
Articles
eBioMedicine 2023;▪:
104676

Published Online XXX

https://doi.org/10.
1016/j.ebiom.2023.
104676
Machine learning for abdominal aortic calcification assessment
from bone density machine-derived lateral spine images
Naeha Sharif,a,b,c,r Syed Zulqarnain Gilani,a,b,r David Suter,a,b Siobhan Reid,d Pawel Szulc,e Douglas Kimelman,f Barret A. Monchka,g

Mohammad Jafari Jozani,q Jonathan M. Hodgson,a,h Marc Sim,a,h Kun Zhu,h,i Nicholas C. Harvey,j,k Douglas P. Kiel,l Richard L. Prince,a,h

John T. Schousboe,m,n,s William D. Leslie,o,s and Joshua R. Lewisa,h,p,s,∗

aNutrition & Health Innovation Research Institute, Edith Cowan University, Perth, Australia
bCentre for AI&ML, School of Science, Edith Cowan University, Perth, Australia
cDepartment of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia
dDepartment of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Canada
eINSERM UMR 1033, University of Lyon, Hospices Civils de Lyon, Lyon, France
fDepartment of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
gGeorge and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Canada
hMedical School, The University of Western Australia, Perth, Australia
iDepartment of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Perth, Australia
jMRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, United Kingdom
kNIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation
Trust, Southampton, United Kingdom
lHinda and Arthur Marcus Institute for Aging Research, Hebrew Senior Life, Department of Medicine, Beth Israel Deaconess Medical
Center, Harvard Medical School, Boston, MA, USA
mPark Nicollet Clinic and HealthPartners Institute, HealthPartners, Minneapolis, USA
nDivision of Health Policy and Management, University of Minnesota, Minneapolis, USA
oDepartments of Medicine and Radiology, University of Manitoba, Winnipeg, Canada
pCentre for Kidney Research, Children’s Hospital at Westmead School of Public Health, Sydney Medical School, the University of Sydney,
Sydney, Australia
qDepartment of Statistics, University of Manitoba, Winnipeg, Canada

Summary
Background Lateral spine images for vertebral fracture assessment can be easily obtained on modern bone density
machines. Abdominal aortic calcification (AAC) can be scored on these images by trained imaging specialists to
assess cardiovascular disease risk. However, this process is laborious and requires careful training.

Methods Training and testing of model performance of the convolutional neural network (CNN) algorithm for
automated AAC-24 scoring utilised 5012 lateral spine images (2 manufacturers, 4 models of bone density machines),
with trained imaging specialist AAC scores. Validation occurred in a registry-based cohort study of 8565 older men
and women with images captured as part of routine clinical practice for fracture risk assessment. Cox proportional
hazards models were used to estimate the association between machine-learning AAC (ML-AAC-24) scores with
future incident Major Adverse Cardiovascular Events (MACE) that including death, hospitalised acute myocardial
infarction or ischemic cerebrovascular disease ascertained from linked healthcare data.

Findings The average intraclass correlation coefficient between imaging specialist and ML-AAC-24 scores for 5012
images was 0.84 (95% CI 0.83, 0.84) with classification accuracy of 80% for established AAC groups. During a
mean follow-up 4 years in the registry-based cohort, MACE outcomes were reported in 1177 people (13.7%). With
increasing ML-AAC-24 scores there was an increasing proportion of people with MACE (low 7.9%, moderate
14.5%, high 21.2%), as well as individual MACE components (all p-trend <0.001). After multivariable adjustment,
moderate and high ML-AAC-24 groups remained significantly associated with MACE (HR 1.54, 95% CI 1.31–1.80
& HR 2.06, 95% CI 1.75–2.42, respectively), compared to those with low ML-AAC-24.

Interpretation The ML-AAC-24 scores had substantial levels of agreement with trained imaging specialists, and was
associated with a substantial gradient of risk for cardiovascular events in a real-world setting. This approach could be
readily implemented into these clinical settings to improve identification of people at high CVD risk.
*Corresponding author. Nutrition & Health Innovation Research Institute, Edith Cowan University, Perth, Australia.
E-mail address: joshua.lewis@ecu.edu.au (J.R. Lewis).
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Research in context

Evidence before this study
We searched Google Scholar twice up to July 28, 2022, for
literature published up to June 30, 2022, with no language
restrictions, using the keywords “abdominal aortic calcification”
and “vertebral fracture assessment”, and “machine learning” or
“artificial intelligence”. The literature was scarce with only three
published studies and a preprint (2020) retrieved. All studies
utilised lateral spine imaging from a single bone density machine
manufacturer, had 1300 or fewer labelled images for
development, validation and testing, and all reported internal
performances of the abdominal aortic calcification (AAC)
algorithms without external validation.

Added value of this study
AAC scoring from bone density machine images is
laborious and requires careful training. As a result, AAC

scoring is not routinely performed when these images are
acquired in clinical practice. Our study developed, validated
and tested machine learning algorithms for AAC
assessment and evaluated it in a real-world setting using a
registry study of 8565 older men and women. We
demonstrated greater ML-AAC-24 scores were associated
with substantially higher cardiovascular disease risk and
poorer long-term prognosis.

Implications of all the available evidence
This ML-AAC-24 scoring demonstrated promising
performance, that may seamlessly add screening for
cardiovascular disease risk in people undertaking bone
density assessment where more costly, time-consuming or
invasive tests may not be warranted.
Introduction
Thoracolumbar lateral spine images can be easily ob-
tained at the time of bone densitometry on modern
dual-energy X-ray absorptiometry machines, with sub-
stantially lower radiation than standard radiographs.
Increasingly, these images are obtained at the time of
bone mineral density (BMD) testing for trained imaging
specialists to identify clinically unrecognised vertebral
fractures.1 These asymptomatic fractures are associated
with high future fracture risk,2 appropriately increased
utilisation of fracture prevention medications3 and can
be used to develop a baseline so new vertebral fractures
can be identified, with appropriate treatment initiated.4

In addition to the identification of vertebral fractures,
abdominal aortic calcification (AAC) can be visually
identified and semi-quantified using either an 8 (AAC-8)
or a 24-point (AAC-24) system,5,6 by trained imaging
specialists. This scoring is based on the linear length of
calcified aortic wall relative to the height of the lumbar
vertebrae.7,8 AAC-24 is the most widely used method,
with the scores shown to be associated with athero-
sclerosis in other vascular beds,9 as well as higher future
risk of coronary, cerebrovascular and cardiovascular
disease (CVD) in older men and women.7,10 A recent
meta-analysis of prospective studies, found in studies
from the general population, the more extensive the
AAC the higher the risk of future cardiovascular events
and all-cause mortality.11 More recently AAC has been
shown to be associated with higher healthcare costs in
older men, greater long-term decline in muscle
strength, increased falls and fracture risk people.12–16

These findings suggest AAC assessment may provide
clinically important information on multiple chronic
vascular and metabolic health conditions.

A major impediment to the use of AAC more widely
has been the time-consuming nature of assessment,
exacerbated by the lack of availability of trained readers.
As such, recent efforts have focussed on whether ma-
chine learning (ML) may be applied to these images to
identify and assess the extent of AAC. To date, these
efforts have been limited to lateral spine images from
single manufacturers, with relatively small datasets of
available images annotated by trained imaging
specialists.

We therefore sought to train and test ML algorithms
for the automated assessment of AAC. We used a large
collection of lateral spine images with AAC-24 scored by
an imaging specialist, with over 15 years of experience
reading these images. Moreover, we assessed the per-
formance of our model on test image sets acquired from
various generations of Hologic and GE machines,
comprising the majority of DXA machines in clinical
use. We then investigated whether these machine
learning AAC-24 (ML-AAC-24) scores were associated
www.thelancet.com Vol ▪ ▪, 2023
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with clinical cardiovascular outcomes in a real-world
setting, where these images are captured as part of the
routine clinical care.
Methods
Ethics statement
De-identified labelled (AAC-24 scores) and unlabelled
images were sourced for the ML (Project number: 03349
LEWIS) from a number of existing studies collecting
VFAs. For the Perth Longitudinal Study of Ageing
Women, written informed consent was obtained from
all participants for the study and follow up of electronic
health records at baseline. The Human Ethics Com-
mittee of the University of Western Australia approved
the study protocol and consent form (approval number
05/06/004/H50). The Human Research Ethics Com-
mittee of the Western Australian Department of Health
also approved the data linkage study (approval number
#2009/24). For other Hologic images the Health-
Partners Institutional Review Board [IRB] [#A20-149])
approved the use of the de-identified Hologic images
or the ethics approval for the study was granted by the
Edith Cowan University Human Research Ethics Com-
mittee (Project number: 20513 HODGSON). For the GE
images the study was approved by the Health Research
Ethics Board for the University of Manitoba (HREB
H2004:017L, HS20121). The Manitoba Health Infor-
mation Privacy Committee approved access to the
Manitoba data and waived the requirement for signed
consent (HIPC 2016/2017–29). The authors acknowl-
edge the Manitoba Centre for Health Policy for use of
data contained in the Population Health Research Data
Repository. The results and conclusions are those of the
authors and no official endorsement by Manitoba
Health and Seniors Care, or other data providers is
intended or should be inferred.

AAC assessment
De-identified bone density machine-derived lateral
spine images were available from four different models
of bone density machine from the two largest bone
density machine manufacturers: Hologic Inc (Bedford,
MA, USA), and GE (GE Healthcare, Madison WI). De-
tails of the datasets used are summarised in
Supplementary Table S1 and Section 1. The current
work was based on digitally enhanced lateral thor-
acolumbar spine images to assess the Kaupilla AAC-24
point semi-quantitative scoring method (AAC-24), as
this is the most widely used method and has higher
intra-rater reliability (Intra-class correlations coefficients
[ICC] above 0.9) compared to AAC-8 scoring (ICC
0.8–0.9).5,17,18 All Hologic images were scored by J.T.S.
whilst GE images were assessed by two readers trained
by J.T.S. with J.T.S. as a referee for difficult or uncertain
images. The intraclass correlation coefficient between
raters in a random subset (10%) of the GE images was
www.thelancet.com Vol ▪ ▪, 2023
0.9.19 Briefly, to calculate the AAC-24 point scores, the
aorta is divided into 8 segments: four (4) on the anterior
wall of aorta adjacent to L1, L2, L3, and L4, and four on
the posterior wall. Each segment is assessed for the
extent of calcification by judging the length of the
calcification visible. A segment can receive a maximum
score of 3 and a minimum of 0. If two-thirds or more of
the aortic wall in a segment is calcified, it is scored as 3.
If more than one-third and less than two-thirds of the
wall is calcified, it is scored as 2. If one-third or less of
the aortic wall is calcified, it is scored as 1. A score of
0 means that t no calcification is present.

EfficientNet for AAC quantification
The lateral spine images used in this work were pre-
processed before being input into the machine
learning model with only the AAC-24 scores used for
training/validation/testing. Only single-energy (SE) im-
ages are available for the Hologic machines, whereas for
GE machines both single- and dual-energy (DE) images
were available. We have used a regression network to
predict continuous outcome i.e., AAC score, given the
image features. Supplementary Fig. S1 gives an over-
view of our framework, which comprises of i) image
preprocessing, ii) feature extraction and iii) regression
modules. For feature extraction, we use pre-trained
EfficientNet-B3, which is one of the most efficient and
high performing networks. We experimented with
different versions of EfficientNets such as EfficientNet-
B0, EfficientNet-B1, EfficientNet-B3 and EfficientNet-
B4, and observed that for our datasets EfficientNet-B3
(12M parameters) achieved the best performance.
Therefore, we chose EfficientNet-B3 as a backbone
model for feature extraction in our framework, we refer
the reader to the EfficientNet citation20 for further details
of the network architecture. We replaced the last fully-
connected convolutional layer of a pre-trained Effi-
cientNet-B3 model, with a custom designed regression
network. Our regression network predicts total AAC
score on a continuous scale, ranging from 0 to 24, and is
comprised of.

• two dense layers with Batch normalisation and
Rectified Linear Unit (ReLU) activation function and,

• a fully connected final layer with linear activation

We optimised our network for Mean Squared Error
loss, which is formalised as:

MSE = 1
n
∑
1

i=1

(Yi −Zi)2

where, n is the total number of training images, Yi and
Zi are the ML computed and ground truth scores,
respectively. The ML computed scores are further
3
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categorised into three classes: low, moderate, and high
using the following thresholding strategy:

f (Zi) = 0(low), if Zi < 2

f (Zi) = 1(moderate), if 2 ≤ Zi<6

f (Zi) = 2(high), if Zi ≥ 6

Our model regresses upon the ground truth AAC-24
scores, i.e., it tries to predict a continuous output value
which is as close as possible to that of the given input
image. Regression outcome may be preferred over a
direct classification (only three possible outcomes) as
the approach to map the input images to the ground
truth scores (human assessed scores) makes it easier to
measure the distance between the predicted values and
ground truth. The continuous measure of error can be
easily interpreted and compared across different
models, making it a better choice for understanding the
error of a score compared to classification. The pre-
trained EfficientNet-B3 was fixed after pre-training and
was not trained together with the regression module. To
effectively analyse the reliability and generalisability of
our approach, we first trained our model on the SE
images from the Hologic-4500A dataset (n = 1914) and
then independently tested it on the SE images from the
Hologic Horizon (n = 508). The scans from GE have a
GE SmartScan feature limiting the field of view to
reduce radiation dose. This appears as a black mask on
the regions surrounding the spine and aorta. To help
our model adapt to GE scans, we fine-tuned it using a
combination of 2331 iDXA and Lunar Prodigy scans
from the Manitoba bone density registry. To account for
the disbalance in the different AAC categories in the
training dataset, we performed 10-fold stratified cross
validation. 10-fold stratified cross validation involved
splitting the sets of images into 10 random sets (folds)
such that each set maintains the same distribution of
AAC scores. Each time the model is trained on 9 folds
and tested on the remaining (10th) one. This process is
repeated 10 times and then the average performance of
the model is reported. Details of various hyper-
parameters including, learning rate, batch size, cross-
validation technique and the number of neurons in
the fully connected layers of our regression network, are
given in the Supplementary Text Section 2.

Studies with clinical outcomes
Clinical outcome data were available in two studies. The
first was a prospective cohort study of Hologic 4500A
lateral spine images where labelled images from
1998/1999 and 2003/2004 were available for training/
testing and for comparison to imaging expert AAC
scores for 15-year CVD and all-cause mortality
outcomes. Unlabelled images from 2008 (not used for
algorithm development) were available for 582 partici-
pants to determine the association with 5-year CVD and
all-cause mortality outcomes. Cohort characteristics of
women with AAC scores have been published previ-
ously.9,10 The second study was the Manitoba Bone
Density Program database, a registry-based study in the
Province of Manitoba, Canada. Since 2010, VFA images
were included in the DXA assessment for qualifying
individuals using the following criteria: T-score
of ≤ −1.5 (minimum at the lumbar spine, total hip, or
femoral neck) plus; a) age ≥70 years; b) age 50–69 years
and historical height loss (recalled young adult height
minus current height) > 5 cm, or measured height loss
>2.5 cm, or glucocorticoid exposure for at least 3
months over the past year. All scans were performed
with fan-beam DXA instruments (Lunar Prodigy or
iDXA, GE Healthcare, Madison WI). Unlabelled lateral
spine images were available from 8565 men and women
(April 2010–March 2017). These images had no imaging
expert scores and were not used for model development
or evaluation. Manitoba cohort characteristics and
covariates are provided in Supplementary Table S2 and
Supplementary Text Section 3.

Cardiovascular outcomes
Perth longitudinal study of ageing women (PLSAW). Mor-
tality data were retrieved from the Western Australian
Data Linkage system from January 1998 to December 31st
2013 as described previously.21 Cardiovascular mortality
codes included International Classification of Diseases,
Ninth Revision, Clinical Modification (ICD-9-CM) codes
390–459 until 1999 and then International Classification
of Diseases, Tenth Revision, Australian Modification
(ICD-10-AM) codes I00–I99 thereafter. The search for
codes included all available diagnostic information that
comprised Parts 1 and 2 of the death certificate. All diag-
nosis text fields from the death certificate were used to
ascertain the cause(s) of deaths where these coded death
data were not yet available.

Manitoba registry. The primary outcome was major
adverse cardiovascular event (MACE) defined as all-cause
mortality recorded in Vital Statistics, hospitalisation for
acute myocardial infarction, or hospitalisation for non-
hemorrhagic cerebrovascular disease occurring after
VFA (index date). Secondary outcomes were incident
hospitalisations for coronary artery disease, coronary
revascularisation, congestive heart failure, or peripheral
arterial disease, including a composite of any secondary
endpoint. We also identified cardiovascular diagnoses
that occurred prior to the index date using a look back to
1984. All diagnoses were based upon hospital discharge
abstracts ([ICD-9-CM] prior to 2004 and International
Classification of Diseases, Tenth Revision, Canadian
Enhancements [ICD-10-CA] thereafter, diagnosis codes
www.thelancet.com Vol ▪ ▪, 2023
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summarised in Supplementary Table S3). Outcomes
were assessed from routine prospectively collected linked
administrative data which does not require subject
participation or response.

Statistical analysis. We evaluated our model on four
test sets (4500A, Hologic Horizon, GE Prodigy and GE
iDXA), by examining the Pearson correlation of the ML
computed AAC scores (ML-AAC-24) with the ground
truth (imaging specialist) assessment (AAC-24). When
looking at the agreement by Cohen’s weighted Kappa
(linear) for AAC-24 scores we rounded these values to
whole numbers to reflect the imaging specialist scoring
and used the results from the dual-energy images for
GE machines. We then assessed the performance of our
model in terms of accurately classifying images into low,
moderate, and high categories, based on their AAC
scores. The AAC score thresholds for the three cate-
gories were defined as: i) Low (AAC-24 score<2), ii)
Moderate (AAC-24 score≥2 to <6) and ii) High (AAC-24
score ≥6) based on previous publications.7,9,10 To mea-
sure agreement in the two or three group analysis we
used Cohen’s Kappa. Classification performance was
assessed using metrics such as accuracy, sensitivity,
specificity, Positive Predictive Value (PPV), Negative
Predictive Value (NPV), and Intra-Class Correlation
(ICC) (one-way random effects). In PLSAW age-adjusted
Hazard ratios (HR) with 95% confidence intervals (CI)
for sustaining a cardiovascular or any death during
follow-up were estimated using Cox proportional haz-
ards models. For the Manitoba registry, Cox models
were also used to estimate HRs and 95% CI for sus-
taining MACE during follow-up. Observations were
censored for migration out of province or end of follow-
up (March 31, 2018). A partially adjusted model (age and
sex) and a fully adjusted model (all covariates listed
above) were used to estimate HRs for moderate vs. low
predicted AAC severity and high vs. low predicted AAC
severity. Additional models were tested in which in-
dividuals with prior cardiovascular diagnosis (myocar-
dial infarction or cerebrovascular disease) were
excluded. Similar analyses were performed examining
the individual MACE endpoints and the secondary
endpoints. Statistical analyses were performed with IBM
SPSS for Windows (Version 27) and Stata software,
version 14 (StataCorp LLC, College Station, Texas,
USA). The proportional hazards assumption was
confirmed from graphical analyses and the Schoenfeld
residuals. For all analysis, p < 0.05 in two tailed testing
was considered statistically significant.

Role of funders
None of the funding agencies had any role in the
conduct of the study; collection, management, analysis,
or interpretation of the data; or preparation, review, or
approval of the manuscript.
www.thelancet.com Vol ▪ ▪, 2023
Results
Combined dataset of labelled images
Fig. 1 presents the Pearson correlations (r) between the
ground-truth (imaging specialists labelled AAC-24) and
ML-AAC-24 scores across all test sets. In the combined
dataset (n = 5012) the agreement (Cohen’s weighted
kappa) was substantial (0.61), intra-class correlation co-
efficient ICC (One-way random) between the ML and
imaging specialist AAC-24 scores for all four test sets
combined was 0.84 (95% CI [0.83, 0.84]), with a Pearson
correlation of 0.86. When looking at the three established
AAC groups (low, moderate, and high) the average clas-
sification accuracy was 80%, with two group performance
provided in Supplementary Table S4.

Hologic bone density machines
The Cohens weighted Kappa for the Hologic-4500A and
Horizon test scans were 0.51 and 0.56, respectively. The
ICCs were 0.76 (95% CI [0.74, 0.78]) and 0.82 (95% CI
[0.78, 0.84]), respectively. The trained model had an
average classification accuracy of 76–83% for the estab-
lished AAC groupings (low, moderate, and high) for the
two Hologic test sets (Table 1, Fig. 2). The performance of
the ML-AAC-24 model to identify established two group
cut points (low vs. moderate-extensive and low-moderate
vs. extensive) are presented in Supplementary Table S4.

GE bone density machines
The linear correlations of the models which were inde-
pendently fine-tuned on DE and SE images of the
Manitoba registry, are shown in Fig. 1 (DE only) and
Supplementary Fig. S2 (SE only). The model achieved a
higher performance on iDXA SE and DE images
compared to Lunar Prodigy. The Cohens weighted
Kappa for the Prodigy and the iDXA were 0.50 and 0.70.
The ICC between the ML and imaging specialist AAC
scores on the iDXA test set was 0.90 (95% CI 0.89, 0.91)
for both SE and DE. ICCs between the ML-AAC-24 and
imaging specialist scores on the Lunar Prodigy test set
were 0.78 (95% CI 0.75, 0.81) for DE and 0.73 (95% CI
(0.69, 0.76) for SE. Additional quantitative scores of the
models trained on DE scans are shown in Table 1, Fig. 2
and SE scans in Supplementary Table S5.

Clinical outcomes–Perth longitudinal study of
ageing women
To determine if ML-AAC-24 scores had a similar asso-
ciation with clinical events we tested the association
between in ML-AAC-24 with 15-year CVD (n = 266) and
all-cause mortality (n = 419) in 1082 women. Women in
the high ML-AAC-24 group (vs. lowest) had a HR for
CVD death of 2.17, 95% CI 1.49–3.15 vs. imaging
specialist high AAC HR 1.66, 95% CI 1.21–2.29. Similar
results were seen for all-cause mortality high ML-AAC-24
group 1.79, 95% CI 1.31–2.45 vs. expert assessed high
AAC group HR 1.57, 95% CI 1.22–2.02. In 582 women
(mean age 84.7 years ± 2.4 years) with images obtained in
5
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Fig. 1: Scatter plots of imaging specialist assessments of AAC-24 scores (a) vs. the ML-AAC-24 scores for Hologic-4500A (training), (b) Hologic
Horizon (testing), (c) GE Lunar Prodigy dual-energy (fine tuning & testing) and (d) GE iDXA dual-energy (fine tuning & testing). The blue line
represents the regression line and ‘r’ is the Pearson correlation coefficient. Below each plot is the confusion matrix for three-class classification
of the AAC scores. Each coloured shape represents an individual data point.
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Hologic-4500A (SE) (n = 1914) Low AAC (n = 764) Moderate AAC (n = 714) High AAC (n = 436) Average

Accuracy (%) 77.5 64.4 86.1 76.0

Sensitivity (%) 70.4 68.8 45.0 61.4

Specificity (%) 82.3 61.8 98.2 80.8

Negative predictive value (%) 80.7 76.9 85.8 81.1

Positive predictive value (%) 72.5 51.7 87.9 70.7

Hologic horizon (SE) (n = 508) Low AAC (n = 293) Moderate AAC (n = 165) High AAC (n = 50) Average

Accuracy (%) 77.4 74.2 96.5 82.7

Sensitivity (%) 80.2 62.4 76.0 72.9

Specificity (%) 73.5 79.9 98.7 84.0

Negative predictive value (%) 73.1 81.5 97.4 84.0

Positive predictive value (%) 80.5 59.9 86.4 75.6

GE lunar prodigy (DE) (n = 817) Low AAC (n = 397) Moderate AAC (n = 181) High AAC (n = 239) Average

Accuracy (%) 75.9 69.9 84.0 76.6

Sensitivity (%) 77.1 43.1 61.1 60.4

Specificity (%) 74.8 77.5 93.4 81.9

Negative predictive value (%) 77.5 82.7 85.3 81.9

Positive predictive value (%) 74.3 35.3 79.3 63.0

GE iDXA (DE) (n = 1773) Low AAC (n = 756) Moderate AAC (n = 408) High AAC (n = 609) Average

Accuracy (%) 87.0 78.7 89.3 85.0

Sensitivity (%) 86.8 54.4 81.4 74.2

Specificity (%) 87.1 86.0 93.4 88.8

Negative predictive value (%) 89.9 86.3 90.6 88.9

Positive predictive value (%) 83.4 53.8 86.6 74.6

aThe algorithm was trained on Hologic 4500A (SE), fine-tuned on GE Lunar Prodigy and iDXA and tested on all datasets. Abbreviations; AAC Abdominal Aortic Calcification,
AAC-24 Abdominal Aortic Calcification 24-point scores, DE Dual-energy, SE Single-energy, GE General Electric.

Table 1: Test characteristics on Hologic and GE test sets.a

Articles
2008 without no imaging specialist AAC-24 assessment
women with high ML-AAC-24 score had similarly higher
relative hazards of CVD mortality (aHR 2.24, 95% CI
1.22–4.14) and all-cause mortality (aHR 1.66, 95% CI
0.99–2.80) vs. those with a low ML-AAC-24 score.

The Manitoba registry-based study
Baseline characteristics for the outcomes assessment
cohort are summarised in Supplementary Table S2.
Increasing ML-AAC-24 score showed expected associ-
ations with increasing age, smoking, diabetes, previ-
ous cardiovascular diagnoses, hypertension diagnosis,
and cardiac medications. During a mean follow-up 4
years, 1177 (13.8%) met the primary MACE outcome.
The incidence of MACE was 7.9% in those with low
ML-AAC, 14.5% in those with moderate ML-AAC-24
and 21.2% in those with high ML-AAC-24 (Fig. 3),
corresponding to rates of 19.1, 37.9 and 61.7 per 1000
person-years, respectively. Similar trends were seen
for the individual endpoints of death, myocardial
infarction and cerebrovascular disease, as well as each
of the secondary endpoints (all p for trend <0.001).
Kaplan–Meier event-free survival for MACE, and its
constituents (all-cause mortality, acute myocardial
infarction and ischemic cerebrovascular events)
showed separation in the curves that occurs from the
outset of the observation with widening separation to
www.thelancet.com Vol ▪ ▪, 2023
the end of follow-up (Supplementary Fig. S3). Table 2
shows HRs for ML-AAC-24 score adjusted for age and
sex, multiple covariates, and after excluding indi-
viduals with a prior cardiovascular diagnosis for the
same condition.

Discussion
Medical image analysis such as segmentation or local-
isation of lower lumber regions may be useful in accu-
rately predicting AAC 24-point scores. However, such
analysis is dependent on the availability of ground truth
annotations for the lumber regions, which is very
expensive to acquire at scale. The low resolution of VFA
scans and presence of artefacts further adds to the
complexity of localisation and identification of lumber
regions and aortic wall. On the other hand machine
learning models leverage data examples to learn the
useful features to predict the overall AAC scores, without
the need of other intermediate steps. In this study, we
found good levels of agreement between imaging
specialist and ML-AAC-24 scores across DXA machines
from different manufacturers that have been widely used
over the last three decades. We also observed high levels
of accuracy (76–85%), with only 3% of manually-assessed
individuals with high AAC-24 being incorrectly classified
as low by the CNN. This is notable as these are the in-
dividuals with the greatest extent of disease and highest
7
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Fig. 2: Qualitative performance of the model on side-by-side images without activation map (left) and with activation map (right) on (a) single-
energy test images from Hologic Horizon test sets (top four pairs); (b) single and dual energy test images captured from Lunar Prodigy and
iDXA machines (bottom four pairs).
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risk of fatal and non-fatal cardiovascular events and all-
cause mortality.11 There were also few individuals (1%)
who were manually classified as low being incorrectly
classified as high AAC by the CNN. In addition to vali-
dating the developed ML model, we demonstrated that
similar to imaging expert AAC-24 scores the ML-AAC
was associated with mortality outcomes in one study,
whilst in the real-world assessment without expert AAC-
24 scores, the ML-AAC-24 was strongly associated with
future CVD outcomes.

Whilst expert assessed AAC-24 is not routinely per-
formed or reported on lateral spine images from bone
www.thelancet.com Vol ▪ ▪, 2023
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Fig. 3: Proportion with clinical outcomes stratified by machine-learning abdominal aortic calcification groups from dual-energy Lunar Prodigy
and iDXA images captured at the time of bone density testing. “Created with BioRender.com.”

Articles
density machines, it is being assessed and reported to
patients in some institutions (J.T.S. unpublished) as
well being reported to individuals in a randomised
controlled trial to determine if the knowledge of the
presence and extent of AAC may lead to modification of
diet and lifestyle behaviours.22 Part of the reason there
has been little clinical update has been uncertainty over
the prognostic importance of AAC, this has recently
been demonstrated for CVD events and all-cause mor-
tality in the general population and those with kidney
disease.11 Furthermore, AAC has recently been shown
to be associated with higher risk of non-cardiovascular
events such as fracture and late-life dementia hospi-
talisations and deaths.23,24 A major reason limiting the
exploration of the clinical utility of AAC from these
images has been the lack of automated assessment.
www.thelancet.com Vol ▪ ▪, 2023
In the real-world assessment, ML-AAC-24 scoring
was able to directly link ML-AAC groups with subse-
quent cardiovascular outcomes, confirming that the
approach identifies large proportions of people at sub-
stantially higher cardiovascular risk and poorer long-
term prognosis. Higher ML-AAC-24 as predicted by
the algorithm were strongly and robustly associated with
the primary composite outcome of MACE, as well as all
of the individual components of all-cause mortality,
hospitalised myocardial infarction or cerebrovascular
disease, in addition to a range of secondary cardiovas-
cular diagnoses. These associations remained strong
when adjusted for multiple baseline covariates, even
after excluding individuals with prior cardiovascular
diagnoses. These data demonstrate that the ML
approach can accurately classify a patient’s extent of
9
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Events Model 1, Age and sex-adjusted Model 2, Adjusted for multiple covariatesb Model 3, Adjusted for multiple covariatesb

and excluding those with prior diagnosis for
the same condition

Low Moderate High Low Moderate High Low Moderate High

MACE, Primary endpoint 1177 1 (Ref) 1.74 (1.49–2.03) 2.62 (2.25–3.06) 1 (Ref) 1.54 (1.31–1.80) 2.06 (1.75–2.42) 1 (Ref) 1.54 (1.30–1.83) 2.11 (1.77–2.51)

All-cause mortality 940 1 (Ref) 1.64 (1.37–1.94) 2.55 (2.15–3.03) 1 (Ref) 1.45 (1.21–1.73) 2.01 (1.68–2.41) 1 (Ref) 1.42 (1.17–1.72) 2.00 (1.64–2.43)

Myocardial infarction 216 1 (Ref) 2.41 (1.65–3.51) 3.73 (2.55–5.45) 1 (Ref) 2.05 (1.40–3.00) 2.79 (1.88–4.15) 1 (Ref) 2.23 (1.48–3.35) 3.24 (2.12–4.96)

Cerebrovascular disease 204 1 (Ref) 1.99 (1.35–2.94) 2.97 (2.02–4.38) 1 (Ref) 1.71 (1.15–2.54) 2.15 (1.44–3.21) 1 (Ref) 1.75 (1.15–2.66) 2.04 (1.32–3.15)

Secondary endpoints

Coronary artery disease 514 1 (Ref) 1.79 (1.40–2.28) 3.19 (2.52–4.05) 1 (Ref) 1.35 (1.05–1.73) 1.98 (1.54–2.55) 1 (Ref) 1.30 (0.96–1.76) 2.21 (1.63–3.01)

Coronary revascularization 147 1 (Ref)) 2.41 (1.53–3.80) 4.37 (2.78–6.85) 1 (Ref) 2.15 (1.35–3.41) 3.49 (2.17–5.62) 1 (Ref) 2.42 (1.48–3.96) 4.06 (2.44–6.78)

Congestive heart failure 467 1 (Ref) 1.65 (1.28–2.12) 2.32 (1.74–2.87) 1 (Ref) 1.32 (1.02–1.70) 1.57 (1.21–2.03) 1 (Ref) 1.51 (1.14–1.98) 1.62 (1.21–2.16)

Peripheral arterial disease 118 1 (Ref) 2.38 (1.41–4.01) 3.84 (2.29–6.44) 1 (Ref) 1.90 (1.12–3.22) 2.24 (1.30–3.87) 1 (Ref) 1.96 (1.12–2.43) 2.17 (1.20–3.93)

Any secondary endpoint 856 1 (Ref) 1.68 (1.39–2.02) 2.65 (2.21–3.18) 1 (Ref) 1.30 (1.08–1.57) 1.78 (1.47–2.15) 1 (Ref) 1.50 (1.19–1.89) 1.89 (1.49–2.40)

Bolded values represent significantly different HR compared to low AAC. aPredicted ML-AAC-24, low <2, moderate 2–5, high ≥6. bCovariates: age, sex, body mass index (BMI), current smoking, high alcohol
intake, income, rural residence, ethnicity; diagnoses of diabetes, hypertension, prior myocardial infarction or cerebrovascular disease; medication use in the prior year (glucocorticoid, statin, nonselective
beta blocker, selective beta blocker, angiotensin receptor blocker, ACE inhibiter, aldosterone blocker, loop diuretic, thiazide diuretic, digoxin, calcium channel blocker, long acting nitrate and oral
anticoagulant).

Table 2: Hazard ratios (HRs, 95% CIs) for cardiovascular outcomes by machine learning abdominal aortic calcification 24 (ML-AAC-24) severity in the Manitoba registry-based
cohort from duel-energy Lunar Prodigy and iDXA images.a
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AAC, and hence CVD risk when undertaking DXA-
based lateral spine imaging currently collected to
detect spine fracture.

Increasingly, clinical guidelines are recommending
performing this vertebral fracture assessment (VFA)
imaging at the time of DXA testing to identify asymp-
tomatic vertebral fractures. As such automated assess-
ment of the presence and extent of AAC with similar
accuracies to imaging specialists provides the possibility
of large-scale screening for asymptomatic CVD. The
observed hazard ratios for increased ML-AAC-24 align
closely with those that were reported in a recent meta-
analysis of 46 cohorts of 36,092 participants.11 In 5
studies (n = 6754) reporting three or more groups of
AAC compared to no/low AAC groups, the moderate
AAC groups had a pooled RR of 1.40 (1.06–1.84) and
2.06 (1.48–2.88) for high AAC groups. This is very
similar to our moderate ML-AAC-24 adjusted HR of
1.54 (1.30–1.83) and high ML-AAC-24 of 2.11
(1.77–2.51). Importantly we show that AAC scores esti-
mated using an automated approach in a real-world
clinical setting robustly predict incident CVD out-
comes, which makes widespread application of AAC
assessment in clinical practice more feasible.

As per Koo and Li’s guidelines,25 the intraclass cor-
relation ICC between the ground truth scores and ML-
AAC-24 for the different test sets ranged from 0.76 to
0.90 and can be categorised as good agreement for the
four makes of bone density machines in clinical use
over the last 30 years. When comparing the three AAC
group analysis for the GE Lunar Prodigy and iDXA
images, our Cohen’s weighted kappa between the ML-
AAC vs. imaging specialists was 0.687 (95% CI
0.665–0.709) which was very similar to the Cohen’s
weighted kappa of 0.682 (95% CI 0.597–0.766) for the
three AAC groups between two readers trained by J.T.S.
in a subset of images annotated by both readers
(n = 175).

We chose to train the algorithm on the largest dataset
from a single machine (Hologic 4500A) read by the
most experienced expert (J.T.S) and tested on other bone
density machine makes and models. This approach was
selected given fine-tuning a model which has already
learned to map images to AAC scores is more plausible
than training from scratch, especially when the size of
the datasets with expert assessment are limited. In
future if larger datasets of several thousand images with
expert assessment are available, training within specific
machine makes and models (for example, Hologic Ho-
rizon vs. Discovery) may be possible.

The agreement and accuracies across the different
makes and models of bone densitometers were similar
to Reid et al.19 investigating training and testing on GE
machines in a smaller dataset of the same scans used in
the current paper. However, for the GE Lunar Prodigy
images the ICC (0.78) for the 817 images used in our
study was at the lower ranges of the previously reported
95% confidence intervals of the ICC of 0.78–0.91. This
may be due to the training on Hologic images, differ-
ences in the ML approaches or differences in the im-
ages/size of datasets used. Generally, there was better
agreement and accuracies on the images from the
newer scanners and these differences may be attributed
to the superior resolution of these scanners.

However, whilst these results are promising, there
remain many areas for improvements. For example, the
ML tended to underestimate the AAC-24 scores
compared to human assessment, leading to greater
misclassification into lower AAC groups, suggesting
further development is needed. This underestimation
www.thelancet.com Vol ▪ ▪, 2023
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may lead to weaker associations with clinical outcomes
but will need further investigation in larger datasets
with clinical outcomes. When looking at the activation
maps of the outliers (>2.5 SD from the mean difference
between AAC-24 and ML-AAC-24) we identified a
number of cases where the ML-AAC-24 scores failed to
identify and score iliac artery calcifications, when these
were adjacent to the L4 region. We continue to investi-
gate other potential causes of discrepancies such bowel
gas overlying the aorta and the ribs being mistaken for
AAC adjacent to the L1 region in people with hyper-
lordosis. Similarly, we are investigating whether verte-
bral fractures, scoliosis, osteophytes and rotation leading
to the aorta being partly covered by the spine, may be
affecting the agreement between AAC-24 and ML-AAC-
24 scores. We are also increasing the size of the datasets
and adding more granular manually assessed calcifica-
tion data, such as the adjacent lumbar region where
calcifications were observed, and whether these were in
the anterior or proximal aortic wall to improve the ac-
curacies of the algorithm. Finally, whilst the algorithm
generally had a high level of sensitivity, specificity and
accuracy identifying people with high AAC, the perfor-
mance for identifying individuals with less extensive
AAC was lower. This suggests further work is needed to
improve these measures.

In this work, we used a state-of-the-art convolutional
neural network model EfficientNet20 for feature extrac-
tion. EfficientNets have not only achieved superior
classification accuracy on ImageNet compared to the
other commonly used networks such as DenseNet,26

InceptionNet27 and ResNet,28 but also have significantly
fewer training parameters. Moreover, EfficientNets are
found to transfer well to other datasets.20 The
EfficientNet-based model achieved promising results
and validate the reliability and utility of the models
across different DXA manufacturers and models even in
the case of low-quality Lunar Prodigy scans. We also
used 10-fold stratified cross-validation technique that
takes into account the distribution of the target variable.
It ensures that each subset of the data has a similar
distribution of the target variable, which can help in
improving the accuracy of a model’s prediction.

Limitations
We only had access to manually assessed VFA images
from the two largest manufactures and the algorithm
may not perform as well on other manufacturers’ VFA
images. However, Hologic and GE account for the vast
majority of DXA machine sales. Additionally, we did not
have access to real-world examples with long-term
clinical follow up for Hologic bone density machines
similar to what was available for the Manitoba dataset.
However, we did have the long-term outcomes for the
Perth Longitudinal Study of Ageing Women where ML-
AAC was similarly associated with mortality outcomes
to human assessment and predicted mortality outcomes
www.thelancet.com Vol ▪ ▪, 2023
in images that had been captured 5 years after the last
human assessments of AAC. Also, we did not look at
how patient characteristics such as age, ethnicity, sex
and BMI may affect performance. However, the asso-
ciations between ML-AAC-24 groups and MACE out-
comes were independent of these characteristics.
Secondly, the Manitoba registry lateral spine images
were captured based on age and an increased a priori
risk of osteoporosis and fracture and thus may not
represent younger individuals and those with better
bone structure. Additionally, as we used a MACE com-
posite outcome that includes all-cause mortality this
may weaken the association between ML-AAC-24 and
the outcome due to non-cardiovascular causes of death.
However, despite this we identified strong and robust
associations between ML-AAC-24 and the MACE com-
posite outcome as well as all of the individual cardio-
vascular outcomes.

Strengths
We had access to the largest manually assessed set of
VFA images from widely-used bone density machine
models in clinical practice over the last three decades.
Importantly, these images were read by a globally-
recognised expert in assessing AAC-24 (JTS) or people
trained by J.T.S. providing reliable and consistent
scoring for ML. Further strengths include i) the use of
advanced and efficient ML models to quantify AAC, and,
ii) the generation of visual explanations (in the form of
localisation heatmaps) which add to the explainability of
the model. We believe that clinical trials comparing
patient and physician behaviour, treatment and out-
comes based on ML-AAC-24 reporting are now
warranted.

In conclusion, we found substantial agreement be-
tween trained imaging expert and machine-learning
AAC-24 scores irrespective of the make and model of
DXA machine. Since these images and automated
scores can be rapidly and easily acquired at the time of
bone density testing this may lead to novel approaches
for early cardiovascular disease detection and disease
monitoring in routine clinical practice settings.
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