stasis in 1984 when the Old Minster was encoded, as it was then interpreted, in Constructive Solid Geometry modelling software. However, subsequent phygital recursions, and their residues, derived from this specific geometric hypothesis, may be significantly less persistent and more mutable when exposed to the forces of (re)materialization, dematerialization, colonization and dissipation. Crucially, *time* is required to activate this grid of forces. Without time there can be neither movement nor change. Without movement there can be no dislocations, no adjustments of perspective, and no shift in our thinking. Without change there is no entropy, no decay, no erosion, no exposure, and no possibility of serendipity.

The first materializations of the digital Old Minster were rather fleeting 8-bit VGA resolution static images rendered on specialist hardware, and more or less contained within research laboratories. However, when these digital images rematerialized on photographic film, using analogue cameras, they became somewhat more persistent and decidedly more mobile recursions. These images could now be shared as 35mm slides for projection presentations or as photographic illustrations in articles and posters. Later, further low-resolution recursions were concatenated and transformed into highly choreographed animations that could be transmitted to wider audiences. The introduction of apparent movement into the mix had the side effect of permeating the entire assemblage with time and duration. Time enables new types of relationships to emerge between actants. In particular it causes a

subtle, yet profound, shift in the relationship between the artist/archaeologist, the model, and the original prototypes. Adding time, or duration, and movement transforms the static geometric description of a space into an immersive and interactive place that can be explored, and challenges us to think more deeply about how this place might be used. With virtually no fanfare, the first new ontological portal cracked open, allowing a trickle of phygital colonists to emerge, encounter and adapt to new media. We started to think differently about, *and with*, these newly constructed relational assemblages.

It was the recursive potential of *open source* that was really the key to opening the floodgates for colonization of the phygital nexus, and exposing the colonists to new ontological possibilities. Applying modern standard off-the-shelf technologies to the transcoded prototype allows 24-bit, high-resolution and interactive screen-based and virtually immersive immaterial recursions, each offering added apparent movement perception and sophisticated lighting arrangements to enrich the experience. In addition, the same open source code can output physical 3D fabricated instantiations which lend additional modalities of exteroception, such as tactile comprehension, on top of the already familiar scopic discourses.




Figure 34: Extending messy ontological assemblage

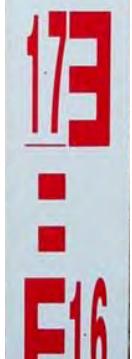
What becomes obvious is that even apparently simple encounters with an instantiation of the phygital Old Minster can never be neutral. They are always complex, mediated, intra-active events. When these instantiations are combined and augmented, as in our featured art/archaeology works, new insights into, and paradoxes within, our practices are added to our extending ontological assemblage as their relational agencies are purposefully articulated and entwined. For example, the conformation of the phygital Old Minster can endure in near perfection in the materialization and colonization recursions we have produced so far. However, that geometric stability is radically compromised when the phygital Old Minster is permeated with time and exposed to the entropic forces of dissipation and dematerialization. Lossyness, digital decay and phygital erosion are a few of the prime protagonists of dissipation we encountered, lurking in the nexus, during this collaboration. For example, every time an instantiation of the phygital Old Minster is compressed or (re)encoded for a new media format, details of the model are progressively, but haphazardly, lost in each successive recursion. Similarly, significant and intriguing differences emerge each time the phygital Old Minster is transformed when a physical instantiation breaks back into the virtual and then returns into the physical world (e.g. photogrammetrically recording a 3D print and then reprinting a new recursion by recapturing the 3D print through another computational photography intervention). After only one or two cycles, the initial sharply defined edges and vertices of the digital Old Minster seem to melt as its geometry collapses into itself. In exceptional circumstances, even the software model is not entirely immutable and certainly not guaranteed immortality. It too can dissipate if, for example, it is deliberately hacked to produce phygital fragments and form hoards. Of course, the model can also be obliterated if deleted.

However, these fragments, if not contained, will tend to disperse and gradually become more exposed to the force of dematerialization. Once activated, the effects of dematerialisation in the phygital nexus can range from coarse and emphatic to subtle, deceptively beguiling and beautiful. The former is exemplified by the polymer spoil heaps and scaffolding left by the 3D printing process. The latter are encountered in, for example, the ephemeral UV fragments produced as a byproduct of the photogrammetry, and the surreal images that are created as the 'surface' of the phygital Old Minster is totally dematerialized and transformed into a virtual RTI assemblage of strikingly-coloured surface normals. In our featured exhibits, different ontological instantiations (recursions and residues) of the phygital Old Minster have been brought, purposefully, into constellation to confront us with this multiplicity of being, and expose the ontological ambiguities obtained through the plethora of different techniques, transformations and tropes we rely on in the course of our art/archaeology practices,

In conclusion, appearances can be very deceptive. Emerging out of our continuing collaboration is an extending, messy ontological assemblage, including. Within it, we include ontological mirages conjured out of algorithmic illusions, process-driven scale and shape shifters, chameleon-like skin changers, superficially simple material 3D prints, and 'classic' virtual animated tours; all recursions and residues. However, so far we have barely scratched its surface. This assemblage is not intended to, nor should it, be a static lasting comment on, or an inert record of, our collaboration with the (im)material entities with which we have begun to mix and mingle. Rather, it should be considered as an emerging, dynamic and intra-active conversation involving many actants, some yet to appear. The focus and meaning of this conversation is contingent on the shifting relationships of all actants which unfolds over time. These include our developing intentions as makers (both archaeologist

and artist), refracted through our distinct and combined practices, the materials we work with, the application of highly trained modes of perception and expression, and our instruments of inquiry and presentation. All are agential participants and co-producers in this collaboration. In the case of the RTIs, the signatures of all the main actants and their intra-actions have been auto-archived interstitially as aesthetic paradata within this entangled art/archaeology ontological assemblage.

References


Bailey, D. (2017) "Disarticulate—Repurpose—Disrupt: Art/Archaeology", *Cambridge Archaeological Journal*, 27 (4), 691-701. DOI: 10.1017/S0959774317000713.

Barad, K. (2007) *Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Meaning*. Duke University Press, London.

Beale, N, Beale, G, Dawson, I. and Minkin, L. (2013) "Making Digital: Visual Approaches to the Digital Humanities", *Journal of Digital Humanities*, 2 (3). Available: <http://journalofdigitalhumanities.org/2-3/making-digital-visual-approaches-to-the-digital-humanities/> (Accessed: 22.01.19).

Beale, G. and Reilly, P. (2017) "After Virtual Archaeology: Rethinking Archaeological Approaches to the Adoption of Digital Technology", *Internet Archaeology*, 44. DOI: 10.11141/ia.44.1.

 Beale, G., Schofield, J. and Austin, J. (2019) "The Archaeology of the Digital Periphery: Computer Mice and the Archaeology of the Early Digital Era", *Journal of Contemporary Archaeology*, 5 (2), 154-73. DOI: 10.1558/jca.33422.

 Bentkowska-Kafel, A., Baker, A. and Denard, H. (eds). (2012) *Paradata and transparency in Virtual Heritage*. Digital Research in the Arts and Humanities Series. Ashgate, Farnham.

 Biddle, M. (2018) *The Search for Winchester's Anglo-Saxon Minsters*. Winchester Excavations Committee Publication, Winchester.

 Brown, D.H. (1995) "Contexts, Their Contents and Residuality", in: Shepherd, E. (ed.), *Interpreting Stratigraphy 5 - 1994 Norwich*. ISBN 0952631407, 1-8. Available: <https://www.york.ac.uk/archaeology/strat/pastpub/95ch1.pdf>

Buchli, V. (2015) *Archaeology of the Immaterial*. Routledge, London.

Joseph Cornell (Director). (1942) *By Night with Torch and Spear*. Available: <https://vimeo.com/99334381> (Accessed 14.02.19).

Craig, B. (Ed.). (2008) *Collage: Assembling Contemporary Art*. Black Dog Publishing, London.

Cubitt, S. (2014) *The Practice of Light: A Genealogy of Visual Technologies from Prints to Pixels*. MIT Press, London.

Dawson, I. (In press) "Dirty RTI", in Back Danielsson, I.M. and Jones, A.M. (eds.) *Images in the Making. Art, process, archaeology*. Manchester: Manchester University Press.

Edgeworth, M. (2014) "From Spade-Work to Screen-Work: New Forms of Archaeological Discovery in Digital Space", pp. 40-58 in Carusi, A., Hoel, A., Webmoor, T. and Woolgar, S. (eds.), *Visualization in the Age of Computerization*. Routledge, London.

Gant, S. and Reilly, P. (2017) "Different expressions of the same mode: a recent dialogue between archaeological and contemporary drawing practices", *Journal of Visual Art Practice*, 17 (1), 100-120. DOI: 10.1080/14702029.2017.1384974.

Graham, S. (2018) *3d models from archival film/video footage*. 20th January 2018. Available: <https://electricarchaeology.ca/2018/01/20/3d-models-from-archival-film-video-footage/> (Accessed 06.02.19).

Graham, S. (2019) *Object Style Transfer*, 4th February 2019. Available: <https://electricarchaeology.ca/2019/02/04/object-style-transfer/> (Accessed 06.02.19).

Hamilakis, Y. and Jones. A.M. (2017) "Archaeology and Assemblage", *Cambridge Archaeological Journal*, 27 (1), 77–84. DOI:10.1017/S0959774316000688.

Hofstadter, D. (1979) *Gödel, Escher, Bach: An Eternal Golden Braid*. Basic Books, New York.

Horowitz, J. (1990) *Maxell*. <http://jonathanhorowitz.us/video/maxell/>.

Huggett, J. (2017) "The Apparatus of Digital Archaeology", *Internet Archaeology*, 44. DOI: 10.11141/ia.44.7.

Jones, A.M. (2002) *Archaeological Theory and Scientific Practice*. CUP, Cambridge.

Jones, A.M. and Díaz-Guardamino, M, (2019) "Digital Collaborations", pp, 211-213 In: Jones, A.M. and Díaz-Guardamino, M. (eds), *Making a Mark: Image and Process in Neolithic Britain and Ireland*. Oxbow Books, Oxford.

Joyce, R. and Gillespie, S. (eds.). (2015) *Things in Motion: Object Itineraries in Anthropological Practice*. SAR Press, Santa Fe.

Latour, B. and Woolgar, S. (1986) *Laboratory Life: The Construction of Scientific Facts*, 2nd edition. Princeton University Press, Princeton.

Kjølbye-Biddle, B. and Biddle, M., (forthcoming) *The Anglo-Saxon Minsters of Winchester*, Winchester Studies 4.i, OUP, Oxford.

Loyless, A. (2018) *Visualising the York Minster as Paper Craft*. Available: <https://www.academia.edu/s/42d12a033a/visualising-the-york-minster-as-papercraftpdf?source=work> (Accessed 9th February 2019).

Lucas, G. (2012) *Understanding the Archaeological Record*. CUP, Cambridge.

Lucas, G. (2017) "Variations on a Theme: assemblage theory", *Cambridge Archaeological Journal*, 27 (1): 187-90.

Minkin, L. (2016) "Out of our skins", *Journal of Visual Art Practice*, 15 (2-3), 116-126. DOI: 10.1080/14702029.2016.1228820.

Moshenka, G. (2014) "The Archaeology of the (Flash) Memory", in: Notes and News, *Post-Medieval Archaeology*, 48 (1), 255-59. DOI: 10.1.179/0079423614Z.00000000055.

Nissen, B. (2014) "Growing Artefacts Out of Making", in: *Proceedings of All Makers Now? Craft Values in 21st Century Production*, Falmouth University. Available: <https://makingdatathings.files.wordpress.com/2015/08/02-amn2014.pdf> (Accessed 20 February 2018).

Perry, S. and Morgan, C. (2015) "Materializing Media Archaeologies: The MAD-P Hard Drive Excavation", *Journal of Contemporary Archaeology*, 2 (1): 94–104. <https://doi.org/10.1558/jca.v2i1.27083>.

Petch, M. (2019) *V&A Museum adds Scan the World to Cast Courts Permanent Collection, 3D Printing Industry*, 24th January 2019. Available: <https://3dprintingindustry.com/news/va-museum-adds-scan-the-world-to-cast-courts-permanent-collection-147822/>. (Accessed 25.01.0.19).

Reilly, P. (1989) "Data visualization in archaeology", *IBM Systems Journal*, 28 (4), 569–579.

Reilly, P. (1992) "Three-dimensional modelling and primary archaeological data", pp. 145–173. in: Reilly, P. and Rahtz, S. (eds.), *Archaeology in the Information Age: A global perspective*. Routledge, London.

Reilly, P. (1996) "Access to Insights: stimulating archaeological visualisation in the 1990s", in: Gedai, I. (Ed.), *The Future of Our Past '93-'95*. Hungarian National Museum, Budapest.

Reilly, P., (2015a) "Palimpsests of Immaterial Assemblages Taken out of Context: Tracing Pompeians from the Void into the Digital", *Norwegian Archaeological Review*, DOI: 10.1080/00293652.2015.1086812.

Reilly, P. (2015b) "Putting the materials back into virtual archaeology", pp 12-23 in: *Virtual Archaeology (Methods and Benefits)*. State Hermitage Publishers, Saint Petersburg.

Reilly, P. (2015c) "Additive Archaeology: An Alternative Framework for Recontextualising Archaeological Entities", *Open Archaeology*, 1(1): 225–235. DOI: <https://doi.org/10.1515/opar-2015-0013>.

Reilly, P., Todd, S., Walter, A. (2016) "Rediscovering and modernising the digital Old Minster of Winchester", *Digital Applications in Archaeology and Cultural Heritage*, 3, 33–41. DOI: <http://dx.doi.org/10.17613/M66293>.

Reinhard, A. (2019b) "Assemblage Theory: Recording the Archaeological Record", *Epoiesen*, <http://dx.doi.org/10.22215/epoiesen/2019.1>.

Reinhard, A. (2019b) An archaeology of code: Quantitative analysis and context of Colossal Cave Adventure. Available:

<https://archaeogaming.com/2019/01/06/an-archaeology-of-code-qualitative-analysis-and-context-of-colossal-cave-adventure/> (Accessed 31.01.19).

Shane, J. (2018) *Skyknit: When knitters teamed up with a Neural Net*. Available: <http://aiweirdness.com/post/173096796277/skyknit-when-knitters-teamed-up-with-a-neural> (Accessed 30.01.19).

Stiegler, B., (n.d.) *Anamnesis and Hypomnesis*. Available: <http://arsindustrialis.org/anamnesis-and-hypomnesis> (Accessed: 19.01.2019).

Sillman, A., Humphrey, D. and Green, E. (n.d.) *team shag*. Available: <http://hamlettdobbins.com/curating/team-shag-collaborative-works-by-amy-sillman-david-humphrey-elliott-green/> (Accessed 14.02.19).

Stobiecka, M. (2019) "Digital Escapism: How Objects Become Deprived of Matter", *Journal of Contemporary Archaeology*, 5 (2), 194-212. DOI: <1.1558/jca.34353>.

Westwood, M. (2011) *These Hands are Models*. Available: <http://www.stanleypickergallery.org/exhibitions/these-hands-are-models/>.

Virilio, P. (2003) *Unknown Quantity*. Thames and Hudson, London.

Research Article

Paul Reilly*, Ian Dawson

Track and Trace, and Other Collaborative Art/Archaeology Bubbles in the Phygital Pandemic

<https://doi.org/10.1515/opar-2020-0137>

received November 14, 2020; accepted March 16, 2021

Abstract: This paper describes our creative responses to a surface assemblage (a scatter) of lithic artefacts encountered on either side of a worn track across a field early on in the pandemic. Our art/archaeology response takes place within a phygital nexus in which artefacts or assemblages can be instantiated either physically or digitally, or both. In the nexus we create, connect and explore an ontological multiplicity of – more or less – physical and digital skeuomorphs and other more standard forms of records for sharing (i.e. Latour’s immutable mobiles, such as photographs), but rendered with radically different properties and affordances, at different scales, with different apparatus. These include interactive Reflectance Transformation Images, graphical surface models, machine intelligence style transfer, and 3D prints, all of which were produced in a variety of isolated analytical “bubble” settings and transmitted to and from (both digitally and physically) a home office in an isolated Hampshire village and a home studio in a London suburb. Our approach is to describe, diffractively, the ontological shifts and itineraries associated with some of these objects and assess how this assemblage came to matter as an art/archaeology installation. Ultimately, some of these deterritorialised, (re)colourised, affective, biodegradable, and diffractively born metamorphic instars, now inscribed with new meanings, are returned to the original findspot of the lithics to be (re)discovered.

Keywords: 3D printing, art/archaeology, cognitive assemblages, diffraction, phygital

1 Introduction

In 1967, the later to be famous sculptor Richard Long hitch-hiked from his home in Bristol to his art school at St. Martins. In between hitches, he decided to retrace his steps repeatedly backwards and forwards until he had flattened the grass into a transient line across a field in Wiltshire. Before he left, he photographed his work (Renfrew, 2003, pp. 35, 36). A “gelatin silver print on paper and graphite on board” fixed this intervention within the “art object” now preserved in the Tate collections (Burgon, 2012). History doesn’t record what Long was looking at as he tracked to and fro across that particular field tracing his line. Had any archaeologists happened across Long’s ephemeral sculpture in the landscape, they would probably have paused to consider what it was and question how it came to be there, who made it, and for how long

Article note: This article is a part of the Special Issue on Art, Creativity and Automation. Sharing 3D Visualization Practices in Archaeology, edited by Loes Opgenhaffen, Martina Revello Lami, Hayley Mickleburgh.

* **Corresponding author:** Paul Reilly, Faculty of Arts and Humanities, University of Southampton, Avenue Campus, Highfield Southampton, SO17 1BF, United Kingdom, e-mail: p.reilly@soton.ac.uk

Ian Dawson: Winchester School of Art, University of Southampton, Park Ave, Winchester, SO23 8DL, United Kingdom, e-mail: i.dawson@soton.ac.uk

Figure 1: A line made by walking in Hampshire.

had it existed? Equally likely, they would have examined the ground on either side of the line to determine if the track had been cleared, like the Nazca lines, or indeed Long's later works, such as *A Line in Bolivia* (Renfrew, 2003, p. 32), or whether it was unintentional and just a by-product of the action of walkers. Actually, when Paul Reilly encountered a very similar line crossing a comparable field just over the county border in Hampshire in 2020, that was precisely what he did. Like Long, he also took a photograph (Figure 1).

Since the crop (corn/maize) in the field was still very sparse, and the world that day was paralysed by the COVID-19 pandemic, Reilly having few other distractions took the time to look very closely at everything along and either side of this beaten track. A distinctive banana-shaped stone caught his attention. Leaning down for a closer look, he encountered a beautiful knapped flint object whose form corresponded to what archaeologists would typically characterise as a mesolithic period "pick."

By chance, this encounter happened on the weekday on which aficionados of the Lithic Society often share tweets using the hashtag #FlintFriday. Friday mornings were also the regular slot for the authors and two other archaeological and fine art colleagues to meet up, virtually, and progress a volume on trans-disciplinary *Diffractive Images* we were co-editing (Dawson, Jones, Minkin, & Reilly, forthcoming). During our wide ranging discussions, we had already touched upon how lithic artefacts were presented in art. For example, the left-hand panel of the *Melun Diptych*, by French court painter Jean Fouquet (c.1452), depicts *Etienne Chevalier with St. Stephen* with oils painted on oak in the Northern Renaissance style. The patron saint is bearing what looks distinctly like a patinated flint core (Dawson & Minkin, 2019, pp. 234–235). Inspired by this early juxtaposition of art and archaeology, the present authors agreed to develop this encounter in the cornfield and further explore, diffractively, the materiality and temporality of this particular assemblage as an *art/archaeology* collaborative project. Art/archaeology, as conceived by Doug Bailey (Bailey, 2014, 2017a, 2017b), aims to *disarticulate, repurpose, and disrupt* "artefacts from their pasts and to release them into the contested dynamics of the present, through the making of new creative works, not traditionally seen as historic or archaeological in form, display or intention" (Bailey, 2017b, p. 700). Importantly, "[r]ather than producing institutionally safe narratives conventionally certified as truth, archaeologists should follow the lead of artists who use the past as a source of materials to be reconfigured in new ways to help people see in new ways" (ibid, p. 691). Here we include archaeologists trying "to

challenge their own practice-based research *creatively*” (Thomas et al., 2017, p. 121 original emphasis) or, put another way, those applying their creative imagination (e.g. Gheorghiu & Barth, 2019; Gheorghiu, 2020). Our challenge would be to overcome the impact of the pandemic and turn it into a positive stimulus to generate creative new art/archaeology assemblages, practices, and insights.

2 Pandemic Problems in a Phygital Nexus

When the 2020 Coronavirus lockdowns hit, like everyone else, our everyday lives and work activities were dislocated dramatically. “Track and Trace,” besides being an allusion to the trodden path across the field, is a term that can be applied to the category of programmes aimed at testing for contagions and the subsequent contact tracing operations to quarantine potentially infectious individuals or clusters. In the UK, “bubbles” were introduced to strictly limit social contact and help reduce transmission of the coronavirus. Defined categories of people (e.g. single parent families, senior citizens, and special needs individuals) were permitted to “bubble up” in small, tightly defined, social groups to alleviate the effects of lengthy social isolation. The impact of social distancing policies for most of the population was profound and lengthy. Social isolation did not simply entail remote working for more than a year, it also suspended access to key equipment housed in our departments; apparatus that we normally relied on to help progress our transdisciplinary art/archaeology research project exploring the affordances of something previously described as a *phygital nexus* (Gant & Reilly, 2018). Phygital is a neologism which refers to an increasingly apparent universe in which *physical* and *digital* artefacts intersect one another, holding out the promise of substantive new ways to (re) consider the materiality and ontology of objects (Ingold, 2012). We conceive of this nexus “as a no-place and an everyplace in which the boundaries between what is physical and what is virtual are blurred, where digitally defined objects are susceptible to transmutations and may be (re) deposited within multiple parallel or intersecting physical and digital assemblages (e.g. Reinhard, 2019), and are able to “jump” almost anywhere in our digitally hyper-connected universe. In addition, phygital objects can be invoked, instantiated and brought into constellation with other practices and entities both physical and virtual, and “messy” [ontological] assemblages can, and do, emerge from these interventions. Phygital transformations, moreover, may be multi-directional: digital objects can become physical and, conversely, material instantiations can be virtualised (Dawson & Reilly, 2019). In short, assemblages in the phygital nexus are not only physically, digitally, spatially, and temporally itinerant, they are also ontologically itinerant as objects mutate and glitch in accelerated transformations as they move through physical, digital, and hybrid realms (Opitz, 2019; Reilly, 2015b).

To continue our long running collaboration (Callery, Dawson & Reilly, forthcoming; Dawson & Reilly, 2019) under the severe restrictions imposed to curtail the pandemic required us to discover expedient substitutes for key elements of apparatus no longer at hand and then develop novel remote collaboration workflows across our depleted phygital nexus. The most productively problematic aspect of this project was that only Reilly had “met” and maintained direct physical contact with the lithic assemblage at the core of this project. Initially, Dawson could only watch and listen to Reilly handling, gesturing, and describing the artefacts via Microsoft *Team* sessions. To enable meaningful collaborative work on this lithic assemblage, it first had to be ingested into our phygital nexus so that we could share and develop our practice-based insights and *phygital acts of discovery*. We pick up on Matt Edgeworth’s insight that in the shift from fieldwork to screenwork it “is clear that a general rethinking of archaeological discovery is necessary, taking due account of computers and the Internet as intrinsic elements of the mixture of human and nonhuman flows, forces and materials that together make up contemporary archaeological assemblages and encounters” (Edgeworth, 2014, p. 51) and extend it into our art/archaeology phygital nexus. Within this nexus, we adopt an “agential realist” perspective, and our point of departure is Karen Barad’s (2007, p. 210) key insight: “Matter is substance in its intra-active becoming – not a thing, but a doing, a congealing of agency. Matter is a stabilizing and destabilizing process of iterative intra-activity.”

To be clear at the outset, our project does not attempt to offer any kind of autoethnography or reflect on our working practices through the critical filters of Science and Technology Studies (STS). While such

approaches clearly have merit, we consciously try to eschew fixing our outputs as translations (Lucas, 2012; Olsen, Shanks, Webmoor, & Witmore, 2012) into immutable mobiles (Latour, 1987), which might stabilise our practices in standardised hinterlands of method assemblages (Law, 2004), or the values embedded in the socio-technological infrastructures (e.g. Bowker & Star, 1999) associated with our phygital nexus. We certainly acknowledge that our approach has parallels to Suchman's (2012) trope of (re)configuration. However, our focus, intent, and approach are fundamentally different. In this art/archaeology paper, we are not taking congealed socio-technical relations and reenacting them differently, we are actively disarticulating and *diffracting* our archaeological and artistic practices and images, subsuming our quotidian methods, techniques, tools, and apparatus, and rearticulating and repurposing them as *art/archaeology*-imbued stepping stones to enable us to step, as it were, outside the bubble of our own and our apparatus's cognitive faculties. Where these stepping stones lead is not yet clear. They are, however, significant points of departure. Perhaps, we should be more apprehensive. Regardless, the notion of a bubble allows us to apprehend a scene from both inside and outside, and to look away (Derrida, 1993), thus bursting the boundaries of what can be apprehended. Bubbles of various kinds emerge throughout this paper because we see in them much generative potential. Be they physical, digital, phygital, social, disciplinary, theoretical, technological, metaphorical, or allegorical, bubbles can separate and isolate, as well as bound and interface between things, all at the same time. Bubbles can also exist inside other bubbles. They can be beautifully parametric, or fascinatingly irregular. They can also be light and flexible, hard and durable, transparent, translucent, or opaque. They exist in both inorganic and organic realms. Eggs and cocoons are particularly inspiring examples of nascent bubbles of becoming. Cocoons are special kinds of bubbles, being places for both refuge, regeneration, and *metamorphosis*, that is safe environments for spontaneous and amazing transformation (Ingold, 2020). Bubbles are also diffractive objects and a form of lens. Our approach is to describe, diffractively, our subversive transdisciplinary experiments within, and through, our bubbles of creative digital practice and the consequent ontological shifts and itineraries associated with our lithic objects, and then assess how this extended assemblage came to matter as an *art/archaeology* installation.

Despite an impaired and imperfect phygital nexus, artefacts or assemblages can still be instantiated either physically or digitally, or both, radically transformed. Indeed, phygital objects can be changed back and forth from one materiality to many potential others. Within our nexus, we create, connect, and explore an ontological multiplicity of – more or less – physical and digital skeuomorphs and other more, but generally less, standard forms of records for sharing such as photographs, at different scales, with different apparatus. These include interactive 360° spherical panoramas, 3D Structure from Motion (SfM) graphical surface models, Reflectance Transformation Images (RTIs), and 3D prints which were produced in, and transmitted to and from (both digitally and physically), a home office in an isolated Hampshire village and a home studio in a London suburb.

3 Phygital Acts of Discovery and (Dis)location

Returning to the initial “act of discovery” (see Edgeworth, 2003), the flint artefact by the path crossing that chalkland field was photographed in situ. An interesting moment of diffraction began to unfold around the geometry and material (silica) of the glass lens of the camera, which is both perfectly symmetrical and materially an amorphous solid and the isomorphic cryptocrystalline lithic, which is scarred and asymmetrical, in their chalk and corn setting. Reilly made a 360° panoramic mosaic of overlapping photographs using Google's *Street View* app to produce an interactive spherical panoramic photograph. Unlike a conventional photograph, which locks the subject within the tight constraints of the enfolding rectilinear frame, the spherical panorama enables the cyborg viewer to look both “inwards” at the lithic subject, but also “outwards,” situating the artefact in the context of a wider landscape. Land, sky, and artefact are digitally meshed together. Strangely, as in traditional archaeological photography (inter alia, Bohrer, 2011; Conlon, 1973; McFadyen & Hicks, 2019; Morgan, 2016; Shanks, 1997; Shanks & Svabo, 2013), in this form of “bubble vision” (Steyerl, 2018) the photographer has been dislocated and anonymised, an absence

Figure 2: Unwrapped 360° panoramic photo of a flint tool encounter in a Hampshire field.

presence in the centre of this empty orb. That aside, this spherical panorama provides more spatial context about the findspot than a conventional photograph, and the interactive viewer in *Street View* affords users semi-autonomous capabilities of rotation, pan, and zoom around these digitally painted bubbles. But like all interactive media exploration, it is limited not only by the sophistication of the technology, but also by the functional literacy of the would-be explorer using it (e.g. Smith, Beale, & Opitz, forthcoming). Visitors who find themselves disembodied in the middle of this spinning spherical panorama are still securely locked down in a particular spot within a very thin slice of time, in limbo, that was initially determined and framed by Reilly, who thereby inadvertently created another set of “social bubble” restrictions in the context of the pandemic.

The unwrapped and flattened compilation of the spherical photogrammetry shown in Figure 2 is suitable for 2D printing, but is at best only a halfway house between the interactive 360° panorama and a conventional flat photograph. The “view” is much more constrained as the viewers’ ability to explore it is reduced to panning across, and zooming into, the warped image.

3.1 A Material Incursion

After being digitally dislocated, Reilly once again reengaged physically with the material artefacts there in the cornfield. After millennia of the combined elemental effects of earth, water, wind, and fire, this pick still persisted and had developed a wonderfully lustrous amber-like patina. Form and substance afford different perceptions of an artefact. This object when picked up had none of the warmth and lightness of amber that a

Figure 3: Mesolithic "pick," 140 mm × 65 mm, 300 g, flint (Anonymous, c. 10000–4000 BCE).

superficial haptic gaze might suggest, nor did it offer any olfactory hint of resin. At the first touch it felt hard, cold, and dense. The only smell belonged to the soil that still clung on. Proprioceptors in the hand, wrist, forearm, and elbow pushed to the fore of perception as ocular impressions were recalibrated. This asymmetric, weighty, but well-balanced, lithic artefact "fitted" perfectly into the grasp of Reilly's right hand. More material qualities asserted themselves: the remaining pitted cortex *feels* to be deliberately left in place to provide slightly rough textured gripping pads for fingertip and thumb holds. None of the hard, sharp, and potentially slippery elements need make contact with the grasping hand (Figure 3). When the artefact was measured, it was 140 mm long by 65 mm wide and weighed 300 g. It has a lot more presence than simple bald statements of facts can convey.

Walking to and fro along the path that Friday led to several other lithic objects conventionally dating back to somewhere in the mesolithic period (c.10000–4000 BCE). It soon became apparent that although they are all made from flint nodules and exhibit much in common stylistically, no two are the same. Each member of this scatter assemblage presents a unique, materially specific narrative of making which has been determined as much by the affordances of the materials of the nodules and hammer stones as the hands of the makers. No obvious indications of how any of these lithics came to be scattered across this field are discernable. Unstratified, and adrift in time, their relative order of coming to this place is indeterminate, but there, basking in the sun, they had become contemporaries and to some extent co-located. As mobile network coverage in this part of the world is patchy and unreliable, this spread of lithics was loosely pinned down using the *what3words* location platform. Eerily, the W3W application seems to have noted the crop and assigned a very apt triplet for one group of neighbouring lithics (i.e. <https://w3w.co/overruns.cornfield.send>).

The next step was to enable and extend the assemblage for collaboration. This involved, initially, washing the lithics and then subjecting each artefact to two standard but complimentary archaeological computer photography practices, both in a somewhat ad hoc manner: Reflectance Transformation Imaging (RTI) and photogrammetric SfM. As with the *Street View 360°* photo spheres, both these techniques rely on the creation of virtual photographic bubbles to enframe the subject. Here too, the hands and eyes of the photographer are hidden behind the lens, and like any other photographic technique, digital or analogue, they carry with them "genealogies of practices of looking and recording" (Jones & Díaz-Guardamino, 2019, p. 211) that are "neither neutral nor objective" (Cochrane, 2018, p. 182) and are applied deliberately for a

purpose. They are “volatile images” (Beale, 2018) being deliberately articulated and repurposed; in this case, in such a way as to facilitate the exploration of novel aspects of the materiality and temporality of this assemblage. Once again, viewers are given semi-autonomous capabilities to interact with the digital artefacts.

Several forms of RTI are commonly used by archaeologists, artists, and curators in museums and galleries, namely dome-, highlight-, multispectral-, micro-, and underwater- RTI (inter alia Back Danielsson & Jones, 2020; Clarricoates & Kotoula, 2019; Earl, Martinez, & Malzbender, 2010; Historic England, 2018; Jones & Díaz-Guardamino, 2019; Malzbender, Gelb, & Wolters, 2001; Mudge et al., 2005; Selmo et al., 2017). They all share in common a basic studio format in which both the camera and the subject are held rigid and multiple photographs are taken, each one with the light source in a different position, but equidistant from the subject; in other words, underneath a virtual hemisphere of lights.

In this half-bubble, the artefacts are completely disconnected and de-territorialised from the contexts from which they originally emerged, and then rearticulated, retemporalised, and fixed within a controlled, synthetic, negative space illuminated by flickering lights that produce meaning-making highlights and shadows. The arrangement is very similar to that described in Plato’s allegory of the cave (c.375 BCE) in which he describes prisoners having their heads fixed so that they see only the shadows deliberately cast on the cave wall by the gaolers in order to manipulate their (mis)perception of some external reality. In both cases, the viewpoint is crucial for drawing meaning from what is being revealed (see also Jones, 2020, p. 90). In the case of RTI, however, the flickering lights and shadows are synthesised to produce a digital skeuomorph, using an extremely precise description of the subject’s geometry, which can be interactively relit, and its surface properties manipulated. These facilities can dramatically enhance the viewer’s perception of the object they are trying to get to know better and perhaps collaborate with, as opposed to creating dystopian illusions. Perhaps Plato might have approved.

With access to institutional imaging equipment impossible, an improvised highlight RTI (H-RTI) rig was put together using equipment and substitutes available to hand: the tripod for the camera is a plant stand with wire supports tied on; the strobe was replaced by a bicycle lamp; the vital reflective sphere, or bubble, without which the subject’s geometry cannot be extracted, was a Christmas tree bauble; the camera was set up to take 50 photographs at 2 s intervals.

Makeshift H-RTI shoots were performed in a nighttime darkened home office (Figure 4). The images were then ingested into the *RTI Builder* which is available free from Cultural Heritage Imaging (<http://culturalheritageimaging.org/Technologies/RTI/>) and compiled using the highlight-based PTM (polynomial texture map) fitter option. In practice, this means that the reflective bubble in the images is located by the user, then the software takes over and automatically detects the position of the bubble’s highlights for every

Figure 4: Nighttime shoot with improvised H-RTI rig.

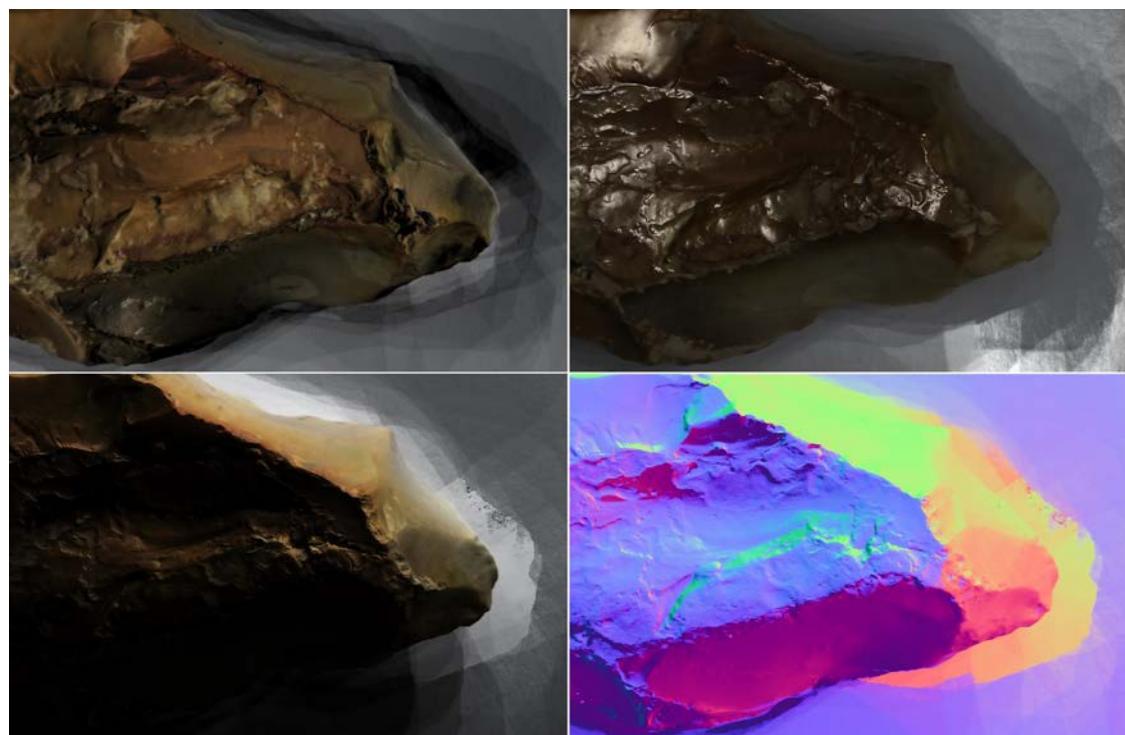
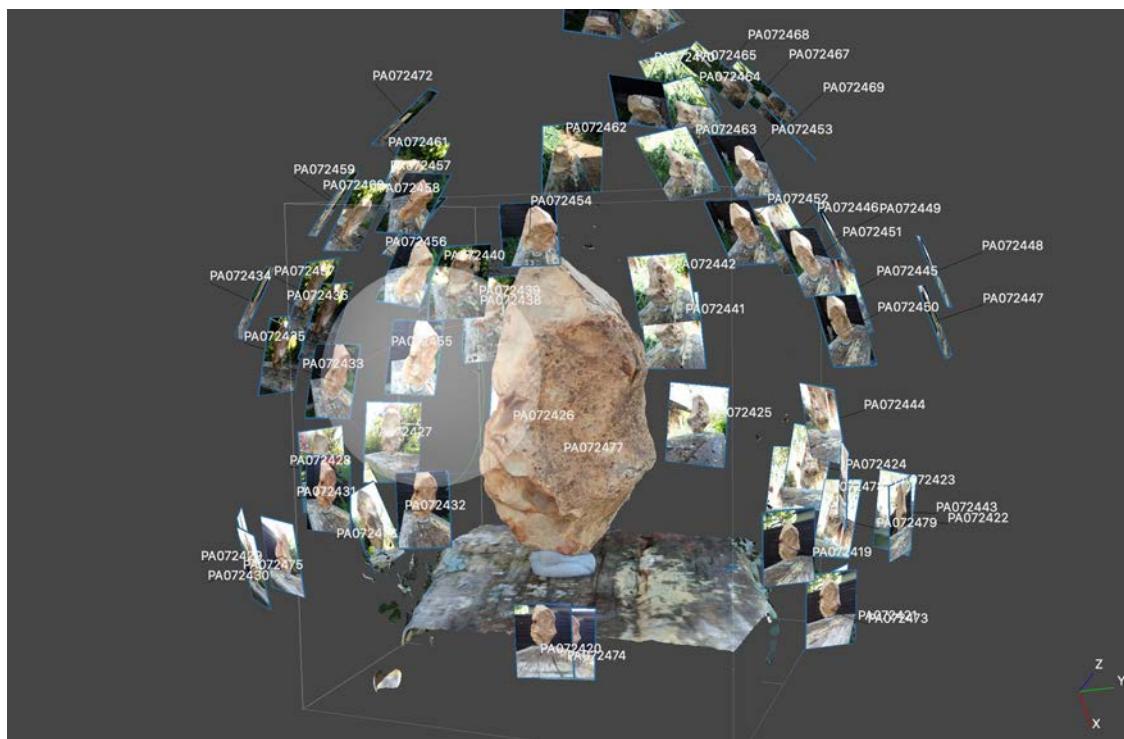


Figure 5: Example render modes of same part of pick.

image. The lighting information from all these images is then synthesised into a mathematical model of the subject's shape and colour properties which are encoded in such a way that each constituent pixel displaying the compiled RTI will accurately model how light behaves at the specific point of the surface it is depicting. Users of the *RTI Viewer* software can interactively re-light, zoom-in, and pan across their models and analyse it, albeit from a fixed viewpoint, in extremely intimate detail. Researchers are also endowed with superficial alchemical powers of transmutation. The material properties of the object's surface can be transformed at the drop of a menu because this application also has adjustable "rendering modes" which enable users to change the displayed surface properties instantaneously to be, for example, more diffuse or more specular (e.g. Figure 5). Some types of marks which would normally be missed, unnoticed by the naked eye on, for example, a bland, rough stone surface can leap out when that speck of geometry they occupy is rendered chiaroscuro-like as a smooth metallic material, enlarged, and dynamically lit from many oblique angles. These functions radically enhance the capabilities of the researcher who, for instance, could unpick much more easily and efficiently the operational sequence of each blow that shaped this artefact's becoming. Eyebrows were raised when RTI analysis of the Folkton drums, already well-known to research, revealed evidence for previously unrecorded motifs, erasure, and reworking. These objects were shown to be palimpsests and not decorated according to a single, preordained scheme, but were successively carved and recarved over time (Jones et al., 2015; Minkin, 2017).

Artist Simon Hitchens has developed a contrasting approach of intraacting with portable lithic objects, light, time, duration, shadows, his pen, and the marks they all engender. He ignores all visual surface details of the silica rock (chert) he is studying and instead records the subtleties of its three-dimensional form using its imprint on time. He does this by tracing the fluid outline of the shadow of the rock due to sunlight as it drifts and morphs at intervals from sunrise to sunset (e.g. Hitchens, 2015). In the finished work, the footprint of the rock in the landscape emerges as a blank silhouette enmeshed by the superimposed, orderly, and penned progression of "shadow lines." The results are surprising, beautiful, and coherent; time, temporal order and duration have been harnessed to help create a new understanding of the rock. In the *RTI Viewer*, however, time does not obey the rules of linear temporal order. Indeed, both may


Figure 6: Temporal diffraction pattern and mesolithic pick in H-RTI frame.

become plastic and pliable and, if handled in certain ways, turn brittle and friable, and time's bubble will burst.

Consider the static frame from a compiled H-RTI of our mesolithic pick using the default settings in the RTI Viewer interface shown in Figure 6. Notice the fringe of interlaced shadows surrounding our lithic subject. This is an example of what physicists call a diffraction or interference pattern. Specifically, it is a temporal diffraction pattern in which “different times bleed through one another” (see Barad, 2017, p. 68). It is created by peaks and troughs of waves of light and shadow overlapping and either reinforcing (brightening or darkening) or cancelling out one another. Light, darkness, and time seem to travel hand in hand. We normally experience these waves of light in linear flows such as those laid out in Hitchen’s haunting meditations on duration and transience. In the *RTI Viewer*, however, the ribbon of time has been unpicked, cut into fragments, and can be shaken up like the particles in a snow globe. How can that be, given that the skeuomorphic green bubble provides apparently smooth navigation around the subject? Click the cursor on any point on this bubble and the world is refreshed to show what the subject looked like when the light source was pointed at it from that direction. Skim the cursor across the navigation bubble in any direction and the lighting on the subject is dynamically adjusted to match those lighting points, causing the shadows and highlights to swirl and slide around as this particular hand ballet unfolds. Time, however, is stumbling about this space, hopping to and fro. Its once well-beaten track has become an erratic dotted line, a quantum ellipsis of superpositions.

4 SfM Photogrammetry Bubble

The RTIs were created as the lunar bubble waxed and waned. Photogrammetry followed in the daylight hours in another makeshift studio, this time in the garden to obtain the best lighting conditions. Each artefact was fixed in place to the top of a conveniently high step ladder using bluetack and photographed in the round (i.e. yet another bubble scene of overlapping images). As with the RTI project, these images were shared via the internet in order that Dawson might get a better handle on the assemblage and respond to it creatively. His first response was to process the photogrammetry using Agisoft *Metashape* software and build interactive SfM 3D models (e.g. Figure 7).

Figure 7: Screenshot of SfM Mesh bubble with axes.

He outputs stereolithographic (STL) files to create experimental 3D prints which are colourful and challenging material reconceptions derived from the digital artefacts and reinscribed with new latent meanings arising from practices of renewal, transformation, and repurposing. The printer refixing fractured moments in its unrelenting linear oozing of duration.

5 Isolated in the Pandemic: Track and Trace

“Bubbles,” “isolation,” and “track and trace” are three prominent features of the pandemic landscape. A handful of key factors tie these features together, namely location, setting, time, and duration. These very same factors are central to our collaborative explorations of the lithic scatter. How things come together and interact in particular space and time, and for how long, matters. The application of RTI (Historic England, 2018) and the SfM photogrammetry (Historic England, 2017) gave us important insights into the multivalent temporality of the scatter assemblage, the topology of the individual objects, and their superficial materiality.

While Dawson was building out and exploring the plasticity of SfM photogrammetry in plastics, Reilly was fascinated by the temporal diffraction patterns revealed by the RTIs. In parallel, he was increasingly interested in the diffractive possibilities of the popular computer vision technique of image “style transfer” which relies on sophisticated “neural algorithms of artistic style” (Gatys, Ecker, & Bethge, 2016) using a very deep convolved neural network (Simonyan & Zisserman, 2015) to extract the style of one image and transfer it onto the content of another (for a full treatment on style transfer see Miller, 2019, chapters 7–12). In other words, it produces another form of diffractive image that interlaces different styles and different subjects through a machinic way of seeing (e.g. Graham, 2019).

We began to explore how different times, materials, and places could be diffracted through this assemblage, and one another, using this technique. Our point of departure was the mesolithic pick we introduced at the beginning of this paper (Figures 3–6). Our “content image” is a frame from our compiled RTI, in

Figure 8: #FlintFriday – Silica Alchemy IV, 2020.

which the fringe of normally unremarked upon interlaced shadows is also a temporal diffraction pattern. The first material property we wanted to diffract with the RTI of the flint and its accompanying diffraction artefacts was stained glass. Inspired by Dawson's flamboyant 3D-printed confections (see below), an image of a colourful stained glass panel was used to define the style.

One outcome of this experiment is *#FlintFriday – Silica Alchemy IV* (Figure 8), which is quite a departure from standard, but nevertheless very sophisticated, representations of lithic objects (e.g. Lord, 1993; Raczynski-Henk, 2017; van Gijn, 2010). This is one of a series of diffractive digital studies exploring the recursive intra-action of light, shadows, silica, and (artificial)neurons (Reilly, 2020). In this study, the archaeologist's analytical gaze upon the impact scars that shaped the flint tool is radically interrupted

Figure 9: *Trace and Trace I*, 2020 (Diffractive Image – style transfer QR w3w location code and flint RTI).

Figure 10: *Track & Trace II*, 2020 (Diffractive Image – style transfer location setting satellite landscape image and detailed flint RTI).

midway through the process of capturing its RTI portrait, and then subject to the machinic gaze of the *style transfer* deep neural network, before being rendered as another kind of diffractive image in which the RTI multi-lit flint artefact and its compound shadows are seemingly transmuted into backlit stained glass (Figure 8).

The QR-code has become a zeitgeist of the pandemic, capturing as it does those key factors of ontology, time, location, and place. A QR code is a machine readable optical label that can describe to which it is attached. In *Track and Trace I* (Figure 9), the pick's findspot has been rendered as QR code using its unique *what3words* location triplet, which was then style transferred onto the same compiled RTI image used in *Track and Trace I* (Figure 9).

Lastly, for this set of *recursively* diffractive images, a satellite image showing the neighbourhood and setting of our lithic assemblage's findspot was interlaced with our, by now, signature RTI content image (Figure 10). What emerges looks like an island microcosm of the chalk downlands set in a shallow sea, the "pick" once again isolated, set adrift in time, and lapped by temporal ripples. This novel form of diffraction also interlaces dramatically different viewpoints of both the artefact and its setting simultaneously from a *great distance* and in *close detail*. Figure 9 and 10 are examples of what Zylinska (2017) calls "nonhuman photography" in her book of the same name. Nonhuman photographs are not *of*, *by*, or *for* humans (Zylinska, 2017, p. 5 original emphasis). This is not to say that these images are unthought or mindless artefacts, somehow artless, nor that humans have no part in their making. As Zylinska argues, all images will embody both human and nonhuman elements. Figure 9 and 10 are also examples of what Zylinska (2020, pp. 109–111) calls "undigital photographs." They display dramatic artistic changes to the original computational images made after they were originally taken by both human and artificial intelligences.

Perhaps, it was our own sense of isolation during the lockdowns, but we became acutely conscious that this archaeological assemblage had been physically separated from the landscape from which it had emerged. The 360° panoramic bubble photographs and the diffractive style transfer pieces were an attempt to bridge this rift and to place them back, if only virtually, in an appropriate place and moment of re(dis)covery. However, while these images are rich in meaning, perhaps even provocative, and may even imbue a certain sense of their place in the landscape, that landscape was now bereft of the flint scatter. We therefore wanted to physically reconnect the newly inscribed assemblage with the landscape, setting, time, and materials from which it had emerged. Our next experiments involved further (im)material diffractions with time, and then artefacts with place.

6 Diffracting Materials, Scale, Time, and Place

The initial act of discovery of these flint artefacts happened in a cornfield with a track across it, on the chalkland landscape known as the “downs,” in Hampshire, UK. Chalk is the progenitor of silica, flint, chert, glass, and so also our lithics and our camera lenses. Chalk is an ostentatious medium in its own right, beloved by builders, geologists, fossil hunters, sculptors, teachers, and mathematicians. This substance calls to be (re)shaped and invites lively movement and thought. It is the didactic material, par excellence, which has encouraged the development of countless ephemeral tracks across blackboards around the world for generations. Mathematicians are particularly indebted to it. As Barany and MacKenzie (2014, p. 115) explain: “The consequences of chalk for mathematics are not just practical but ontological and epistemological [as] arguments are enacted and validated through their performative unfolding – an unfolding as absent from circulable mathematical texts as it is essential to the production and intelligibility of their arguments.”

Above the chalk is our field, the corn emerges, heading straight upwards in a hurry, from the crumbley, grey, alkaline soil, pushing aside flint nodules and lithic artefacts on the surface, and is aligned in arrow-straight green dotted lines. The lines of corn form nearly orthogonal axes with the line of beaten track and the chalk bedrock below, and so now something else has to be added to our unfolding assemblage. Corn is central to Dawson’s practice. It is the raw material for many of his most recent works which involve experimental 3D-printed components.

For decades, additive manufacturing has enabled fabrication using many different, and multiple combinations of, materials. However, it has only been in the last few years that 3D-printing has become popular in art and archaeology (e.g. Eve, 2018; Reilly, 2015a, 2015b). The 3D-printed works developed in Dawson’s *plastic studio* are based on polylactic acid (PLA), a biodegradable polyester derived from corn starch. The base of lactic acid is produced in our bodies during exercise as carbohydrates produce it as a by-product (it’s what makes your arms ache if you have been knapping flints vigorously for an extended period, and similarly your legs after a long run). The same fermentation occurs on an industrial scale with homofermentative methods of production. PLA is biocompatible with the human body. It may be implanted as biodegradable support structures inside substitute body parts. It can also be ingested orally, accompanied by a characteristic sour taste, with for example sourdough and homebrews. Externally, the cosmetics industry lathers our skin with it. Without question, PLA is an incredibly vibrant material. Dawson tries to respond intuitively to the material while working from a position of unfamiliarity, the act of discovery still the bedrock of his practice (Dawson, 2012, p. 9). In an increasingly phygital age, he has been extending his methods of creation from the physical and into the digital.

Seeking to address correspondences between materiality, imaging, digital, and physical discussions, even the material properties of plastic should be considered with their long chains of polymers. The material itself is chemically refractive. To be more precise, lactic acid has a particular optical rotation which is birefractive, meaning that a ray of light passing through it will be split into two rays with diverging paths. This is chemically possible because lactic acid has a particular geometric property it has in common with DNA and amino acids: it is a form of chiral molecule, which means that – as with several of our flint artefacts – it has an asymmetric structure that cannot be superimposed on its mirror image by any combination of rotations and translations. Like human hands, such molecules exist in stereo; related to one another by reflection. Each of its left-handed and right-handed molecules will have a single carbon molecule at its stereogenic centre (a molecular fixed point). They are almost the same, but have a different arrangement of atoms in space and are considered optically active on a chemical level. In other words, the material that feeds the 3D printer to draw thousands of superimposed images, in layers upon a print bed, to be worked and reworked within Dawson’s studio, and later (re)captured through RTI, can itself be described as optically active, and like some lithic artefacts, it exhibits handedness.

Figures 11 and 12 are frames of a compiled H-RTI of a Dawson sculpture using different rendering modes. In Figure 12, strands of plastic are being explored in the same way as the worked surfaces of flint tools or chalk drums by exploiting RTI capabilities to affect light across a material surface in order to discover layers of plastics, making and meaning. These two images raise a question: what correspondences

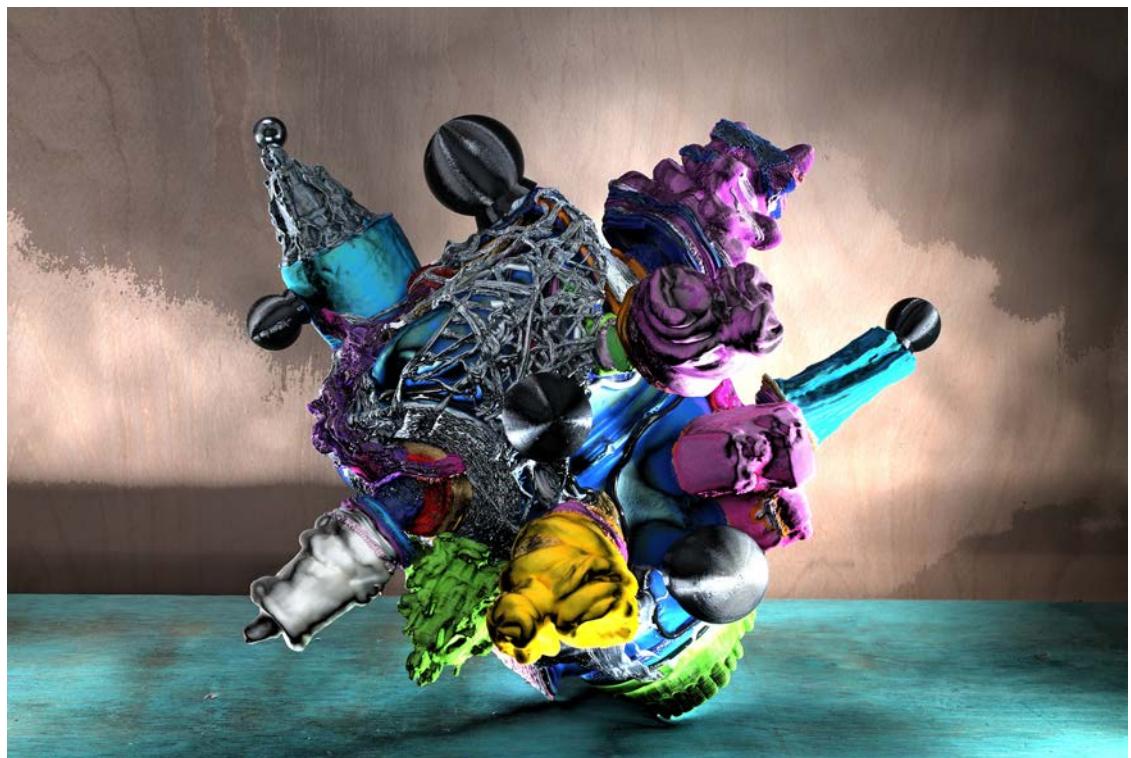


Figure 11: RTI of PLA Assemblage.

Figure 12: Detail of PLA Assemblage RTI.

exist between gestures, materialities, and geometry and the images that emerge through their intimate encounters?

Now it was Reilly's turn to watch Dawson handling his reinterpretations of the lithic artefacts from the cornfield in his biodegradable "plastic studio." There had been issues connected with the affordances of the printers and the printing medium, in that they have to be printed in such a way as to assemble correctly and efficiently (both in terms of labour, energy, and material consumption). All of the above could be implicated in Benjamin's (1936 [1968]) famous injunction concerning "mechanical reproduction." Although these objects could have been reproduced as identical 3D-printed facsimiles, in fact, like their lithic prototypes,

Figure 13: Mesolithic pick with dazzle diffraction.

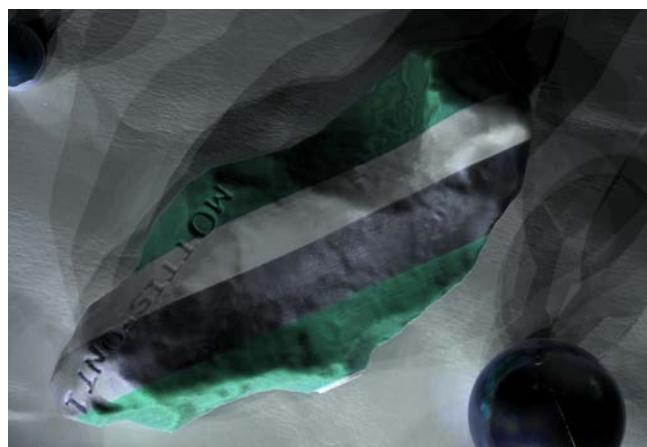


Figure 14: RTI of inscribed PLA pick with oblique green-, white-, and grey-dazzle.

no two are the same. An essential stochastic element is introduced by the maker spontaneously changing the colour of the filament when it is convenient or it just feels right.

Grown from a cornfield, the vibrant, regenerated artefacts that appeared phoenix-like on the screen of our e-meetings were strikingly reinscribed with new meaning. For example, the once familiar lithic topologies and textures that had been extracted so carefully from the SfM photographic surveys to enable the original chaîne opératoire to be determined now reemerged, covered in a profusion of third millennium dazzle that fundamentally redefines the visual encounter. One of the first to steal the stage with its razz-matazz had the duration of its making laid out in stunning pink, white, amber, yellow, black, and grey bands progressing along its entire length, causing the new colourful stratigraphy and the original chaîne opératoire of impact scars to diffract through one another. This particular candy rock like scheme also brought gustatory confusion of *all sorts* (Figure 13). Over a period of several weeks, every individual lithic in the assemblage was generated afresh, each with its own unique colour scheme, laid out in various orientations (e.g. Figure 14) and at more or less random scales.

Several of the PLA works were rendered multiple times at different scales and in different liveries. A colourful, cosmopolitan, and very lightweight collection was packed in a box, handed over to the Royal

Figure 15: Phygital finds tray: Interlaced corn and flint assemblage.

Mail postal service, and tracked online to Hampshire. Once “back home,” our itinerant objects were introduced to their sturdy rural cousins (Figure 15). It very soon became apparent that aside from their striking gaudiness, which actually proved very complimentary to the lithics, the biggest difference between the two assemblages revolved around their weight and balance and was how they fitted (or otherwise) into the hand.

In this regard, one rather dowdy PLA artefact stood out (Figure 16). It had been printed using the same technology and processes as the rest but, uniquely, it had then been coated in chalk powder (by being turned over in a revolving bubble for several hours) that was a very close match to the colour of lithic prototype’s own patina. The object that emerged from this process was uncanny. It appeared a most convincing lithic artefact, but it felt completely wrong when it was picked out of the delivery parcel. This was because although it looked like the original lithic, its weight, balance, and texture were dissonant with its appearance, and so it provoked repulsion, especially when it was handled with the flint

Figure 16: Uncanny pandemic object.

Figure 17: Painted pebbles in and around a Test Valley village and along its public rights of way.

prototype held in the opposite hand. Remarkably, once safely installed on a display stand at an arm's distance away, this artefact no longer feels like some kind of uncanny pandemic object.

For the rest, we planned to release them back into the wild under the cover of a diversion. As it happened, school children had over the pandemic taken to placing colourfully decorated pebbles around the village and paths where Reilly lived. A favourite type of spot to deposit these little works of art is on gate posts, the fingers of waymarkers, on stiles and, sometimes, just simply at the side of a footpath. They are also found in various nooks and crannies just off the public footpaths in the woods and fields thereabout (Figure 17). These wonderful objects can be admired and even handled, before being returned to their place of display.

Curiously, the track about which our lithic assemblage was discovered had no decorated pebbles along its course nor at the waymarkers and stiles at its start and finish. Their absence provided cover for our installation. We release our dazzling assemblage of phygitally related artefacts, unannounced, back into the field close to the places the flint lithics were first discovered by the track – the colourful worked corn substitutes replacing their patinated worked flint counterparts. They are (re)introduced when it feels right, when the corn is ripening (Figure 18), or when the corn has been harvested (Figure 19) for example.

7 Summary and Discussion

Bubbles have emerged in this project as potent vehicles for creativity in practice as well places of personal mindful refuge and intellectually positive spaces for free thinking in the time of the pandemic. They serve as both cocoons and incubators, places where metamorphosis can occur. In fact, a single lithic scatter found in

Figure 18: A dazzle in the corn crop just before harvesting.

a cornfield during the pandemic has been transformed through the dramatically different lenses of a veritable “bubblescape.” Like the contemporary paintings of Jeffrey Dennis, our art/archaeology bubbles represent intense shifts in micro- and macro-focus (Read, 2017) in relation to how we examine and experience objects within both their places of discovery and their ongoing displacements in time and space.

This paper had its origin within membranes of cortex, stretched around blobs of flint, buried in the chalk floor of an ancient sea. Some of these silica bubbles eventually percolated up into a mesolithic landscape where they were encountered by tool makers who burst them open and discovered that the broken pieces could be fabricated into wonderful objects. Some of these artefacts persisted for millennia and then were (re)discovered and recognised for what they were, by their distinctive technological style, in a cornfield with a path worn across it, in the pandemic of 2020. This assemblage of lithic artefacts now became caught up in a series of new art/archaeology analytical-creative bubbles that interpenetrated one another over many dimensions, including place, setting, time, material, scale, technologies, and cognition. The first of these was the 360° spherical panorama that fixed the “act of discovery” using a mobile device and a credit card photographic scale. While this both inward and outward looking landscape bubble recorded some of the setting of the discovery, its location was also affixed to a named 3 m² square mapped onto W3W’s meshed bubble representation of the earth. Although viewers could look around the place and setting of the act of discovery, this visual bubble has an element of claustrophobia and conveys a sense of being locked down to a particular moment of time. This led us to several other bubbles that functioned as portals allowing slightly more autonomous and, perhaps more importantly, diffractive exploration of our assemblage via an (im)materially, temporally, and technologically effervescent phigital nexus.

The RTI project invoked a kind of quantum bubble in which time and materialities were pulled out of the shadows to be diffracted through one another in order to unpick not only the chaîne opératoire of the making of an artefact, but also the operational sequence of registering each artefact in an interactive RTI

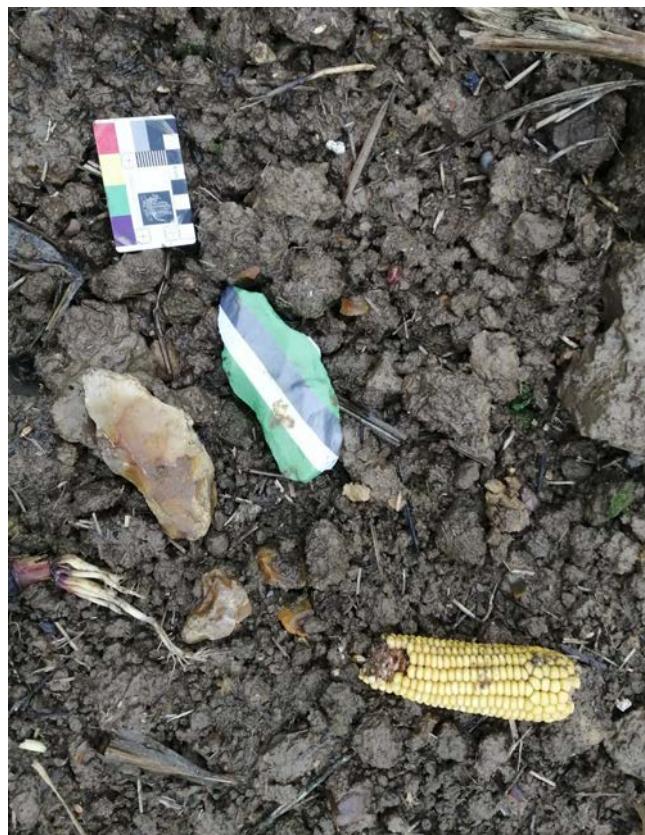


Figure 19: The cycle of silica and corn continues.

polynomial texture map. As compiled into the RTIViewer, users are able to interactively explore the making and use of these objects (i.e. the artefact and the RTI) by remixing the material surface properties and lighting sequences. However, now fixed in their RTI bubble, our artefacts had somehow come adrift both in time and place. In an effort to return them, creatively, to their silica origins and setting, compiled RTI images encapsulating the temporal diffraction patterns in their making were, in turn, diffracted, using a style transfer algorithm in a cluster of artificial neural bubbles, with meaningful style images: stained glass panel; a QR location code; and a satellite rendering of their find spot. In parallel, a SfM bubble provided a medium to connect Dawson in his plastic studio in London to the geometries and surface details of each individual artefact from the lithic assemblage.

All the art/archaeology artefacts from the 360°, SfM and RTI computer photogrammetry, and image style transfer fall into the category of “simulacra.” First described extensively in the work *On the Nature of Things* written by the poet and philosopher Titus Lucretius Carus around 50 BCE, simulacra (called “idols”) have the appearance of things from the real world, but are actually just empty films or membranes which have been shed off the real body of the thing they came from, like a snake’s skin (see also Minkin, 2016; Lucretius, 2020). They may be considered as empty bubbles without organs. Therefore, feeling that the artefacts in our virtual assemblage had been “deprived of their matter” (Stobiecka, 2019), we decided to (re) materialise the assemblage in such a way as to recall the place, vibrant matter, and form of the original lithic assemblage but with a contemporary art/archaeology twist. The silica artefacts were therefore 3D-printed at very different scales, in dazzling colours, using biodegradable, corn-based, PLA, to create extreme skeuomorphs. The dazzling liveries radically disrupt the visual encounter while indicating the duration of their (re)making as they are diffracted across the traces of the impact scars and chips that shaped the making of the lithics. When touched, the comparative warmth and lightness of the decorated “plastic flints” is a startling contrast to the cold hardness of their silica forebears.

The analytical bubbles we have outlined above share a number of common human and nonhuman elements. Each one includes a group of artefacts, the application of a set of instruments, or tools, an artist, an archaeologist, and a collection of contrasting modes and techniques of observation and analysis. They conform to what Hayles (2017) terms “cognitive assemblages,” in which human and nonhuman decision, or choice, making functions are distributed across, and link together, the component parts. Hayles makes a distinction between thinking and cognition. Thinking refers to high-level mental operations she associates with consciousness and unconsciousness, which are grouped together as modes of awareness enabling reasoning, abstraction, and the creation and application of, for example, languages, mathematics, art, and music. By contrast, cognition is a much broader capacity that extends far beyond consciousness into other neurological processes that also feature pervasively in other life forms and complex technical systems, especially in so-called artificial intelligences and scanning devices. Hayles refers to these broader and more widespread cognitive capacities operating below the level of consciousness as unthought or nonconscious cognition. What is perhaps most noteworthy about our art/archaeology artefacts is that they are the products of an intraacting cognitive assemblage in which the cognitive components do not simply interact in parallel or in tandem. Rather, we are consciously diffracting different modes of cognition through one another, human with nonhuman, conscious with nonconscious, artistic with archaeological practice and techniques, with the hopeful intention of producing surprises and unexpected results.

In humans, according to Hayles (2017, p. 27), nonconscious cognition comes online and is inherently much faster than consciousness. Its job is to interpret the constant floods of sensory inputs that would overwhelm consciousness and discern patterns that consciousness cannot detect and draw inferences to anticipate future events. This is perhaps why the chalk-coated 3D-printed “lithic” provokes such a strong negative reaction. The unthought expectation was that the object would have a certain feel and heft which, when it failed to match the anticipated cross-modal sensory pattern, caused a feedback loop to trigger consciousness (a half-second later) to pay attention to it. It caused us to pause and think. Changing the scale, material, colour, setting, or perspective of the artefacts shifts the register of cognition from nonconscious, or unthought, sense-making processes, into conscious attentiveness. One might think of it as deliberately priming a neural trigger for a new act of discovery.

Each individual art/archaeology *exhibit* presented here can speak for itself. We do, however, want to add a few closing remarks about the collection as a whole. Taken together, the bubblescape we have laid out reveals the *effects* of our diffractive art/archaeology practices. In these studies, we have probed into the shadows to discover new productive ways of radically disarticulating, disrupting, and repurposing fundamental features, or attributes, common to both art and archaeology assemblages. Authorship, provenance, temporality, setting, scale, and materiality have all been interlaced through one another. Who or what is the principle maker in these assemblages is now extremely difficult to pin down. Cognition has not so much been de-centred, rather human and nonhuman strands have been spliced together. Place, context, and setting also seep through one another from different perspectives, at simultaneously both macro and micro scales. Chronologies have been interfered with, and the very order of time and the nature of duration are unsettled. Our phygital (im)material exhibits unfold all these attributes and thus rearranged and transformed, they are returned to us for reinspection, recharacterisation, and recognition. These attributes of worlding, or world making, are not simple translations into comparable, or even remotely equivalent, representations. Our apparently simple lithic artefact has *metamorphosed* into several previously undocumented “instars” (Ingold, 2020) whose ontological status is currently ambiguous, and whose affordances we are only just beginning to appreciate. Freshly emergent, they call to us for further study and novel phygital acts of discovery.

Acknowledgements: We thank our diffractive image bubble colleagues and friends Louisa Minkin and Andy Jones for enriching our thinking and also for their help and support in pushing back the shadow of the pandemic in 2020. Thanks also to Jeremy Huggett and the three anonymous reviewers who offered very constructive suggestions on an earlier version of this paper.

Conflict of interest: Authors state no conflict of interest.

References

Back Danielsson, I. M., & Jones, A. M. (Eds.). (2020). *Images in the making. Art, process, archaeology*. Manchester: Manchester University Press.

Bailey, D. W. (2014). Art/archaeology//art: Letting-go beyond. In I. Russell & A. Cochrane (Eds.), *Art and archaeology: Collaborations, conversations, criticisms* (pp. 231–250). New York: Springer-Kluwer.

Bailey, D. W. (2017a). Art/archaeology: What value artistic-archaeological collaboration? *Journal of Contemporary Archaeology*, 4(2), 246–256.

Bailey, D. W. (2017b). Disarticulate–repurpose–disrupt: Art/archaeology. *Cambridge Archaeological Journal*, 27(4), 691–701. doi: 10.1017/S0959774317000713.

Barad, K. (2007). *Meeting the universe halfway: Quantum physics and the entanglement of matter and meaning*. Durham: Duke University Press.

Barad, K. (2017). Troubling time/s and ecologies of nothingness: Re-turning, re-membering, and facing the incalculable. *New Formations*, 92(1), 56–86. doi: 10.3898/NEWF:92.05.2017.

Barany, M., & MacKenzie, D. (2014). Chalk: Materials and concepts in mathematics research, In C. Coopmans, M. Lynch, J. Vertesi, & S. Woolgar (Eds.), *Representation in scientific practice revisited*. Cambridge, MA: MIT Press.

Beale, G. (2018). Volatile images: Authenticity and representation and multivocality in digital archaeology. In P. Di Giuseppantonio Di Franco, F. Galeazzi, & V. Vassallo (Eds.), *Authenticity and cultural heritage in the age of 3D digital reproductions* (pp. 83–94). Cambridge: McDonald Institute of Research.

Benjamin, W. (1936 [1968]). The work of art in the age of mechanical reproduction. In *Illuminations* (pp. 217–251). New York: Schocken Books.

Bohrer, F. N. (2011). *Photography and archaeology*. London: Reaktion Books.

Bowker, G., & Star, S. L. (1999). *Sorting things out. Classification and its consequences*. Cambridge: MIT Press.

Burgon, R. (2012). *Richard long: A line made by walking; 1967*. London: Tate. <https://www.tate.org.uk/art/artworks/long-a-line-made-by-walking-ar00142> (Accessed 5th October 2020).

Callery, S., Dawson, I., & Reilly, P. (forthcoming). *Temporal ripples in art/archaeology images*. In Dawson, et al. (Eds.), *Diffracting digital images. Art, archaeology and cultural heritage*. London: Routledge.

Cochrane, A. (2018). Archaeology through the looking glass. Photographic documentation and the politics of display. In A. M. Jones & A. Cochrane (Eds.), *The archaeology of art: Materials, practice, affects* (pp. 173–182). London; New York: Routledge.

Clarricoates, R., & Kotoula, E. (2019). The potential of reflectance transformation imaging in architectural paint research and the study of historic interiors: A case study from Stowe House, England. *Journal of the Institute of Conservation*, 42(2), 135–150. doi: 10.1080/19455224.2019.1605919.

Conlon, V. M. (1973). *Camera techniques in archaeology*. London: John Baker Publishers.

Derrida, J. (1993). *Memoirs of the blind: The self-portrait and other ruins*. Chicago: University of Chicago Press.

Dawson, I. (2012). *Making contemporary sculpture*. Ramsbury: Crowood.

Dawson, I., Jones, A. M., Minkin, L., & Reilly, P. (forthcoming). *Diffracting digital images. Art, archaeology and cultural heritage*. London: Routledge.

Dawson, I., & Minkin, L. (2019). Terminal hut. In A. Jones & M. Díaz-Guardamino (Eds.), *Making a mark: Image and process in Neolithic Britain and Ireland* (pp. 214–257). Oxford: Oxbow books.

Dawson, I., & Reilly, P. (2019). Messy assemblages, residuality and recursion within a phygital nexus. *Epoiesen*. doi: 10.22215/epoiesen/2019.4.

Earl, G., Martinez, K., & Malzbender, T. (2010). Archaeological applications of polynomial texture mapping: Analysis, conservation and representation. *Journal of Archaeological Science*, 37(8), 2040–2050. doi: 10.1016/j.jas.2010.03.009.

Edgeworth, M. (2003). *Acts of discovery: An ethnography of archaeological practice*. Oxford: Archaeopress.

Edgeworth, M. (2014). From spade-work to screen-work: New forms of archaeological discovery in digital space. In A. Carusi, A. Hoel, T. Webmoor, & S. Woolgar (Eds.), *Visualization in the age of computerization* (pp. 40–58). London: Routledge.

Eve, S. (2018). Losing our senses, an exploration of 3D object scanning. *Open Archaeology*, 4(1), 114–122. doi: 10.1515/opar-2018-0007.

Gant, S. & Reilly, P. (2018). Different expressions of the same mode: a recent dialogue between archaeological and contemporary drawing practices. *Journal of Visual Art Practice*, 17(1), 100–120. doi: 10.1080/14702029.2017.1384974.

Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). A neural algorithm of artistic style. In *Proceedings of the 2016 IEEE conference on computer vision and pattern recognition* (pp. 2414–2423). Las Vegas, NV: IEEE Computer Society 2016.

Gheorghiu, D. (2020). *Art in the archaeological imagination*. Oxford; Philadelphia: Oxbow Books.

Gheorghiu, D., & Barth, T. (2019). *Artistic practices and archaeological research*. Oxford: Archaeopress Publishing Ltd. <https://doi.org/10.2307/j.ctvndv7pg>

Graham, S. (2019). *Object style transfer*. Available: <https://electricarchaeology.ca/2019/02/04/object-style-transfer/> (Accessed 27 October 2020).

Hayles, K. (2017). *Unthought: The power of the cognitive nonconscious*. Chicago; London: The University of Chicago Press.

Historic England. (2017). *Photogrammetric applications for cultural heritage. Guidance for good practice*. Swindon: Historic England.

Historic England. (2018). *Multi-light imaging highlight-reflectance transformation imaging*. Swindon: Historic England.

Hitchens, S. (2015). *Deconstructing wholeness 15* | Paper, ink | 84 × 69 cm. Available: <http://www.simonhitchens.com/gallery> (Accessed 28th October 2020).

Ingold, T. (2012). Toward an ecology of materials. *Annual Review of Anthropology*, 41, 427–442.

Ingold, T. (2020). Commentary on part 1. In I. M. Back Danielsson & A. M. Jones (Eds.), *Images in the making. Art, process, archaeology* (pp. 65–70). Manchester: Manchester University Press.

Jones, A. M. (2020). Images and forms before Plato: the carved stones balls of Northern Scotland. In I. M. Back Danielsson & A. M. Jones (Eds.), *Images in the making. Art, process, archaeology* (pp. 90–103). Manchester: Manchester University Press.

Jones, A., Cochrane, A., Carter, C., Dawson, I., Díaz-Guardamino, M., Kotoula, E., & Minkin, L. (2015). Digital imaging and prehistoric imagery: A new analysis of the Folkton Drums. *Antiquity*, 89(347), 1083–1095. doi: 10.15184/aqy.2015.127.

Jones, A., & Díaz-Guardamino, M. (2019). *Making a mark: Image and process in Neolithic Britain and Ireland*. Oxford; Philadelphia: Oxbow Books.

Jones, J., & Smith, N. (2017). The strange case of Dame Mary May's Tomb: The performative value of reflectance transformation imaging and its use in deciphering the visual and biographical evidence of a late seventeenth-century portrait effigy. *Internet Archaeology*, 44. doi: 10.11141/ia.44.9.

Latour, B. (1987). *Science in action*. Cambridge, MA: Harvard University Press.

Law, J. (2004). *After method: Mess in social science research*. London; New York: Routledge.

Lord, J. W. (1993). *The nature and subsequent uses of flint, volume 1: The basics of lithic technology*. Brandon: John Lord.

Lucas, G. (2012). *Understanding the archaeological record*. Cambridge: Cambridge University Press.

Lucretius, T. C. *The nature of things*. Available at: <http://www.gutenberg.org/ebooks/785> (Accessed 5th November 2020).

Malzbender, T., Gelb, D., & Wolters, H. (2001). Polynomial texture maps. In *Proceedings of the 28th annual conference on Computer graphics and interactive techniques* (pp. 519–528). New York, USA: ACM Press. Available at: <http://dl.acm.org/citation.cfm?id=383320&dl=ACM&coll=DL&CFID=91528132&CFTOKEN=72630427>

McFadyen, L., & Hicks, D. (2019). *Archaeology and photography: Time, objectivity and archive*. London; New York: Bloomsbury Visual Arts.

Miller, A. I. (2019). *AI Renaissance Machines: Inside the New World of Machine-Created Art, Literature, and Music*, Cambridge, MA: The MIT Press.

Minkin, L. (2016). Out of our skins. *Journal of Visual Art Practice*, 15(2–3), 16–126. doi: 10.1080/14702029.2016.1228820.

Minkin, L. (2017). Raised eyebrows. *Cambridge Archaeological Journal*, 27(1), 91–93. doi: 10.1017/S0959774316000512.

Morgan, C. (2016). Analog to digital: Transitions in theory and practice in archaeological photography at Çatalhöyük. *Internet Archaeology*, 42. doi: 10.11141/ia.42.7.

Mudge, M., Voutaz, J.-P., Schroer, C., & Lum, M. (2005). Reflection transformation imaging and virtual representations of coins from the hospice of the Grand St. Bernard. In M. Mudge, N. Ryan, & R. Scopigno (Eds.), *VAST05: The 6th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage* (pp. 29–39). Pisa, Italy: Eurographics Association.

Olsen, B., Shanks, M., Webmoor, T., & Witmore, C. (2012). *Archaeology: The discipline of things*. Berkeley, CA: University of California Press.

Opitz, R. (2019). Messy assemblages, residuarity and recursion within a phygital nexus: First response. *Epoiesen*. doi: 10.22215/epoiesen/2019.7.

Raczyński-Henk, Y. (2017). *Drawing lithic artefacts*. Leiden: Sidestone Press.

Read, R. (2017). Jeffrey Dennis's paintings and painted objects. *TURPS Banana*, 18, 68–73. Available: http://jeffreydennis.co.uk/dennis_infofiles/writing/TBIssue18dennis_mead.pdf.

Reilly, P. (2015a). Additive archaeology: An alternative framework for recontextualising archaeological entities. *Open Archaeology*, 1(1):225–235. doi: 10.1515/opar-2015-0013.

Reilly, P. (2015b). Palimpsests of immaterial assemblages taken out of context: Tracing pompeians from the void into the digital. *Norwegian Archaeological Review*, 16, 89–104. doi: 10.1080/00293652.2015.1086812.

Reilly, P. (2020). #FlintFriday – Silica Alchemy I, II & III (Diffraction Images). Available: https://www.artarchaeologies.com/featuredwork_reilly (Accessed 11th November 2020).

Reinhard, A. (2019). Assemblage theory: Recording the archaeological record. *Epoiesen*. doi: 10.22215/epoiesen/2019.1.

Renfrew, C. (2003). *Figuring it out: What are we? Where do we come from? The parallel visions of artists and archaeologists*. London: Thames & Hudson.

Selmo, D., Sturt, F., Miles, J., Basford, P., Malzbender, T., Martinez, K., ... Bevan, G. (2017). Underwater reflectance transformation imaging: A technology for *in situ* underwater cultural heritage object-level recording. *Journal of Electronic Imaging*, 26(1), 011029. doi: 10.1117/1.JEI.26.1.011029.

Shanks, M. (1997). Photography and archaeology. In B. Molyneaux (Ed.), *The cultural life of images: Visual representation in archaeology* (pp. 73–107). New York: Routledge.

Shanks, M., & Svabo, C. (2013). Archaeology and photography – a pragmatology. In A. González-Ruibal (Ed.), *Reclaiming archaeology: Beyond the tropes of modernity* (pp. 89–102). London: Routledge. doi: 10.4324/9780203068632.ch7.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. *International Conference on Learning Representations*. Available: <https://arxiv.org/abs/1409.1556> (Accessed 28th October 2020).

Smith, N., Beale, G., & Opitz, R. (forthcoming). *The inhabited frame: Examining the archaeological image in the era of interactive media*. In Dawson, et al. (Eds.), *Diffracting digital images. Art, archaeology and cultural heritage*. London: Routledge.

Stobiecka, M. (2019). Digital escapism: How objects become deprived of matter. *Journal of Contemporary Archaeology*, 5(2), 194–212. doi: 10.1558/jca.34353.

Steyerl, H. (2018). Bubble vision. *Penny Stamps Distinguished Speaker Series*. Available: https://www.youtube.com/watch?reload=9&v=T1Qhy0_PCjs (Accessed 21 October 2020).

Suchman, L. (2012). Configuration. In C. Lury & N. Wakeford (Eds.), *Inventive methods* (pp. 48–60). London: Routledge.

Thomas, A., Lee, D., Frederick, U., & White, C. (2017). Beyond art/archaeology: Research and Practice after the ‘creative turn’. *Journal of Contemporary Archaeology*, 4(2), 121–129. doi: 10.1558/jca.33150.

van Gijn, A. (2010). *Flint in focus: Lithic biographies in the Neolithic and bronze age*. Leiden: Sidestone Press.

Zylinska, J. (2017). *Nonhuman photography*. Cambridge; London: MIT Press.

Zylinska, J. (2020). *AI art. Machine visions and warped dreams*. London: Openhumanities Press. Available: <http://openhumanitiespress.org/books/titles/ai-art/>

Appendix

Jones, A., Cochrane, A., Carter, C., Dawson, I., Díaz-Guardamino, M., Kotoula, E., & Minkin, L. (2015). Digital imaging and prehistoric imagery: A new analysis of the Folkton Drums. *Antiquity*, 89(347), 1083-1095. doi:10.15184/aqy.2015.127

Dawson, I (Artist and Curator) Elbow and Gallery Residency C&C Gallery London_ 01.08.15-01.09.15 and 4.09.2014-04.10.2015

Dawson, Ian (2016-19) 'I.D.2.7.1816' [Artwork], exhibited at Artist Boss, curated by Jenny Dunseath and Mark Wilsher. New Art Centre, Roche Court, Salisbury, 19 November 2016 - 29 January 2017 and Itinerant Objects, curated by Birkin, J. Cid, D, Dawson, I. Manghani, S, Tate Exchange, Tate Modern, London, 5-7 April 2019.

Dawson, Ian and Minkin, Louisa (2017) 'Grave Goods / Objetos funerarios', in Azor, I., Grijalva Maza, L.F., and Gómez Rossi, A.A.R. (eds.) *Más allá del texto: Cultura digital y nuevas epistemologías*. San Andrés Cholula, Puebla, México Ciudad de México: Universidad de las Américas, Puebla ; Editorial Itaca, pp. 205-221.

Dawson, Ian (2019) 'Gnomon One' [Artwork], exhibited at Backyard Sculpture, curated by Neil Gall and David Gates, at Domo Baal Gallery, London, 21 June - 20 July 2019

Reilly, P., Callery, S., Dawson, I. & Gant, S. (2021). Provenance Illusions and Elusive Paradata: When Archaeology and Art/Archaeological Practice Meets the Phygital. *Open Archaeology*, 7(1), 454-481.
<https://doi.org/10.1515/opar-2020-0143>

Dawson, I.; Jones, A.M.; Minkin, L.; Reilly, P. Temporal Frankensteins and Legacy Images. *Digital* (2022), 2, 244-266.
<https://doi.org/10.3390/digital2020015>

Dawson, Ian. And Travelling Often In The Cut He Makes, installation and digital video (2022) exhibited at Horizon (Landscape and Beyond). Group

Exhibition curated by Alexander Hinks, Cello Factory London 30th June - 10th July 2022

Dawson, I. Back Danielsson, I-M. Jones, A M. Minkin, L. & Reilly, P. (2022) Diffracting Digital Images in the Making, Visual Resources, DOI: [10.1080/01973762.2022.2123629](https://doi.org/10.1080/01973762.2022.2123629)

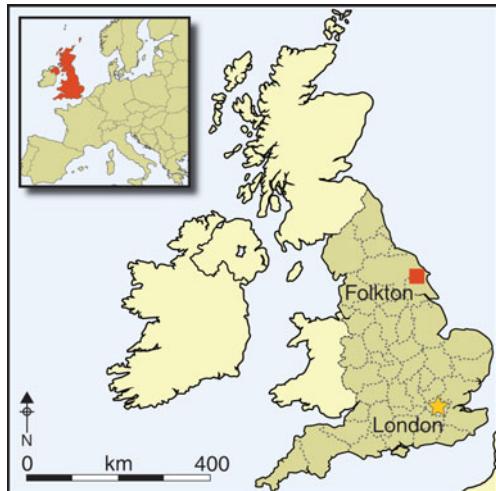
Digital imaging and prehistoric imagery: a new analysis of the Folkton Drums

Andrew Meirion Jones, Andrew Cochrane, Chris Carter, Ian Dawson, Marta Díaz-Guardamino, Eleni Kotoula and Louisa Minkin

Antiquity / Volume 89 / Issue 347 / October 2015, pp 1083 - 1095

DOI: 10.15184/aqy.2015.127, Published online: 09 October 2015

Link to this article: http://journals.cambridge.org/abstract_S0003598X15001271


How to cite this article:

Andrew Meirion Jones, Andrew Cochrane, Chris Carter, Ian Dawson, Marta Díaz-Guardamino, Eleni Kotoula and Louisa Minkin (2015). Digital imaging and prehistoric imagery: a new analysis of the Folkton Drums. *Antiquity*, 89, pp 1083-1095 doi:10.15184/aqy.2015.127

Request Permissions : [Click here](#)

Digital imaging and prehistoric imagery: a new analysis of the Folkton Drums

Andrew Meirion Jones¹, Andrew Cochrane², Chris Carter³,
 Ian Dawson³, Marta Díaz-Guardamino¹, Eleni Kotoula¹
 & Louisa Minkin⁴

The Folkton 'Drums' constitute three of the most remarkable decorated objects from Neolithic Britain. New analysis using Reflectance Transformation Imaging and photogrammetry has revealed evidence for previously unrecorded motifs, erasure and reworking. Hence these chalk drums were not decorated according to a single, pre-ordained scheme, but were successively carved and recarved over time. Such practices may have been widespread in the making of artefacts in Neolithic Britain. The study of these drums also demonstrates the ability of these new techniques not only to record visible motifs, but to document erased and reworked motifs clearly.

Keywords: North Yorkshire, UK, Neolithic, erasure, experimentation, reworking, Reflectance Transformation Imaging, photogrammetry

Introduction

The Folkton Drums are the most remarkable decorated artefacts from Neolithic Britain (Figure 1). Excavated by Reverend William Greenwell between 1866 and 1868 (Greenwell 1890), the 'drums' are three solid cylinders of decorated chalk that accompanied a child burial placed in a barrow (Kinnes & Longworth 1985) at Folkton, North Yorkshire. The precise date of the burial is unknown, but the site is believed to be part of a wider tradition of single inhumation burials, including Liff's Low in Derbyshire and Duggleby Howe in

¹ Department of Archaeology, University of Southampton, Avenue Campus, Highfield, Southampton SO17 1BF, UK (Email: amj@soton.ac.uk)

² School of History, Archaeology and Religion, Cardiff University, John Percival Building, Colum Drive, Cardiff CF10 3EU, UK

³ Winchester School of Art, University of Southampton, Park Avenue, Winchester, Hampshire SO23 8DL, UK

⁴ Central St. Martins, University of the Arts London, Granary Building, 1 Granary Square, King's Cross, London N1C 4AA, UK

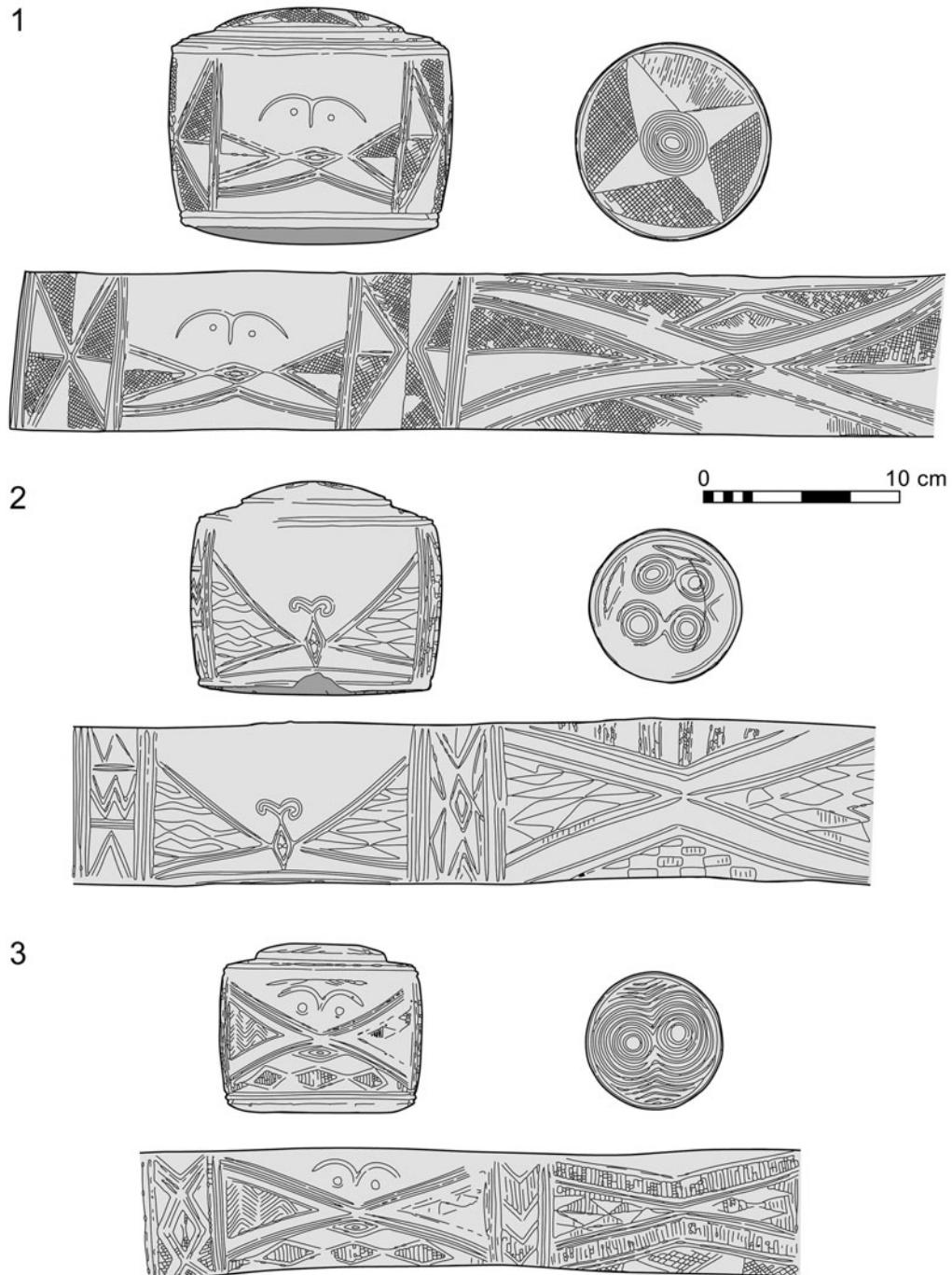


Figure 1. The Folkton Drums; image by Aaron Watson redrawn from an original by Longworth (1999).

East Yorkshire, dating to the later centuries of the fourth millennium BC (Loveday *et al.* 2007; Gibson & Bayliss 2010; Loveday & Barclay 2010). Stylistically, the motifs on the drums—which include a series of geometric and curvilinear motifs, as well as eyebrow motifs denoting possible faces—have been linked to Late Neolithic Grooved Ware pottery decoration (a class of pottery whose decoration is typically linked to passage tomb art motifs; for example, Bradley 1997: 64–65), as well as other decorated Neolithic artefacts including carved stone balls and mace-heads (Roe 1968; Marshall 1977; Longworth 1999). They also share similarities with motifs found on Neolithic rock art panels from regions such as North Yorkshire and western Scotland and in Irish passage tombs (Cochrane & Jones 2012). Longworth (1999: 87) notes a resemblance to motifs on Wessex gold work, accessory cups and collared urns. The drums were considered unique until another undecorated ‘drum’ was discovered recently in a pit at Lavant in Sussex. It is currently in Chichester Museum and remains unpublished. The Lavant drum is associated with a pottery sherd identified by one of the authors (Andrew Meirion Jones) as probable Mortlake Ware, not Grooved Ware as proposed by Teather (2010: 208); this suggests a Middle Neolithic, rather than Late Neolithic or Early Bronze Age, date. The Folkton Drums can also be related stylistically to a broader class of decorated chalk artefacts with Grooved Ware associations, such as the chalk plaques from Amesbury and Durrington Walls (Harding 1988; Varndell 1999; Teather 2010; Parker-Pearson 2012: 228–29).

Analysis of these decorated chalk artefacts—as part of a wider, Leverhulme-funded project examining Neolithic art in Britain and Ireland—has revealed evidence for the substantial erasure and subsequent reworking of motifs on these objects. The Folkton Drums were recorded, using Reflectance Transformation Imaging (RTI) and photogrammetry, to examine whether episodes of erasure and reworking might be detected. RTI and photogrammetry are advanced digital analogues to traditional photography that aim to provide more scientifically objective visual information. A mathematically enhanced sequence of digital images was used to produce a composite digital visualisation of the object (Cultural Heritage Imaging n.d.). Previous work has already demonstrated that RTI and photogrammetry can significantly contribute to the analysis of artefacts (Earl *et al.* 2010; Miles *et al.* 2014).

RTI and photogrammetry: their use and potential in archaeology

RTI (Mudge *et al.* 2005), and one of its subdivisions, polynomial texture mapping, was developed in 2001 at Hewlett Packard Laboratories (Malzbender *et al.* 2001) and is a non-destructive, affordable and easy-to-perform imaging technique. There are many interesting applications in the field of cultural heritage, based on its ability to acquire and represent the 3D reflectance properties of objects. Compared to traditional texture mapping, polynomial texture maps and reflectance transformation images provide increased definition, including surface colours, self-shadowing, sub-surface scattering and inter-reflections. The technique samples and models the level of reflectance independently for each pixel, enabling the user to manipulate the material properties of objects in the scene (Malzbender *et al.* 2004).

Close-range photogrammetry, or image-based modelling, is the construction of a 3D model of an object from 2D images; it has been applied in the digital capture of archaeological artefacts and works of art. The most widespread use of this technique, however, has been for monuments, historic buildings and their facades, rather than for portable antiquities, although research has demonstrated that photogrammetry is capable of high-quality data-capture, even at millimetre range (Salonia *et al.* 2009). Photogrammetry has been used for documentation, monitoring of structural problems and authentication studies, as it provides advanced volumetric perception and enhanced material description (Yilmaz *et al.* 2007).

Methodology

The Folkton Drums were visualised in polynomial-texture-map and reflectance-transformation-image form using the highlight-based method (Mudge *et al.* 2006). A series of raking and oblique light images were captured with a Nikon d800e digital SLR camera following the cultural heritage imaging guidelines (Cultural Heritage Imaging n.d.). The open-source reflectance transformation image builder software, developed by the University of Minho in collaboration with Cultural Heritage Imaging in 2009, was used for processing, as described in the guide to highlight image processing (Cultural Heritage Imaging n.d.). Polynomial-texture-map and reflectance-transformation-image files were viewed via specialised software, the reflectance transformation image viewer (ISTI-CNR/CHI RTIViewer) (Cultural Heritage Imaging n.d.) and the polynomial-texture-map viewer (HP Labs PTM Viewer) (Lyon 2004). The former is compatible with both .ptm and .rti files, while the latter supports only .ptm files. Both software packages enable interactive manipulation of the lighting position and enhancement of the final outcomes through different rendering modes.

Photographic sequences of Folkton drums 2 and 3 were captured from varying angles using a Nikon d3100 digital SLR camera. In order to capture complete datasets for both sides, the objects were turned upside down during the data capture session. Then the images were loaded into commercial software (Agisoft Photoscan) and masks were applied to remove unnecessary background and reflections. The camera positions were computed based on common points on the images. The next step was the computation of a point cloud and the reconstruction of the geometry (mesh) and texture. The resulting 3D models can be viewed immediately or exported to any other 3D software.

Results of the analysis

An analysis placing the new documentation in its broader chronological and archaeological context is still ongoing and will be detailed elsewhere on the completion of the 'Making a Mark' project. Here we summarise the results of the RTI and photogrammetric analyses. We retain Longworth's (1999) original numbering of the drums (see Figure 1). For all three drums, we recorded new motifs, evidence of erasure and reworking, and evidence for sequences of working. Each drum has four panels of decoration around its circumference:

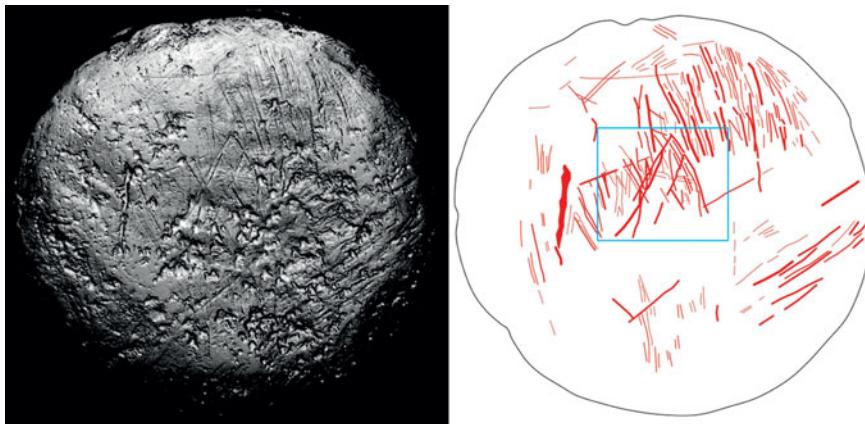


Figure 2. Base of drum 1 indicating multiple scratched lines and triangular or 'A'-shaped motifs (highlighted in blue rectangle); viewed under Reflectance Transformation Imaging Specular enhancement.

two long horizontal panels divided by two short vertical panels. The drums also have a distinct orientation: a front and back. The front of each drum is distinguished by distinctive 'eyebrow' motifs. The top surface of each of the drums is also decorated with raised carved bosses.

New motifs

Two sets of new motifs were recorded using RTI analysis. The most complex of these was on the base of drum 1 (Figure 2). A series of parallel, linear, incised tool-marks are evident and can clearly be seen in Figure 2. These are cut by a triangular motif, with a horizontal incised line at its centre, rather like a letter 'A'. To the right of this motif, and partially overlying it, is a further diagonal line and another incised horizontal mark. Together, these two A-shaped incisions create a motif that closely resembles in form (although not in scale) the scratched decoration found in the Maes Howe and Wideford Hill passage tombs, Orkney (Ashmore 1986; Bradley *et al.* 2001) (Figure 3). Further parallels include the lower face A of the Cronk yn How stone, Isle of Man (Darvill *et al.* 2005: fig. 6) and a linear marked stone from Fylingdales Moor, North Yorkshire (Brown & Chappell 2005: 69, fig. 43). In fact, a parallel is explicitly drawn between the decoration on the side panel of drum 3 and the Fylingdales stone by Brown and Chappell (2005: 70, fig. 44). Despite the geographic proximity between Folkton and Fylingdales, the new motifs detected on the base of drum 1 are best paralleled in Orcadian passage tombs.

On the upper part of the base of drum 1 (as seen in Figure 2) are a further series of fine parallel scratches with another diagonal line cutting across them, along with another area of multiple parallel scratches. All of these groups of multiple parallel incisions closely resemble the haphazard decoration on chalk plaques (for example, akin to those seen on the reverse of the Amesbury chalk plaques; Harding 1988).

Probably the most spectacular discovery was the evidence for a further 'eyebrow' motif on the front of drum 2. This faint motif is situated above the existing spiral motif on drum

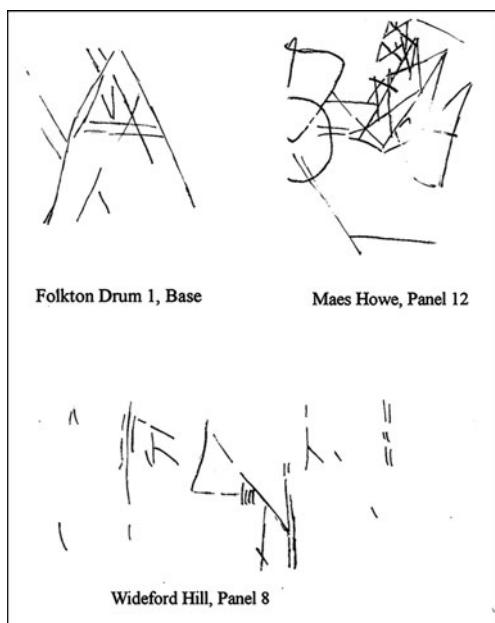


Figure 3. Comparison between incised motifs on base of drum 1 and incised motifs in Maes Howe and Wideford Hill passage tombs; image (not to scale) drawn by Andrew Meirion Jones; Maes Howe and Wideford Hill motifs redrawn from originals in Bradley et al. 2001.

the photogrammetric analysis. It appears that the entire front centre of drum 2 has been reworked at some stage (Figure 4). Drum 2 is damaged around the top front edge and it is clear to see, from texture differences visible using photogrammetry and RTI, that a thin spall or flake of chalk was removed in order to remodel the front motifs; and this damaged one of the triangular motifs on the top boss of the drum. While previous documentation (Longworth 1999) records evidence for three triangular motifs between the circular motifs on the boss of drum 2, the fourth motif is missing. RTI analysis reveals that a fourth triangular motif once existed, but has been damaged or erased (Figure 5). On the basis of the orientation of the spall or flake that erased both the 'eyebrow' and boss motif, it must have been removed by a right-hand blow while the drum was inverted. It seems probable that this is a by-product of the deliberate erasure of the 'eyebrow' motifs on the front of drum 2.

Further evidence of reworking was evident in a faint incision running parallel to the upper line of the lozenge on the face of drum 1. On one side of drum 1, all of the undecorated 'blank' spaces reveal evidence of prior working in the form of faint scratches or incisions (Figure 6). Similarly, on the other side panel of drum 1, faint scratches or incisions are also evident in the two lower undecorated 'blank' spaces. Again, on the back panel of drum 1, the lowermost part of the panel has spalled and then been carved over.

On drum 2, the side panel with three registers of decoration exhibits evidence of faint scratches on the lowermost part of the panel, while the upper part of the panel appears

2, around 0.5cm below the top edge (Figure 4, in the area of the white rectangle). Once identified, using RTI, it is quite clearly visible to the naked eye.

Additionally, a small, pecked cross is also evident in the centre of one of the concentric ring motifs on the top of the boss on drum 3, forming a crossed 'pupil' in the centre of the 'eye' motif. At the centre of the other ring motif is a small, pecked depression. It is difficult to tell if this is part of the design or a residue of the pecking from working or shaping the drum; this particular drum has a very rough, unfinished surface appearance.

Evidence of erasure and reworking

The faint 'eyebrow' motif on the face of drum 2 is clear evidence of reworking and erasure. In fact, a greater area of erasure, in the form of a stippled texture on the top and front of drum 2, is evident from

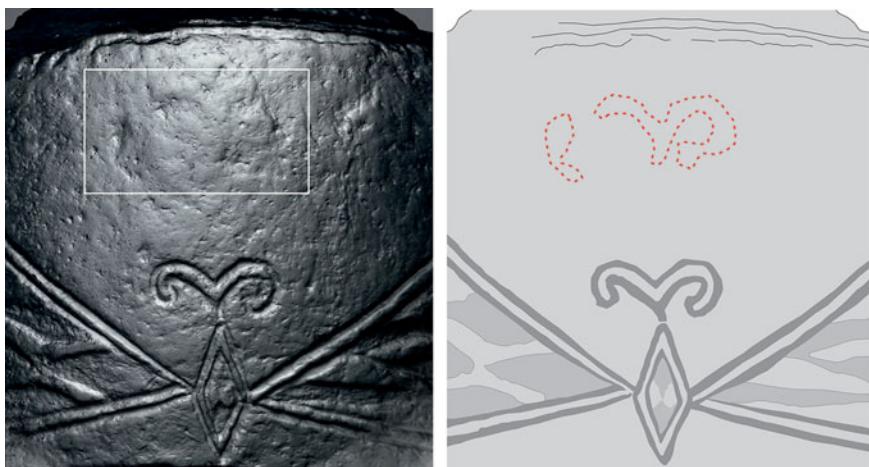


Figure 4. Partially erased eyebrow motif on the face of drum 2: the erased motif is at the top of the image directly above the double spiral motif (highlighted in the white rectangle); viewed under Reflectance Transformation Imaging Specular enhancement.

Figure 5. Damaged boss with triangular motif on the top of drum 2: the damaged boss is at the bottom of the image (highlighted in pink); viewed under Reflectance Transformation Imaging Specular enhancement.

unfinished, abraded or damaged. There is faint evidence for an earlier motif next to the central motif on this panel.

The back panel of drum 3 has a series of faint vertical lines evident near the top; this is potentially earlier decoration that has been abraded or removed. On the centre right of this panel there are a series of faint scratches below the main vertical incisions. Again, there is evidence of reworking near the base of the back panel in the form of faint scratches.



Figure 6. Reworking and erasure on the bottom blank space of the side panel, drum 1; erased motifs indicated in yellow; viewed under Reflectance Transformation Imaging Specular enhancement.

Evidence for sequences of working

An unexpected result of RTI analysis was clear evidence for motifs of sequences of working. On the upper right-hand area of the side panel of drum 1, a stratigraphic sequence of working is discernible (Figure 7). The process began with an incised outline for the triangular area that was then filled in by crosshatched incisions. The upper part of the initial incised line for the triangular motif was erased by the next stage of working, which appears to have been the erasing of incisions in the 'blank' undecorated area. Finally, the double vertical lines that divide the side panel from the remainder of the decorated circumference of the drum were incised.

On the front of drum 2 (Figure 8), the vertical lozenge of the central motif clearly cuts the triangular panels that come to a point in the middle of the panel. It is apparent from visual inspection with the naked eye that these two triangular panels do not meet. As the vertical lozenge cuts these triangular motifs, it must have been executed at a later stage. Similarly, on the complex side panel of drum 3 (Figure 9), the lowermost triangular motif is cut by the horizontal incision at the base of the motif. Again, the vertical incisions that divide or frame both sides of the side panel appear to have been executed after the decoration of the rest of the panel.

Discussion

Taken together, the evidence revealed by RTI analysis and photogrammetry suggests considerable evidence for reworking. Previous interpretation of the Folkton Drums has emphasised the improvisatory character of making, viewing and handling the artefacts; the decoration on each drum changes as the viewer manipulates it (Jones 2012: 180). It has also been argued that the drums were rapidly manufactured and buried (Jones 2012: 180). The results of the RTI and photogrammetry add complexity to this picture.

Figure 7. The stratigraphy of working evident on the side panel of drum 1, sequence denoted by a, b and c (note all blank spaces exhibit evidence for erasure); the lines delineating the upper blank panel have been partially erased; viewed under Reflectance Transformation Imaging Specular enhancement.

The new motifs on the base of drum 1 are suggestive of experimentation, with a number of designs intercutting each other. The repetitive incisions that appear on this surface are redolent of the kind of repetitive and intercutting incisions that occur on Late Neolithic chalk plaques and the walls of flint mines (Harding 1988; Varndell 1999; Barber *et al.* 1999; Teather 2011).

More interesting is the evidence for erasure, particularly of the 'eyebrow' motif on the front of drum 2, and the evidence for other instances of erasing on all three drums. There are a number of ways of reading this evidence. We might interpret this as indicating multi-authorship and curation; we have, however, no clear knowledge of time-depth for these acts of erasure and revision.

If we take the evidence for erasure alongside that for sequences of working, another interpretation presents itself: erasure and revision occurred during the process of working. This is demonstrated quite clearly by the sequences of working on certain areas of the drums; for example, the upper right-hand part of the side panel on drum 1. Here, a design of two triangles seems to have been faintly incised and, with one of these triangular motifs, crosshatched. The adjacent space was then smoothed, erasing part of the initial design. Only then were bolder, deeper incisions made, outlining the triangular motif.

Figure 8. Central motifs, drum 2 exhibiting the intercutting of motifs; viewed under Reflectance Transformation Imaging Specular enhancement.

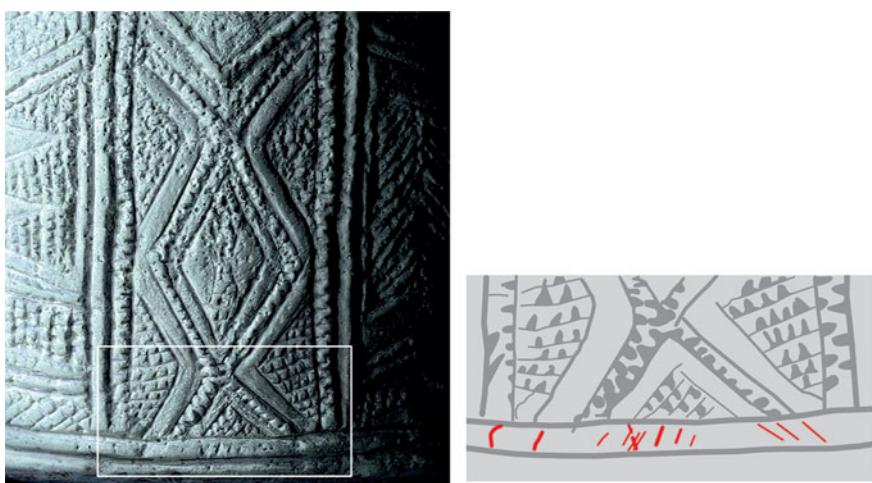


Figure 9. Complex side panel on drum 3 exhibiting the stratigraphy of working; note the motifs at the base continuing beyond the limits of the basal horizontal incised line (indicated in red).

Erasure was a twofold process. It was part of the process of decorating the drums: incisions were made and erased during phases of working. Erasure was also part of secondary phases of revision: motifs, such as the 'eyebrow' on drum 2, were remodelled and revised sometime after the drum had been made and circulated.

Erasure and revision are significant as they are important components of the stylistic phases identified in Irish and Orcadian passage tomb art (O'Sullivan 1986, 1996; Eogan 1997; Bradley *et al.* 2001; Jones 2004; Cochrane 2009). Eogan (1997) identified five phases of art in Irish passage tombs: these begin with finely executed angular incisions, followed by angular picked art, dispersed areas of picking and ribbon art executed in relief. The final stage is close area picking, which is associated with the erasure of earlier motifs by sculptural relief carving (Cochrane 2009). These have traditionally been interpreted as distinct stylistic

phases, but on the basis of the Folkton Drum evidence we may entertain the possibility that these phases of working and reworking also relate to the improvisatory process of a single phase working of the stone on which the motifs are carved. In a similar sense, Lesley McFadyen (2007) and Colin Richards (2013) have argued for the improvisatory and processual character of practices of building in the British Neolithic.

Improvisation and experimentation lie at the heart of the artistic process. In his recent book on contemporary sculpture, Ian Dawson (2012: 9) observes:

that gestures that later might become iconic are sown from simple intuitive responses, and come from a stance of not knowing; that artists, irrespective of the scale of their work, endeavor to work from a position of unfamiliarity, the act of discovery still the bedrock of the making process.

This echoes Tim Ingold's recent discussion of 'making'. Taking his cue from the philosophers Gilles Deleuze and Felix Guattari, Ingold argues that we should think *from* materials (Ingold 2013: 94), discovering as we go. This analytical project has worked in a similar way, recording the sequence of gestures involved in working these chalk artefacts, and uncovering the series of improvisatory decisions made as the chalk was worked and reworked. By thinking of these artefacts not as static finished objects, but as 'incomplete' artefacts whose working underwent improvisation, erasure and revision, we have highlighted the importance of thinking about archaeological art less in terms of finished symbols, and more in terms of processes of making.

Conclusion

Recent technological advances make it possible to obtain dense and accurate 3D surface data via photogrammetry and fine surface 2.5D detail via RTI. These powerful, easy and affordable techniques are becoming increasingly common in archaeology and the heritage sector as a means of documentation, analysis and dissemination. When their application is targeted on clear research questions, they can revolutionise archaeological practice and lead to new discoveries (see also Díaz-Guardamino & Wheatley 2013; Miles *et al.* 2014). In this case study, RTI and photogrammetry enable virtual analysis of episodes of reworking. The technology is rapidly developing, and further processing of the acquired datasets using algorithmic rendering and new fitting algorithms for RTI may yet reveal hitherto undiscovered evidence.

The case study has demonstrated evidence for reworking in this iconic group of Neolithic artefacts; art in archaeology has been traditionally explored through stylistic analysis, whereas the study of style has been allied to a culture-historical approach aimed at determining the chronology of motifs and traditions (Conkey & Hastorf 1990), and their relationship to identities (Domingo Sanz *et al.* 2009). We have shown that this focus on style may obscure significant information. Instead, an analysis of processes of working and reworking alongside a stylistic analysis yields valuable information concerning craftsmanship, identity and engagement with materials in prehistory.

Acknowledgements

We would like to thank: Gill Varndell and Neil Wilkin at the British Museum for their help in recording the drums; Graeme Earl and the Archaeological Computing Research Group at the University of Southampton for help and encouragement on this project. We are grateful for a Humanities Faculty Small Award from the University of Southampton that paid for travel to the British Museum and gratefully acknowledge the receipt of grant award RPG-2014-193 from the Leverhulme Trust for the project entitled 'Making a mark: imagery and process in the British and Irish Neolithic'.

References

ASHMORE, P. 1986. Neolithic carvings in Maes Howe. *Proceedings of the Society of Antiquaries of Scotland* 116: 57–62.

BARBER, M., D. FIELD & P. TOPPING. 1999. *The Neolithic flint mines of England*. Swindon: English Heritage.

BRADLEY, R. 1997. *Rock art and the prehistory of Atlantic Europe. Signing the land*. London: Routledge.

BRADLEY, R., T. PHILLIPS, C. RICHARDS & M. WEBB. 2001. Decorating the houses of the dead: incised and pecked motifs in Orkney chambered tombs. *Cambridge Archaeological Journal* 11: 45–67. <http://dx.doi.org/10.1017/S0959774301000038>

BROWN, P. & G. CHAPPELL. 2005. *Prehistoric rock art in the North York Moors*. Stroud: Tempus.

COCHRANE, A. 2009. Additive subtraction: addressing pick-dressing in Irish passage tombs, in J. Thomas & V. Oliveira Jorge (ed.) *Archaeology and the politics of vision in a post-modern context*: 163–85. Cambridge: Cambridge Scholars Publishing.

COCHRANE, A. & A.M. JONES. 2012. *Visualising the Neolithic*. Oxford: Oxbow.

CONKEY, M. & C. HASTORF. 1990. *The uses of style in archaeology*. Cambridge: Cambridge University Press.

Cultural Heritage Imaging n.d. Available at: <http://culturalheritageimaging.org> (accessed 09 July 2015).

DARVILL, T., B. O'CONNOR, P. CHEETHAM, V. CONSTANT, R. NUNN & K. WELHAM. 2005. The Cronk yn How stone and the rock art of the Isle of Man. *Proceedings of the Prehistoric Society* 71: 283–331. <http://dx.doi.org/10.1017/S0079497'00001043>

DAWSON, I. 2012. *Making contemporary sculpture*. Marlborough: Crowood.

DFAZ-GUARDAMINO, M. & D. WHEATLEY. 2013. Rock art and digital technologies: the application of Reflectance Transformation Imaging (RTI) and 3D laser scanning to the study of Late Bronze Age Iberian stelae. MENGA. *Journal of Andalusian Prehistory* 4: 187–203.

DOMINGO SANZ, I., D. FIORE & S.K. MAY. 2009. The archaeologies of art: time, place and identity in rock art, portable art and body art, in I. Domingo Sanz, D. Fiore & S.K. May (ed.) *Archaeologies of art*: 15–28. Walnut Creek (CA): Left Coast.

EARL, G., K. MARTINEZ & T. MALZBENDER. 2010. Archaeological applications of polynomial texture mapping: analysis, conservation and representation. *Journal of Archaeological Science* 37: 2040–50. <http://dx.doi.org/10.1016/j.jas.2010.03.009>

EOGAN, G. 1997. Overlays and underlays: aspects of megalithic art succession at Brugh na Boinne, Ireland. *Brigantium* 10: 217–34.

GIBSON, A. & A. BAYLISS. 2010. Recent work on the Neolithic round barrows of the upper Great Wold valley, Yorkshire, in J. Leary, T. Darvill & D. Field (ed.) *Round mounds and monumentality in the British Neolithic and beyond*: 72–107. Oxford: Oxbow.

GREENWELL, W. 1890. Recent researches in barrows in Yorkshire, Wiltshire, Berkshire etc. *Archaeologia* 52: 1–71. <http://dx.doi.org/10.1017/S0261340900007451>

HARDING, P. 1988. The chalk plaque pit, Amesbury. *Proceedings of the Prehistoric Society* 54: 320–26. <http://dx.doi.org/10.1017/S0079497'00005880>

INGOLD, T. 2013. *Making: anthropology, archaeology, art and architecture*. London: Routledge.

JONES, A.M. 2004. By way of illustration: art, memory and materiality in the Irish Sea and beyond, in V. Cummings & C. Fowler (ed.) *The Neolithic of the Irish Sea: materiality and traditions of practice*: 202–13. Oxford: Oxbow.

– 2012. *Prehistoric materialities. Becoming material in prehistoric Britain and Ireland*. Oxford: Oxford University Press.

KINNES, I.A. & I. LONGWORTH. 1985. *Catalogue of the excavated prehistoric and Romano-British material in the Greenwell Collection*. London: British Museum.

LONGWORTH, I. 1999. The Folkton Drums unpicked, in R. Cleal & A. MacSween (ed.) *Grooved Ware in Britain and Ireland*: 83–88. Oxford: Oxbow.

Digital imaging and prehistoric imagery

LOVEDAY, R. & A. BARCLAY. 2010. "One of the most interesting barrows ever examined"—Liffs Low revisited, in J. Leary, T. Darvill & D. Field (ed.) *Round mounds and monumentality in the British Neolithic and beyond*: 108–129. Oxford: Oxbow.

LOVEDAY, R., A. GIBSON, P.D. MARSHALL, A. BAYLISS, C. BRONK RAMSEY & H. VAN DER PLICHT. 2007. The antler macehead dating project. *Proceedings of the Prehistoric Society* 73: 381–92. <http://dx.doi.org/10.1017/S0079497'00027341>

LYON, C. 2004. Viewing polynomial texture maps using Java. *Harvard Extension School* 4–12. Available at: <http://materialobjects.com/ptm/overview.pdf> (accessed 09 July 2015).

MALZBENDER, T., D. GELB & H. WOLTERS. 2001. Polynomial texture maps. *Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques* (SIGGRAPH '01): 519–28. New York: ACM. <http://dx.doi.org/10.1145/383259.383320>

MALZBENDER, T., D. GELB, H. WOLTERS & B. ZUCKERMAN. 2004. Enhancement of shape perception by Surface Reflectance Transformation. *Proceedings of Vision, Modeling, and Visualization 2004, November 16–18, 2004, Stanford, USA*. Amsterdam: IOS Press.

MARSHALL, D. 1977. Carved stone balls. *Proceedings of the Society of Antiquaries of Scotland* 108: 40–72.

MCFADYEN, L. 2007. Neolithic architecture and participation: practices of making at long barrow sites in southern Britain, in J. Last (ed.) *Beyond the grave: new perspectives on barrows*: 22–29. Oxford: Oxbow.

MILES, J., M. PITTS, H. PAGI & G. EARL. 2014. New applications of photogrammetry and Reflectance Transformation Imaging to an Easter Island statue. *Antiquity* 88: 596–605. <http://dx.doi.org/10.1017/S0003598'00101206>

MUDGE, M., J.P. VOUTAZ, C. SCHROER & M. LUM. 2005. Reflection Transformation Imaging and virtual representations of coins from the hospice of the Grand St Bernard, in M. Mudge, N. Ryan & R. Scopigno (ed.) *VAST 2005: The 6th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage, Pisa, Italy, 2005*: 195–202. Goslar, Germany: Eurographics Association.

MUDGE, M., T. MALZBENDER, C. SCHROER & M. LUM. 2006. New Reflection Transformation Imaging methods for rock art and multiple-viewpoint display, in M. Ioannides, D.B. Arnold, F. Niccolucci & K. Mania (ed.) *VAST 2006: The 7th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage, Nicosia, Cyprus, 2006. Proceedings*: 195–202. Goslar, Germany: Eurographics Association.

O'SULLIVAN, M. 1986. Approaches to passage tomb art. *Journal of the Royal Society of Antiquaries of Ireland* 116: 68–83.

— 1996. Megalithic art in Ireland and Brittany: divergence or convergence?, in J. L'Helgouach, C.-T. Le Roux & J. Lecornec (ed.) *Art et symboles du mégalithisme Européen* (Supplement 8): 81–96. Rennes: Revue Archéologique de l'Ouest.

PARKER PEARSON, M. 2012. *Stonehenge. Exploring the greatest Stone Age mystery*. New York: Simon & Schuster.

RICHARDS, C. 2013. *Building the great stone circles of the north*. Oxford: Windgather.

ROE, F. 1968. Stone mace-heads and the latest Neolithic cultures of the British Isles, in J.M. Coles & D.D.A. Simpson (ed.) *Studies in ancient Europe*: 145–72. Edinburgh: Edinburgh University Press.

SALONIA, P., S. SCOLASTICO, A. POZZI, A. MARCOLONGO & T.L. MESSINA. 2009. Multiscale cultural heritage survey: quick digital photogrammetric systems. *Journal of Cultural Heritage* 10: e59–e64. <http://dx.doi.org/10.1016/j.culher.2009.09.004>

TEATHER, A. 2010. Mining and materiality in the British Neolithic. Unpublished PhD dissertation, University of Sheffield.

— 2011. Interpreting hidden chalk art in southern British Neolithic flint mines. *World Archaeology* 43: 230–51. <http://dx.doi.org/10.1080/00438243.2011.579496>

VARNDELL, G. 1999. An engraved chalk plaque from Hanging Cliff, Kilham. *Oxford Journal of Archaeology* 18: 351–55. <http://dx.doi.org/10.1111/1468-0092.00089>

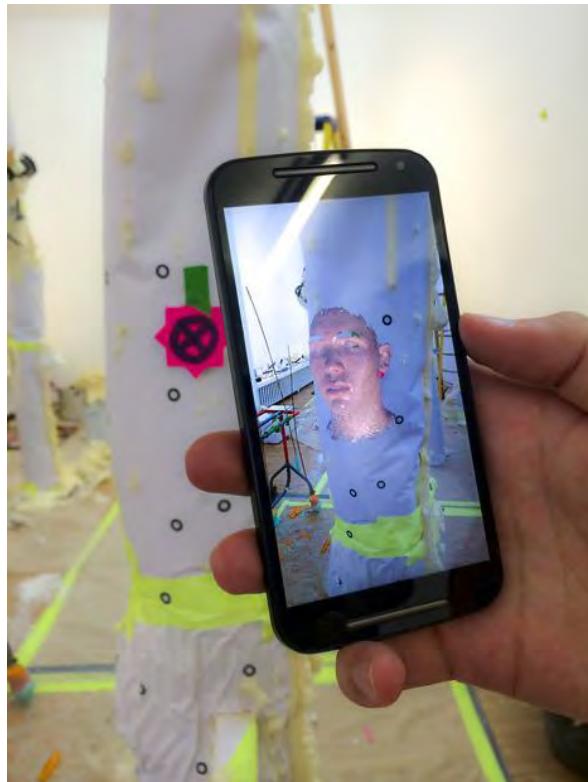
YILMAZ, H.M., M. YAKAR, S.A. GULEC & O.N. DULGERLER. 2007. Importance of digital close-range photogrammetry in documentation of cultural heritage. *Journal of Cultural Heritage* 8: 428–33. <http://dx.doi.org/10.1016/j.culher.2007.07.004>

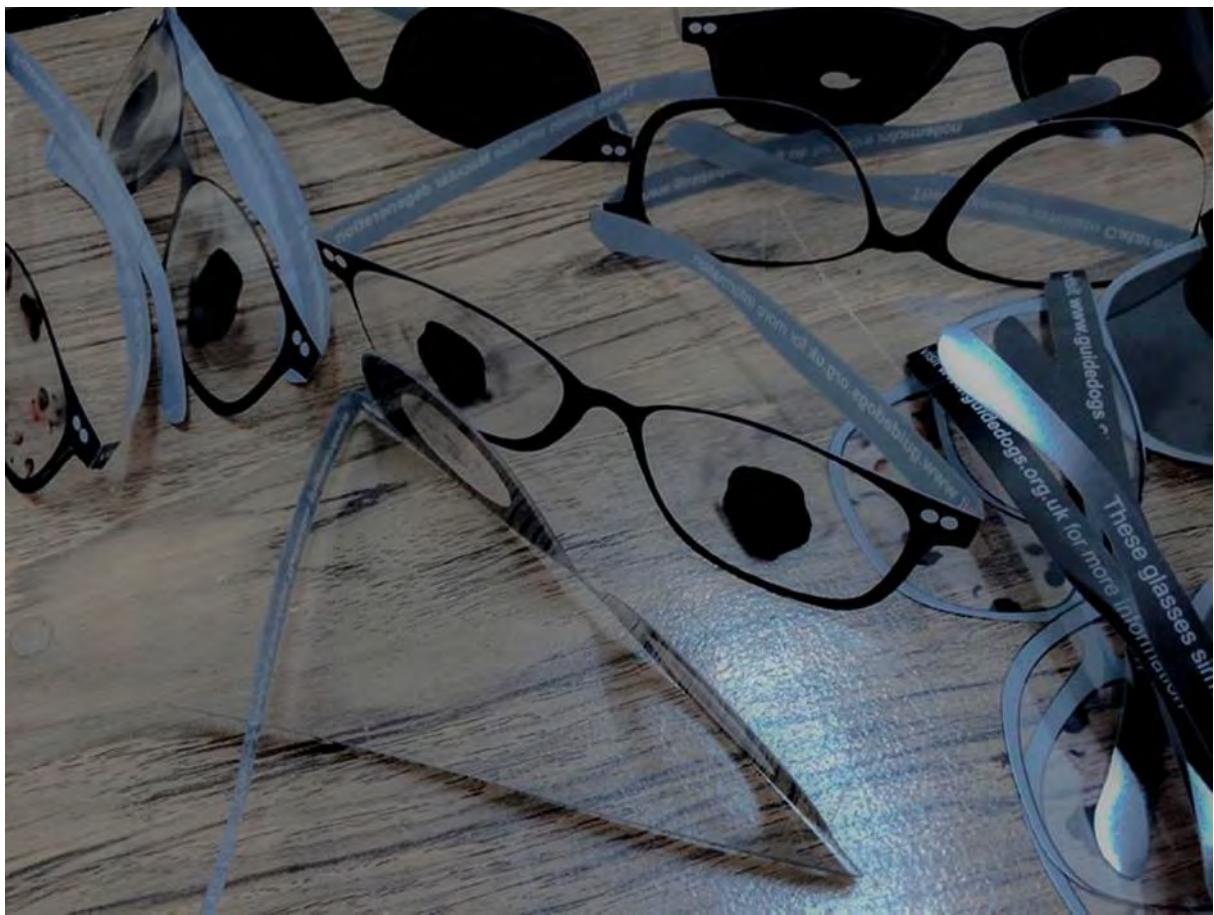
Received: 23 July 2014; Accepted: 21 October 2014; Revised: 9 January 2015

Elbow; exhibition, residency, and workshop
C&C Gallery London
01.08.2015-01.09.15 and 4.09.2014-04.10.2015

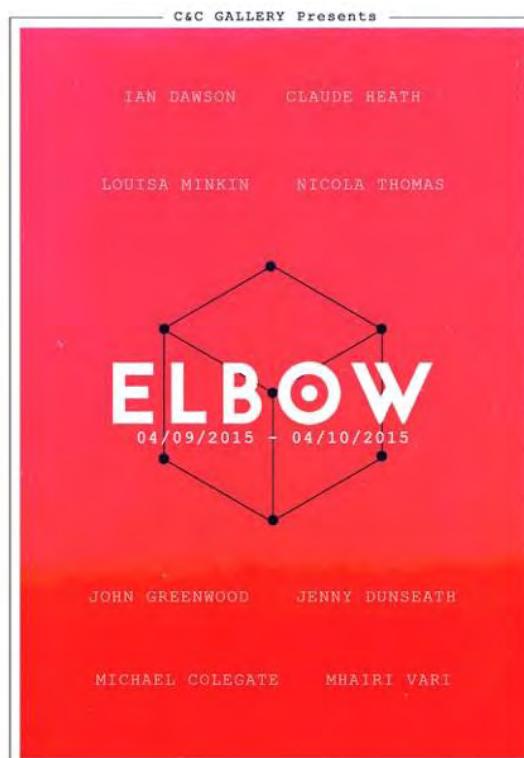
In the summer of 2015, C&C Gallery hosted an innovative residency programme. The collaborating artists transformed the gallery space into a dynamic studio environment to facilitate the production of artworks. The merging of gallery with artist's studio challenged the traditional boundaries of these spaces and looked to expand the idea of artistic practice.

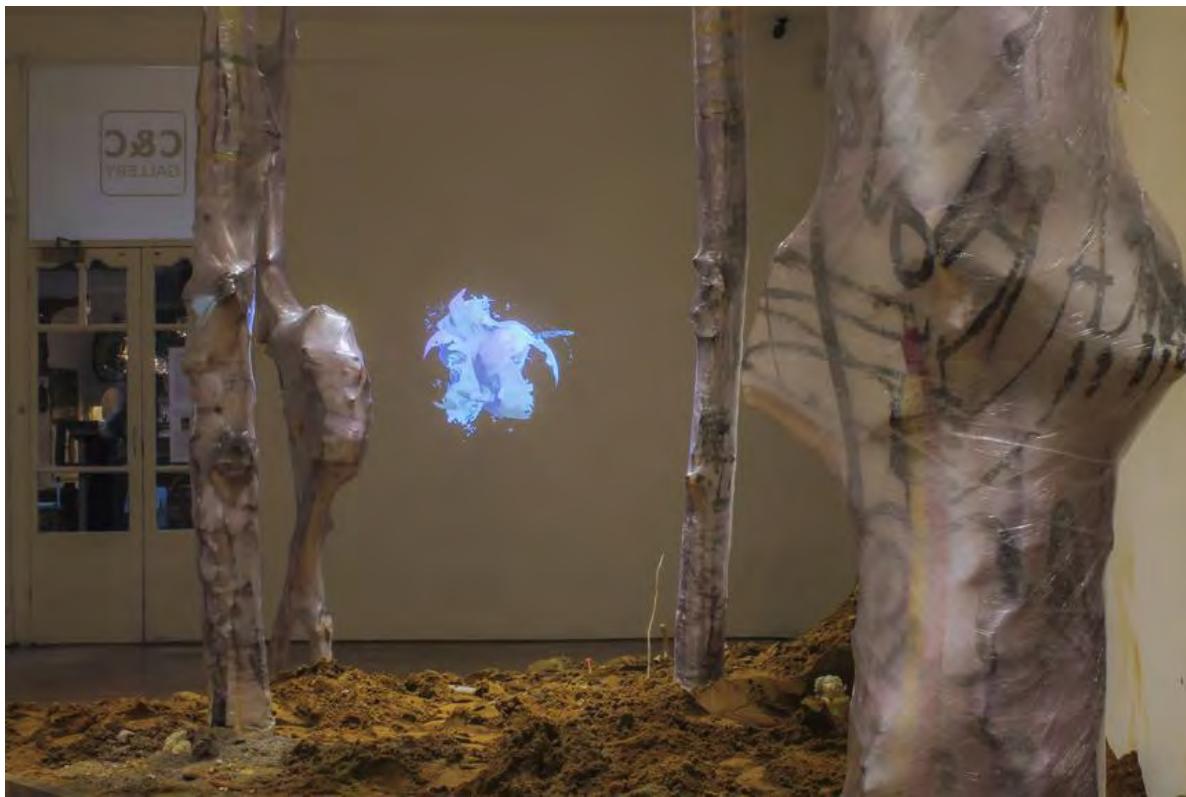
When conceiving of the residency there was a sense that a broad thematic might be useful, that an imposition would restrain and liberate in unexpected ways. Taking the starting point from Derrida's *Memoirs for the Blind* which describes drawing as an act of blindness - rooted as it is in both memory and anticipation, taking the action of seeing and replacing it with that of mediation. Marks of a drawing have multiple characters: lines on a page as well as indicators of contour; lacking a "pure" identity they obscure the visual experience.

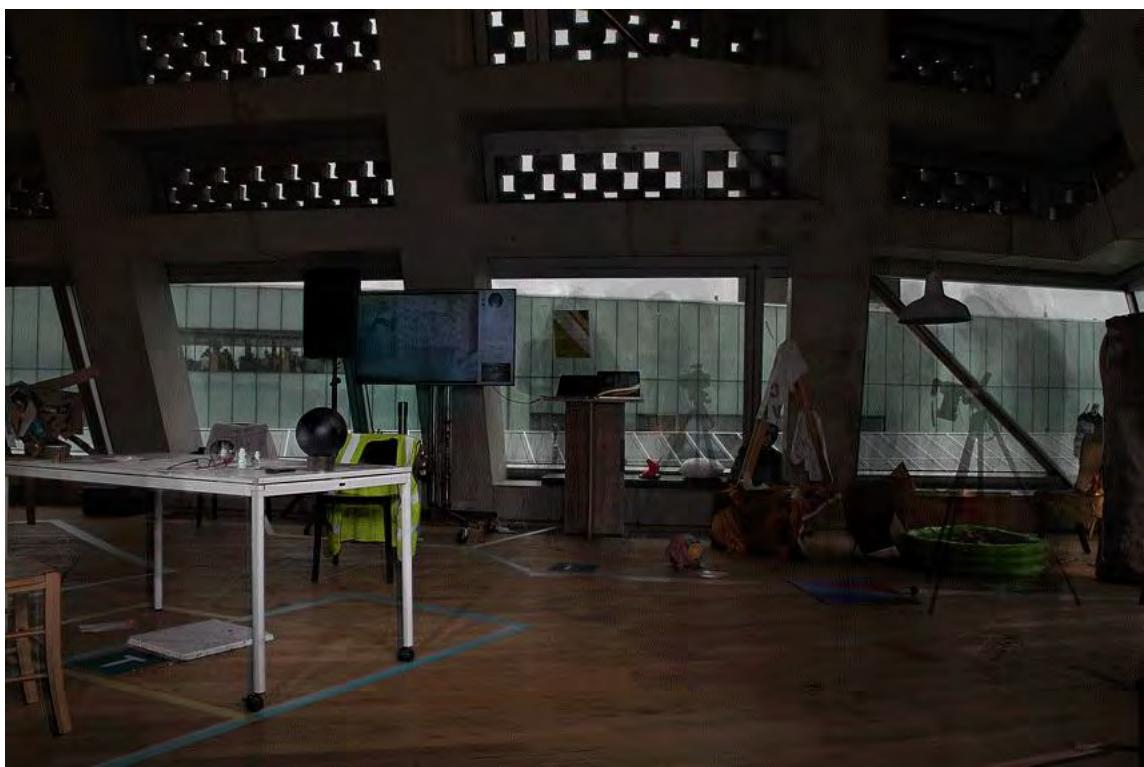

But what of the expanded field of drawing, drawing is not just a mark on a paper- it is a sound in space, an action within a time and place, a rich and complex mapping process- involving sculptural and performative activities.


In Derrida's thesis, the depiction of a blind person is a multiple statement of blindness and sight, how then could the extended activities of drawing be used to depict the blind? And how do these then become statements of and about blindness and sight? What new information would they illicit? What positions could they expose?

The artists working alongside each other as well as contributions by archaeologists and


John Dickinson-Lilley, the the residency sort to be a lively experimental environment to consider the notions set out above in both a creative and practical way.


C&C residency_ C&C Gallery _ 2015_ Curated by Ian Dawson with Louisa Minkin Michael Colegate, Mhairi Vari, Jenny Dunseath, Nicola Thomas, John Greenwood, Claude Heath. With contributions from Andrew Jones, Marta Diaz-Guardamino Kevin Colgate and John Dickinson- Lilley



Residency blog posts: <http://candcresidency.blogspot.com/>

ID 2.7.1816, 2016-2019, Aluminium, Fused Filament Deposition Prints, Polyethylene,
250 x 200 x 300cm

Exhibited in Artist Boss, New Art Centre, Roche Court 19.11.2016 -29.01.2017
Itinerant Objects, Tate Exchange, Tate Modern, UK, 05-07.04.19

<http://www.iandawsonstudio.com/itinerant-objects.html>
<http://www.iandawsonstudio.com/artist-boss.html>

Más allá del texto Cultura digital y nuevas epistemologías

Ileana Azor Hernández,

Luisa Fernanda Grijalva Maza

y Alfonso Adolfo Rodolfo Gómez Rossi

Coordinadores

Grave Goods

Ian Dawson and Louisa Minkin

Published as Dawson, Ian and Minkin, Louisa (2017) ‘**Grave Goods / Objetos funerarios**’, in Azor, I., Grijalva Maza, L.F., and Gómez Rossi, A.A.R. (eds.) *Más allá del texto: Cultura digital y nuevas epistemologías*. San Andrés Cholula, Puebla, México Ciudad de México: Universidad de las Américas, Puebla ; Editorial Itaca, pp. 205-221.

Spectres and Fossils

William Gibson once remarked that what distinguishes human beings from animals is

the externalization of memory.¹ “Whales”, he said, “don’t carve their songs in coral”. It may yet come to our attention that they do, but it is without doubt that we have carved our adventures into whale bones, used their remains to shape our bodies and sate our stomachs and, in so doing, producing an assemblage of whale and human that strangely contradicts Gibson’s assertion.² Is it a kind of anxious techno-determinism that compels us to fix boundaries and stop category slippages?

Gibson chooses coral as a material of memory: a shape-shifting petrification, living tissue turned to mineral. Biosphere to Lithosphere. The story goes that its pink is leeched from the blood of Medusa’s severed head. Perseus left the engorged head carefully nested in seaweed on the littoral zone while he rescued Andromeda. It rested at the interface where sea and land pass into each other.

Calcificationother. Calcification happens when our attention is elsewhere. We are transfixed by a flashy emotional drama, while background geological processes sediment and harden in increments invisible to us. Geological coagulations and hardenings produce place as memorial and as technical support. Dual movements of liquidity and petrification characterize the ways in which knowledge is distributed and stored; the diffuse, Lucretian³ shedding of skins and films of image as spectral emanation, and the mute immanence of the concretion of object as fossil.

Gibson makes a familiar separation between ‘natural’ and

¹ Barbara Kruger & William Gibson *On Information* Tate Britain discussion 2005. Cf. “The spatialisation of memory is the consequence of the technicisation of life... In humankind – and this is the difference from what characterizes animal life – individual memory, the fruit of experience, is not lost to the species when the individual who has lived it disappears. The experience has been technically exteriorised in the form of the technical object.” (Stiegler, 2012, 4)

² In prehistory the materials and tools intrinsic to the production of technical actions and remains are often of animal origin: bone, fats, skin, sinew. Rather than emphasising a process of separation or distinction as Gibson does here, it is useful to think in terms of conjunction. It is, in many cases, the assemblage of animal and human which allows for the externalisation of memory.

³ The tradition of Lucretius does not always see the distinction between life and matter, human and non humannon-human as the most important or salient difference to recognize. (Bennett, 2010)

‘technical’: a standard of our recursive search for origin and distinction. Hand-shapes made in caves with spit and ochre figure as our earliest signature, our technical shadow, that from which we extrapolate both identity and possession. We are born spitting and scratching our fragile ego into a symphonic geological underworld.

Now we write our lives into magnetic storage systems through rare-earth technology meantime swallowing memory supplements from virtual pharmacy shelves. Our bio-memories falter, significations slip, uploaded ghost images produce posthumous avatars, searchable, re-configurable: variant and unstable identities, circulating as autonomous versions rather than shadows of an original. Headstones inscribed with QR codes conjure the dead to speak.

As we emerge blinking and clicking at the juncture of text and viz-tech, modes of production and reproduction mutate. We can hardly recall Plato’s warning that writing:

will produce forgetfulness in the soul of those who learn it because they will cease to exercise their memory and will put their trust in what is written [...] in what is outside, instead of what is on the inside, in themselves. (Phaedrus, 275a)

Text is a technology: grammar and rhetoric are instrumental in structuring the world. In our post-continuity culture, we question the relation between parts and wholes, the distinction between inside and outside, thinking more about the world without us in it altogether.

Let us begin again. Here are two provocations from Friedrich Kittler, so widely circulated they operate as objects without context: First: “Media are not pseudopods for extending the human body. They follow the logic of escalation that leaves us and written history behind it”. Then:

As we know and simply do not say, no human being writes anymore. [...] The last historic act of writing may thus have been in the late seventies when a team of Intel engineers [plotted] the hardware architecture of their first integrated microprocessor.

I am going to discuss some of the ways that ‘new’ technologies inflect knowledge production: techniques such as photogrammetry, reflectance transformation imaging [RTI] and 3D scanning. What happens when we ‘look’ at historic objects with para-epistemological hardware? What possibilities do new technologies offer for articulating image and object? How are histories materially or computationally encoded and rendered visible? Can we release objects embedded in locked systems, contexts or software? These are processes of flow and block, continuity and discretion. We chose a trans-disciplinary approach, one that would help us to gear methodologies from one discipline to another.

These projects were initiated collaboratively between artists and archaeologists from the Archaeological Computing Research Group and

the Centre for the Archaeology of Human Origins at the University of Southampton.

Photosculpture

Working in art school with a diverse, ahistorical set of imaging technologies, we were curious about how to better understand recently acquired 3D scanning and printing equipment. We began unpicking some historical precedents including an ancestor of 3D fabrication technology: a device from 1863 for turning photographs into sculpture. As the journalist Henri de Parviel put it: “The true mission of this useful and humble art-form will be to bring sculpture into the private life and to perpetuate the photographic image by petrifying it”. (Galloway 2012).

A lecture by Alexander Galloway inspired us to rebuild François Willème’s Photosculpture apparatus. This device produced 3D models of sitters quickly and seemingly by enchanted means. The sitter entered a top-lit room and posed on a podium for a few moments. Three days later they collected a perfect, detailed portrait statue. How was it done? Twenty-four hidden cameras, triggered simultaneously around the periphery of the space produced a set of silhouettes. Each was projected sequentially onto a screen where a craftsman used a pantograph to trace the outline into a block of clay, rotating it 15 degrees each time. The pantograph is a device of ratio, it scales mathematically, producing image via vector: abstract data visualization. The sum of the profiles produces a 3D model, an accurate likeness, efficiently achieved at little cost. The principles of assembly are interesting here. This is a multimedia process, a spatial articulation of image. Aggregated images are turned into a 3D object. Galloway’s thesis is that it provides an antecedent for parallel processing; it spatializes synchronous images, using a model of simultaneity, rather than deploying the serial frames of chronophotography, which build the more familiar cinematic model of image.

Photosculpture was an articulated process, functioning by division of labour. Procedural and mechanistic, it has an uneasy interface between artisan and operator. Willème’s device is an assemblage of machinic arrays: prescriptions are embodied within it. It presents a production system.

The device is a reversal of Bentham’s panopticon, Foucault’s apparatus. Built in the years preceding the Paris Commune, it places a central subject under 360° scrutiny via a communal optic. The chamber executes one form of political subject with the shutter-click of multiple cameras; reducing sovereign to souvenir, object to ‘crapject’.

Assembling stills produced by the mechanism as gifs demonstrates the recursive loop at the heart of automation. Data from this nineteenth century capture process was pushed through an array of consumer level software: 123D Catch, Blender and Cinema 4D and updated to a crowd-sourced, smartphone version revealing the characteristics of different data processing software. Most of our reproductions were monstrous. The

monster ensures the emergence of difference, interrupting consistent manufacture, introducing vital variation.

One characteristic of 3D modelling applications is the production of a hollow body, something akin to Benjamin's description of the discarded fetish—second nature—, an alienated, reified, dead world. Data takes on a new presence as skin: a digital flaying or appropriation. We think of data capture as a form of spoliation; a stripped asset in economic terms, but also subject to algorithmic aestheticization and to reuse through the procedures of collage.

Spoliation entails a forcible transfer of ownership. The spoliated object (animal, person, monument or culture) is denuded of its portable assets (skin, wealth, ornament, artistic patrimony) and the assets—the spolia—are taken as booty or salvaged. Spolia are survivors of violence, about which they might be mute (if they bear no visible signs) or eloquent. (Brilliant and Kinney, 4)

In adding up the sum of the profiles, Photosculpture invents computational photography. It is photogrammetry: taking measurements from sequential photographs to recover the exact positions of surface points. The camera, like a clock, provides a metric for structuring the world.

Laser scanning has practical limits to data collection and processing, but the ubiquity of digital photography means that photogrammetry can prototype quickly and cheaply. Images of an object from multiple sources can even be compiled on a home computer. Contemporary photogrammetry identifies common pixels in an assemblage of images to register and produce a scalable model. Free software developed for 'cultural heritage preservation', applies lists of algorithms to digital objects, and provides bridges for format conversion. We begin to see a set of digital rites here, a grammatology even.

The Folkton Drums

It is as if the past surfaces in itself but in the shape of personalities which are independent, alienated, off-balance, in some sense embryonic, strangely active fossils, radioactive, inexplicable in the present where they surface, and all the more harmful and autonomous. (Deleuze, 123)

The Folkton Drums are decorated prehistoric objects which were deposited as grave goods in a barrow in Yorkshire and brought to light 5000 years later. We propitiated these objects, aiding their afterlife, through laser scanning, photogrammetry and RTI at the British Museum as part of Andrew Jones' research examining Neolithic art in Britain and Ireland.

With the Folkton Drums we have nothing in our hands but perplexities. Like the knot in the handkerchief, we have forgotten what it was we wanted to remember. Despite all conquest of distance the nearness of things remains absent. (Heidegger 1971).

A deposition is geological sediment, it is also a sworn witness

statement, the down-throw of a monarch or the movement of Christ's body from cross to tomb. Through the process of deposition an object may change its status, becoming an agent of a different order. This level violation is a form of metalepsis, a paradoxical transgression of the boundaries between narrative levels or logically distinct worlds, the world of the telling and the world of the told. A significant action then, moving something from one domain to another: a shift of medium, change of platform, plastic to graphic, textual to figural.

We read that the drums were made for deposition. They were present, underground in the dark, over the entire period of written history. What mattered was their existence not their being on view: their latency in fact. What was once visible in the mind's eye or ghosted through oral tradition might now be made present through resistivity imaging. It's a matter of visibility: what is brought to light here is the slippage between 'cult value' and 'exhibition value', a qualitative transformation of our perception of the nature of the objects, from instruments of magic to objects of art. What we now recognize as artistic function may one day be perceived as incidental. Since shortly after their exposure the drums have been transparently 'on view' behind glass in the British Museum, suspended in a new medium.

The drums are made of chalk, a primary material of the symbolic in Britain, where the geological record is the coastal frontier and the white cliffs evoke tearful nostalgia. On a microscopic level they are made from the compressed mineral bodies of sea creatures. Chalk deposits are riddled with flint: silicified matter casts burrows and hollows, producing aggregates of creatures and spaces; formless shapes and fossil forms. Sometimes 'the ancestors' circled the dead with collected fossils, sometimes they treasured a piece of banded flint, but most often they worked it into tools. Labour appropriates material into use. Struck flint sparks fire. Knapped flint is sharper than a surgeon's knife. Lithic tools store memory, but were not made to do so. Our lost tools, and thedebitage of their making, write a history of *techne* across the journeyed landscape.

Chalk is an accommodating substrate, readily carved and erased to form pattern, symbol, or representation. The decorated surface forges a relation between us and objects, it ensnares us. We remember dimly the hallucinatory compulsions of entoptic imagery. The concentric circles and crossed banding graven into the drums are motifs generally recognized as apotropaic. Like Medusa's head painted on a shield, the wheels and 'butterfly' markings |><| commonly found at thresholds defend and refuse. Such inscriptions bar entry to spirits and spectres, but also figure prosaically as builder's marks. The augur and the surveyor use the same tools: a conjunction evident in the instrumental use of predictive software where algorithms determine 'emblematic' behaviours, match patterns to targets, and execute decisions to strike.

Steganography buries messages, concealing an image in the code of

another. Paranoid history makes us long to reveal the source code in the drums, the text veiled in the engraving. The process described by Nampeyo, a Hopi-Tewa potter is salutary here: “I used to go to the ancient village and pick up pieces of pottery and copy the designs. That is how I learned to paint. But now, I just close my eyes and see designs and I paint them”. (Namingha 2014). She describes how the ancestral fragment acts as an intergenerational storage and transmission system, gestures pass from broken shard back into the mind’s eye and are configured anew, made into different wholes. These constant displacements set up new relations between individual and collective bodies.

The interiority of thought becomes knowledge by externalising it in the form of traces, making it repeatable, transmissible and persistent. Thought encounters materiality through the flow of a brush, the pinch of fingernails in clay. The finger pinch now dents the soft screen, greases over image while causing the pixels to dance and scroll.

Stiegler describes a system of retentions. Primary retentions are sense perceptions, secondary retentions are memories, and tertiary retentions write cultural mnemonics into social substrates through deposition, like a print head with Z depth. They allow memory to cross generations, from post-hole to Dropbox. Part of us is disembodied; our new organs are i-devices. Our open-port cyber-self is acutely vulnerable to bio-political control.

The process of RTI reveals reworking in the making of the drums; motifs erased and changed as they go along (Jones et al, 2014), Using a flash obliquely brings into sharp relief otherwise invisible palimpsests, like Freud’s *Wunderblock*, an analogy for the mental operations of memory; overwritten, unconscious. The layering revealed by the RTI process, itself an aggregate of images, shows the doodled coming-into-being of a figure that will, in its final realization, be used to establish stylistic taxonomies demarking place, affiliation, date.

Gillian Varndell, Curator of Neolithic Collections at the British Museum reports that the most popular question about the drums is: ‘What’s inside them?’ It seems dumb; nothing is in them. But we fall for a bare illusion; they act as substitutes, stand-ins, containers we cannot ever open. Their unique status and their illegibility breeds surplus readings. They are wrapped gifts in a super-slow game of pass-the-parcel. We are the circulatory relay. In this game an object is the focus of debts or rights, existing to materialize social interaction. But the simplest surmisal is this: the most common grave goods are vessels, so the drums are representations of containers, abstract receptacles for the unbearable. Their secret is a conundrum of interiority and exteriority.

A skeuomorph⁴ is a curious copy: the sound of a page turning on

⁴ ‘Skeuomorph’ is an archaeological term that denotes artefacts made from one material to imitate a form usually made from another. Skeumorphism—the ability to retain form while transforming materially—has been discussed as a method of evolutionary change. The concept of the skeuomorph also has an impact in understanding contemporary digital imaging and 3D printing technologies in which the creation of the object form as a data-cloud permits its digital transformation, and allows it to be printed in another media. A skeuomorph shares characteristics with the Freudian fetish object: a touchstone that provides a

your e-reader, an obsolete comfort; an axe-head fabricated from chalk, a violent object safely displaced into the symbolic. A fossil. A 3D scanner is a machine to produce skeuomorphs. The laser is used to accurately determine the distance from the scanner to the object: 3D shapes are captured by repeatedly scanning at different angles and positions across the surface of an object. Data captured in this way is used to construct a “point cloud”, triangulated into a mesh and skinned over with a texture. The scanner’s algorithms may extrapolate gaps in the data, so an object develops foam-like bursts or confused spatial extrusions. Typically, when printed, the qualities of the object, its softness or flexibility, are lost.

Each modality of recording, drawing, engraving, written description, photography and digital methods, produces new knowledge and new states of attention: effectively recognising new symptoms. Each process makes legible with a different emphasis, attachment or detachment, a flicker or a pulse, and together they produce a reflexive network of information. Processes of transmission and resistance occur between old and new systems. In 1890 the decoration of the drums was described in heraldic terms; a codification of power and affiliation; now Photoscan writes a set of digital picking points over the surface producing new constellations, new strata of data.

Taplow House

In trying to grasp how we might put these technologies to work, we used them against the grain, taking ‘cultural heritage’ recording practices to the Aylesbury Estate in South London. The ‘sink’ estate, in fact prime real estate, is under siege by the forces of capital; demolition has begun, tenants are being ‘decanted’, artists are moving in. The welfare offices and health centre have become studios. Built in the sixties, it was bad-mouthed by tabloid press as ‘hell’s waiting room’, preparing the conditions for ‘regeneration’. Ironically, it was here in 1997 that Blair gave his first public speech as Prime Minister, promising to help “the poorest people in our country [who] have been forgotten by government”. Channel 4 still use the ‘ident’ of the estate, the camera pans across the desolate walkways aligning in a magnificent concrete logo, what Virilio would call a phatic image –the context evaporating in the stress between image and logotype.

Taplow House on the Aylesbury had a row of forgotten shops: a cab office, a laundrette, a butcher’s, a street in the sky that was closed up in the early seventies, our recent past eroded, a stratigraphy of the mundane. One space is burnt out, its melted cables drooping and a fine layer of soot covering all surfaces. The room is a dioxin carbon pad, with traces of

direct, non-metaphorical contact with a point of origin; but the object is doubly volatile, activated also by what we bring to it in terms of projection. Another relevant skeuomorphic model might be Lacan’s ‘semblant’, a replacement object that fills the void left by the loss of the primary object. A semblant functions to avoid the horror or anxiety produced by an encounter with the real.

hand and boot prints from anyone who has broken into it since, a Cueva de las Manos of sorts. Here we used RTI, recording the thin layers of dust and imprints that visualise expropriation, marking the border between forms of occupation and incursion. We were reminded of aerial reconnaissance photography, the first prototype of the ‘vision machine’, and of the optical domination of a flattened and estranged surface; an abstraction of belonging and dispossession.

Software developed to give access to precious ‘cultural heritage’ instead records the quotidian expropriations of global capital. Most of these software applications produce depopulated spaces, ‘inadequate descriptive systems’, where people are absent because of the time space of the image, emptying those in flow from the frame, or presenting them only as partial or refigured bodies, incidental to space, cut into pieces across time, conceptualized as alienation.

Modernist blocks in London often take their names from ancient sites, validating new structures with a romantic origin. Taplow comes from Taepa’s Low, a burial mound excavated in 1883 by antiquarians ‘with a zeal only outmatched by their incompetence’ leaving interpretive problems as complex to unravel as the damaged assemblage of grave goods. Finds at Taplow House include a can of Panda Pop and some burnt foil. Still lives of discarded bottles were revealed through stroboscopic activity; a supernatural action in pitch-black rooms explored with the flashgun. Pornography had been stuck on one wall offering a recursive jolt: decayed object and enhanced image melting into each other.

Our archaeological colleagues referred to our recording attempts at Taplow House as ‘dirty RTI’. We had become interested in the artefacts of the process itself, the shiny black ball used to register each shot, the camera recording itself in a mirror, dirt on the screen, clouds and ripples in the processing.

Developed by the gaming industry, the software approximates luminance to improve the ‘realism’ of 3D environments. As Ray Bradbury put it: “you can get people to swallow anything by intensifying the details” (qtd. in Virilio, 14). The RTI interface provides “real-time rendering, interactive visualization of changing light conditions and enhancements revealing the most subtle details of a surface” (Diaz-Guardamino and Wheatley, 2013). It follows the instrumental photography of medicine, astronomy, and the military. RTI as a statistical image is the epitome of a technologized vision where the decoding of individual pixels and the forming of new relations with the pixels surrounding them offers up new kinds of blindness. (Armitage, 76)

We question what an art object is today; made for exhibition, disseminated as image, inserted into the ground or context of a particular place or our particular city, embedded as hyperlink into a webpage. Digital objects track their own itineraries, from the Llossy compression of the poor image to the un-degradable smart-object. Cooperative digital technologies produce new ways of seeing and making forms and practices

of communal perception. It is possible to construct an RL space from crowd-sourced images to collectively geo-map data as resistance. Collective parrhesia builds operational barricades. Cultural forms are rewritten in the technological strata. The algorithmic accidents of particular applications become our parlance. Navigating 3D software changes our perspective on objects, producing various temporalities and discontinuities. It is a politics of positioning, and new technologies of positioning have disorienting consequences for knowledge production. Objects are no longer allowed to settle at a safe distance, we re- or de-historicize them at will.

Acknowledgements

Our collaborators on the projects described include Nicole Beale and Gareth Beale, Andrew Cochrane, Marta Diaz-Guardamino, Andrew Jones and Lena Kotoula. Their expertise and conversation have been fundamental to the work described in this paper.

Videos cited

Galloway, Alexander. "On the Cybernetic Hypothesis." Online video clip. *Vimeo*. Vimeo: 2013. Web. 2 Jan. 2014.

Solaristprojects. "Francois Willeme's Photosculpture Apparatus Reconstructed at WSA". Online video clip. *YouTube*. YouTube: 15 Dec. 2012. Web. 6 March 2014.

---. "photosculpture". Online video clip. *YouTube*. YouTube: 25 Apr. 2014. Web. 6 March 2014.

---. "VC Video". Online video clip. *YouTube*. YouTube: 24 Dec. 2013. Web. 6 March 2014.

WSA Global Futures. "The Event". Online video clip. *Vimeo*. Vimeo: 2013. Web. 6 March 2014.

Works cited

Armitage, John. *Virilio and the Media*. Cambridge, UK: Polity Press, 2012.

Beale, Gareth, Nicole Beale, Ian Dawson, and Louisa Minkin. "Making Digital: Visual Approaches to the Digital Humanities." *Journal of Digital Humanities* 2, 3 (2013): 240-247.

Benjamin, Walter. *The Arcades Project*. Trans. Howard Eiland and Kevin McLaughlin. London: The Belknap Press of Harvard University Press, 1999.

---. A Short History of Photography. *Walter Benjamin: Selected Writings*. Trans. Edmund Jephcott and Kingsley Shorter. Ed. Edmund Jephcott, Howard Eiland and Gary Smith. Vol.2. Cambridge: Harvard University Press, 1999.

---. "The Work of Art in the Age of Mechanical Reproduction." *Illuminations*, London: Random House, 1999.

Bennett, Jane. *Vibrant Matter: A Political Ecology of Things*. Durham, USA: Duke University Press, 2009.

Brilliant, Rrichard and Dale Kinney. *Reuse Value: Spolia and Appropriation in Art and Architecture from Constantine to Sherrie Levine*. Farnham, UK: Ashgate Publishing Limited, 2011.

Dawson, Ian and Louisa Minkin. "Object lessons: copying and reconstruction as a teaching strategy." *Art, Design & Communication in Higher Education* 13, 1 (2014): 19.

Deleuze, Guilles. *Cinema II, The Time Image*. London: The Athlone Press, 1989.

Díaz-Guardamino, Marta and David Wheatley. "Rock Art and Digital Technologies." *Menga The Journal of Andalusian Prehistory* 4 (2013): 187-203.

Greenwell, William. "Recent Researches in Barrows in Yorkshire, Wiltshire, Berkshire etc." *Archaeologia*, 52, 01 (1890): 1-71.

Grigg, Russell. *The Concept of the Semblant in Lacan's Teaching*. 1997. EBSCO Publishing. 6 Aug. 2014. <<http://www.lacan.com/griggblog.html>>.

Groys, Boris (2013) "Art Workers: Between Utopia and the Archive." 2013. *E-flux*. 6 Aug. 2014. <<http://www.e-flux.com/journal/art-workers-between-utopia-and-the-archive/>>.

Haraway, Donna. "A Cyborg Manifesto." *Simians, Cyborgs and Women: The Reinvention of Nature*. New York: Routledge, 1991.

Heidegger, Martin. "The Thing". *Poetry, Language, Thought*. New York: Harper & Row

Publishers, 1971.

Jones, Andrew. *Memory and Material Culture*. Cambridge: Cambridge University Press, 2007.

Jones, Andrew, Andrew Cochrane, Chris Carter, Ian Dawson, Marta Díaz-Guardamino, Lena Kotoula, and Louisa Minkin. "Digital imaging and prehistoric imagery: a new analysis of the Folkton Drums". *Antiquity* (forthcoming), 2014.

Jurgenson, Nathan. "Pics and It Didn't Happen." 7 Feb. 2013. *The Inquiry*. 6 Aug. 2014. <<http://thenewinquiry.com/essays/pics-and-it-didnt-happen/>>.

Kittler, Friedrich. *Draculas Vermächtnis Technische Schriften*. Leipzig: Reclam, 1993.

Krauss, Rosalind. *The Optical Unconscious*, London: The MIT Press, 1993.

Kristeva, Julia. *The Severed Head: Capital Visions*. New York: Columbia University Press, 2011.

Namingha, Les. "Infinity of the Nations, The National Museum of the American Indian." 2014. *National Museum of the American Indian*. 6 Aug. 2014. <<http://nmai.si.edu/exhibitions/infinityofnations/southwest/264462.html#quote-noimg>>.

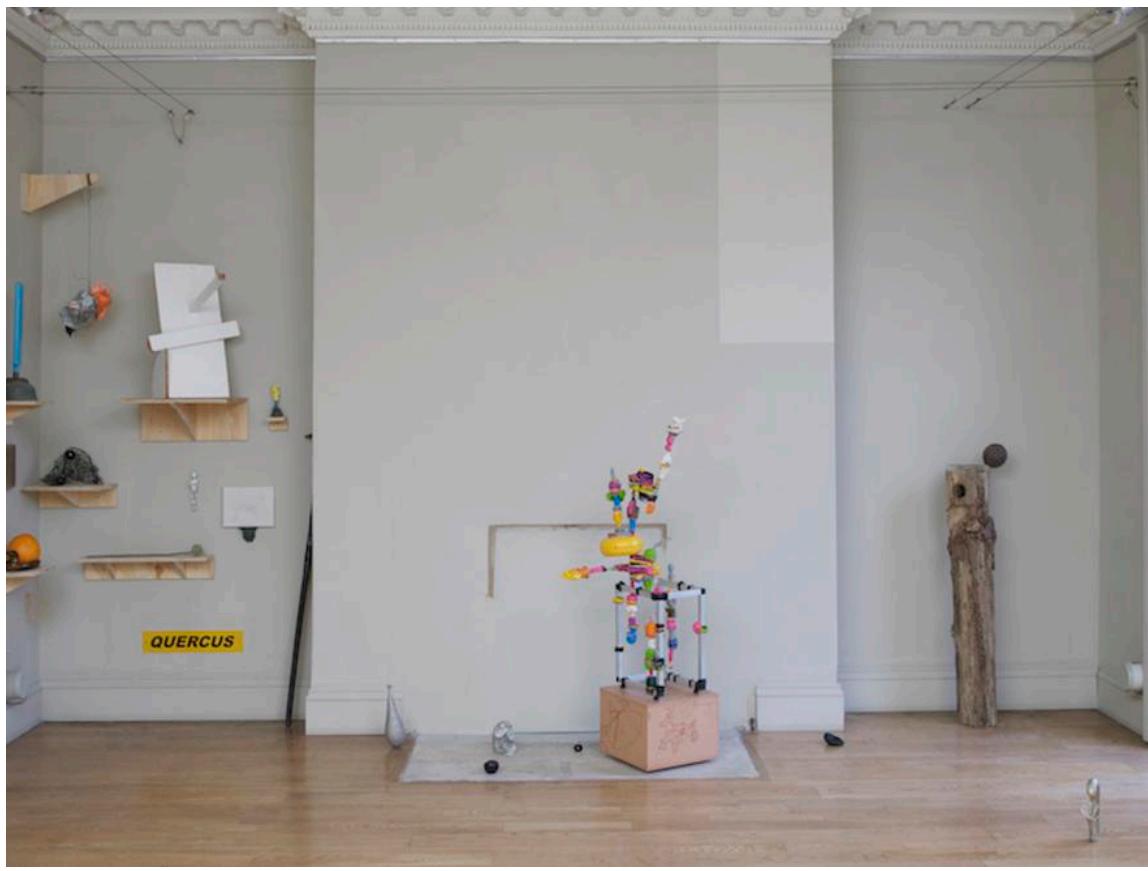
Plato. *Phaedrus*, London: Penguin Classics, 2005.

Rubinstein, Daniel. "The Digital Image", Mafte'akh; Lexical Review of Political Thought." Minerva Humanities Centre, Tel Aviv University, 6,1 (2014) 39-54.

Sobieszek, Robert. "Sculpture as the Sum of its Profiles: François Willème and Photosculpture in France, 1859-1868." *The Art Bulletin* 62, 4 (1980). 617-630.

Stiegler, Bernard. "Relational Ecology and the Digital Pharmakon." *Culture Machine* 13 (2012). 1-19.

---. "Anamnesis and Hypnomesis." 2006. *Ars Industrialis*. 6 Aug. 2014. <<http://arsindustrialis.org/anamnesis-and-hypomnesis>>.


Stiegler, Bernard and Irit Rogoff. "Transindividuation." 2010. *E-flux*. 2 Jan. 2014. <<http://www.e-flux.com/journal/transindividuation/>>.

Virilio, Paul. *The Vision Machine*. London: Indiana University Press, 1994.

Gnomon One, 2019, Polylactic Acid, Polyethylene, Aluminium, MDF, Plywood, Steel, 70x40x160cm

Exhibited at Backyard Sculpture, Domo Baal London, curated by Neil Gall and David Gates,
21.6.2019- 20.7.2019

<http://www.iandawsonstudio.com/ian-dawson-backyard-sculpture-exhibition.html>
<http://www.iandawsonstudio.com/gnomon-one.html>

Research Article

Paul Reilly*, Simon Callery, Ian Dawson, Stefan Gant

Provenance Illusions and Elusive Paradata: When Archaeology and Art/Archaeological Practice Meets the Phygital

<https://doi.org/10.1515/opar-2020-0143>

received November 15, 2020; accepted April 25, 2021

Abstract: In this art/archaeological study, we question the utility of the interrelated concepts of provenance, provenience, and paradata as applied to assemblages in art, archaeology, and cultural heritage contexts. We discuss how these overlapping concepts are used to establish values of authenticity and authoritative attributions. However, as cultural assemblages are increasingly being extended through virtualisation, they may exist digitally as well as physically, or as combinations of both, that is phygitaly. We show how provenances and paradata can now become unstable and even detached from the assemblage. Through a sequence of collaborative projects, we expose two provenance illusions at the centre of archaeological recording and presentation practices. In these illusions, the archaeologists and much of the archaeology they record actually disappear from the authoritative reports that are published. Using a transdisciplinary, diffractive art/archaeology approach, these illusions are unpacked to reveal how superficially slight changes to traditional archaeological “drawings” and “photographs” have wrought fundamental ontological shifts in their modern phygital incarnations which undermines their provenances and associated paradata. We conclude that archaeology like fine art does not require conscious paradata in order to support statements of authority and interpretation. Instead, we argue that archaeologists should adopt an art/archaeology approach and subvert and dismantle established practices, methods, tools, techniques, and outputs. By highlighting and challenging inconsistencies in what we say we do with what we actually do, we expose gaps in our knowledge and data and shortcomings in our practices. These deficiencies can then be tackled by developing more robust (trans)disciplinary approaches.

Keywords: art/archaeology, assemblages, diffraction, technical images, transdisciplinarity

Digs escape our grasp because, from the outset, we have held to the illusion that since something from the past remains, it will be immediately intelligible to us. And that is where we are misleading ourselves: This past that emerges for us, because it has been preserved, is withdrawn from us at that very same moment (Olivier, 2011, p. 181).

One often hears visitors to archaeological excavations ask “have you found anything interesting?” The question is profoundly relational and correspondingly complex: What have you found? Where? What is

Article note: This article is a part of the Special Issue on Archaeological Practice on Shifting Grounds, edited by Åsa Berggren and Antonia Davidovic-Walther.

* **Corresponding author:** Paul Reilly, Faculty of Arts and Humanities, University of Southampton, Avenue Campus, Highfield Southampton, SO17 1BF, United Kingdom, e-mail: p.reilly@soton.ac.uk

Simon Callery: Independent Artist, Studio is Based in Purfleet, Essex, UK, e-mail: simoncallery@gmail.com

Ian Dawson: Winchester School of Art, University of Southampton, Southampton, United Kingdom, e-mail: i.dawson@soton.ac.uk

Stefan Gant: Faculty of Art, Science and Technology, University of Northampton, Northampton, United Kingdom,

e-mail: stefan.gant@northampton.ac.uk

ORCID: Paul Reilly 0000-0002-8067-8991; Stefan Gant 0000-0002-1485-0853

“interesting” and to whom? What counts as a discovery? Who is asking the question? Who is being asked? At face value, the question could be construed, stereotypically, on the one hand, as indicating optimism about the possibility of hearing about and perhaps, even better, seeing “exciting” material artefacts and structural discoveries being unearthed. On the other, it could be interpreted as a sleight against the processes of slow archaeology (Caraher, 2015, 2019). What is absorbingly meticulous research for professionals and enthusiasts can be regarded as dull, tedious, and repetitive labour to others. In either (polarised) case, the exploration, interpretation, and presentation of archaeological landscapes, sites, and assemblages are not the sole purview of archaeologists. Equally, the manner in which archaeological discoveries made in the field are framed and presented need not conform solely to standard archaeological practices to make “the archaeology” interesting to a broader set of audiences and other stakeholders. Central to this innocent sounding question are issues of provenance and interpretative authority.

In this paper, we take an *art/archaeology* approach (Bailey, 2014, 2017a, 2017b; Thomas, Lee, Frederick, & White, 2017), which means deliberately disarticulating, repurposing, and disrupting the act and context of “archaeological” discoveries, their registration, their subsequent presentation and, in this case, diffracting these processes through multiple perspectives and interpretations in order to offer new stimulating ways of apprehending archaeological sites and discoveries. We not only diffract archaeological and artistic practices through one another, but also interlace some of the (im)material deposits, artefacts, and assemblages we encountered in the field, with both the physical and digital translations we produce within a “phygital nexus.” In this nexus, we constantly move forwards and backwards across various physical and digital modes of (re)presentation, exploiting human and synthetic modes of cognition, convolving ontological hybrids in the process, and so evolving our extending *art/archaeology* assemblages (Dawson & Reilly, 2019). Why is a diffractive methodology necessary? Braidotti (2018, p. 15) alerts us to the prosaic character of much digital humanities research, highlighting the widespread practice of 3D modelling archaeological finds as a classic example of an increasingly anemic narrative. We share Braidotti’s discomfort with this “majoritarian meta-pattern” (Braidotti, 2018, p. 15) and wish to argue for the more imaginative intra-active deployment of phygital techniques in archaeological situations through encounters with other disciplines (such as art practice) and other contexts (such as archaeological excavations and art galleries). Hence, following Haraway (1992) and Barad (2007), our method is a diffractive one.

We intentionally exploit our phygital nexus to produce ontologically ambiguous and itinerant art/archaeology translations and release them from their pasts “into the contested dynamics of the present, through the making of new creative works, not traditionally seen as historic or archaeological in form, display or intention” (Bailey, 2017b, p. 700). In other words, we are challenging traditional archaeological and cultural heritage practice-based research by applying our creative transdisciplinary imagination (see Gheorghiu & Barth, 2019; Gheorghiu, 2020; Thomas et al., 2017). We do not intend to rehash “institutionally safe narratives conventionally certified as truth.” Instead, we adopt the position of “artists who use the past as a source of materials to be reconfigured in new ways to help people see in new ways” (Bailey, 2017b, p. 691).

As our project is “transdisciplinary” and involves diffracting several viewpoints for multiple audiences, we will first give a deeper account of what we mean by that term, how we came to this position, our combined motivations, and also unpack a number of key terms and concepts which we share in our different disciplines, but have nuanced to substantially different meanings depending on their disciplinary context: assemblages, provenance, and paradata. We will then introduce and unpick two provocative provenance illusions and present our *art/archaeology* responses. Finally, we will discuss some of our insights, drawn from our *art/archaeology* studies, into the ontological shifts that archaeological assemblages can experience and their implications for practitioners.

1 Why Transdisciplinarity?

We take our inspiration from Ruth Tringham, who made a plea for a richer, fuller, and more complex archaeology, one which “[flows] into other disciplines easily, driven by sensorially rich and complex lateral thinking and playful exploratory imagination” (Tringham, 2016, p. 57), a point echoed at a broader level by

Tsing (2015, p. 285) who advocates “designing research that requires playgroups and collaborative clusters.” Tringham is not the first to suggest that archaeologists should embrace the intellectual and creative talents, and affordances, of colleagues from other disciplines. Indeed, archaeologists can point to a long history of productive cooperation with sister disciplines. Our long-standing tradition of (inter)collegiality is reflected in the names of the many sub-disciplines which could be reeled off (e.g., computer archaeology, classical archaeology, archaeometallurgy, environmental archeology, and an almost endless list). Tringham is alluding to markedly fluctuating levels of cross-modality and varying degrees and intensity of cooperation and interaction from department to department, project to project, and indeed across archaeology internationally. In connection to this, Liv Nilsson Stutz (2018) characterises three levels of increasing disciplinary cooperation within archaeology projects as multidisciplinary, interdisciplinary, and transdisciplinary. The weakest level of interplay being multidisciplinary where parallel sets of activities are assembled to build out a collage of adjacent insights. Interdisciplinary projects require a higher level of integration and harmonisation of activities within an integrated and coordinate whole. This is taken further in transdisciplinary projects in which practitioners extensively interweave their complimentary disciplinary skills, and methods, and apply them to a common set of issues, to produce outcomes which can be judged to redefine important aspects of the disciplinary boundaries of all of the cooperating disciplines involved.

The work presented here is part of a set of sensorially rich collaborative interventions by an archaeologist and three fine art practitioners. As collaborators over several years, we have progressed through these deepening levels of cooperation and now revel in going beyond the mere conjunction of “art and archaeology” and strive together to avoid the all too common criticism that the relative contributions by, and benefits to, our participating fields of practice are unbalanced¹. By contrast, the body of work presented here is intended to be a contribution to “art/archaeology” studies, by which we mean the fusion of two dynamic and complementary practices which when mutually stimulated generate new and provocative conceptions of knowing that transcend and consciously disrupt traditional time-honoured approaches to research and practice used in field archaeology. Our approach throughout is to imbue our efforts with the two key qualities identified by Roberts and Sterling (2017) as being diagnostic of successful collaborations within the so-called “creative turn,” namely, a transdisciplinary entanglement of concepts and questions and the grounded participation of all the archaeologists and artists involved in these projects (Thomas *et al.*, 2017). Our overall “ecology of attention” (Crawford, 2015) is focussed on how as different disciplinary practitioners we probe, make sense of, record, and represent the space and landscapes of excavations and the assemblages we co-produce. The ontologically rich set of archaeological, artistic, and art/archaeology responses we produce give us surprising new insights into our different ways of knowing, our different modes of expression. We argue that when our distinct embodied disciplinary practices are diffracted through one another, they enable subtle but consequential differences to emerge, offering insights into the nature of the assemblages we simultaneously dismantle, participate in, and co-produce. We intend to show some important effects of difference in disciplinary practices using a series of diffractive art/archaeology collaborative projects exploring and reexpressing three key concepts: assemblage, provenance, and paradata.

2 Concerning Assemblages, Provenances, and Paradata

Whether one is operating in a multi-, inter-, or transdisciplinary context, effective communication across disciplinary boundaries is crucial within the team and beyond. To this end, the three key concepts of assemblage, provenance (provenience), and paradata, which we share as practitioners, will be unpacked

¹ For instance, Calegari (2019, p. 14) asserts that “On very rare occasions art events suggest new paths for archaeological research” whereas artists “have often been inspired for better or worse, by archaeology.” Mármlor Martínez (2019, p. 59) suggests that this is because archaeologists have failed to take on board what art practices can offer.

in order to expose how we creatively inflect their different meanings. We will offer provisional definitions of these cross-disciplinary terms and concepts, but will explore them in more depth in the art/archaeology case studies that follow and reassess them again at the end of this paper.

For archaeologists, assemblages traditionally referred to a set of artefacts found in a common context – a pit, or a ditch, or a foundation—or a group of objects of a similar type, date, or material – Iron Age ceramics, Roman bronze, for example (see Lucas, 2012). As Yannis Hamilakis and Andrew Jones observe, the concept of assemblage is common to several disciplines besides archaeology but most notably art, where the unfolding, relational, and affective nature of assemblages has long been recognised and been explored by artists (e.g., within the Dada and Surrealism movements) through, for instance, their practices of collage making and performance art. The key point is that for artists “the making of assemblages is a dynamic but also deliberate rather than random process [and] the juxtaposition of distinctive elements can be transformative, generating new entities, new possibilities and new ways of understanding” (Hamilakis & Jones, 2017, pp. 77–79).

Adopting Barad’s (2007) relational realism approach, the identification, selection, definition, measurement, and registration of any of the entities typically identified in archaeological or artist practice (e.g., anomaly, artefact, assemblage, cast, drawing, feature, layer, line, photograph, sonograph, or video and sound recordings) are actually co-produced by a complex blend of agents, each with a particular set of affordances and capacities, which intra-act in different ways depending on how the specific articulation of day to day practices and apparatus is enacted. In other words, they emerge from specific relational configurations and performances of assemblages which therefore create a “creative nexus of negotiation” (Perry, 2015), be that spadework or screenwork (Edgeworth, 2014). At a general level, these dynamic assemblages include the practitioner, research objectives, the instruments and tools deployed, the material objects (artefacts, ecofacts, layers, or contexts), ambient environmental conditions, the nature of the intervention, time constraints, time of day, resolution, scales and conventions, and so on. This entire assemblage participates in the registration/recording process as it unfolds. Indeed, the importance of the creative and craft aspect of both spadework and screenwork in shaping archaeological and art assemblages and the production of art and archaeological knowledge in both the physical and the digital are widely acknowledged (e.g., Berggren & Hodder, 2003; Edgeworth, 2013, 2014; Gheorghiu & Barth, 2019; Gheorghiu, 2020; Reilly 1985, 1991; Reilly, Todd & Walter, 2016; Shanks & McGuire, 1996). Here, we argue that interpretation arises from the interplay of many factors and their interconnections. As Alberti, Jones, and Pollard (2016) put it “these interconnections are always changing; they are immanent and in a constant process of becoming.” Describing these factors and their effects on the knowledge we produce is clearly not straightforward.

The term *provenance* is also common to many disciplines, including anthropology, archaeology, art, geology, history, and palaeontology, and figures prominently in relation to “scientific” digital data sets and the open data movement more generally. However, different disciplines display distinct epistemological proclivities in the application of the term. In art and archaeology, “provenance” has two related, but quite distinct, meanings. For archaeologists outside North America, “establishing the provenance” of something entails defining the place of origin, or discovery, and articulating the specific “context” of the thing of interest’s findspot, which could include the circumstances surrounding its discovery (e.g., picking up a stray surface-find in a large field, uncovering a diagnostic artefact in tightly defined and sealed archaeological deposit, or detecting an image or marks hidden beneath an overlying surface). In American English, the cognate “provenience” is more generally employed to convey the same meaning. Alternatively, the term provenance, as used by galleries, libraries, archives, museums, and other cultural heritage professions (in both British and American English usage), also refers to the chain of custody, or ownership, including a chronology of any material changes or alterations to the work or artefact from its maker, or place of manufacture, to the present. In other words, it refers to the documented authenticity of special or commercially valuable objects and provides a biographical account and an itinerary of their life journeys (see Joyce, 2012; Joyce & Gillespie, 2015).

Conceptions of provenance are not restricted to just physical things. Establishing the provenance of immaterial digital objects is a central concern of many organisations and institutions. By whom or what,

where, why, how, in what kind of environment, and under what sort of circumstances digital data and virtual objects, such as 3D visualisations, were generated and subsequently stored, shared, (re)used, or modified are all vital pieces of information for demonstrating transparency and integrity in many professional situations. The provision of such information is intended to help researchers to credit the originator and, relatedly, assess the quality, reliability, and trustworthiness of the data or evidence under consideration. The documentation that encapsulates this information is known, for example, by the World Wide Web Consortium (W3C) as “provenance metadata.” In the contexts of digital archaeology and virtual heritage parlance, this highly prized information is widely known as “paradata” (see Bentkowska-Kafel, Denard, & Baker, 2012), a term enshrined in the *London Charter for Computer-based Visualisation of Cultural Heritage* (London Charter, 4.6) since 2006.

The term paradata was coined in 1998 by Mick Couper in order to distinguish auxiliary data, describing the processes by which interview survey data were obtained, from the established metadata that describe the collected data themselves (Couper, 2000). Since then, the definition of paradata has vastly expanded. In contrast to the generally uncontentious static properties of data captured as metadata (e.g., shape, dimensions, weight, location, colour, and so on), the plethora of activities, and the many extraneous by-products of research activity, which affect what and how data (or evidence) are actually incorporated into an interpretative framework, that is the paradata, are much more fluid and wide ranging (e.g., Edwards, Goodwin, O’Conner, & Phoenix, 2018; Egel-Andrews, 2012; Huggett, 2014, 2020; Richards-Rissetto & Landau, 2019). In social research, paradata include marginalia and fieldnotes. Paradata are also familiar to sociologists (Edwards *et al.*, 2017). In the case of the intersecting practices of fine artists and field archaeologists, paradata is an especially rich concept. For example, *Epoiesen*, an online, open-access publication, characterises itself as:

A journal for exploring creative engagement with the past, especially through digital means [publishing primarily] what might be thought of as ‘paradata’ or artist’s statements that accompany playful and unfamiliar forms of singing the past into existence. *Epoiesen* is therefore a kind of witness to the implied knowledge of archaeologists, historians, and other professionals, academics and artists as it intersects with the sources about the past (*Epoiesen*, 2020).

Even though huge amounts of effort go into producing paradata for virtual archaeology and cultural heritage models, as Huvila (2012, p. 105) notes, our efforts to document the complexity of our intellectual processes is hampered because “we are still lacking many practical and perhaps especially theoretical instruments to realise the stated aim of paradata; to make transparent ‘the human processes of understanding and interpretation of data objects’ in practice.” A common concern within the virtual archaeology and heritage communities revolves around the (lack of) definition of the appropriate level of detail, or “granularity” (Baker, 2012). The *Seville Principles* for virtual archaeology, for example, simply refer to paradata in terms of the need for clarity, conciseness, and availability, alongside the importance of providing as much information as possible (Bendicho, 2013, p 280). Since it isn’t obvious what constitutes meaningful paradata (Mudge, 2012, p. 180), it is perhaps not unreasonable that some scholars question whether the intricacies involved in gathering paradata for 3D models are actually worth the effort. Sven Havemann (2012, p. 158), for example, argues that “[a]t some point, the effort that is needed becomes questionable, all the more so when the paradata become so complex that their usefulness is open to debate.” Martin Turner wondered whether the creation of metadata and paradata was actually more of a curse than a benefit in documenting virtual heritage (Turner, 2012). Perry (2015) went so far as to suggest that in some circumstances these efforts are simply futile.

It is concerning that paradata do not necessarily account for all the relevant information affecting the processes through which data and metadata are selected and recorded. The implication that paradata are not exhaustive makes them “paradoxical,” which indicates, as Beacham (2012, p. 52) points out, that when the scholarly visualiser lays out the evidence from which their models were crafted, interpretative lacunae in the paradata offer potentially creative spaces from which others might take interpretative leaps into the dark and “almost magically find something there to catch and hold us” – a compelling illusion for example.

In summary, assemblage, provenance, and paradata are overlapping but loosely coupled concepts. Neither archaeological or artistic assemblages are found or discovered; they are both co-produced by

practitioners who select and articulate specific elements in particular ways to generate meaning. The value of any assemblage that emerges is partially dependent on the perceived authority of its makers and, crucially, a demonstrably secure provenance (provenience), or context of production. In the case of the archaeologists, there is a requirement to document the processes they followed and the decisions they made in selecting and articulating the assemblages they present. However, it is abundantly clear that our practices of producing paradata are inconsistent and open to criticism. By contrast, the equivalent process information associated with the making of a fine art assemblage is generally much more loosely described, if at all, in an accompanying artist statement. It is far more important to securely associate the making of the art work with its maker (and, later, the owners of the work).

Having laid out our principal transdisciplinary motivations to cooperate, and considered the terminology we deploy, we will now return our attention to our work out in the field in order to introduce the first of two provenance illusions that inspired the art/archaeology interventions we will describe later. Both these illusions when unpacked reveal important insights into archaeological assemblages arising from ontological shifts that occur when the archaeological assemblages are rearticulated in new art/archaeology contexts using different media.

3 Introducing a Provenance Illusion

Probably, the most familiar trope of archaeology is that of the archaeologist discovering and meticulously recording artefacts, features, contexts, layers, or structures, which are revealed during the course of field work. We will argue that such apparent “acts of discovery” (Edgeworth, 2003) are *provenance illusions* which, despite decades of reflexive methodology (Hodder, 1997), generally begin to unravel at the trowel’s edge.

Excavation reports are full of photographs and drawings documenting crucial aspects of the excavation intervention. They (re)present the archaeological record. They are generally regarded as documents of provenance and key paradata par excellence. We, on the contrary, regard them as unwitting props in what we call “provenance illusions.” Consider the scenario captured in Figure 1. This photograph is not the kind you will often see illustrating an archaeological report. It was taken by an archaeologist who thereby recorded artists-in-residence recording archaeologists at work, who are themselves recording the final excavation drawings. Who are these people and what are they recording?

The first part of the provenance illusion is to make all these people vanish. Many commentators have noted the token acknowledgement given to the vast majority of archaeological field team members who did the actual digging and performed the primary recordings (translations) of deposits (e.g., Baird, 2020; Berggren & Hodder, 2003; Everill, 2009; Huvila, 2012; Olivier, 2011; Perry, 2018). The “diggers” more or less disappear, anonymous, into the archives, out of the final authoritative statements promulgated through traditional hegemonic published reports. In their place, we find accounts of *some* of the things these practitioners identified and recorded in the form of photographs, drawings, and abstracts from context sheets, minus any clear connection to the excavation processes (Sanders, 2012, p. 40), and generally lacking the richness of the process information locked within individual daybooks, which may be incorporated into the physical archive, but will not be published even within the digital archive (Huggett, 2014). In other words, linkages between the contexts and their provenance and paradata are quickly unravelling. We should also note that the spoil heaps – the shifted ground – of disarticulated excavated materials (minus artefacts and samples) will also be airbrushed out of the excavation account. This brings us to the centre piece of this illusion, namely that rather conspicuous hole in which the archaeologists are making their “records.”

Consider Figure 2 which depicts two familiar forms of archaeological record. The image at the top is an ortho-rectified “photograph” – a sophisticated, industrialised method of recording, using digital photogrammetry. It shows one side of a trench made in the Moel-y-Gaer hillfort in Bodfari (Lock & Pouncett, 2012, 2014), North Wales, through the “aperture” of a void made through excavation (Hicks, 2020, p. 233).

Figure 1: Vibrant matter, the archaeological record, and a provenance illusion.

Like all archaeological excavation images, it depicts what has **not** yet been and often, as in this particular section, will not be excavated. The orthoimage of the trench section operates as a kind of Foucaultian heterotopic mirror in which the “incompatible spaces” of the deposits, now displaced from the void but in which the viewer is apparently standing, are somehow reflected like the figures captured in the mirrors of Edouard Manet’s (1882) *Bar at the Folies-Bergère* (Foucault, 1986). However, appearances notwithstanding, this orthoimage, like all digital images, is not a photograph. The orthoimage has more in common with a spreadsheet than a photograph. Think about the histogram view of the raster sample of photon readings that form “the image” taken on the average digital “camera.” As May (2019, pp. 50–52) puts it very neatly: “Photographs, never intrinsically calculable, remain thoroughly visual. Images, structurally calculable, are only apparently visual.” Digital images may borrow some of their visual appearance and vocabulary from earlier media like drawings, painting, and photography, but we should realise that they are ontologically quite distinct (May, 2020, p. 52). As Zylinska (2017, p. 26) reminds us, images “arrive to us as data which is then assigned visual characteristics and converted, or rather translated, into what we humans recognise as photographs.” The orthoimage is a classic example of what media theorist Flusser (2011) calls a “technical image;” in this case, one with no perspective distortions, manufactured from a mosaic of machine images that have been digitally warped and stitched together to produce a synthetic view that no human could experience directly. The role of the field archaeologist in producing this image is reducible to that of what Flusser laments as a mere “functionary,” someone who Sean Cubitt (2014, p. 270) sees as “enslaved” to, by, and in media technologies, like the “writer who writes for his pen” (Virilio, 1994, p. 76). Here, the “someone” is an archaeologist programmed to compose an overlapping set of views that conform to millions of other section images taken by other field archaeologists all over the world for generations and press the appropriate button (Lucas, 2012, p. 242). The image appears to have more agency in its own making than the passive slave to convention taking the picture. Once again, we detect the field

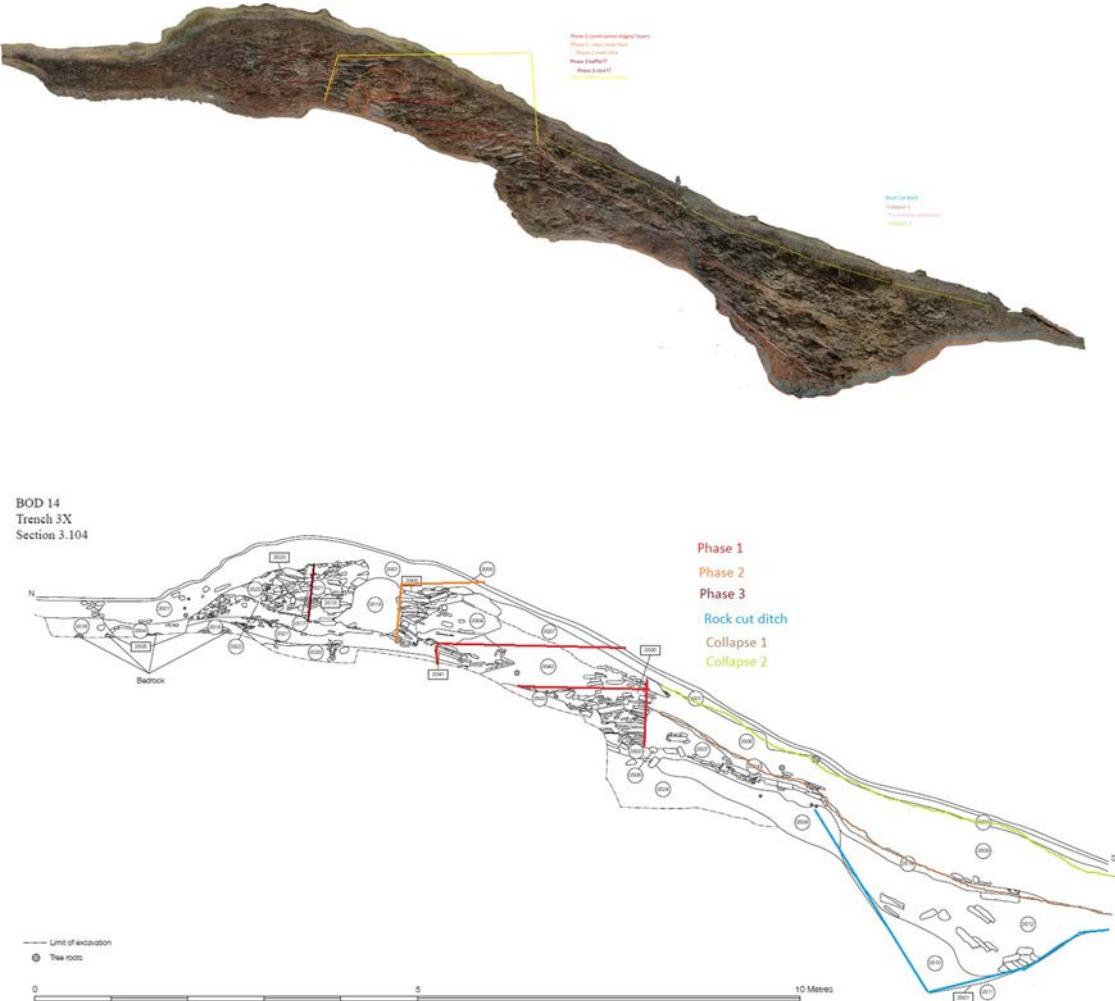


Figure 2: Bodfari Trench 3 sections (digital orthoimage and scanned hand-measured drawing).

archaeologist being squeezed out of the picture, incidentally brushing away their own footprints and avoiding any telltale shadows.

Continuing with our task of exposing the provenance illusion, now consider the corresponding interpretive scale-“drawing” of the same section shown underneath the orthoimage. This is also another digital skeuomorph, previously an analogue diagram drawn on paper, but now a digital image stored in a file and displayable on many different screens at various resolutions with their own particular presentation and interaction characteristics. However, what is important to note here is how the material archaeological deposits excavated in the void of the foreground of the orthoimage are no longer reflected in this section translation.

Most features uncovered in excavations are not symmetrical and therefore any section cut cleaves an arbitrary profile. Equally, the great majority of features will not intersect with the definitive final sections of the edge of the trench. Digital archaeological orthoimages, photographs, and drawings of any section clearly can only project onwards a partial material memory of some aspects of some features that some members of the excavation team encountered at some point before the features were shifted to a spoil heap. This is just as true in single context recording. These images have as much in common with forgetting as remembering (Olivier, 2011). However, there is no way to identify the existence of those many seamlessly missing “material memories” not inscribed on this convincing but composite, partial, abridged, and interpolated backdrop called the “section.” Moreover, the drawn lines that are presented actually indicate

discontinuities such as the interfaces between contexts or layers that happened to intersect with the section. These immaterial elisions and conjunctions within the material makeup of the deposits indicate episodes when stratigraphic accumulation was interrupted, and where materials have been removed. In other words, they indicate something that was already absent before the archaeological intervention. Ironically, stratigraphic profiles conventionally present these immaterial absences as solid graphite lines, whereas the material layers exposed in the section and sitting above and below one another, with no space between them, are left “empty,” that is un-presenced. The illusion is complete, the material encounter of the diggers with the deposits of archaeology has been more or less expunged. Both diggers and deposits have been erased. They are not “accounted for” in these images made in the genealogy of spreadsheets. These digitally skeuomorphic diagrams mark only immaterial absences detected in the sections of the material deposits that have not (yet) been excavated. Both the orthoimage and the digitised interpretive section drawing of record can be thought of as akin to Fforde’s (2002, p. 136) glorious fictional “mnemonic wallpaper,” displaying as they do only partial and composite memories. In short, our confidence in the provenance and paradata associated with the descriptions of the alleged assemblage (and its components) physically uncovered by excavation seems profoundly misplaced as their own provenance is highly questionable.

4 (Re)Filling the Void

Can we begin to recover and better understand the unfolding multimodal nature of our practices within the multifaceted archaeological record? Can we capture more nuanced or novel paradata to enrich the provenance of our assemblages by emancipating the functionaries and bringing the practitioners with their various tools and methods back more fully into the picture to be acknowledged? How might we replace the void, reverse the entropy, and recognise the skill and knowledge of the practitioners? In short, can we reconfigure and extend the assemblage to more fully represent the who, what, and how of its making and better demonstrate the real artistry involved in shifting ground in archaeological excavation? We believe a transdisciplinary approach to these questions will produce some fruitful new ways to address this challenge. In the following section, we present some of our art/archaeology reconceptualisations of practice in archaeological excavations.

4.1 Joining the Dots

Wassily Kandinsky famously said that “everything begins with a dot.” Extruding a point will produce a line, and extruding a line will produce a plane (Kandinsky, 1926). One way of working back into the aperture of the void (i.e., the space of the excavation) is to radically restate the trench sections and reduce them to a bare minimum and build back out from there. The screenshot in Figure 4 is a frame from an animated work called *Immersive Trench* (Gant, 2016) by Stefan Gant, an artist who describes his practice as “extended drawing.” (The full animated work can be viewed in Supplementary File 1).² In this piece, the colours of a single column of soil particles were captured via an intimate traverse down a trench wall using a digital video camera in macro mode; the embedded cognitive capabilities of the digital device thus harnessed become an extended drawing tool (Figure 3). Each suspended coloured line in this image references a grain of soil, a unique 3D point on the side of the excavation, a moment of deposition translated into a pixel, and then stretched into a drifting line of pixels. As Michael Carter (2017) notes, even a single 3D point can be a powerful locus of agency in virtual archaeology. Every dot of colour recorded by Gant in this most

² The supplementary files are available at <https://doi.org/10.1515/opar-2020-0143>.

Figure 3: Stefan Gant drawing a section at Bodfari hillfort (photo: Callery, S.).

Figure 4: Frame from *Immersive Trench* (Gant, 2016).

economical of “point-cloud” is an agent of memory and loss, retaining unique attributes of both the materiality and temporality of the substances that lined the trench. Potentially taphonomic markers, these grains are extruded around the virtual trench sides to create lines that recall “microstrata.” These lines of microstrata are concatenated and presented in reverse sequence, that is bottom to top, in the order that the grains were deposited. Rising from the base of the virtual trench, they seemingly track towards our ongoing present in an inverted form of percolation. These microstrata float up through the space once filled with forgotten sweeping gestures of trowelling archaeologists like virtual soil on the way to a digital spoil heap.

Some extruded lines transform into taught horizontal “sheets” of colour which seem to float and then fade back into lines. These sheets denote the major stratigraphic interfaces between two distinct layers superimposed one on top of the other, an absence-presence reflecting a stratigraphic interlude.

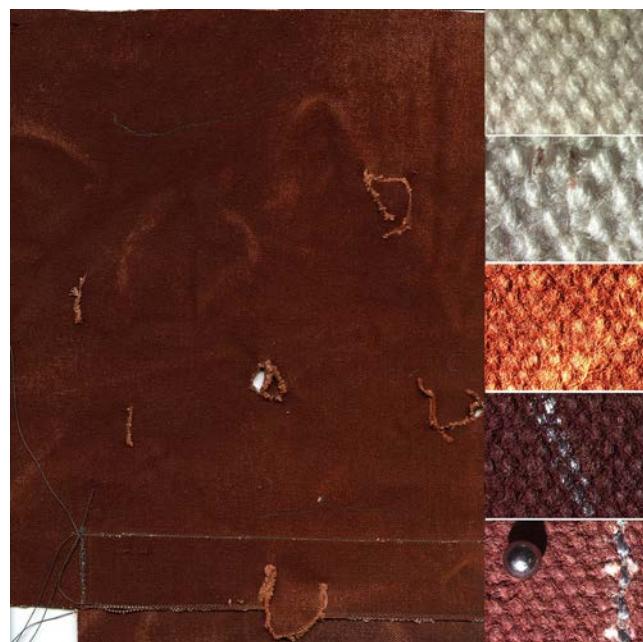
The affective effect of Gant’s enquiry is an immersive spatial experience that offers viewers novel glimpses into the act of excavation through the medium of reverse-engineered and redrawn microstratigraphy. The shimmering expressiveness of this extended drawing reminds us that sections and stratigraphy are not static things. They are mutable. Through excavation, sections dynamically unfold. Although they have been sculpted by archaeologists to fit a conventionalised archaeological drawing and photographic processes (Lucas, 2012, pp. 238–240), they could still be translated in many other different ways. Each translation bears a unique biography, but so far it is only the “extended drawing” of the section by the artist that is clearly attributed. However, Gant’s piece does allude to the embodied practice of the still anonymous archaeological diggers who made this aesthetic translation possible. *Immersive Trench* in restating the relationship of a column of soil grains to the rest of the trench conveys powerfully the point that archaeological sites are not static. It also conveys overlapping pluritemporal deposits as in-formation and the dynamic procession of ephemeral moments experienced by the archaeologists as they work deeper into the trench. This piece can be read as a visual, spatial, and temporal restatement of Olivier’s (2011, p. 181) profound archaeological observation: “Everything in the earth is floating in uncertainty, in a realm of maybe. We dig by sight, into extraordinarily rich and complex matter where the past we are looking for is closely entwined with its pre- and post-history.”

A flat surface, such as the coloured planes that appear in Gant’s *Immersive Trench*, is probably the simplest topography one could hope to encounter. Out in the field, a mosaic floor would be a good example. However, the emerging terrain of archaeological excavation landscapes is more often not nearly so accommodating. Deposits are frequently amorphous and intangible and require complex negotiations to deal with. Taut symmetrical sheets do not sit comfortably on top of uncompromisingly irregular terrains. Instead, archaeologists typically abstract the outlines of archaeological features and project them up, using plumb lines or pantographs to avoid parallax, onto flat 1:20 cartographic plan drawings on sheets (or perhaps, mnemonic carpets) of plastic film. If we want to map these features while accounting for the local topography, we need some way to closely fit the drawing support over the surface of the area to be recorded. One approach would be to loosen the previous taut rectilinear sheets and cut them into more accommodating flexible polygonal panels, or patches, that could be meshed together, or tailored, to form a closer fitting landscape model. In computer parlance, the equivalent rendered polygonal mesh models are sometimes called “rubber sheets,” but archaeologists refer to them as “digital terrain models” (DTMs).

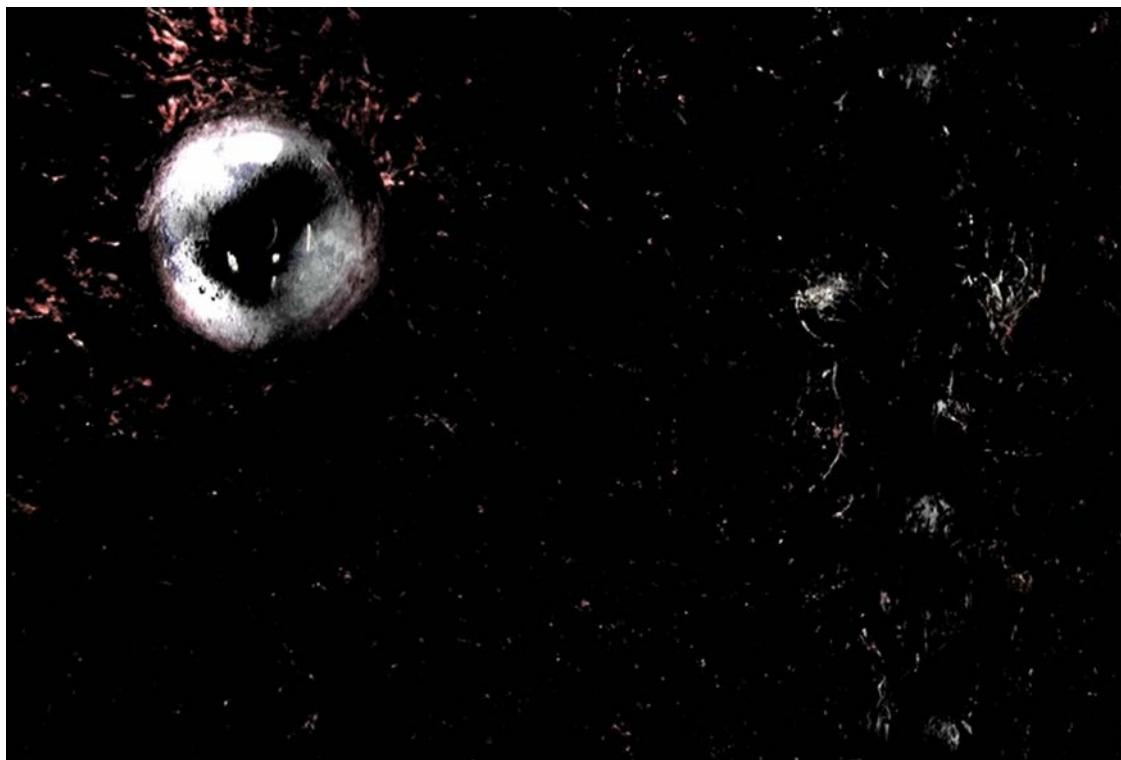
Simon Callery has been collaborating with archaeologists as artist-in-residence on several excavations over a number of years (e.g., Callery, 2004, 2014; Callery & Gant 2018; Noga, 2015; Westall, 2015). He is inspired by archaeological excavation landscapes, “places where time and material come together most convincingly” (Callery, 2018). Lately, he has been refining a technique he calls “contact painting” in which he brings flexible painted polygonal canvas panels into contact with both the exposed archaeological terrain and, equally, the growing void of the trench. Although Callery has repeatedly stressed that archaeology is not the subject of his work, he does acknowledge that archaeological embodied experiences helped him train his own senses to a higher degree of awareness.

Once in contact with the physical archaeological surfaces, the artist makes his way over the canvas on his hands and knees, feeling his way through the cloth using his hands to discern, define, mark, and record haptically detected features, which he traces using a pencil. The canvas supporting Callery becomes a material instantiation of the immaterial stratigraphic interface lying in-between, that is both above and below, distinct physical archaeological strata, some of which have been removed to the spoil heap while others remain uninvestigated. The exposed surface of the pending context or layer of vibrant matter (Bennett, 2010) was previously trowelled “clean” and a 1:10 plan drawing made by an archaeologist standing on top of the layer below. The artist’s subsequent pencil flows follow the trace of the archaeologist’s trowel and pencil to make 1:1 scale contact outlines (Figure 5). While the archaeologist was defining the top of the emerging features, Callery is tracing the bottom of the contexts above his canvas; those stratigraphic units which have already been emptied out. Both the artist and the archaeologist make their

Figure 5: Simon Callery developing a canvas panel for a contact painting at Nesscliffe hillfort excavation 2019.


mark-making decisions in the context of the trench itself. The suggested parity of gestural intent is further reinforced by the deployment of graphite and the transfer of the material matrix of the exposed archaeological surface into the canvas, an echo of the muddy smudges that insinuate themselves into plan drawings. Next, sharp scissors track the graphite marks, slicing through the canvas. Callery's breaches "follow the cut" (Edgeworth, 2013). There is an echo in Callery's art/archaeology practice with that of the artists employed to document African rock art for the German Ethnographer Leo Frobenius in the earlier part of the twentieth Century. While on tour, Frobenius' workers would create *in situ* rubbings, tracings, and watercolours to create murals that synthesised a reconstruction of the archaeological site with languages of modern painting. The shallow depth of field and linear drawing styles of Kirchner and Kandinsky are co-constituted with representations of archaeological motifs and cracks on rock faces (Kohl, Kuba, & Ivanoff, 2016). Like the art/archaeological experiments of Callery, this too was a collaboration between highly skilled practitioners enacting a form of contact painting, a commune between the painterly gestures of expressionism and historical illustration. Callery extends his own panels of rubbed and marked canvases in his studio by machine sewing several of them into larger assemblages, producing meshworks of patches literally stitched together. This creates a canvas equivalent of the digital 2.5D polygonal mesh terrain models overlain by planned features generated by archaeologists using GIS technology. The topology of the elements in these canvas assemblages is very much considered. The vertical and horizontal lines that emerge are gestures towards the complexities of stratigraphy. According to Callery, "the encounter with stratigraphy made [him] think much more carefully about how [he] could use line... A vertical line has the effect of stopping the eye on the surface of the canvas; it makes you relate to the painting as a physically marked surface. The effect of a horizontal line lends the flat surface a suggestion of depth. Physicality rather than an illusion of depth [begins] to dominate the work" (Bonaventura, 2014, p. 200). Finally, like the digital plans housed in the GIS which must be displayed on a flat screen to be reexamined, the traces of the same horizontal surfaces that Callery worked on will be rotated through 90° in order to be viewed in an exhibition.

4.2 A Microscopic Imaging Incursion into Nonconscious Paradata


Callery feels no need to consciously write down all the minute decisions, that is the paradata, involved in making his works. He does, however, leave clues, nonconsciously (Hayles, 2017), in the form of material traces which are a form of paradata auto-archived in the works themselves. Callery made available three canvas panels in order that we might, in a disciplinary recursion of practices, examine his art/archaeology in intimate detail under a lens to determine whether we could detect such auto-archived paradata in an artwork developed on an archaeological site.

One panel was unprocessed except for having been cut off the roll as purchased. The second panel was almost identical, except the commercial size had been washed out, which is done because the manufacturer's size compromises the longevity of the fabric. The third piece was a composite that had been washed and then impregnated with a red oxide distemper. This latter artefact had also been scuffed, breached, with sutured flaps reattached, and the assemblage connected by machine and hand stitchings (Figure 6 left). Under forensic investigation, we could indeed see his process unfolding. Microscopic examination confirms that before arriving on site, the weave of the canvas is stiff and clean (Figure 6, top right). Next we can observe the effect of washing out the commercial size which has opened up the weave. Note the dark particles tangled in the loosened threads (Figure 6 right, 2 down). These are due to Callery's habit of washing his canvases in a river close to the excavation site. A strong, deep matt coloured pigment (mars red) has been mixed with a new size and then worked deep into the softened canvas (Figure 6 right, 3 down). The application of the distemper is not especially even, and weathering and onsite scuffing have added additional interesting textures to the emerging painting. This painted panel was then laid down directly on an archaeological surface in a trench within Nesscliffe hillfort in Shropshire (Lock & Reilly, 2020) and drawn upon. The trace of the pencil around a feature of interest leaves a trail of graphite prints in the tops of fibres (Figure 6, 4 down). A close up of the cuts and stitching back together shows the neat machine stitches, but also that the distemper did not penetrate to the core of the canvas threads (Figure 6, 5 down and Figure 7).

We soon worked out that the flexible LED lamp used to light the samples under the microscope could be used in conjunction with a 0.5 mm ball bearing to create a workable micro-Reflectance Transformation Imaging (m-RTI) solution, which allows researchers to interactively relight the digitally recreated subjects

Figure 6: Simon Callery contact painting paradata under the microscope.

Figure 7: Micro-RTI of Simon Callery contact painting panel using multiple rendering modes, Sphere scale 0.5 mm (animation of this figure can be viewed online, see Supplementary File 4).

in order to enhance “surface” details. An RTI is an interactive archaeological and cultural heritage “technical image.” Equipped with a compiled RTI (see Historic England, 2018), we could interactively relight the now digitally (re)painted canvas, virtually, to enhance our analysis into how the canvas was prepared and developed. It also allowed us to experiment with the apparent materiality of the work by applying RTI filters such as diffuse gain or specular enhancement (Figure 7).

The last thing we studied before the pandemic interrupted our collaboration was a fragment of the worked Callery canvas at very high magnification using a laser scanning confocal microscope, an optical imaging technique that cuts in slices through the object using lasers (Supplementary File 2). The confocal microscope has evolved from technologies found in the slit lamp apparatus used in ophthalmology to shine a slit of bright light directly into the eye at various degrees, developed in part in the nineteenth century by Helmholtz whose experimentation with optics and the physiology of vision developed a philosophy about the visible and the invisible. The Leica confocal microscope is a high-magnification, high-resolution imaging device, which projects a scanning laser beam that excites the fluorescence in the object of study by agitating its photons. The laser beam is bounced across multiple movable lenses and through a pinhole in order to control the refraction and fluorescing process and the data is collected in hundreds of layers of images. This confocal apparatus is operated at the wavelengths of the laser; the angles of the mirror and the width of the slit are all adjusted together at the time of the scan in a live dialogue between operator, equipment, and object as the sample is constantly refocused and reimaged. This is manipulable and malleable imaging as we make a new “plastic” image from this assemblage.

Striking effects are created by particles inside the painted canvas when vibrated at different frequencies and emit different wavelengths of light. Every vibrant colour denotes the gestures of particular kinds of particle which, like us, have been excited by the encounter. Previously buried inside the weaves, these particles and their associated traces now emerge in vivid bright red, blue, and green. We reconfigure lenses, mirrors, and apertures to reveal more traces in the shifting boundary between visible and invisible, a grey zone to focus our thinking upon.

Zooming out, we can turn our attention to an exhibited work and put these enacted paradata into context (Figure 8). *Country Register* (Callery, 2018) is a contact painting developed on the Bodfari hillfort excavations in North Wales (Lock & Pouncett, 2012, 2014).

Callery's contact paintings express the colour-saturated surfaces and interfaces that dominate archaeological discourse in an unique and thought-provoking aesthetic topology. Although they are made by a practitioner in direct contact with an archaeologically defined surface, unlike the standard archaeological trench plan, the features in this archaeological landscape retain some depth and there is no so-called god view illustrated in the orthoimage in Figure 2. His canvases are purposefully crafted to extend the sensual encounter beyond just the visual and draw more kinaesthetic attention and intra-action from the visitor's entire body. One very remarkable aspect of Callery's contact paintings is the gestalt shift caused by conceptually situating his canvases at the bottom of the previous excavated strata, rather than on the top of the next archaeological context awaiting investigation. In effect, his breaches through the layers of canvas do not pull you down into the buried deposit but drag you back into the guts of stratigraphic ghosts in the excavation void; the material hanging from the cuts in this reading therefore gestures to later contexts and the archaeological concept of residuarity.

This radical reconception of what is being registered in an archaeological context is not entirely unprecedented. Reilly and Shennan (1989), for example, applied constructive solid modelling (CSG) to try to detect underlying features within the deposits overlying them, using a Constructive Solid Geometry (CSG) digital model of the excavations of a Bronze Age site at St.Veit-Klinglberg, Austria (Figure 9). Planned outlines of underlying features were digitally extruded to create geometrically solid prisms which were then intersected with the solid-modelled overlying deposits. By colour-coding selected archaeological components, researchers could search for potential diagnostic indicators of the subsurface deposits in the overlying strata by slicing (i.e., virtually resectioning) the model. These 3D visualisations have an uncanny inverse relationship with Callery's work. Digitally "solid" substrates, immaterial interfaces, and emptied stratigraphic contexts, embedded in the void of the excavation, are interlaced in two non-standard ways that bring some further thought-provoking (im)material, temporal, and kinaesthetic dimensions to our

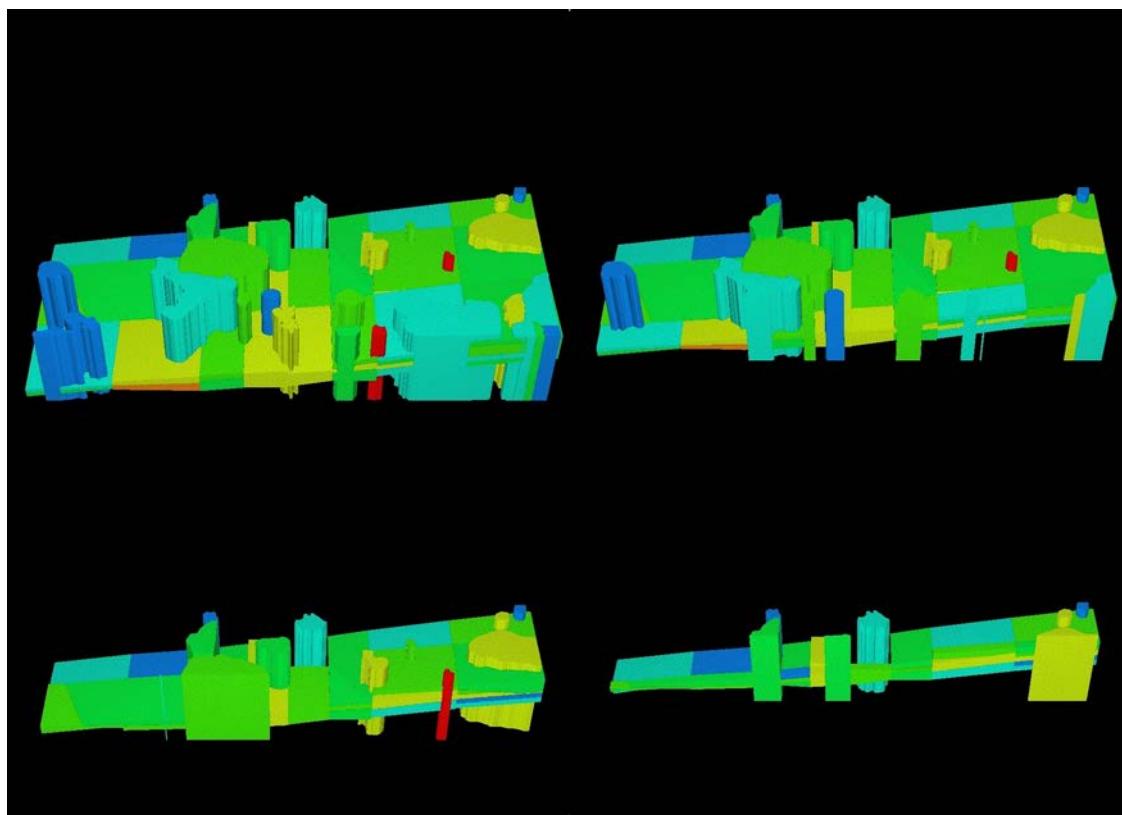


Figure 8: *Country Register*, Callery (2018). Courtesy the artist, copyright.

shifting multidimensional and pluritemporal “archaeological record.” They draw attention to the “interiors” of deposits and subtly refer to the dynamics of successive archaeological landscapes and their residual interconnections that are usually lost in standard archaeological photographic and drawing records. This begins to open up an important contradistinction with the usual narratives about surfaces (or nonconformities) that still predominate in archaeological accounts of excavation (Simonetti, 2015).

Stefan Gant is also developing novel approaches to explore the many different modes of archaeological encounter with stratigraphy in his multidimensional phygital drawing practice. For example, resonant sound has long been appreciated as an investigative medium by both artists and archaeologists. In his *Dragan Map/Sonic Stratigraphy Series* (2017), Gant has replaced the paper sketch book with a digital support (Figure 10). This artwork is a collaborative drawing which emerges from the artist’s renegotiation with his own discipline while embracing a pluralistic and transdisciplinary approach to create an expanded field of drawing. Acoustic signatures, displayed as sonic spectrographs, or sonographs, were recorded by Gant as the excavators’ cleaned back and defined an archaeologically recognisable surface. The graded tonal ranges in the sonographs reflect the rhythmicity, cadence, and gestures of the workers, imbued by the tactile intimacy of their conversations with the emerging surface. They also give voice to the deposits and tools. Specific tools applied on different layers exhibit distinct tones and frequencies, and the marks etched onto each digital layer create an extended drawing revealing the excavators’ rhythmical encounters with the physical surface. Here we see the distinct sounds of about 8,000 individual recorded trowel scrapes digitally draped over the measured topography (i.e., a DTM) of excavated surfaces like a diffractive acoustic membrane.

The diffractive surface patterns generated through the sonographs extend the notion of drawing through the monochromatic detail and release a musical land timbre, and the suspension and gaps between the topographies relocate these explorations of landscape into a remediated sketchbook. On screen, the

Figure 9: A sequence of CSG-modelled sections in which contexts are extruded to intersect with spatially defined archaeological components in overlying deposits (after Reilly & Shennan, 1989).

Figure 10: *Dragan Map/Sonic Stratigraphy Series* Gant, S. (2017). Courtesy the artist, copyright.

layers are separated, but within the GIS they are a bound volume. When superimposed, these interactive conversations create *sonic stratigraphies* (Gant & Reilly, 2018) which begin to expand the practitioner's physical relationship beyond a superficial two-dimensional linear enquiry that just scratches the surface and starts to develop into a deeper exploration of the three-dimensional subsurface volumetric registers of the archaeology still in the ground.

Other modes of translation can also enable us to capture and deepen insights into the dexterous movements of experienced trowelling through vibrant matter, something Ruth Tringham and colleagues evocatively describe as "hand-ballets" (Tringham, Ashley, & Mills, 2007). Gant had made extensive pencil studies of hand-trowel movements of individual workers in his sketch pads. It became apparent to Gant and Reilly (2018) that the radiating patterns of trowel strokes of archaeologists are direct equivalents of the pencil "gamuts" of fine artists studied by art theorists (e.g., Rawson, 1969), and that both could be analysed in a similar fashion to reveal the practitioners' expertise and, in the case of the archaeologists, their ability to tune into the surface. Gant developed this insight by combining numerous studies of individual workers' trowelling actions, made around the site, at different stages in the excavation, into much more widespread and multi-actor "complex layered gestural studies" (e.g., Figure 11) in which each and every line is a residual observed trace of an entangled trowel, a gesture, and an exposed archaeological surface being simultaneously inscribed and erased. These gestural studies capture the nonconscious improvisations of the diggers on site. They are a testament to their skillful craft work.

Ever more sophisticated studies emerge in Gant's evolving phigital practice. In his award winning 2018 work *Phygital Palimpsest* (Figure 12), Gant translated archaeologists' trowelling actions into a highly complex digital drawing. Numerous pencil drawings responding to the archaeologists at work were made from the edge of the trench. Later, these pencil drawings were digitised and integrated with satellite data and photogrammetry gathered by the archaeological team. The resulting imagery is worked into a multi-layered representation of excavation surfaces in order to arrest your attention and draw you in. Pencil is once again translated into pixel, retaining a trace of the hand of both artist and archaeologist (see also Morgan & Wright, 2018).

For the archaeologist, sonographs and gestural studies can be reconceptualised as a form of non-verbal, but attributable, acoustic and visual paradata recording the performative palimpsest of the excavators. In the same way, as archaeologists can recognise the artistic skill of the maker in the artefacts they uncover, a fine artist can appreciate the skill of the archaeologist uncovering the artefact. As Gant developed his enquiry by building up marks on both paper and digital supports in response to the gestures of the excavators, he was also bearing witness to the simultaneous erasure and reinscription of a continuously reducing archaeological surface and a growing void. These acoustic entanglements are on the verge of breaking through the empty topographic "shells" produced by the digital scanning and Structure from Motion (SfM) photogrammetry. The changes in tone and frequency remind us that each individual excavator is also constantly negotiating with vibrations through the core of the contexts and not just the

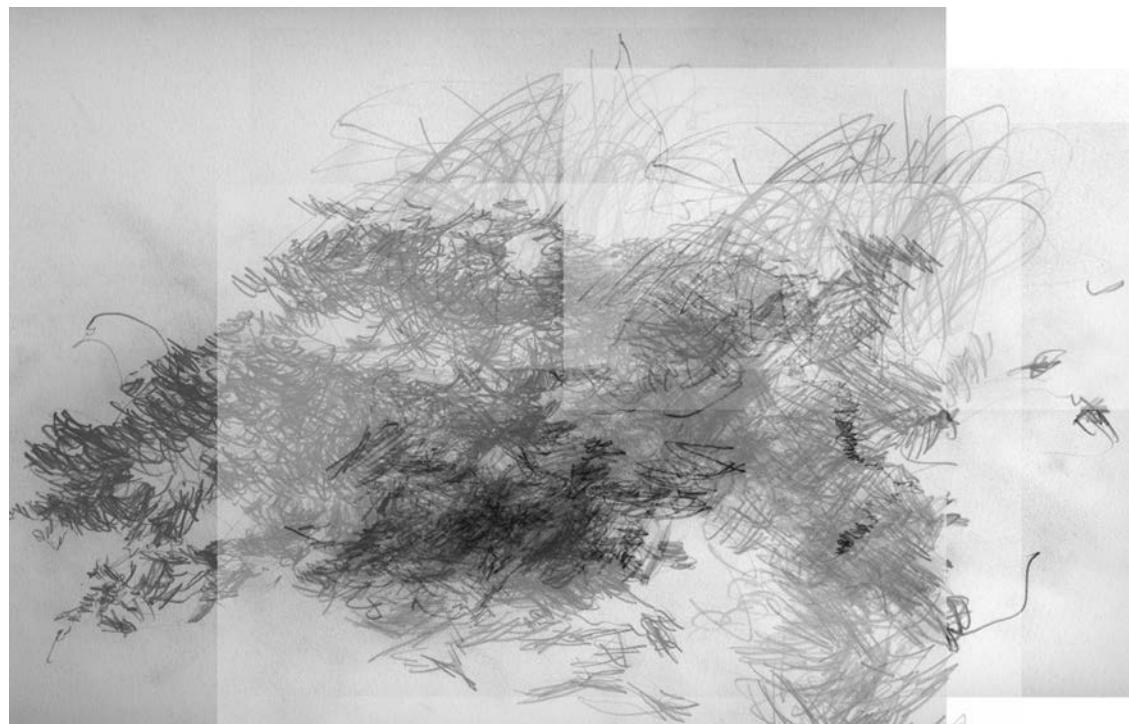


Figure 11: *Trowelling Actions: Layered Gestural Study*, Gant, S. (2018). Courtesy the artist, copyright.

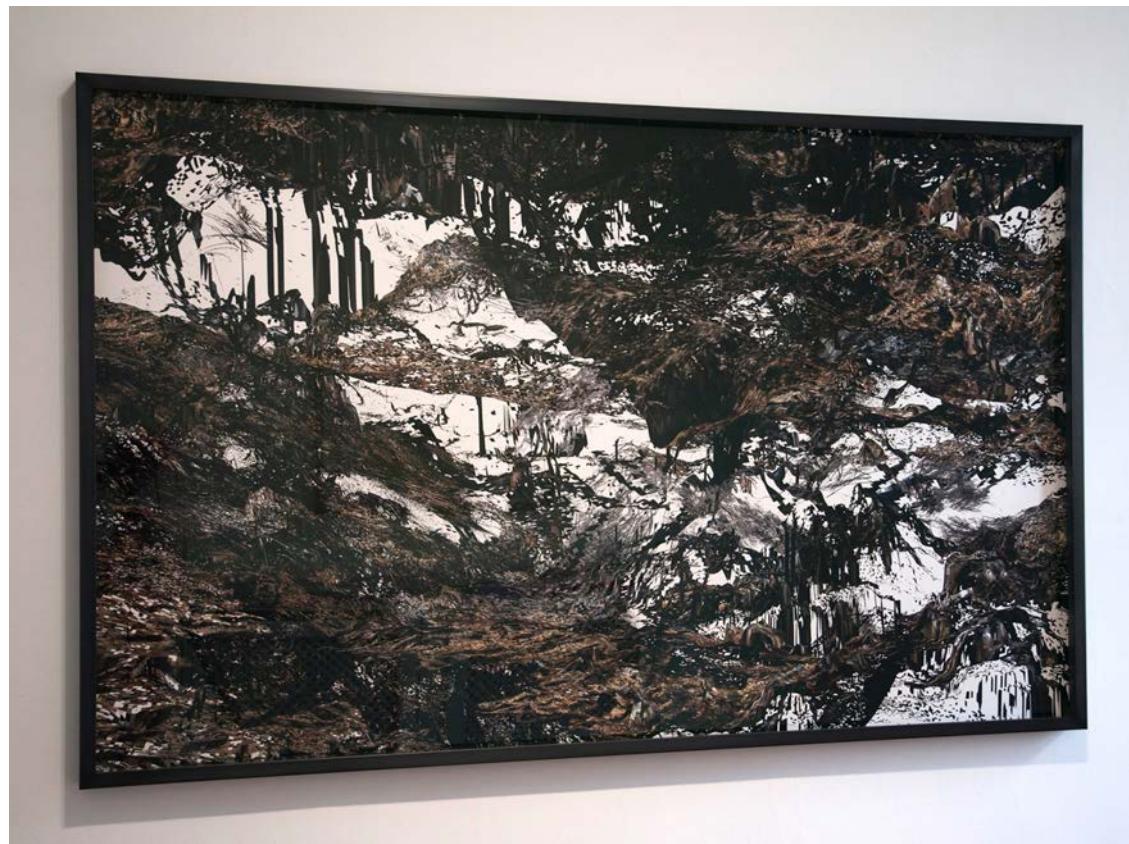


Figure 12: *Phygital Palimpsest*, Gant, S. (2018). Courtesy the artist, copyright.

“recorded” interfaces, which could be characterised as topographic pauses in the action. The gestural studies we have shared so far have captured the overall movement and phrasing of these hand-ballets, but the timing of each individual movement, and the consequential growing depth of the void, is more difficult to discern. A change of perspective is required to enhance our understanding of the excavators’ embodied intra-actions with “the archaeology” in the ground.

Voids is one of another series of Gant’s (2014–2017) that also triggers a gestalt shift in our perception of an unfolding archaeological excavation (Figure 13). Here, he is again responding to the trowelling actions of excavators in the context of the developing negative space of the trench. The drawing like the trench is emergent. His drawing processes reciprocate the procedures of the excavators, re-enacting actions in the removal of soil which he reinstates as thick layers of graphite on paper. In this image, the “void” has been filled with art/archaeology gestures of *linear phrasing* and both conscious and nonconscious knowledge. The multi-layering of criss-crossing suspended lines and their associated stratigraphies are generated by hand, graphite, rubber; recursive gestures. They instantiate, once again, myriad actions of inscribing and erasing: slicing, scraping, and dragging; in short, the peeling back and removal of material. We are getting closer to realising Helen Wickstead’s notion of being able to excavate the relative stratigraphy of the gestures, traces, and marks of the working archaeologist (Wickstead, 2013, p. 561).

With this in mind, we turned to other non-standard modes of translation, aiming to introduce more nuanced aspects of the spatiotemporal dynamics of excavation into this expanding art/archaeological assemblage to deepen our insights into the embodied practice of trowelling. The sequence of trowelling actions or “gamuts” that emerged as Reilly and his colleagues defined a series of deposits and features were videoed. By examining each frame in the video, Gant could track the transits of the archaeologists’ sweeping and probing trowel gestures as they negotiated their way through the various contexts. Gant translated these hollow scour marks where the trowel intersected with the soils into solid instantiations. Each and every trowel mark was then represented in the form of a linear card strip, cut to the same length, and placed and orientated one atop another to match the original sequence of trowel strokes. The 3D studies that emerged are intriguing but standard photography does no justice to these complex entangled pieces. Therefore, Reilly, drawing on his archaeological practice, reappropriated his own trowel work via the phygital nexus and added another layer of practice into this increasingly diffractive assemblage.

Linear Phrasing RTI (Figure 14) is an investigation into plasticity drawn out in the gamut of Reilly’s trowelling gestures. In this work, Reilly’s and Gant’s combined practices have become completely intertwined through another ontological twist. Gant’s physical artwork, in which Reilly’s dematerialised trowelling marks were rematerialised in card, is now once again dematerialised and then re-expressed as a virtual object that can be interactively relit by Reilly in an interactive Reflectance Transformation Image (RTI). Here, specular rendering produces an effect that transforms the card’s visual appearance to that of a lustrous grey material. It was deliberately chosen (i.e., it is not an inherent property) to visually recall Gant’s graphite studies. At first sight, these chiaroscuro-like criss-crossing lines look like a solid, tangled, and broken meshwork. In fact, they are really part of an im(material) study of *knots* (Ingold, 2015) tracing

Figure 13: *Voids*, Gant, S. (2014–2017).

Figure 14: Sequence from *Linear Phrasing RTI*, Gant, S. and Reilly, P. (2016).

the moving trowel as it passes through two ancient elemental substances: earth and wind. Only the traction with earth is immediately apparent. The trace through the air in this piece is condensed into the points of contact between each successive physical linear inflexion, which also operate as another form of paradata. These paradata refer to invisible nonconscious decisions and unthought “moments of tension” (Ingold, 2007, p. 79) that occur in between “moments of completion” (ibid., p. 81), which usually pass by unnoticed in the unfolding flow, or *ductus*, of a looping trowel as it passes through wind and earth in turns. In short, *Linear Phrasing RTI* is a diffractive image in which art and archaeology practices have been interlaced, and then infused with non-verbal archaeological paradata to produce a collaborative art/archaeology work in which the void of the excavation is virtually refilled with the intra-activity of our shared embodied trans-disciplinary dialogue. Incidentally, another layer of gestures will be added to this phygital assemblage every time another person explores this interactive RTI. Each new user will perform a unique hand-ballet with their computer mouse partner.

4.3 A Second Provenance Illusion

We now turn our attention to the changing and tenuous nature of the paradata associated with the assemblages of artefacts that archaeologists re(dis)cover during fieldwork. Consider the flint scraper shown in the mpeg animation in Supplementary File 3. A light source is being moved around the scraper to show it off effectively. Note that the travelling harsh raking light really enhances the fine details of impact scars. Or does it? This clip is another RTI. What we are looking at is actually a digital sleight of hand. Contrary to appearances, the scraper is no longer in the frame, and it would be a mistake to assume these RTI images are simply photographs or videos. What is depicted here is a kind of mathematical mirage. The geometry and surface properties of the scraper have been abstracted into a polynomial texture map (PTM); in other words, a synthetic model. The image you are looking at is computer-generated from this model, and the scraper's apparent materiality has become very mutable and can now be radically altered at the drop of a menu in the RTI Viewer interface. For example, Figure 15 shows the surface normals of the same model rendered in a striking colour code. This particular RTI was produced using a version of the technique called *highlight-RTI* in which the lighting is carried out manually because of constraints caused by the environment in which it occurs (Historic England, 2018). The decisions on where to position the strobe are made on the fly, intuitively, in response to the unique circumstances of the shoot. These paradata disappear, quite literally, in a flash. Importantly, the image is not a passive document. In fact, it is very “volatile” (see Beale, 2018) and many of the cognitive decisions about which parts of the “artifact” to relight, zoom in, pan across,

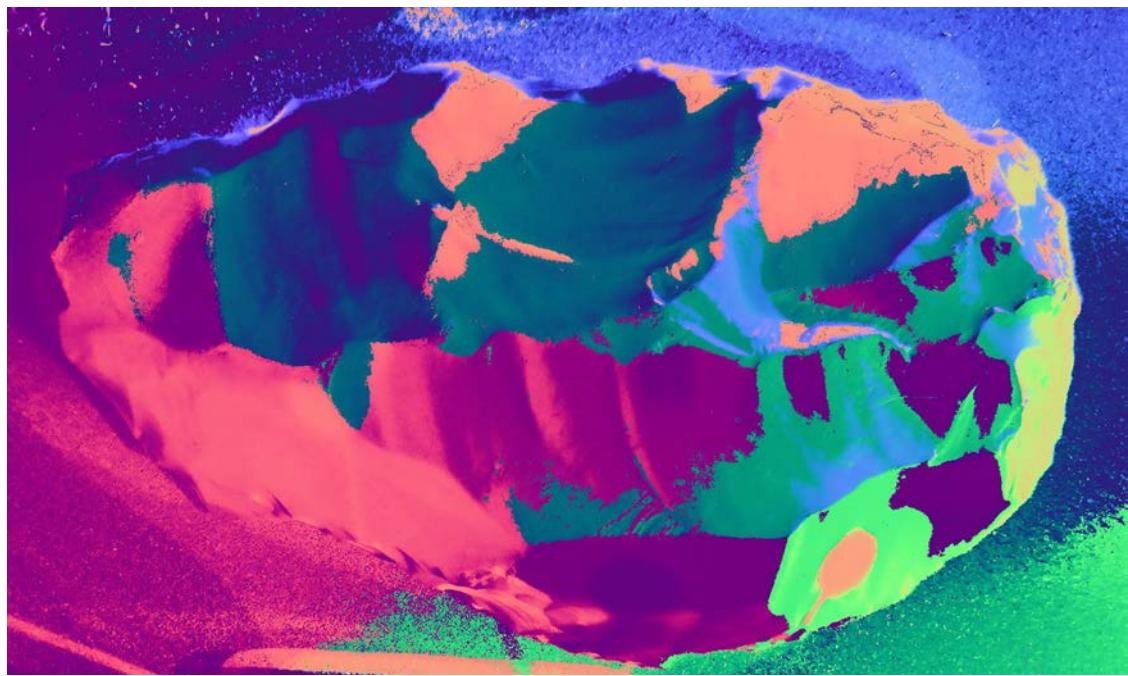


Figure 15: RTI Normals visualisation of flint scraper.

and so on, are delegated to the user of the viewing software. The opportunities for paradata proliferation are now legion with “infinitely revisable versions” (Latour, 2019, p. 17) of the RTI available. Through the lens of RTI, provenance, in terms of the life history of the digital artefact, is becoming very shaky.

Our scraper has become digitally itinerant and keeping track of the various layers of paradata that could have been collected on its journey is becoming almost an insurmountable challenge. The problem becomes overwhelming as a growing number of (re)fabrication options become available and, especially, when machine intelligences become our collaborators.

The RTI of the scraper used to produce Figure 15, which we have revealed to be a digital composite already, is also central to Figure 16. This experimental image called *#FlintFriday – Silica Alchemy I* was developed by Reilly using a computer vision technique known as “Style Transfer.” Style transfer relies on sophisticated “neural algorithms of artistic style” (Gatys, Ecker, & Bethge, 2016) using a very deep convolved neural network (Simonyan & Zisserman, 2015) to extract the style of one image and transfer it onto the content of another (for a full treatment on style transfer see Miller, 2019, Chapters 7–12). In other words, it produces a form of *diffractive image* that interlaces different styles and subjects through a machinic way of seeing (e.g., Graham, 2019). The “content image” used in Figure 15 is a frame from the compiled RTI of our scraper in Supplementary File 3. The “style image” was of a stained glass panel and was chosen as a riff on the theme of silica.

The outcome of this experiment is quite a departure from standard representations of lithic objects. It is one of a series of diffractive digital studies exploring the recursive intra-action of light, shadows, silica, and (artificial) neurons (Reilly, 2020). What is crucial to understand about this image is that the deep neural net and style transfer algorithm used here made autonomous cognitive decisions about which humans currently have virtually no conception. There is no possibility in this scenario of documenting any meaningful paradata about the detailed operational decisions associated with creating this piece. This image is born out of what Hayles (2017) describes as a *cognitive assemblage* in which both human and nonhuman forms of cognition are interlaced. Reilly chose the images, the framing, thought about the overall intent of the work, and selected his artificial intelligent collaborator. He even had a general idea of what the effect of this image hybridisation might look like, but the image that emerged through this intra-activity was still quite a

Figure 16: #FlintFriday – Silica Alchemy I, Reilly, 2020 (Diffractive Image).

surprise, as the detailed decisions on exactly where and how to apply the style transfer operations are entirely due to his nonconscious co-creator.

So far our transdisciplinary collaborations have focussed on image making. Nowadays, it is a very small step from processing static 2D digital images into interactive 2.5D virtual simulacra, and from there through 3D physical fabrication technologies such as 3D printing into a plethora of material possibilities for artefacts

Figure 17: #FlintFriday – Finds Tray by artists (Dawson & Reilly, made in 2020).

and assemblages (e.g., Reilly, 2015a, 2015b). Consider Figure 17, *#FlintFriday – Finds Tray* is part of another ongoing collaboration between Dawson and Reilly.

Dawson's practice revolves around plastics and plasticity (Dawson, 2012). At its core is material transformation, reconfiguration, and reassembly. He takes familiar artefacts or fragments – both ancient and contemporary – and skeuomorphically translates them into new materials and then rearranges them into radically new assemblages. Components are constantly broken down, rebuilt, shredded, remelted, and otherwise reformed and exchanged within fluid metabolic processes of discovery. They become hyper-residual artefacts and extreme skeuomorphs. Studio objects are also translated (back) into synthetic images, such as RTI or SfM photogrammetry, to be further transformed, reconfigured, and reprinted within other phygital iterations of these plastic exploration loops (e.g., Callery, Dawson & Reilly, forthcoming; Dawson & Reilly, 2019). In *#FlintFriday – Finds Tray* (Figure 17), a scatter of worked flints have been cleaned, had their geometries individually extracted (using SfM), and were rematerialised by Dawson at different scales and in vibrant liveries with biodegradable plastic (PLA), and then sent to Reilly to be reunited with their lithic forebears. Due to the impact of the 2020 pandemic, Dawson has had no physical contact with any of prototype flint artefacts. The point to be stressed here is that the pieces that he created are an intuitive response to the flint objects shared with him in digital formats only (i.e., RTIs and SfM compositions). We had already detected that the paradata associated with RTI images of artefacts were already beginning to fragment in the space between the maker and the interactive viewer of those digital polynomial texture mapped simulacra. Now, with these physical materialisations, all paradata are completely detachable, for the artefacts in this assemblage bear no trace of the code, or algorithms, that defined their registration and (re)making. These recursive, infinitely revisable assemblages – these extreme skeuomorphs – have effectively escaped from their provenances and their associated paradata into the phygital wild.

5 Summary, Discussion, and Conclusion

We began this paper by signing up to Ruth Tringham's call for sensorially rich, transdisciplinary research involving lateral thinking and playful exploration. We believe the projects presented here have merit in that regard. Throughout all our art/archaeology studies presented above, we have been exposing many different valencies of meaning of those key intertwined cross-disciplinary terms and concepts we provisionally defined at the outset, namely assemblage, provenance (provenience), and paradata. To accomplish this, we diffracted art practices with archaeological practices, conscious with nonconscious cognition, human and machine intelligences, sound and light, and silica knapping with plastic printing. We exposed two provenance illusions by shifting our viewpoint and changing our lens of inquiry from the epistemological to the ontological: from, for instance, "what does that section drawing or photograph tell us?" to "what are we actually looking at?" and "how, and on what basis, is it produced?" Exposing the first provenance illusion caused a gestalt-like shift in our perception of the archaeology we record in the ground. For example, are we recording what we have already excavated, as Simon Callery does with his contact paintings, or are we drawing and photographing unexcavated stratigraphy? Looking back at our spatially and temporally displaced selves in action through our subversive "heterotopic mirror," we discovered that our traditional "drawings" and "photographs" had undergone fundamental ontological shifts. In fact, both "drawings" and "photographs" have been replaced, surreptitiously, by "technical images" that could make themselves resemble their predecessors but actually resisted revealing their own additional capacities. In so doing, they entrapped their human co-producers and reduced them to the role of illiterate "functionaries." Just as technical images are not innocent, neither are the apparatuses that mediate them (e.g., Jones & Díaz-Guardamino, 2019, pp. 211–213). They too disguise how they function and obscure both their potential and limitations inside the chassis of the black boxes of so-called "cognitive artefacts" (Huggett, 2017) and "cognitive assemblages" (Hayles, 2017). As a result, formerly authoritative statements concerning authorship and authenticity, once conveyed by attributing a secure provenance, with supporting paradata, are radically undermined.

Next, by looking at what we could actually see, touch, hear, or smell in the void of the trenches, the diggers begin to reemerge back from anonymity as, for instance, in the ghostly shimmers that appeared in Gant's *Immersive Trench*. We began to apprehend their embodied practices through the echoes of their gestures and activities, through their tool marks that signal deep multimodal cognitive and noncognitive abilities. For example, Gant and Reilly discovered aesthetic sonic signatures and gamuts of authorship that refer to new categories of nonconscious auto-archived paradata for skillful, embodied, multimodal, mark-making practices. We have amply demonstrated through our art/archaeology projects the wealth of skill and creativity that is released at the trowel's edge.

In the second provenance illusion, our shift from epistemological to ontological concerns again exposed the fact that the objects mediated and recorded via the digital gaze of the practitioner's "camera" are also being replaced by an increasingly poorly understood cognitive assemblage in which additional conscious and nonconscious cognitive operations are interlaced. On the face of it, they look quite familiar, and we may once have convinced ourselves that we knew what we were looking at. However, these images disguise many hidden dimensions and affordances. For example, we revealed the very synthetic aspects of RTIs and Style Transfer images which represent a new emerging generation of "ontologically complex constructed images" (Jones & Díaz-Guardamino, 2019, p. 213) that are, particularly in the area of artificial intelligence, becoming increasingly autonomous of their human co-makers. It seems that we are becoming increasingly ignorant about our digital collaborators. The image and the print have emerged as the loci of enfolding and unfolding processes that can both deceive and enlighten us. Neither medium should be thought of as some kind of static record of an object, place, or event. As John May alerts us: "If we continue to think of images as simply more efficient drawing, or technical enhancements of otherwise undisturbed orthographic life – we will continue to drift in an ocean of simulations for which we have no compass or concepts" (May, 2019, p. 108). These dangers are multiplied and magnified once an archaeological assemblage has been extended with a technical image that then escapes into the phygital. This is especially true of the new material expressions of assemblages of artefacts that are now possible through modern fabrication technologies, such as those implicated in Ian Dawson's extreme skeuomorphs.

We therefore must agree with Perry (2015) that the high-minded ideal of attempting to document paradata in order to provide transparency in our phygital assemblage making activities is futile. It seems to us that more of our disciplinary efforts need, instead, to be focussed on understanding the nature and properties of the phygital translations that become standard archaeological practice. Here, we concur with Jeremy Huggett that "a focus on ignorance encourages a greater degree of honesty in knowledge creation. Indeed, the mistaken illusion of knowledge – the things we think we know but do not—is arguably a greater threat than the unknown knowns, known unknowns, and unknown unknowns. In this light, ignorance is a virtuous condition for inquiry and a foundational aspect of knowledge" (Huggett, 2020). Accordingly, in our art/archaeology collaborations, we approach our studies from an entangled position of unknowing, or ignorance, alert to "unknown unknowns" and "mistaken knowns." An art/archaeology approach allows us to subvert and dismantle our own established practices, methods, tools, techniques, and outputs to challenge (trans)disciplinary conventions and identify "mistaken knowns" which when exposed can be tackled by further, more robust, (trans)disciplinary consideration. Our art/archaeology diffractive images and prints require new skills and modes of viewing and interpretation to be developed. We intend to borrow a phrase from Richard Siegesmund and Kerry Freedman (2018, p. 39) that "[t]hey are a provocation." They should provoke us to look more closely at the archaeological world around us, how we intra-act with it, and its ongoing presentation. We are buoyant and optimistic about the prospects for diffractive, transdisciplinary, approaches to art/archaeology, which continue to enchant (see Perry, 2019). We celebrate the creative and skillful craftwork and embodied knowledge of experienced practitioners of field archaeology and contemporary fine artists.

Acknowledgements: The authors would like to thank Jeremy Huggett and the anonymous reviewers for their very constructive comments on an earlier version of this paper. Thanks also to Gary Lock and John Pouncett for permission to publish figure 2. Paul Reilly also thanks Evie Alexander for being a source of inspiration over the pandemic.

Conflict of interest: Authors state no conflict of interest.

References

Alberti, B., Jones, A. M., & Pollard, J. (2016). *Archaeology after interpretation: Returning materials to archaeological theory*. London; New York: Routledge. <https://www.taylorfrancis.com/books/e/9781315434254>

Bailey, D. W. (2014). Art//archaeology//art: Letting go beyond. In I. Russell & A. Cochrane (Eds.), *Art and archaeology: Collaborations, conversations, criticisms* (pp. 231–250). New York: Springer-Kluwer.

Bailey, D. (2017a). Art/archaeology: What value artisticarchaeological collaboration? *Journal of Contemporary Archaeology*, 4(2), 121–256.

Bailey, D. W. (2017b). Disarticulate – repurpose – disrupt: Art/archaeology. *Cambridge Archaeological Journal*, 27(4), 671–701. doi: 10.1017/S0959774317000713.

Baird, J. A. (2020). Exposing archaeology: Time in archaeological photographs. In L. McFadyen & D. Hicks (Eds.), *Archaeology and photography: Time, objectivity and archive* (pp. 73–94). London; New York: Bloomsbury Visual Arts.

Baker, D. (2012). Defining paradata in heritage visualization. In A. Bentkowska-Kafel, H. Denard, & D. Baker (Eds.), *Paradata and transparency in virtual heritage* (pp. 163–175). Farnham: Ashgate.

Barad, K. M. (2007). *Meeting the universe halfway: Quantum physics and the entanglement of matter and meaning*. Durham: Duke University Press.

Beacham, R. C. (2012). Defining our terms in heritage visualization. In A. Bentkowska-Kafel, H. Denard, & D. Baker (Eds.), *Paradata and transparency in virtual heritage* (pp. 7–18). Farnham: Ashgate.

Beale, G. (2018). Volatile images: Authenticity and representation and multi-vocality in digital archaeology. In P. Di Giuseppantonio Di Franco, F. Galeazzi, & V. Vassallo (Eds.), *Authenticity and cultural heritage in the age of 3D digital reproductions* (pp. 83–94). Cambridge: McDonald Institute for Archaeological Research.

Bendicho, V. M. L. M. (2013). International guidelines for virtual archaeology: The Seville principles. In C. Corsi, B. Slapšak, & F. Vermeulen (Eds.), *Good practice in archaeological diagnostics* (pp. 269–283). Cham: Springer International Publishing.

Bentkowska-Kafel, A., Denard, H., & Baker, D. (Eds.). (2012). *Paradata and transparency in virtual heritage*. London: Routledge.

Bennett, J. (2010). *Vibrant matter: A political ecology of things*. Durham: Duke University Press.

Berggren, Å., & Hodder, I. (2003). Social practice, method, and some problems of field archaeology. *American Antiquity*, 68(3), 421–434. doi: 10.2307/3557102.

Bonaventura, P. (2014). Communicating in the present tense: An interview with Simon Callery. In A. M. Jones (Ed.), *Sculpture and archaeology* (pp. 198–214). Farnham: Ashgate.

Braidotti, R. (2018). A theoretical framework for the critical posthumanities. *Theory, Culture and Society*, 36(6), 31–61.

Calegari, G. (2019). Convergence: Archaeology and art. In D. Gheorghiu & T. Barth (Eds.), *Artistic practices and archaeological research* (pp. 13–20). Oxford: Archaeopress Archaeology.

Callery, S. (2004). Segsbury project: Art from excavation. In C. Renfrew, C. Gosden, & E. DeMarrais (Eds.), *Substance, memory, display: Archaeology and art* (pp. 63–78). Cambridge: McDonald Institute for Archaeological Research.

Callery, S. (2014). The story of Trench 10. In C. Gosden & G. Lock (Eds.), *Histories in the making: Excavations at Alfred's Castle 1998–2000* (pp. 123–145). Oxford: Institute of Archaeology.

Callery, S. (26th April 2018). Interview: Simon Callery on painting, sculpture and archaeology. *Armitage*. Available at: <https://www.artimage.org.uk/news/2018/simon-callery-on-painting,-sculpture-and-archaeology/> [Last accessed 7th February 2021].

Callery, S., Dawson, I. & Reilly, P. (forthcoming/2021). Temporal ripples in art/archaeology images. In I. Dawson, A.M. Jones, L. Minkin, & P. Reilly (Eds.), *Diffracting Digital Images. Art, archaeology and cultural heritage*. London: Routledge.

Callery, S., & Gant, S. (2018). *Rhych*. Llanbedrog: Oriel Plas Glyn Y Weddw.

Caraher, W. (2015). Slow archaeology. *North Dakota Quarterly*, 80(2), 43–52.

Caraher, W. (2019). Slow archaeology, punk archaeology, and the 'Archaeology of care'. *European Journal of Archaeology*, 22(3), 372–385. doi: 10.1017/eaa.2019.15.

Carter, W. M. (2017). Getting to the point: Making, wayfaring, loss and memory as meaning-making in virtual archaeology. *Virtual Archaeology Review*, 8(16), 97–102. doi: 10.4995/var.2017.6056.

Couper, M. P. (2000). Usability evaluation of computer-assisted survey instruments. *Social Science Computer Review*, 18(4), 384–396. doi: 10.1177/089443930001800402.

Crawford, M. B. (2015). *The world beyond your head: On becoming an individual in an age of distraction*. London: Penguin.

Cubitt, S. (2014). *The Practice of Light: A Genealogy of Visual Technologies from Prints to Pixels*. Cambridge, MA: MIT Press.

Dawson, I. (2012). *Making contemporary sculpture*. Ramsbury: Crowood.

Dawson, I., Jones, A. M., Minkin, L., & Reilly, P. (forthcoming). *Diffracting digital images. Art, archaeology and cultural heritage*. London: Routledge.

Dawson, I., & Reilly, P. (2019). Messy assemblages, residuarity and recursion within a phygital nexus. *Epoiesen*. doi: 10.22215/epoiesen/2019.4.

Edwards, R., Phoenix, A., O'Connor, H., Goodwin, J., Fahmy, E., & Bell, K. (Eds.). (2017). *Working with paradata, marginalia and fieldnotes: The centrality of by-products of social research*. Cheltenham UK: Edward Elgar.

Edgeworth, M. (2003). *Acts of discovery: an ethnography of archaeological practice*. Oxford: Archaeopress.

Edgeworth, M. (2013). The clearing: Archaeology and ways of opening the world. In A. González-Ruibal (Ed.), *Reclaiming archaeology: Beyond the tropes of modernity* (pp. 33–43). Abingdon: Routledge.

Edgeworth, M. (2014). From Spadework to Screenwork: New forms of archaeological discovery in digital space. In A. Carusi, A. Hoel, T. Webmoor, & S. Woolgar (Eds.), *Visualization in the age of computerization* (pp. 40–58). Abingdon: Routledge.

Egel-Andrews, R. (2012). Paradata in art-historical research: A visualization of Piet Mondrian's studio at 5 rue de Coulmiers. In A. Bentkowska-Kafel, H. Denard, & D. Baker (Eds.), *Paradata and transparency in virtual heritage* (pp. 109–124). Farnham: Ashgate.

Epoiesen. (2020). About. *Epoiesen*. <https://epoiesen.library.carleton.ca/about/> (Accessed 25th January 2020).

Everill, P. (2009). *The invisible diggers: A study of British commercial archaeology*. 2nd rev edn. Oxford: Oxbow Books.

FForde, J. (2002). *Lost in a good book*. London: Hodder & Stoughton.

Foucault, M. (1986). Of other spaces. *Diacritics*, 16, 22–27.

Flusser, V. (2011). Into the universe of technical images. *Electronic Mediations* (Vol. 32). Minneapolis: University of Minnesota Press.

Gant, S., & Reilly, P. (2018). Different expressions of the same mode: A recent dialogue between archaeological and contemporary drawing practices. *Journal of Visual Art Practice*, 17(1), 100–120.

Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). A neural algorithm of artistic style. In *Proceedings of the 2016 IEEE conference on Computer Vision and Pattern Recognition* (pp. 2414–2423). Las Vegas, NV: IEEE Computer Society. ISBN 978-1-4673-8851-1.

Gheorghiu, D., & Barth, T. (Eds.). (2019). *Artistic practices and archaeological research*. Oxford: Archaeopress Archaeology.

Gheorghiu, D. (2020). *Art in the archaeological imagination*. Oxford: Oxbow Books.

Graham, S. (2019). Object style transfer. Available: <https://electricarchaeology.ca/2019/02/04/object-style-transfer/> (Accessed 27 October 2020).

Hamilakis, Y., & Jones, A. (2017). Archaeology and assemblage. *Cambridge Archaeological Journal*, 27(1), 77–84. doi: 10.1017/S0959774316000688.

Haraway, D. (1992). The promises of monsters: A regenerative politics for inappropriate/d others. In L. Grossberg, C. Nelson, & P. A. Treichler (Eds.), *Cultural studies* (pp. 295–337). London: Routledge.

Havemann, S. (2012). Intricacies and potentials of gathering paradata in the 3D Modelling Workflow In: A. Bentkowska-Kafel, H. Denard, & D. Baker (Eds.), *Paradata and transparency in virtual heritage (Digital Research in the Arts and Humanities 1)* (pp. 145–161). Farnham: Ashgate.

Hayles, K. (2017). *Unthought: The power of the cognitive nonconscious*. Chicago; London: The University of Chicago Press.

Hicks, D. (2020). The transformation of visual archaeology (Part two) Chapter 12. In L. McFadyen & D. Hicks (Eds.), *Archaeology and photography: Time, objectivity and archive* (pp. 209–242). London; New York: Bloomsbury Visual Arts.

Historic England. (2018). *Multi-light imaging highlight-reflectance transformation imaging*. Swindon: Historic England.

Hodder, I. (1997). 'Always momentary, fluid and flexible': Towards a reflexive excavation methodology, *Antiquity*, 71, 691–700. org/10.1017/S0003598X00085410.

Huggett, J. (2014). Promise and paradox: Accessing open data in archaeology. In C. Mills, M. Pidd, & E. Ward (Eds.). *Proceedings of the Digital Humanities Congress 2012 (Studies in the Digital Humanities)*. Sheffield: The Digital Humanities Institute. Available online at: <https://www.dhi.ac.uk/openbook/chapter/dhc2012-huggett>

Huggett, J. (2017). The apparatus of digital archaeology. *Internet Archaeology*, 44. doi: 10.11141/ia.44.7.

Huggett, J. (2020). Capturing the silences in digital archaeological knowledge. *Information*, 11(5), 278. doi: 10.3390/info11050278.

Huvila, I. (2017). Archaeology of no names? The social productivity of anonymity in the archaeological information process. *Ephemera*, 17(2), 351–376.

Huvila, I. (2012). The unbearable complexity of documenting intellectual processes: Paradata and virtual cultural heritage visualisation. *Human IT*, 12(1), 97–110.

Ingold, T. (2007). *Lines, a brief history*. Abingdon: Routledge.

Ingold, T. (2015). *The life of lines*. London; New York: Routledge.

Jones, A. M., & Cochrane, A. (2018). *The archaeology of art: Materials, practices, affects*. London: Routledge.

Jones, A. M., & Díaz-Guardamino, M. (2019). *Making a mark: Image and process in neolithic Britain and Ireland*. Oxford; Philadelphia: Oxbow Books.

Joyce, R. (2012). From place to place: Provenience, provenance, and archaeology. In G. Feigenbaum & I. Reist (Eds.), *Provenance: An alternate history of art* (pp. 48–60). Los Angeles: Getty Research Institute.

Joyce, R. A., & Gillespie, S. D. (2015). Making things out of objects that move. In R. A. Joyce & S. D. Gillespie (Eds.), *Things in motion: Object itineraries in anthropological practice* (pp. 3–20). New Mexico: School for Advanced Research Press.

Kandinsky, W. (1926). *Point and line to plane*. Munich: Verlag Albert Langen.

Kohl, K. H., Kuba, R., & Ivanoff, H. (2016). *Kunst der Vorzeit, Felsbilder aus der Sammlung Frobenius*. Munich: Prestel.

Latour, B. (2019). Foreword. In: J. May (Ed.), *Signal, image, architecture. (Everything is already an image)* (pp. 15–19). New York: Columbia Books on Architecture and the City.

Lock, G., & Pouncett, J. (2012). Moel-Y-Gaer Hillfort, Bodfari, Denbighshire, SJ 0950 7080. *Archaeoleg yng Nghymru, Archaeology in Wales*, 51, 142–145.

Lock, G., & Pouncett, J. (2014) Excavation in 2012 and 2013 at Moel y Gaer, Bodfari, Denbighshire, SJ 095 708. *Archaeoleg yng Nghymru, Archaeology in Wales*, 53, 83–97.

Lock, G., & Reilly, P. (2020). Nesscliffe hill camp excavations 2019. *Shropshire Archaeological and Historical Society Newsletter*, 89(Spring), 5–10.

Lucas, G. (2012). *Understanding the archaeological record*. Cambridge: CUP.

Mármol Martínez, J. A. (2019). Art or creativity? From archaeological photo-ethnography to art: Approaches to two contemporary sites. In D. Gheorghiu & T. Barth (Eds.), *Artistic practices and archaeological research* (pp. 59–75). Oxford: Archaeopress Archaeology.

May, J. (2019). *Signal, image, architecture. (Everything is already an image)*. New York: Columbia Books on Architecture and the City.

Miller, A. I. (2019). *AI renaissance machines: Inside the new world of machine-created art, literature, and music*. Cambridge, MA: The MIT Press.

Morgan, C., & Wright, H. (2018). Pencils and pixels: Drawing and digital media in archaeological field recording. *Journal of Field Archaeology*, 43(2), 136–151. doi: 10.1080/00934690.2018.1428488.

Mudge, M. (2012). Transparency for empirical data. In A. Bentkowska-Kafel, H. Denard, & D. Baker (Eds.), *Paradata and transparency in virtual heritage*. Farnham: Ashgate.

Nilsson Stutz, L. (2018). A future for archaeology: In defense of an intellectually engaged, collaborative and confident archaeology. *Norwegian Archaeological Review*, 51(1–2), 48–56. doi: 10.1080/00293652.2018.1544168.

Noga, L. (November 2015). Interview with Simon Callery by Laurence Noga. *Saturation Point*. Available at: http://www.saturationpoint.org.uk/Simon_Callery.html (Last accessed 7th February 2020).

Olivier, L. (2011). *The dark Abyss of time: Archaeology and memory*. (Translated by A. Greenspan). Walnut Creek: Altamira.

Perry, S. E. (2015). Crafting knowledge with (digital) visual media in archaeology, In R. Chapman & A. Wylie (Eds.), *Material evidence: Learning from archaeological practice* (pp. 189–210). London: Routledge.

Perry, S. (2018). Why are heritage interpreters voiceless at the Trowel's edge? A plea for rewriting the archaeological workflow. *Advances in Archaeological Practice*, 6(3), 212–227. doi: 10.1017/aap.2018.21.

Perry, S. (2019). The enchantment of the archaeological record. *European Journal of Archaeology*, 22(3), 354–371. doi: 10.1017/eaa.2019.24.

Rawson, P. (1969). *Drawing*. Oxford: Oxford University Press.

Reilly, P. (1985). Computers in field archaeology: agents of change? In M. A. Cooper & J. D. Richards (Eds.), *Current issues in archaeological computing* (British Archaeological Reports International Series 271) (pp. 63–78). Oxford: BAR.

Reilly, P. (2015a). Palimpsests of immaterial assemblages taken out of context: Tracing pompeians from the void into the digital. *Norwegian Archaeological Review*, 48(2), 89–104. doi: 10.1080/00293652.2015.1086812.

Reilly, P. (2015b). Additive archaeology: An alternative framework for recontextualising archaeological entities. *Open Archaeology*, 1, 225–235. doi: 10.1515/opar-2015-0013.

Reilly, P. (2020). #FlintFriday – *Silica Alchemy I, II & III (Diffraction images)*. Available: https://www.artarchaeologies.com/featuredwork_reilly (Accessed 11th November 2020).

Reilly, P., & Shennan, S. (1989). Applying solid modelling and animated 3-dimensional graphics to archaeological problems. In S. Rahtz & J. Richards (Eds.), *Computer applications and quantitative methods in archaeology 1989*. Oxford: BAR.

Reilly, P., Todd, S., & Walter, A. (2016). Rediscovering and modernising the digital Old Minster of Winchester. *Digital Applications in Archaeology and Cultural Heritage*, 3(2), 33–41. doi: 10.1016/j.daach.2016.04.001.

Richards-Rissetto, H., & Landau, K. (2019). Digitally-mediated practices of geospatial archaeological data: Transformation, integration, & interpretation. *Journal of Computer Applications in Archaeology*, 2(1), 120–135. doi: 10.5334/jcaa.30.

Roberts, L. A., & Sterling, C. (2017). Entangled concepts and participatory practices across archaeology, heritage and art. *Journal of Contemporary Archaeology*, 4(2), 130–138.

Russell, I. A., & Cochrane, A. (Eds.). (2014). *Art and archaeology: Collaborations, conversations, criticisms*. New York: Springer.

Sanders, D. H. (2012). More than pretty pictures of the past. An American perspective on virtual heritage. In A. Bentkowska-Kafel, H. Denard, & D. Baker (Eds.), *Paradata and transparency in virtual heritage* (pp. 37–56). Farnham: Ashgate.

Shanks, M., & McGuire, R. (1996). The craft of archaeology. *American Antiquity*, 61, 75–88.

Siegesmund, R. and Kerry F. (2018). Interpreting visual information in research: Tacit knowledge and nomadic inquiry. In K. Hannes, B. Dierckx de Casterlé, A. Heylighen, & F. Truyen (Eds.), *European Congress of Qualitative Inquiry Proceedings 2018* (pp. 34–40). Leuven: NQRL.

Simonetti, C. (2015). Feeling forward into the past: Depths and surfaces in archaeology. *Time and Mind*, 8(1), 69–89. doi: 10.1080/1751696X.2014.992686.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. *International conference on learning representations*, Available: <https://arxiv.org/abs/1409.1556> [Accessed 14th November 2020].

Thomas, A., Lee, D., Frederick, U., & White, C. (2017). Beyond art/archaeology: Research and Practice after the 'creative turn'. *Journal of Contemporary Archaeology*, 4(2), 121–129. doi: 10.1558/jca.33150.

Tringham, R. (2016). Chapter 16. Ruth Tringham with Michael Shanks and Christopher Witmore. In W. L. Rathje, M. Shanks, & C. Witmore (Eds.), *Archaeology in the making: Conversations through a discipline* (pp. 308–334). Abingdon: Routledge.

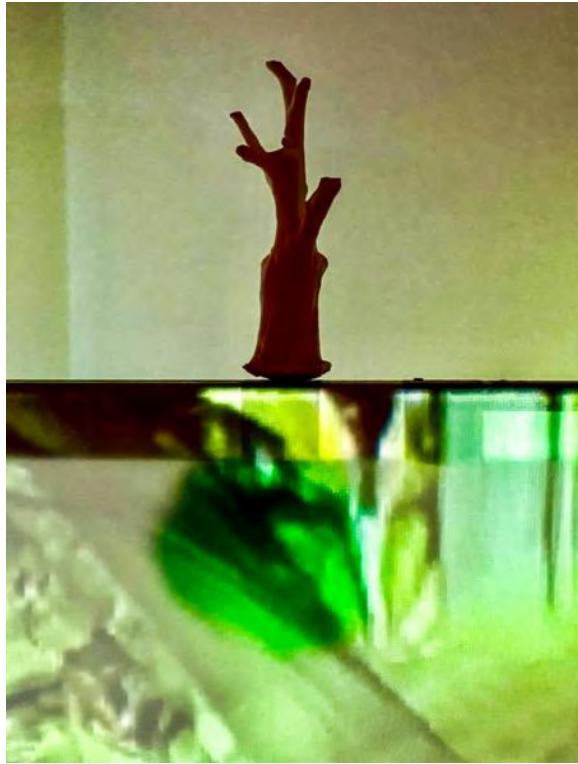
Tringham, R., Ashley, M., & Mills, S. (2007). *Senses of places: Remediations from text to digital performance*. Available: https://chimeraspider.files.wordpress.com/2007/09/bet_ret_ma_sm_0907_web.pdf (Accessed 30 October 2020).

Tsing, A. K. (2015). *The Mushroom at the End of the World: On the possibility of life in post capitalist ruins*. Oxford; NJ: Princeton University Press.

Turner, M. J. (2012). Lies, damned lies and visualization: Will metadata and paradata be a solution or a curse? In A. Bentkowska-Kafel, H. Denard, & D. Baker (Eds.), *Paradata and transparency in virtual heritage* (pp. 135–143). Farnham: Ashgate.

Westall, M. (2015). Simon Callery tells us about his new show at FOLD', *FAD Magazine 13th October 2015*. Available at <https://fadmagazine.com/2015/10/13/simon-callery-tells-us-about-his-new-show-at-fold/> (Last accessed 7th February 2020).

Wickstead, H. (2013). Between the lines: Drawing archaeology. In P. Graves-Brown, R. Harrison, & A. Piccini (Eds.), *The Oxford handbook of the archaeology of the contemporary world* (pp. 549–564). Oxford: Oxford University Press.


Virilio, P. (1994). *The vision machine: Perspectives* (Translated by J. Rose). Bloomington: Indiana University Press.

Zylinska, J. (2017). *Nonhuman photography*. Cambridge, MA: The MIT Press.

And Travelling Often In The Cut He Makes,
digital video 2022
exhibited in Horizon (Landscape and Beyond)
Cello Factory London 30th June - 10th July 2022
curated by Alexander Hinks

<http://www.iandawsonstudio.com/and-travelling-often-in-the-cut-he-makes.html>

<https://youtu.be/5fazLuj3r6I>

Article

Temporal Frankensteins and Legacy Images

Ian Dawson ¹, Andrew Meirion Jones ², Louisa Minkin ³ and Paul Reilly ^{4,*}

¹ Winchester School of Art, University of Southampton, Winchester SO23 8DLJ, UK; i.dawson@soton.ac.uk

² Department of Archaeology and Classical Studies, Stockholm University, SE-106 91 Stockholm, Sweden; andrew.jones@ark.su.se

³ Central Saint Martins, University of the Arts London, London N1C 4AA, UK; l.minkin@csm.arts.ac.uk

⁴ Faculty of Arts and Humanities, University of Southampton, Southampton SO17 1BF, UK

* Correspondence: p.reilly@soton.ac.uk

Abstract: Digital images are produced by humans and autonomous devices everywhere and, increasingly, ‘everywhen’. Legacy image data, like Mary Shelley’s infamous monster, can be stitched together as either smooth and eloquent, or jagged and abominable, supplementary combinations from various times to create a thought-provoking and/or repulsive Frankensteinian assemblage composed, like most archaeological assemblages, of messy temporal components combining, as Gavin Lucas sums it up, as “a mixture of things from different times and with different life histories but which co-exist here and now”. In this paper, we take a subversive *Virtual Art/Archaeology* approach, adopting Jacques Derrida’s notion of the ‘supplement’, to explore the temporality of archaeological legacy images, introducing the concept of *timesheds* or temporal brackets within aggregated images. The focus of this temporally blurred, and time-glitched, study is the World Heritage Site of the Neolithic to Common Era henge monument of Avebury, UK (United Kingdom).

Keywords: art; archaeology; avebury; diffractive images; pluritemporality; supplementarity; timesheds

Citation: Dawson, I.; Jones, A.M.; Minkin, L.; Reilly, P. Temporal Frankensteins and Legacy Images. *Digital* **2022**, *2*, 244–266. <https://doi.org/10.3390/digital2020015>

Academic Editors: Markos Katsianis, Tuna Kalayci and Apostolos Sarris

Received: 28 February 2022

Accepted: 4 May 2022

Published: 11 May 2022

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

1. Introduction

Time can be a slippery thing. In 1940, Paul Nash sent a New Year’s card to fellow artist Henry Moore with one of his photographs of an Avebury stone stuck on it. Redirected after the fact, it ended up on the wall of Tate Britain for the Paul Nash exhibition in 2016 (accession record is: *New Year Card for Henry and Irina Moore 1940*; Collage on card 24.1 × 17.5; Tate Library and Archive; TGA.8416/2/67). Derrida [1] describes the ‘postal effect’, the courier, misdirection, digging backwards, as Socrates taking dictation from Plato [2]. This postal effect is amplified exponentially with shared digital images in our networked world.

Digital images are produced by humans and autonomous devices everywhere and, increasingly, ‘everywhen’. In addition to the amorphous phenomenon of “masses of images” [3], we are also witnesses to the denser, concentrated, phenomenon called “the mass image”. Any internet search of a popular archaeological or heritage site (e.g., Angkor Wat, Great Zimbabwe, Machu Picchu, or Stonehenge) will result in “an aggregate portrait tending towards a total image … extending in time (in spring; at dawn; in 1945)” [4]. In other words, aggregate or mass images are complex, composite, multitemporal data visualisations, and therefore shot through with legacy data.

Attempting to collect and collate miscellaneous and fragmentary memories (i.e., legacy data) in the form of recorded images is nothing new. Consider, for example, the audacious bricolages created by André Malraux and Aby Warburg in their respective *Musée Imaginaire* (or *museum without walls*) [5] and *Mnemosyne* (or *atlas of modern memory*) projects [6]. Gérard Franceschi, Malraux’s photographer, was later commissioned to tour Scandinavia and Europe photographing ancient, Romanesque, Scandinavian and Gothic works for The Scandinavian Institute of Comparative Vandalism (SICV). SICV

was founded in 1961 by Danish artist Asger Jorn and archaeologist Peter Glob. Their project *10,000 Years of Nordic Folk Art* (10,000 års nordisk folkekunst) was never published, but the archive of 26,000 photographs was revisited by the SICV, whose experiments in scanning, skimming, indexing, scale-invariant feature transformation (SIFT) and object recognition mobilise the archive in curious, computational, and agential ways (e.g., http://sicv.activearchives.org/features/05_collage.html accessed on 4 January 2022) [7].

What is new, however, is unprecedented consumer access to sophisticated and sharable imaging technologies with immense potential to be mashed up and repurposed in highly creative, non-traditional ways in cultural heritage scenarios we can only guess at [8–11]. Unabashed, today’s crowdsourced images are said to be “democratising the digital reproduction of cultural heritage via ‘mass photogrammetry’, by providing approaches to digitise objects from cultural heritage collections housed in museums or private spaces using devices and photogrammetry techniques accessible to the public” [12]. Peters [13], for example, demonstrates the approach by building a 3D model of the Parthenon marbles housed in the British Museum using a small sample of images downloaded from Facebook. A growing number of commentators suggest that photogrammetric models derived from even modest crowdsourced image collections can be used for reconstruction of destroyed, overused, or inaccessible, sites and monuments [13–19].

In providing detailed documentation for analysis, monitoring, and cultural heritage management purposes, these archives are also claimed to provide a form of ‘preservation by record’. While this is debatable, an established commercial and pedagogical extension of these models is the production of physical facsimiles in the form of surrogate cultural heritage sites, souvenirs for tourists, and teaching aids in educational collections. The models derived from (mass) photogrammetry can certainly (re)present and provide virtual access to the recorded or (re)constructed heritage. Indeed, such 3D (re)constructions have been promoted as supporting the development of so-called ‘second chance tourism’, in which augmented, virtual, and mixed media are enlisted to enable access to places that are no longer present or accessible. As Bec and colleagues note: “In addition to the potential development of a recreated ‘destination’, tourists and local people can engage by sharing personal and historical photos. For example, Project Mosul is using tourist photographs and video, *and archival documents and images*, to recreate lost artefacts” ([20], emphasis added). This latter example also sits more comfortably under the umbrella of retrospective photogrammetry [18,19,21] and, considerably less comfortably, in the shade of the associated emerging discipline of forensic architecture [22]. The crucial point to note here is that historic photographs and video frames can be digitised and converted into digital images, which can then be merged and repurposed with comparable images from other times. Scanning any photograph, or video frame, creates a digital version encoded in digital format that can be added to a digital archive without fundamentally altering the content. However, the digital version of the image is not inert. It can now be activated, and put to new uses, through digitalised processes to which the prototype artefact was not amenable. Digitalisation also enables images from various times, scales, and resolutions, based on different technologies, to mingle and morph, and create not only improper materialities [23,24], but also improper temporalities. In short, they become ‘infinitely revisable’ [25].

Science scholar Emma Frow discusses the growing debate around the untrustworthiness of digital images in scientific publications. While the shift from drawing to photography was regarded as producing more trustworthy images, by contrast, the shift from analogue to digital photography has been considered as less trustworthy [26]. This is because digital images can be digitally enhanced or manipulated and are thus seen as a threat to objectivity and scientific integrity. Similar debates around the epistemological value and status of digital images can be observed in the archaeological literature [27]. In our discussion of aggregate images, we recognise that archaeological digital images are often recruited as factual evidence; yet our concern is to question comfortable notions of ‘truth’ and ‘fidelity’ in relation to archaeological digital images. When we are dealing with

images that embody multiple temporalities, establishing the factual basis of a single image event not only becomes problematic, but potentially pointless.

In this paper, we adopt a collaborative, critical, diffractive, experimental, and disruptive *Art/Archaeology approach* to the phenomenon of the mass/crowdsourced image as the basis of teleologically flawed “weak surrogates” claiming to have captured and neatly fixed reality in “digital aspic” ([24], p. 150). Art/archaeology, as conceived by Doug Bailey [28–30], aims to disarticulate, repurpose and disrupt “artefacts from their pasts and to release them into the contested dynamics of the present, through the making of new creative works, not traditionally seen as historic or archaeological in form, display or intention” ([30], p. 700). Importantly, “Rather than producing institutionally safe narratives conventionally certified as truth, archaeologists should follow the lead of artists who use the past as a source of materials to be reconfigured in new ways to help people see in new ways” ([30], p. 691). This includes archaeologists trying “to challenge their own practice-based research creatively” ([31], p. 121, original emphasis) or, put another way, those applying their creative imagination [32,33].

In accord with Tracy Ireland and Tessa Bell, we want to challenge “the transcendent authority of the original material objects” encapsulated in such models ([24], p. 149). In doing so, we will not only explore the multiple materialities, including ‘improper’ materialities [23] of crowdsourced (or mass) photogrammetric models, but also the multiple different, supplementary, and improper, temporalities that can be etched on to them, and then repeated unchallenged as interstitial pluritemporal elements in the physical (re-)expressions of these improper but generative aggregated composite 3D models. We also embrace the concepts of *synesthetic catachresis* and improper digital materialities. As Ashley Scarlett summarises, to “speak of digital matter through synesthetic catachresis is to experience simultaneously its presence and effect, its absence or un-representability, and its conceptual stabilization. Rather than developing an absolute account of its existence and characteristics, catachrestic synesthesia enables a variable approach to digital materiality” ([23], p. 112).

Circling back to our title, in Mary Shelley’s (1818) classic, the monster created by Dr Frankenstein appears as an improper materialisation par excellence—an alterity whose dubious materiality and manufacture is only hinted at in the novel and ambiguously illustrated in later film interpretations. In the novel, Frankenstein’s monster is a melancholic bricolage of conjoined contemporaneous body parts galvanised into life by some dark technologies of vitalism and electricity. The literary version of the monster in the novel reflects thoughtfully and eloquently about his own being and meaning. In stark contrast, the derivative movie-star monster is portrayed as a mindless, crudely stitched-together, mute, and rampaging abomination. Legacy image data, like Frankenstein’s monster, can also be stitched together as either smooth and eloquent, or jagged and abominable, supplementary combinations from separate times to create a thought-provoking and/or repulsive assemblage, composed of messy temporal components, combining “a mixture of things from different times and with different life histories but which co-exist here and now” ([34], p. 142).

2. Archaeology and Archaeological Images in the Making

Archaeological traces embedded in the wider landscape are not static remnants waiting to be (re)discovered and (re)composed. Rather, they are perpetually in motion in a fluid, if viscous, process of becoming [35]. This makes both assured archaeological ‘features’ and less definite ‘anomalies’ pluritemporal, meaning that they can (re)appear and disappear for very variable amounts of time depending on local environmental circumstances. Depending on where, how, and when you try to (re)cognise them, many features can withdraw quickly. Some gradually morph into more-or-less defined traces. Yet others simply pop up whole and recognisable. For example, when the landscape is eroded (e.g., by wind and water, ploughing, mining and landslides) formerly buried archaeology can be exposed. Commensurately, the same processes that cause erosion in one place can cause build-up and burial elsewhere by shifting deposits to a new location. Once clear surfaces can

become obscured by these build-ups, but also by building and road works, and vegetation, particularly forestation. Equally, both the scouring action of erosion and new plant growth can reveal previously buried landscapes (e.g., exposed ruins, and other features such as soil and crop marks).

Buried archaeological deposits rarely conform to neat palimpsests, with each new independent assemblage superimposed in new, supplementary, discrete, and tidy replacement archaeological horizons [36]. Site formation processes are not often so accommodating. Multitemporal archaeological features are usually interlaced and messy. They often either accrete to, or cut through, one another, and their contents can be quite mobile. Stratigraphically lower deposits can be leached through, and supplemented, by material washed down from overlying deposits. Conversely, components of more deeply buried contexts can percolate up and supplement later superimposed deposits through bioturbators such as animal activity. In certain, and often unpredictable, circumstances, buried archaeological features can reveal themselves in surface scatters of artefacts and more distinctive “acheiropoietic” ([37], pp. 172–173) or “autographic” surface traces [38], so-called “planetary diagrams” [39] or maculae, in the form of soil, crop and parch marks, and shadow sites, archaeological “revenants in the landscape” ([37], Chapter 4). The unpredictability of supplementary archaeological autoexpressions arises due to a complex range of dynamic factors, including the depth and composition of the deposits, seasonal and local weather and light conditions, viewpoint, and equally the (cross)modes of remote sensing used to prospect them (whether human or machine enhanced). Maculae are not stable entities. On the contrary, they are very relational. Unique features appear under different circumstances and in various combinations and fluctuating degrees of definition. Changing any of these environmental factors can affect the form, extent, and the duration, of any auto expression. For instance, drought years often produce more, persistent, and detailed, crop marks. In short, these uncanny, spontaneous traces are fragmentary, temporary, and very mutable phenological indicators. The crucial point here is that features from distinct temporal horizons can emerge together as an entangled multi-period anomaly etched into the earth’s surface or the vegetation covering the earth’s surface. This vegetation is not only sensitive to buried features, but is also prone (at least in Wessex, United Kingdom) to the interventions of ‘crop artists’ [40]. Similarly, despite appearance to the contrary, robust static monuments and other upstanding archaeology are also, albeit slowly, in motion [35].

3. Avebury Again and Again

Consider our case study, the UNESCO World Heritage Site of Avebury, whose apparent timelessness provides a classic example of “a material memory cycle over which artifacts are altered, destroyed, buried and perhaps (re)discovered, and then preserved as objects bearing witness to the past, and then may be destroyed and ‘forgotten’ all over again” ([41], p. 191, original emphasis). In essence, it remains a site of “existential relatedness” [42]. Avebury is a later Neolithic complex that was first constructed between c. 3000 and 2350 BCE ([43], pp. 42–43). The henge earthworks and stone circle do not stand in isolation but developed in a Neolithic landscape with a long history dating back to the 4th millennium BCE ([43], pp. 23–38); the very fabric of the Avebury site was composed of elements with a storied past [44]. The Avebury site was (re)discovered by the antiquary John Aubrey in 1649; recorded in detail by William Stukeley in the 1720s; and restored in the 1930s to its perceived former glory by the marmalade magnate and playboy Alexander Keiller ([43], pp. 1–2). In the intervening periods we can detect countless other interventions (or supplements) to the complex.

How are we to consider these ongoing interventions? Gillings and Pollard ([43], p. 40) argue that Avebury is not a classic palimpsest created by processes of erasure and (re)inscription. Avebury is arrived at more through gradual processes of “becoming” ([43] p. 40). There is no fixed original or final Avebury to be reclaimed. The landscape of Avebury shimmers over time as elements wriggle in and out of the temporal foreground. Individual great sarsen stones were dragged to Avebury and erected in the Neolithic period [44]. From the Medieval period until

recent times, individual megaliths were knocked down; some were broken up and destroyed [45]. Later, some of them were repaired and re-erected at various times, particularly during Keiller's great 'renovation' of the site in the 1930s. Many others are still buried or otherwise 'missing'. The earthworks were also remodelled extensively. For example, "Between the sixteenth and nineteenth centuries the earthworks around the entrance causeways were subject to a variety of disturbances, ranging from quarrying and construction to road remodelling and tree planting" ([43], p. 10). There is no *final form* to the site; "Avebury is a site in a constant state of flux and negotiation" ([43], p. 2).

We agree with Gillings and Pollard's assessment of the complex. Avebury offers a useful example of how archaeological sites undergo change, and of archaeologists' increasing realisation that this change need not be sequential and layered. Instead, archaeologists are increasingly aware that the archaeological sites may be pluritemporal [34,41,46]. This realisation offers challenges to the traditional approach to sequential change in archaeology [47], but it also offers new potentials for how we imagine the materiality of archaeological sites. As Gavin Lucas has recently noted, "ultimately, it is through recognizing the materiality of time—that things make time rather than exist in it—that this tension between physical and felt time finally dissolves" ([34], p. 41). Of particular interest to us here is how the pluritemporality of archaeological sites might relate to the pluritemporality of archaeological modes of documentation. To what extent do legacy data images make time?

That archaeological sites (monuments, features, and anomalies) are constantly in motion has profound implications for the legacy image data that we obtain from them. Archaeology as a discipline started to emerge in the post medieval period through the activities of antiquaries. Antiquarians measured plans and elevations, and other scaled drawings and maps appear from the sixteenth century onwards. All are forms of rare images containing useful legacy data, which are particularly valuable for the metric data they retain for those previous, radically different (re)configurations of sites and monuments, especially those now destroyed. However, it is really with the advent of photography that archaeological and cultural heritage sites and monuments really began to be systematically (re)captured in countless pluritemporal photographs, recorded from the mid-nineteenth century onwards [48].

Images, like all legacy data, create inertia by establishing baselines and anchor points to which all subsequent related data sets can be measured and compared. They spawn format conventions and set standards which then get subsumed in genealogies of looking—and evolve into the 'right way' and 'best time' to frame and capture the essence of things correctly. The observer becomes enslaved in the technologies of observation [49], mere functionaries [50] following standardised procedures. However, sometimes these things, which are continually being supplemented in combination with innovative technologies of observation, have a way of upsetting the observer viewpoint, initiating a fundamental reset of our paradigms and timelines of perception. Flusser ([50], p. 156) characterises these kinds of images as *dialogic*. They become witnesses to, as well as witnessed by, these changing technologies of the image. As we showed above, archaeology has a long history of witnessing and, crucially here, *supplementing* ancient monuments and landscapes, especially in modern-day Wessex and Neolithic Avebury. A 'supplement' in Jacques Derrida's [51] terms is simultaneously something that completes another thing, but also something that may replace it, and play the role of substitute for it; and therefore, be a temporal threat for it.

Improper temporalities: time-glitching the stones at Avebury, 2022 (Figure 1) collages a 17th C etching and a late 19th C photograph on a 21st C photogrammetric model of Avebury compiled from photographs donated by Steve Marshall. *Aggregate Portrait: Legend Tripping, Devil's Chair, 2022* (Figure 2), by contrast, is an aggregate proto-timesheded image interlacing portraits of visitors posing *at various times* in front of the iconic *Devil's Chair* (stone #1)—which, incidentally, is also featured in Figure 1. Figures 1 and 2 respectively demonstrate substitution and accretion as telematic, compositional methods. These are still images of

digital objects. Digital objects are better understood as a web of interactions and relations rather than as finite objects and require much more theorising [52–55].

Figure 1. *Improper temporalities: time-glitching the stones at Avebury, 2022.* (‘Supplementary’ images inserted into Agisoft Metashape project, re-compiling part of the south circle derived from images Courtesy of Steve Marshall).

Figure 2. *Aggregate Portrait: Legend Tripping, Devil's Chair, 2022.* Prototype composite timesheded image: focus-stacked, crowd-sourced images of visitors posing at Avebury stone 1, the *Devil's Chair*.

The digital images in Figures 1–3 confirm that there is no fixed, original, or final site or monument. These ‘portraits’ were taken with the *Devil's Chair*, at separate times, by different people, using various instruments, with individual affordances. They remind us, forcefully, of what Derrida ([51], p. 313) calls the “supplement of (at) the origin”, meaning, paradoxically in archaeological contexts, that for the *Devil's Chair* to remain monumental (and by extension

the entire complex), it must be available to be (re)visited, (re)experienced, (re)recorded and (re)presented, or fall short of itself. It must be (re)iterable and therefore requires a supplement; the supplement is both accretion and substitution, but it is “neither a presence nor an absence” ([51], p. 214). A series of supplements can be chained together backwards to the earliest identifiable legacy data. If one wishes to go back from any one supplement to the source, “one must recognize that there is also a supplement at the source” ([51], p. 304). Put simply, the source is never complete. From the outset, there has always been something more that has yet to happen. For example, all the stones may have been erected, but the next celestial event to activate them is always pending. In other words, “supplementarity is a necessarily indefinite process” ([51], p. 281). The implication for us is that legacy data only gain agency when supplemented. The concept of the supplement enables us to accommodate continuity and change, to pivot and balance multiple perspectives, at different scales, spanning various temporalities, and embracing radically different materialities.

Figure 3. 360° Portrait of the *Devil's Chair*, Avebury (2018).

4. Adding Temporality back into Selected Sarsens

From the end of the 1990s, several scholars moved beyond the finality apparently conveyed by the ‘definitive plans’ of Avebury and the view that every generation, borrowing a phrase from Jacquetta Hawkes [56], has the Avebury it deserves. Perhaps inspired by William Stukeley’s drawings, which show perspectives occupied by interested visitors sharing the intersubjective space of Avebury ([57], p. 366), the last two decades of research is readdressing the three-dimensionality and architectural complexity of the monument. One particularly influential theoretical approach was through the medium of phenomenological analysis to develop more encountered and negotiated perspectives of the situated body within the monument. Various scholars have turned to the digital, and particularly to the vehicle of Virtual Reality modelling [58] to develop a virtual ‘first-person approach’ [59] to exploring the monument. This virtual approach continues to be fruitfully elaborated [60,61].

We will also adopt a virtual approach to (re)negotiating the henge complex as it persists today from multiple, multitemporal—sometimes inter- and intra-generational third-person perspectives. We attempt, for instance, to account for different interlaced biographies of specific stones that have at various times been standing, recumbent, toppling and broken sarsens. Gavin Lucas reminded us of the well-known ‘folded handkerchief’ metaphor to describe the nature of time. Time in this analogy may be considered discrete and successional in the accumulated neat layers of the folded handkerchief. By contrast, when the handkerchief is ‘scrunched,’ time becomes messy and any two points of the cloth can touch one another ([34], p. 142). Here, we favour the scrunched version of time. We ask

what we might see and learn if we adjusted the aperture of our lens to control not only the depth of field but also the *depth of time*?

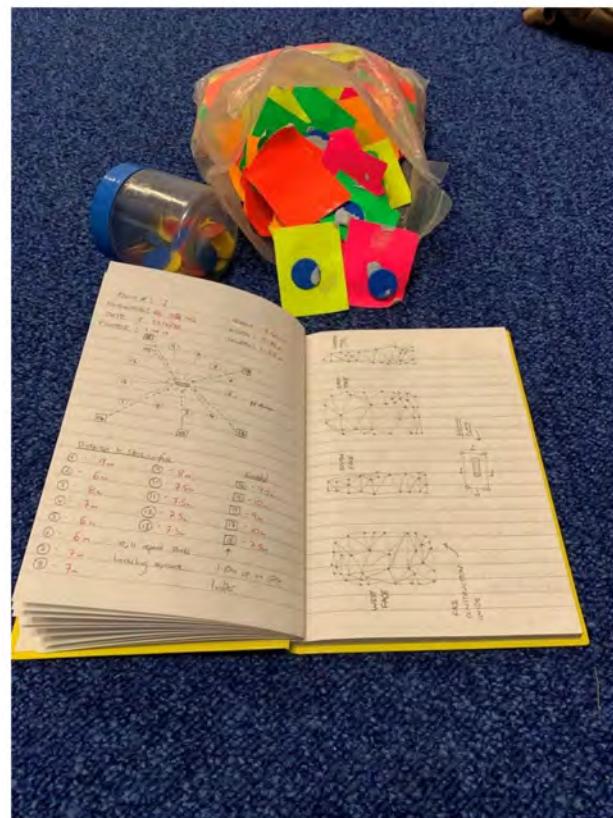
Embracing a messy aggregate or mass image approach, using legacy images, we create what we term *timesheds* images in which different Avebury image timelines blur one another. We introduce this neologism—‘timesheds’—as a conceptual alternative to the more familiar concept of ‘viewshed.’ Whereas a viewshed is generally understood as a computer-generated map or model of the view of an area from a specific vantage point at a specific time, the timesheds is a computer-generated map or model that reveals how that view of an area or place has changed within specific temporal brackets. For instance, the view of the so-called *Barber Stone* in the Late Neolithic period, when it was first erected, would look radically different to the equivalent view taken in the medieval period, after the stone was pulled down, and against also the much later equivalent view of the stone re-erected and re-installed in the 1930s. All three ‘views’ that once existed, albeit within the extremely broad temporal brackets, are true. However, envisaging the different views as overlapping, or interlaced, timesheds enables us to appreciate better that the seemingly static and immobile monument of the current era is a dynamic assemblage, and the product of a significant amount of movement and change. We will explore this time-glitching perspective of our conceptual timesheds further with reference to some individual sarsens with notable supplements before pulling back to reconsider the complex more broadly.

Several sarsens have been defaced at various times. A number received cosmetic scars in recent years, such as disfigurement by painted ‘satanic’ or ‘pagan’ symbols. Others were much more brutally handled, and even broken into pieces long ago. Parts of some of these mistreated and butchered stones still haunt the village pub and field walls around Avebury. This splitting of the sarsen into building material would seem to preclude their re-making. Amazingly, severed pieces from two different sarsens were recovered and reattached by Keiller’s workers. Keiller’s retrieval and assembly of dismembered parts produced two Frankensteined bodies. (Franken) stones 24 and 42 are partially re-fitted, adorned with seams, but still jagged and incomplete. Their monstrously broken tooth-like profiles, recorded photographically for posterity, adorn the comprehensive guidebooks to the monument ([62], pp. 65–68). However, we must recognise that the process of recording is also a technology of separation, splitting off image from site, magnifying, re-framing and over-producing exponentially. As with the collection and collation of fragmentary secondary material worked through in Walter Benjamin’s *Arcades* project [63], or in Aby Warburg’s *Mnemosyne* atlas [6], such accumulated, reiterative picture libraries point to new compositional potentials. A bricolage of fragmentary images may be pieced together photogrammetrically through pixel-matching and tie-points, but also through modes of parataxis, kitchen-knife collage, montage and, latterly, the superimpositions of augmented reality [64]. Beyond this, the proliferation, surge, accumulation, and deposition of digital images as ‘image dump’ produces its own midden for archaeological investigation.

Stone 4, a member of the outer circle, has a chequered history, weaving in and out of the monument’s evolving narratives. It is one of a mysterious cohort of sarsens that were ‘disappeared’. It was pulled down into, buried, and thereby concealed in, a grave, cut to accommodate its entire body shape ([65], p. 177; [66], p. 186). In other words, the shape of the grave cut echoes both the exposed part standing proud above ground surface and that embedded underground in its stone socket hole before it was toppled (Figure 4). Rediscovered, resurrected, and reset in its supposed earlier undisturbed position, Alexander Keiller supplied its designation as ‘stone 4’ in the 1930s. Despite exhibiting many tonnes of rock set in concrete, this stone is remarkable for also becoming a weightless, but hyperreal, simulacrum that was launched into hyperspace “to be examined, manipulated and visually devoured” ([66], p. 190). Despite now being “open to continual unbounded interpretation and negotiation”, Gillings and Pollard were quite dissatisfied with the overall materiality of their empty digital skeuomorph of the stone they had nicknamed “the fridge” (Pollard pers.comm.). For now, stone 4 (aka ‘the fridge’) is floating, decontextualised, in cyberspace, tethered only by a flimsy URL, awaiting unrestrained cloning, reproduction, and mutation,

around the internet universe, stemming from an early act of “digital colonization” [52,54]. Many instances of the stone 4 model may have been downloaded and repurposed in places and times unknown. Regardless, at some point the tethering to the URL was snapped and, like the monster on the iceberg at the start of Shelley’s classic novel, this digital vessel is now adrift on featureless currents.

Figure 4. Stone 4 as uncovered by Alexander Keiller [65]. Watercolour and ink on paper after Keiller’s photograph, 2022.


The digital vessel was itself sutured together, a leaky structure emerging through the agency of brightly coloured tiddlywinks, triangulation, tie-points, vertices, and a point cloud, into a virtual social life, taking shape and dispersing (Figures 5 and 6). The act of digitisation creates structural homologies [67] between the different stones, allowing new configurations and hybridities that rely on mutability rather than conclusion. Instead of resting as objects of analysis, the stones seed new forms, a digital phenology or life cycle. These inherent mutabilities, synesthetic catachresis and improper digital materialities, mean that the digital image files are wildly susceptible to new influences and generative processes, and are friends to digital depositions through the alternative materialising agencies of (3D) printers and plotters (Figure 7).

In glaring contrast to the tranquil sight of an upright stone 4, covered by tiddly-winks, we can observe an extraordinary moving ripple in the scrunched temporal topology at Avebury when the 1930s Keiller encountered the skeleton of the so-called barber-surgeon emerging out of the medieval horizon from underneath a toppled Late Neolithic sarsen. The scene, with the accompanying narrative of the stone falling on the hapless man, as he helped pull it down, once seen is indelible. Regardless of its original upright Late Neolithic physicality, stone 9—the *Barber Stone*—is also undeniably Late Medieval and recumbent. Both images are true or have veracity. Equally memorable, and valid, are those preserved images recording this massive stone—a huge toothlike presence—floating above a stone socket awaiting re-implantation, held suspended by Keiller’s ropes and pulleys (Smith, 1965). All these configurations—upright, listing, recumbent, buried, suspended—are legible in the legacy data. Viewed via a *timesheded*, with suitable time-depth, bracketed plus or minus several generation stops, these pluritemporal events are still detectable, persisting in legacy images, and can now co-exist. In an analogous manner, we can bring together, align, and merge physically broken stones digitally. We can (re)present them phygitally—that is, both physically and digitally (e.g., Figures 8–11) [53,54]—and reimagine the various major temporal configurations of stone 9 interlaced within a *timesheded*. Figure 11

shows a materialised *timeshed* in which both the recumbent and the re-erected instantiations of stone 9 are temporally conjoined through synesthetic catachresis and improper digital materialisation (i.e., 3D printed in PLA).

Figure 5. 3D digitising Stone 4 aka 'the fridge' (photo courtesy of Mark Gillings).

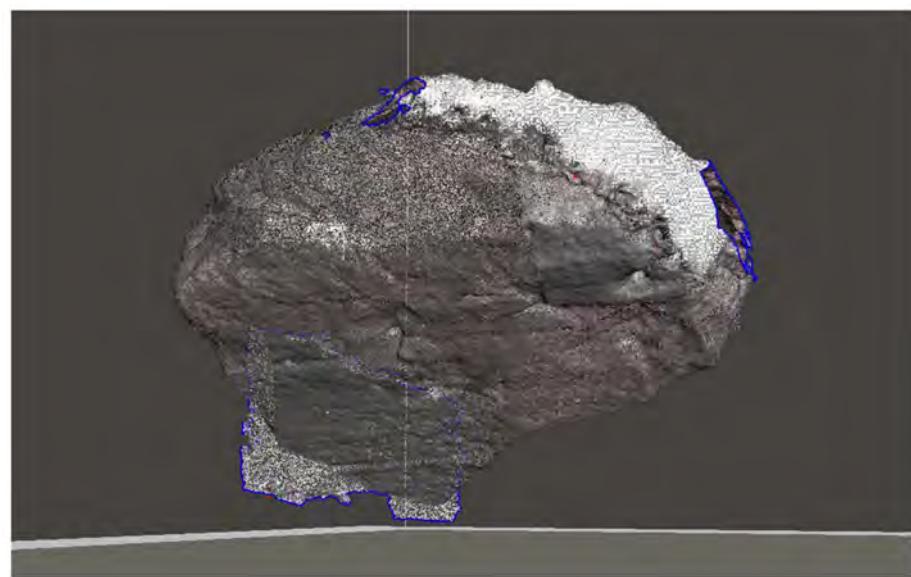

Figure 6. Tiddlywinks pieces carefully placed in the 1990s as distinctive colourful tie-points were logged so as to enable the digital stone 4 to be stitched back together (Photo Courtesy of Mark Gillings).

Figure 7. Reskinned, scarred materialisation of Stone 4 (32K VRML PhotoModeler file, [58]) and TIN paper model, inserted into LiDAR landscape (3D model created by Mark Walters in QGIS with the QGISthreeJS plugin, using freely available Environment Agency 1 metre DTM LiDAR data) with lockdown flowers, rendered in Blender, 2022.

Figure 8. The Barber stone (#9) resurrected in the digital, 2019. (Copyright The Authors CC BY-NC).

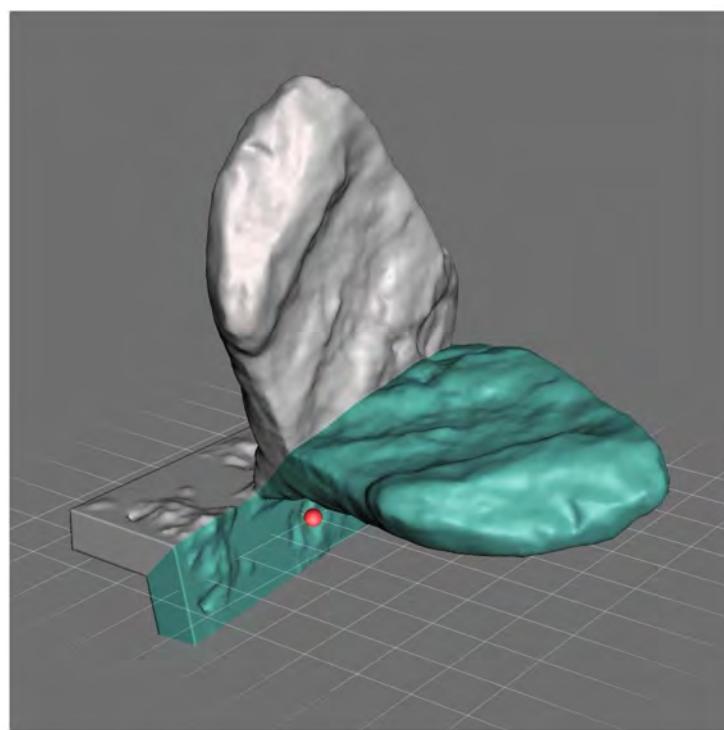
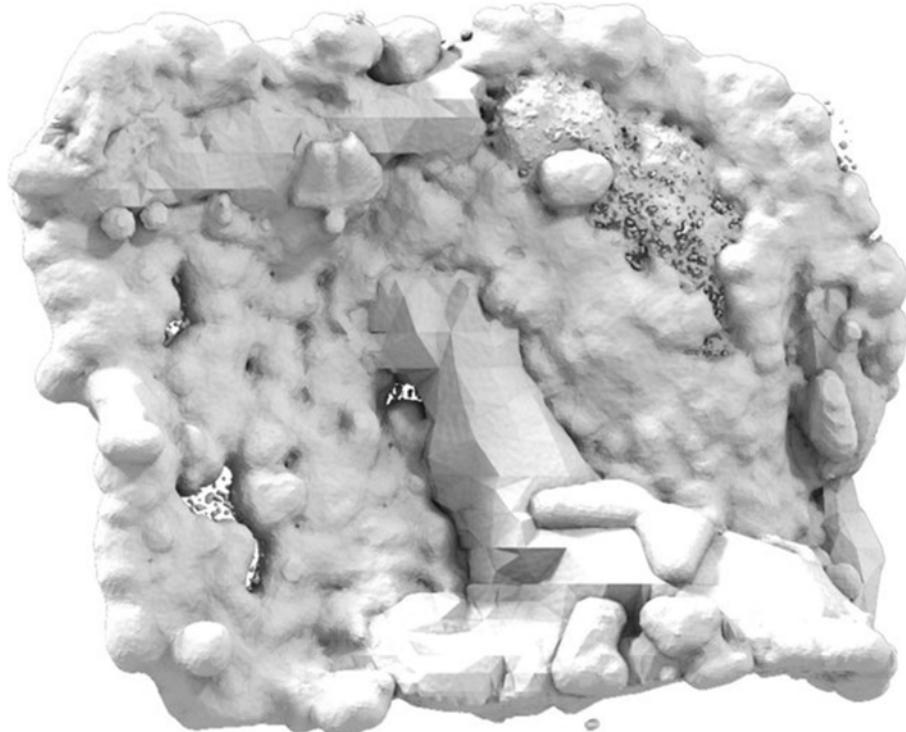


Figure 9. Barber stone being virtually toppled, 2022. (Copyright The Authors CC BY-NC).

Figure 10. Phygital Barber stone 2020 (Metashape and PLA, 70 mm × 50 mm × 15 mm). (Copyright The Authors CC BY-NC).

In 1933, before Keiller's 'reconstruction', artist Paul Nash photographed some of the standing Avebury stones. He captured the *genius loci* of each stone on a No.1A pocket Kodak series 2 camera. He called the stones 'sentinels' or 'personae'. These portraits were working material towards his 1935 painting, *Equivalents to the Megaliths*. The Tate Archive houses a black and white negative (TGA 7050PH/119) from 1933. This double exposure, by accident or with purpose, within the brief time scale of his walk, prints via silver nitrate two views of different orientation and scale into the same image, tipping the stone through its axis and providing another, infra-thin, materialisation of a *timesheded* (see <https://tinyurl.com/mt26zbwp>, accessed on 28 February 2022).

Figure 11. Frankenstone 9—Barber stone (re)modelled using recumbent and resurrected phytital timeshed, 2022. (Copyright The Authors CC BY-NC).


Derek Jarman's (1971) experimental 10-min film *A Journey to Avebury* is composed from spliced Super 8 shots of resting points, or vistas, during his walking journey through Wiltshire to the stones. It is a home-movie landscape entirely unpopulated by humans, lit through a heavy yellow filter. The camera is still. It neither pans nor zooms, but just lets the landscape fill the lens. The wind shifts the summer trees and cornfields. The materiality of the film is emphasised by bright blue scotoma flicking through, and staining, the frames—chemical artefacts of the analogue process. Jarman later reworked the footage into another film *In the Shadow of the Sun* (1980). Both Nash and Jarman reflect on aspects of Englishness through their mediated journeys to Avebury, and their praxis and visions embed these aspects into broader cultural memory. *A Journey to Avebury*, in its sulphureous longing, seems to foreclose certain futures and prepare the ground for Jarman's dystopian *Jubilee* (1978) and *The Last of England* (1984).

In 1969, American artists Nancy Holt and Robert Smithson visited the UK, making a tour of rocks, quarries, and megaliths. Both artists were innovators in land-based practices. Holt's works often operate as locators within vast landscapes. For example, *Sun Tunnels*, 1973–1976, is a massive set of concrete pipes oriented towards the solstices in the Great Basin Desert of Utah. The landscape of Avebury is clearly referenced in Smithson's *Broken Circle/Spiral Hill* made in 1970, incidentally the only earthwork Smithson made outside of the USA. His most famous work, *Spiral Jetty*, was also made in 1970 and continues to transform, flood, and re-emerge. Smithson's writing around entropy, sedimentations of the mind, geologic and industrial formations, and aerial art, alongside his exploration of the topographies of art practice, continue to be relevant in surprising ways. Key to his positioning is his theory of Site and Nonsite (Table 1) [68]. His distinctions between the actual Site and the Nonsite (a representation of the site, often in a gallery context, through maps, photographs, rock piles, and other *containers* such as an indoor earthwork) might draw some parallels with the new sense of metaphor which articulates the relation between Avebury and its legacy data or many Nonsites extrapolated and displaced from the phenomenological experience of site into time-glitched legacy images, paintings, and installations.

Table 1. A comparison of Smithson's [68] notion of Site and Nonsite.

<i>Site</i>	<i>Nonsite</i>
<i>open limits</i>	<i>closed limits</i>
<i>A series of points</i>	<i>An array of matter</i>
<i>Outer Coordinates</i>	<i>Inner Coordinates</i>
<i>Subtraction</i>	<i>Addition</i>
<i>Indeterminate Certainty</i>	<i>Determinate uncertainty</i>
<i>Scattered Information</i>	<i>Contained information</i>
<i>Reflection</i>	<i>Mirror</i>
<i>Edge</i>	<i>Center</i>
<i>Some Place (physical)</i>	<i>No place (abstract)</i>
<i>Many</i>	<i>One</i>

Many other temporal–ontological transformations abound in the phytal and can occur in very rapid succession. Consider Louisa Minkin's *Plastic Print derived from aggregated images of the Devil's Chair, Avebury* created in 2015 (Figure 12 and reworked in Figure 13). For this piece, Minkin aggregated images taken by tourists adopting the same pose at this iconic megalith over a narrow timeshed of several recent years (also used for Figure 2) to produce a 3D material "souvenir object of uncertain spatio-temporal status" ([69], pp. 122–123). This disturbing temporal-Frankenstein-like simulacrum emphasizes the fact that every visitor brings a new supplement to Avebury. The monument does not exist in a void; the intersubjective spaces surrounding the sarsens are continually being renewed.

Figure 12. *Nylon Print derived from aggregated images of the Devil's Chair, Avebury* (Louisa Minkin [69]) <http://louisaminkin.com/glitch/frankenstein.html>, accessed on 28 February 2022.

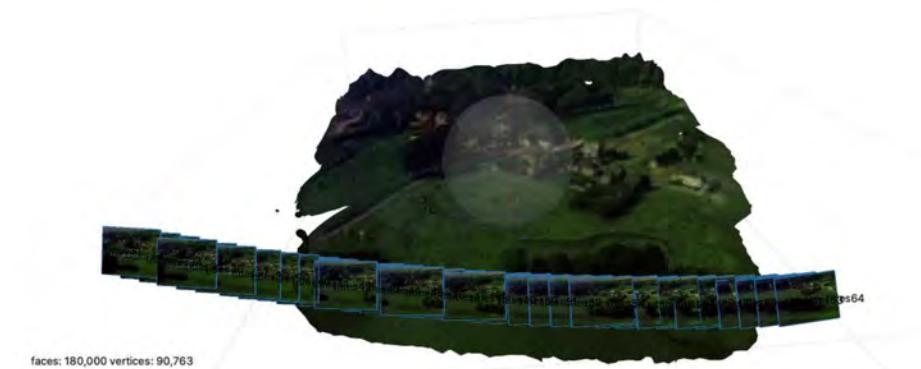


Figure 13. *Stone 1 Revisited* (Louisa Minkin, Plotter drawing, 2022).

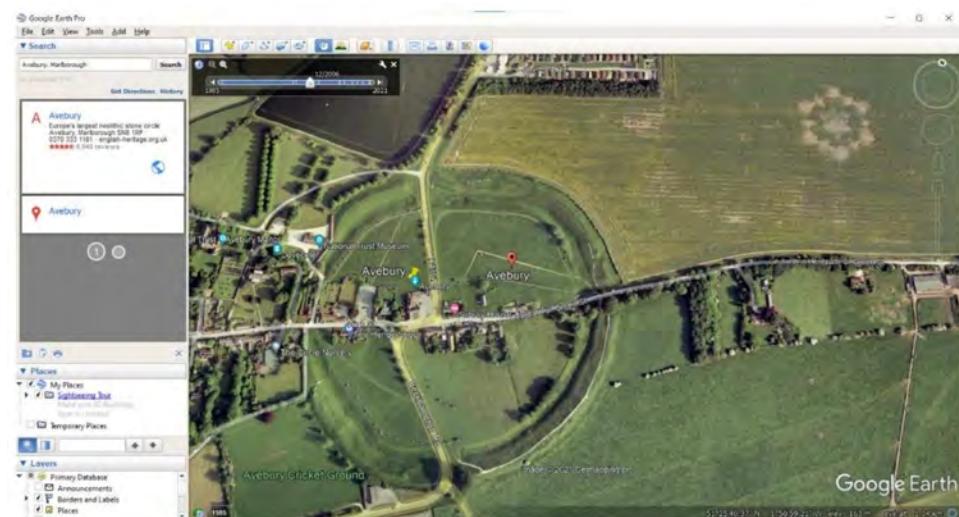
5. Supplementing the Stones

The story of the barber-surgeon is replayed as a pivotal event in the 1977 BBC TV 'cult' series *Children of the Stones*, set in a fictional Avebury, called Milbury. Filmed among the stones over the parched summer of 1976, the series is a fever dream of folk horror, reputedly the scariest programme ever made for children. A generation of young people (including several of the present authors) were imprinted with broadcast images of 1970s Avebury in its unique configuration of ancient lithics and stratified contemporary community. Avebury operates both as a character itself and as a scene of scientific and occult experiments and social dis-ease. The legacy of *Children of the Stones*, and its popularity, persists on streaming platforms, in the surrogate form of community-uploaded home VHS footage, parsed through online codecs and rapidly deprecated aspect ratios. Happy Days.

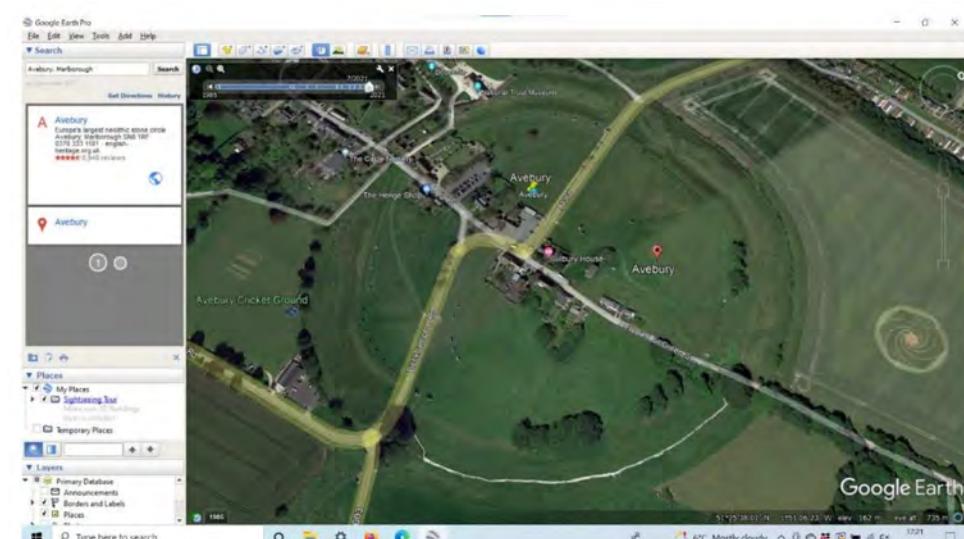
The opening sequence of the series is a circling aerial view of the village that scorching summer. Downloaded, exported as frames, and compiled spatially through the time machine of Structure from Motion (SfM) software, we can build a navigable 3D version of 1976 Avebury seen in the mind's eye (Figure 14). In more recent times, Google continues to supplement its streams of car-based images to the bulging stack of terrestrial images which could also contribute to any future SfM project at Avebury (Figure 15).

Figure 14. *Children of the Stones* 1977 opening sequence exported as stills and compiled in Metashape. (Copyright The Authors CC BY-NC).

Figure 15. Screenshot: An ongoing flow of legacy images. A frame from a relentless stream of images taken from car mounted camera systems, this one travelling through Avebury in 2009 and 2021 (Courtesy of GoogleStreet).


6. Supplementary (Air) Space

Aerial photography eventually caught up with, and then superseded, Stukeley's oblique pseudo-aerial views as the dominant form of distanced discourse at Avebury. The first known published aerial photograph of Avebury, taken before Keiller's 'improvements', we believe is 'Plate XXXVI AVEBURY' in Crawford and Keiller's landmark book, *Wessex from the Air* ([70], facing p. 210). Since then, aerial survey has become a mainstay of British archaeological prospection [71–74]. More recently, remote sensing (e.g., multispectral, hyperspectral and LiDAR) are producing prodigious volumes of digital images of archaeological landscapes at national and international scales, with associated challenges (inter alia, [75–77]).


Zylinska [78] reminds us that many images are derived from the cyborgic gaze of digital devices which have subsequently been assigned visual characteristics and presented in legacy formats that humans recognise as photographs. Digital images have more in common with spreadsheets than photographs and are thus equally manipulatable and infinitely revisable [25,79,80]. Dostie, for example, observes that Google "creates maps for us using satellite imagery that seems to never have clouds; this is because those images are mosaics of several images taken at different times, and the *best parts of them are stitched together* to create composite images you see on your computer or phone" ([80], pp. 181–182, emphasis added); in other words, they are timesheded building blocks. Rippled with multi- and pluritemporalities, these now contemporary images create a digital plough zone composed of mixed-up legacy (symbolic) data. Again, we can once more think of these datasets as 'temporal Frankensteins' [54], a composite, monstrous, cyborg assemblage derived from many

different sources, scales, angles, resolutions and, most crucially here, times. Nevertheless, as Huvila ([81], p. 54) reminds us, it can be very instructive to recognise both the risks and the benefits of adopting a monstrous gaze. We will try to adopt a monstrous, cyborgic, gaze to inform our analysis.

Today, many iconic artefacts, buildings, and their landscape settings—in addition to the attention they deserved from photographers—have been subjected to sustained cyborgic observation for several decades. Over that period, both the cyborgs, as well as the subjects of their sustained imaging, pursued a chain of dialogical changes, as new more advanced devices emerged almost daily. New instantiations, or versions, of the archaeological landscape are being generated at an ever-quickenning pace. Avebury is not exempt from this process and due to its own iconic status, it invites even more supplements to accrete to it. Crop art of unknown provenance, generally referred to as *crop circles*, has cropped up several times within the Avebury World Heritage Site (WHS) landscape (Figures 16 and 17).

Figure 16. GoogleEarth (2022) Screenshot: Avebury World Heritage Site (WHS) with crop circle recorded December 2006. (Courtesy of GoogleEarth).

Figure 17. GoogleEarth (2022) Screenshot: Timeline-shifted view of Avebury WHS registering another unique crop circle, July 2021. (Accessed: 4 January 2022) (Courtesy of GoogleEarth).

Unlike crop or soil marks, ‘crop circles’ are not quite terrestrial and, despite counter claims, nor are they convincingly extra-terrestrial. Sometimes, they hover above the ground, supported on grain stalks decapitated by a *mower devil*. Mostly the grain plants have been toppled or otherwise collapsed. In either case, the result is often an extraordinarily intricate design of usually geometric marks, or scars, tattooed slightly above the landscape. Sometimes, crop marks are discoverable in LiDAR scans, at least until the stems are fully cut down or ploughed out. The ephemeral crop circle shown on a Google Maps timeline tracking Avebury (Figure 16) was, coincidentally, also captured in a contemporary LiDAR DSM scan (Figure 18). This distinctive crop circle mark, floating just above the landscape, can now be interlaced with supplementary images developed prior to, during, and after a short season of cosmic notoriety, that is until the crops are cut down. They represent another potential *timeshed supplement* to add to the overall Avebury WHS timeline. Avebury keeps moving on; additional supplements present themselves relentlessly.

Figure 18. Screenshot: DSM (Digital Surface Model) LiDAR image of Avebury, capturing the trace of a crop circle made in 2006 in the top right hand corner of this image (CC by 4.0 courtesy Houseprices.io <https://houseprices.io/LiDAR/SU1072570382/3d> accessed on 4 January 2022).

7. Discussion and Conclusions

This paper has focused on the supplementarity and the temporality of legacy images. Our case study for this analysis has been the site of Avebury, North Wiltshire, UK. Avebury is particularly apt for this analysis, as its most recent excavators, Mark Gillings and Josh Pollard, recognise that: “As a monument Avebury is fascinating in that it already encapsulates much of the hyperreal, from the regularity and artificiality of the area of the henge reconstructed in concrete, earth, and stone, by Keiller, to the geometric and symmetrical hypothetical reconstructions of the early antiquarians” ([58], pp. 147–148).

We also recognise that there are many instantiations of Avebury. Stones and people have come and gone. Certain, temporally circumscribed, Aveburys are more privileged than others—at least in the minds of archaeologists, cultural heritage managers, residents, and visitors. The late Neolithic for example. Nevertheless, all the other temporally distinctive Aveburys that emerged, and persisted, are equally real. All are ‘true’. In a phytigital nexus we can supplement them individually or compositely. They can produce a view which shows the stones as both slighted and resurrected. Both versions are ‘true’ but not normally pictured simultaneously in a *timeshed*.

To highlight the pluritemporal character of Avebury, in this paper we have visually explored and presented a series of supplementary Frankenstein monsters, alternating between crude and jagged to smooth and airbrushed in their rendering. These renderings

underline the ‘scrunched handkerchief’ analogy of time discussed above. This assemblage is Neolithic, Bronze Age, Iron Age, Medieval and contemporary.

The metaphor of the scrunched handkerchief prompts us to consider that time is messy, but still coordinated; while different points may touch, the fact that this is possible is determined by the physicality of the handkerchief. In a similar sense, we recognise that there can be no legacy data without tie points. Failure to line up our physical tie points pushes at the epistemic threshold between artefact and fact.

As we have also highlighted, images are never ‘innocent’; they carry genealogies of seeing [49,82]. Increasingly, we are witnessing the automation of archaeological digital imaging, and an explosion of social media images in archaeological settings, all being supplemented by widespread production of terrestrial, aerial, and satellite orthographic, multi-, and hyper-spectral, images. Our cyborg collaborators are generating aggregated sets of digitally manipulated images that are stitched together to present a synthetic view that no human could experience directly.

This suggests that the role of the archaeologist in generating these images has been reduced to that of a mere ‘functionary’ [50], someone ‘enslaved’ to, and by, the media technologies they use ([49], p. 270), like the “writer who writes for his pen” ([83], p. 76). Today, at least as far as terrestrial imaging goes, that ‘someone’ is quite often an archaeologist who is trained (or programmed) to compose an overlapping set of views—that, incidentally, conform to millions of other similar excavation plan and section images that have been taken by other archaeologists all over the world for generations—and then press the appropriate button ([84], p. 242). Job done?

Donna Haraway famously remarked that “We are all chimeras, theorized and fabricated hybrids of machine and organism; in short, we are cyborgs” ([85], p. 150). As the ever-growing midden of archaeological images needing to be analysed grows, the balance between the proportion that is delegated to a human archaeologist versus that of their machinic collaborators is shifting considerably. Consequently, cyborgs emerging now are increasingly a blend of mainstream AI (Artificial Intelligence) techniques and a small cohort of specialised archaeological imaging technocrats. One dystopian corollary might be that of a growing cohort of archaeological functionaries whose methodologies and research questions have become enslaved to the techno monsters that Haraway alerted us to so long ago [85]. Indeed, our diffractive Virtual Art/Archaeology approach may be regarded as the monstrous, Frankensteinian hybrid spawn of nonhuman, posthuman, post-photographic cyborgs. We take the alternative view that our cyborgic Virtual Art/Archaeology studies have archaeological, artistic, humanistic, and scientific merit.

We applaud Isto Huvila, who suggests that a monstrous perspective may be critically productive in the analysis of visualisation and social information technologies in general. As Huvila argues convincingly: “Building on Haraway, the fact that photorealistic visualizations or other social information technologies (combining human and machine in one) unfold as monstrous cyborgs means that they have a potential to bring forth a range of new ways of interacting and not interacting with information (i.e., information work practices and/or information literacies) better and worse. To understand their potential and related risks, it is important to delve into the complete entanglement of diverse programmes they are driving and driven by, instead of falling back to a dualism of one programme and its anti-programme” ([81], p. 54).

It is the contention of this paper that a Virtual Art/Archaeology approach is a valid way of keeping both the technocratic and machinic gaze of our latter day ‘uber-archaeologists’ [86] to critical account. By taking a minuscule sample of the masses of available images, or condensed mass legacy images and then subverting them, including their underpinning methods and philosophical basis, we have another transdisciplinary way of holding at least some archaeological cyborgs, and their processes, to account. We suggest that a Virtual Art/Archaeology approach both encourages and acknowledges the importance of creative researchers in search of novel, diffractively critical, ways of perceiving, understanding, and knowing an updated version of the ‘archaeological record’.

Through our experimental practices, we have also attempted to critically analyse widely used digital imaging techniques by adopting a diffractive Virtual Art/Archaeology theoretical approach [87] to deliberately dislocate, disarticulate, repurpose, and disrupt the normative narratives they habitually evince. Along the way, we have diffracted art and archaeological practices, human and nonhuman cognition, separate times, contrasting modes of (re)presenting places and settings and other radically opposed scales of perception, to expose the effects of difference and their different affects. Specifically, we have exposed for critical review those hidden spacetime displacements that lay hidden inside archaeological mass images due to the widespread use of imaging black boxes that continue to structure archaeological practice.

Our diffractive *timesheded* images call for new and previously unfamiliar modes of visualisation and interpretation. However, as Mark Gillings, Piraye Hacigüzeller and Gary Lock argue: "There should be no limit to what is deemed mappable" ([88], p. 12) or, to extend their insight, 'imageable'. The Virtual Art/Archaeology studies presented in this paper should not be thought of as a static record of an object, place, or event. Rather, we offer them as provocations. We hope that more practitioners embrace the idea of developing their own challenging Virtual Art/Archaeology studies that productively unpack, disassemble, and reassemble other digital practices and legacy data to provide new, creative, and affirmatively critical ways of looking at, and novel ways of presenting, temporally flexible, archaeology.

Author Contributions: This is an entirely collaborative transdisciplinary paper with two artists (L.M. and I.D.) and two archaeologists (A.M.J. and P.R.). Conceptualization, I.D., A.M.J., L.M., P.R.; methodology, I.D., A.M.J., L.M., P.R.; software, I.D., A.M.J., L.M., P.R.; validation, I.D., A.M.J., L.M., P.R.; formal analysis, I.D., A.M.J., L.M., P.R.; investigation, I.D., A.M.J., L.M., P.R.; resources, I.D., A.M.J., L.M., P.R.; data curation, I.D., A.M.J., L.M., P.R.; writing—original draft preparation, I.D., A.M.J., L.M., P.R.; writing—review and editing, I.D., A.M.J., L.M., P.R.; visualization, I.D., A.M.J., L.M., P.R.; supervision, I.D., A.M.J., L.M., P.R.; project administration, I.D., A.M.J., L.M., P.R.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Mark Gillings, Josh Pollard and Steve Marshall, who generously shared images in our Frankenstone experiments. Thanks also to our anonymous reviewers, and the issue's editors, for their constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Derrida, J. *The Postcard*; University of Chicago Press: Chicago, IL, USA, 1987.
2. Dawson, I.; Minkin, L. Terminal Hut. In *Making a Mark: Image and Process in Neolithic Britain and Ireland*; Jones, A.M., Diaz Guardamino, M., Eds.; Oxbow Books: Oxford, UK, 2019.
3. Dvořák, T.; Parikka, J. *Photography Off the Scale: Technologies and Theories of the Mass Image*; EUP: Edinburgh, Scotland, UK, 2021.
4. Cubitt, S. Mass Image, Anthropocene Image, Image Commons. In *Photography Off the Scale: Technologies and Theories of the Mass Image*; Dvořák, T., Parikka, J., Eds.; EUP: Edinburgh, Scotland, 2021; pp. 25–40.
5. Malraux, A. *Le Musée imaginaire de la Sculpture Mondiale*; Gallimard: Paris, France, 1952.
6. Johnson, C.D. *Memory, Metaphor, and Aby Warburg's Atlas of Images*; Cornell University Press: New York, NY, USA, 2012.
7. Pederson, T.O. The Image as Agent: 'Comparative Vandalism' as Visual Strategy. 2016. Available online: http://sicv.activearchives.org/w/The_Image_as_Agent:_%27Comparative_Vandalism%27_as_Visual_Strategy (accessed on 14 February 2022).
8. Beale, G.; Reilly, P. Digital Practice as Meaning Making in Archaeology. *Internet Archaeol.* **2017**, *44*. [CrossRef]
9. Beale, G.; Reilly, P. After Virtual Archaeology: Rethinking Archaeological Approaches to the Adoption of Digital Technology. *Internet Archaeol.* **2017**, *44*. [CrossRef]
10. Huggett, J.; Reilly, P.; Lock, G. Whither Digital Archaeological Knowledge? The Challenge of Unstable Futures. *J. Comput. Appl. Archaeol.* **2018**, *1*, 42–54. [CrossRef]

11. Papadopoulos, C.; Reilly, P. The digital humanist: Contested status within contesting futures. *Digit. Scholarsh. Humanit.* **2019**, *35*, 127–145. [\[CrossRef\]](#)
12. Ch'ng, E.; Cai, S.; Zhang, T.E.; Leow, F.-T. Crowdsourcing 3D cultural heritage: Best practice for mass photogrammetry. *J. Cult. Herit. Manag. Sustain. Dev.* **2019**, *9*, 24–42. [\[CrossRef\]](#)
13. Peters, J. Crowdsourcing Culture for 3D: Modeling through Social Media. *Digit. Herit.* 2021. Available online: <https://medium.com/digital-heritage/crowdsourcing-culture-for-3d-modeling-through-social-media-56f743d5557e> (accessed on 4 January 2022).
14. Heinly, J.; Schonberger, J.L.; Dunn, E.; Frahm, J.-M. Reconstructing the World* in Six Days *(As Captured by the Yahoo 100 Million Image Dataset). 2015. Available online: https://openaccess.thecvf.com/content_cvpr_2015/papers/Heinly_Reconstructing_the_World_2015_CVPR_paper.pdf (accessed on 4 January 2022).
15. Stathopoulou, E.K.; Georgopoulos, A.; Panagiotopoulos, G.; Kaliampakos, D. Crowdsourcing Lost Cultural Heritage. *ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.* **2015**, *II-5/W3*, 295–300. [\[CrossRef\]](#)
16. Kamash, Z. Postcards to Palmyra: Bringing the Public into Debates over Postconflict Reconstruction in the Middle East. *World Archaeol.* **2017**, *49*, 608–622. [\[CrossRef\]](#)
17. Vincent, M.L. Crowdsourced Data for Cultural Heritage. In *Heritage and Archaeology in the Digital Age. Quantitative Methods in the Humanities and Social Sciences*; Vincent, M., López-Menchero Bendicho, V., Ioannides, M., Levy, T., Eds.; Springer: Cham, Switzerland, 2017. [\[CrossRef\]](#)
18. Wallace, C. Retrospective Photogrammetry in Greek Archaeology. *Stud. Digit. Herit.* **2017**, *1*, 607–626. [\[CrossRef\]](#)
19. Wallace, C.; Dedik, L.; Minaroviech, J.; Moulou, D. 3D Modeling and Virtual Access of Omega House in the Athenian Agora. In Proceedings of the 22nd International Conference on Cultural Heritage and New Technologies; CHNT: Wien, Austria, 2017.
20. Bec, A.; Moyle, B.; Schaffer, V.; Timms, K. Virtual reality and mixed reality for second chance tourism. *Tour. Manag.* **2021**, *83*, 104256. [\[CrossRef\]](#)
21. Falkingham, P.L.; Bates, K.T.; Farlow, J.O. Historical Photogrammetry: Bird's Paluxy River Dinosaur Chase Sequence Digitally Reconstructed as It Was prior to Excavation 70 Years Ago. *PLoS ONE* **2014**, *9*, e93247. [\[CrossRef\]](#)
22. Weizman, E. *Forensic Architecture: Violence at the Threshold of Detectability*; Zone Books: New York, NY, USA, 2017.
23. Scarlett, A. Interpreting an Improper Materialism: On Aesthesia, Synesthesia and the Digital. *Digit. Cult. Soc.* **2015**, *1*, 111–130. [\[CrossRef\]](#)
24. Ireland, T.; Bell, T. Chasing Future Feelings: A Practice-led Experiment with Emergent Digital Materialities of Heritage. *Mus. Soc.* **2021**, *19*, 149–165. [\[CrossRef\]](#)
25. Latour, B. Foreword. In *Signal, Image, Architecture. (Everything is Already an Image)*; May, J., Ed.; Columbia Books on Architecture and the City: New York, NY, USA, 2019; pp. 15–19.
26. Frow, E. In Images we trust? Representation and Objectivity in the Digital Age. In *Representation in Scientific Practice Revisited*; Coopmans, C., Vertesi, J., Lynch, M., Woolgar, S., Eds.; MIT Press: Cambridge, MA, USA, 2014; pp. 249–267.
27. Huggett, J. Capturing the Silences in Digital Archaeological Knowledge. *Information* **2020**, *11*, 278. [\[CrossRef\]](#)
28. Bailey, D.W. Art // archaeology // art: Letting-go beyond. In *Art and Archaeology: Collaborations, Conversations, Criticisms*; Russell, I., Cochrane, A., Eds.; Springer-Kluwer: New York, NY, USA, 2014; pp. 231–250.
29. Bailey, D.W. Art/Archaeology: What value artistic-archaeological collaboration? *J. Contemp. Archaeol.* **2017**, *4*, 246–256. [\[CrossRef\]](#)
30. Bailey, D.W. Disarticulate–repurpose–disrupt: Art/archaeology. *Camb. Archaeol. J.* **2017**, *27*, 671–701. [\[CrossRef\]](#)
31. Thomas, A.; Lee, D.; Frederick, U.; White, C. Beyond art/archaeology: Research and Practice after the 'creative turn'. *J. Contemp. Archaeol.* **2017**, *4*, 121–129. [\[CrossRef\]](#)
32. Gheorghiu, D. *Art in the Archaeological Imagination*; Oxbow Books: Oxford, UK; Philadelphia, PA, USA, 2020.
33. Gheorghiu, D.; Barth, T. *Artistic Practices and Archaeological Research*; Archaeopress Publishing Ltd.: Oxford, UK, 2019. [\[CrossRef\]](#)
34. Lucas, G. *Making Time: The Archaeology of Time Revisited*; Routledge: Abingdon, UK, 2021.
35. Joyce, R.A.; Gillespie, S.D. Making things out of objects that move. In *Things in Motion: Object Itineraries in Anthropological Practice*; Joyce, R.A., Gillespie, S.D., Eds.; School for Advanced Research Press: Santa Fe, NM, USA, 2015; pp. 3–20.
36. Bailey, G. Time perspectives, palimpsests and the archaeology of time. *J. Anthropol. Archaeol.* **2007**, *26*, 198–223. [\[CrossRef\]](#)
37. Hauser, K. *Shadow Sites: Photography, Archaeology and the British Landscape 1927–1955*; OUP: Oxford, UK, 2007.
38. Offenhuber, D. Data by Proxy—Material Traces as Autographic Visualizations. *IEEE Trans. Vis. Comput. Graph.* **2020**, *26*, 98–108. [\[CrossRef\]](#)
39. Likavčan, L.; Heinicker, P. Planetary Diagrams: Towards an Autographic Theory of Climate Emergency. In *Photography Off the Scale: Technologies and Theories of the Mass Image*; Dvořák, T., Parikka, J., Eds.; EUP: Edinburgh, Scotland, 2021; pp. 211–230.
40. Taylor, R. The crop circle evolves. *Nature* **2010**, *465*, 693. [\[CrossRef\]](#)
41. Olivier, L. *The Dark Abyss of Time: Archaeology and Memory*; Altamira: Walnut Creek, CA, USA, 2011.
42. Nolan, C. Sites of Existential Relatedness: Findings from Phenomenological Research at Stonehenge, Avebury and the Vale of Pewsey, Wiltshire, UK. *Public Archaeol.* **2019**, *18*, 28–51. [\[CrossRef\]](#)
43. Gillings, M.; Pollard, J. *Avebury*; Duckworth: London, UK, 2004.
44. Gillings, M.; Pollard, J. Making megaliths: Shifting and unstable stones in the Neolithic of the Avebury landscape. *Camb. Archaeol. J.* **2016**, *26*, 537–559. [\[CrossRef\]](#)
45. Pollard, J.; Reynolds, A. *Avebury: The Biography of a Landscape*; Tempus: Stroud, UK, 2002.
46. Lucas, G. Archaeology and contemporaneity. *Archaeol. Dialogues* **2015**, *22*, 1–15. [\[CrossRef\]](#)

47. Crellin, R. *Change and Archaeology*; Routledge: London, UK, 2020.

48. McFadyen, L.; Hicks, D. *Archaeology and Photography: Time, Objectivity and Archive*; Bloomsbury Visual Arts: London, UK; New York, NY, USA, 2019.

49. Cubitt, S. *The Practice of Light: A Genealogy of Visual Technologies from Prints to Pixels*; MIT: Cambridge, MA, USA, 2014.

50. Flusser, V. Into the universe of technical images. In *Electronic Mediations*; University of Minnesota Press: Minneapolis, MN, USA, 2011; Volume 32.

51. Derrida, J. *On Grammatology, Corrected ed.*; The Johns Hopkins University Press: London, UK, 1976.

52. Aycock, J. The coming tsunami of digital artefacts. *Antiquity* **2021**, *95*, 1584–1589. [[CrossRef](#)]

53. Reilly, P. Palimpsests of Immortal Assemblages Taken out of Context: Tracing Pompeians from the Void into the Digital. *Nor. Archaeol. Rev.* **2015**, *48*, 89–104. [[CrossRef](#)]

54. Reilly, P.; Todd, S.; Walter, A. Rediscovering and modernising the digital Old Minster of Winchester. *Digit. Appl. Archaeol. Cult. Herit.* **2016**, *3*, 33–41. [[CrossRef](#)]

55. Dawson, I.; Reilly, P. Messy assemblages, residuarity and recursion within a phygital nexus. *Epoiesen* **2019**. [[CrossRef](#)]

56. Hawkes, J. God in the Machine. *Antiquity* **1967**, *41*, 174–180. [[CrossRef](#)]

57. Gillings, M.; Pollard, J.; Strutt, K. The origins of Avebury. *Antiquity* **2019**, *93*, 359–377. [[CrossRef](#)]

58. Pollard, J.; Gillings, M. Romancing the Stones: Towards a virtual and elemental Avebury. *Archaeol. Dialogues* **1998**, *5*, 143–164. [[CrossRef](#)]

59. Pink, S. Going Forward through the World: Thinking Theoretically about First Person Perspective Ethnography. *Integr. Psychol. Behav. Sci.* **2015**, *49*, 239–252. [[CrossRef](#)]

60. Earl, G.; Wheatley, D. Virtual reconstruction and the interpretative process: A case study from Avebury. In *Contemporary Themes in Archaeological Computing*; Wheatley, D., Earl, G., Poppy, S., Eds.; Oxbow Books: Oxford, UK, 2002; pp. 5–15.

61. Falconer, L.; Burden, D.; Cleal, R.; Hoyte, R.; Phelps, P.; Slawson, N.; Snashall, N.; Welham, K. Virtual Avebury: Exploring sense of place in a virtual archaeology simulation. *Virtual Archaeol. Rev.* **2020**, *11*, 50–63. [[CrossRef](#)]

62. Marshall, S. *Exploring Avebury. The Essential Guide*; The History Press: Stroud, Australia, 2016.

63. Buck-Morss, S. *The Dialectics of Seeing. Walter Benjamin and the Arcades Project*; MIT Press: London, UK, 1989.

64. Kjellman-Chapman, M. Traces, Layers and Palimpsests: Dialogics of Collage and Pastiche. *Konsthistorisk Tidskr.* **2006**, *75*, 86–99. [[CrossRef](#)]

65. Smith, I.F. *Windmill Hill and Avebury: Excavations by Alexander Keiller 1925–1939*; Clarendon Press: Oxford, UK, 1965.

66. Gillings, M.; Pollard, J. Non-portable stone artefacts and contexts of meaning: The tale of Grey Wether (www.museums.ncl.ac.uk/Avebury/stone4.htm). *World Archaeol.* **1999**, *31*, 179–193. [[CrossRef](#)]

67. Were, G. Returned not remade: Visuality, authority and potentiality of digital objects in a Melanesian society. In *Time and Its Objects: A Perspective from Amerindian and Melanesian Societies on the Temporality of Images*; Fortis, P., Kuchler, S., Eds.; Routledge: London, UK, 2021; pp. 171–188.

68. Smithson, R. A Provisional Theory of Nonsites. In *Robert Smithson: The Collected Writings*; Flam, J., Ed.; University of California Press: Berkeley, CA, USA, 1996.

69. Minkin, L. Out of our Skins. *J. Vis. Art Pract.* **2016**, *15*, 115–126. [[CrossRef](#)]

70. Crawford, O.G.S.; Keiller, A. *Wessex from the Air*; Clarendon Press: Oxford, UK, 1928.

71. Brophy, K.; Cowley, D.C. *From the Air: Understanding Aerial Archaeology*; Tempus: Stroud, Australia, 2005.

72. Barber, M. *A History of Aerial Photography and Archaeology: Mata Hari's Glass Eye and Other Stories*; English Heritage: Swindon, UK, 2011.

73. Hauser, K. *Bloody Old Britain: O.G.S. Crawford and the Archaeology of Modern Life*; Granta Books: London, UK, 2008.

74. Winton, H.; Grady, D.; Crutchley, S. Archaeology from a distance. Some old and new ways of working for aerial investigation and mapping in the time of COVID-19. *Hist. Engl. Res.* **2020**, *16*, 17–26.

75. Aqdas, S.A.; Hanson, W.S.; Drummond, J. The potential of hyperspectral and multi-spectral imagery to enhance archaeological cropmark detection: A comparative study. *J. Archaeol. Sci.* **2012**, *39*, 1915–1924. [[CrossRef](#)]

76. Opitz, R.; Herrmann, J. Recent Trends and Long-standing Problems in Archaeological Remote Sensing. *J. Comput. Appl. Archaeol.* **2018**, *1*, 19–41. [[CrossRef](#)]

77. James, K.; Nichol, C.J.; Wade, T.; Cowley, D.; Gibson Poole, S.; Gray, A.; Gillespie, J. Thermal and Multispectral Remote Sensing for the Detection and Analysis of Archaeologically Induced Crop Stress at a UK Site. *Drones* **2020**, *4*, 61. [[CrossRef](#)]

78. Zylinska, J. *Nonhuman Photography*; The MIT Press: Cambridge, MA, USA, 2017.

79. May, J. *Signal, Image, Architecture. (Everything is Already an Image)*; Columbia Books on Architecture and the City: New York, NY, USA, 2019.

80. Dostie, M. Commentary. In *Diffracting Digital Images. Art, Archaeology and Cultural Heritage*; Dawson, I., Jones, A.M., Minkin, L., Reilly, P., Eds.; Routledge: Abingdon, UK, 2022; pp. 181–192.

81. Huvila, I. Monstrous Hybridity of Social Information Technologies: Through the Lens of Photorealism and Non-Photorealism, Archaeological Visualization. *Inf. Soc.* **2020**, *37*, 46–59. [[CrossRef](#)]

82. Moser, S.; Smiles, S. *Envisioning the Past. (New Interventions in Art History)*; Blackwell Publishing: Oxford, UK, 2005.

83. Virilio, P. *The Vision Machine: Perspectives*; Indiana University Press: Bloomington, Indiana, 1994.

84. Lucas, G. *Understanding the Archaeological Record*; CUP: Cambridge, MA, USA, 2012.

85. Haraway, D. The promises of monsters: A regenerative politics for inappropriate/d others. In *Cultural Studies*; Grossberg, L., Nelson, C., Treichler, P.A., Eds.; Routledge: London, UK, 1992; pp. 295–337.
86. Wickstead, H. The Uber Archaeologist: Art, GIS and the Male Gaze Revisited. *J. Soc. Archaeol.* **2009**, *9*, 249–271. [[CrossRef](#)]
87. Gillings, M.; Hacigüzeller, P.; Lock, G. On maps and mapping. In *Re-Mapping Archaeology: Critical Perspectives, Alternative Mappings*; Gillings, M., Hacigüzeller, P., Lock, G., Eds.; Routledge: London, UK, 2018; pp. 1–16.
88. Dawson, I.; Jones, A.M.; Minkin, L.; Reilly, P. (Eds.) *Diffracting Digital Images. Art, Archaeology and Cultural Heritage*; Routledge: London, UK, 2022.

ISSN: (Print) (Online) Journal homepage: <https://www.tandfonline.com/loi/gvir20>

Diffracting Digital Images in the Making

Ian Dawson, Ing-Marie Back Danielsson, Andrew Meirion Jones, Louisa Minkin & Paul Reilly

To cite this article: Ian Dawson, Ing-Marie Back Danielsson, Andrew Meirion Jones, Louisa Minkin & Paul Reilly (2022): Diffracting Digital Images in the Making, Visual Resources, DOI: [10.1080/01973762.2022.2123629](https://doi.org/10.1080/01973762.2022.2123629)

To link to this article: <https://doi.org/10.1080/01973762.2022.2123629>

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

Published online: 10 Oct 2022.

Submit your article to this journal

View related articles

View Crossmark data

Diffracting Digital Images in the Making

Ian Dawson, Ing-Marie Back Danielsson, Andrew Meirion Jones, Louisa Minkin and Paul Reilly

This paper presents a diffractive dialogue between ethnographic accounts of imagery, digital or computational imaging, and art and archaeology practices. It develops the notion of images in the making in the context of the digital domain, to discuss what an image is and can be today. It focuses on two digital imaging techniques developed within archaeology and cultural heritage – reflectance transformation imaging and structure from motion photogrammetry – exploring how these techniques play out in heritage and art world contexts and practices. The paper highlights digital images as unstable compositions, and explores how digital images in the making enable us to reconsider the shifting temporal character of the image, and discuss the way in which the digital image forces us to disrupt the representational assumptions bound up in the relationship between the virtual and the actual. The authors argue that the diffractive moments in these encounters between archaeology and art practice disclose the potential of digital imaging to recursively question the complex ontological composition of images and the ability of images to act and affect.

Keywords: Reflectance Transformation Imaging; Structure from Motion Photogrammetry; Ontology; Archaeology; Imagery; Art practices

Introduction

We are artists and archaeologists that teach and do research at universities and art schools. Both separately and jointly we have explored contemporary and prehistoric imagery in a variety of ways. For instance, we have studied images' changing modes of production, their unfolding characteristics and affective affordances, as well as their changing materiality over time and in various contexts. In this paper, we want to juxtapose different accounts of imagery from our disciplines, to explore and draw out new knowledge of what an image is and can be in today's digital era. Our queries are thus ontological. Does the image have an ontological history? Are images timeless or transcendent entities, or does the ontology of images change over time; does it make sense to speak of 'the image' or should we be discussing many different species of image?

The emergence of digital images has sharpened this debate. In his recent book, *Theory of the Image*, Thomas Nail¹ seems to offer a transcendent view of the image. He argues that, in their mutability, digital images offer a way of rethinking the ontology of the image from prehistory to the present day. By contrast, Vilem Flusser argues for the special character of digital images, and draws a sharp distinction between

digital or ‘technical’ images and earlier kinds of image.² Flusser offers an evolutionary sequence based on a series of developmental steps. We see a disagreement, then, about the role of digital images in a historical analysis of the image, and about the relationship of digital imaging techniques to the earliest human image making in prehistory. Should we regard digital or technical images as fundamentally different from previous image making and viewing? Rather than taking a polarised stance on one or the other of these approaches, our method is to instead diffract the analysis of ancient images and non-Western images with and through digital imaging techniques. In doing so, our primary concern is with how images are made and their processes of production, and less with the way in which they circulate, are networked or operationalised, and the possible socio-political consequences thereof.³

In the following, we present a diffractive dialogue between ethnographic and anthropological accounts of imagery, digital or computational imaging, and art and archaeology practices. With Karen Barad, we recognise that diffraction is an approach that troubles dichotomies. By working diffractively, we do not intend to offer a linear historical sequence for the image. Instead, in our view of the image, time ‘is diffracted, broken apart in different directions, non-contemporaneous with itself. Each moment is an infinite multiplicity.⁴ To think about images and time, we begin by focusing on processes of making, reproduction and renewal in digital image production, in traditional non-Western image making and prehistory. We account for two different imaging techniques, reflectance transformation imaging (RTI) and structure from motion photogrammetry (SfM), and how these methods play out in heritage and art world contexts and practices. A case study is finally presented, where experiences of, and experimentation with, RTI results in ‘Dirty RTI’, a heterotopic mirror exposing complex temporalities and a variety of features that become embedded in both RTI processes and outcomes.

Images in the Making: Processes of Renewal

One of the earliest written accounts of image and vision is found in *De Rerum Naturum* by the Roman writer Lucretius.⁵ Building on earlier works by the Greek philosophers Democritus of Abdera and Epicurus, he describes the image as the cause of vision:

I say then that likenesses of things and their shapes are given off by things from the outermost body of things, which may be called, as it were, films or even rind, because the image bears an appearance and form like to visible that, whatever it be, from whose body it appears to be shed, ere it wanders abroad. That we may learn from this, however dull be our wits. First of all, since among things clear to see many things give off bodies, in part; either loose, scattered loosely abroad, even as wood gives off smoke and fires heat and in part more closely knit and packed together, as when now and then the grasshoppers lay aside their smooth coats in summer, and when calves at their birth give off a

cauI from their outermost body, and likewise when the slippery serpent rubs off its vesture on the thorns; for often we see the brambles laden with these wind-blown spoils from snakes. And since these things come to pass, a thin image from things too must needs be given off.

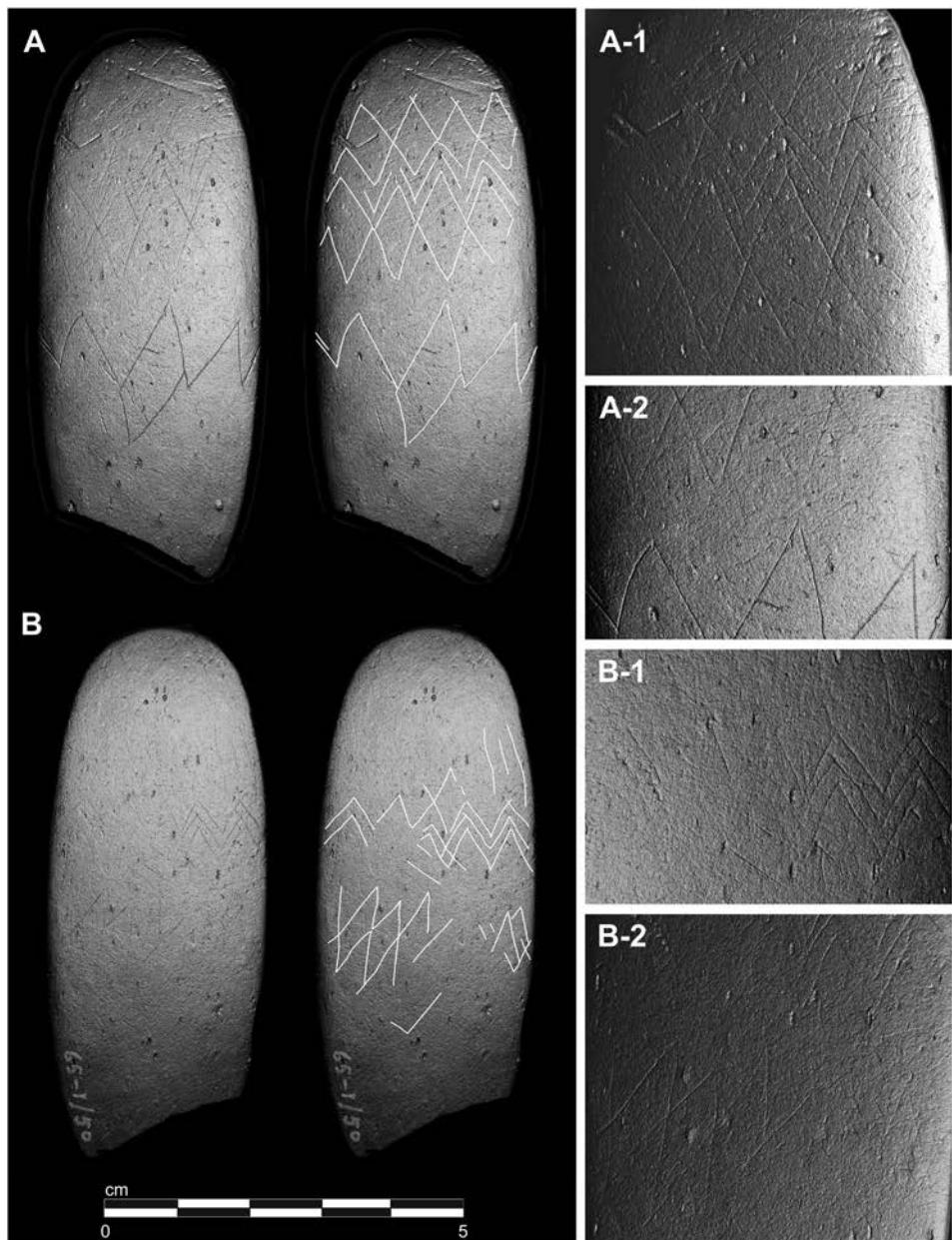
In this passage Lucretius, writing between 99 and 55 BCE, underlines the dynamic cycles of renewal and rebirth involved in image making and viewing. For Lucretius, an image only becomes visible to the human eye because matter, as a 'likeness' or simulacrum in the form of a film, is given off from the image during processes of growth and replenishment. In the context of the anthropology of art, Alfred Gell draws on Lucretius to describe the way in which images may be distributed amongst a social network.⁶ Gell discusses the carved wooden Malangan idols of New Ireland, Melanesia, which are displayed before being burnt at funerals:

The Malangan carving is a skin-idol, which like the 'gossamer coats of cicadas' is distributed in quasi-material form in the memories of onlookers, who internalize the ancestral 'skin' as a new 'skin' of their own, a new skin which anticipates new 'skin' relationships with affinal partners.⁷

Indeed, we should also note that the very means by which we are able to absorb Lucretius' work today was because his words were disseminated and circulated in the Medieval and Renaissance periods through the medium of skins, as Lucretius' text was transcribed onto parchment or vellum.⁸

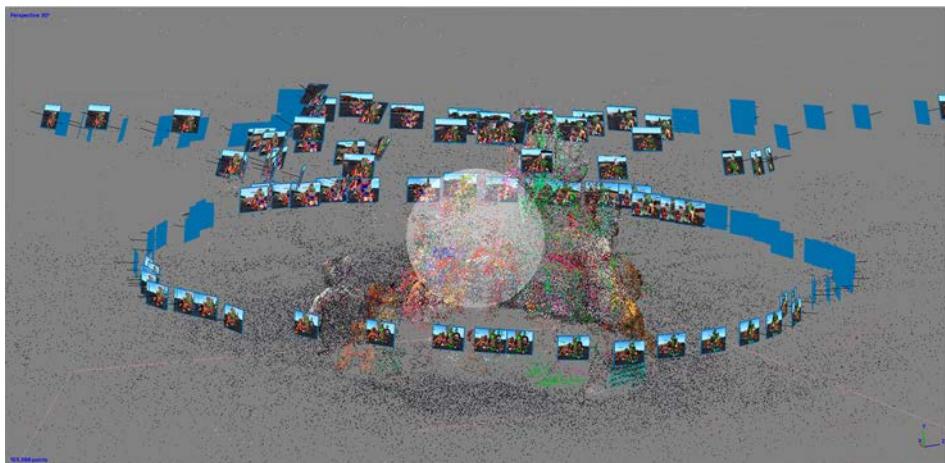
We now turn to other examples of image making and renewal from anthropology. One of the most celebrated examples of the renewal of images known to anthropologists is the ceremonies associated with the remaking of rock art by Indigenous Australians. Describing the repainting of Wandjina figures on rock surfaces by the Wandjina Wungurr community of the Kimberley region, Western Australia archaeologist Martin Porr notes that not only are the acts of retouching and repainting understood as not being initiated by human beings, but rather it is the 'saturated air emanating from the sun-warmed rocks that gives a new life to the painted images'.⁹ Likewise, in the Gulf of Carpentaria region, northern Australia, Amanda Kearny and colleagues note that for one traditional Yanyuwa owner of a rock art site, Tom Reilly Nawurrungu, rock art images are 'not paintings but are something other than paintings: they are the Dreamings associated with this place'.¹⁰ In Indigenous Australian ontologies, images are living entities that continually undergo a process of replenishment, renewal, growth or repainting, a process in which ancestry and knowledge needs to be passed onto future generations.¹¹

In another example, discussing Orthodox Christian icons, Victor Buchli argues that:


Rather than it being an image in a modern sense, the icon is also a relic, both original and copy.¹² It is a copy because it is a reiteration of the prototype and it is a relic because haptically it has direct and physically contagious contact with the prototype, thus becoming a site of physical exchange and contagion with divine power surmounting conventional scales of time and space and producing a universality and undifferentiated presence across time and place.

In other words, the agency, or affectivity, does not rest solely in the (finished) icon. Spiritual practices are not only enacted by the viewer, because the act of making and reiteration is also an act of contemplation and worship. As iconographer Aidan Hart puts it: 'Icons are not only manifestations of heaven to earth ... but are an offer of man to God, a priestly prayer in paint rather than word.'¹³ Barush also notes similar practices in other faiths such as the Thangka painters of Tibetan Buddhism.¹⁴

Similar processes of revitalisation can be discerned in the mark-making traditions of Neolithic Britain and Ireland (dating between 4050 and 2300 BCE). The abstract marks on Neolithic artefacts have puzzled archaeologists brought up in representational traditions of viewing. Using digital imaging techniques such as RTI and SfM, it has been possible to show that marks are often executed with an awareness of their transience and ephemerality.¹⁵ This is true whether marks are made in artefacts of chalk, such as the Folkton Drums, Yorkshire, artefacts of antler, such as the Garboldisham mace head, Norfolk, or artefacts of stone, such as the slate plaques (Figure 1) of the Isle of Man.¹⁶ Marks were not simply made – they were continually re-made. Marks are in a continual process of renewal as mark makers connected and reconnected with the materials they carved.


We have discussed a range of ways in which images renew themselves from Indigenous Australia and Byzantine icons to Neolithic Britain and Ireland. We now wish to diffractively loop back and view these non-Western image-making practices through the means of their documentation: as digital images. In her discussion of the anatomy and pathology of digital images, Louisa Minkin draws our attention to the empty core of digital models, such as those produced using SfM (Figure 2).¹⁷ She notes that 'the surface of identification in a digital model has no thickness and contains nothing'.¹⁸ Digital models are represented by their skins. Like Lucretius' Epicurean model of vision, we view SfM images on the basis of their outer layers or skins, as if sloughed off like snakes. These skins are formalisations of individual instances. One of the interesting things in working this way is that once you have a data set it can be compiled again and again, with different authors producing different results, each a different performance of making, assembly and refitting. A renewal. Each producing an outer skin to be viewed and intra-acted with.

SfM is an adapted and evolved version of conventional stereoscopic photogrammetry. The stereoscope was invented as early as the 1830s, and came into extensive use in America and Europe in the 1860s.¹⁹ Two near-identical analogue photos are slid into an apparatus, a stereoscope, whereby, through specific lenses, a viewer experiences a single image that appears to have depth; that is, a feature or space is rendered in three dimensions. The produced photographic image, the simulacrum, was seen as virtual reality, blurring the boundary between illusion and reality, opening up for ambiguity, disbelief and delight.²⁰ By comparison, the modern SfM technique requires multiple and overlapping photographs, instead of a single stereo pair. The overlapping digital images are needed as input to create a database of extracted features that are used in 3D reconstruction algorithms.²¹ In Figure 2, we can see that a sculpture, in the middle of the screen grab, has been viewed from a wide array of positions, that is, as if photographed by a moving sensor.

Figure 1. RTI and annotation of a Neolithic slate plaque from Ronaldsway, Isle of Man. Courtesy of Manx National Heritage.

Much as digital images made using SfM software may be recompiled afresh, so the digital images made using the RTI software patch together a single image composed from multiple images produced under different lighting conditions.²² In the RTI software, this lighting information is synthesized mathematically, which means that an examiner can analyse the image in a computer by ‘re-lighting’ the object, and enhance

Figure 2 SfM point cloud of a virtual sculpture in process. Screen grab from Agisoft Photoscan. Louisa Minkin, 2020.

the representation of the object's surface mathematically. The manipulation of different lighting allows the digital image to be interrogated, revealing otherwise invisible aspects of surface features on archaeological objects.

This composite image, produced using RTI, enables us to reconsider images more generally. For example, Ing-Marie Back Danielsson and Andrew Meirion Jones discuss images as 'images in the making'.²³ 'Images in the making', in their definition, are conditions of possibility, a means of a 'feeling forth of future potential'.²⁴ Images are a way of assembling, of drawing together or relating, components of the world, and of providing the conditions to make these meaningful relationships visible. We can think of images and imaging as an offspring of Karen Barad's term 'mattering', in which the material world and its meaning is co-constituted by reiterative practices.²⁵

The conception of images as 'in-the-making' presents us with a very different view of images. We have moved away from an idea of the image as a stable or fixed entity. This prototypical view of images posits that, as fixed or stable entities, images can be traced or copied; it is this formulation of the image that seems to be posited by Hito Steyerl's notion of the 'poor image', an image whose prototype gradually degrades as it is repeatedly copied and circulated.²⁶ By contrast, our discussion of a series of anthropological and archaeological case studies, as well as our analysis of contemporary digital imaging techniques, leads us to view images as always in motion, as events or processes that continually emerge and unfold. We wish to underline the visual potency of images by exploring the multi-temporal character of digital imaging techniques used in an art world context.

Unfolding Digital Images

In the RTI shown previously (e.g. Figure 1), the 'subject' is isolated in a featureless bubble of spacetime. Every trace of the apparatus of imaging, photographic crews,

setting, environment and time and duration of the ‘shoots’ is concealed. With no reference to their makers, these digital images are rendered timeless. Sean Cubitt argues that the unacknowledged participants (Flusser’s functionaries), as well as their technical forebears, are ‘enslaved in technologies like the photographic apparatus’ and represent an important ethical issue.²⁷ How can those enslaved in RTIs be emancipated or, at least, acknowledged? The answer, it turns out, lies in the RTI images themselves. To find it, we must first unpack them.

At first glance, RTI scenes appear settled and, perhaps, inevitable. It is commonplace to edit out the fringing shadows and the omnipresent gnomen and ‘obsidian eye’, that is, the highlight cue ball, those witnesses to the incidence of light.²⁸ Light scatter is minimised through black backgrounds. However, despite their apparent timelessness, in the wings of every RTI is a *mise en abyme*, an abyss from which a time dilation emerges even in the most sanitised compositions, and space, time and *choices* are allowed to seep back into the compiled images as soon as it is examined through an RTI viewer – a dancing penumbra, in which shadows, fading in and out of view, indicate that the set was never, and will not likely ever be, entirely static. These effects denote a form of temporal diffraction in which ‘different times bleed through one another’.²⁹

Viewers can manipulate the scene by changing the surface characteristics and lighting arrangements, by making new sets of choices. Indeed, the images, and the set, are not simply still unfolding, they have become volatile and reconfigurable.³⁰ The possibility of (re)configuration,³¹ of rearticulating how the set, the crew and the apparatus are *configured*, implies that these images can, and should, be un/made and re-enacted differently. Indeed, they can be (re)cropped, edited, and recomplied from first principles at any time. Once (re)compiled, the choreography of lighting sequences will be completely recomposed to accompany the individual dexterous hand ballets that are enacted every time an(other) user interactively relights the virtual RTI subject, with swirling gestures of the mouse, to (re)saturate the visible scene with meaning-making highlights and shadows.

This volatile lighting draws our peripheral attention, causing us to glance away from the scene. Unseen, but now on the cusp of apprehensibility,³² the environment, the place and the performers on the shoot start to emerge from the shadows, and the RTI set is revealed as an extensible performative space. In fact, a record of these performative events is auto-archived as reflections on the mirrored spheres used to obtain the incidence of light in each frame of the shoot. These reflections constitute ‘metapictures’, that is, images that reflect on their own making and highlight the relationality of image and beholder,³³ or ‘visual paradata’,³⁴ describing the activities, choices and trade-offs made during the shoot: the location and articulation of the equipment, the operators and their movements. Although these metapictures are nearly always cropped out of the compiled RTI, they still lurk in the original frames used by the RTI-Builder and can therefore be reframed, reconstituted and reanalysed afresh, indefinitely or, at least, as long as technological obsolescence is mitigated by curatorial interventions.

Metapictures are well established in artistic and photographic practice. They appear as early as the fifteenth century in the paintings of Northern Renaissance

artists such as Robert Campin and Jan van Eyck.³⁵ For example, in *Portrait of Giovanni Arnolfini and His Wife*, just above the artist's now iconic signature, 'Johannes de Eyck fuit hic' (Jan van Eyck was here), is a remarkable metapicture. The painted convex mirror reflects, displaces and extends the main scene back through the painting's frame, to the position behind the Arnolfinis' witnesses, who more or less occupy the artist's apparently vacant viewpoint.³⁶ In other words, this heterotopic mirror creates a world within a world in which several contradictory or incompatible places and times can be juxtaposed and mutually transformed.³⁷

Case Study – 'Dirty RTI'

The arrangement of the *Arnolfini Wedding* discussed above provides a wonderful prototype for a subversive form of highlight RTI using a heterotopic mirror which we call 'Dirty RTI' (Figure 3). Dirty RTI exposes the complex temporalities, the local environment and the intrinsic performative aspects of more conventional RTI by also registering the practitioners and the moveable apparatus, step by step, as they work their way about the central subject to record it. In other words, they become embedded in the RTI processes and outcomes.³⁸

This image (Figure 3) is a frame from a compiled Dirty RTI working session in Dawson's studio. The ostensible 'subject' is the tall sculpture in the centre of the scene. A mobile light source, consisting of a halogen lamp, was moved around the

Figure 3. Dirty RTI performance in a plastic studio. Paul Reilly/Ian Dawson 2020.

set by Dawson, dragging an extension cable around with him and moving miscellaneous objects as he traversed the space in darkness. The mirrored surface of the convex security dome on the rear wall provides the highlight reference in each shot. The shoot was conducted remotely via a laptop by Reilly, who directed Dawson on how and where to illuminate the column through the call and recorded the scene at these selected positions by using screen grabs from the video conference screen. The subsequent PTM file charts Dawson's movements, bearing the light on a pole, and drawing the electrical power cable across and through the scene screen. The mirrored trace of Dawson's performance in the *mise en abyme* between the image capture device and the mirror is also attached as an embedded metapicture on the security dome. The main image and the embedded metaimage diffract the interlaced temporalities of the performance. Each individual shot was not an evenly spaced moment where matter was tracked regularly. Rather, the properties that come to matter were re(con)figured in the very making/marketing of time. Each new shot had to be negotiated and configured, and thus contributed uniquely to this diffractive 'image in the making'.

When all the frames in this shoot are brought together, they reveal a world-making in which both we and the things around us emerge as vibrant matter that is continually *in formation*.³⁹ The crew (in the studio and in the remote observation station), the apparatus, the ostensibly central subject matter and the studio are all 'enfolded participants in matters iterative becoming'.⁴⁰ This Dirty RTI image is a refusal by the makers to be self-erased and holds the decisions and gestures of its making within itself, and so acknowledges the material in-formation that is often discarded within editing protocols and processes. In this case, they are central to forming this image, putting into stark contrast those many other images of art, archaeology and cultural heritage which choose to brush away the footprints and the fingerprints of the image maker(s).

Conclusion

The partiality of a singular viewpoint is diversified by contemporary imaging technology. Our eyes are opened to other wavelengths. We add more sensory structures to the optic. The technology itself is intrinsically transdisciplinary, as it is built and modelled by experts and fans from an array of disciplines. Tasks here are collective, and information resides in the overlap. Pixel matching and image stacking are characteristic assembly techniques of contemporary data capture. Information is imbricated like the scales of a fish. Drop a photogrammetric model into the Unity game engine, and every constituent image is produced as a camera. Data capture produces new objects. Informatic forms may be physicalised in print or animated with game engine physics – given qualities, properties, scripts. How does the workflow of physically rendered new content figure new ontologies? In digital spaces, as in indigenous thinking, object hierarchies are situational, and membership in a given class is ambivalent and unpredictable. Can these new data objects be useful in parsing the complexities of emotions, for feeling out inconsistent realities?

This is a sentient zone, characterised by animacy and fluidity between conventionally fixed Western categorisations. We have unsettled objects and counter-images. Forget the game of animal/vegetable/mineral. Instead, think the poem object language of Paul Celan (1920–1970). He deals in petrified oaths, dayblind dice, seed-sense. Think about the parasympathetic nervous system of exchange: mis-stimulation, cross-sensory stimulation. The photic sneeze of the transdisciplinary. In this space we expose what Martin Luther King Jr gloriously called ‘creative maladjustment’.⁴¹

Issues of cultural heritage are seeping from its conventional institutions – museums and archives – into hybrid forms: both a popular culture fascinated with *Horrible Histories* and *Time Team* romance (*Horrible Histories* and *Time Team* are popular British TV programmes on the subject of history and archaeology), and academic and artistic sites of contemporary practice that may intervene in socio-political systems of representation, the vortex of necropolitics.⁴²

Can digital models be considered as proto-objects, overwriting the record? A kind of level violation characterised as posthuman? What movements come to bear in activating new forms of an object in digital spaces, the buffer zones where we may destabilise paradigms? We get motion-sick in VR, accounted for as a disjunction between vision and balance. The nausea induced is symptomatic of the body voiding out poison. Spatial disorientation, hallucination and dissociation are all symptoms of neurotoxins, reminding of the kill or cure therapeutics of the *Pharmakon*. If this space of disassociation is concomitant with the loosening of secure disciplinary, biological and ontological perimeters, we see the need to work through the separation of senses that makes us unsettled, and produce together better models for embodied virtuality as faculties for dream, imagination and knowledge exchange.

We argue then for a re-envisioning of digital images, not as sources for the wholesale rethinking of images,⁴³ nor as markers of a new evolutionary stage of visual interaction,⁴⁴ but as mutable sites of intra-action. Digital images, particularly those produced using techniques like RTI and SfM, are overlapping multi-temporal, multi-agential and multi-spectral places of contestation, dialogue and change.

Acknowledgements

The authors would like to thank the three anonymous reviewers for their most valuable comments on an earlier draft of this paper. We are also grateful to the editors for inviting us to contribute.

Disclosure Statement

No potential conflict of interest was reported by the authors.

IAN DAWSON is a lecturer in Fine Art and Sculpture, Winchester School of Art, UK (I.Dawson@soton.ac.uk).

ING-MARIE BACK DANIELSSON is an associate professor of Archaeology, Department of Archaeology and Ancient History, Uppsala University, Sweden (ing-marie.back_danielsson@arkeologi.uu.se).

ANDREW MEIRION JONES is Professor of Archaeology, Department of Archaeology and Classics, Stockholm University, Sweden (Andrew.jones@ark.su.se).

LOUISA MINKIN is a reader in Visual Arts Practices, Central St Martins, University of the Arts, London, UK (L.minkin@csm.arts.ac.uk).

PAUL REILLY is Visiting Researcher in Archaeology, Department of Archaeology, University of Southampton, UK (P.Reilly@soton.ac.uk).

Notes

- 1 T. Nail, *Theory of the Image* (Oxford: Oxford University Press, 2019).
- 2 V. Flusser, *Into the Universe of Technical Images* (Minneapolis, MN: University of Minnesota Press, 2011).
- 3 G. Cox et al., “Affordances of the Networked Image,” *Nordic Journal of Aesthetics* 61–62 (2021): 40–5; K. Crawford and T. Paglen, “Excavating AI: The Politics of Images in Machine Learning Training Sets,” *AI and Society* 36 (2021): 1105–16; A.S. Hoel, “Operative Images: Inroads to a New Paradigm of Media Theory,” in *Image–Action–Space: Situating the Screen in Visual Practice*, ed. L. Feiersinger, K. Friedrich and M. Queisner (Berlin: De Gruyter, 2018), 11–27; J. Lund, “Questionnaire on the Changing Ontology of the Image,” *Nordic Journal of Aesthetics*, 61–62 (2021): 6–7; A. MacKenzie and A. Munster, “Platform Seeing: Image Ensembles and their Invisibilities,” *Theory, Culture and Society* 36 (2019): 3–22; S. Niederer, *Networked Images. Visual Methodologies for the Digital Age* (Amsterdam: Amsterdam University of Applied Sciences, 2018).
- 4 K. Barad, “Diffracting Diffraction: Cutting Together-Apart,” *Parallax* 20 (2014): 169.
- 5 Titus Lucretius Carus, *Lucretius on the Nature of Things* (London: G. Bell & Sons, 1882).
- 6 A. Gell, *Art and Agency. An Anthropological Theory* (Oxford: Clarendon, 1998).
- 7 Gell, *Art and Agency*, 227.
- 8 D. Butterfield, *The Early Textual History of Lucretius' De rerum natura* (Cambridge: Cambridge University Press, 2013); C.S. Cox, “Chaucer’s Ethical Palimpsest: Dermal Reflexivity in the General Prologue,” in *Writing on Skin in the Age of Chaucer*, ed. N. Nyffenegger and K. Rupp (Berlin: Walter de Gruyter, 2018), 97–118.
- 9 M. Porr, “Country and Relational Ontology in the Kimberley, Northwest Australia: Implications for Understanding and Representing Archaeological Evidence,” *Cambridge Archaeological Journal* 28 (2018): 395–407.
- 10 A. Kearney, J. Bradley, and L.M. Brady, “Nalangkulurru, the Spirit Beings, and the Black Nosed Python: Ontological Self-determination and Yanyuwa Law in Northern Australia’s Gulf Country,” *American Anthropologist* 22 (2020): 1–15.
- 11 A.P. Motta, “From Top Down Under: New Insights into the Social Significance of Superimpositions in the Rock Art of Northern Kimberley, Australia,” *Cambridge Archaeological Journal* 29 (2019): 1–15.
- 12 V. Buchli, “The Prototype: Presencing the Immaterial,” *Visual Communication* 9 (2010): 277.
- 13 K. Barush, “Art History as Spiritual Practice: A Case Study,” *Berkeley Journal of Religion and Theology* 3(2017): 35.
- 14 Barush, “Art History as Spiritual Practice”.

15 A.M. Jones and M. Díaz-Guardamino, *Making a Mark. Image and Process in Neolithic Britain and Ireland* (Oxford: Oxbow, 2019).

16 A.M. Jones et al., “Digital Imaging and Prehistoric Imagery: A New Analysis of the Folkton Drums,” *Antiquity* 89, no. 347 (2015): 1083–95; A.M. Jones, M. Díaz-Guardamino, and R.J. Crellin, “From Artefact Biographies to ‘Multiple Objects’: A New Analysis of the Decorated Plaques of the Irish Sea Region,” *Norwegian Archaeological Review* 49 (2016): 113–33; A.M. Jones et al., “The Garboldisham Macehead: Its Manufacture, Date, Archaeological Context and Significance,” *Proceedings of the Prehistoric Society* 83 (2018): 383–94.

17 L. Minkin, “Out of our Skins,” *Journal of Visual Arts Practice* 15, no. 2–3 (2016): 115–26.

18 Minkin, “Out of our Skins,” 116.

19 N. West, “Fantasy, Photography and the Marketplace: Oliver Wendell Holmes and the Stereoscope,” *Nineteenth-Century Contexts* 19, no. 3 (1996): 231–58.

20 West, “Fantasy, Photography”, 231.

21 M.J. Westoby et al., “Structure-from-Motion’ Photogrammetry: A Low-cost, Effective Tool for Geoscience Applications,” *Geomorphology* 179 (2012): 300–14.

22 T. Malzbender, D. Gelb, and H. Wolters, “Polynomial Texture Maps,” *Proceedings of SIGGRAPH* (2001): 519–28; M.T. Mudge et al., “Image-Based Empirical Information Acquisition, Scientific Reliability, and Long-Term Digital Preservation for the Natural Sciences and Cultural Heritage,” in *Eurographics 2008 – Tutorials*, ed. M. Roussou and J. Leigh (2008). <https://dl.acm.org/doi/pdf/10.1145/383259.383320> (accessed June 29, 2022).

23 I.-M. Back Danielsson and A.M. Jones, “Introduction,” in *Images in the Making. Art, Process, Archaeology* (Manchester: Manchester University Press, 2020), 1–15.

24 E. Manning, *The Minor Gesture* (Durham, NC: Duke University Press, 2016), 47.

25 K. Barad, *Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Meaning* (Durham, NC: Duke University Press, 2007).

26 H. Steyerl, “In Defense of the Poor Image,” *e-flux journal* 10 (2009): 1–9.

27 S. Cubitt, *The Practice of Light* (Cambridge, MA: MIT Press, 2014), 270.

28 B. Behr, “The Paranoic-Critical Method of Reflectance Transformation Imaging,” in ed. I. Dawson, et al., *Diffracting Digital Images. Art, Archaeology and Cultural Heritage* (London: Routledge, 2021): 65–74.

29 K. Barad, “Troubling Time/s and Ecologies of Nothingness: Re-turning, Re-membering, and Facing the Incalculable,” *New Formations* 92 (2017): 68.

30 G. Beale, ”Volatile Images: Authenticity and Representation and Multivocality in Digital Archaeology,” in *Authenticity and Cultural Heritage in the Age of 3D Digital Reproductions*, ed. P. Di Giuseppantonio Di Franco, F. Galeazzi and V. Vassallo (Cambridge: McDonald Institute of Research, 2018), 83–94.

31 L. Suchman, “Configuration,” in *Inventive Methods*, ed. C. Lury and N. Wakeford (London: Routledge, 2012): 48–60.

32 J. Derrida, *Memoirs of the Blind: The Self-portrait and Other Ruins* (Chicago: University of Chicago Press, 1993).

33 W.J.T. Mitchell, *Picture Theory: Essays on Verbal and Visual Representation* (Chicago: University of Chicago Press, 1994); W.J.T. Mitchell, *What Do Pictures Want?: The Lives and Loves of Images* (Chicago: University of Chicago Press, 2005).

- 34 I. Dawson and P. Reilly, “Messy Assemblages, Residuality and Recursion within a Phygital Nexus,” *Epoiesen* (2019), <https://doi.org/10.22215/epoiesen/2019.4> (accessed June 10, 2022).
- 35 D. Hockney, *Secret Knowledge: Rediscovering the Lost Techniques of the Old Masters*, new and expanded ed. (London: Thames and Hudson, 2006).
- 36 Cubitt, *Practice of Light*, 115–18.
- 37 M. Foucault, “Of Other Spaces,” *Diacritics*, 16 (1986): 22–7.
- 38 I. Dawson, “Dirty RTI,” in *Images in the Making* (Manchester: Manchester University Press, 2020): 51–64.
- 39 T. Ingold, T. *Making. Anthropology, Archaeology, Art and Architecture* (London: Routledge, 2013).
- 40 Barad, *Meeting the Universe Halfway*, 181.
- 41 A.M. Allen and C.W. Leach, “The Psychology of Martin Luther King Jr.’s “Creative Maladjustment” at Societal Injustice and Oppression,” *Journal of Social Issues* 74, no. 2 (2018): 317–36.
- 42 A. Mbembe, *Necropolitics* (Durham, NC: Duke University Press, 2019).
- 43 Nail, *Theory of the Image*.
- 44 Flusser, *Into the Universe*.

Full Bibliography

Dawson, Ian and Minkin, Louisa (2014) 'Object Lessons: Copying and Reconstruction as a Teaching Strategy', *Art, Design & Communication in Higher Education*, Vol. 13, No. 1, pp.197-29.

Jones, A., Cochrane, A., Carter, C., Dawson, I., Díaz-Guardamino, M., Kotoula, E., & Minkin, L. (2015). Digital imaging and prehistoric imagery: A new analysis of the Folkton Drums. *Antiquity*, 89(347), 1083-1095. doi:10.15184/aqy.2015.127

Dawson, Ian (2015) *The Wanderer's Nightsong*
// [Artwork/Exhibition/Curation], featuring the work of Gavin Turk, Neil Gall, Kate Atkin, Cathy De Monchaux, Chris Hawtin, and Ian Dawson, at C&C Gallery, London, 3 April - 10 May 2015.

Dawson, I (2015) (Artist and Curator) Elbow and Gallery Residency C&C Gallery London_ 01.08.15-01.09.15 and 4.09.2014-04.10.2015

Dawson, Ian and Minkin, Louisa (2015-17) Taplow House/ Pictures Not Homes / Gestures of Resistance (Artwork/Exhibition/Installation)
Taplow House 29.06.2015-21.08.2015 ASC Gallery, London
Pictures Not Homes 12.01.17- 27.01.17, Winchester School of Art Gallery, UK
Gestures of Resistance 20.04.2017-30.04.2017 Centre Romantso, Athens, Greece

Dawson, Ian (2016-19) 'I.D.2.7.1816' [Artwork], exhibited at Artist Boss, curated by Jenny Dunseath and Mark Wilsher. New Art Centre, Roche Court, Salisbury, 19 November 2016 - 29 January 2017 and Itinerant Objects, curated by Birkin, J. Cid, D, Dawson, I. Manghani, S, Tate Exchange, Tate Modern, London, 5-7 April 2019.

Dawson, Ian and Minkin, Louisa (2017) 'Grave Goods / Objetos funerarios', in Azor, I., Grijalva Maza, L.F., and Gómez Rossi, A.A.R. (eds.) *Más allá del texto: Cultura digital y nuevas epistemologías*. San Andrés Cholula, Puebla, México Ciudad de México: Universidad de las Américas, Puebla ; Editorial Itaca, pp. 205-221.

Dawson, Ian (2017) Annihilation Event (Exhibition) Annihilation Event, Lethaby Gallery London, 22.03.17- 29.03.17

Dawson, Ian (2017) 'Old Minster' [Artwork], exhibited at *Along the Riverrun*, curated by Alex Goulden and George Watson, at ArtSway, 24-30 July 2017 and Lethaby Gallery London, 22.03.17- 29.03.17

Dawson, Ian and Minkin Louisa (2019) 'Terminal Hut', in A.M. Jones and M. Díaz-Guardamino, *Making a Mark: Image and Process in Neolithic Britain and Ireland*. Oxford: Oxbow Books, pp 214-257.

Dawson, Ian and Reilly, Paul (2019) 'Messy Assemblages, Residuarity and Recursion within a Phygital Nexus', *Epoiesen: A Journal for creative engagement in history and archaeology* [online]
<http://dx.doi.org/10.22215/epoiesen/2019.4>

Dawson, Ian (2019) 'Gnomon One' [Artwork], exhibited at Backyard Sculpture, curated by Neil Gall and David Gates, at Domo Baal Gallery, London, 21 June - 20 July 2019

Dawson, Ian (2019) 'Brain Damage' [Artwork], exhibited at Figura; Micro Macro, curated by Alison Woods, David Leapman, Carlos Beltran Arechiga, and Ivana Cekovic, Durden and Ray, Los Angeles USA, 3-24 August 2019, and Neimenster, Centre Culturel de Rencontre Abbaye de Neumünster Luxembourg, 6-29 September 2019.

Dawson, Ian (2020) 'Dirty RTI', in I-M. B. Danielsson and A. M. Jones (eds.) *Images in the Making: Art, Process, Archaeology*. Manchester: Manchester University Press, pp 51-64

Dawson, Ian 2020-22 Metalithic Sculpture Series (Artwork) exhibited in Autumn Attic, Flowers Gallery, Shoreditch London, 12th August -18th September 2021

Patternicity, ASC Gallery London 26th March - 23rd April and Exeter Phoenix Galleries 30th April - 26th June 2022

Crucible Thameside Studio's Gallery, London 8th- 23rd April 2022

Dawson, Ian, Reilly, Paul, Minkin, Louisa, Jones, Andrew. (2021) What is a diffractive digital image? In Dawson, et al. (Eds.), *Diffracting digital images. Art, archaeology and cultural heritage*. London: Routledge.[10.4324/9781003042129-7](https://doi.org/10.4324/9781003042129-7)

Dawson, Ian, and Minkin, Louisa. (2021) Interstitial Images in Dawson, et al. (Eds.), *Diffracting digital images. Art, archaeology and cultural heritage*. London: Routledge.[10.4324/9781003042129-7](https://doi.org/10.4324/9781003042129-7)

Dawson, Ian, Reilly, Paul and Callery, Simon. (2021). Temporal ripples in art/archaeology images. In Dawson, et al. (Eds.), *Diffracting digital images. Art, archaeology and cultural heritage*. London: Routledge.[10.4324/9781003042129-7](https://doi.org/10.4324/9781003042129-7)

Reilly, P., Callery, S., Dawson, I. & Gant, S. (2021). Provenance Illusions and Elusive Paradata: When Archaeology and Art/Archaeological Practice Meets the Phygital. *Open Archaeology*, 7(1), 454-481.
<https://doi.org/10.1515/opar-2020-0143>

Dawson, I and Reilly, P. (2021) Towards a Virtual Art Archaeology Keynote paper at the 4th International Conference on Virtual Archaeology (VA2021-Krasnoyarsk) hosted by The Siberian Federal University & the State Hermitage Museum, September 20 -22 2021 in Krasnoyarsk

Dawson, Ian and Reilly, Paul (2021) Track and Trace, and Other Collaborative Art/Archaeology Bubbles in the Phygital Pandemic. *Open Archaeology*, Vol. 7 (Issue 1), pp. 291-313. <https://doi.org/10.1515/opar-2020-0137>

Dawson, Ian. (2021) The Polymer Chain: plastic itineraries and plastic images in a sociomaterialist assemblage in Parry, B. Jeffery, G. (Eds.), *Waste Work: the art of survival in Dharavi*. Bath Wunderkammer. ISBN 9780993551178

Dawson, I.; Jones, A.M.; Minkin, L.; Reilly, P. Temporal Frankensteins and Legacy Images. *Digital* (2022), 2, 244-266.

<https://doi.org/10.3390/digital2020015>

Dawson, Ian. And Travelling Often In The Cut He Makes, installation and digital video (2022) exhibited at Horizon (Landscape and Beyond). Group Exhibition curated by Alexander Hinks, Cello Factory London 30th June - 10th July 2022

Dawson, I. Back Danielsson, I-M. Jones, A M. Minkin, L. & Reilly, P. (2022) Diffracting Digital Images in the Making, Visual Resources, DOI: [10.1080/01973762.2022.2123629](https://doi.org/10.1080/01973762.2022.2123629)

Professor Andrew Meirion Jones
Department of Archaeology and Classical Studies
Stockholm University
Wallenbergglaboratoriet
SE-106 91 Stockholm
Sweden

28.10.22

Collaborations with Ian Dawson

This letter is to confirm that I have been collaborating with Ian Dawson since 2013. Over the past decade or so we have worked together on the Leverhulme Trust-funded project 'Making a Mark. Image and Process in Neolithic Britain and Ireland' and, together with Louisa Minkin, the Arts and Humanities Research Council-funded 'Concepts have Teeth'. As a result of this project we have also edited a book together, 'Diffraction Digital Images. Archaeology, Art Practice and Cultural Heritage' (Routledge, 2022).

In all of my collaborative work with Ian my role has been as archaeologist, or archaeological consultant, while Ian's role has been to work on the creative and visual output.

Yours Sincerely

A handwritten signature in black ink, appearing to read "Andrew Jones". The signature is fluid and cursive, with a distinctive upward flourish at the beginning.

Andrew Jones, Stockholm University

From: Louisa Minkin l.minkin@csm.arts.ac.uk
Subject: Authorship
Date: 30 October 2022 at 12:58
To: Dawson I. (Art) i.dawson@soton.ac.uk

CAUTION: This e-mail originated outside the University of Southampton.

Ian Dawson and I have collaborated since 2012. We have joint authorship over all our collaborative project work since then.

Louisa Minkin

Reader in Visual Art Practices
Senior Lecturer in Fine Art / Research into Teaching Co-ordinator

University of the Arts London

Central Saint Martins, Granary Building
1 Granary Square, London
N1C 4AA, United Kingdom

Current Projects:

[Concepts Have Teeth](#)
[Mootookakio'ssin](#)
[Imagining Futures](#)

Recent Publications:

[Temporal Frankensteins and Legacy Images](#)
[Diffracting Digital Images: Archaeology, Art Practice and Cultural Heritage](#)

www.csm.arts.ac.uk

This email and any attachments are intended solely for the addressee and may contain confidential information. If you are not the intended recipient of this email and/or its attachments you must not take any action based upon them and you must not copy or show them to anyone. Please send the email back to us and immediately and permanently delete it and its attachments. Where this email is unrelated to the business of University of the Arts London or of any of its group companies the opinions expressed in it are the opinions of the sender and do not necessarily constitute those of University of the Arts London (or the relevant group company). Where the sender's signature indicates that the email is sent on behalf of UAL Short Courses Limited the following also applies: UAL Short Courses Limited is a company registered in England and Wales under company number 02361261. Registered Office: University of the Arts London, 272 High Holborn, London WC1V 7EY

To Whom it may concern,

It has been my pleasure to collaborate with Ian Dawson on a very productive series of art/archaeology projects over several years. Our interactions have revolved around the ontological implications of digital to physical and vice versa (i.e., phygital) transformations of art/archaeology assemblages and their changing materialities and temporalities. Ian's contribution has been central.

The outputs of this collaboration in the last three years includes a steady stream of peer-reviewed and open access research articles in international journals and edited volumes including (in reverse order):

Dawson, I., Back Danielsson, I-M., Jones, A.M., Minkin, L. & Reilly, P. (2022). 'Diffracting Digital Images in the Making', *Visual Resources*, DOI: [10.1080/01973762.2022.2123629](https://doi.org/10.1080/01973762.2022.2123629)

Dawson, I., Jones, A.M., Minkin, I. & Reilly, P. (2022). 'Temporal Frankensteins and Legacy Images', *Digital*, 2(2): 244-266. <https://doi.org/10.3390/digital2020015>

Callery, S., Dawson, I. & Reilly, P. (2022). 'Temporal Ripples in art/archaeology images'. In: Dawson et al (2022a): 97-119.

Dawson, I., Jones, A., Minkin, L. & Reilly, P. (eds) (2022a). *Diffracting Digital Images. Archaeology, Art Practice and Cultural Heritage*. London: Routledge.

Dawson, I., Jones, A., Minkin, L. & Reilly, P. (2022b). 'What is a diffractive digital image?' In: Dawson et al. (2022a): 1-14.

Reilly, P. & Dawson, I. (2021). 'Track and Trace, and Other Collaborative Art/Archaeology Bubbles in the Phygital Pandemic', *Open Archaeology*, 7(1): 291-313. <https://doi.org/10.1515/opar-2020-0137>

Reilly, P., Callery, S., Dawson, I. & Gant, S. (2021). Provenance Illusions and Elusive Paradata: When Archaeology and Art/Archaeological Practice Meets the Phygital', *Open Archaeology*, 7(1): 454-481. <https://doi.org/10.1515/opar-2020-0143>

Reilly, P. & Dawson, I. (2020). 'Towards a Virtual Art/Archaeology', In: Revealing the Past, *Virtual Archaeology: Enriching the Present and Shaping the Future*, Proceedings of the Fourth International Scientific Conference Krasnoyarsk, 20–22 Sep. St Petersburg: State Hermitage Museum.

Dawson, I. & Reilly, P. (2019). 'Messy Assemblages, Residuality and Recursion within a Phygital Nexus', *Epoiesen* <http://dx.doi.org/10.22215/epoiesen/2019.4>

In addition, we have a further two peer-reviewed chapters in press. We have presented our outputs at numerous conferences, seminars and exhibitions.

Yours sincerely

Dr Paul Reilly
Visiting Senior Fellow
Faculty of Humanities, University of Southampton

ORCID: 0000-0002-8067-8991