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Abstract: Determining reliable cable ampacities for marine High Voltage Cables is currently the
subject of significant industry and academic reassessment in order to optimize (maximizing load
while maintaining safe operating temperatures) design and reduce costs. Ampacity models can
be elaborate, and inaccuracies are increasingly predicated on the uncertainty in environmental in-
puts. A stark example is the role of ambient temperature at cable depth, which, due to the scale
of cables and the inaccessibility of the seafloor, is commonly estimated at 15 ◦C. Oceanographic
models incorporating ocean bottom temperature are increasingly available, and they achieve cov-
erage and spatiotemporal resolutions for cable applications without the requirement for project
specific measurements. Here, a rudimental validation of the AMM15 and AMM7 mean monthly
ocean bottom temperature models for the NW European Shelf indicates encouraging accuracies
(MBE ≤ 1.48 ◦C; RMSE ≤ 2.2 ◦C). A series of cable case studies are used to demonstrate that cable
ratings can change between −4.1% and +7.8% relative to ratings based on a common static (15 ◦C)
ambient temperature value. Consideration of such variations can result in both significant ratings
(and hence capital expenditure and operating costs) gains and/or the avoidance of cable overheating.
Consequently, validated modelled ocean bottom temperatures are deemed sufficiently accurate,
providing incomparable coverage and spatiotemporal resolutions of the whole annual tempera-
ture signal, thereby facilitating much more robust ambient temperatures and drastically improving
ampacity estimates.

Keywords: marine power cables; thermal design parameters; ambient ocean bottom temperature;
levelized cost of electricity; thermal degradation; validation

1. Introduction
1.1. Significance of Marine Power Cables

The global energy network is increasingly reliant on marine High Voltage (HV) power
cables, either transmitting power across shelf seas from offshore renewables (e.g., wind) or
trading energy between countries [1,2]. In 2021, the UK’s offshore wind capacity increased
to 11.3 GW, second only to China (24.5 GW) globally, providing 11% (36.6 TWh) of the UK’s
total power generation, which was enough for ~33% of UK homes, and saving an estimated
14 Million tonnes of CO2 [3,4]. Similarly, the UK’s interconnector capacity increased to
7.4 GW, facilitating a net import of 24.6 TWh (7.4% of total supply) from predominantly
French (52.7%) but also Belgian (24.3%), Dutch (15.1%), Norwegian (4.8%), and Irish (3.0%)
power [3]. Furthermore, to meet future energy demands and net zero carbon emissions,
the UK plans to achieve 50 GW offshore wind [5] and 18 GW interconnector capacity [5]
by 2050, driving significant expansion of marine HV cables predominantly through the
shallow (<200 m) North West European Shelf [6]. Similar expansion is now occurring
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on a global basis. Consequently, recent research is increasingly focused on maintaining
safe and efficient marine cable operations, optimizing capital expenditure (CAPEX), and
lowering the levelized cost of electricity, all of which are growing concerns for national
energy security and fundamental to capitalizing on the growing offshore renewable and
evolving energy markets [2].

1.2. Cable Ampacity Evaluation Environmental Inputs and Shortcomings

A primary concern of HV cable design is reliably resolving the ampacity “rating” or
maximum safe operating current using ampacity models (e.g., IEC-60287) [7]) that incor-
porate both properties of the cable as well as operational and environmental factors (e.g.,
Figure 1). The rating limits the cable to safe operating temperatures of 90 ◦C for AC [8]
or 70 ◦C for DC [9] cables. This, in turn, informs the choice of the cable cross sectional
area, which significantly impacts the capital expenditure and/or informs remediation, such
as the thermal optimization of trench back-fill. Ampacity models (e.g., IEC-60287) have
a sound theoretical basis and proven utility [10,11], and they are increasingly computa-
tionally advanced. Bespoke finite element models (FEM) are also utilized to resolve more
realistic 2D complex (in-homogeneous) backfill environments with heterogeneous thermal
properties [10–15] with coupled conductive-convective components [15–18] at varying
computational cost [16].
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Figure 1. Example of ampacity model input IEC-60287 considering cable properties as well as
operational, geometric, and environmental factors.

While ampacity models advance, their accuracy and reliability have been increasingly
shown to be predicated on the quality of their environmental inputs (e.g., [1,16]), but they
have received considerably less attention during the process of actual cable design. The
implications of the thermal resistivity of the burial environment has been the focus of
research (e.g., [16–19]), whilst the implications of the post-installation of depth of cover
changes through seabed movement has long been established, although it is difficult to
predict over the lifetime of any cable design [9]. By contrast, the impacts of spatial and
temporal variation in ambient temperature at cable depth on cable rating has only recently
been addressed [19]. Recent studies of Distributed Temperature Sensor data from active
cables shows how strongly cable temperature can be controlled by ambient temperature
variations [20,21].

For submerged marine HV cables, ambient temperature at cable depth is controlled
by the ambient ocean bottom temperature (OBT), which is then attenuated at a rate
determined by the thermal diffusivity of the soil as it propagates to the depth of lay
(typically 1–3 m) [8,22]. The spatial and temporal variation of OBT can be large as it is
controlled by a wide range of oceanographic factors, including water depth, tidal mixing,
density-driven currents, and seasonal variations in both wind forcing and solar irradia-
tion [23]. The scale of these variations are such that cables can experience both significant
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seasonal and, as cable lengths increase ((e.g., >80 km AC [24], >300 km DC) [25]), spatial
variations. Despite these potential changes, standard cable design practice routinely con-
siders 10 ◦C, 12 ◦C, or, most commonly, 15 ◦C to be a representative estimate of ambient
temperature at cable depth, irrespective of the location of the cable or how it will be oper-
ated over a year [26,27]. A rare example of considering proximal ocean bottom temperature
measurements [14] demonstrated that the standard assumption was 10 ◦C lower than that
of the summer OBTs, resulting in potentially dangerous cable-operating temperatures.

1.3. Ocean Bottom Temperature Models

The scale of cables and the inaccessibility of the ocean floor makes resolving represen-
tative ambient OBT difficult, and a bespoke campaign of measurement for individual cables
would be impractical. Publicly available proximal observations are available, but these
almost never resolve the full annual signal that is required for comprehensive analysis [22].
Fortunately, oceanographic models incorporating ambient OBT are increasingly available
for large parts of the globe. For the Northwest European Shelf, two such models include
the Atlantic Margin Models AMM7 and the AMM15, which are both available from the
Copernicus Marine Environment Monitoring Service (CMEMS) (see Figure 2a).
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Figure 2. (a) This paper’s case study domain is broadly defined by the 200 m bathymetric contour, the
AMM7 and AMM15 ocean bottom temperature model domains, and EMODnet bathymetry for the
Northwest European Shelf. The case study domain has been sub-divided into 11 maritime domains:
the North North Sea (NNS), the Central North Sea (CNS), the South North Sea (SNS), the English
Channel (EC), the Celtic Sea (CS), the Irish Sea (IS), the Irish Shelf (ISh), the Shetland Shelf (SS), the
Norwegian Trench (NT), Skagerrak (SK), and the Armorican Shelf (AS). (b) This map shows the
locations of the “indicative” marine interconnector and export cables routes used in this paper: the
Moray Firth (MF), the Firth of Forth (FoF), the North Sea (NS1 to 4), Skagerrak (SK), the Straits of
Dover (SoD), the English Channel (EC1 to 3), the Celtic Sea (CS1 to 3), and the Irish Sea (S1 and S2).

Due to the paucity of in situ time-series measurements of OBT across the domain (only
five locations in total), calibration of these modelled values is relatively restricted [28–30].
Although these deployments have high temporal resolutions (hours/days), they tend to
cover only short periods (a few months). Similarly, to date, validation has been against
an EN4 database that provides overall mean bias errors for water depths < 500 m of
0.37 ± 1.0 ◦C for AMM15 and of 0.47 ± 1.12 ◦C for AMM7 [30].

Due to the filtering effect of the seabed, short-term (hours/days) temperature fluctu-
ations are not propagated to cable depth [20]. The temporal lag of this propagation will
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depend on a combination of the depth of the burial of the cable as well as the thermal
diffusivity of the burial environment. With typical marine sediments having thermal dif-
fusivities of between 3 and 7 × 10−7 m2s−1 and burial depths of 1–3 m, this equates to
temperatures having to persist in the water column for 2–5 weeks typically in order to
generate significant temperature changes at actual cable depth. Therefore, for consideration
in cable design, mean monthly modelled ocean bottom temperatures are considered the
most appropriate parameter to have validated. Although summer seasonal variations have
previously been calculated [30], the accuracy and the precision of mean monthly values,
which are essential for cable modelling purposes, are not available.

1.4. Paper Aims

1. To devise a transparent method for improving the validation and utilization of publicly
accessible OBT models for cable design using the Northwest European shelf AMM7
and AMM15 as exemplars (Section 3).

2. To demonstrate the spatial and temporal variation in mean monthly modelled OBTs
along “indicative” cable routes across the Northwest European Shelf (Section 4).

3. To demonstrate the impact of applying these temporally varying OBT model outputs
to IEC-based cable rating algorithms to cable conductor temperature and overall
rating (Section 5).

2. Materials
2.1. Ocean Bottom Temperture Models

The detailed description of the AMM7 and AM15 models used in this study are
summarized in [28–30]. Both models are based on Forecast Ocean Assimilation Models
(FOAM) [29], which, in turn, combines the Nucleus for European Modelling of the Ocean
model (NEMO) forced by lateral boundary conditions from the UK Met Office North
Atlantic Ocean forecast model. Atmospheric forcing is given by the operational European
Centre for the Medium-Range Weather Forecasts (ECMWF) numerical weather prediction
model for the AMM15 and by the operational UK Met Office Global Atmospheric Model
for AMM7.

The AMM7 model has a resolution of 7 km whilst the (finer) AMM15 model has a
resolution of 1.5 km, which better defines coastlines as well as dynamic features, such
as coastal currents, oceanic fronts, and mesoscale eddies, which vary in size from a few
kilometers on shelf seas to tens of kilometers in deeper waters [29,30]. The AMM15
model also uses a more detailed bathymetry, i.e., EMODnet 2015, rather than the coarser
GEBCO bathymetry that is used by AMM7. The AMM7 model thus misses some finer
oceanographic features as well as poorly representing depth variation in some of the
on-shelf regions of the North Sea [30].

Both the AMM15 and the AMM7 models provide hourly and daily predictions of sea
surface and ocean bottom temperature, salinity, horizontal currents, sea level height, and
mixed layer depth. For this study, the daily mean OBT modelled output was used to produce
the mean and standard deviations for each month. The resulting monthly OBT end members
(January and August) are visualized in Figure 3. Based on the availability of the available
data, the models were averaged over the following periods: 1 January 2019–17 January 2022
for AAM15, and 1 May 2019–17 January 2022 for AMM7.
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Figure 3. Annual mean monthly modelled ocean bottom temperature variability for January
(a,c) and August (b,d) for the AMM7 (a,b) and AMM15 (c,d) models. The primary time-series
datasets used to calibrate both models are also shown [29].

2.2. In Situ Measured Ocean Bottom Temperature Dataset Construction

The World Ocean Database (WOD) is considered the largest and simplest database
of oceanographic data [31], from which other frequently quoted but variably processed
databases (e.g., EN4 [32], CEFAS [33], and IQuOD [31]) are derived. Oceanographic
variables, including OBT, are readily accessible (for this paper, accessed 17 January 2022,
following [34]). A pre-quality controlled (Section 3) dataset was constructed that enabled
the following:

• It restricted the search area to within the AMM15 and AMM7 model domains
Figures 2 and 3.

• It removed erroneous entries, e.g., corrupted files, deployments with missing measure-
ments, and files with corrupted metadata.

• It retained only those measurements within +/− 5 m of the EmodNET bathymetry at
each location.

3. Quality Control of In Situ Observations and Validation Methodology

Recent studies on the uncertainties associated with the measurement of a range of
oceanographic parameters have identified that a number of instrument types, e.g., Ex-
pendable [XBT] or Mechanical BathyThermographs [MBT]), have uncertainties one to two
orders of magnitude greater than other forms of instrumentation [31,35]. Rather than
just removing whole sets of instrumentation, a transparent quality control step is used to
identify extreme bias (modelled minus measured) errors relative to their monthly bias error
distributions. It is recognised that removing values that disagree with the model could bias
a validation in favor of the model, and thus requires evaluation. However, the number of
extreme anomalies should, by definition, be proportionally insignificant. Consequently, the
post-quality control distribution should visibly improve while minimizing the impact on
the validation statistics.
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3.1. Quality Controlled (QC) In Situ Database

For each observation, the bias error and the square error are calculated comparing the
mean monthly modelled OBTs to observations:

• Bias Error:
BE = modelled OBT −measured OBT

• Square error:
SE = (modelled OBT −measured OBT)2

Both (BE) and (SE) comprise the measured error and modelled error, but only BE
maintains the sign, preserving whether the model is anomalously hot (positive) or cold
(negative). To transparently identify potential anomalies, a simple “fast” statistical extreme
anomaly filter (e.g., [36]) was applied. For each month, the extreme anomalies were
identified as those with bias errors exceeding the monthly distributions bound by the
equations below:

• Extreme positive anomalies > 3rd BE quartile + 3 × BE interquartile range.
• Extreme negative anomalies < 1st BE quartile − 3 × BE interquartile range.

An upper and lower extreme anomaly limit is calculated using both models and is
then combined, ensuring the post-quality controlled measured dataset contains no ex treme
anomalies from the perspective of either models (see Figure 4).

3.2. Validation Methodology

For each observation and each monthly mean, the following model validation sum-
mary statistics are tabulated in order to evaluate model accuracy pre- and post-QC:

• Mean Bias Error: MBE = BE (MBE ± σBE is reported).
• Mean Absolute Error: MAE = |BE| (MAE ± σMAE is reported).
• Bias Error Standard Deviation:

σBE =

√
∑(BE − BE)

n− 1

• Root Mean Square Error:
RMSE =

√
SE

3.3. Quality Control and Validation Results

The pre-quality-controlled database contained 182,637 observations (Figure 4a and
Table 1), with the least observations in December (7507) and the most in August (20,589).
Bias error distribution demonstrates anomalous observations distinct from the main distri-
butions, which are isolated by the extreme anomaly filter.

The post-quality control dataset has 777 extreme anomalies removed, leaving 181,860
observations remaining, with the least in December (7496) and the most in August (20,480).
The effect of the quality control filter varied, improving 8/12 (AMM7) and 6/12 (AMM15)
monthly MBEs and 11/12 (AMM7), 7/12 (AMM15) monthly RMSEs. While the magnitude
of anomalous bias errors in the pre-QC dataset can be large (>10 ◦C), their numbers are
actually few. Consequently, the impact of quality control on validation statistics is minimal,
with the MBE for the whole dataset changing by only −0.05 ◦C for AMM7 and +0.01 ◦C
for AMM15. The RMSE improved for both datasets by 0.08 ◦C (AMM7) and 0.03 ◦C
(AMM15). The consequence of quality control on monthly validation statistics ranged
by, at most, MBE = 0.17 ◦C (AMM15 March), MBE = −0.22 ◦C (AMM15 September) and
RMSE = 0.11 ◦C (AMM15 June and July), and RMSE = −0.11 ◦C (AMM7 August). As such,
the extreme anomaly filter is considered to be very effective at removing visibly dubious
anomalies, thereby improving the bias error distribution (see Figure 4) without impacting
the validation statistics.
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Figure 4. This demonstrates the (a) pre-QC and (b) post-QC differences for AMM7 (blue) and AMM15
(yellow) modelled ocean bottom temperature for the whole domain (ALL) as well as the monthly
values. Data distributions are represented using violin boxplots, which demonstrate kernel density
distribution. The mean is plotted as an (*). Orange and red dashed lines in both (a,b) represent the
soft and extreme anomaly boundaries, respectively, for the Pre-QC dataset, with extreme anomalies
removed in (b).

The post-quality controlled (Post-QC) datasets are heavily dominated by measure-
ments from fixed ocean station data and CTD profilers (Figure 5), with other instrumen-
tation representing only 18.6% of the data. There is excellent spatial coverage across the
case-study domain (Figure 6), and all months bar December have >10,000 measurements
for comparison (December has ~7500).

3.4. Validation Intepretation

The (Post-QC) validation demonstrates that both models perform well, with the AMM7
model performing marginally better than the AMM15 (Table 1). The whole domain, annual
RMSEs range was between 1.64 ◦C (AMM7) and 1.67 ◦C (AMM15). The whole domain,
monthly RMSEs range was between 1.28 ◦C (February) and 2.07 ◦C (July) for the AMM7
model and 1.28 ◦C (February) to 2.2 ◦C (July) for the AMM15 model. Bias error distributions
(Figure 4) clearly demonstrate how similarly the models performed, with whole domain,
annual net positive MBEs of +1.03 ◦C (AMM7) and +1.06 ◦C (AMM15). The whole domain,
monthly MBE ranges were between 0.61 ◦C (February) and 1.38 ◦C (August) for the AMM7
model and 0.67 ◦C (February& December) and 1.48 ◦C (August) for the AMM15 one. Both
models demonstrate that their performance is temporally variable—-i.e., significantly better
in the winter months (Oct–May: 1.09 ◦C ≥MBE ≥ 0.61 ◦C; 1.66 ◦C ≥ RMSE ≥ 1.38 ◦C) than
in the summer months (Jun–Sep: 1.48 ◦C ≥MBE ≥ 1.17; 2.2 ◦C ≥ RMSE ≥ 1.69 ◦C).
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Figure 5. Monthly distribution of observations color coded by measurement device of the final
(post-QC) 181,860 ocean bottom temperature observations derived from WOD observations within
the case study domain. Moorings used to produce the initial calibration are highlighted [29,30].
OSD = Ocean Station Data; CTD = Conductivity, Temperature and Depth profiler; XBT = Expendable
Bathythermograph; MBT = Mechanical Bathythermograph; MRB = Moored Buoy; APB = Autonomous
Pinniped Bathythermograph; GLD = Gliders; and PFL = Profiling Float.
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Some instruments such as PFL occure comparitively infrequently and consequently they are are not
easily distinguished on this figure.
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Table 1. AMM7 and AMM15 MBE, σMBE, MAE, σMAE and RMSE validation statistics for each
month and the whole year (‘All’). Bold values indicate which out of the AMM7 and the AMM15 has
the best validation metric both for all and monthly. Red indicates the worst errors.

Pre-QC AMM7 AMM15
Month n MBE σMBE MAE σMAE RMSE MBE σMBE MAE σMAE RMSE

All 182,637 1.08 1.35 1.29 1.15 1.72 1.05 1.33 1.28 1.12 1.70
January 13,318 0.97 1.16 1.12 1.03 1.52 1.04 1.2 1.17 1.07 1.59

February 18,901 0.7 1.16 0.98 0.94 1.36 0.65 1.19 0.97 0.95 1.36
March 12,421 1.1 1.28 1.26 1.12 1.68 0.92 1.29 1.16 1.07 1.58
April 12,277 0.96 1.21 1.13 1.04 1.54 0.77 1.19 1.02 0.98 1.42
May 18,025 0.82 1.3 1.21 0.94 1.53 0.85 1.25 1.19 0.94 1.51
June 17,340 1.31 1.33 1.48 1.13 1.86 1.18 1.28 1.37 1.08 1.74
July 19,144 1.48 1.66 1.65 1.5 2.23 1.37 1.58 1.56 1.4 2.09

August 20,589 1.41 1.41 1.54 1.26 1.99 1.4 1.37 1.53 1.22 1.96
September 16,881 1.27 1.38 1.42 1.23 1.88 1.41 1.4 1.53 1.27 1.99
October 13,844 0.82 1.21 1.13 0.92 1.46 0.94 1.23 1.22 0.95 1.55

November 12,390 0.99 1.24 1.18 1.06 1.59 1.04 1.24 1.22 1.06 1.61
December 7507 0.68 1.19 1.02 0.92 1.37 0.66 1.2 1.02 0.92 1.37

Post-QC AMM7 AMM15
All 181,860 1.03 1.27 1.25 1.06 1.64 1.06 1.29 1.27 1.08 1.67

January 13,213 1 1.09 1.13 0.95 1.48 0.94 1.05 1.08 0.91 1.41
February 18,785 0.61 1.12 0.94 0.87 1.28 0.67 1.09 0.95 0.86 1.28

March 12,397 0.91 1.26 1.15 1.05 1.56 1.09 1.25 1.25 1.09 1.66
April 12,202 0.75 1.11 0.99 0.91 1.34 0.93 1.13 1.1 0.97 1.47
May 18,007 0.85 1.24 1.18 0.93 1.5 0.82 1.29 1.21 0.93 1.52
June 17,318 1.17 1.26 1.36 1.05 1.72 1.3 1.31 1.47 1.11 1.85
July 19,108 1.36 1.56 1.55 1.37 2.07 1.48 1.64 1.64 1.47 2.2

August 20,480 1.38 1.29 1.5 1.14 1.88 1.38 1.32 1.51 1.18 1.91
September 16,667 1.34 1.23 1.46 1.08 1.82 1.19 1.2 1.34 1.03 1.69
October 13,828 0.93 1.21 1.21 0.94 1.53 0.82 1.19 1.13 0.91 1.45

November 12,359 1.02 1.17 1.2 0.99 1.56 0.98 1.18 1.16 0.99 1.53
December 7496 0.66 1.18 1.01 0.89 1.35 0.67 1.16 1.01 0.89 1.35

The geographical distribution of these bias errors (Figure 7) demonstrates that model
performance is also spatially variable, with the greatest positive bias errors clustered
in the East Central North Sea and German Bight regions in the summer months. By
contrast, the lowest bias error cluster, including some negative ones, is in the winter
months, particularly along the outer shelf margins and in the Norwegian trench regions,
and these observations are supported by previous assessments of temporally restricted
assessments [31]. The dominant positive bias of the models (i.e., they are predicting
marginally higher temperatures than have actually been observed) is regarded as a positive
for cable modelling because it ensures a degree of conservatism. Conversely, net cold biases
are restricted to shelf-break and off-shelf regions that are far from the major expansions of
the cable routes (Figure 7).
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(b) using the post-QC WOD dataset.

Ultimately, the validation demonstrates that both models perform similarly with
whole-shelf and whole-year statistics of 1.25 ± 1.06 ◦C (@ 1 STDEV) MAE for the AMM7
model and 1.27 ± 1.08 ◦C (@ 1 STDEV) MAE for the AMM15 model.
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4. Spatial and Temporal Ambient Temperature Variation along Cable Routes

Having demonstrated the accuracy and the precision of the AMM7 and AMM15 models,
the degree of spatial and temporal variability of OBT along individual cables routes can
then be explored. For brevity, the AMM15 model, as it has a higher spatial resolution whilst
retaining an accuracy comparable to the AMM7 one, has been preferentially used for the
following analysis. A series of 16 theoretical cable routes have been defined (Figures 2 and 3),
and the monthly OBTs have been extracted for each of them (Figure 8). These data have then
been used to calculate the maximum, minimum, mean, and standard deviation OBTs (along
with percentile statistics) for both models for each route (Table 2).
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Maximum annual OBTs vary from 13.3 °C (NS1) to 20.8 °C (EC2), with Figure 8 
clearly demonstrating that the common use of 15 °C for cable design is far from capturing 
the true variation in ambient OBT. If considered purely in terms of the maximum 

Figure 8. Violin-boxplots demonstrating AMM15 annual mean monthly OBT distributions for 16
theoretical cable routes (Figures 2 and 3). Distribution statistics are tabulated in Table 2. Boxplots
demonstrate the P25th–P75th percentiles, and the mean (*) and median (-) violin plots demonstrate
the OBT density distribution for the whole cable. The red 15 ◦C line represents a typical static
conservative estimate of ambient OBT [26].

Maximum annual OBTs vary from 13.3 ◦C (NS1) to 20.8 ◦C (EC2), with Figure 8 clearly
demonstrating that the common use of 15 ◦C for cable design is far from capturing the
true variation in ambient OBT. If considered purely in terms of the maximum temperature
encountered during a year, this standard value underestimates all the maximum OBTs bar
1 (NS1) of the routes, which overestimates the temperature by 1.7 ◦C. Only three routes are
within 1 ◦C of this standard value (IS2, CS2, and MF), with the rest exceeding it by between
1.4 and 5.8 ◦C. Similarly, the annual range of OBTs that each cable encounters over a year
varies significantly, too, and is between 7.0 ◦C (NS1) and 15.9 ◦C (NS3).

These differences are not purely driven by the geographical location of the cables, as
even neighboring cables (e.g., cables NS1 and NS2, which are only ~170 km apart, as seen
in Figure 3) can experience very different temperature ranges. For instance, NS2 has a
maximum temperature of 2.7 ◦C greater than NS1, with a range differential of +4.8 ◦C.

To further demonstrate the implications of spatially and temporally varying ambient
temperature, mean monthly AMM15 OBTs were plotted for three cables: EC2, NS1, and
SK (Figure 9). The EC2 and NS1 cables represent the most and least thermally onerous of
the 16 transects, whilst the SK one has the largest (>400 m) bathymetry variation along the
cable. Minimum mean monthly OBTs occurring between February and April are relatively
stable along each transect, with values of 8.4 ± 0.88 ◦C (EC2 @ 1 STDEV), 6.95 ± 0.21 ◦C
(NS1 @ 1 STDEV), and 5.97 ± 0.78 ◦C (SK @ 1 STDEV). Conversely, the maximum mean
monthly AMM15 OBTs occur between August and October and can vary significantly
along and between routes with EC2, having higher temperatures but limited variability
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18.53 ± 0.73 ◦C (@ 1 STDEV), whilst NC1 and SK exhibit lower maximums but increasing
variability with values of 9.55 ± 1.15 ◦C (@ 1 STDEV) and 11.52 ± 4.44 ◦C (@ 1 STDEV),
respectively. The well-mixed shallow (<50 m) waters of EC2 demonstrate strong seasonal
variation, whilst the wide-ranging water depths of SK (20–550 m) result in the shallow
sections of the route having similar seasonal variation as EC2, and the deep waters of the
Norwegian Trench, meanwhile, promote seasonal thermal stratification and thus retain
cold low variability signatures throughout the year (Figure 9). The more northerly location
of the NS1 cable and the deeper overall water depths, except for the coastal margin, result
in relatively low temperatures and low variability throughout the year and along the whole
route (Figure 9).

Table 2. Tabulated values quantifying the distribution statistics representing the AMM15 OBT
variability along the cable transects (as shown in Figure 4).

Mean Monthly OBT Distribution and Variability (◦C)

Transects min max range mean p25 p50 p75 iqr stdev

SK 3.7 18.5 14.8 8.6 6.4 7.2 9.3 2.8 3.2

MF 6.1 15.7 9.6 9.7 7.4 9.2 12.0 4.6 2.3

FoF 5.2 16.4 11.2 9.7 7.0 9.5 12.3 5.2 2.6

NS 1 6.3 13.3 7.0 8.2 7.3 8.0 8.8 1.5 1.1

NS 2 5.3 17.0 11.8 10.3 7.5 9.9 12.7 5.2 3.0

NS 3 3.4 19.3 15.9 10.8 7.4 10.3 14.4 7.0 3.7

NS 4 5.3 18.4 13.1 11. 9 8.0 11.2 15.8 7.8 4.0

SoD 7.0 19.4 12.4 12.9 9.2 12.2 16.3 7.1 3.7

EC 1 5.3 20.6 15.3 12.6 8.8 11.6 16.6 7.9 4.3

EC 2 6.7 20.8 14.2 13.1 9.8 12.4 16.4 6.7 3.6

EC 3 9.2 18.0 8.8 12.7 10.3 12.3 14.6 4.3 2.3

CS 1 8.2 16.5 8.2 11.4 9.5 11.1 12.8 3.3 2.1

CS 2 8.7 15.7 7.1 11.3 10.6 11.2 11.9 1.3 1.1

CS 3 8.3 16.7 8.4 12.0 9.5 11.7 13.9 4.4 2.4

IS 1 4.9 19.1 14.2 11.5 8.7 11.3 14.1 5.4 3.0

IS 2 7.1 15.3 8.2 10.9 8.6 10.8 13.1 4.5 2.4

Such temperature variation, both between different cables and along individual cable
routes, shows that a single value simply cannot be used for the design of an individual
cable. As cable lengths of both export cables and interconnectors increase, the use of
multi-cable segment designs becomes more prevalent. Consequently, utilizing the ambient
temperature measurements from such whole shelf models could provide critical input to
a segmented cable design. Furthermore, this demonstrates that a single site deployment
of an ocean bottom temperature sensor would not resolve these cable design issues, since,
in many cases, they would fail to capture the range of the temperature present on an
individual route.
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Figure 9. Indicative cable route transects of AMM15 OBT and EMODnet bathymetry for the EC2
(top), NS1 (middle), and SK (bottom) cables. The common static value (15 ◦C) is also plotted. OBT
data from locations A and B (highlighted with an asterisk on each route) are used for the cable
conductor temperature and rating calculations described in Section 5.

5. Implications for Cable Rating

The implications of ambient OBT estimates on cable design can be evaluated through
modelling the operating conductor temperature using a 1D numerical cable model [16].
This model has the capability of considering conductive and convective heat transfer within
sediments, solving governing equations for pressure and temperature within an annular
domain with an inner diameter equivalent to the cable and an outer diameter equal to four
times the burial depth. The equations are solved numerically using a second order central
finite difference scheme spatially with backwards Euler time stepping. Within the cable,
temperature is calculated using a standard RC thermal network model, with continuity of
temperature and heat flux at the cable boundary. It should be noted that for the purposes
of the investigations conducted here, convective heat transfer is negligible and the model
performance is equivalent to that using standard RC thermal network models for the entire
computational domain (cable and sediment), which are well established in the literature
(e.g., [37]). Dynamically varying ambient temperature at cable depth is explicitly included
in conductor loss calculations that depend on absolute temperature, but it is otherwise
added to the conductor temperature rise above ambient at the end of the calculation.

Given the length of the case study routes (Figures 2 and 3), a 500 kV HVDC bipole
configuration was utilized to be more indicative of similar extant installations. Within
the model, the bipole configuration was treated as a single equivalent conductor. This
implementation was validated using an FEA model, which considered the full bipole
arrangement. The burial depth of the cable was set to 1 m. The sediment thermal con-
ductivity was 1.43 W/mK, equivalent to a thermal resistivity of 0.7 Km/W, which is the
“standard” frequently used in cable design for marine sediments [7]. The volumetric heat
capacity of the sediment was set to 2 × 106 (J·K−1·m−3), which is a typical value for marine
sediments [38].



Energies 2023, 16, 5454 14 of 20

To demonstrate the impact of ambient temperature assumptions on conductor temper-
ature and cable ratings, a suite of static and dynamic ratings are calculated for two locations
along each of the three case study cable routes (EC2, NS1 and SK). The locations are chosen
to represent thermal extremities, i.e., sites indicative of higher (annotated A in Figure 9)
and lower (annotated B) OBTs along the route. The dynamic rating was determined using
a two-year normalized synthetic power curve time series, scaling it by a suitable maximum
current (1844 A) until a maximum conductor temperature of 70 ◦C was reached, which
is the typical maximum operating temperature for HVDC cables. The power curve is
derived from typical wind power generation data, and, as such, the maximum conductor
temperature is often not reached in the winter months, which corresponds to lower ambient
temperatures at cable depth due to the higher generation (an example of this is provided in
Figure 10).
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The impact of using different ambient temperature inputs on cable design is demon-
strated through both the generation of conductor temperature plots (Figures 11 and 12)
and cable rating statistics (Table 3). These results are provided for a range of ambient
temperature scenarios, including:

• A fixed ambient temperature of 15 ◦C, which is commonly used in commercial projects
and used as a base level for comparison.

• A fixed ambient temperature of the maximum OBT.
• A fixed ambient temperature of the mean OBT.
• An OBT time series, which is the most indicative of the true conditions at each site.
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Figure 11. Conductor temperature modelled using CC1D, with the load time series shown in
Figure 10, for higher (A) and lower (B) thermal scenarios for the case study transects EC2 (a,b), NS1
(c,d), and SK1 (e,f). Static (S) ambient OBT inputs include 15 ◦C (S15) as well as SMax and SMean,
whilst DOBT is generated using an annual OBT time series. The input OBT time series is shown as
the blue dashed line along with the propagated temperature at cable depth (POBT—blue solid line).
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Figure 12. Conductor temperature differential between each model run (Smax, SMean, and DOBT)
and the “commonly used” S15 output. Results for the higher and lower thermal scenarios for EC2
(a,b), NS1 (c,d), and SK (e,f) are provided. The input OBT time series is shown as the blue dashed
line along with the propagated temperature at cable depth (POBT—blue solid line).
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Table 3. Dynamic cable rating results for different ambient temperature time series for all three cable
routes and from examples of lower and higher thermal zones along each route.

Case
Study Location Scenario Ambient

OBT Rating
Rating %

Difference
from 15 ◦C

EC 2

A: Thermal High

15 ◦C fixed 15.0 1844 -

Mean OBT 12.9 1878 1.8

Max OBT 19.4 1768 −4.1

OBT Time Series Dynamic 1869 1.4

B: Thermal Low

15 ◦C fixed 15.0 1844 -

Mean OBT 13.1 1876 1.7

Max OBT 17.7 1797 −2.5

OBT Time Series Dynamic 1858 0.8

NS1

A: Thermal High

15 ◦C fixed 15.0 1844 -

Mean OBT 9.4 1937 5.0

Max OBT 12.1 1892 2.6

OBT Time Series Dynamic 1925 4.4

B: Thermal Low

15 ◦C fixed 15.0 1844 -

Mean OBT 7.5 1967 6.7

Max OBT 7.9 1959 6.2

OBT Time Series Dynamic 1964 6.5

SK4

A: Thermal High

15 ◦C fixed 15.0 1844 -

Mean OBT 10.7 1915 3.9

Max OBT 17.7 1798 −2.5

OBT Time Series Dynamic 1900 3.0

B: Thermal Low

15 ◦C fixed 15.0 1844 -

Mean OBT 6.3 1985 7.6

Max OBT 6.4 1983 7.5

OBT Time Series Dynamic 1987 7.8

Figure 11 shows the conductor temperature time-series for a full year for all of the
six modelled locations. For localities EC2-A, EC2-B, NS1-A, and SK-A, there are clearly
significant differences in conductor temperature between the four different OBT input
runs, whilst for NS1-B and SK-B, there is only a visible difference between the S15 run and
the others. This is in response to the location of NS1-B and SK-B in deeper continental
shelf waters (depths of −230 m and −500 m, respectively), which have overall lower OBTs
(<7.9 ◦C) with almost no seasonal variation (Figure 11d,f). These plots also show the OBT
time-series (blue dashed line) and the ambient temperature at actual cable depth (blue solid
line—POBT). The comparison of these two in Figure 11a–c,e clearly demonstrates that the
temperature variation at depth is both ameliorated and offset, with a lag of ~2–3 weeks.
This offset, when combined with the load profile, results in additional temporal variations
in conductor temperature compared to the static calculations.

This temperature propagation effect can be more clearly seen in Figure 12. These
plots represent the difference between each model runs conductor temperature and the
conductor temperature time-series calculated for S15. For SMax and SMean, the differential
is effectively a static shift of within a range of ±10 ◦C. However, the dynamic model runs
for EC2-A, EC2-B, SK-A, and NS1-A (Figure 11a–c,e) exhibit time-varying differentials that



Energies 2023, 16, 5454 17 of 20

are clearly in phase with the ambient temperature at cable depth but out of phase with the
input OBT. For NS1-A and SK-A, the temperature differential fluctuates over the year: it is
cooler during the winters and slightly warmer during the summers. It is important to note
that due to the seasonal variation in load, this does not result in the maximum conductor
temperature of 70 ◦C being exceeded, since the highest temperature differentials occur in
September when the loads and overall conductor temperatures are lower.

CC1D has also been used to quantify the percentage difference in cable rating between
the static S15 calculation and the other model runs (Table 3) for the six test locations, with a
total of 24 comparisons. Three runs (EC2-A Max OBT, EC2-B Max OBT, and SK4-A Max
OBT) show that using a fixed 15 ◦C ambient temperature overrates the cable by between
2.5 and 4.1%, which suggests that the potential for overheating could be increased and
that the cable may be at risk. By contrast, when a static maximum OBT is used for NS1-A,
NS1-B, and SK-B, this underrates the cable by between 2.6 and 7.5%, which suggests that
these cables could handle an increased load or, if considering segmented cable sections,
that a reduction in the cross-sectional area for the cable design at this location could
be implemented.

When a static mean OBT is used, all of the relevant model runs suggest that there
would be a rating increase of between 1.7 (EC2-B) and 7.6% (SK4-B). However, we would
question how representative the Mean of the Monthly Mean OBT values are for cable design
as they will potentially not capture, shorter lived but potentially significantly extreme
values. Ultimately, sensitivity modelling should be undertaken in order to establish whether
the ratings gain is suitably offset by the potential risk of exceeding long-term temperature.

As demonstrated by studies on the impact of time-varying OBT on real-time export
cable rating optimization [19], using time varying OBT time series will provide the most
realistic ambient temperature conditions that the cable will encounter. The ratings based
on the OBT time series all show an increase relative to the S15 static runs. For the EC2
cable, these represent relatively small gains of 0.8 and 1.4% for the low and high thermal
scenarios due to the overall higher ambient temperature that is encountered along the
entire length of this cable. By contrast, for the NS1 and SK4 cables, gains of between 3%
(SK4-A) and 7.8% (SK4-B) are registered. Again, such increases are significant in terms of
either additional power transfer or considering a change in cable cross-sectional for all or
part of the cable route.

6. Discussion

This paper demonstrates that properly capturing ambient ocean bottom temperature
from publicly available resources can result in either a significant increase in cable rating
or the identification of potentially high-risk overrated sections compared with ratings
based on commonly used fixed temperature values (e.g., 15 ◦C). A method for validating
these OBT models against equally open access in situ observations has been presented
and demonstrated on the AMM7 and AMM15 models of OBT across the Northwest Euro-
pean Shelf.

Analysis of these models demonstrates the scale of spatial and temporal variation
that may be encountered by individual cable routes that transect this landscape. It has
been demonstrated that individual cable routes can experience along-cable temperature
variations of >12 ◦C at single points in time, whilst at single locations, they can experience
temperature variations of >15 ◦C over the course of a year.

Using a 1D numerical cable model [16] with a fixed DC cable buried at a metre depth
and in identical thermal ground conditions, the implications of OBT alone on cable rating
have also been demonstrated. For the examples used, rating changes of between −4.1%
and +7.8% were generated relative to a static 15 ◦C ambient model. It should be clear that
this is a demonstrative exercise to show the impact of ambient temperature in isolation on
submarine cable ratings, and in practice, it is obviously essential to consider both the spatial
variation of sediment thermal properties (thermal resistivity and thermal diffusivity) as
well as post-installation changes in depth of cover. However, as recent analysis of DTS data
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from active cables has shown [21], seasonal fluctuations have a primary control on actual
cable temperatures.

As cable routes become longer, either through greater transit lengths of interconnectors
(e.g., XLinks, 3800 km) or expansion into deeper water and the further offshore fixed and
floating windfarms, the design of segmented cables can be optimized by fully considering
the whole thermal environment.

7. Conclusions

• A method is presented for validating publicly available ocean bottom temperature
models with equally accessible in situ observations from global databases.

• This validation method has been demonstrated on both the AMM7 and the AMM15
Northwest European Shelf physical models using 181,860, quality controlled, in situ
measurements from the World Ocean Database.

• The validation demonstrates that both models perform are similar to the whole shelf
and whole year statistics of 1.25 ± 1.06 ◦C (@ 1 STDEV) MAE for the AMM7 model
and 1.27 ± 1.08 ◦C (@ 1 STDEV) MAE for the AMM15 one. Model performance is
temporally and spatially variable, with the models performing better in the winter
(October–May: 1.09 ◦C ≥ MBE ≥ 0.61 ◦C; and 1.66 ◦C ≥ RMSE ≥ 1.38 ◦C) and
worse in the summer (June–September: 1.48 ◦C ≥ MBE ≥ 1.17; 2.2 ◦C ≥ RMSE ≥
1.69 ◦C). Spatially, the model has a positive bias in the East Central North Sea and
the German Bight, and it has a negative bias at the outer shelf margins and in the
Norwegian Trench.

• Analysis of indicative cable routes across the Northwest European Shelf demonstrates
that individual cable routes can experience along-cable temperature variations of
>12 ◦C at single points in time, whilst at single locations, they can experience tempera-
ture variations of >15 ◦C over the course of a year.

• 1-D numerical modelling based on a HVDC bipole at a fixed depth and with fixed
thermal soil parameters demonstrates that considering the spatial and temporal varia-
tion in OBT can result in a cable rating change of −4.1% and +7.8% across six example
case studies.

• The magnitude of these variations demonstrate that a considered approach to OBT
within cable models can result in both significant ratings (and hence capital expendi-
ture and operating costs) gains and/or the avoidance of cable overheating. Further
consideration of OBT does not require expensive additional in situ survey, but it can
be confidently assessed from publicly available datasets with quantified uncertainties.
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