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Chapter One

Introduction

1.1 Motivation

The movement of goods from a transportation hub to the final delivery des-
tination is known as last-mile delivery. The growth of population and so
demand for goods in urban areas considerably increases causing environmen-
tal pollution and traffic congestion. Furthermore, the increase of road taxes,
congestion charge, in urban areas impacting the total cost of a product. Ac-
cording to Van Goor (1980), transportation costs often form a considerable
part of the total cost of a product and represent up to 10% of the final price
of a product (Coyle et al., 1996). Last mile logistics is the least efficient
stage of the supply chain that causes up to 28% of the total transportation
costs (Rodrigue et al., 2016). Thus, delivering items efficiently in urban areas
plays a crucial role in total costs of supply chains.

The Dutch dairy industry uses truck-trailer combinations for the distri-
bution of final products. The products have to be delivered to customers
located in varies regions including crowded cities. This implies that serving
them with a truck-trailer combination may required much more time than
serving them using the truck alone. Therefore, the trailer is often parked
while the truck serve some customers (Gerdessen, 1996). In fact, this is an
application of the well-known truck and trailer routing problems (TTRPs). In
the simplest and most studied version of the TTRPs, the capacitated TTRPs
(CTTRPs), a homogeneous limited fleet of capacitated trucks and trailers are
available at a depot where the fright originates. A set of customers has to
be served and some of the customers can only be reached by a truck without
a trailer, called truck customers. The rest of customers can be visited either
by a truck alone or by a truck pulling a trailer, called vehicle customers. In
order to serve these two types of customers, three types of routes can be
planned: pure truck routes, pure vehicle routes, and complete vehicle routes.



2 Introduction

A pure truck route is a route that is carried out by a truck alone. A pure
vehicle route visits vehicle customers by a complete vehicle without any sub-
tour. Finally, a complete vehicle route consists of a main tour, starting and
ending at the depot and travelled by a complete vehicle, and one or more
sub-tours travelled by the truck alone. Each sub-tour starts and ends at a
given location visited in the main tour, called transshipment location, where
the trailer is temporarily parked and where a load transfer from a truck to its
trailer can be performed. Then, the truck alone serves some truck customers
and returns to the transshipment location. The trailer is attached to the
truck and continue its main tour.

In the CTTRP, the transshipment locations correspond to customer sites.
However, a generalised version of the CTTRP gives the option of decoupling
a trailer from a truck in locations that do not necessarily correspond to a
customer site. The aim of solving the TTRP is to determine the optimal set
of vehicles routes such that each customer is visited by a compatible vehicle
while the total cost of the system is minimised. Several heuristic algorithms
to solve the CTTRP are proposed in the literature (Caramia and Guerriero,
2010, Chao, 2002, Lin et al., 2009b, Scheuerer, 2006, Villegas et al., 2011,
2013). The CTTRP with time windows, also, has received some attention
(Derigs et al., 2013, Lin et al., 2011). So far, one exact method has been
proposed for the generalisation of the CTTRP by Drexl et al. (2011). For a
detailed review about the TTRP and its variants, we refer the reader to the
survey paper of Cuda et al. (2015).

Motivated by the idea of decoupling a trailer from a truck at a trans-
shipment location in the TTRP, and for the aim of designing an efficient
distribution system to deliver parcels in central cities with less number of
delivery vehicles entering central cities, we introduce the truck-porters rout-
ing problem (TPRP). The TPRP combines driving and walking to serve
customers located in urban areas for a single driver and one transshipment
location. In the TPRP, a truck and a trailer are available at the depot.
The truck is allowed to carry heavy and light items while the trailer is al-
lowed to carry light items only. The trailer is then attached to the truck
before the truck-driver departs from the depot towards the transshipment
location, or just the depot (assuming that there is no customers served by
the truck-trailer combination), where the trailer is temporarily parked and
a pre-determined number of porters are waiting. At this stage, transferring
heavy items from the truck to the trailer is not permitted. However, light
items can be transferred from the truck to the trailer and vice versa.

In the TPRP, a single truck and a limited number of identical porters
are available at the depot to undertake deliveries in which some customers
must be visited by the truck, called truck customers, some must be served
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by a porter, called porter customers, and the remainder can be visited either
by the truck or by a porter, which we refer to as unconstrained customers.
Porters are limited by the total weight of items that they can carry and by
a total working time constraint. However, a porter can revisit the depot to
collect further items for delivery. The TPRP problem consists of designing
a set of minimum-cost routes, where each route starts and ends at the depot
and satisfies capacity and travel time constraints. At any feasible solution
of the TPRP, there are two types of routes: a truck’s route where customers
are visited by the truck, and a porter’s route where customers are visited by
a porter. To illustrate that, there are four possible routes:

1. a route covered by the truck visiting truck customers and/or uncon-
strained customers;

2. a route covered by the truck visiting truck customers only;

3. a route covered by a porter visiting porter customers only;

4. a route covered by a porter visiting porter customers and/or uncon-
strained customers.

Figure 1.1: Illustration of the four possible routes in any TPRP feasible solution where
the square refers to the parking location (the depot), triangles correspond to truck cus-
tomers, circles referred to porter customers and octagons are unconstrained customers.

Combining walking and driving for last-mile parcel deliveries has recently
been studied in the literature (Allen et al., 2020, Martinez-Sykora et al.,
2020, McLeod et al., 2020, Nguyen et al., 2019). However, we believe that
this is the first work that considers three different types of customers in which
some of them must be served by porters (walking), some of them must be
served by the truck (driving), and the remaining customers can be visited
either by the truck or by a porter.
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1.2 Objectives

The objectives of this thesis are as follows:

• Introduce the truck-porters routing problem (TPRP);

• Review some vehicle routing problem (VRP) variants and present the
main formulations and solution techniques for VRPs;

• Propose two mathematical formulations and several families of valid
inequalities for the TPRP;

• Create a set of instances for the TPRP sampled from a VRP instance;

• Design and implement a branch-and-cut algorithm for the TPRP;

• Design and implement a variable neighborhood search (VNS) algorithm
for the TPRP;

• Introduce the truck-porters routing problem with satellites (TPRPS);

• Design and implement a VNS algorithm for the TPRPS.

1.3 Thesis outline

The remaining chapters of this thesis are structured as follows.

• Chapter 2 gives an overview of some VRP variants and extensions. The
focus is on variants that some resemblance to the TPRP. The chapter
also includes formulations and solution techniques that are commonly
used to tackle VRPs.

• Chapter 3 presents a branch-and-cut algorithm for the TPRP. Specifi-
cally, it presents:

1. two mathematical formulations for the TPRP;

2. several families of valid inequalities that can be included in any
formulation in order to strengthen its linear relaxation;

3. a tabu search algorithm designed and used to solve the separation
problem of the capacity constraints and valid inequality families;

4. an explanation of the method used to create a set of small-size
instances; and
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5. computational results to assess the performance of the branch-
and-cut algorithm.

• Chapter 4 contains a VNS algorithm for the TPRP. It presents:

1. the designed VNS algorithm for the TPRP;

2. an explanation of the method used to create the set of large-size
instances; and

3. computational results of this chapter.

• Chapter 5 contains a VNS algorithm for the TPRPS. In this chapter:

1. the TPRPS is introduced;

2. the designed VNS algorithm for the TPRPS is presented;

3. a real-world instance is considered and solved; and

4. the importance of the TPRPS is demonstrated.

• Chapter 6 concludes the work done in this thesis.





Chapter Two

An overview of the vehicle
routing problems

2.1 Introduction

Dantzig and Ramser (1959) introduced the vehicle routing problem (VRP)
under the name of “The truck dispatching problem” with the aim of deter-
mining an optimal routing plan for a fleet of homogeneous trucks to deliver
gasoline to gas stations. Five years later, Clarke and Wright (1964) proposed
an effective greedy heuristic for the approximation of the VRP called the
savings algorithm. Subsequently, an enormous number of papers have been
published in international operational research and transportation journals,
presenting mathematical models and proposing exact and (meta)heuristic al-
gorithms for the optimal and approximate solution of different VRP variants.
However, most of the well-studied VRP variants are different from the one
introduced by Dantzig and Ramser (1959) and Clarke and Wright (1964) as
they considered real-world features such as time-dependent travel times (re-
flecting traffic congestion), time windows for pickup and delivery, and input
information that changes dynamically over time. Such features add substan-
tial complexity to the VRP which is considered as an NP-hard problem of
combinatorial optimisation (Lenstra and Rinnooy Kan, 1981).

The VRP was born more than sixty years ago and, thus, in order to give
a brief review of the problem, we subdivided this chapter into four sections.
Section 2.2 presents important VRP variants that have been summarised and
fruitfully studied in the literature including VRP with limited capacity, time
windows, backhauls, heterogeneous fleet, multiple depot, split deliveries, and
stochastic demands. Variants are ordered on the basis of their influence in
the VRP literature. In order to assess their influence, we use the state-of-
the-art taxonomic review introduced by Braekers et al. (2016) since it is the
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most recent. Other variants with environmental considerations, which have
recently received a great attention in the literature of the VRP because of
their positive environmental and ecological impacts, are also presented in
this chapter including the pollution routing problem and the VRP in reverse
logistics. The electric, multi-trip, and two-echelon VRP are also reviewed.
Because the problem has a long research history, an extensive survey would
be inappropriate. Thus, Section 2.2 briefly introduces the definition, applica-
tion, classification, and related noteworthy articles for each variant. Section
2.3 describes the three main formulations to model VRPs, namely the vehicle
flow formulations, the commodity flow formulations, and the set partitioning
formulations. Section 2.4 reviews exact techniques for the VRPs including the
branch-and-bound, branch-and-cut, and branch-and-price algorithms. Sec-
tion 2.5 reviews some popular heuristic and metaheuristic algorithms for the
VRP and its variants.

2.2 Important VRP variants

2.2.1 Capacitated VRP

The VRP is one of the most widely studied topics in the field of operational
research and its often defined with capacity and/or route length restrictions.
When capacity constraints are present, the problem known as the capaci-
tated vehicle routing problem (CVRP) which is the most studied version of
the VRP. The study by Braekers et al. (2016) finds 277 articles in the VRP
literature published between 2009 and 2015, with more than 90% of these
articles considering the CVRP. The CVRP consists of establishing routes
with minimum cost, defined as the sum of the costs of the arcs belonging
to the circuits, for identical limited-capacity vehicles such that each vehi-
cle starts and ends its route at the depot, each customer is visited exactly
once by a vehicle and the sum of all demands on any route does not exceed
the vehicle capacity. Although the CVRP is a generalisation of the well-
known traveling salesman problem (TSP), the basic version of the former,
the CVRP, appears to be much more difficult to solve involving the same
number of cities (Laporte et al., 1986). Several integer programming formu-
lations such as two-index and three-index vehicle-flow formulations, single-
commodity, two-commodity and multi-commodity flow formulations, and set
partitioning formulations have been proposed to solve the CVRP (Laporte,
1992, 2009, Letchford and Salazar-González, 2006, 2015, Semet et al., 2014).
Among these various approaches, the most successful exact algorithms for
the CVRP are based on set partitioning formulations augmented with differ-
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ent families of cutting planes (Baldacci et al., 2008b, Fukasawa et al., 2006,
Pecin et al., 2017, Poggi and Uchoa, 2014). However, large-size instances
usually cannot be solved to optimality using exact methods due to the high
computational complexity (Baldacci et al., 2010). Thus, heuristic and meta-
heuristic approaches have been developed to tackle this problem and find
good, but not necessarily guaranteed optimal, solutions within reasonable
amount of computing times. Furthermore, the majority of studies about the
CVRP in the literature focus on heuristic, metaheuristic or hybrid methods
including evolutionary algorithms (Baker and Ayechew, 2003, Berger and
Barkaoui, 2003, Nagata and Bräysy, 2009, Prins, 2004), ant colony opti-
misation (Reimann et al., 2004, Yu et al., 2009), simulated annealing (Lin
et al., 2009a, Osman, 1993), tabu search (Cordeau et al., 2001, Gendreau
et al., 1994, Taillard, 1993, Toth and Vigo, 2003), path-relinking (Ho and
Gendreau, 2006), adaptive memory procedures (Rochat and Taillard, 1995,
Tarantilis, 2005, Tarantilis and Kiranoudis, 2002), large neighborhood search
(Ergun et al., 2006, Pisinger and Ropke, 2007), variable neighborhood search
(Chen et al., 2010, Kytöjoki et al., 2007), deterministic annealing (Golden
et al., 1998, Li et al., 2005), honey-bees mating optimisation (Marinakis et al.,
2010), hybrid Clarke and Wright’s savings heuristic (Juan et al., 2010), and
artificial bee colony (Brajevic, 2011, Simsir and Ekmekci, 2019, Szeto et al.,
2011).

2.2.2 VRP with time windows

The vehicle routing problem with time windows (VRPTW) is an extension
of the CVRP where the service at any customer starts within a given time
interval, so-called a time window. During service, the vehicle must remain
at the customer location. There are two types of time windows extensively
studied in the literature, soft time windows and hard time windows. The
soft time windows present a trade-off between not violating a time window
or incurring a penalty cost (e.g., dial-a-ride problems). By contrast, the hard
time windows, which has been used more widely, must be satisfied. In the
latter case, if a vehicle arrives too early at a customer, it must wait until
the customer is ready to begin service, and the vehicle cannot arrive late.
Important applications for hard time windows including bank and postal
deliveries, industrial refuse collection, school bus services, security patrol
service, and urban newspaper distribution. It seems that hard time-window
constraints naturally model many real-world situations, thus explaining their
wide usage. No heuristic approaches for the VRP with time windows or due
dates appeared until Russell (1977) proposes an effective heuristic for the
M -tour traveling salesman problem in which m salesman are used to visit
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customers. Before that, the VRPTW only appears in case studies (Knight
and Hofer, 1968, Madsen, 1976, Pullen and Webb, 1967). More recently,
the literature on the VRPTW has grown substantially to become the second
most studied variant of the VRP with 37.92% of the total published articles
between 2009 and 2015 (Braekers et al., 2016). The same study indicates that
30.58%, 5.81% and 1.53% of these articles considered hard time windows, a
mix of hard and soft time windows and soft time windows, respectively. An
overview of research on the VRPTW prior to 2014 is provided by Desaulniers
et al. (2014).

2.2.3 VRP with backhauls

The vehicle routing problem with backhauls (VRPB), also known as the
linehaul-backhaul problem, is an extension of the CVRP in which the cus-
tomers are partitioned into two subsets. The first subset contains the linehaul
customers requiring deliveries, who are also known as delivery customers.
The second subset consists of the backhaul customers requiring pick-ups,
who are also known as pickup customers. In the VRPB, the quantities to be
delivered and picked up are fixed and known in advance, and each vehicle
does deliveries as well as pick-ups in one route starting and ending at the
depot. The aim is to design a set of routes where all deliveries for each route
are completed before any pickups are made and the vehicle capacity cannot
be exceeded by either the linehaul customers or the backhaul customers asso-
ciated to the route. Taking an advantage of a vehicle going back to the depot
with an empty capacity by visiting some pickups customers before arriving
to the depot has contributed in reducing distribution costs to the industry.
For example, transportation costs and total distance travelled are decreased
significantly by employing milk run logistics which is a concept derived from
the VRPB (Brar and Saini, 2011).

The VRPB was first introduced by Deif and Bodin (1984). The au-
thors developed a heuristic algorithm based on an extension of the Clarke
and Wright savings algorithm (Clarke and Wright, 1964). Subsequent de-
velopments include heuristics (Goetschalckx and Jacobs-Blecha, 1989, Toth
and Vigo, 1999), metaheuristics (Brandão, 2016, Osman and Wassan, 2002,
Zachariadis and Kiranoudis, 2012), and exact algorithms (Mingozzi et al.,
1999, Toth and Vigo, 1997). The most recent exact algorithm is proposed by
Queiroga et al. (2020). They develop two branch-cut-and-price algorithms
that are capable of solving to optimality instances with up to 200 customers.

The VRPB arises in various applications such as in the grocery industry
where groceries are delivered to grocery stores from a distribution centre and
groceries are picked up at production sites and brought to the distribution
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centre. Another important application is the handling of returnable bottles,
where full bottles are delivered to customers and empty bottles are picked
up to be returned to factories for recycling. There are many extensions of
the VRPB such as the mixed VRPB, the multiple depot mixed VRPB, the
VRPB with time windows, the mixed VRPB with time windows, and the
VRP with simultaneous deliveries and pickups. The study of Ropke and
Pisinger (2006) reviews the standard VRPB and other mentioned variants
and proposes a unified adaptive large neighborhood search heuristic, which
is the first unified heuristic capable of solving a large class of VRPBs. A
recent comprehensive and up-to-date review of the existing literature on the
VRPB and its variants by Koç and Laporte (2018) includes models, exact
and heuristic algorithms, industrial applications and case studies.

2.2.4 Heterogeneous VRP

A fleet of vehicles that is characterised by different carrying capacities, speeds,
costs or carbon-emission amounts is called a fleet of heterogeneous vehicles.
The heterogeneous VRP (HVRP), also called mixed fleet VRP, is a variant of
the VRP and it has been known since the early VRP literature. The HVRPs
have received much attention due to most real-life distribution problems hav-
ing customers who are served by a heterogeneous fleet of vehicles (Hoff et al.,
2010). Indeed, operating a homogeneous fleet in industry is very rare as the
fleet is often acquired over a long period of time and, thus, vehicles in most
cases have different characteristics due to the development of technology and
changing market requirements.

There are two major classes of the HVRPs. The first one is the fleet size
and mix vehicle routing problem (FSM) that is introduced by Golden et al.
(1984), which operates with an unlimited fleet, while the second class is the
heterogeneous fixed fleet vehicle routing problem (HF) that is introduced by
Taillard (1999), which assumes a predetermined fleet. Unified exact algo-
rithms to solve both the FSM and the HF are proposed in the literature
(Baldacci et al., 2010, Baldacci and Mingozzi, 2009, Choi and Tcha, 2007).
Heuristic methods for the FSM (Brandão, 2009, Liu et al., 2009), and for the
HF (Brandão, 2011, Euchi and Chabchoub, 2010) have been developed in the
HVRP literature. A servey of HVRPs by Baldacci et al. (2008a) covers the
main result dating back to 2007. An updated brief review on HVRPs cover-
ing publications in the period 2008 to 2014 is provided by Irnich et al. (2014).
More recently, Koç et al. (2016) present a classification and an up-to-date
review of the existing literature on HVRPs.
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2.2.5 Multiple depot VRP

In many real-life applications, goods must be delivered from more than one
depot under some restrictions such as capacity or time window constraints.
The multiple-depot VRP (MDVRP) consists of designing a set of routes with
minimum cost to serve each customer by a vehicle that is assigned to one
of these depots such that each vehicle departs from, and later returns to
the same depot. Documented examples of the MDVRP include the delivery
of meals, chemical products, soft drinks, machines, industrial gasses, and
packaged food.

The MDVRP was first studied by Tillman (1969) and since then, various
extensions have been discussed in the literature, including the MDVRP with
time windows (Dondo and Cerdá, 2007, Giosa et al., 2002, Polacek et al.,
2004), with backhauls (Min et al., 1992, Salhi and Nagy, 1999), with pickup
and delivery (Nagy and Salhi, 2005), with mixed fleet (Salhi et al., 2014,
Salhi and Sari, 1997), and multi-depot location routing problem (Wasner
and Zäpfel, 2004, Wu et al., 2002).

Solution methods proposed in the literature for the MDVRP include ex-
act methods (Benavent and Mart́ınez, 2013, Braekers et al., 2014), heuristics
(Gulczynski et al., 2011), and metaheuristics (Dondo and Cerdá, 2009). The
only survey on the MDVRP is that of Montoya-Torres et al. (2015) who con-
sider papers published between 1988 and 2014. They find that the number of
publications on the MDVRP has increased significantly over the years. They
observe that exact algorithms (branch and bound, mathematical program-
ming) are employed in 25% of the reviewed papers, while the remaining 75%
focus on heuristics or metaheuristics.

2.2.6 Split deliveries VRP

In the split deliveries vehicle routing problem (SDVRP), a customer’s demand
can be split among several vehicles. In other words, visiting any customer
several times is possible and the demand of any customer can be greater than
the vehicle capacity. The SDVRP is a relaxed version of the CVRP and it
was first introduced by Dror and Trudeau (1989) who show that there can
be savings generated by allowing split deliveries. These savings can reach up
to 50% as shown by Archetti et al. (2006a). An empirical study by the same
authors show how the savings depend on the characteristics of the instance
(Archetti et al., 2008). They demonstrate how the value of customer demands
with respect to the vehicle capacity has the largest influence on the saving
made, especially when the average customer demand is slightly over half the
vehicle’s capacity and the variance of customer demand is relatively small.
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Several variants of the SDVRP are introduced in the literature such as
SDVRP with time windows, which has received the greatest attention (De-
saulniers, 2010, Ho and Haugland, 2004), heterogeneous SDVRP (Tavakkoli-
Moghaddam et al., 2007) and SDVRP with stochastic demands (Bouzaiene-
Ayari et al., 1993). Other variants are reviewed in detail in a survey paper by
Archetti and Speranza (2012). The two-stage local search algorithm devel-
oped by Dror and Trudeau (1989) is considered as the first heuristic method
for the SDVRP. Subsequent studies propose exact approaches (Dror et al.,
1994, Jin et al., 2007, Lee et al., 2006, Sierksma and Tijssen, 1998), hybrid
methods and metaheuristics (Aleman and Hill, 2010, Archetti et al., 2006b,
Berbotto et al., 2014, Chen et al., 2007, Jin et al., 2008), and heuristics (Chen
et al., 2014, Gulczynski et al., 2010, Wang et al., 2014). A comprehensive
discussion on heuristic solution approaches for the SDVRP is presented by
Archetti and Speranza (2012). Real-life applications of split deliveries can
be found in newspaper logistics (Song et al., 2002), food distribution (Am-
brosino and Sciomachen, 2007), feed distribution in a large livestock ranch
(Mullaseril et al., 1997), and waste collection (Archetti and Speranza, 2004).

2.2.7 Stochastic VRP

Stochastic vehicle routing problem (SVRP) arises whenever some elements
of the problem, such as customer demands or travel times are random (Gen-
dreau et al., 1996). In most real-world applications, uncertainty is an inherent
characteristic of the problem and the probability theory is the main tool to
represent the uncertainty in mathematical models in this context. Gendreau
et al. (1996) propose a classification according to the stochastic parameters,
and Sahinidis (2004) summarise various optimisation problems with uncer-
tainty. In most stochastic problems studied, there is only a single vehicle,
which is probably due to the complexity of these problems. There are many
variants in the literature of SVRP, however, with the most common cases
being: VRP with stochastic customers (Bertsimas, 1992), stochastic demand
(Dror et al., 1993, Mendoza et al., 2010, Tillman, 1969) and stochastic travel
time (Lambert et al., 1993). A survey by Cordeau et al. (2007) covers these
SVRP variants. Applications of the SVRP arise in a number of settings such
as delivery of meals on wheels (Bartholdi III et al., 1983) delivery of home
heating oil (Dror et al., 1985), of sludge disposal (Larson, 1988), forklift truck
routing in warehouses (Bertsimas, 1992), money collection in bank branches
(Lambert et al., 1993), and general pickup and delivery operations (Hvattum
et al., 2006).
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2.2.8 Pollution routing problem

The pollution routing problem (PRP) is an extension of the CVRP with
a more comprehensive objective function that considers travel distance, the
amount of greenhouse gas emissions, fuel, travel times and their costs. Bektaş
and Laporte (2011) introduce the PRP with the aim of choosing a vehicle
dispatching scheme with less pollution, especially with a reduction of carbon
emissions. In the PRP, vehicle load and speed may change from one leg of
the route to another, but all other parameters remain constant on a given
leg.

The PRP has been extensively studied and quickly extended in the liter-
ature. The variants include bi-objectives (Demir et al., 2014), heterogeneous
vehicles (Koç et al., 2014), time-dependent travel (Franceschetti et al., 2017),
and the Steiner PRP (Raeesi and Zografos, 2019). A recent survey on the
green VRP by Lin et al. (2014) covers studies of the PRP during the period
2007 to 2012. Their paper also suggeste some possible future research di-
rections for the green VRP. Asghari et al. (2021) provide a state-of-the-art
review of the green VRP. A systematic literature review by Moghdani et al.
(2021) covers freight transportation with green VRPs.

2.2.9 VRP in reverse logistics

Any operations related to the reuse of products and materials belong to re-
verse logistics. Dekker et al. (2013) defined reverse logistics as “The process
of planning, implementing and controlling backward flows of raw materials,
in process inventory, packaging and finished goods, from a manufacturing,
distribution or use point, to a point of recovery or point of proper disposal”.
Carter and Ellram (1998) provided an overview of reverse logistics. The
VRP in reverse logistics (VRPRL) concerns about the distribution aspects
of reverse logistics. Based on the evidence of a large number of publications,
reverse logistics has received much attention with large amount of publica-
tions over the past two decades. However, there are only a few studies on
reverse logistics from the perspective of vehicle routing (Lin et al., 2014).

The VRP can be utilised to formulate reverse logistics problems. Beul-
lens et al. (2004) discuss the collection (reverse) and vehicle routing systems
that link the chain with the market, the VRPRL. The majority of VRPRL
studies seen in the literature were mainly focus on the recycling waste or
end-of-life goods to one or multiple depots for further reprocessing. A review
paper of the existing literature of VRPRL is provided by Lin et al. (2014).
In their paper, the authors subdivide the problem into four categories; selec-
tive pickups with pricing, waste collection, end-of-life goods collection, and
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simultaneous distribution and collection. A more recent review paper of Sar
and Ghadimi (2023) investigates the state-of-the-art by focusing on VRPRL
articles published between 2000 and 2022. Both review papers suggest some
further research directions in the VPRRL.

2.2.10 Electric VRP

In the electric vehicle routing problem (EVRP) a fleet of electric vehicles
(EVs) are used instead of internal combustion engine vehicles (ICEVs). It
was first introduced by Conrad and Figliozzi (2011) and has been of interest
to organisations, companies and researchers because of the new policies and
regulations related to greenhouse gas emission in the transport sector. In fact,
many companies started using EVs and their number is steadily increasing
(Coplon-Newfield and Park, 2017). Many other companies such as FedEx,
UPS, Frito-Lay, AT&T, General Electric, and Coca-Cola started testing or
implementing this technology (Suizo, 2013). The enormous rise in interest of
shifting from the conventional petroleum-fuel powered vehicles to EVs leads
to this fertile area of research, the EVRP, in which a set of routes for a fleet of
EVs is to be created. An EV is equipped with a limited-capacity battery that
allows 160 to 240 kilometre to be driven before visiting a charging station
in between customer visits, thereby allowing the continuation of its route
(Van Duin et al., 2013, Young et al., 2013).

Following the introduction of the EVRP, various studies have considered
variants of the basic problem. Schneider et al. (2014) introduce the EVRP
with time windows and charging stations. Some studies assume that the
stations have different chargers (Felipe et al., 2014, Keskin and Çatay, 2018,
Li-ying and Yuan-bin, 2015, Sassi et al., 2014). Other papers deal with both
location of the charging stations and the routing (Li-ying and Yuan-bin, 2015,
Paz et al., 2018, Schiffer and Walther, 2017). A heterogeneous EV fleet is
conidered by Lin et al. (2016). Other extensions of the basic EVRP including
battery swap stations (BSS) where the low-charge battery is replaced with
a fully recharged one (Jie et al., 2019, Liao et al., 2016, Paz et al., 2018),
wireless charging systems (WCS) where the battery is recharged while driving
(Li et al., 2018), and the EVRP with time windows (EVRPTW) involving
time-dependent queuing times at recharging stations (Keskin et al., 2019)
are recently introduced in the literature. An overview of solution approaches
for solving the EVRP and its variants is presented by Erdelić and Carić
(2019). The most recent review paper of Kucukoglu et al. (2021) covers
EVRP variants, mathematical formulations, and solution approaches.
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2.2.11 The multi-trip VRP

Contrary to the majority of the vehicle routing problems, a vehicle can per-
form more than a single trip in the multi-trip VRP (MTVRP). The multiple
use of vehicles is more realistic in several practical situations. For example,
distributing goods in city centres is usually performed by small vehicles and,
because of the capacity limitation, they daily perform several short trips.
Fleischmann (1990) addresses the problem under the name Vehicle Routing
Problem with Multiple Use of Vehicles. A significant increase of the number
of publications dealing with this subject is noticeable. The development of
new distribution schemes in cities is the reason behind this gain of interest
(Cattaruzza et al., 2018). The MTVRP appears in the literature under sev-
eral names. In addition to the already mentioned VRP with multiple use of
vehicles used by Fleischmann (1990), it has been addressed as multitrip VRP
(Prins, 2002), VRP with multiple routes (Azi et al., 2007), VRP with multiple
trips (Petch and Salhi, 2003), VRP with multiple depot returns (Tsirimpas
et al., 2008), and multiple trip VRP (Battarra et al., 2009). Taniguchi and
Van Der Heijden (2000) allow vehicles to make multiple traverses, while the
multiple usage of vehicles has been called recycling of trucks in Van Buer
et al. (1999).

Fleischmann (1990) is the first to address the MTVRP in his working
paper in 1990, where he proposes a modification of the Clarke and Wright
savings algorithm and the use of a bin packing (BP) heuristic to assign trips
to the vehicles. Six years later, Taillard et al. (1996) propose a three-phase
algorithm. In the first phase, a large number of good vehicle trips satisfying
the VRP constraints are generated. Then, a subset of these trips is selected in
the second phase and a MTVRP solution is constructed using a BP heuristic
in the third phase. Petch and Salhi (2003) propose a multi-phase algorithm.
In the first phase, VRP solutions are generated by the parametrised Yellow’s
savings algorithm (Yellow, 1970). For each VRP solution, a MTVRP solution
is constructed using the same BP heuristic used by Taillard et al. (1996).
Then, the MTVRP solutions are improved using 2-opt and 3-opt moves.
Later, Salhi and Petch (2007) propose a genetic algorithm in which the plane
is divided in circular sectors. Each sector is defined by an angle measured
with respect to the depot and the x-axis. Customers are then clustered
according to the sector they occupy. In each cluster, the Clarke and Wright
savings heuristic is used to solve a smaller VRP problem. Then, a MTVRP
solution is generated by packing the resulting trips using a BP heuristic.

Olivera and Viera (2007) used an adaptive memory approach to solve the
MTVRP. A memory of trips is initialised by different VRP solutions gener-
ated by the sweep algorithm. Then, the algorithm iteratively creates new
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VRP solutions by probabilistically selecting trips from the memory. These
solutions are improved by applying a tabu search (TS) algorithm and then
used to update the memory. At every iteration of the TS, a BP heuristic is
used for the aim of producing a tentatively feasible MTVRP solution. The
first exact method to solve the MTVRP is designed by Koc and Karaoglan
(2011). They propose a branch-and-cut algorithm with several valid inequal-
ities taken from the VRP literature that remain valid for the MTVRP. Min-
gozzi et al. (2013) propose more sophisticated exact method for the MTVRP
based on branch-and-price.

Cattaruzza et al. (2014) propose a memetic algorithm in which each chro-
mosome represents a customer sequence. They first apply a modified version
of the split procedure proposed by Prins (2004) for the VRP. The splitting
procedure is used to turn chromosomes into MTVRP solutions. They then
compute the best MTVRP solution that can be obtained with the trips of
this solution. The authors introduce a new local search operator based on
a combination of standard VRP moves and swaps between trips. François
et al. (2016) propose two adaptive large neighborhood search (ALNS) heuris-
tics for the MTVRP, namely the ALNS with multi-trip operators (ALNSM),
and the ALNS combined with BP (ALNSP). Both heuristics work on a re-
laxed version of the MTVRP where the tour duration constraints are relaxed
and overtime is penalised in the objective function.

Several extensions of the MTVRP introduced in the literature. The
MTVRP with time widows (MTVRPTW) is addressed in which each cus-
tomer has an associated time interval during which service should occur. Sev-
eral exact methods are proposed to solve the MTVRPTW. Azi et al. (2007)
propose an exact algorithm that is able to solve to optimality instances with
100 customers and 1 vehicle. Furthermore, instances with 50 customers and 4
vehicles are solved exactly in Hernandez et al. (2014). Other extensions such
as service-dependent loading times, where there is loading time for a vehicle
at the depot that depends on the customers visited during the trip, limited
trip duration, where there is a time limit on each trip’s duration, and profits
where serving all customers is not mandatory and a profit Pi is associated
with serving customer i. Cattaruzza et al. (2018) provide a state-of-the-art
survey on the MTVRP and its variants.

2.2.12 The two-echelon VRP

In the classical VRP, vehicles start and end their routes at the depot to serve
a set of customers. However, in practice, there are some deliveries need to
be undertaken to customers residing in inaccessible areas, e.g., pedestrian
zones. Therefore, it is economically beneficial to divide the distribution net-
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work into two levels. In the first level, different vehicles, so-called urban
vehicles, will be delivering parcels from the depot to intermediate facilities
called satellites. In the second level, vehicles, porters, or cyclists (also known
as city freighters) will be delivering parcels from satellites to a set of cus-
tomers (Crainic et al., 2009). This problem is also known as the two-echelon
distribution problem (2E-VRP) in the literature. The aim of this problem is
to deliver parcels, consolidated through the satellites, to customers while the
overall transportation cost is minimised.

The 2E-VRP is an extension to the classical VRP. The first formal defini-
tion of the problem is presented by Crainic et al. (2009). In their paper, a rich
variant of a 2E-VRP with multiple products and depots, time-dependencies,
and vehicle synchronisation is studied. The simplest and most frequently
studied problem in the class of the 2E-VRPs, the two-echelon capacitated
vehicle routing problem (2E-CVRP), is explicitly examined by a flow-based
mathematical model by Perboli et al. (2011). Since then, exact (Baldacci
et al., 2013, Santos et al., 2015), and heuristic (Crainic et al., 2011, Hem-
melmayr et al., 2012) algorithms proposed in the literature. The 2E-VRP
together with two other related problems, namely the two-echelon location-
routing problem and the truck-and-trailer routing problem, are reviewed by
Cuda et al. (2015). The most recent literature review on 2E-VRPs is by
Sluijk et al. (2022). The authors discussed the canonical problem and its
real-world inspired variants such as the 2E-VRP with time windows, pick-
up and delivery operations, and multiple commodities. The state-of-the-art
exact algorithm is the branch-cut-and-price algorithm proposed by Marques
et al. (2020). Their algorithm is capable of solving instances with up to 300
customers and 15 satellites.

2.3 Basic models for the VRP

There are three main mathematical programming formulations to model
VRPs; vehicle flow formulations, commodity flow formulations and set par-
titioning formulations.

• Vehicle flow formulations:

Models of this type uses integer variables associated with each arc or
edge that count the number of times that the arc or the edge is traversed
by a vehicle. This is suitable for cases where the solution cost can be
expressed as the sum of the costs associated with the arcs. These mod-
els are the most widely used for basic VRPs in the literature, although
they cannot be used to formulate many practical variants of the VRP
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such as when the cost of the solution depends on the type of vehicle
assigned to a route. A vehicle flow formulation, for example, is intro-
duced by Li et al. (2019) for a 2E-VRP variant called the two-echelon
time-constrained VRP. Another example of the use of this type of for-
mulation is the vehicle flow formulation proposed by Li et al. (2017) for
the roll-on roll-off VRP. According to Letchford and Salazar-González
(2015), most of the successful exact algorithms for the CVRP are based
on this type of formulation (Lysgaard et al., 2004).

• Commodity flow formulations:

In this type of model, a new set of continuous variables are associated
with the arcs or edges which represent the flow of the commodities
along the paths travelled by the vehicles. Models of this type have only
recently been used to find exact solutions of VRPs. A two-commodity
flow formulation is proposed by Ramos et al. (2020) for the MDVRP.
Letchford and Salazar-González (2015) present two multi-commodity
flow formulations (MSF) that dominate (their continuous relaxations
yield stronger lower bounds) other MCFs for the CVRP.

• Set partitioning formulations:

For this approach, a set of feasible routes, each starting and ending
at the depot, is created. The model associates a binary variable with
each of there routes to indicate whether a route is used in the solution.
The VRP is then formulated as a set partitioning problem having a
solution comprising those routes that satisfy the VRP constraints of
circuits with minimum cost. This allows for extremely general route
costs, such as the travel cost being vehicle-dependent (Toth and Vigo,
2002b). Many successful exact algorithms for the CVRP are based on
a set partitioning formulation (Baldacci et al., 2008b, Fukasawa et al.,
2006).

Magnanti (1981) outlines several relationships between these three formu-
lations. Additional formulations for the VRP are provided by Laporte and
Nobert (1987). In most of the VRP variants, there are detailed review papers
about the methods used to formulate the problem. For example, Kallehauge
(2008) present a review paper for the VRPTW. Another example is the re-
view paper by Oyola et al. (2018) for the formulations of SVRPs.
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2.4 Exact algorithms for VRPs

In this section, we describe some algorithms that can be used to produce
a solution that is guaranteed to be optimal (or can show that there is no
feasible solution).

2.4.1 Branch-and-bound algorithms for VRPs

The most effective exact approaches until the late eighties were mainly branch-
and-bound algorithms based on elementary combinatorial relaxations such as
the assignment problem (AP), the degree-constrained shortest spanning tree
(SST), and state-space relaxation. Laporte and Nobert (1987) provide a
complete and detailed analysis of these algorithms. By the end of nineties,
more sophisticated bounds, such as those based on Lagrangian relaxation or
on the additive approach, have been proposed thereby increasing the size of
the problems that can be solved to optimality (Toth and Vigo, 2002b).

The general idea behind branch-and-bound algorithms is to recursively
decompose a problem into subproblems. To solve integer linear programs
(ILPs), for maximisation problems, the method first solves the linear relax-
ation of the original ILP, using linear programming (LP) solution methods
such as the simplex method. If an integer solution is obtained, then the prob-
lem is solved. Alternatively, if the solution is non-integer, then we have an
upper bound on the objective value of an optimal solution (the lower bound
is set to −∞). Then, two new subproblems are created by adding additional
constraints to the original problem. This process is known as branching. The
linear relaxations of the two subproblems are then solved with the two solu-
tions providing upper bounds for the two branches. This process is usually
represented in the form of a search tree, with each node corresponding to a
different subproblem. The following checks are made for each subproblem:

1. all variables in the solution for the relaxed subproblem are integral. If
the objective value is greater than the existing lower bound, it replaces
the existing lower bound;

2. the relaxed subproblem is infeasible;

3. the objective value of the fractional solution is below the current lower
bound.

When one of these is satisfied, the search tree can be pruned by removing
the node corresponding the to subproblem, which is often referred to as fath-
omed or killed. Toth and Vigo (2002a) present several basic combinatorial
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relaxations, including better relaxations based on Lagrangian and additive
approaches which considerably increase the size of the instances solvable by
branch-and-bound. Their book contains the main features (or ingredients)
of the algorithm used for the exact solution of asymmetric and symmetric
CVRP. A review of the main ingredients of branch-and-bound algorithms for
the VRPs proposed by Semet et al. (2014).

2.4.2 Branch-and-cut algorithms for VRPs

Applying a branch-and-bound method that enables cutting planes to be
added at any node of the tree is called branch-and-cut. This method has
been very successful in solving many combinatorial optimisation problems
(Caprara and Fischetti, 1997), but it may perform very poorly for some in-
stances, such as when the number of iterations of the cutting plane phase is
too high or the LP becomes unsolvable because of its size (Toth and Vigo,
2002b). For solving ILPs, the algorithm starts by solving the LP relaxation
and if the optimal solution is integral, we stop; otherwise a cutting plane al-
gorithm is used to find valid inequalities, which are often called cutting planes
or cuts. These cuts are then added to the LP, which is then re-solved so that
a better solution. From there, the branch-and-bound algorithm proceeds.
The use of branch-and-cut for the VRP is rooted in the exact algorithm of
Laporte et al. (1985), who introduce the two-index formulation of the VRP
and describe the first branch-and-cut algorithm for its solution. Semet et al.
(2014) present the main research works on branch-and-cut algorithms for the
symmetric CVRP published between 1980 and 2005. Branch-and-cut algo-
rithms are commonly designed to tackle VRP and its variants. For instance,
a branch-and-cut algorithm is designed for the VRP with drones (Tamke and
Buscher, 2021), two-dimensional loading constraints (Zhang et al., 2022), and
with split delivery and time windows (Bianchessi and Irnich, 2019).

2.4.3 Branch-and-price algorithms for VRPs

A combination of branch-and-bound and column generation methods is used
to create a branch-and-price algorithm in which columns might be added
to the LP relaxation at each node of the search tree. For problems with
many variables, most columns (variables) will be non-basic and their corre-
sponding values equal to zero, thus, making them irrelevant for solving the
problem. Considering a small number of columns is beneficial in reducing
computational and memory requirements. The algorithm works as follows:

1. reformulate the problem using any technique such as Dantzig-Wolfe
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decomposition to create the master problem with the aim of obtaining
better bounds;

2. after the relaxation is solved, a large number of variables remains
and the problem should be formulated as a restricted master problem
(RMP) which has as a small subset of the columns as possible;

3. solve the LP relaxation of the RMP;

4. solve a sub-problem called the pricing problem to find columns with
negative reduced cost;

5. if such a column is found, it is added to the RMP and the relaxation
is re-optimised. On the other hand, when there is no columns can
enter the basis and the solution to the relaxation is not integer, then
branching occurs.

The philosophy of branch-and-price is similar to that of branch-and-cut ex-
cept that the procedure focuses on column generation rather than row gen-
eration. Although both techniques have been extensively used with great
success in the last few decades, the current best algorithms often belong to
the branch-and-cut-and-price family, which is a combination of these meth-
ods (Toth and Vigo, 2014). Branch-and-price algorithms are commonly used
to solve the VRP and its variants. For example, a branch-and-price algo-
rithm for the VRP with time windows on a road network is designed by
Ben Ticha et al. (2019). The two-echelon electric VRP was also tackled by
Wu and Zhang (2021) using a branch-and-price algorithm.

2.5 Heuristics for VRPs

Exact algorithms are able to find optimal solutions for relatively small-size
instances involving about 100 customer, but they are often extremely time
consuming when solving real-world problems where instances are much larger
and the computation time is limited. Heuristic techniques are powerful
and flexible search methodologies have successfully tackled difficult prac-
tical problems. Heuristic algorithms seek to obtain high-quality solutions,
but optimality cannot be guaranteed, in reasonable computation times and
good enough for practical purposes. While efficient heuristics are required in
practice, an enormous number of heuristics have been proposed for VRPs.
Heuristics to solve VRPs can be classified as classical heuristics and meta-
heuristics.
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2.5.1 Classical heuristics

Laporte and Semet (2002) classify classical heuristics for the VRP into three
categories: constructive heuristics, two-phase methods, and improvement
heuristics.

2.5.1.1 Constructive heuristics

The process of building an initial solution from scratch is called a constructive
heuristic. There are two fundamental techniques used for constructing VRP
solutions: merging existing routes using a saving criterion, and sequentially
assigning customers to vehicle routes using an insertion cost to select the
next customer together with a route and position for the insertion.

The first and the most widely known heuristic, based on the concept
of saving, is the Clarke and Wright savings algorithm (Clarke and Wright,
1964). Because of the simplicity, intuitive appeal and the quality of solutions
obtained with the algorithm, it has been widely accepted in the research com-
munity. The algorithm naturally applies to problems for which the number of
vehicles is a decision variable, and it works equally well for problems defined
on directed and undirected graphs. The algorithm starts from a solution in
which each customer is visited in a separate tour. For each pair of customers,
the saving by connecting these customers directly through merging the two
routes is determined whenever this is feasible. The algorithm then creates a
saving list by sorting these savings in a non-increasing order.

There are two versions of the Clarke and Wright algorithm, a sequential
version where each route is built at a time, and a parallel version where
routes are simultaneously built. Various enhancement strategies for the sav-
ings approach are proposed in the literature with the aim of improving either
its effectiveness or its computational efficiency using better data structures
(Golden et al., 1977, Paessens, 1988). Other attempts to improve the effec-
tiveness of the saving method are made by Altinkemer and Gavish (1991),
and Wark and Holt (1994).

The second type of constrictive heuristic is based on the sequential in-
sertion of customers. Two sequential insertion algorithms are the Mole and
Jameson (1976) sequential insertion heuristic that expands one route at a
time, and the Christofides et al. (1979) sequential insertion heuristic that
applies, in turn, sequential and parallel route construction procedures. Both
heuristics have a 3-opt improvement phase. A detailed description and com-
parison between the two methods is reported by Toth and Vigo (2002b).
They find that the sequential insertion heuristic of Christofides et al. (1979)
is more general and effective than the Mole and Jameson (1976) algorithm.
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2.5.1.2 Two-Phase methods

In two-phase methods, the VRP solution process is decomposed into two
separate subproblems:

1. clustering: determine a partition of the customers into groups, each
corresponding to a feasible route; and

2. routing: the customers in each of these groups are routed.

In cluster-first, route-second methods, customers are first grouped into clus-
ters and then a vehicle route for each cluster is determined. As an example
of the cluster-first, route-second approach is the sweep algorithm. The first
mentions of this algorithm are found in a book by Wren and Carr (1971)
and in a paper by Wren and Holliday (1972), but it became more popular
as a result of the paper by Gillett and Miller (1974). An extension of the
sweep algorithms is the class of so called petal algorithms. These generate
several routes, called petals (Ryan et al., 1993), and make a final selection
by solving a set partitioning model. Another example of this approach is
the well-known Fisher and Jaikumar algorithm, which solves a generalised
assignment problem (GAP) either optimally or heuristically to find clusters
of customers, and then determines the final routes by solving a traveling
salesman problem (TSP) on each cluster.

In route-first, cluster-second methods, a giant TSP tour is constructed
over all customer in a first phase, which is then partitioned into feasible
routes in a second phase. This idea applies to problems with an unlimited
number of vehicles. Examples of such methods are provided in the litera-
ture (Beasley, 1983, Bertsimas and Simchi-Levi, 1996, Haimovich and Rin-
nooy Kan, 1985), but this approach is generally not competitive with other
approaches (Cordeau et al., 2007).

2.5.1.3 Improvement heuristics

Improvement heuristics start with a given solution which is either generated
randomly or by constructive heuristics. Local search is one of the improve-
ment methods which tries to improve the solution through simple modifi-
cations such as arc exchanges or customer movements to obtain neighbor
solutions possibly having, for a minimisation problem, a lower cost. If an
improvement occurrs, the solution is updated and the process iterates; oth-
erwise a local minimum has been found. Improvement heuristics can be
subdivided into single route improvements, if they operate on a single route
at a time, and multiple route improvements if they consider several routes
simultaneously. The most common method of the former type is the k-opt



2.5 Heuristics for VRPs 25

heuristic of Lin (1965) for the TSP, where k edges are removed and replaced
by k different edges. In practice, k takes the value 2 or 3. Commonly used
methods for the latter type are multiple route improvements, including clas-
sical operators such as removing k consecutive customers from their current
route and reinserting them elsewhere, so-called relocate, swapping customers
between different routes, so-called swap, or removing two edges from differ-
ent routes and reconnecting them differently, so-called 2-opt. An example of
an improvement heuristic designed for the period VRP (vehicle routes are
planned over several days) is presented by Chao et al. (1995).

2.5.2 Metaheuristics

Unlike classical heuristics, a metaheuristic has the ability to avoid getting
trapped at a local optima. This feature explains the wide use of meta-
heuristics. Braekers et al. (2016) indicate that for VRP publications within
the period 2009 and 2015, more than 70% use metaheuristics as a solution
method. Metaheuristics can be broadly classified into two classes:

1. local search methods explore the solution space by iteratively moving
from a solution to another solution in its neighborhood until a stopping
criterion is satisfied. These methods include simulated annealing (SA),
tabu search (TS), and variable neighborhood search (VNS);

2. population search methods evolve a population of solutions which
might be combined together in the hope of generating better ones.
These including ant colony optimisation (ACO), genetic algorithms
(GA), and adaptive memory procedures (AMP).

Combining ideas from different metaheuristic principles yields often to better
heuristics, so called hyper-heuristic. Due to the large number of metaheuris-
tics published for VRPs in recent years and their level of intricacy, we will
concentrate on the basic principles of some local search algorithms since they
are the most widely used in the literature (Laporte, 2009). An overview of
metaheuristic principles can be found in the book by Gendreau et al. (2010).

2.5.2.1 Tabu search

One of the most effective and popular methods for solving VRPs is tabu
search (TS), which is first proposed by Glover (1986). In TS, the solution
space is explored by moving from the current solution to the best neighbor. In
order to avoid cycling, solutions that were recently examined are forbidden, or
tabu, for a number of iterations. To alleviate time and memory requirements,
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an attribute of tabu solutions is customary recorded rather than the solutions
themselves. TS can sometimes successfully solve difficult problems to near
optimality, although in most cases additional features such as intensification,
and diversification have to be included in the search strategy to enhance
its effectiveness. Various features are described by Burke et al. (2005). A
large number of implementations of TS are proposed in the literature. A
survey for the most important tabu search heuristics for the VRP is given
by Cordeau and Laporte (2005). Zachariadis and Kiranoudis (2010) design
a TS algorithm for the VRP that provides good results. A more recent TS
approach for the VRP is described by Jia et al. (2013).

2.5.2.2 Variable neighborhood search

Variable neighborhood search (VNS) is introduced by Mladenović and Hansen
(1997). It works with several local search operators, also called neighborhoods,
which are usually nested. Starting with a given neighborhood, the algorithm
iteratively applies these neighborhoods in a descent fashion until no further
improvement is possible. After applying the last neighborhood, a new cycle
can be started. The algorithm terminates after a predetermined number of
cycles or when no further improvement can occur. Several variants of VNS
are proposed in the VRP literature. A successful application, for example,
is proposed by Kytöjoki et al. (2007). Variants of the VRP are also tackled
using a VNS algorithm, such as by Polacek et al. (2004) for the multi-depot
VRPTW, Sarasola et al. (2016) for the stochastic and dynamic VRP, Xu
and Cai (2018) for the consistent VRP, and Yilmaz and Kalayci (2022) for
the electric VRP with simultaneous pickup and delivery. The basic schemes,
extensions, more recent developments, and some successful applications of
VNS are presented by Hansen et al. (2010).

One of the most successful approaches for the VNS that has led to some of
the most successful applications reported in the literature is the general VNS.
In the general VNS, neighborhoods are used in a deterministic manner. Such
procedures are known as variable neighborhood descent (VND). The VND
method usually uses the steepest descent direction, or best improvement,
heuristic in each of its neighborhoods and it stops when there is no direction of
descent (Gendreau et al., 2010). When the order of neighborhoods is selected,
the VND can be designed in two different ways: sequential, and nested. In
the sequential VND, neighborhoods are always explored in the given order,
whereas in the nested or composite VND, neighborhoods are composed. In
the sequential VND, the basic, the pipe, the cyclic, and the union VND
appear to be the most representative search methods. The main difference
between these methods is the way of implementing the neighborhood change
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procedure. That is when an improvement is achieved by a neighborhood, the
incumbent solution is updated and this is how the search is continued:

• Basic VND returns to the first neighborhood in the list;

• Pipe VND continues the search in the same neighborhood;

• Cyclic VND resumes the search in the next neighborhood of the list;

• Union VND continues the search in the same large neighborhood.

The reader can refer to Gendreau et al. (2010) for more details about VND
variants. Duarte et al. (2018) discussed typical problems that arise in devel-
oping VND heuristic. The authors also performed a comparative analysis of
common VND variants when solving TSP. In their analysis, they find that
pipe VND is the fastest, but not the best, sequential VND version.





Chapter Three

A branch-and-cut algorithm for
the TPRP

This chapter aims at designing and implementing a branch-and-cut algorithm
for the truck-porters routing problem (TPRP). Section 3.1 provides a formal
description of the problem. Two mathematical formulations are introduced
in Section 3.2. Section 3.3 describes a set of families of valid inequalities
for the TPRP. A general framework of the branch-and-cut algorithm for
the TPRP is presented in Section 3.4, including the separation procedure
of the capacity constraints, the set of families of valid inequalities, and the
branching technique. Section 3.5 gives details about the method used for
generating a set of problem instances, measuring the efficiency of each family
of valid inequalities, and reports on the computational results. Conclusions
of this chapter are given in Section 3.6.

3.1 Problem description

In the TPRP, there are n customers requiring deliveries from a depot. Each
delivery is performed either by one of m porters, each with a capacity of QP

units, or by a truck with no capacity limit. We define M = {1, 2, ...,m} to
be the set of porters. Customers may require a truck delivery, a porter deliv-
ery, or a delivery by either the truck or a porter; hence they are referred to
as truck customers, porter customers and unconstrained customers, respec-
tively. Each customer i requires a delivery of qi units. The delivery network
is represented by a complete directed graph G = (V,A), where V = V ′∪{0},
V ′ is a set of vertices corresponding to customer locations, 0 is the vertex
corresponding to the depot and A comprises a set of arcs (i, j) between vertex
i ∈ V and vertex j ∈ V for i 6= j. We define VT to be the set of vertices for
truck customers, VP to be the set of vertices for porter customers and VU to
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be the vertices for unconstrained customers, so that V ′ = VT ∪ VP ∪ VU and
V = VT ∪ VP ∪ VU ∪ {0}. We also define VPU = VP ∪ VU and VTU = VT ∪ VU .

The objective of the TPRP is determine a delivery scheme having a min-
imum total cost. The cost comprises a fixed cost FP for each porter that is
used, a travel cost c̄ij for each arc (i, j) traversed by the truck, and a travel
cost cij for each arc (i, j) traversed by a porter. We assume that cij is also the
travel time for traversing each arc (i, j). Matrices (c̄ij) and (cij) are assumed
to satisfy the triangle inequality.

The delivery scheme specifies a route for the truck, the number of porters
to be used together, and a route for each of these porters. Each customer
must be visited exactly once by the truck or a porter, with the constraints
for truck and porter customers satisfied. A truck route starts and ends at
the depot, and visits a subset of customers from VT ∪ VU . A porter route
may include several trips, where each trip starts and ends at the depot, and
visits a subset of customers from VP ∪VU . Feasibility of a porter trip visiting
customers in set S is ensured if

∑
i∈S qi ≤ QP and feasibility of a porter route

traversing arcs in set S ′ is ensured if
∑

(i,j)∈S′ qi ≤ TP , where TP is a time
limit on each porter’s delivery schedule.

3.2 Mathematical formulation

The formulation below uses the following variables:

x̄ij =

{
1, the truck traverses arc (i, j) ∈ A;
0, otherwise.

xkij =

{
1, the porter k where k ∈M traverses arc (i, j) ∈ A;
0, otherwise.

zk =

{
1, the porter k where k ∈M is active;
0, otherwise.

The resulting model is:

min FP

∑
k∈M

zk +
∑
k∈M

∑
i,j∈VPU∪{0}

cijx
k
ij +

∑
i,j∈VTU∪{0}

c̄ijx̄ij (1)

s.t.
∑
k∈M

∑
i∈VPU∪{0}

xkij = 1, ∀j ∈ VP (2)

∑
i∈VTU∪{0}

x̄ij = 1, ∀j ∈ VT (3)
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∑
k∈M

∑
i∈VPU∪{0}

xkij +
∑

i∈VTU∪{0}

x̄ij = 1, ∀j ∈ VU (4)

∑
i∈VPU∪{0}

xkis −
∑

j∈VPU∪{0}

xksj = 0, ∀s ∈ VPU ∪ {0}, ∀k ∈M (5)

∑
i∈VTU∪{0}

x̄is −
∑

j∈VTU∪{0}

x̄sj = 0, ∀s ∈ VTU ∪ {0} (6)

∑
i,j∈VPU∪{0}

cijx
k
ij ≤

∑
i,j∈VPU∪{0}

cijx
k−1
ij , ∀k ∈M\{1} (7)

xkij + xkji ≤ zk, ∀i, j ∈ VPU , ∀k ∈M (8)

xk0j ≤ zk, ∀j ∈ VPU , ∀k ∈M (9)∑
i,j∈VPU∪{0}

cijx
k
ij ≤ TP , ∀k ∈M (10)

∑
k∈M

∑
i∈S

∑
j∈S

xkij ≤ |S| −
⌈
Q(S)

QP

⌉
, ∀ S ⊆ VPU , S 6= ∅ (11)∑

i∈S

∑
j∈S

x̄ij ≤ |S| − 1, ∀ S ⊆ VTU , S 6= ∅ (12)

xkij ∈ {0, 1}, ∀i, j ∈ VPU ∪ {0}, i 6= j, ∀k ∈M (13)

x̄ij ∈ {0, 1}, ∀i, j ∈ VTU ∪ {0}, i 6= j (14)

zk ∈ {0, 1}, ∀k ∈M (15)

The objective function (1) aims to minimise the total travel time by the
truck and the porters and the number of porters used. Constraints (2)–
(4) impose that every customer is visited exactly once. Constraints (5) and
(6) ensures the connectivity of the routes. Constraints (7) are symmetry
breaking constraints: they force the travel time of porter k − 1 to be at
least as much as the travel time for porter k. To include the cost of active
porters in the objective function, we have constraints (8) and (9) that define
the value of zk. Constraints (10) ensure that porters do not exceed the
predetermined time TP . Constraints (11) and (12), which are called the
capacity cut constraints (CCCs), ensure connectivity of the solution and
avoid porter capacity violations. They generalise CCCs for the capacitated
vehicle routing problem (CVRP). Constraints (13), (14) and (15) specify the
binary nature of the decision variables xkij, x̄ij and zk.

The number of CCCs given by (11) and (12) grows exponentially with n.
Thus, in order to overcome this drawback, we rely on separation procedures.
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Alternatively, we can replace (11) and (12) by the following:∑
k∈M

[ ∑
i∈VPU∪{0}

(
ykij − ykji

)]
= qj, ∀j ∈ VP (16)

∑
i∈VTU∪{0}

(
ȳij − ȳji

)
= qj, ∀j ∈ VT (17)

∑
k∈M

[ ∑
i∈VPU∪{0}

(
ykij − ykji

)]
+

∑
i∈VTU∪{0}

(
ȳij − ȳji

)
= qj, ∀j ∈ VU (18)

qjx
k
ij ≤ ykij ≤ (QP − qi)xkij, ∀i, j ∈ VPU ∪ {0}, i 6= j, ∀k ∈M (19)

qjx̄ij ≤ ȳij ≤ (QT − qi)x̄ij, ∀i, j ∈ VTU ∪ {0}, i 6= j (20)

ykij ≥ 0, ∀i, j ∈ V, i 6= j, ∀k ∈M (21)

ȳij ≥ 0, ∀i, j ∈ V, i 6= j (22)

where ykij and ȳij are additional continuous variables representing the load
after visiting customer i by the porters and by the truck respectively. These
constraints govern the commodity flow conservation and capacity restrictions.
The advantage of using flow conservation constraints, (16)–(20), is that the
model has a polynomial number of constraints in terms of the number of
customers. However, the lower bound provided by the linear programming
(LP) relaxation of this model is known to be weak in relation to other models
(Toth and Vigo, 2002b).

3.3 Valid inequalities

In this section, we introduce several families of valid inequalities for the
TPRP. These inequalities can be added to the two formulations introduced
in the previous section in order to strengthen their LP relaxations. The
impact of each family of valid inequalities is assessed through computational
experiments in the last section of this chapter.

The presence of unconstrained customers, VU , in the TPRP leads us to
the majority of families of valid inequalities introduced in this section. For
this reason, we shed light on this type of customers at this stage. We know
that any customer i, where i ∈ VU , must be visited either by the truck or by
a porter as given by constraints (4), so it is obvious that:∑

k∈M

∑
i∈VU

∑
j∈VPU∪{0}

xkij +
∑
i∈VU

∑
j∈VTU∪{0}

x̄ij ≤ |VU |

which means that the total number of outgoing arcs from VU nodes toward
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V , either by the truck or by any porter, is always less than or equal to the
number of VU nodes, |VU |. Therefore, for any subset S such that:

(a) S ⊆ VTU , then we can state that∑
k∈M

∑
i∈VU

∑
j∈VPU∪{0}

xkij +
∑
i∈VU

∑
j∈S

x̄ij ≤ |VU |. (23)

(b) S ⊆ VPU , then we can state that∑
k∈M

∑
i∈VU

∑
j∈S

xkij +
∑
i∈VU

∑
j∈VTU∪{0}

x̄ij ≤ |VU |. (24)

We are going to use (23) and (24) to prove the validity of some families of
valid inequalities. It is worth mentioning at this stage the way by which
the CCCs of (11) are found. We know from the well-known capacity cut
constraints CCCs of the CVRP that

∑
i∈S
∑

j∈S xij ≤ |S| − r(S), where
r(S) is the minimum number of vehicles needed to serve set S. We also
know that the CCCs remain valid when we replace r(S) by the trivial Bin

Packing Problem lower bound
⌈
Q(S)
C

⌉
, where Q(S) =

∑
i∈S qi and C is the

vehicle capacity (Cornuejols and Harche, 1993). Therefore, the CCCs for the
porters in the TPRP are given by

∑
k∈M

∑
i∈S

∑
j∈S

xkij ≤ |S| −
⌈
Q(S)

QP

⌉
, ∀ S ⊆ VPU

where QP = C, which is constraints (11) in the original formulation. Con-
straints (12) are the well-know subtour elimination constraints (SECs) of the
TSP for the truck since the truck has no capacity restriction. The latter
constraints, (12), can be strengthen in two different cases. The next two
propositions show these cases.

Proposition 1. For any set S ⊆ VTU , if S contains at least one node i such
that i ∈ VT , the subtour elimination inequalities (12) can be strengthened as:∑

i∈S

∑
j∈S

x̄ij +
∑
k∈M

∑
m∈S∩VU

∑
z∈VPU∪{0}

xkmz ≤ |S| − 1,

∀ S ⊆ VTU , S ∩ VT 6= ∅. (25)
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S
Z

VP

VU

0

∈ VT ∈ VU

Figure 3.1: An illustrated example of Proposition 1.

Proof. Let N be a subset of S, where S ⊆ VTU , such that N = S ∩ VU . If
N = ∅, it means that S ⊆ VT and the summation over m, where m ∈ S∩VU ,
in (25) is equal to 0, which is the original SECs of (12). On the other hand,
if N 6= ∅, then any node in N is visited exactly once, either by the truck or
by a porter. By the fact that∑

i∈S

∑
j∈S

x̄ij =
∑

i∈S\N

∑
j∈S\N

x̄ij +
∑
i∈N

∑
j∈S

x̄ij

we can re-write (25) as follows:∑
i∈S\N

∑
j∈S\N

x̄ij +
∑

m∈S∩VU

∑
j∈S

x̄mj +
∑
k∈M

∑
m∈S∩VU

∑
z∈VPU∪{0}

xkmz ≤ |S| − 1. (26)

Therefore, we can replace the first term of (26) by its maximum value which
is equal to (|S| − |N |) − 1 using the SEC of (12). Also, we know that the
sum of the second and the third terms of (26) is less than or equal to |N | as
given in (23). As a result, the LHS of (25) is always less than or equal to
|S| − 1, which is the RHS of (25). Thus, the inequalities (25) are valid.

Proposition 2. For any set S ⊆ VU , inequalities (12) can be lifted to yield:∑
i∈S

∑
j∈S

x̄ij +
∑
k∈M

∑
z∈VPU∪{0}

xkmz ≤ |S| − 1, ∀ S ⊆ VU , m ∈ S. (27)

Proof. Consider any feasible solution of the TPRP and any customer m,
where m ∈ VU . Suppose first that customer m is visited by a porter. This
implies that the number of outgoing arcs for porter routes from m to the
depot and to a node z, where z ∈ VPU , is equal to one because constrains (5)
ensure the connectivity of the routes for the porters. In this case, the truck
cannot travel from the depot nor from a vertex i, where i ∈ VTU , to m and,
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S
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VP

VU

0

∈ VU

Figure 3.2: An illustrated example of Proposition 2.

thus, the first term of (27) is equivalent to
∑

i∈S\m
∑

j∈S\m x̄ij. From the

SEC of (12), this term is always less than or equal to (|S| − |m|) − 1 which
is |S| − 2, since |m| = 1. Therefore, the LHS of (27) is less than or equal to
(|S| − 2) + 1, which is the RHS of (27).

Alternatively, suppose that customer m is not visited by any porter. This
means that customer m must be visited by the truck and the sum over z in
(27) is equal to zero. In this case, all nodes in S are visited by the truck and
we can simply use the SEC of (12) to obtain the upper bound of the LHS
of (27), by ignoring the second term of (27), which is |S| − 1. Hence, the
inequalities (27) are valid.

Proposition (25) and (27) are not comparable. The former proposition
is only applicable when the set of customers S contains at least one truck-
customer, that is S ∩ VT 6= ∅. Whereas, the latter proposition is applicable
when the set of customers S consists of VU customers, that is S ⊆ VU .

Proposition 3. For any set S ⊆ VPU , when S contains at least one node i
such that i ∈ VP , the following inequality is valid for the TPRP:∑

k∈M

∑
i∈S

∑
j∈S

xkij +
∑

m∈S∩VU

∑
z∈VTU∪{0}

x̄mz ≤ |S| −
⌈
Q(S ∩ VP )

QP

⌉
,

∀ S ⊆ VPU , S ∩ VP 6= ∅. (28)

Proof. Suppose N is a subset of S, where S ⊆ VPU , such that N = S ∩ VU .
If N = ∅, it follows that S ⊆ VP , therefore Q(S ∩ VP ) = Q(S) and the
summation over m, where m ∈ S ∩ VU , in (28) is equal to 0, which is the
original CCCs of (11). However, if N 6= ∅, then any node in N is visited
exactly once, either by the truck or by any porter. Because∑

k∈M

∑
i∈S

∑
j∈S

xkij =
∑
k∈M

∑
i∈S\N

∑
j∈S\N

xkij +
∑
k∈M

∑
i∈N

∑
j∈S

xkij
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Figure 3.3: An illustrated example of Proposition 3.

we can re-write (28) as∑
k∈M

∑
i∈S\N

∑
j∈S\N

xkij +
∑
k∈M

∑
i∈N

∑
j∈S

xkij +
∑

m∈S∩VU

∑
z∈VTU∪{0}

x̄mz

≤ |S| −
⌈
Q(S ∩ VP )

QP

⌉
, ∀ S ⊆ VPU , S ∩ VP 6= ∅. (29)

At any feasible solution of the TPRP, the sum of the second and the third
terms of (29) is always less than or equal to |N |, according to (24). We also
know from (11) that∑

k∈M

∑
i∈S\N

∑
j∈S\N

xkij ≤ (|S| − |N |)−
⌈
Q(S\N)

QP

⌉
.

Thus, the LHS of (29) is always less than or equal to

(|S| − |N |)−
⌈
Q(S\N)

QP

⌉
+ |N |

which is the RHS of (29). Hence, inequality (28) holds.

Proposition 4. For any set S ⊆ VU , the following inequality is valid for the
TPRP: ∑

k∈M

∑
i∈S

∑
j∈S

xkij +
∑

z∈VTU∪{0}

x̄mz ≤ |S| −
⌈
Q(S)− qm

QP

⌉
,

∀ S ⊆ VU , m ∈ S. (30)

Proof. Consider any feasible solution of the TPRP with any customer m,
where m ∈ VU . Suppose first that customer m is visited by the truck. This
implies that the sum of outgoing arcs traversed by the truck from m to the
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Figure 3.4: An illustrated example of Proposition 4.

depot and from m to a node z, where z ∈ VTU , is equal to one. This is
because constrains (6) ensure the connectivity of the route for the truck.
In this case, porters cannot travel to m from the depot or from a node i,
where i ∈ VPU , thus implying that the first term of (30) is equivalent to∑

k∈M
∑

i∈S\m
∑

j∈S\m x
k
ij. From the CCCs of (11), this term is always less

than or equal to

(|S| − |m|)−
⌈
Q(S)− qm

QP

⌉
(31)

where |m| = 1 and qm is the demand of customer m. Therefore, the maximum
value for the LHS of (30) is equal to (31) + 1, which is the RHS of (30).

Alternatively, suppose that customer m is not visited by the truck. This
implies that customer m must be visited by any porter. Using the fact that∑

k∈M

∑
i∈S

∑
j∈S

xkij =
∑
k∈M

∑
i∈S\{m}

∑
j∈S\{m}

xkij +
∑
k∈M

∑
j∈S

xkmj

we can re-write (30) as∑
k∈M

∑
i∈S\{m}

∑
j∈S\{m}

xkij +
∑
k∈M

∑
j∈S

xkmj +
∑

z∈VTU∪{0}

x̄mz

≤ |S| −
⌈
Q(S)− qm

QP

⌉
, ∀ S ⊆ VU , m ∈ S. (32)

The fist term of (32) is less than or equal to (31), the second term is equal
to one, and the third term, the summation over z, is equal to zero. Thus,

the LHS of (30) is less than or equal to |S| −
⌈
Q(S)−qm

QP

⌉
, which is the RHS

of (30). Hence, the inequalities (30) are valid.
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Proposition 5. For any porter k′ and set S ⊆ VPU , if S contains at least
one node i such that i ∈ VP , the following inequality is valid for the TPRP:∑

i∈S

∑
j∈S

xk
′

ij +
∑

m∈S∩VU

∑
f∈VPU∪{0}

∑
k∈M\{k′}

xkmf +
∑

m∈S∩VU

∑
z∈VTU∪{0}

x̄mz

≤ |S| −
⌈
Q(S ∩ VP )

QP

⌉
, ∀k′ ∈M, S ⊆ VPU , S ∩ VP 6= ∅. (33)
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∈ VP ∈ VU

Figure 3.5: An illustrated example of Proposition 5.

Proof. Let N be a subset of S, where S ⊆ VPU , such that N = S ∩ VU . If
N = ∅, it follows that S ⊆ VP , therefore implying Q(S ∩ VP ) = Q(S) and
the sum of the second and the third terms in (33) is equal to 0. From the
CCCs of (11), it is apparent that the first term of (33) is less than or equal

to |S| −
⌈
Q(S)
QP

⌉
, which is the RHS of (33). However, if N 6= ∅, then any node

in N is visited exactly once, either by the truck or by any porter. Using the
equation ∑

i∈S

∑
j∈S

xk
′

ij =
∑

i∈S\N

∑
j∈S\N

xk
′

ij +
∑
i∈N

∑
j∈S

xk
′

ij

and since∑
i∈N

∑
j∈S

xk
′

ij +
∑
m∈N

∑
f∈VPU∪{0}

∑
k∈M\{k′}

xkmf +
∑
m∈N

∑
z∈VTU∪{0}

x̄mz ≤ |N |

according to (24), we can re-write (33) as∑
i∈S\N

∑
j∈S\N

xk
′

ij + |N | ≤ |S| −
⌈
Q(S ∩ VP )

QP

⌉
,

∀k′ ∈M, S ⊆ VPU , S ∩ VP 6= ∅
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Therefore, using (11), the LHS of (33) is always less than or equal to

(|S| − |N |)−
⌈
Q(S\N)

QP

⌉
+ |N |,

which is the RHS of (33). Hence, the inequalities given in (33) hold.

Proposition 6. For any porter k′ and set S ⊆ VPU , the following inequality
is valid for the TPRP:∑

i∈S

∑
j∈S

xk
′

ij +
∑

f∈VPU∪{0}

∑
k∈M\{k′}

xkmf +
∑

z∈VTU∪{0}

x̄mz ≤ |S| −
⌈
Q(S)− qm

QP

⌉
,

∀k′ ∈M, S ⊆ VPU , m ∈ S. (34)

S
F

Z

m

VP

VU

VT

VU

0

0

∈ VP

∈ VU

∈ VPU

Figure 3.6: An illustrated example of Proposition 6.

Proof. Consider any feasible solution of the TPRP and any customer m,
where m ∈ VU . Suppose first that customer m is visited by the truck. This
implies that the summation over z in (34) is equal to one because of con-
straints (6), that ensure connectivity of the route for the truck. In this case,
porters cannot travel from m to the depot or to a node f , where f ∈ VPU ,
which establishes that the second term of (34) is equal to zero. Finally, the
first term is equivalent to

∑
i∈S\{m}

∑
j∈S\{m} x

k′
ij which, by (11), is always

less than or equal to

(|S| − |{m}|)−
⌈
Q(S)− qm

QP

⌉
(35)

where |{m}| = 1. Therefore, the maximum value of the LHS of (34) is equal
to (35) + 1, which is the RHS of (34).



40 A branch-and-cut algorithm for the TPRP

Alternatively, suppose that customer m is not visited by the truck. This
implies that customer m must be visited by a porter and the summation over
z in (34) is equal to zero. It is straightforward to establish that∑

i∈S

∑
j∈S

xk
′

ij =
∑

i∈S\{m}

∑
j∈S\{m}

xk
′

ij +
∑
j∈S

xk
′

mj

and we, also, know that the number of outgoing arcs from m to either the
depot or to a node f , where f ∈ VPU , by porter k′ and all other porters is
equal to one. This can be expressed as∑

j∈S

xk
′

mj +
∑

f∈VPU∪{0}

∑
k∈M\{k′}

xkmf = 1.

Thus, we can re-write (34) as∑
i∈S\{m}

∑
j∈S\{m}

xk
′

ij + 1 ≤ |S| −
⌈
Q(S)− qm

QP

⌉
,

∀k′ ∈M, S ⊆ VPU , m ∈ S.

Therefore, by (11), the LHS of (34) is always less than or equal to |S| −⌈
Q(S)−qm

QP

⌉
, which is the RHS of (34). Hence, the inequalities (34) are valid.

The separation procedures for the CCCs of (11) and (12) together with
the six families of valid inequalities introduced in the six propositions of this
section are described in the next section. The two inequalities∑

k∈M

∑
j∈VPU

xk0j ≥
⌈
Q(VP )

QP

⌉
(36)

and ∑
j∈VTU

x̄0j ≥ 1 (37)

have been added to the formulations to strengthen their LP relaxations.
Inequality (36) ensures that the minimum number of arcs leaving the depot

to VPU customers by porters is greater than or equal to
⌈
Q(VP )
QP

⌉
. This holds

because VP customers must be served by porters, thus implying that porters

must depart from the depot at least
⌈
Q(VP )
QP

⌉
times. Moreover, the problem

definition for the TPRP specifies that there is at least one VT customer, so
the truck must depart from the depot exactly once, therefore establishing
inequality (37).
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3.4 The branch-and-cut algorithm

In this section, we describe a branch-and-cut algorithm for the exact solution
of the TPRP. After solving the LP relaxation of the problem by relaxing
capacity constraints (11)–(12) and integrality constraints (13)–(15), if the
solution is integer but not feasible, a violated capacity constraint can be easily
identified. However, if the solution is integer and feasible, then an optimal
solution of the TPRP has been obtained. For the case of infeasibility, the
LP can be strengthen by adding a set of valid inequalities, so-called cutting
planes, that are violated by this optimal non-integer solution. This process
is repeated until either an integer feasible solution is found (which is an
optimal solution for the TPRP) or the separation routine fails to find a valid
inequality violated by the current optimal LP solution. In the latter case, a
lower bound on the cost of an optimal TPRP solution is obtained and in order
to solve the TPRP we need to employ a branching scheme. Thus, a search tree
is constructed, and violated valid inequalities are produced at some nodes of
this tree. At each node of the tree, the LP is solved and the separation routine
is called to find violated constraints. If a violated constraint is identified at
a given node, it is added to its LP, and we proceed as before. Otherwise,
branching takes place on a variable which has a fractional value. Subsection
3.4.1 describes the separation procedure used to identify violated inequalities.
The branching strategy is explained in Subsection 3.4.2.

3.4.1 Separation strategy

Let x∗ be any LP solution vector satisfying (2)–(10) and (13)–(15). For this
solution, let A∗ = {(i, j) ∈ A :

∑
k∈M xkij + x̄ij > 0}, which produces a

support graph G∗ = (V,A∗). Note that, arcs (i, j) and (j, i) such that i ∈ VT
and j ∈ VP cannot form part of any feasible solution, so the corresponding
variables xkij and xkji for k ∈ M , x̄ij and x̄ji are not defined. Similarly,
variables xk0j and xkj0 for k ∈ M and j ∈ VT , and variables x̄0j and x̄j0 for
j ∈ VP are also undefined.

Given a non-empty subset S, let δT (S) be the set of truck arcs that
have one end in S and the other one in V \S, that is δT (S) = {(i, j) ∈
A : i ∈ S, j ∈ V \S}, and let x∗(δT (S)) =

∑
i∈S
∑

j∈V \S x̄ij. Moreover,

let δP (S) denote the set of porter arcs with one end in S and the other
one in V \S, that is δP (S) = {(i, j) ∈ A : i ∈ S, j ∈ V \S}, and let
x∗(δP (S)) =

∑
i∈S
∑

j∈V \S
∑

k∈M xkij. In addition, for any non-empty subset

S, let γT (S) and γP (S) be the set of arcs with both ends in S for the truck
and for the porters respectively. Therefore, γT (S) = {(i, j) ∈ A : i, j ∈ S}
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and γP (S) = {(i, j) ∈ A : i, j ∈ S}. Also, let x∗(γT (S)) =
∑

i∈S
∑

j∈S x̄ij
and x∗(γP (S)) =

∑
i∈S
∑

j∈S
∑

k∈M xkij.
Designing an effective procedure to find valid inequalities that are violated

by a given LP solution plays an important role in the success of a branch-and-
cut algorithm. In our algorithm, we design a simple tabu search procedure
for this purpose. The main aim of our heuristic algorithm is to find promising
sets S for which x∗(δT (S)), x∗(δP (S)), x∗(γT (S)), x∗(γP (S)), and the total
demand Q(S) in set S, are computed to check if any capacity cut constraint
(11) or (12), or any valid inequality, Proposition (1)–(6), is violated. The
reason of resorting to a heuristic approach to separate capacity inequalities,
(11) and (12), is given in the following proposition.

Proposition 7. The separation of the capacity cut constraints (CCCs) of
the TPRP is an NP-hard problem.

Proof. The separation of the CCCs for the CVRP is known to be strongly
NP-hard (Augerat et al., 1995, Naddef and Rinaldi, 2002). Also, the CCCs
of the TPRP generalise the CCCs of the CVRP. Therefore, the separation of
the CCCs of the TPRP is an NP-hard problem.

Our procedure for finding valid violated inequalities starts by computing
the connected components of the support graph G∗. For each connected
component C, the heuristic starts with a random node v ∈ C, initialises
set S by setting S = {v}. The following iterative process is applied for β
iterations, where β is a parameter. At every iteration, a node is added to S, or
a node is removed from S in order to maximise x∗(γT (S)) or x∗(γP (S)). The
chosen movement is the best among all the possibilities although x∗(γT (S))
or x∗(γP (S)) may increase or decrease from an iteration to the next, which
may cause cycling to occur. Thus, to prevent cycling, we use a tabu list L,
which has a maximum length of ` where ` is a parameter.

The algorithm has an Expansion phase, a Removal phase and an Ad-
dition or Removal phase. First, the expansion phase is executed with set
S, starting with S = {v}, being enlarged by successively adding a node from
C in order to maximise x∗(γT (S)) or x∗(γP (S)), until |S| = |C|. At this
stage, S = C and the tabu list is empty, i.e., L = ∅. Then, the second phase
is applied by removing nodes from S. When a node j removed from S, it is
declared tabu for ` iterations. The removal phase ends when there is a node
i ∈ C such that i /∈ L and i /∈ S. At this stage, the addition or removal phase
is started. At any iteration in this phase, a node i is added to S or a node j
is removed from S. In both cases, the added, or removed, node is declared
tabu for ` iterations. The choice of what to include in the tabu list, as well as
setting values of the parameters β and `, is based on experimental results for
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some test instances. All candidate nodes to be added to, or removed from, S
are computed before any movement is made. The best candidate node to be
added, or removed, is the one with the highest (lowest) contribution to (in)
S. Any candidate node is either belong to C\{S ∪ L}, which means it can
be added, or belong to S\L, which means it can be removed. In the former
case, for any candidate i we find

i = argmax

{∑
j∈S

(x∗ij + x∗ji) + λ

(⌈
Q(S ∪ {i})

Q

⌉
−
⌈
Q(S)

Q

⌉)}

which has the highest contribution to S, while in the latter case, for any
candidate j we find

j = argmin

{
−
∑
i∈S

(x∗ji + x∗ij)− λ
(⌈

Q(S)

Q

⌉
−
⌈
Q(S\{j})

Q

⌉)}

which has the lowest contribution in S. An input parameter called λ, where
0 ≤ λ ≤ 1, is used to consider the capacity of the candidate node. If the
contribution of the best candidate node to be added, i, is bigger than or
equal to the contribution of the best candidate node to be removed, j, we
add i to the set S and add it to the tabu list L; otherwise, we remove j from
the set S and add it to the tabu list L.

For every generated set S, the algorithm checks the CCCs of (11) for the
porters, or (12) for the truck. Moreover, valid inequalities are going to be
checked if S satisfies their nodes’ type and other conditions, if exist. At every
run of our separation algorithm, a new cut pool is check whether a proposed
cut is already present in the current LP. That is to check if a cut is already
added to the current LP or not. If it is, we ignore it, otherwise we add it to
the pool, and keep looking for other cuts. At the end of this run, we add all
unique cuts, from the cuts’ pool, to the LP. We only accept constraints that
are violated by at least 0.0001. Although the number of identified cuts might
be very large at some iterations of the cutting plane algorithm, there is no
limited number of added cuts to the LP at any iteration. Following some
experiments, we conclude that a good choice for the parameters is: λ = 0.9,

β = 5|C|, and ` =
⌈
|C|
2

⌉
. These parameters are used in our experiments

presented in the following section, Section 3.5. Algorithm 3.1 shows the
steps of our separation procedure.
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Algorithm 3.1 : Separation routine for (11), (12) and (25)–(34)

1: find connected components.
2: for each connected component C do
3: pick a random v ∈ C, set S = {v}.
4: set iter = 1 and L = ∅.
5: while iter ≤ β do
6: add i ∈ C\{S ∪ L}, or remove j ∈ S\L such that

i = argmax
{∑

j∈S(x∗ij + x∗ji) + λ
(⌈

Q(S∪{i})
Q

⌉
−
⌈
Q(S)
Q

⌉)}
j = argmin

{
−
∑

i∈S(x∗ji + x∗ij)− λ
(⌈

Q(S)
Q

⌉
−
⌈
Q(S\{j})

Q

⌉)}
.

7: if f(i) ≥ −f(j), then set S = S ∪ {i}, L = L ∪ {i}.
8: else set S = S\{j}, L = L ∪ {j}.
9: determine S nodes type, then test associated inequalities.

10: if a violation is found, then add violated constraints.
11: end while
12: end for

3.4.2 Branching

In the branch-and-cut algorithm, branching occurs when the separation al-
gorithm fails to identify at least one cut and the solution is not integer. The
standard way of branching is to branch on any variable which has a fractional
value, i.e., to select a fractional binary variable x∗e and create two branches
that correspond to setting xe = 0 and xe = 1, respectively. In our experi-
ments, however, the priority is to branch on a fractional z∗ variable. That
because these variables are “bigger” decisions and branching on them at an
early stage of the branch-and-cut tree leads to solving the problem much
faster, as confirmed by our experiments.

3.5 Computational experiments

The algorithm was coded in C++ (Visual Studio 2017) using CPLEX Concert
Technology (version 20.1.0) and run on the IRIDIS 5.0 High Performance
Computing Facility of the University of Southampton, relying on a cluster
of compute nodes equipped with dual Inter(R) Xeon(R) Gold 6130 CPUs @
2.10GHz and 192 GB of DDR2 RAM using a single thread per experiment.
This section is organised as follows. The next subsection gives details about
the generation of our set of instances. Subsection 3.5.2 shows the effectiveness
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of each family of valid inequalities introduced in Section 3.3. Subsection 3.5.3
provides our comparative computational results.

3.5.1 Problem instances

In order to test the proposed algorithm, a set of TPRP instances is needed.
However, there is no test bed available for TPRP in the literature and, thus,
a set of instances has been created. The instances are built by sampling
from a real-world instance called “Leuven1” in the VRP literature that is
introduced by Arnold et al. (2019). For any instance of the TPRP, there are
three types of customers: porter customers VP , unconstrained customers VU ,
and truck customers VT . Along with the size of the instance, the number of
customers of each type plays an important role in determining how difficult
the instance is to solve to optimality. Thus, beside creating a set of instances
with different sizes, instances with different percentages of customers were
considered. The set of instances divided into three groups. The first group,
indicated by A, contains 37.5%, 25%, and 37.5% of the nodes as VP , VU ,
and VT nodes respectively. The second group, denoted as B, has 25%, 50%,
25% of the nodes are VP , VU , and VT nodes respectively. In the third group,
indicated by C, 75% of the nodes are VU , 12.5% of the nodes are VP , and
12.5% of the nodes are VT .

Every group of instances contains nine different sizes. The sizes of the
created instances, including the depot, are equal to 13, 16, 19, 22, 25, 28,
31, 34, and 37. For each size, five different instances were created. So,
the total number of instances of each group is 45, and the total number of
instances that have been created for this experiment is equal to 135. Table
3.1 shows the number of customers at each type of customers in every size
and group. The process of creating the set of instances can be explained as
follows. The original depot of Leuven1 is considered as the depot in all of the
created instances. Customers are chosen randomly such that, the set of VP
customers is chosen to be within 300 meters away from the depot. Whereas,
the set of VU customers is chosen to be within 600 meters away from the
depot. Unlike VP and VU customers, VT customers can be anywhere in the
graph.

The procedure starts by selecting the set of VP customers since those
customers are the hardest to find as the farthest customer of this type can
only be 300 meters away from the depot. Once all VP customers are chosen,
we start looking for VU customers which is the second hardest set of customers
to be found. Those customers can be anywhere within 600 meters away from
the depot, hence the reason to be the second hardest set of customers. The
easiest set of customers to be found is the set of VT customers. This because
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Table 3.1: Number of customers at each type in every size and group.

group A group B group C
size |VP | |VU | |VT | |VP | |VU | |VT | |VP | |VU | |VT |

13 4 4 4 3 6 3 1 10 1
16 5 5 5 3 9 3 1 13 1
19 6 6 6 4 10 4 2 14 2
22 7 7 7 5 11 5 2 17 2
25 9 6 9 6 12 6 3 18 3
28 10 7 10 6 15 6 3 21 3
31 11 8 11 7 16 7 3 24 3
34 12 9 12 8 17 8 4 25 4
37 13 10 13 9 18 9 4 28 4

of the fact that these customers can be anywhere in the graph. During the
procedure, once a customer is chosen, the coordinates and the demand of the
chosen customer are considered. Arnold et al. (2019) assigned each customer
to a demand of either one, two, or three parcels.

The first group of instances that was created is group C. This group has
the most VU customers and, therefore, instances of group A and B are created
by the instances of group C. This means that when an instance of group C
is created, as a result, an instance of group A and an instance of group B
are created by the use of the instance of group C. This can be achieved by
randomly moving some of the VU customers to VP and VT . To decide which
customers to remove from VU , customers that are closer to the depot have
higher probabilities to become VP customers. Whereas customers that are
further from the depot have higher probabilities to become VT customers.

In the TPRP, the distance between any pair of nodes represents the trav-
elling time between them. The time needed to travel between a pair of nodes
is calculated by computing the Euclidean distance and, then, converted to
time which requires to know the speed of travel. The average walking speed
of an adult is between 3 to 3.2 miles per hour, and the average driving speed
in a central large city like London is about 8.7 miles per hour (TFL, 2013).
In this chapter, it was assumed that the speed of any porter is 3.2 miles per
hour and the truck’s speed is equal to 12.8 miles per hour. Thus, the cost
of travelling from node i to node j, where i, j ∈ VU ∪ {0} and i 6= j, by any
porter, cij, is not equal to the cost of travelling from i to j by the truck, c̄ij.

Each customer is assigned to a cost which represents the time needed
to serve that customer. For any customer i, where i ∈ VPU , the cost of
visiting i by a porter is equal to one minute. This cost is added to cji for
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any j ∈ VPU and its called the service time of customer i by the porters. If
customer i is served directly from the depot, then the service time is equal
to two minutes. However, there is no service time assign to the depot. That
because porters are allowed to leave the depot multiple times, and the extra
time is needed only when leaving the depot (e.g., time to pick some items).
On the other hand, if customer i, where i ∈ VTU , is visited by the truck, there
is a randomly generated number between 2 and 5 minutes considered to be
the service time for customer i by the truck. This number is going be added
to c̄ji for any j ∈ VTU ∪ {0} and its called the service time of customer i by
the truck. Note that there is no extra time for the truck to visit the depot
nor to depart from it. That because of the fact that the truck has unlimited
capacity, which means that there is a single route for the truck and there is
no need for extra time to prepare for another route.

There is a single truck and m identical porters to serve customers. It was
assumed that porters have the same carrying capacity QP , wage cost FP , and
limited working time TP . In our experiments, we set the carrying capacity
of a porter to be equal to 20 units (or parcels), that is QP = 20. The cost of
adding an extra porter, the wage cost, is equal to 1000, that is FP = 1000.
And, the maximum porter’s working time is 1800 seconds, so TP = 1800.
We, also, set the maximum number of porters, NP , at any instance to be
equal to the number of VPU customers in V , that is NP = |VPU |.

3.5.2 Effectiveness of families of valid inequalities

The aim of each family of the proposed valid inequalities is to strengthen the
LP relaxation. In order to assess the effectiveness of each family, we executed
two experiments. On the first experiment, the separation routine is allowed
to add valid inequalities from only one family at a time. On the second
experiment, the separation routine is allowed to add valid inequalities from all
families except from one at a time. At any experiment, the separation routine
is allowed to add violated CCCs of (11) and (12). Both experiments end when
the separation routine fails to find any cut at the root node. Computations
were conducted on all of the instances of size 37. The average results are
given in Table 3.2. We present the results of the first experiment on the first
column, called with one family, and the results of the second experiment on
the second column, called without one family.

The first column of Table 3.2, with one family, shows the average improve-
ment on the lower bounds by each family of inequalities. Row LR shows the
average linear programming relaxation of the tested instances without any
family of inequalities. Row number i, where i = {1, 2, ..., 6}, represents the
results obtained by separating family i only. We introduced six families of in-
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Table 3.2: Average lower bound results at the root node obtained with/without
one family of valid inequalities.

with one family without one family

i Impr(%) time(s) N cuts IImpr(%) time(s) N cuts

LR 0.00 89.80 71.73 - - -
1 0.79 291.81 114.87 -0.60 478.49 945.60
2 0.22 81.83 74.00 -0.10 1074.02 974.60
3 0.73 169.13 118.87 -0.33 1608.85 1003.13
4 1.02 404.34 110.80 -0.37 810.70 1019.60
5 0.53 410.50 524.40 -0.10 463.46 686.13
6 1.11 524.71 689.80 -0.20 352.59 517.73

Full 2.36 921.30 1109.33 - - -

equalities in Section 3.3 in which each one represented by a row in this table.
That is, family i is the family of inequalities that introduced by Proposition
(i). The last row, row Full, shows the average improvement when we allow
the separation routine to add violated inequalities from all the families. The
second column of the table, without one family, shows the impact on the
lower bounds when family i is not considered in the separation routine. In
both columns, we presented the average improvement of lower bounds ob-
tained under (Impr(%)) for the first column, under (IImpr(%)) for the second
column, the average computation times in seconds under (time(s)), and the
average number of added cuts under (N cuts). The value of (Impr(%)) for
a single instance is calculated by Impr = (LBi −LBLR)/LBLR × 100, where
LBi is the lower bound obtained at the root node with family i, and LBLR is
the lower bound obtained at the root node by solving the linear relaxation.
On the other side, the value of (IImpr(%)) for a single instance is calculated
by IImpr = (LBi − LBFull)/LBFull × 100, where LBi is the lower bound
obtained at the root node without family i, and LBFull is the lower bound
obtained at the root node with all the families.

From the average results of with one family, we can see that the largest
improvement on the lower bounds is 1.11% obtained by the sixth family.
Family number four, one, and three come next in which they improved the
lower bounds by 1.02%, 0.79%, and 0.73% respectively. Other families are
not improving the lower bounds by more than 0.53%. On the other hand,
the average results of without one family shows that without any family,
the average lower bounds is not losing more than 0.60%. For more details
about the number of add constraints from each family of inequalities in both
experiments, see Table A1 and Table A2 in the appendix.
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The fact that we are using a heuristic separation procedure can be time-
saving, yet it is not efficient to measure the effectiveness of each family of
valid inequalities. That because it might misses, or fails, to identify violated
cuts at an optimal non-integer solution. From Table 3.2, we can see that
when the separation procedure is allowed to check for all the families of
inequalities, the average lower bounds increased by 2.36%. However, the
average computation time raised by about 930%, and the number of added
cuts increased by more than 1446%. So, there is a trade-off between including
all the families of inequalities to obtain a slightly better lower bound on
the one hand, and excluding all the families of inequalities to save time
and to keep the problem’s size smaller on the other hand. For this reason,
the following section contains the results of the branch-and-cut algorithm
with/without all the families of valid inequalities.

3.5.3 Computational results

The algorithm was tested on the 135 generated instances which have been
subdivided into three groups, A, B, and C as explained in Subsection 3.5.1.
It was mentioned that generated instances are vary in size as well as the
number of each type of customers, and they were constructed from a well-
known instance in the VRP literature introduced by Arnold et al. (2019).
To evaluate our branch-and-cut algorithm, we attempted to solve the set of
instances by five different methods:

B&C1: is a branch-and-cut algorithm where the separation routine is sepa-
rating the CCCs and all families of valid inequalities at every node
of the branching tree;

B&C2: is a branch-and-cut algorithm where the separation routine is sep-
arating the CCCs only at every node of the branching tree;

B&C3: is the same as B&C1 but we add the MTZ constraints, constraints
(16)–(22), at the root node;

C&B : is a branch-and-bound algorithm that call the separation routine to
separate the CCCs and all families of valid inequalities at the root
node only, so-called cut-and-branch; and

B&B : is a branch-and-bound algorithm that uses the alternative formula-
tion of the TPRP with the MTZ constraints, constraints (16)–(22).
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The reason of testing the first two methods, B&C1 and B&C2, was men-
tioned in Subsection 3.5.2. The last three methods, B&C3, C&B, and B&B
were performed for comparative purposes.

The key to success in a branch-and-cut algorithm is to have an efficient
separation algorithm. The efficiency of the separation algorithm can be mea-
sured by the number and quality of violated constraints added to the prob-
lem. One way to evaluate the quality of added constraints is to observe the
improvement obtained in the lower bound. By the fact that our tabu search
procedure is not only trying to identify violated valid inequalities from the
CCCs of (11) and (12), but it is also looking for any violation occurred by
any family of valid inequalities, the efficiency of our separation algorithm
is difficult to be measured. However, we compared between different tabu
strategies and we decide to use the one that made the highest improvement
on the lower bounds. Tabu strategies such as tabu removed and added nodes,
tabu removed nodes only, and tabu added nodes only for ` iterations were ex-
amined. We also tried to use a dynamic tabu list in our comparison in which
the size of the tabu list is increasing (decreasing) when we add (remove) a
node to (from) any subset S. Our separation procedure which includes the
chosen tabu strategy is explained in details in Section 3.4.

In our experiment, each instance was executed five times by each method.
The computation time limit was set to two hours. Table 3.3 provides the
results obtained by running each algorithm. Column 1 and 2 identify the size
and the number of instances for which the codes were executed. The column

Table 3.3: Number of instances solved exactly and average computational time
by each method.

B&C1 B&C2 B&C3 C&B B&B
size inst opt time opt time opt time opt time opt time

13 15 15 56 15 52 15 236 15 53 15 985
16 15 15 306 15 337 15 540 15 355 13 1660
19 15 11 710 12 1321 11 1896 11 612 5 2563
22 15 8 2639 7 1902 7 2726 8 2161 1 1546
25 15 3 1791 4 3025 3 3856 2 916 0 0
28 15 1 1899 1 846 1 1569 1 1453 0 0
31 15 1 3182 1 2868 0 0 1 5257 0 0
34 15 2 4162 2 1306 0 0 2 2390 0 0
37 15 0 0 0 0 0 0 0 0 0 0

associated with each method shows the number of solved instances and the
average computational time, in seconds, rounded to the nearest integer. Each
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computation time represents the average computational time in seconds to
solve optimality-solved instances. The result of our experiments is reported
in the appendix. Table A3 provides the column headings used in the following
tables. The detailed results of B&C1, B&C2, B&C3, C&B, and B&B are
reported in Table A4, A5, A6, A7, and A8 respectively.

Each row in Table A4–A8 is an average result of five different instances
of the same type and size. For example, the first row with “N13 a” is about
five instance of size 13 of type A. The five instances are named as “Leu-
ven1 N13 a1”, “Leuven1 N13 a2”, ..., “Leuven1 N13 a5”. In these tables,
the best and the average lower bound (LB), upper bound (UB), and gap
(gap(%)) values are reported. The number of instances with an optimal so-
lution, out of 5, is given in the column (opt). In addition, the number of
explored nodes in the branching tree, computation time of optimality-solved
instances in seconds, and the total number of added cuts are reported in
column (N nodes), (time(s)), and (N cuts) respectively.

From Table A4–A8, the best time needed to solve the smallest size in-
stances of type A is 0.33 seconds achieved by C&B. However, the best time
to solve instances of type B of the same size is 20.81 seconds which was
achieved by B&C2. This growth of complexity occurred due to moving one
customer from VP to VU and one customer from VT to VU . The complex-
ity increased sharply with the instances of the same size of type C. The
best time to solve these instances is 130.95 seconds and it was obtained by
C&B. It can be concluded that the more VU customers in an instance, the
more decision variables in the problem, and so the harder to be solved to
optimality.

In order to compare the performance of each method, more details are
needed. Table 3.4 gives a summary of running the five methods, where each
method represented by a column. In this table, numbers are rounded to the
nearest integer. There are 135 small-size instances. For 59 instances, we were
able to find an optimal solution in at least one run by at least one of the
five methods. The B&C2 found optimal solution for 57 instances, and that
is the highest number of instances solved to optimality by a single method.
Note that B&C2 explored more nodes than B&C1 and B&C3, thanks for
ignoring the set of families of valid inequalities in the separation routine. The
B&C1 and C&B come next as they were able to solve 56 and 55 instances
respectively. The B&C3 and B&B were not able to solve more than 52 and
34 instances to optimality respectively.

As mentioned, each instance was solved five times by each method. This
means that the total number of runs of each method is equal to 675. The
third row of Table 3.4 shows the total number of runs that were successfully
executed by each method. Out of 675 attempts, B&C1 found 268 optimal
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Table 3.4: Summary of the experiment.

B&C1 B&C2 B&C3 C&B B&B

Number of instances solved to
optimality

56 57 52 55 34

Number of unique-solved in-
stances

1 2 0 1 0

Number of runs ended with an
optimal solution

268 262 238 257 170

Number of nodes explored in
the branching tree

3970 4050 2094 17872 7930

Average time to solve in-
stances solved exactly

949 937 1245 790 1492

Number of cuts generated
throughout the branching tree

306 305 207 140 0

solutions within the time limit. The B&C2 comes next with 262 runs ended
with an optimal solution. There are 257 runs ended with an optimal solution
in C&B. The last two methods, B&C3 and B&B, ended with the two lowest
numbers of runs finished with an optimal solution.

In the same table, Table 3.4, the average number of nodes explored in
the branch-and-cut tree for each method is reported in the fourth row. In
addition, the average needed time to solve the set of instances which were
solved to optimality is given in the fifth row. Note that C&B is the winner
in terms of finding optimal solutions in the lowest amount of time. Last row,
row number six, shows the average number of cuts added by the separation
algorithm in each method. The time needed to solve each optimality-solved
instances by each method is reported in Table A9 in the appendix.

Based on this experiment, there is no dominant method. However, we can
say that B&C3 and B&B are not competitive algorithms as they perform
worse than other methods. To decide which method performed better than
the others, unsolved instances can help. There are 76 unsolved instances,
out of 135, in which each instance has five values of lower bound. Each lower
bound value is obtained by one of the five methods. Table A10 contains
the set of instances that has not been solved to optimality and shows the
best lower and upper bound values for each unsolved instance. It also shows
the methods that find the best upper and lower bounds. In the same table,
the gap between the best lower bound and the best upper bound of each
instance in reported in a percentage. The gap can be defined as gap(%)
= ((UB − LB)/LB)× 100.
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Table A10 shows that the C&B is the winner in terms of finding the best
lower bound for most of the instances that were not solved to optimality.
The best lower bound of 59 instances, out of 76, was obtained by C&B. The
B&C2 and B&C1 were able to find the best lower bound for 8 and 7 instances
respectively. The B&C3 was able to find the best lower bound for only two
instances, whereas the B&B was not able to find any best lower bound. It can
be concluded that C&B perform better than other methods. The B&C2 and
B&C1 are the second and the third best methods respectively. The B&C3
comes in the forth place, whereas the branch-and-bound algorithm, B&B,
is the worst performance method. The table, Table A10, will be used for
comparison purposes in the next chapter.

Exploring more nodes in the branch-and-cut tree can leads to more im-
provement in the lower bounds. So, it is important to decide when to call the
separation algorithm in order to have an efficient branch-and-cut algorithm.
In our experiment, we decided to call the separation algorithm at every node
of the branch-and-cut tree in B&C1, B&C2, and B&C3 and that is perhaps
the reason of being less efficient than C&B. We expect further improvement
on our branch-and-cut algorithm performance when a better strategy of call-
ing the separation routine is adopted. Strategy such as calling the separation
algorithm every 100 node of the branch-and-cut tree instead of calling it at
every node of the branching tree. Another way to improve the overall per-
formance of our branch-and-cut algorithm is to add some advance futures to
our tabu search algorithm like the aspiration criteria, that is to allow adding
(removing) a node to (from) subset S even though its in the tabu list.

3.6 Conclusions of the chapter

The truck porters routing problem (TPRP) is a combination between driving
and walking to serve a set of customers in urban areas. In the TPRP, there is
a single truck and a limited number of identical porters available at a depot
to visit every customer exactly once in which some customers are allowed
to be visited by the truck only, some customers must be served by a porter
only, and the remaining customers can be visited either by the truck or by a
porter. The problem consists of designing a set of minimum-cost routes such
that each route starts and ends at the depot and it must satisfy capacity and
travel time constraints. The TPRP can be considered as a vehicle routing
problem (VRP) variant. However, the complexity of this problem is beyond
most of the known VRP variants. In this problem, porters are not allowed
to exceed a specified amount of demand they can carry nor to travel more
than a given time. In addition, porters can perform multiple trips. Such
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constraints add a great amount of complexity and, therefore, only small-size
instances of the TPRP can be solved to optimality.

We introduced two mixed-integer programming formulations for this prob-
lem and several families of valid inequalities which are used within a branch-
and-cut algorithm. A tabu search algorithm is designed and used for the
separation procedure. Our branch-and-cut algorithm applied to solve ran-
domly generated instances and it was able to solve to optimality instances
with up to 16 nodes within a reasonable amount of computational time. Com-
putational results are reported and it was used to measure the performance
of the variable neighborhood search (VNS) heuristic introduced in the next
chapter, Chapter 4. Although, the size of optimality solved instances are
relatively small, they were useful to measure the efficiency of the proposed
VNS algorithm. As most of the VRP variants, the problem can be attacked
by more sophisticated exact methods like a branch-cut-and-price algorithm.
In addition, different separation techniques may lead to better outcomes for
the proposed branch-and-cut algorithm.



Chapter Four

A variable neighborhood search
algorithm for the TPRP

The truck-porters routing problem (TPRP) is a generalisation of the travel-
ing salesman problem (TSP) and is thus it is NP-hard. Therefore, it is not
possible to obtain an optimal solution for large-size instances within reason-
able amount of computation times. Thus, to tackle this complex combinato-
rial problem, we propose an efficient metaheuristic approach. The variable
neighborhood search (VNS)-based metaheuristic algorithms have proved to
be successful in solving a variety of hard combinatorial problems. Therefore,
a VNS algorithm is designed and implemented to tackle the problem. This
chapter is organised as follows. Section 4.1 gives an overview of the proposed
algorithm for the TPRP, including its main steps. A detailed explanation of
the main steps of the proposed algorithm is given in Section 4.2. Results are
reported and discussed in Section 4.3. Conclusions are given in Section 4.4.

4.1 Variable neighborhood search algorithm

for the TPRP

The VNS-based metaheuristic algorithms have proved to be successful in
solving many hard combinatorial problems. Therefore, a VNS algorithm
is designed and implemented to solve large-size TPRP instances. A brief
definition of the VNS heuristic is given in Chapter 2. The reader is re-
ferred to Hansen et al. (2019) for basic information and new developments
of VNS related work including successful applications. In order to construct
an initial solution for the TPRP, the problem is decomposed into three sub-
problems: one for those customers that are served by the truck, so-called
truck customers; one for those customers that are served by any porter, so-
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called porter customers; and the others, denoted by unconstrained customers,
which can be served either by the truck or by a porter. Each problem is,
then, solved individually.

At the beginning, the first sub-problem, sub-problem 1, that contains the
set of truck customers is solved. In this problem, a single truck with unlimited
carrying capacity requires to visit each truck-customer exactly once, starting
and ending at the depot. In another words, we are solving the famous TSP
presented by Flood (1956). In the TSP, if the cost of going from customer
i to customer j, cij , is equal to the cost of going from j to i, cji, for all
customer i and customer j, the problem is said to be symmetric; otherwise,
it is asymmetric. In our case, for the aim of solving the first problem, we
are facing an asymmetric TSP. That because of the assumption in Chapter 3
which assign a cost, so-called a service time, for each customer. The service
time of a truck-customer is between 2 to 5 minutes, and it represents the
amount of time needed to serve that customer by the truck. One of the most
successful heuristic algorithms for the TSP is the Lin-Kernighan heuristic
(LKH) algorithm (Lin and Kernighan, 1973). The LKH is capable of solving
both symmetric and asymmetric TSPs beside other traveling salesman and
vehicle routing problems (Helsgaun, 2017). That because of the fact that a
asymmetric TSP with n nodes can be transformed into a symmetric TSP
with 2n nodes (Jonker and Volgenant, 1983). Therefore, the LKH algorithm
is used to solve sub-problem 1.

At this stage, the procedure of solving the second sub-problem, sub-
problem 2, that contains porter customers, is started. There are m identical
porters required to visit every porter-customer exactly once. It was assumed
that porters are limited by the total weight of items that they can carry and
by a total working time constraint. However, a porter can re-visit the depot
to collect further items for delivery. It was also assumed that the number
of available porters, NP , is equal to the number of VPU customers at any
instance. A well-know variant of the classical vehicle routing problem (VRP)
is the multi-trip VRP (MTVRP) that aims at determining a set of trips and
an assignment of each route to a vehicle such that the total travel time is
minimised and the following conditions are satisfied:

(1) each trip starts and ends at the depot;

(2) each customer is visited exactly once;

(3) the sum of the demands of the customers in any trip does not exceed
the predetermined vehicle’s capacity;

(4) the sum of the durations of the trips assigned to the same vehicle (route)
does not exceed the pre-set time limit.
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This means that solving sub-problem 2 is actually solving the MTVRP. The
MTVRP was reviewed in Chapter 2. Olivera and Viera (2007) proved that
the MTVRP is NP-hard as being a generalisation of the VRP. In their
proof, they assumed that an unlimited fleet of vehicles is available in the
VRP. However, Cattaruzza removed this assumption and propose a more
formal proof in Cattaruzza et al. (2018). One of the most common way
to solve the MTVRP is to combine VRP and bin packing (BP) algorithms
(Fleischmann, 1990, Olivera and Viera, 2007, Petch and Salhi, 2003, Salhi
and Petch, 2007, Taillard et al., 1996). To solve this problem, a two-stages
algorithm is implemented and used. In the first stage, the Clarke and Wright
(1964) savings algorithm is applied to create a VRP solution. In the second
stage, the best fit decreasing (BFD) heuristic proposed by Johnson (1974) is
called to assign tripe to the vehicles. A detailed explanation of the proposed
two-stages algorithm is given in the next section, Section 4.2.

Algorithm 4.1 : The constructive heuristic for the TPRP

1: solve the ATSP with truck nodes, and the MTVRP with porter nodes.
2: repeat
3: for each unassigned node i do
4: for each feasible position for i into existing routes do
5: find the best feasible position.
6: end for
7: end for
8: insert the node with the lowest additional cost into it is best position.
9: until all unconstrained customers are inserted.

Once sub-problem 1 and sub-problem 2 are solved, the third sub-problem,
sub-problem 3, that deals with the set of unconstrained customers is solved.
In this problem, we are given a single truck’s route and a number of porters’
routes obtained from solving sub-problem 1 and sub-problem 2 respectively.
Every route consists of at least a single trip. We refer to a trip as a sequence
of customer services preceded and followed by a visit to a depot. We call
a sequence of trips performed by the same porter a route. In the literature
trip and route can, for example, be respectively referred to trip and journey
(Cattaruzza et al., 2018), route and schedule (Mingozzi et al., 2013), or tour
and multi-tour (Aghezzaf et al., 2006). In this problem, the set of uncon-
strained customers is inserted into existing routes with the lowest possible
additional cost. To solve this problem, we apply the following procedure. For
every unconstrained-customer i, compute the cost of inserting i into every
feasible insertion position in existing routes. The customer with the mini-
mum additional cost is selected to be inserted at the best feasible insertion
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position, and the procedure is repeated until all unconstrained customers are
included into existing routes. During this procedure, inviting a new porter
is not allowed. However, porters are able to start a new trip, if possible. A
summary of the proposed constructive heuristic is given in Algorithm 4.1.

Algorithm 4.2 : The VNS for the TPRP

1: define the set of shaking procedures Nk, for k = 1, ..., kmax and the set of
local search operators Rl, for l = 1, ..., lmax.

2: construct an initial solution, x, by applying Algorithm 4.1.
3: apply the VND algorithm to improve the current solution x.
4: repeat
5: set k = 1.
6: repeat the following steps:
7: Shaking: Generate a solution x′ at random from the kth shaking

procedure of x(x′ ∈ Nk(x)).
8: Local search: Apply the VND algorithm with x′ as initial solution

to find the best neighboring solution x′′.
9: Move: If x′′ yields a better quality solution, then set x = x′′, iter = 1,

k = 1, otherwise set k = k + 1.
10: until k = kmax

11: until the pre-set time limit is reached.

Once unconstrained customers are included into existing routes, an at-
tempt to improve x is carried out by applying local search operators described
in details afterwards in this section. The resulted solution, ximpr, is then set
as the incumbent solution xbest = ximpr. At this moment, we start our VNS
algorithm with xbest. At every iteration of the VNS, there are three main
steps. The first step is the perturbation step where a new solution x′ is
constructed by shaking the incumbent solution xbest by one of the shaking
procedures. The aim of the perturbation step is to escape from local optima
as it allows diversification in the search space. In the second step, known as
the descent step, we apply the local search procedures, also called neighbor-
hoods, to find the best neighboring solution, x′′. Finally, at the third step, we
compare the cost obtained in step two, f(x′′), with the cost of the incumbent
solution, f(xbest). If f(x′′) < f(xbest) we set xbest = x′′, otherwise the VNS
starts the next iteration. The algorithm is terminated once the pre-set time
limit is reached. Algorithm 4.2 shows the designed VNS algorithm. Shaking
and local search procedures are described in details in the following section.
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4.2 Explanation of the main steps

4.2.1 Initial solution

The construction of the initial solution is started by solving the TSP for the
set of VT nodes. The Lin and Kernighan (1973) heuristic (LKH) is known
to be one of the state-of-the-art local search algorithms for the TSPs and,
therefore, it was used to solve the problem. The LKH algorithm uses k-opt
moves to optimise the solutions. The k-opt moves explores the solution space
by replacing k edges of the current trip, where k is any integer greater than
or equal to 2 and less than the number of nodes (the number of VT nodes).

Once the TSP is solved, the Clarke and Wright (1964) savings algorithm
is applied to create a VRP solution for the set of VP nodes. Clarke and
Wright (1964) saving algorithm is one of the most widely known heuristic for
the VRP, and it can be briefly described as follows:

Step 1: create n trips, 0→ i→ 0, for i = 1, ..., n;

Step 2: compute the savings sij = ci0 + c0j − cij for i, j = 1, ..., n and
i 6= j;

Step 3: order the savings in a non-increasing order;

Step 4: starting from the top of the savings list with sij, determine
whether merging the two separate trips, one contains the arc
(0, j) and the other contains arc (i, 0) is feasible. If so, join
these trips by removing (0, j) and (i, 0) and introducing (i, j);

Step 5: repeat step 4 until no additional savings can be achieved.

At this stage, every trip of the VRP solution is assigned to a unique porter.
To reduce the number of porters, the best fit decreasing (BFD) heuristic
proposed by Johnson (1974) is used to assign trips to porters. In the BFD
algorithm, items (trips) are sorted in a decreasing order according to their
sizes (costs). Then, each item (trip) is placed into the fullest bin (route) in
which it fits, without exceeding the bin capacity (porters travel time TP ).

Finally, the best insertion algorithm is used to insert the remaining nodes,
VU nodes, into existing routes. As it was mentioned in Section 4.1, the
procedure inserts a single VU node at a time. At every iteration, the cost of
inserting node i, where i ∈ VU such that i is not part of the truck route or
porters’ routes, is computed for every feasible insertion position. The node
with the lowest additional cost is selected to be inserted at the best feasible
insertion position. The procedure is repeated until every VU node is included.
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4.2.2 Shaking procedures

The VNS escapes from local optima by applying shaking procedures to the
current local minimum. The first step of the VNS for the TPRP is to create a
neighboring solution to the current local minimum by one of the shaking pro-
cedures. There are three neighborhoods used in our VNS, kmax = 3, namely
the remove-insert procedure, the trips initiation procedure, and the pertur-
bation mechanism procedure. These neighborhoods were ordered as follows:
the remove-insert procedure is used as N1, the trips initiation procedure is
used as N2, and the perturbation mechanism procedure is used as N3. These
procedures can be described as:

N1: the remove-insert procedure is aimed at generating a feasible solution
by removing and, then, re-inserting some customers. The procedure
works as follows:

1- choose a number of m customers randomly, and list them in L;

2- remove chosen customers from their current positions in the trips;

3- if L 6= ∅, choose the first customer in L, call it i, otherwise halt;

4- find the best three feasible insertion positions for i into existing trips;

5- if there is no feasible insertion position for i go to (7), else go to (6);

6- insert i at one of the best three insertion positions, and go to (8);

7- invite a new porter to visit i, that is 0→ i→ 0;

8- remove i from L, that is L = L\{i}, and go to (3).

In this procedure, a customer might be inserted at the first, second, or third
best feasible position in step (6). The probability of choosing an insertion
position depends on the cost of insertion. The position with less additional
cost is more likely to be chosen. Therefore, the cheapest insertion position
is always have the highest chance to be selected.

N2: the trips initiation procedure aims at generating a feasible solution by greed-
ily initiating k trips, where 1 ≤ k ≤ d t2e and t is the number of trips in the
current local minimum. The procedure works as:

1- pick a customer randomly. Call it i;

2- start a new trip, T̂ , to visit i such that T̂ : 0→ i→ 0;

3- remove i from its original trip;

4- find the three closest VPU customers to i, and list them in L;

5- if L 6= ∅ go to (6), otherwise go to (1) until k trips are created;

6- insert j where j ∈ L after i in T̂ . Set i = j and L = ∅, and go to (3).
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In a greedy manner, a number of k trips are created in this procedure. Once
a customer, i, is chosen to be visited, one of the three closest VPU customers
to i that are reachable by the porter who serves i is going to be visited. The
closer customer to i, the higher chance to be visited after i.

N3: the perturbation mechanism procedure is a scheme that was initially devel-
oped by Salhi and Rand (1987) for the VRP. In this procedure, three trips
are considered simultaneously. The idea is to systematically take a customer
from a trip and relocate it into another trip without considering capacity
and time constraints in the receiver trip. A customer from this receiver trip
is then shifted to the third trip if both capacity and time constraints for
the second and the third trips are not violated. In our experiments, the
procedure is repeated n times every time this procedure is executed.

4.2.3 Local search operators

In the VNS, local search operators, also called neighborhoods, are applied once
the current local minimum is perturbed by one of the shaking procedures for
the aim of improving the current solution x. In this step, neighborhoods
are applied sequentially in a deterministic way. Such a method is called
a variable neighborhood descent (VND) algorithm. In a VND algorithm,
the way of ordering the set of neighborhoods plays an important role in the
algorithm, therefore different orders have been tested. The most typical VND
variants that traverse the list of neighborhoods in a sequential way are briefly
described in Chapter 2. The reader can refer to Gendreau et al. (2010) for
more details about VND variants. Any VND procedure starts from a given
solution x and stops when there is no improvement with respect to any of the
considered neighborhoods. For the TPRP, after some experiments, a good
choice of VND variant is the pipe VND (PVND). The PVND stops the search
in a neighborhood when there is not any improvement detected, otherwise
its continue the search in the same neighborhood. The procedure stops when
there is no improvement with respect to any of the neighborhoods.

Our VND method uses fourteen neighborhoods which are briefly de-
scribed here. There are three different types of procedures: intra-trip, intra-
route, and inter-trip. The first type, intra-trip, procedures are applied to
each trip individually. The second type, intra-route, procedures are applied
to each pair of trips belong to the same route. Whereas the third type, the
inter-trip procedures, is applied for each pair of trips that do not belong to
the same route. These neighborhoods are:

The 1-insertion procedure (intra-trip, intra-route, inter-trip): These
neighborhoods try to reduce the total cost of the current solution by re-
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moving a customer from its position and re-insert it at the best feasible
position. When a customer is removed from a trip, we check every pos-
sible insertion position: into the same trip in the intra-trip procedure;
into other trips within the same route in the intra-route procedure; into
other trips in different routes in the inter-trip procedure.

The 2-insertion procedure (intra-trip, intra-route, inter-trip): This is
similar to the 1-insertion procedure except that we consider two con-
secutive customers instead of one in all of the procedures.

The swap procedure (intra-trip, intra-route, inter-trip): In these neigh-
borhoods, we look for an improved solution by swapping a pair of cus-
tomers. In the intra-trip procedure, customers belong to the same trip.
In the intra-route procedure, customers belong to the same route, but
not the same trip. Finally, customers belong to different routes in the
inter-trip procedure.

The 2-opt procedure (intra-trip, intra-route, inter-trip): These neigh-
borhoods aim at reducing the total cost by selecting, removing, and
replacing two non-adjacent arcs by other two arcs. Selected arcs be-
long to: the same trip in the 2-opt intra-trip procedure; different trips
in the same route in the 2-opt intra-route procedure; different routes
in the 2-opt inter-trip procedure. The 2-opt intra-trip procedure is the

−→
c1 c4

c3 c2

Figure 4.1: Illustration of the implemented 2-opt intra-route and inter-trip proce-
dures. A 2-opt move where two arcs from two different trips are replaced with an-
other two arcs within the route, in intra-route procedure, or with different routes, in
inter-trip procedure. We only consider the exchange of arcs if the removal and addi-
tion of indicated arcs results in an improvement, i.e., Cc1c2+Cc3c4−Cc1c4−Cc3c2 > 0.

2-opt algorithm propose by Croes (1958). It works by replacing two
arcs with other two new arcs and reverting the direction of one of
the resulting two sub-paths. In the 2-opt intra-route and inter-trip
procedures, we consider two trips, x and y, simultaneously. The idea
is to remove an arc from each trip to create four sub-paths xh, xt, yh,
and yt such that x = xh → xt and y = yh → yt. Then, connect the
xh with yt and yh with xt, that is to make xh → yt and yh → xt. The
resulting trips might be shorter than the original trips and the total
cost is therefore reduced. Any pair of trips belong to the same route
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will be checked by the 2-opt intra-route procedure, otherwise the 2-
opt inter-trip procedure will handle it. Figure 4.1 illustrates the 2-opt
intra-route and inter-trip procedures.

The best-fit-decreasing heuristic: The best fit decreasing (BFD) heuris-
tic is used to assign trips to porters. The BFD heuristic among with
other heuristics to solve the bin packing problem (BPP) are proposed
by Johnson (1974). In the BFD algorithm, items (trips) are sorted in
a decreasing order according to the size (trip’s cost). Then, we assign
each item (trip) to the fullest bin (route) in which it fits. If an item
(trip) does not fit in any bin (route), then start a new bin (route).

The route-destruction procedure: The route-destruction procedure tries
to reduce the number of invited porters by distributing some (or hope-
fully all) customers from a route into other routes. A summary of the
procedure is given in Algorithm 5.1.

Algorithm 4.3 : The route-destruction procedure

1: sort the routes according to their lengths in an increasing order.
2: for each route R do
3: name the current solution without R as S.
4: repeat
5: measure the efficiency, e, of each node in R, where ei = lR−lR\i.
6: sort the nodes according to the efficiency in a decreasing order.
7: remove the node i which has the highest efficiency from R and

insert it at the cheapest position in S.
8: until there is no node in R can be removed.
9: for each route R̄ ∈ S do

10: if lR + lR̄ ≤ T , then assign R to route R̄’s porter. Go to line 1.
11: end for
12: end for

In our implementation, neighborhoods are placed in a list with a given or-
der and always explored in that order. Neighborhoods are explored in the
following order: the 1-insertion (inter-trip) procedure as R1, the 2-insertion
(inter-trip) procedure as R2, the swap (inter-trip) procedure as R3, the 2-opt
(inter-trip) procedure as R4, the 1-insertion (intra-trip) procedure as R5, the
2-insertion (intra-trip) procedure as R6, the swap (intra-trip) procedure as
R7, the 2-opt (intra-trip) procedure as R8, the BFD procedure as R9, the
route-destruction procedure as R10, the 1-insertion (intra-route) procedure
as R11, the 2-insertion (intra-route) procedure as R12, the swap (intra-route)
procedure as R13, the 2-opt (intra-route) procedure as R14.
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The process starts by exploring the first neighborhood R1. Once an im-
provement has been detected, we continue the search in the same neighbor-
hood. Otherwise, the next neighborhood, R2, is explored and the procedure is
repeated. If an improvement is found in neighborhood Rk, where 2 ≤ k ≤ 8,
the search starts over and return to the first neighborhood in the list. Go-
ing to the top of the list happens when an improvement is found by Rk and
there is no further improvement is detected by the same neighborhood. Once
the first eight neighborhoods are explored without finding any improvement,
the BP heuristic is called to assign trips to porters in R9. Once the BP
heuristic is applied, the solution is now consists of a truck route and a set of
porters’ routes. The aim now is to reduce the number of porters as well as
improving the solution quality. Therefore, it is more reasonable to place the
route-destruction procedure and intra-route procedures at this stage. Note
that, once we reach this stage, returning to the first eight neighborhoods is
not allowed. In addition, intra-route procedures, R11–R14, are only needed
when the route-destruction procedure obtained an improvement. Indeed,
intra-route procedures are not going to detect any improvement when R10

fails to improve the current solution, thanks for intra-trip procedures.

4.3 Computational results

Our VNS-based algorithm was coded in C++, compiled with Visual Studio
2017 and run on the IRIDIS 5.0 High Performance Computing Facility of the
University of Southampton, relying on a cluster of compute nodes equipped
with dual Inter(R) Xeon(R) Gold 6130 CPUs @ 2.10GHz and 192 GB of
DDR2 RAM using a single thread per experiment. Three computational ex-
periments are carried out in this chapter. In any experiment, the algorithm
terminates when a pre-set time limit is reached. The time limit of solving
an instance with n customers is set to be equals to 4n seconds. In addition,
for comparison purposes, each instance is solved five times. The order of the
local search operators as well as the order of the shaking procedures are fixed
and used, as described in Section 4.2, in our experiments. We set m equals
to 30% in N1 and n = 5 in N3. These values are good choices to ensure
the intensification and diversification of the search as our preliminary experi-
ments confirmed. For more convenience, tables of this section are reported in
the appendix. This section is organised as follows. Subsection 4.3.1 contains
the result of solving small-size instances created in Chapter 3. The result
of solving the MTVRP benchmark instances is reported in Subsection 4.3.2.
Subsection 4.3.3 shows the result of solving a set of large-size instances that
is created in the same way of creating the set of small-size instances.
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4.3.1 Solving small-size instances

In the first experiment, the algorithm is tested on the set of small-size in-
stances created in Chapter 3. The aim of this experiment is to measure
the performance of our VNS algorithm. As it was mentioned, the set of in-
stances is sampled from a well-known instance in the VRP literature called
“Leuven1” which is introduced by Arnold et al. (2019). These instances
vary in size from 13 to 37 nodes, and they can be divided into three groups,
namely A, B, and C. Instances of group A contains 37.5%, 25%, and 37.5%
of the nodes as VP , VU , and VT nodes respectively. Instances of the second
group, group B, has 25%, 50%, 25% of the nodes as VP , VU , and VT nodes
respectively. Finally, instances of group C contain 75% of the nodes as VU
nodes, whereas 12.5% of the nodes as VP , and 12.5% of the nodes as VT .

There are 59, out of the 135, small-size instances solved to optimality by
our branch-and-cut algorithm in Chapter 3. The proposed VNS algorithm
was able to find the optimal solution for all optimality-solved instances. Table
A11 shows the result obtained in this experiment, where the column instance
and optimal show the instance name and the objective function value of the
optimal solution respectively. The column gap(%) reports the best, worst,
and average gap values over the runs yielding a feasible solution. The best,
worst, and average gap value is obtained by comparing the optimal value
of the considered instance with the best, worst, and average solution value
obtained by our heuristic algorithm respectively. Each value is computed as
heuristic−optimal

optimal
× 100, where heuristic is the solution value obtained by our

algorithm and optimal is the optimal solution value. Column fs reports the
number of runs ended with a feasible solution.

The algorithm is also tested on the remaining 76 small-size instances
that are not solved to optimality by our branch-and-cut algorithm within
the time limit. The algorithm is tested against the best lower and upper
bounds found in the previous chapter. Table A12 contains the results of this
experiment. The fist column represents the instance name. Column (2) and
(6) show the best lower and upper bounds obtained in Chapter 3 respectively.
In column (3), (4), and (5) the best, worst, and average gap values are
reported. The best, worst, and average gap value is obtained by comparing
the best lower bound value of the considered instance with the best, worst,
and average value obtained by our heuristic algorithm respectively. Each
value is computed as heuristic−bestLB

bestLB
×100, where heuristic is the solution value

obtained by our heuristic algorithm and bestLB is the best lower bound value
found in the previous chapter. In a similar fashion, a value in column (7),
(8), and (9) calculated as heuristic−bestUB

bestUB
×100, where heuristic is the solution

value obtained by our heuristic algorithm and bestUB is the best upper bound
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value found in the previous chapter. Our VNS algorithm was able to find,
or mostly beat, the best upper bound found by our exact algorithm in with
an average improvement of 6.70% on the upper bound values.

4.3.2 Solving the MTVRP instances

This experiment conducted on the set of the multi-trip vehicle routing prob-
lem (MTVRP) benchmark instances. The MTVRP (with unlimited number
of vehicles) is a special case of the TPRP when the number of VTU customers
is zero, |VTU | = 0. The MTVRP is reviewed in Chapter 2.

The MTVRP instances are introduced by Taillard et al. (1996) and con-
structed from the instances 1–5 and 11–12 proposed by Christofides et al.
(1979) and from the instances 11–12 created by Fisher (1994) for the VRP.
The instances are named as CMT1–CMT5, CMT11–CMT12, and F11–F12
respectively in the MTVRP literature. Table 4.1 shows the characteristics
of the MTVRP benchmark instances. Column name, n, m, Q, and z∗ show
the name of the instance, number of nodes, number of available vehicles,
vehicle’s capacity, and the solution cost of the original VRP instances ob-
tained by Rochat and Taillard (1995) respectively. For each VRP instance,

Table 4.1: Characteristics of the MTVRP benchmark instances.

name n m Q z∗

CMT1 50 1,...,4 160 524.61
CMT2 75 1,...,7 140 835.26
CMT3 100 1,...,6 200 826.14
CMT4 150 1,...,8 200 1028.42
CMT5 199 1,...,10 200 1291.44
CMT11 120 1,...,5 200 1042.11
CMT12 100 1,...,6 200 819.56
F11 71 1,...,3 30,000 241.97
F12 134 1,...,3 2,210 1162.92

instances for the MTVRP are generated with different values for the number
of available vehicles m and two different values for the maximum time dura-
tion of a vehicle TH , given by T 1

H =
[

1.05z∗

m

]
and T 2

H =
[

1.1z∗

m

]
. There are, in

total, 104 different instances. For 42 of them, the optimal solution is known
and provided by Mingozzi et al. (2013). Cattaruzza et al. (2014) classified
them in a group named as G1. For 57 instances, the optimal solution is
not known but they have a known feasible solution. These instances belong
to the second group, denoted by G2, and the state-of-the-art results is pre-
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sented in Cattaruzza et al. (2018). Several best known solutions are found
by François et al. (2016) that, however, are not included in their survey. In
our comparison, we consider the best known solutions as reported in either
papers. For the remaining 5 instances, there is no known feasible solution
and they form the third group, group G3.

Table A13 and A14 report the results obtained by solving group G1 and
G2 instances respectively. In both tables, the first column indicates the
instance name. Column m and TH show the number of available vehicles
and the maximum time duration of each vehicle respectively. Optimal values
are reported in column optimal in table A13, whereas best known solutions
values are reported in column bestUB in table A14. Column best, worst, and
av report the best, worst, and average values over the runs yielding a feasible
solution. In table A13, each value is expressed as a percentage and computed
by comparing the solution value obtained by our heuristic algorithm and the
optimal value of the considered instance. A percentage, or a gap, is calculated
as heuristic−optimal

optimal
×100, where heuristic is the value obtained by our heuristic

algorithm and optimal is the optimal value of considered instance. In table
A14, each value is also expressed as a percentage, or a gap, and calculated as
heuristic−bestUB

bestUB
× 100, where heuristic is the value obtained by our algorithm

and bestUB is the best known value. Column opt in table A13 shows the
number of runs ended with an optimal solution. In both tables, column fs
represents the number of runs ended with a feasible solution.

For the 42 optimality-solved instances, the algorithm is able to find a
feasible solution for all instances except for one, namely the CMT1 T 2

H 4. In
all the 210 runs, feasible solutions are found 205 times and optimal solutions
found 130 times. On average, the best, worst, and average gap value is 0.05%,
0.41%, and 0.20% respectively. For the 57 instances of group G2, the algo-
rithm is able to find a feasible solution in at least one time, out of five times,
on 52 instances with an average gap value equals to 0.87%. Nevertheless, the
proposed algorithm is able to find five new feasible solutions. Table 4.2 shows
new feasible solution values for improved instances. It also shows gap values
of the new feasible solutions. These values are reported in bold in table A14.
Table A15 contains the new feasible solutions for the five instances where v, t,
τt, and lt indicate the vehicle, the trip, its travelling time and its load. A fair
comparison between the performance of our algorithm and the state-of-the-
art algorithms can be performed if CMT1 T 2

H 4 is solved by our algorithm
within the time limit. Cattaruzza et al. (2014) obtained feasible solution for
all instances of group G1 with an average best-gap equal to 0.03% by the
memetic algorithm that uses combined local search (MA+CLS) proposed in
his paper. Whereas, the average best-gap of our algorithm is equal to 0.05%,
however there is one instance without a feasible solution. Our VNS algorithm
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Table 4.2: New feasible solution values.

instance name previous best known new best known gap(%)

CMT4 T 1
H 1 1031.00 1028.43 -0.25

CMT4 T 1
H 5 1029.65 1029.16 -0.05

CMT4 T 2
H 1 1031.07 1029.65 -0.14

CMT4 T 2
H 4 1031.07 1028.78 -0.22

CMT4 T 2
H 5 1030.86 1029.65 -0.12

is not particularly designed to tackle the MTVRP, hence the reason of not
obtaining feasible solutions for some MTVRP benchmark instances that are
known to be feasible within the time limit.

4.3.3 Solving large-size instances

The third experiment carried out on a set of large-size instances. The set
of large-size instances is sampled from the well-known instance “Leuven1”
introduced by Arnold et al. (2019). To create the set of large-size instances,
we use the same method used in Chapter 3 to create the set of small-size
instances. However, the size of the instances is equal to 100, 200, or 300.
Also, for the aim of providing a more comprehensive experiment, the new
set of instances is created by four different methods of customer positioning.
The four methods can be briefly described as follows:

Random (R): customers are chosen randomly;

Clustered (C1): an instance of this type is created by clustering VU
customers. First, the number of clusters c is determined using a uniform

discrete distribution UD
[
|VU |
20
, |VU |

10

]
, where |VU | is the number of VU

customers in the instance. Once c is determined, a number of nodes
equals to k, where k = c, are chosen randomly. Every chosen node is
considered as a cluster and the following procedure is repeated until
the total number of VU nodes reaches |VU |. Considering a cluster at
a time, find the nearest node to any VU nodes belong to the current
cluster. Once a node i is found, we set VU = VU ∪ {i} and then go to
the next cluster. Then, VP and VT customers are chosen randomly;

Clustered (C2): each group of customers is clustered independently.
In this type, each type of customers is clustered in the same way of
clustering VU nodes in C1;
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Clustered (C3): customers are clustered in k clusters, where k is chosen

from an uniform discrete distribution UD
[

n
20
, n

10

]
and n is the total

number of customers needed in the instance. Note that, a cluster of
this type may contains more than one type of customers.

(R)

(C1)

(C2)

(C3)

Figure 4.2: Illustration of the four methods used to create the set of large-size instances.
In all figures, the square is a depot, the red dots are truck customers, the green dots are
unconstrained customers, and the blue dots are porter customers. In the top-left figure,
customers are chosen randomly. The bottom-left figure shows the first type of clustered
instances, C1, where VU customers are clustered and other types of customers are chosen
randomly. The top-right and the bottom-right figures illustrate C2 and C3 respectively.

In any method, VP customers are chosen to be within 300 meters away from
the depot, VU customers are chosen to be within 600 meters away from the
depot, and VT customers can be anywhere in the graph. Regardless of the size
of the instances and the ways of customer positioning, instances are grouped
intro three groups, namely A, B, and C. The difference between these groups
is the number of customers of each type of customers as explained earlier in
this section. The size and the number of customers of each type of customers
are reported in Table 4.3. For each customer positioning method, there are

Table 4.3: Number of customers at each type in every size and group.

group A group B group C
size |VP | |VU | |VT | |VP | |VU | |VT | |VP | |VU | |VT |

100 37 26 37 25 50 25 12 76 12
200 75 50 75 50 100 50 25 150 25
300 112 76 112 75 150 75 37 226 37
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45 instances in which there are 5 instances of each size and group. The total
number of large-size instances is equal to 180. The experiment, indicated as
TPRP1, aims at testing the proposed heuristic algorithm by solving these
instances. Another aim of this experiment is to measure the benefit of hav-
ing some flexible customers which can be either visited by the truck or by a
porter, the set of VU customers. One possible way is to assign VU customers
to the truck at the one hand, denoted as TPRP2. On the other hand, VU cus-
tomers are assigned to the porters, denoted as TPRP3. Then, a comparison
can be performed to compute the additional cost of each experiment when
compared to the TPRP1. Each instance in this experiment is solved with
eight different parameter settings, or scenarios. At every scenario, porter
carrying capacity QP , travel time duration TP , and wage cost FP are tak-
ing a unique combination. First three columns of Table 4.4 show the eight
combinations. Column VU -nodes shows the percentage of VU customers that
are served in TPRP1 by porters. The average number of invited porters to
solve the original instances, TPRP1, is given in column P -number. Column
TPRP2 and TPRP3 show the additional cost, in percentages, of assigning VU
customers to the truck and to the porters respectively. Last column shows
the table’s name in which the result is reported in the appendix.

Table 4.4: Summary of results.

QP TP FP VU -nodes P -number TPRP2 TPRP3 table

20 1800 100 95.41 11.49 22.89 0.72 A16
1000 74.20 8.65 9.72 4.73 A16

3600 100 96.15 5.40 24.06 0.60 A17
1000 89.14 4.82 17.15 2.11 A17

40 1800 100 97.26 9.27 26.24 0.51 A18
1000 84.94 8.01 14.60 3.56 A18

3600 100 98.95 5.38 29.80 0.10 A19
1000 96.15 4.56 22.50 0.58 A19

It can be seen from Table 4.4 that a smaller value for wage cost, FP , leads
to invite more porters and, as a result, more VU customers are served by
porters. Increasing the travel time duration for porters, TP , drives porters to
perform longer trips and, thus, the possibility of visiting more VU customers
increase. The results confirm that increasing the capacity of a porter, QP ,
raise the number of VU customers visited by porters while the number of
needed porter is decreased. This means that porters are getting busier as
the carrying capacity increase. In case that (QP , TP , FP ) = (20, 1800, 1000),
where porters are given a small carrying capacity and travel time duration,



4.4 Conclusions of the chapter 71

25.80% of VU customers are assigned to the truck. In the contrary, only
1.05% of VU customers are assigned to the truck when porters have larger
carrying capacity, travel time duration, and inviting an additional porter is
not expensive, that is when (QP , TP , FP ) = (40, 3600, 100).

The majority of VU customers are served by porters in TPRP1. In
TPRP2, the set of VU customers is assigned to the truck. As a result, the
additional cost of solving the set of instances in TPRP2 is more than 22%
in most cases. In TPRP3, the set of VU customers is assigned to the porters.
However, since most of the VU customers are served by porters in TPRP1,
the additional cost of solving these instances in TPRP3 is less than 1% on
average. Indeed, the higher the number of VU customers served by porters in
TPRP1, the higher additional cost in TPRP2 and the lower additional cost
in TPRP3. In real-life, delivery companies aim at maximising the profit and
the presence of VU customers is helpful as proved in this experiment.

4.4 Conclusions of the chapter

A VNS-based metaheuristic is designed and implemented to solve the TPRP.
Three experiments are carried out in this chapter. In the first experiment,
the algorithm was tested on the set of small-size instances created in Chapter
3. The algorithm was able to find optimal solution for all optimality-solved
instances. For small-size instances that were not solved to optimality using
our branch-and-cut algorithm (within the time limit) but known to be feasi-
ble, the VNS was able to improve their upper bounds (obtained by our exact
algorithm) by 6.70% on average. In the second experiment, the algorithm
was tested on the set of the MTVRP benchmark instances. Our heuristic
performs competitively as it was able to find feasible solutions for most of the
benchmark instances known to be feasible. In addition, it produced several
new feasible solutions for benchmark instances. In the last experiment, a
set of large-size instances is created and solved. Our experiments show that
most of the unconstrained customers are visited by porters which confirm the
benefit of having this type of customers instead of forcing them to be visited
by the truck or by porters. There are many possible research directions to
extend this work. The problem can be, for example, extended by consider-
ing porters with different carrying capacity, travel time duration, speed, or
wage. Also, like any combinatorial optimisation problem, different heuristic
algorithms can be designed to overcome our algorithm.





Chapter Five

TPRP with satellites

In this chapter, the truck-porters routing problem with satellites (TPRPS)
is introduced. A variable neighborhood search (VNS) algorithm is designed
and implemented to compute a good-quality solution for the TPRPS. An
introduction is given in Section 5.1. Section 5.2 describes the problem in
detail. The constructive heuristic for the TPRPS is presented in Section 5.3.
The designed VNS algorithm is described in Section 5.4. Section 5.5 shows
the computational experiments carried out in this chapter. Conclusions and
possible future works are reported in Section 5.6.

5.1 Introduction

The growth of urbanisation and e-commerce sales in urban areas considerably
increases causing environmental pollution and traffic congestion. Nowadays,
more than 57% of the world’s population lives in major cities, according
to The World Bank (2022), and the process of urbanisation is foreseen to
rise up further reaching 70% or more by 2050 (Bretzke, 2013). In addition,
e-commerce sales grow rapidly and they were forecasted to grow by 56%
over the next years (Statista, 2022). These factors worsen road traffic and
burden the existing infrastructure in urban areas by increasing the number
of delivery vehicles entering the city centres. Other factors aggravate the
situation including the high purchasing power of the people living in urban
areas and the increase of the number of trailers offering same-day delivery.
Such factors rise the quantity and diversity of goods ordered and shipped to
customers in urban areas and, therefore, inducing a much higher number of
delivery vehicles to enter urban areas. Other challenges such as the reduction
of road network capacity and the increase of road taxes in urban areas. These
challenges causing a lack of available parking locations and, so, impacting the
total cost of a product. According to Van Goor (1980), transportation costs
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often form a considerable part of the total cost of a product and represent
up to 10% of the final price (Coyle et al., 1996).

Logistic activities related to delivering parcels to customers in urban ar-
eas are known as last-mile delivery operations. Last mile logistics is the least
efficient stage of the supply chain that causes up to 28% of the total trans-
portation costs (Rodrigue et al., 2016). The genuine willingness of retails
to deliver parcels quickly and efficiently leads to existing last-mile delivery
concepts such as parcel delivery by cargo bikes, drones, or delivery robots.
Other last-mile delivery options have been promoted during the recent years
like the combined transport of people and parcels in private transport such
as taxis (Chen and Pan, 2016, Li et al., 2014) or public transport like buses,
undergrounds, or trains (Ghilas et al., 2018, 2016). Boysen et al. (2021)
discussed 27 distinct last-mile delivery concepts treated by existing research.
In their paper, the authors discussed some future ideas for last-mile delivery
concepts such as Amazon’s patent for flying warehouses, i.e., airships circling
over city centres from where drones are launched (Berg et al., 2016).

The interest of using electric cargo bikes (E-cargo bikes) for last-mile
deliveries is rapidly growing (Narayanan and Antoniou, 2021). A new study
finds that E-cargo bikes deliver about 60% faster than vans in city centres
(Carrington, 2021). This because of the fact that E-cargo bikes can reach
customers residing in restricted areas, e.g., pedestrian zones, and they can
avoid dense car traffics which often occur in urban areas (Arnold et al.,
2018). A comprehensive review consolidating the studies in the growing field
of E-cargo bikes is introduced by Narayanan and Antoniou (2021).

The efficient use of cargo bikes in two-echelon distribution schemes can
lead to successful applications. Anderluh et al. (2019) describe some success-
ful applications in some European cities like, for example, Heavy Pedals and
DPD in Vienna, Haijtas Pajtas in Budapest, and By-Expressen in Copen-
hagen. In 2017, the same authors develope a two-echelon city distribution
scheme with temporal and spatial synchronisation between cargo bikes and
vans in Anderluh et al. (2017). In their scheme, there is a van-depot and
a bike-depot. From the van-depot, which is located on the outskirts of the
city of Vienna, vans perform the delivery to the so-called van-customers, a
type of customers that must be supplied by vans, and to the set of satellites
(also called as micro-consolidation centres or micro-depots). In their paper,
they used mobile satellites without storage facilities. So, a satellite is trans-
shipment point where vans and cargo bikes can meet and it can be anywhere
like, for example, in a car park. Similar to the vans, cargo bikes start and
end their routes at the bike-depot located in the city centre.

The process of delivering parcels in urban areas can be efficiently or-
ganised by consolidating the transport requirements of different stakeholders
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and using environmentally friendly transport modes. Indeed, the main mo-
tivation for the distribution scheme developed by Anderluh et al. (2017) is
to help logistics companies to design more efficient distribution plans with
less costs and less emissions to serve customers located in the city centre of
Vienna. They considered two companies chosen from two different sectors,
namely pharmacy wholesale and distributors of vegetable boxes, and they
were operating as follows: goods from different suppliers are consolidated at
a depot on the outskirts of the city and then delivered by vans to customers.
Most of customers are residing in inaccessible areas by vans and, hence, the
need for more new sustainable distribution concepts.

In this chapter, we introduce a similar distribution concept using real-
world data collected by a famous delivery company called Evri (previously
known as Hermes). The provided data consists of a single depot located in
Eastleigh and a set of satellites located in Romsey (both towns in England).
It also contains information about 365 customers including their locations
(most of them located in the centre of Romsey), and their parcels (size and
weight). Our distribution concept is designed based on Evri’s future plan to
efficiently organise the distribution of parcels consolidated at a depot at the
outskirts of the city and delivered to the customers located in urban areas
using environmentally friendly transport modes.

To model such a situation, we introduce the truck-porters routing problem
with satellites (TPRPS). In the TPRPS, parcels are stored in a depot located
on the outskirts of the city. There is a set of satellites located on the outskirts
of the city centre. Each satellite has a limited storage facility and it has a
fixed location on the map and, so, it cannot be re-allocated. In this problem,
a satellite can be a garage in a multi-story car park, the loading dock of a
shop, or a trailer parked in a car park. In the TPRPS, there is a single truck
(or van) and a limited number of porters. The task is to design an efficient
delivery plan to deliver each parcel located in the depot by the truck either
to the customer or to one of the satellites. Parcels delivered to the satellites
by the truck must be then delivered to customers by porters.

In the TPRPS, the truck is assumed to be electric and each porter is
assumed to be using an E-cargo bike for delivery. In this chapter, an efficient
variable neighborhood search (VNS) algorithm is designed and implemented
to find a good-quality solution for the problem. Our algorithm is designed
to produce a good-quality solution for any TPRPS instance as well as it can
be easily used by any logistic company who owns a fleet of E-cargo bikes, at
least one electric truck, and has a usable set of satellites.
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5.2 Problem description

The TPRPS is a generalisation of the truck-porters routing problem (TPRP)
introduced earlier in this thesis. The TPRP is tackled by a branch-and-
cut algorithm and an efficient VNS algorithm in Chapter 3 and Chapter
4 respectively. In the TPRP, there is a truck and a trailer available at a
depot and loaded with parcels need to be delivered to customers located
in an urban area. The trailer is attached to the truck before the truck
departs from the depot towards a specific parking location (also called as a
transshipment location) where the attached trailer is parked and a known
number of porters arrived. The truck and the porters are then going to
depart from the transshipment location to deliver all the parcels such that
some parcels are delivered by the truck, some parcels are delivered by any
porter, and the rest of parcels are delivered either by the truck or by porters.
Once all parcels are delivered, the truck-driver has to return to transshipment
location to re-attach the trailer and return to the depot.

In the TPRP, it was assumed that porters are identical and they must
start and end their routes at the transshipment location. It was also assumed
that the truck has sufficient capacity for a single trip. Whereas porters are
limited by the amount of demand that they can carry and by the total time
they can travel. However, porters can perform more than a single trip. In the
TPRP, the transshipment location is referred to the depot. That is because
of the assumption that visiting a customer is not permitted when the truck
is pulling the trailer. In other words, the problem consists of one depot that
both the truck and the porters depart and return to.

An extension of the TPRP is the TPRPS. In the TPRPS, there is a single
depot and a set of satellites. Parcels are stored in a depot located on the
outskirts of a city. The set of satellites is located on the outskirts of the
city centre. In this problem, there is a single truck and a limited number
of porters. The task is to design an efficient delivery plan to deliver each
parcel located in the depot by the truck either to the customer or to one of
the satellites. Any parcel delivered to a satellite must be then delivered to
the customer by a porter. So, the total amount of demand delivered to the
set of satellites by the truck is equivalent to the total demand delivered from
the satellites to the customers by porters.

The distribution scheme, the TPRPS, we seek to introduce and solve
consists of two levels. In the first level, some parcels will be delivered by the
truck to the set of satellites. These parcels are then delivered by porters in
the second level. The remaining parcels will be delivered by the truck on
its way to supply some, or possibly all, satellites and before returning to the
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depot. An example of the TPRPS is given in Figure 5.1. Such a two-level
distribution problem is often called a two-echelon distribution problem in
the literature. Crainic et al. (2009) introduced the first formal definition of
a famous class of two-echelon routing problems named two-echelon vehicle
routing problems (2E-VRPs). A brief review of 2E-VRPs is given in Chapter
2. A recent review paper on the 2E-VRPs can be found in Sluijk et al. (2022).

99K

Depot

Satellite

Customer

Truck path

Porter path

Figure 5.1: Illustration of the TPRPS with five satellites and twelve customers. Note
that, only used satellites, where at least a porter departs from, are visited by the truck.

The 2E-VRP and the TPRPS aim at minimising the total delivery cost
with the lowest possible number of delivery vehicles entering central cities by
consolidating parcels in urban distribution centers (UDCs) located in cities
outskirts (Savelsbergh and Van Woensel, 2016). In the 2E-VRP, customers
are supplied from a UDC through satellites. First-echelon (FE) vehicles
transport goods from the UDC to the satellites, from which second-echelon
(SE) vehicles collect the goods and deliver them to the customers. So, cus-
tomers are exclusively served by the fleet of SE vehicles in the 2E-VRP. In
the TPRPS, however, this assumption is removed and, so, FE vehicles have
the option of serving some customers. Taking an advantage of FE vehicles
travelling from a satellite to another satellite or from a satellite to the depot
(or vice versa) increases the efficiency of delivery plans.

The TPRPS can be formally defined as follows. Let G = (V,A) be
a directed graph, where V = {0, 1, ..., N} is the set of vertices and A =
{(i, j)| i, j ∈ V } is the set of arcs. The set of vertices is partitioned into the
depot D = {0}, the set of satellites S = {|D| + 1, ..., |D| + |S|}, and the set
of customers C = {|D| + |S| + 1, ..., |D| + |S| + |C|}. Each arc (i, j) ∈ A
leads to a non-negative routing cost c̄ij when traversed by the truck, and a
non-negative routing cost cij when traversed by any porter. Each customer
i ∈ C requires a supply of qi = (qvi , q

w
i ) and must be visited exactly once.

The demand of satellite s ∈ S equals to the sum of the demand of the
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customers served from s by porters. Satellites are assumed to be identical
and, so, they have the same storage (size) capacity Sv. There is a single
truck available at the depot, and m porters available at the needed satellites
with M = {1, 2, ..,m}. The truck is assumed to have sufficient capacity for a
single trip (e.g., Qv

T = Qw
T =∞). It is also assumed that porters are limited

by the amount of demand (size Qv
P and weight Qw

P ) that they can carry and
by the total time they can travel TP . However, porters can perform more
than a single trip. We refer to a trip as a sequence of customer services
preceded and followed by a visit to a satellite. We call a sequence of trips
performed by the same porter a route.

In the TPRPS, the truck is assumed to be electric. In addition, every
porter is assumed to be using an E-cargo bike for delivery. This means that
each porter needs an E-cargo bike at the starting point (at a satellite). The
objective of this problem is to minimise the total distribution cost under the
following restrictions:

1. each customer must be visited exactly once;

2. if the truck or a porter visits a customer, it must depart from it;

3. the truck must start and end its route at the depot;

4. each porter can start from any satellite and return to the same or to a
different satellite;

5. satellites storage (size) capacity Sv cannot be exceeded;

6. porters cannot travel more than TP hour;

7. porters cannot exceed the carrying capacity (size Qv
P and weight Qw

P );

8. the maximum number of porters, m, can not be exceeded;

9. the truck must visit any satellite used by porters.

In this problem, we assumed that:

1. the truck-driver and the porters get paid the same amount of money
equals to Wcost pounds per hour (we used the national minimum wage
in 2022 in the UK (LPC, 2022));

2. the cost of electricity is fixed and its equal to Ecost pounds per kilowatt
(we used the domestic electricity rate in the UK in 2022 (BEIS, 2022));

3. there is no cost associated with using any satellite;
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4. any satellite may or may not be used;

5. E-cargo bikes are identical (have the same capacity and speed).

The parameters c̄ij and cij represent the driving and cycling costs between
i and j, where i, j ∈ V . In order to compute them, driving and cycling
distances between i and j are needed. Let us denote the driving distance
between i and j by d̄ij and the cycling distance by dij. The time needed to
travel from i to j can be computed using the following formula:

time =
distance

speed
. (38)

The time of travelling from node i to node j by the truck and by any porter
is denoted by t̄ij and tij respectively. In this problem, however, t̄ij and tij
do not represent the actual time to go from i to j as there is an additional
time called service time. The service time can be either a handling time
or a loading/unloading time. As a result, the new travel time from i to j,
which includes the service time, is denoted t̄′ij and t′ij. Additional times are
reported in the computational experiments section, Section 5.5. To compute
the cost of travelling from i to j by the truck and by porters, Wcost, Ecost,
t̄′ij, and d̄ij are needed. Costs of travel from i to j, where i, j ∈ V , can be
expressed as:

c̄ij = Wcost · t̄′ij + Ecost · d̄ij (39)

and

cij = Wcost · t′ij + Ecost · dij (40)

by the truck and by porters respectively. Thus, the objective function can
be expressed as:

min
∑
i∈V

∑
j∈V

c̄ijx̄ij +
∑
k∈M

∑
i∈S∪C

∑
j∈S∪C

cijx
k
ij (41)

where x̄ij is a binary variable that takes value 1 if and only if the truck
traverses arc (i, j) ∈ A, and xkij is a binary variable that takes value 1 if
and only if porter k ∈ M traverses arc (i, j) ∈ A. A mathematical formula-
tion for the TPRPS can be found in the appendix. It can be said that the
TPRPS is a TPRP when there is only one satellite, the satellite location is
exactly the same location as the depot, and the storage facility of the satel-
lite is sufficiently large to store all the parcels. Therefore, the TPRPS is a
generalisation of the TPRP and is thus it is NP-hard.
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5.3 Constructive heuristic for the TPRPS

In order to construct an initial solution for the TPRPS, a two phase algorithm
is designed and implemented. In the first phase, a modified version of the
nearest neighbour (NN) algorithm is applied to build porters routes. The NN
algoithm is one of the first algorithms used to solve the traveling salesman
problem (TSP) heuristically. The main idea of the NN algorithm is to always
visit the nearest customer. Within time complexity of O(n2) where n is the
number of customers, the algorithm normally finds fairly close route to the
optimal route in the TSP (Karkory and Abudalmola, 2013). The process of
our first-phase algorithm can be briefly described as follows:

Step 1: if inviting a new porter is possible, go to Step 2. Else, halt;

Step 2: find the closest customer i to a satellite Sk, where k = 1, ..., kmax

and kmax is the number of satellites. Go to Step 4;

Step 3: find the closest customer, i to the satellite head. Set Sk = head;

Step 4: if there is enough time for the porter to go from Sk to i, go to
Step 5. Otherwise, go to Step 1.

Step 5: start a trip from Sk to i and set tail = Sk;

Step 6: find the nearest node to i. Call it j;

Step 7: find the nearest satellite to j. Call it S ′k;

Step 8: if going from i to j and then to S ′k is possible (that is i→ j →
S ′k), go to Step 9. Otherwise, close the current trip by going
from j to tail, set head = tail, and go to Step 3;

Step 9: go from i to j, set tail = S ′k, set i = j, and go to Step 6.

Figure 5.2 illustrates the implemented NN algorithm with two satellites (blue
triangles) and five customers (green circles). In this example, the porter
starts from satellite S1 to visit node 1. This means that

DS1→1 = min{DSk→i, ∀k ∈ S, i ∈ C}

where S is the set of satellites and C is the set of customers. The trip
continues to grow by visiting the nearest customer to the last visited customer
in the trip until either all customers are served or visiting a customer is not
possible. In the latter case, the porter must return to the nearest satellite to
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Figure 5.2: Illustration of the implemented nearest neighbour algorithm. In these figuers,
blue triangles are satellites and green circles are customers. Starting from the top-left
figure, the closest node to a satellite is node 1, so i = 1 and Sk = S1. A porter trip starts
from S1 to node 1, 2, 3, and then to S2 (tail = S2). At this moment, the porter is able
to depart from S2 to visit the node 4. Thus, the porter visits node 4 from S2. From node
4, the porter is able to visit node 5 before returning to the nearest satellite, S2, without
violating capacity restrictions or exceeding the travel time. The porter ends up taking the
following route S1 → 1→ 2→ 3→ S2 → 4→ 5→ S2.

finish the current trip and to start, if possible, a new trip. Otherwise a new
porter, who can starts from any satellite, is invited to make a new route.
The process is repeated until either all customers are served or adding a new
porter is not possible. At this moment, the second phase of the designed al-
gorithm is started. In this phase, the truck departs from the depot, visits the
set of used satellites and the set of the remaining customers, and then returns
to the depot. In another words, we are solving the famous TSP presented by
Flood (1956). One of the most successful heuristic algorithms for the TSP
is the Lin-Kernighan heuristic (LKH) algorithm (Lin and Kernighan, 1973).
The LKH algorithm uses k-opt moves to optimise the solutions. The k-opt
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moves explores the solution space by replacing k edges of the current trip,
where k is any integer greater than or equal to 2 and less than the number
of nodes. Therefore, the LKH algorithm is called to solve this problem.

5.4 Variable neighborhood search algorithm

for the TPRPS

5.4.1 An overview

The VNS algorithm starts with an initial solution created by the constructive
heuristic explained in the previous section. At the beginning, our algorithm
attempts to improve the current solution by applying local search operators,
also called neighborhoods, to find the best neighboring solution. Local search
operators are applied sequentially in a deterministic way. Such a method is
known as the variable neighborhood descent (VND) algorithm. The VND
algorithm stops when there is no improvement with respect to any of the con-
sidered neighborhoods. Within the VND algorithm, there are different types
of search procedures such as pipe, cyclic, and union VND. In our algorithm,
we use the pipe VND procedure where the search in a neighborhood stops
when there is no improvement, otherwise it continues the search in the same
neighborhood. Algorithm 5.1 shows the proposed VND algorithm. We refer
the reader to Gendreau et al. (2010) for more details about VND variants.

Algorithm 5.1 : The VND algorithm used within the VNS algorithm

1: define the set of local search operators Rk, for k = 1, ..., kmax. Set k = 1.
2: while k ≤ kmax do
3: repeat
4: find and then apply the best move in Rk.
5: until Rk fails to find an improvement.
6: call the current local optima of Rk as x′.
7: if f(x′) < f(x) then
8: set x = x′ and k = 1.
9: else

10: set k = k + 1.
11: end if
12: end while

The improved solution, x, obtained by the sequential VND is a local opti-
mum with respect to all neighborhoods and, therefore, set as the incumbent
solution, xincumbent = x. The algorithm is then repeated within the follow-
ing procedure, which consists of three steps, until the pre-set time limit is
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reached. The first step is the perturbation step, also called shaking step.
In the perturbation step, we construct a new solution, x′, generated from
shaking the incumbent solution using one of the shaking procedures.

Algorithm 5.2 : The VNS algorithm for the TPRPS

1: define the set of shaking procedures Nk, for k = 1, ..., kmax and the set of
local search operators Rl, for l = 1, ..., lmax.

2: apply the constructive heuristic to create an initial solution x.
3: apply the VND algorithm, Algorithm 5.1, to improve x.
4: repeat
5: set k = 1.
6: repeat the following steps:
7: Shaking: Generate a solution x′ at random from the kth shaking

procedure of x(x′ ∈ Nk(x)).
8: Local search: Apply the VND algorithm with x′ as initial solution

to find the best neighboring solution x′′.
9: Move: If x′′ yields a better quality solution, then set x = x′′, iter = 1,

k = 1, otherwise set k = k + 1.
10: until k = kmax.
11: until the pre-set time limit is reached.

The aim of the perturbation step is to escape from local optima as it
allows diversification in the search space. The second step is known as the
improvement step. In the improvement step, the VND algorithm is applied to
find the best neighboring solution, x′′. Finally, at the third step, we compare
the cost obtained in step two, f(x′′), with the cost of the incumbent solution,
f(xincumbent). If f(x′′) < f(xincumbent) we set xincumbent = x′′, otherwise the
algorithm starts the next iteration. Algorithm 5.2 describes the proposed
VNS algorithm. Shaking and local search procedures used within our VNS
algorithm are described in details in the following section.

5.4.2 Explanation of the main steps

Shaking procedures

The VNS escapes from local optima by applying shaking procedures to the
current local minimum. The first step of the VNS is to create a neighbor-
ing solution to the current local minimum by one of the shaking procedures.
There are three shaking procedures used in our VNS algorithm, kmax = 3,
the remove-insert procedure, the satellite eliminator procedure, and the route
initiation procedure. These shaking procedures are ordered as follows: the
remove-insert procedure is used as N1, the satellite eliminator procedure is
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used as N2, and the route initiation procedure is used as N3. These proce-
dures are described as the following:

N1: the remove-insert procedure is aimed at generating a feasible solution
by removing and, then, re-inserting some customers. The procedure
works as follows:

1. choose a number of m customers randomly, and list them in L;

2. remove chosen customers from their current positions in the trips;

3. if L 6= ∅, choose the first customer in L, call it i, otherwise halt;

4. find the best three feasible insertion positions of i into existing trips;

5. insert i at one of the best three insertion positions;

6. remove i from L, L = L\{i}, and go to (3).

In the removal phase of this procedure, the chance of selecting a customer
increases when the parcel-size of the customer increases. In addition, in the
insertion phase of this shaking procedure, a customer might be inserted at
the first, second, or third best feasible position in step (5). The probability of
choosing an insertion position depends on the cost of insertion. The position
with less additional cost is more likely to be chosen. Therefore, the cheapest
insertion position is always have the highest chance to be selected.

N2: the satellite eliminator procedure aims at generating a feasible solution by
removing a satellite that is used in xincumbent. Letting m be the number of
porters in xincumbent, the procedure works as follows:

1. pick a used satellite randomly, s′, and remove it from the truck route;

2. remove all the trips starting from s′ and list their nodes in L;

3. if the number of porters is greater than or equal to m, go to (6);

4. choose a satellite s′′ randomly such that s′′ 6= s′;

5. apply the NN algorithm to build a new route by a new porter starting
from s′′, and go to (3);

6. if L 6= ∅, extend current porters’ routes by starting new trips to serve
some of the remaining customers if possible;

7. insert the remaining nodes into existing routes.

In this shaking procedure, any satellite can be eliminated. In step (4),
however, the chance of selecting a satellite is increased when the demand
of the satellite decreasing. The demand of a satellite is equal to the sum
of customers’ demand served from it by porters. In step (5) and step (6),
the NN algorithm is working slightly differently than the NN algorithm
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explained earlier in Section 5.3. In the current NN algorithm, visiting the
nearest customer by porter is optional as the porter has the chance to visit
the first, second, or third nearest customer. The probability of choosing the
next customer depends on the cost of visiting that customer. The customer
with less cost is more likely to be chosen. In the last step, step (7), we follow
the same strategy used in N1 to insert customers into exiting routes.

N3: the route initiation procedure is aiming at generating a feasible solution
by inviting one more porter, if possible, in addition to the set of porters
that is already involved in the incumbent solution. The procedure starts by
randomly selecting a satellite. The chance of choosing a satellite increases
when the total amount of parcels (size) stored at the satellite decreases. The
new porter departs from the selected satellite to serve some customers which
are part of other porters routes. In other words, the new porter is going to
steal some customers from other routes in order to build their own route.
We use a modified version of the NN algorithm used in our constructive
heuristic described in Section 5.3 to build this route. In this procedure,
instead of always visiting the closet customer, the new porter can go to
the first, second, or third closest customer. The probability of choosing a
customer depends on the cost of visiting that customer. The closer customer
is more likely to be selected.

Local search operators

Local search operators are applied once the current local minimum is per-
turbed by one of the shaking procedures. The aim of applying these neigh-
borhoods is to improve the perturbed solution. In our algorithm, the pipe
VND procedure is used to find the local minimum with respect to all neigh-
borhoods described in this section. In the pipe VND, neighborhoods are
explored in a deterministic way such that the search in a neighborhood stops
when there is no improvement has been found, otherwise it continues the
search in the same neighborhood. The procedure stops when there is no im-
provement with respect to any of the considered neighborhoods. Thus, the
solution obtained by our VND algorithm is a local optimum with respect to
all neighborhoods. Algorithm 5.1 presented in Subsection 5.4.1 illustrates
the designed VND algorithm. There are three local search operators have
been used inside our VND algorithm, the 1-insertion procedure, the swap
procedure, and the 2-opt intra-trip procedure. These neighborhoods can be
briefly described as follows:

The 1-insertion procedure: This neighborhood tries to reduce the total
cost of the current solution by removing a customer from its position in
a trip and insert it elsewhere while maintaining feasibility. The removed
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customer can be inserted into a different position in the same trip, into
another trip within the same route, or into another trip in a different
route. The procedure is repeated and the one that yields the largest
improvement is selected.

The swap procedure: In this neighborhood, we look for an improved
solution by swapping a pair of customers. The two customers are se-
lected, removed from their trips, and then inserted such that the first
customer is inserted at the best insertion position of the second cus-
tomer’s trip and the second customer is inserted at the best insertion
position of the first customer’s trip, if feasible. The two customers may
belong to the same trip, the same route, or different routes. The move
is repeated and the one that yields the largest improvement is chosen.

The 2-opt intra-trip procedure: This neighborhood aims at reducing
the total cost by selecting, removing, and replacing two non-adjacent
arcs by other two arcs within the trip. The 2-opt intra-trip procedure
is the 2-opt algorithm proposed by Croes (1958). It works by replacing
two arcs with other two new arcs and reverting the direction of one
of the resulting two sub-paths. This neighborhood is applied to each
trip individually. In this procedure, we always select the move that
produces the largest improvement to the considered trip.

In our implementation, neighborhoods are placed in a list with a given order
and always explored in that order. In our VND algorithm, neighborhoods
are explored in the following order: the 1-insertion procedure as R1, the swap
procedure as R2, and the 2-opt intra-trip procedure as R3.

5.5 Computational experiments

In our computational experiments we use the designed VNS algorithm ex-
plained in Section 5.4 on a real-world instance. The instance consists of one
depot (located in Eastleigh, a small town in England), five satellites (lo-
cated on the outskirts of the city centre of Romsey, another small town in
Englan), and 365 customers (distributed across Romsey) as described earlier
in the description section, Section 5.2. To solve this instance, driving and
cycling distances between each pair of nodes are computed using the Python
toolkit OSMnx (version 1.2.3) developed by Geoff Boeing (Boeing, 2017).
The free open-source OSMnx package interacts with OpenStreetMap APIs
to calculate the shortest path for any pair of nodes beside other things such
as retrieving, constructing, analysing, and visualising street networks. We
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use OSMnx to calculate the driving and cycling distance matrices for the
truck and the porters respectively.

Table 5.1: Assumed values for the Romsey instance.

description value (unit)

allowed porter carrying capacity (weight) 150 kg
the storage capacity of a satellite (size) 3000 litre
allowed porter carrying capacity (size) 1500 litre
allowed porter travel time duration (time) 4.50 hours
time to serve a customer by porters (time) 3 minutes
time for loading at a satellite by porters (time) 6 minutes
time to serve a customer by the truck (time) 5 minutes
time for unloading at a satellite by the truck (time) 15 minutes
the speed of the truck (mile per hour) 25 mph
the speed of porters (mile per hour) 10 mph
the wage cost of the truck-diver and porters (per hour) 9.50 £
the electricity cost when travel by the truck (per mile) 0.57 £
the electricity cost when travel by a porter (per mile) 0.12 £

Our VNS-based algorithm was coded in C++, compiled with Visual Stu-
dio 2017 and run on the IRIDIS 5.0 High Performance Computing Facility
of the University of Southampton, relying on a cluster of compute nodes
equipped with dual Inter(R) Xeon(R) Gold 6130 CPUs @ 2.10GHz and 192
GB of DDR2 RAM using a single thread per experiment. Table 5.1 contains
information about assumed values for the Romsey instance. Every row in
the table contains an assumed value described in the first column, column
description, and given in column value. At any experiment carried out in
this section, the algorithm terminates when a pre-set time limit is reached.
The time limit to solve the current problem is set to be equal to one hour.
In addition, all instances are solved five times and the average value for each
instance is reported in all tables. Table 5.2 provides the column headings
for tables presented in this section. This section is organised as follows. An
effective configuration of the designed VNS algorithm is presented in Subsec-
tion 5.5.1. An evaluation of the proposed distribution concept, the TPRPS,
is carried out in Subsection 5.5.2. The impact of changing satellites storage
capacity is tested in Subsection 5.5.3. In Subsection 5.5.4 and 5.5.5, various
carrying capacities and speeds for porters are experimented. Finally, the im-
pact of changing the electricity cost on the total distribution cost is tested
in Subsection 5.5.6.
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Table 5.2: Column headings for next tables.

column heading description

Scap storage capacity of each satellite
Pnum the number of invited porters
|trip| the total number of porters’ trips
total cost the total cost of the solution including the truck cost
Tnodes the number of customers visited by the truck
cost the average porter trips’ costs
time the average working time for each porter trip
length the average distance travelled in each trip
weight the average weight of items carried by a porter in a single trip
size the average size of items carried by a porter in a single trip
Pcap the maximum size of items a porter can carry in a single trip
Pspeed the speed of porters (mph)
Tcost the charging cost of the truck per mile
Bcost the charging cost of E-cargo bikes per mile

5.5.1 Algorithm configuration

Designing an efficient heuristic to compute a high-quality solution for this
complex problem is challenging. In many traveling salesman problem (TSP)
and vehicle routing problems (VRP)s efficient heuristics, such as the Lin
and Kernighan (1973) heuristic, only promising moves are considered. Such
approach is used to reduce the computational complexity of the problem
and it is known as heuristic pruning. Heuristic pruning attempts to reduce
the size of the explored neighborhoods by only considering promising moves.
The more restricted the pruning strategy is, the faster the neighborhoods.
However, as a result, neighborhoods explore less moves which might prevent
them from finding improvements. So, there is a trade-off between runtime
and solution quality. A conmon pruning strategy is to only consider those
moves that involve short edges (Toth and Vigo, 2003). This means that a
node can only be connected to its nearest C nodes, where 0 ≤ C ≤ n and n
is the number of customers. Arnold et al. (2019) find that the best results
of solving VRP instances with up 1000 customers are obtained with C = 30.
After some experiments with different values of C, C = {10, 20, 30, 40, 50},
we observed that the best results with C = 30 and, thus, we decide to use
heuristic pruning with C = 30 in our VNS algorithm.

In the improvement phase of our VNS algorithm, neighborhoods are ap-
plied within the pipe VND algorithm described in Section 5.4. One of the
most popular and effective strategies to explore a neighborhood is the best
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improvement, also called the steepest descent. In this strategy, the associated
neighborhood is completely explored by a fully deterministic procedure, per-
forming the best associated move (Gendreau et al., 2010). Such a strategy
has a higher computational complexity than other strategies like, for exam-
ple, the first improvement. However, the best improvement method leads to
better results for our problem as our preliminary experiments confirm and,
thus, it has been adapted in our pipe VND algorithm.

The use of heuristic pruning fastens the process of exploring neighbor-
hoods. However, with the use of the best improvement approach within our
pipe VND algorithm, the VND algorithm takes long time to be executed.
Thanks to the 1-insertion and swap procedures which consist of intra-trip,
intra-route, and inter-route procedures. To make our VND algorithm more
effective, as we observed, we adopt a different way to apply the VND proce-
dure. In our VND algorithm, we only consider the 2-opt intra-trip procedure
until no improvement has been detected for a specific number of iterations, I.
Once the VNS fails to find any improvement for I iterations in a row, other
neighborhoods, namely the 1-insertion and the swap procedures, are included
in the VND until either an improvement is detected or the pre-determined
time limit is reached. In the former case, we repeat the process until the
time limit is reached. This method with I = 500 leads to the best results for
this problem and, therefore, it was adopted in our metaheuristic algorithm.

In any VNS algorithm, shaking procedures are called according to their
orders. However, we have adopted a different approach in which the shaking
procedures are called in our VNS algorithm. In our approach, the chance of
selecting a procedure depends on the number of times the shaking procedure,
followed by the improvement procedure, leads to a new incumbent solution.
We observed that the first shaking procedure was able to lead to a new
incumbent solution most of the times and, so, it has the highest chance to
be selected. Therefore, we set the chance of selecting the first, second, and
third shaking procedures as 70%, 15%, and 15% respectively.

The adopted shaking procedures have been tested to ensure the intensi-
fication and diversification of the search in our VNS algorithm. In the first
shaking procedure, we decided to remove and then insert only 10% of the
customers. Shaking procedures are explained in details in Subsection 5.4.2.

The quality of the proposed VNS algorithm can be measured by compar-
ing the cost of the initial solution constructed by the constructive heuristic
and the cost of the solution obtained by the VNS. Our VNS algorithm is
capable of improving the initial solution by more than 39% in some cases
such as when the carrying capacity of porters is small. The smaller carrying
capacity of porters, the more trips to be performed and, therefore, the harder
to obtain a good-quality solution by the designed constructive heuristic.
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5.5.2 Concept evaluation

To evaluate the proposed distribution concept, a comparison between the
real operating cost conducted by Evri and the approximate cost computed
by our VNS algorithm to deliver all the parcels in the current instance.
However, the real operating cost was not shared with us. In addition, we
have no information about the method used nor the number of vehicles that
were used in the delivery operation at that day. Large delivery companies
often use a fleet of vehicles to deliver their parcels. This problem is known
as the vehicle routing problems (VRP) which was introduced by Dantzig
and Ramser (1959). In the VRP, the goal is to optimally design routes for
multiple vehicles to visit a set of customers such that each customer must be
visited exactly once and the set of vehicles must start and end their routes
at a depot. Important VRP variants are reviewed in Chapter 2. The latest
taxonomic review of VRP literature can be found in Braekers et al. (2016).
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Figure 5.3: Illustration of the comparison between the TSP (purple line) and the TPRPS
(red dots are the highest costs, green dots are the lowest costs, and the blue dots refer to
the average cost of five runs).

To overcome this problem, we compare the cost of our distribution con-
cept with the lowest possible, but unrealistic, method to deliver the 365
parcels in the current instance. Such a method is known as the traveling
salesman problem (TSP) in the literature. In the TSP, a salesman is re-
quired to travel between a number of cities with the lowest possible cost.
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The salesman requires to visit every city exactly once and returns to the
starting point. The TSP was first studied as a mathematical problem in the
1930s by Karl Menger in Vienna (Applegate et al., 2011). In our case, solving
the TSP means that the truck must start and end its route at a depot such
that each customer must be visited exactly once. Note that, in the current
problem, satellites must not be visited by the truck as there is no need to
visit them. The aim of solving the TSP of the current problem is to compute
the lowest possible cost to deliver all the parcels in the current instance. In
this chapter, as it was mentioned, the cost, c, of the shortest path between
each pair of nodes is computed and used to compute the cost function. This
means that for all vertices a, b, c ∈ V we have:

c(a, c) ≤ c(a, b) + c(b, c) (42)

and, therefore, the cost function satisfies the triangle inequality. Haimovich
and Rinnooy Kan (1985) introduces the following lemma:

Lemma 1. The cost c(TSP) of an optimal tour is a lower bound on the cost
of the VRP.

Proof. Given an optimal solution of the VRP, merging all sub-tours into a
single tour is possible and it leads to lesser or equal cost to the cost of the
VRP because of the triangle inequality.

From Lemma 1, we can say that the cost of delivering the 365 parcels
using a fleet of vehicles, as most of delivery companies do, is at least equal to
the cost of solving the TSP of this problem, hence the reason of comparing
the cost of solving the TSP with the cost of solving the TPRPS. In this
comparison, on the one hand, we used the LKH algorithm to solve the TSP
(Lin and Kernighan, 1973). On the other hand, we used our VNS algorithm
to solve the TPRPS. One of the key elements to compute the cost of travel
between two vertices is the electricity cost. The electricity cost of travelling
from i to j, where i, j ∈ V , depends on the distance between i and j. In this
experiment, we used different values of electricity cost. Figure 5.3 contains
the results of solving both problems with different values of electricity cost.
The x-axis represents the values of the truck’s electricity costs whereas the
y-axis indicates the total solution cost. Clearly, the growth of the cost of
the TSP is much faster than the growth of the cost of the TPRPS. This
means that the proposed distribution concept is not only reducing the total
distribution cost, but it also a sustainable distribution concept that can be
applied in any city or town.
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5.5.3 Satellites storage capacity

As it was assumed that satellites are identical and limited in size. For the aim
of finding a reasonable satellites capacity that maximise the profit the most,
we carried out this experiment. We tried ten different storage capacities
while maintaining other values assumed in Table 5.1. Table 5.3 shows the
ten different values in the first column, column Scap. In this table, the size of

Table 5.3: The result of changing satellites storage capacity. See Table 5.2 for
column headings description.

average porter trip

Scap Pnum |trip| total cost Tnodes cost time length weight size

1500 8.40 10.40 353.18 12.80 30.05 3.00 12.56 64.17 689.36
2000 8.40 8.80 340.96 8.00 35.36 3.54 14.44 78.12 848.11
2500 8.00 8.00 332.17 5.80 37.90 3.80 15.02 85.98 931.37
3000 8.00 8.00 332.44 7.20 37.84 3.79 15.05 85.52 921.11
3500 8.20 8.20 333.34 5.40 37.31 3.74 14.89 83.95 912.98
4000 8.00 8.20 333.52 5.80 37.37 3.74 14.97 83.73 903.00
4500 8.00 8.00 333.53 6.20 38.10 3.82 15.23 85.67 927.88
5000 8.20 8.20 332.43 6.60 36.84 3.69 14.52 84.04 910.07
5500 8.00 8.20 331.34 6.00 36.89 3.70 14.53 83.87 909.29
6000 8.20 8.20 330.09 5.60 36.81 3.69 14.44 83.78 910.20

satellites starts from 1.5 to 6 cubic meters. As it can be seen from the table
that the smaller the satellite storage capacity, the higher number of customers
to be served by the truck and, thus, the higher the cost of delivery. It can
be argued that a good storage capacity of satellites, at least for the current
instance, can be anywhere between 2.5 and 6 cubic meters. Obviously, the
larger the storage capacity, the less delivery cost.

5.5.4 Porters carrying capacity

In the TPRPS, porters are limited by the total demand (weight and size) that
they can carry and by a total working time constraint. However, a porter
can re-visit any satellites to collect further items for delivery. In the real
world, the size of parcels usually causes a problem. Indeed, retail companies
usually pack small items in large cardboard boxes (see, e.g., an article about
Amazon packaging written by Statz, 2018). Such action yields to carry large
size, but small weight, items. Therefore, different carrying capacities (size)
are tested. The aim of this experiment is to measure the influence of the
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Table 5.4: The result of changing porters carrying capacity. See Table 5.2 for
column headings description.

average porter trip

Pcap Pnum |trip| total cost Tnodes cost time length weight size

100 11.00 37.80 431.12 103.00 7.59 0.75 3.56 9.58 89.68
250 10.80 30.00 412.43 24.40 12.10 1.20 5.82 20.41 216.70
500 10.00 18.40 383.90 7.20 19.19 1.91 8.84 37.12 401.18
750 8.00 12.80 352.65 11.20 24.78 2.48 10.42 52.34 564.11

1000 8.00 10.40 337.18 6.80 29.39 2.95 11.69 65.82 714.17
1250 8.00 9.40 334.91 7.20 32.57 3.26 13.03 73.23 792.05
1500 8.20 8.20 332.70 6.00 37.20 3.73 14.82 84.12 912.55
1750 8.20 8.20 331.38 5.00 37.37 3.74 14.92 84.08 913.46
2000 8.00 8.20 330.45 5.20 37.15 3.72 14.73 83.97 910.35

capacity on the total working time of porters and so the total cost of this
problem. Table 5.4 shows that the more carrying size capacity of a porter,
the more customers to be served by porters and, thus, the smaller the cost
of delivery. To maximise the benefit gained from E-cargo bikes and, so, the
profit, it can be suggested that E-cargo bikes volume should be larger than or
equal to one cubic meter. The larger the size of E-cargo bikes is, the smaller
the delivery cost.

5.5.5 Porters speed

Cycling can be faster than driving in some city centres. For example, the av-
erage driving speed in central London is between 7.1 – 8.7 mph (TFL, 2013).
Whereas, the average cycling speed in central London is 13.98 mph according
to one of the largest tracking physical exercise company called Strava (Wood-
man, 2015). The current data, however, is taken from a town in England
and, so, we cannot use the average speeds of central London. So, we set the
speed of driving according to the average driving speed on all roads in Great
Britain in 2014 (Statista, 2015). In addition, the speed of E-cargo bikes is
set to be equal to the average speed of thirty different cycle courier operators
across Europe (McLeod et al., 2020). The default cycling and driving speeds
are set to be equal to 10 mph and 25 mph respectively as presented in Table
5.5. In this experiment, the speed of driving remains constant. However,
the speed of porters driving E-cargo bikes is changing. Starting from 3 mph
to 15 mph, thirteen different porter speeds are considered. This experiment
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Table 5.5: The result of changing porters speed. See Table 5.2 for column
headings description.

average porter trip

Pspeed Pnum |trip| total cost Tnodes cost time length weight size

3 10.40 10.40 467.28 131.60 27.82 2.86 5.08 43.62 460.83
4 10.80 11.00 442.05 77.00 29.53 3.02 6.64 51.45 540.83
5 10.80 10.80 434.92 39.20 33.34 3.39 9.16 57.65 624.31
6 10.00 10.00 411.28 16.20 36.93 3.74 11.67 66.46 718.72
7 9.00 9.00 378.82 11.60 37.79 3.82 12.62 74.83 811.72
8 9.00 9.00 369.23 7.00 37.49 3.77 13.84 76.01 822.01
9 8.00 8.00 344.59 6.80 39.47 3.96 15.06 85.97 925.64

10 8.00 8.00 332.90 6.00 38.13 3.82 15.25 85.89 927.35
11 7.40 7.40 321.39 6.20 40.06 4.01 16.70 92.17 1000.53
12 7.00 7.00 314.46 5.40 41.16 4.11 17.83 97.86 1062.66
13 7.00 8.00 305.60 4.80 35.05 3.49 15.47 86.18 934.54
14 7.00 8.00 297.01 4.40 34.11 3.40 15.28 86.21 932.87
15 7.00 7.00 288.27 4.40 37.95 3.78 17.22 98.53 1063.74

confirms the importance of having porters even if the speed of E-cargo bikes
is way less than what it is originally assumed.

5.5.6 Electricity cost

Electricity cost, or charging cost, has a significant impact on the solution
of this problem since both the truck and bikes are electric. This experiment
aims at measuring the impact of changing the charging cost of the truck only,
E-cargo bikes only, and both the truck and E-cargo bikes. The electricity cost
depends on many factors including the battery size and the cost of electricity.
Nowadays, the domestic electricity rate in the UK is about 0.34 pound per
kWh (BEIS, 2022). We assumed that the electric truck is consuming 420
kWh to do 250 miles, which means that it costs 0.57 pound per mile. It was,
also, assumed that E-cargo bikes are costing 0.12 pound per mile (Brown,
2013). In Table 5.6, the cost of charging the truck is variable whereas the
cost of charging E-cargo bikes is constant. Table 5.6 shows that the higher
charging cost of the truck, the smaller the number of nodes to be visited
by the truck. It also shows the need of the porters as they, in all cases,
were responsible to deliver most of the parcels. The other way round where
the cost of charging the truck is constant and the cost of charging E-cargo
bikes is variable confirms the importance of the porters as shown in Table
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Table 5.6: The result of changing the electricity charging cost for the truck. See
Table 5.2 for column headings description.

average porter trip

Tcost Pnum |trip| total cost Tnodes cost time length weight size

0.03 8.00 8.00 317.22 16.00 35.70 3.59 13.53 83.39 895.58
0.12 8.20 8.20 319.37 16.80 34.86 3.50 13.22 81.21 871.58
0.21 8.20 8.20 324.49 7.80 36.57 3.67 14.33 83.39 905.88
0.30 8.20 8.20 325.69 10.00 36.20 3.63 14.11 83.10 898.45
0.39 8.20 8.20 330.98 7.20 37.05 3.71 14.74 83.45 906.44
0.48 8.20 8.40 334.36 6.20 36.59 3.67 14.71 81.82 890.38
0.57 8.00 8.00 337.28 5.20 38.81 3.88 15.84 85.92 933.13
0.66 8.00 8.00 335.07 5.00 38.42 3.85 15.47 85.83 933.25
0.75 8.00 8.00 336.67 5.20 38.50 3.86 15.55 85.90 930.27
0.84 8.00 8.00 338.60 5.20 38.52 3.86 15.57 86.02 930.39
0.93 8.20 8.20 338.92 5.00 37.56 3.76 15.11 84.11 911.21

Table 5.7: The result of changing the electricity charging cost for the E-cargo
bikes. See Table 5.2 for column headings description.

average porter trip

Bcost Pnum |trip| total cost Tnodes cost time length weight size

0.03 8.00 8.00 322.03 5.20 37.04 3.85 15.48 86.10 932.61
0.12 8.20 8.20 332.42 6.00 37.22 3.73 14.84 84.02 913.48
0.21 8.20 8.20 342.95 7.40 37.96 3.68 14.40 83.53 906.57
0.30 8.00 8.00 353.92 7.80 40.09 3.76 14.71 85.61 928.03
0.39 8.00 8.00 364.19 10.00 41.24 3.74 14.67 84.63 920.50
0.48 8.00 8.00 371.31 8.20 42.14 3.71 14.30 85.04 920.70
0.57 8.00 8.00 384.94 10.20 43.68 3.72 14.55 84.53 912.28
0.66 8.00 8.00 394.21 14.80 44.00 3.65 14.10 83.48 897.57
0.75 8.00 8.00 405.73 15.20 45.54 3.67 14.27 83.35 899.47
0.84 8.00 8.00 414.53 17.60 46.37 3.63 14.10 82.38 892.69
0.93 8.00 8.00 418.98 26.20 45.01 3.47 12.97 81.52 882.12

5.7. Indeed, the majority of parcels were delivered from satellites by porters
in Table 5.6 and Table 5.7. However, the impact of the latter case, when
the cost of charging the E-cargo bikes is variable, on the total delivery cost
is more significant. This means that, the charging cost of E-cargo bikes is
more important than the cost of charging the truck. In the last part of this
experiment, the cost of charging the truck and the cost of charging E-cargo
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Table 5.8: The result of changing the electricity charging cost for the truck and
E-cargo bikes. See Table 5.2 for column headings description.

average porter trip

Tcost Bcost Pnum |trip| total cost Tnodes cost time length weight size

0.03 0.93 8.00 8.00 360.89 85.40 32.83 2.64 8.37 67.41 708.23
0.12 0.84 7.80 7.80 383.11 54.40 39.71 3.18 11.33 76.84 816.36
0.21 0.75 8.20 8.20 377.64 45.20 38.06 3.12 11.17 74.09 790.02
0.30 0.66 8.20 8.20 381.59 27.20 40.02 3.35 12.37 78.41 849.15
0.39 0.57 8.00 8.00 377.74 21.80 41.06 3.52 13.28 81.53 881.93
0.48 0.48 8.20 8.40 369.71 12.80 39.64 3.49 13.40 80.66 870.62
0.57 0.39 8.00 8.00 365.15 9.60 41.26 3.74 14.67 84.72 914.68
0.66 0.3 8.00 8.00 354.31 6.60 40.24 3.77 14.76 85.67 930.59
0.75 0.21 8.00 8.00 346.51 5.20 39.50 3.82 15.20 86.10 933.77
0.84 0.12 8.00 8.00 337.94 5.40 38.39 3.85 15.46 85.46 925.07
0.93 0.03 8.00 8.00 326.22 5.20 36.81 3.83 15.26 85.80 930.85

bikes are variable. Table 5.8 contains the costs of charging the truck and
E-cargo bikes in the first and the second column, column Tcost and Bcost,
respectively. In the first row of Table 5.8, the charging cost of the truck is
the lowest while the charging cost of the E-cargo bikes is the highest. As a
result, the truck was delivering most of the parcels.

5.6 Conclusions of the chapter

The TPRPS is an innovative two-echelon distribution concept that combines
driving and cycling to deliver parcels in urban areas. The concept was de-
signed based on a genuine desire of a well-known delivery company to find an
applicable, profitable, and eco-friendly idea to deliver parcels consolidated at
a depot located at the outskirts of a city to the customers living in the city
centre with the minimum operating cost and the lowest possible harm to the
environment. The aim of the TPRPS is to design an efficient delivery plan to
deliver every parcel consolidated at the depot by the truck either directly to
the customer or to one of the satellites, also called micro-depots, located at
the outskirts of the city centre. Parcels delivered by the truck to the satellites
are delivered to customers by porters, using E-cargo bikes, whom can help to
quickly reach customers residing in urban areas with access restriction, e.g.,
pedestrian zones, and they can avoid dense car traffics which often occur in
urban areas (Arnold et al., 2018).
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An effective VNS algorithm is designed and implemented to tackle this
problem in reasonable computation times. In our computational experi-
ments, we use a real-world instance provided by Evri. A comparison be-
tween the proposed distribution concept with TSP solutions of this instance
is provided, for the aim of supporting decision makers to evaluate the use of
our distribution concept. Our experiments evaluate the impact on the total
operating cost of our distribution concept when there are different storage
capacities of satellites, various carrying size capacities of porters, multiple
speeds of porters, and different costs of electricity. The need for inviting
porters as part of last-mile deliveries in urban areas was confirmed in our
experiments. Future research directions will include the evaluation of this
distribution concept with the use of heterogeneous E-cargo bikes. It would
be also interesting to consider satellites with different storage capacities, het-
erogeneous satellites. Such suggestions are more likely to be part of future
real-world problems related to the proposed distribution concept.
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Conclusion

The growth of the population and e-commerce sales in urban areas because of
the process of urbanisation has been steeply increasing the number of delivery
vans entering the city centres leading to environmental pollution and traffic
congestion. Nowadays, more than 57% of the world’s population live in major
cities, according to The World Bank (2022), and the process of urbanisation
is foreseen to rise up further reaching 70% or more by 2050 (Bretzke, 2013).
In addition, e-commerce sales are growing rapidly and have been forecasted
to grow by 56% over the next years (Statista, 2022). Therefore, finding
sustainable distribution concepts for last-mile delivery operations is needed.
The aim of this thesis is to find a sustainable distribution concept that is not
only applicable, but it is also profitable and environmentally friendly.

Chapter 2 of this thesis covered important vehicle routing problem (VRP)
variants. It described the three main formulations to model VRPs, exact
methods, and commonly-used heuristics for the VRP and its variants. The
aim of this chapter was to give the reader the basic knowledge needed before
start discussing a more complicated distribution concept introduced in this
thesis which was named the truck porters routing problem (TPRP).

The TPRP arises when undertaking deliveries within urban areas where
vehicle access to some customers is impossible. Thus, some of the deliveries
are undertaken by porters who walk to the customers, while a truck is driven
to perform deliveries to the other customers. In the TPRP, a single truck
and a limited number of identical porters are available at the depot. For
the customers, some must be visited by the truck, some must be served
by a porter, and the remainder can be visited either by the truck or by a
porter. Porters are limited by the total weight of items that they can carry
and by a total working time constraint. However, a porter can revisit the
depot to collect further items for delivery. The TPRP problem consists of
designing a set of minimum-cost routes where each route starts and ends
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at the depot and satisfies capacity and travel time constraints. Chapter
3 of this thesis introduced the TPRP. It also contained two mathematical
programming formulations and several families of valid inequalities for the
TPRP. In the same chapter, a branch-and-cut algorithm was designed and
implemented for the TPRP. Our experiments of this chapter were carried out
on a set of small-size instances sampled from a real-world instance.

In Chapter 4 of this thesis, an effective variable neighborhood search
(VNS) algorithm for the TPRP was designed and implemented. Our VNS
algorithm was able to find an optimal solution for every instance solved to
optimality by our branch-and-cut algorithm. In addition, our VNS algorithm
was used to compute high-quality solutions for a set of large-size instances
sampled from the same instance used to create the set of small-size instances.
In our computational experiments of this chapter, our VNS algorithm was
tested on the set of multi-trip vehicle routing problem (MTVRP) benchmark
instances and it was able to find several new feasible solutions.

Chapter 5 of this thesis dealt with an extension of the TPRP named
the TPRP with satellites (TPRPS). In the TPRPS, there is a truck-driver
and a limited number of porters. The truck is assumed to be electric and
each porter is assumed to be using an electric cargo bike (E-cargo bikes)
for delivery. The truck departs from a depot located at the outskirts of
the city, loaded with parcels that need to be delivered to customers mostly
residing in urban areas. Each parcel in the truck is either directly shipped
to the customer or to one of the satellites located at the outskirts of the city
centre. In the latter case, when a parcel is delivered to a satellite, the parcel
must be then delivered to the customer by a porter. In the TPRPS, it was
assumed that E-cargo bikes are limited by the total weight and total size of
parcels that they can carry. However, porters can return to any satellite to
replenished their E-cargo bikes multiple times during the day.

The TPRPS is a two-echelon distribution concept that combines driving
and cycling to deliver parcels in urban areas. The distribution concept was
designed based on a true desire of a well-known delivery company, called
Evri, to find an applicable, profitable, and eco-friendly way to deliver parcels
consolidated at a depot located at the outskirts of the city to the customers
living in the city centre with the minimum operating cost and the lowest
possible harm to the environment. The TPRPS was tackled by an effective
VNS algorithm. In our computational experiments we used a real-world
instance provided by Evri. We provided a comparison between the proposed
distribution concept with a traveling salesman problem (TSP) solution of
this instance for the aim of supporting decision makers to evaluate the use
of our distribution concept, which has shown the advantages offered by the
solution concept we proposed.
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Dondo, R. G. and Cerdá, J. (2009). A hybrid local improvement algorithm for
large-scale multi-depot vehicle routing problems with time windows. Computers
& Chemical Engineering, 33(2):513–530.

Drexl, M. et al. (2011). Branch-and-price and heuristic column generation for the
generalized truck-and-trailer routing problem. Revista de Metodos Cuantitativos
para la Economia y la Empresa, 12:5–38.

Dror, M., Ball, M., and Golden, B. (1985). A computational comparison of al-
gorithms for the inventory routing problem. Annals of Operations Research,
4(1):1–23.

Dror, M., Laporte, G., and Louveaux, F. V. (1993). Vehicle routing with stochastic
demands and restricted failures. Zeitschrift für Operations Research, 37(3):273–
283.

Dror, M., Laporte, G., and Trudeau, P. (1994). Vehicle routing with split deliveries.
Discrete Applied Mathematics, 50(3):239–254.

Dror, M. and Trudeau, P. (1989). Savings by split delivery routing. Transportation
Science, 23(2):141–145.

Duarte, A., Mladenovic, N., Sánchez-Oro, J., and Todosijević, R. (2018). Variable
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Erdelić, T. and Carić, T. (2019). A survey on the electric vehicle routing problem:
Variants and solution approaches. Journal of Advanced Transportation, 2019:1–
48.
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Nagata, Y. and Bräysy, O. (2009). Edge assembly-based memetic algorithm for
the capacitated vehicle routing problem. Networks: An International Journal,
54(4):205–215.

Nagy, G. and Salhi, S. (2005). Heuristic algorithms for single and multiple de-
pot vehicle routing problems with pickups and deliveries. European Journal of
Operational Research, 162(1):126–141.

Narayanan, S. and Antoniou, C. (2021). Electric cargo cycles-a comprehensive
review. Transport Policy.
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Appendix

Table A1: Average number of added constraints at the root node with one
family of inequalities.

i CCCs (11) SECs (12) 1 2 3 4 5 6 total

LR 60.07 11.67 - - - - - - 71.73
1 55.87 10.13 48.87 - - - - - 114.87
2 59.13 12.33 - 2.53 - - - - 74.00
3 66.60 12.07 - - 40.20 - - - 118.87
4 67.67 13.00 - - - 30.13 - - 110.80
5 61.60 11.73 - - - - 451.07 - 524.40
6 68.60 12.53 - - - - - 608.67 689.80

Full 79.40 11.73 54.73 4.87 42.13 32.00 328.80 555.67 1109.33

Table A2: Average number of added constraints at the root node without one
family of inequalities.

i CCCs (11) SECs (12) 1 2 3 4 5 6 total

1 81.40 11.27 - 3.73 38.27 28.00 304.40 478.53 945.60
2 77.40 10.33 50.40 - 40.73 30.40 301.47 463.87 974.60
3 71.13 11.00 56.40 4.33 - 32.67 337.53 490.07 1003.13
4 80.07 10.27 55.00 3.80 52.93 - 288.47 529.07 1019.60
5 74.27 11.07 44.33 3.80 39.33 31.60 - 481.73 686.13
6 78.27 10.33 44.53 3.27 40.93 28.73 311.67 - 517.73
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Table A3: Column headings.

column heading description

instance name of the problem instance
LB the value of the lower bound at the termination
UB the value of the upper bound at the termination, if feasible

gap(%) optimality gap in percentage, that is Gap = UB−LB
UB × 100

opt the number of instances solved to optimality
N nodes total number of nodes explored in the branch-and-cut tree
time(s) total computation time in seconds
N cuts number of generated cuts



BIBLIOGRAPHY 127

T
a
b
le

A
4
:

T
h

e
re

su
lt

of
B

&
C

1.
S

ee
ta

b
le

A
3

fo
r

co
lu

m
n

h
ea

d
in

gs
d

es
cr

ip
ti

on
.

L
B

U
B

ga
p

(%
)

in
st

an
ce

b
es

t
av

b
es

t
av

b
es

t
av

op
t

N
n

o
d

es
ti

m
e(

s)
N

cu
ts

N
13

a
31

98
.6

0
31

98
.6

0
3
19

8.
60

31
98

.6
0

0.
00

0.
00

5
4.

64
0.

37
8.

52
N

16
a

36
42

.2
0

36
42

.2
0

3
64

2.
20

36
42

.2
0

0.
00

0.
00

5
10

22
.5

6
15

6.
53

40
.8

4
N

19
a

43
41

.6
0

43
41

.6
0

4
34

1.
60

43
41

.6
0

0.
00

0.
00

5
56

65
.4

0
82

7.
01

86
.3

6
N

22
a

45
52

.1
9

45
44

.4
3

4
56

3.
80

45
64

.0
0

0.
26

0.
43

4
57

86
.7

2
92

2.
63

14
2.

44
N

25
a

54
87

.6
3

54
59

.2
6

5
51

8.
80

55
36

.3
6

0.
54

1.
32

3
10

65
1.

64
17

91
.0

1
23

1.
84

N
28

a
59

69
.2

6
59

42
.1

4
6
24

3.
40

65
95

.6
4

4.
60

8.
22

1
74

49
.3

6
18

99
.3

3
35

7.
32

N
31

a
63

75
.8

4
63

57
.2

2
6
69

8.
80

71
45

.1
1

4.
87

9.
69

1
70

62
.9

2
31

81
.6

5
41

2.
4

N
34

a
67

63
.0

2
67

50
.2

1
7
01

5.
00

73
10

.7
2

3.
52

6.
70

2
49

06
.7

6
41

62
.3

1
48

5.
6

N
37

a
73

96
.9

5
73

88
.4

8
7
72

6.
60

78
47

.5
1

4.
35

5.
79

0
38

15
.8

0
53

6.
68

N
13

b
30

88
.8

0
30

88
.8

0
3
08

8.
80

30
88

.8
0

0.
00

0.
00

5
25

.9
2

34
.8

6
16

.4
4

N
16

b
34

47
.8

0
34

47
.8

0
3
44

7.
80

34
47

.8
0

0.
00

0.
00

5
11

8.
40

28
7.

38
31

.5
6

N
19

b
41

29
.9

9
41

12
.6

0
4
18

0.
20

41
99

.2
0

1.
22

1.
87

3
77

14
.6

4
25

5.
27

15
9.

6
N

22
b

46
00

.4
2

45
52

.6
4

4
68

6.
60

47
66

.3
6

1.
79

4.
38

3
11

18
6.

80
52

02
.7

0
30

5.
84

N
25

b
50

14
.0

4
49

89
.0

0
5
41

6.
00

56
04

.4
4

7.
41

10
.5

6
0

71
79

.5
2

50
2.

04
N

28
b

54
02

.4
7

53
88

.2
7

5
93

7.
75

65
68

.2
3

6.
06

12
.3

9
0

54
66

.7
6

58
2.

28
N

31
b

58
20

.7
2

58
03

.1
6

6
67

1.
20

70
01

.8
2

12
.7

7
16

.7
6

0
41

67
.8

8
56

7.
12

N
34

b
61

47
.8

0
61

34
.1

8
7
94

5.
00

91
38

.9
2

16
.0

4
23

.5
1

0
22

92
.1

2
54

1.
44

N
37

b
67

06
.8

1
66

92
.9

9
11

82
6.

00
11

82
6.

00
16

.2
0

16
.2

0
0

16
21

.4
4

40
7.

04
N

13
c

28
89

.2
0

28
89

.2
0

2
88

9.
20

28
89

.2
0

0.
00

0.
00

5
34

3.
40

13
3.

66
35

.2
N

16
c

32
69

.4
0

32
69

.4
0

3
26

9.
40

32
69

.4
0

0.
00

0.
00

5
77

4.
60

47
3.

58
48

.1
2

N
19

c
39

55
.3

1
39

28
.9

8
3
99

8.
20

41
18

.0
0

0.
99

3.
91

3
46

59
.2

4
96

9.
80

19
0.

96
N

22
c

40
30

.3
4

40
14

.1
9

4
42

8.
20

46
48

.8
0

8.
77

12
.7

6
1

46
71

.5
6

18
13

.0
1

31
4.

32
N

25
c

45
47

.0
4

45
23

.0
6

5
41

6.
00

63
40

.5
6

15
.7

0
25

.9
4

0
44

81
.5

2
54

5.
56

N
28

c
50

09
.0

5
49

94
.6

8
7
09

5.
80

76
86

.0
0

28
.2

5
33

.3
5

0
29

86
.8

4
57

1.
2

N
31

c
53

86
.7

1
53

58
.8

7
9
07

3.
00

99
28

.6
7

30
.7

5
35

.8
0

0
15

53
.2

4
39

9.
04

N
34

c
56

26
.0

3
56

04
.6

7
9
28

2.
33

93
22

.3
3

24
.8

0
24

.9
6

0
10

02
.3

2
40

9.
2

N
37

c
60

02
.9

6
59

86
.6

1
11

18
1.

25
11

18
1.

25
37

.0
3

37
.0

3
0

57
6.

20
33

7.
84



128 BIBLIOGRAPHY
T

a
b
le

A
5
:

T
h

e
re

su
lt

of
B

&
C

2.
S

ee
ta

b
le

A
3

fo
r

co
lu

m
n

h
ea

d
in

gs
d

es
cr

ip
ti

on
.

L
B

U
B

ga
p

(%
)

in
st

an
ce

b
es

t
av

b
es

t
av

b
es

t
av

op
t

N
n

o
d

es
ti

m
e(

s)
N

cu
ts

N
13

a
31

98
.6

0
31

98
.6

0
3
19

8.
60

31
98

.6
0

0.
00

0.
00

5
3.

40
0.

34
8.

76
N

16
a

36
42

.2
0

36
42

.2
0

3
64

2.
20

36
42

.2
0

0.
00

0.
00

5
13

11
.7

2
27

8.
55

43
.7

2
N

19
a

43
41

.6
0

43
41

.6
0

4
34

1.
60

43
41

.6
0

0.
00

0.
00

5
81

84
.7

2
12

69
.3

5
95

.7
6

N
22

a
45

49
.6

0
45

34
.9

9
4
56

3.
80

45
68

.4
4

0.
31

0.
73

4
45

48
.4

0
91

1.
53

12
8.

96
N

25
a

54
90

.6
5

54
47

.2
0

5
51

8.
80

55
54

.6
0

0.
53

1.
85

4
12

12
6.

88
30

25
.1

7
23

4.
64

N
28

a
59

60
.6

2
59

52
.5

6
6
24

3.
00

63
35

.0
8

4.
51

5.
95

1
71

81
.6

8
84

6.
12

37
6.

52
N

31
a

63
74

.2
9

63
53

.7
7

6
67

5.
60

69
97

.1
2

4.
58

8.
55

1
68

61
.8

4
28

67
.8

0
41

0.
2

N
34

a
67

62
.9

3
67

37
.5

0
7
00

6.
20

75
35

.4
0

3.
51

8.
82

2
42

39
.1

6
13

06
.4

3
45

9.
2

N
37

a
73

94
.3

9
73

87
.6

5
9
59

7.
00

98
37

.1
0

19
.3

8
21

.7
3

0
40

08
.4

4
58

2.
72

N
13

b
30

88
.8

0
30

88
.8

0
3
08

8.
80

30
88

.8
0

0.
00

0.
00

5
25

.7
6

20
.8

1
16

.7
6

N
16

b
34

47
.8

0
34

47
.8

0
3
44

7.
80

34
47

.8
0

0.
00

0.
00

5
13

0.
64

26
5.

63
32

.3
2

N
19

b
41

48
.7

0
41

24
.2

7
4
17

6.
00

41
90

.6
4

0.
61

1.
44

4
79

50
.1

6
16

25
.4

4
14

4.
64

N
22

b
45

93
.7

7
45

44
.0

4
4
68

3.
20

47
64

.3
6

1.
94

4.
54

2
96

65
.3

2
37

97
.6

2
28

2.
44

N
25

b
50

16
.0

7
49

89
.1

5
5
39

3.
20

55
43

.7
2

7.
12

9.
73

0
69

38
.3

2
47

9.
56

N
28

b
53

98
.6

1
53

80
.0

6
5
99

7.
20

66
49

.2
7

10
.0

8
17

.6
1

0
51

17
.7

2
53

4.
36

N
31

b
58

18
.7

5
58

02
.2

4
6
79

5.
50

78
75

.8
8

13
.1

4
21

.0
0

0
43

94
.2

8
57

9.
56

N
34

b
61

51
.8

7
61

36
.0

1
7
62

6.
50

84
39

.2
9

12
.8

4
18

.4
4

0
23

77
.8

4
53

9.
96

N
37

b
67

09
.3

1
66

96
.0

3
7
50

6.
00

75
06

.0
0

3.
45

3.
45

0
15

96
.3

2
38

0.
6

N
13

c
28

89
.2

0
28

89
.2

0
2
88

9.
20

28
89

.2
0

0.
00

0.
00

5
35

7.
32

13
5.

67
35

.1
2

N
16

c
32

69
.4

0
32

69
.4

0
3
26

9.
40

32
69

.4
0

0.
00

0.
00

5
97

4.
44

46
5.

34
54

.1
6

N
19

c
39

43
.5

0
39

29
.6

1
4
02

7.
60

40
94

.6
4

1.
92

3.
57

3
45

94
.8

4
99

9.
69

17
5

N
22

c
40

42
.2

2
40

15
.9

0
4
36

2.
40

47
79

.8
0

7.
23

14
.6

4
1

56
42

.0
4

20
73

.4
6

39
9.

36
N

25
c

45
38

.2
3

45
21

.9
6

5
63

3.
20

63
85

.6
0

18
.5

1
27

.2
2

0
49

98
.8

4
58

0.
96

N
28

c
50

04
.6

8
49

90
.4

1
7
64

1.
60

81
54

.7
9

34
.6

2
38

.1
2

0
29

28
.8

8
56

7.
08

N
31

c
53

83
.1

2
53

64
.5

9
8
67

6.
60

89
68

.1
0

36
.8

5
39

.3
4

0
16

18
.4

4
40

1.
12

N
34

c
56

27
.5

7
56

07
.7

8
9
69

0.
20

10
24

3.
10

41
.2

0
44

.7
0

0
10

16
.2

8
38

3.
48

N
37

c
60

07
.3

5
59

90
.5

1
10

54
1.

60
10

57
1.

30
43

.1
4

43
.3

3
0

55
8.

88
30

4.
44



BIBLIOGRAPHY 129

T
a
b
le

A
6
:

T
h

e
re

su
lt

of
B

&
C

3.
S

ee
ta

b
le

A
3

fo
r

co
lu

m
n

h
ea

d
in

gs
d

es
cr

ip
ti

on
.

L
B

U
B

ga
p

(%
)

in
st

an
ce

b
es

t
av

b
es

t
av

b
es

t
av

op
t

N
n

o
d

es
ti

m
e(

s)
N

cu
ts

N
13

a
31

98
.6

0
31

98
.6

0
31

98
.6

0
31

98
.6

0
0.

00
0.

00
5

1.
16

81
.0

2
7.

96
N

16
a

36
42

.2
0

36
42

.2
0

36
42

.2
0

36
42

.2
0

0.
00

0.
00

5
11

68
.2

0
53

6.
51

42
.9

2
N

19
a

43
41

.6
0

43
21

.7
2

43
41

.6
0

43
45

.2
4

0.
00

0.
49

5
44

94
.0

0
20

89
.2

7
87

.4
4

N
22

a
45

31
.7

2
45

10
.4

4
45

63
.8

0
45

68
.8

4
0.

78
1.

28
4

32
83

.2
4

19
38

.5
7

11
9.

88
N

25
a

54
52

.4
1

54
04

.7
7

55
22

.8
0

55
51

.0
4

1.
20

2.
52

3
63

66
.4

8
38

56
.2

7
19

4.
68

N
28

a
59

58
.2

7
59

41
.9

2
61

96
.4

0
63

09
.7

6
3.

94
5.

69
1

45
23

.4
8

15
68

.9
5

30
3.

4
N

31
a

63
26

.5
0

63
15

.9
0

66
53

.2
0

69
44

.2
3

4.
94

8.
61

0
34

66
.1

6
33

5.
88

N
34

a
67

35
.9

5
67

23
.9

1
74

03
.4

0
76

35
.8

1
7.

57
10

.6
9

0
20

08
.6

8
36

6.
96

N
37

a
73

87
.4

6
73

79
.1

3
78

57
.5

0
78

89
.8

3
2.

48
2.

64
0

12
63

.0
0

29
7.

68
N

13
b

30
88

.8
0

30
88

.8
0

30
88

.8
0

30
88

.8
0

0.
00

0.
00

5
41

.2
4

30
6.

31
14

.5
6

N
16

b
34

47
.8

0
34

47
.8

0
34

47
.8

0
34

47
.8

0
0.

00
0.

00
5

27
0.

84
33

2.
87

29
.0

8
N

19
b

41
31

.6
0

41
09

.8
9

41
80

.6
0

42
00

.3
2

1.
14

1.
96

3
33

77
.2

0
50

9.
20

11
4.

44
N

22
b

45
54

.3
9

45
17

.7
0

46
87

.2
0

47
28

.1
2

3.
07

4.
44

2
51

80
.8

8
46

42
.4

8
22

9.
56

N
25

b
49

99
.5

9
49

79
.4

2
53

29
.4

0
54

97
.7

6
6.

10
9.

13
0

39
48

.1
2

39
2.

88
N

28
b

53
95

.5
5

53
73

.5
2

59
39

.0
0

62
85

.0
6

6.
18

10
.1

2
0

23
60

.5
6

41
1.

4
N

31
b

58
12

.4
8

58
00

.8
8

64
41

.3
3

64
41

.3
3

6.
76

6.
76

0
13

37
.5

2
32

3.
12

N
34

b
61

39
.0

8
61

25
.2

4
65

04
.0

0
65

04
.0

0
1.

30
1.

30
0

74
0.

80
30

0.
48

N
37

b
66

98
.7

2
66

78
.4

3
N

F
N

F
N

F
N

F
0

41
0.

20
21

0.
52

N
13

c
28

89
.2

0
28

89
.2

0
28

89
.2

0
28

89
.2

0
0.

00
0.

00
5

51
0.

88
32

0.
34

33
.5

6
N

16
c

32
69

.4
0

32
69

.4
0

32
69

.4
0

32
69

.4
0

0.
00

0.
00

5
11

69
.3

6
75

0.
27

49
.5

6
N

19
c

39
41

.5
4

39
27

.1
0

39
98

.2
0

40
43

.5
2

1.
31

2.
58

3
33

36
.4

0
29

62
.4

6
13

6.
64

N
22

c
40

18
.2

8
39

99
.0

2
43

98
.8

0
46

36
.9

8
8.

65
12

.8
0

1
32

09
.9

2
20

44
.6

1
30

1.
04

N
25

c
45

18
.6

7
45

03
.1

4
54

63
.6

7
57

32
.3

9
9.

52
12

.0
5

0
23

78
.0

4
40

3.
96

N
28

c
50

00
.7

8
49

80
.7

9
74

84
.0

0
74

84
.0

0
12

.8
4

12
.8

4
0

10
63

.3
2

34
0.

16
N

31
c

53
77

.1
6

53
60

.3
5

N
F

N
F

N
F

N
F

0
38

0.
52

19
1.

32
N

34
c

56
59

.8
7

56
38

.0
8

N
F

N
F

N
F

N
F

0
17

8.
40

19
0.

24
N

37
c

60
49

.6
7

60
23

.1
5

N
F

N
F

N
F

N
F

0
61

.4
4

16
1.

24

‘N
F

’
im

p
li
es

th
at

n
o

fe
as

ib
le

so
lu

ti
on

w
as

fo
u

n
d

b
y

C
P

L
E

X
w

it
h

in
th

e
2-

h
li
m

it
.



130 BIBLIOGRAPHY
T

a
b
le

A
7
:

T
h

e
re

su
lt

of
C

&
B

.
S

ee
ta

b
le

A
3

fo
r

co
lu

m
n

h
ea

d
in

gs
d

es
cr

ip
ti

on
.

L
B

U
B

ga
p

(%
)

in
st

an
ce

b
es

t
av

b
es

t
av

b
es

t
av

op
t

N
n

o
d

es
ti

m
e(

s)
N

cu
ts

N
13

a
31

98
.6

0
31

98
.6

0
31

98
.6

0
31

98
.6

0
0.

00
0.

00
5

2.
60

0.
33

8.
48

N
16

a
36

42
.2

0
36

42
.2

0
36

42
.2

0
36

42
.2

0
0.

00
0.

00
5

13
44

.9
6

35
3.

98
26

.9
6

N
19

a
43

41
.6

0
43

41
.6

0
43

41
.6

0
43

41
.6

0
0.

00
0.

00
5

69
54

.0
0

81
2.

56
44

.5
2

N
22

a
45

63
.8

0
45

44
.7

8
45

63
.8

0
45

65
.4

0
0.

00
0.

45
5

69
90

.9
6

15
30

.7
7

67
.2

4
N

25
a

54
61

.3
7

54
34

.4
2

55
24

.8
0

55
54

.0
8

1.
10

2.
07

2
15

81
0.

00
91

5.
76

13
6.

88
N

28
a

59
71

.8
3

59
51

.3
8

62
36

.2
0

64
16

.9
6

4.
45

7.
06

1
12

09
1.

80
14

52
.9

1
14

5.
56

N
31

a
63

85
.5

8
63

57
.9

9
67

26
.6

0
71

87
.5

2
5.

03
10

.4
9

1
17

04
3.

88
52

57
.4

4
16

1.
92

N
34

a
67

82
.0

9
67

48
.2

3
69

61
.8

0
72

49
.8

8
2.

57
6.

46
2

11
17

2.
40

23
89

.7
4

13
9.

04
N

37
a

74
05

.6
4

73
92

.8
5

79
35

.0
0

85
12

.7
2

6.
77

12
.0

6
0

19
83

2.
56

17
2.

92
N

13
b

30
88

.8
0

30
88

.8
0

30
88

.8
0

30
88

.8
0

0.
00

0.
00

5
41

.2
8

28
.3

2
16

.5
6

N
16

b
34

47
.8

0
34

47
.8

0
34

47
.8

0
34

47
.8

0
0.

00
0.

00
5

11
0.

52
24

2.
61

24
.1

2
N

19
b

41
23

.4
5

41
16

.8
0

41
76

.0
0

42
08

.4
4

1.
20

1.
95

3
96

13
.0

4
17

8.
66

79
N

22
b

45
71

.0
6

45
44

.1
2

46
96

.2
0

47
34

.5
2

2.
67

3.
99

2
12

38
6.

12
43

30
.2

8
11

9.
84

N
25

b
50

18
.1

3
49

95
.2

0
53

66
.8

0
55

41
.4

0
6.

47
9.

62
0

11
59

7.
20

16
4.

96
N

28
b

54
13

.3
7

53
94

.5
7

60
52

.2
0

66
11

.6
4

10
.6

4
17

.2
8

0
11

01
3.

08
14

0.
72

N
31

b
58

48
.2

2
58

25
.6

1
63

88
.6

0
72

75
.4

8
8.

77
18

.5
8

0
25

56
8.

40
20

3
N

34
b

61
88

.4
3

61
65

.7
0

70
47

.0
0

78
87

.9
2

12
.0

3
20

.4
0

0
28

74
4.

68
26

1.
68

N
37

b
67

67
.7

0
67

43
.3

2
79

81
.6

0
86

46
.3

8
15

.4
0

21
.4

5
0

61
95

5.
28

34
1.

72
N

13
c

28
89

.2
0

28
89

.2
0

28
89

.2
0

28
89

.2
0

0.
00

0.
00

5
36

2.
64

13
0.

95
27

.1
6

N
16

c
32

69
.4

0
32

69
.4

0
32

69
.4

0
32

69
.4

0
0.

00
0.

00
5

91
2.

00
46

9.
07

28
.6

4
N

19
c

39
56

.1
4

39
35

.8
7

39
98

.2
0

40
52

.1
2

1.
04

2.
55

3
69

65
.0

0
71

2.
63

81
.4

8
N

22
c

40
39

.7
7

40
21

.6
7

44
07

.4
0

47
65

.3
2

8.
29

13
.8

8
1

85
69

.5
2

97
4.

06
13

1.
6

N
25

c
45

36
.7

2
45

24
.6

1
55

48
.2

0
61

11
.2

8
18

.1
1

24
.9

6
0

11
16

9.
36

16
0.

88
N

28
c

50
57

.1
2

50
24

.9
1

60
35

.0
0

69
62

.7
2

16
.3

4
26

.7
5

0
31

29
4.

24
24

6.
32

N
31

c
54

56
.2

0
54

20
.7

6
64

82
.8

0
72

14
.8

8
15

.8
9

24
.2

1
0

66
94

4.
72

31
2.

2
N

34
c

57
06

.3
7

56
84

.3
5

78
53

.8
0

88
62

.0
4

25
.6

0
33

.3
9

0
37

85
9.

92
27

0.
76

N
37

c
61

37
.3

6
60

98
.3

9
96

60
.0

0
10

48
3.

00
20

.7
9

23
.9

0
0

66
20

0.
16

26
0.

88



BIBLIOGRAPHY 131

T
a
b
le

A
8
:

T
h

e
re

su
lt

of
B

&
B

.
S

ee
ta

b
le

A
3

fo
r

co
lu

m
n

h
ea

d
in

gs
d

es
cr

ip
ti

on
.

L
B

U
B

ga
p

(%
)

in
st

an
ce

b
es

t
av

b
es

t
av

b
es

t
av

op
t

N
n

o
d

es
ti

m
e(

s)

N
13

a
31

98
.6

0
31

98
.6

0
31

98
.6

0
31

98
.6

0
0.

00
0.

00
5

67
5.

00
11

1.
24

N
16

a
36

25
.7

0
36

25
.6

7
36

42
.2

0
36

42
.2

0
0.

43
0.

43
4

66
97

.4
8

88
9.

33
N

19
a

42
30

.8
7

42
30

.8
2

43
52

.2
0

43
52

.2
0

2.
49

2.
49

2
65

18
.2

0
13

37
.8

9
N

22
a

44
26

.8
7

44
26

.8
7

45
99

.6
0

45
99

.6
0

3.
73

3.
73

1
55

55
.8

8
15

46
.0

6
N

25
a

52
55

.1
4

52
55

.1
4

55
33

.0
0

55
33

.6
4

4.
97

4.
98

0
89

68
.4

4
N

28
a

58
39

.2
7

58
39

.2
7

63
22

.4
0

63
29

.0
0

7.
59

7.
68

0
73

15
.4

0
N

31
a

62
27

.9
3

62
27

.9
3

69
81

.6
0

69
81

.6
0

10
.6

0
10

.6
0

0
11

00
3.

04
N

34
a

65
94

.4
8

65
94

.4
4

72
62

.0
0

73
13

.1
2

8.
96

9.
46

0
19

34
1.

48
N

37
a

72
93

.6
1

72
93

.5
4

69
08

.0
0

69
08

.0
0

0.
97

0.
97

0
20

74
9.

56
N

13
b

30
88

.8
0

30
8
8
.8

0
30

88
.8

0
30

88
.8

0
0.

00
0.

00
5

13
25

.4
0

43
3.

80
N

16
b

34
47

.8
0

34
4
7
.8

0
34

47
.8

0
34

47
.8

0
0.

00
0.

00
5

35
16

.8
0

16
77

.7
5

N
19

b
40

56
.3

9
40

5
6
.3

1
42

00
.6

0
42

00
.6

0
3.

19
3.

20
2

67
83

.6
8

23
42

.2
3

N
22

b
43

84
.7

3
43

8
4
.7

3
47

76
.4

0
47

76
.4

0
8.

15
8.

15
0

88
14

.1
2

N
25

b
48

87
.2

9
48

8
7
.0

9
55

78
.4

0
55

83
.5

2
12

.0
2

12
.1

0
0

10
59

8.
00

N
28

b
52

82
.6

1
52

8
2
.5

7
64

49
.8

0
64

54
.1

2
17

.8
3

17
.8

9
0

12
94

4.
88

N
31

b
57

67
.1

2
57

6
7
.0

1
68

50
.5

0
68

54
.5

0
11

.3
7

11
.4

2
0

15
54

9.
04

N
34

b
60

33
.3

9
60

3
1
.5

3
N

F
N

F
N

F
N

F
0

81
19

.8
8

N
37

b
66

09
.7

2
66

0
8
.2

2
N

F
N

F
N

F
N

F
0

56
14

.5
6

N
13

c
28

89
.2

0
28

89
.2

0
28

89
.2

0
28

89
.2

0
0.

00
0.

00
5

50
91

.2
0

24
09

.2
3

N
16

c
32

36
.0

5
32

35
.6

6
32

69
.8

0
32

69
.8

0
1.

00
1.

01
4

93
7.

44
24

08
.2

2
N

19
c

38
65

.0
3

38
64

.9
2

40
55

.2
0

40
55

.2
0

4.
39

4.
39

1
86

18
.1

2
54

56
.0

4
N

22
c

38
75

.8
9

38
75

.8
9

45
47

.2
0

45
47

.2
0

14
.4

9
14

.4
9

0
55

03
.3

6
N

25
c

44
31

.4
8

44
31

.0
0

53
59

.4
0

53
63

.1
2

17
.3

2
17

.3
8

0
92

64
.8

8
N

28
c

49
28

.7
7

49
28

.7
7

65
56

.6
7

65
56

.6
7

14
.8

0
14

.8
0

0
11

43
3.

00
N

31
c

53
03

.6
7

53
03

.4
5

N
F

N
F

N
F

N
F

0
73

15
.6

8
N

34
c

55
55

.2
4

55
55

.2
1

N
F

N
F

N
F

N
F

0
35

60
.8

8
N

37
c

59
57

.3
5

59
57

.3
5

N
F

N
F

N
F

N
F

0
22

84
.9

6

‘N
F

’
im

p
li
es

th
at

n
o

fe
as

ib
le

so
lu

ti
on

w
as

fo
u

n
d

b
y

C
P

L
E

X
w

it
h

in
th

e
2-

h
li
m

it
.



132 BIBLIOGRAPHY

Table A9: Time needed to solve optimality-solved instances exactly.

time(s)

instance optimal B&C1 B&C2 B&C3 C&B B&B

Leuven1 N13 a1 2984 0.20 0.20 0.33 0.22 2.17
Leuven1 N13 a2 3721 0.48 0.45 125.63 0.44 201.72
Leuven1 N13 a3 3133 0.34 0.34 177.45 0.33 162.47
Leuven1 N13 a4 3269 0.82 0.66 101.58 0.61 188.21
Leuven1 N13 a5 2886 0.04 0.03 0.11 0.03 1.66
Leuven1 N16 a1 3248 0.18 0.18 33.85 0.17 13.31
Leuven1 N16 a2 3388 0.20 0.20 66.85 0.20 715.03
Leuven1 N16 a3 3812 387.94 453.71 880.53 723.08
Leuven1 N16 a4 3682 155.76 221.88 359.90 402.99 1156.28
Leuven1 N16 a5 4081 238.58 716.77 1341.42 643.46 1672.70
Leuven1 N19 a1 4786 1833.81 3226.36 5656.44 1854.38
Leuven1 N19 a2 3865 0.44 0.44 2.80 0.43 573.92
Leuven1 N19 a3 4394 775.67 960.44 1380.85 834.92
Leuven1 N19 a4 4988 952.69 727.50 2461.23 604.30
Leuven1 N19 a5 3675 572.44 1432.01 945.03 768.74 2101.86
Leuven1 N22 a1 4533 5304.93
Leuven1 N22 a2 4363 1018.15 1430.19 520.46 652.73
Leuven1 N22 a3 4777 168.46 226.63 1330.29 184.28 1546.06
Leuven1 N22 a4 4591 787.28 361.21 1112.87 811.57
Leuven1 N22 a5 4555 1716.64 1628.11 4790.68 700.32
Leuven1 N25 a1 5324 515.80 1458.90 2683.23 1380.80
Leuven1 N25 a2 5475 4199.31 4606.62 5572.52
Leuven1 N25 a3 5027 657.92 399.05 3313.07 450.72
Leuven1 N25 a4 5950 5636.13
Leuven1 N28 a2 5989 1899.33 846.12 1568.95 1452.91
Leuven1 N31 a2 6347 3181.65 2867.80 5257.44
Leuven1 N34 a4 7104 4557.89 2100.55 2234.10
Leuven1 N34 a5 7031 3766.73 512.31 2545.37
Leuven1 N13 b1 3099 0.36 0.35 0.58 0.35 293.61
Leuven1 N13 b2 3418 1.16 1.30 245.28 1.07 814.98
Leuven1 N13 b3 3138 22.38 22.15 154.98 23.03 187.57
Leuven1 N13 b4 3188 129.82 78.85 450.17 89.54 14.43
Leuven1 N13 b5 2601 20.59 1.39 680.53 27.63 858.40
Leuven1 N16 b1 3318 4.83 126.00 201.05 74.65 17.71
Leuven1 N16 b2 3548 83.28 6.18 141.96 136.93 1005.92
Leuven1 N16 b3 3568 711.72 476.76 644.12 610.30 3724.87
Leuven1 N16 b4 3421 207.17 207.13 268.32 28.07 235.30
Leuven1 N16 b5 3384 429.88 512.10 408.92 363.12 3404.94

(continued on next page)
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Table A9: (continued)

time(s)

instance optimal B&C1 B&C2 B&C3 C&B B&B

Leuven1 N19 b2 3832 563.94 554.58 910.63 302.51
Leuven1 N19 b3 4118 69.03 35.39 472.90 111.82 2411.46
Leuven1 N19 b4 4702 5807.65
Leuven1 N19 b5 3774 132.83 104.13 144.07 121.65 2272.99
Leuven1 N22 b2 4815 3641.11 5203.12 3728.68 5703.66
Leuven1 N22 b3 4777 5056.78 2392.12 5556.28 2956.90
Leuven1 N22 b4 4348 6910.20
Leuven1 N13 c1 2644 0.56 0.56 1.58 0.52 973.93
Leuven1 N13 c2 3314 262.21 226.91 131.11 253.49 2472.07
Leuven1 N13 c3 2944 103.90 193.34 751.53 113.95 3146.40
Leuven1 N13 c4 2947 203.20 159.24 159.77 195.91 2374.15
Leuven1 N13 c5 2597 98.43 98.27 557.73 90.89 3079.63
Leuven1 N16 c1 2971 212.43 194.83 79.28 130.79 2035.46
Leuven1 N16 c2 3186 839.74 669.77 224.32 762.63 2099.17
Leuven1 N16 c3 3481 151.04 728.50 649.22 582.51 2484.51
Leuven1 N16 c4 3338 292.52 127.90 555.33 139.92 3013.72
Leuven1 N16 c5 3371 872.16 605.73 2243.19 729.52
Leuven1 N19 c2 3726 1618.08 1539.82 4294.73 895.50
Leuven1 N19 c3 3945 702.17 1112.19 1749.01 935.56 5456.04
Leuven1 N19 c5 3605 589.15 347.06 2843.66 306.82
Leuven1 N22 c2 4075 1813.01 2073.46 2044.61 974.06
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Table A10: Best lower and upper bounds value for unsolved instances.

best LB best UB
instance value method value method gap(%)

Leuven1 N25 a5 5698.50 BC1 5818 BC1,BC2,BC3 2.10
Leuven1 N28 a1 6119.50 BC3 6351 BC3 3.78
Leuven1 N28 a3 5674.00 CB 5914 BC1 4.23
Leuven1 N28 a4 6254.50 BC2 6502 BC2 3.96
Leuven1 N28 a5 5848.00 BC1 6115 BC3 4.57
Leuven1 N31 a1 6351.00 CB 6695 BC3 5.42
Leuven1 N31 a3 6678.68 CB 7082 BC2 6.04
Leuven1 N31 a4 6308.94 BC2 6437 BC3 2.03
Leuven1 N31 a5 6256.45 CB 6603 BC3 5.54
Leuven1 N34 a1 6888.58 CB 7300 CB 5.97
Leuven1 N34 a2 6471.82 CB 6569 CB 1.50
Leuven1 N34 a3 6415.06 CB 6637 BC3 3.46
Leuven1 N37 a1 6708.13 CB 6908 BB 2.98
Leuven1 N37 a2 7354.49 CB 7502 BC1 2.01
Leuven1 N37 a3 8093.65 BC1 8318 BC1 2.77
Leuven1 N37 a4 7026.00 CB 7402 BC1 5.35
Leuven1 N37 a5 7852.34 CB 8296 BC1 5.65
Leuven1 N19 b1 4317.49 BC2 4454 BC1,BC2,CB 3.16
Leuven1 N22 b1 4451.04 BC2 4555 BC1,BC2,CB 2.34
Leuven1 N22 b5 4650.17 CB 4921 BC2 5.82
Leuven1 N25 b1 5212.18 CB 5596 BC3 7.36
Leuven1 N25 b2 4990.50 BC3 5509 CB 10.39
Leuven1 N25 b3 4665.91 CB 4868 BC3 4.33
Leuven1 N25 b4 5113.45 BC2 5168 BC1,BC2,BC3,CB 1.07
Leuven1 N25 b5 5176.37 CB 5436 CB 5.02
Leuven1 N28 b1 5582.50 CB 5891 BC3 5.53
Leuven1 N28 b2 5466.77 CB 5815 BC3 6.37
Leuven1 N28 b3 5560.94 CB 6049 BC1 8.78
Leuven1 N28 b4 5431.31 CB 5749 CB 5.85
Leuven1 N28 b5 5032.17 BC1 5770 BC2 14.66
Leuven1 N31 b1 5972.50 CB 6417 BC3 7.44
Leuven1 N31 b2 5950.61 CB 6398 BC1 7.52
Leuven1 N31 b3 6492.83 CB 7168 CB 10.40
Leuven1 N31 b4 5347.41 CB 5699 BC1 6.57
Leuven1 N31 b5 5477.75 CB 6016 CB 9.83
Leuven1 N34 b1 6339.95 CB 7848 CB 23.79
Leuven1 N34 b2 6075.12 CB 6518 BC2 7.29
Leuven1 N34 b3 6048.92 CB 6739 BC2 11.41

(continued on next page)
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Table A10: (continued)

best LB best UB
instance value method value method gap(%)

Leuven1 N34 b4 6359.81 CB 7663 CB 20.49
Leuven1 N34 b5 6118.35 CB 6278 BC2 2.61
Leuven1 N37 b1 6256.70 CB 7506 BC2 19.97
Leuven1 N37 b2 6886.38 CB 7738 CB 12.37
Leuven1 N37 b3 7145.17 CB 7783 CB 8.93
Leuven1 N37 b4 6434.92 CB 7562 CB 17.52
Leuven1 N37 b5 7115.35 CB 8905 CB 25.15
Leuven1 N19 c1 4117.90 BC1 4236 BC1,BC3,CB 2.87
Leuven1 N19 c4 4413.11 CB 4479 BC1,BC3,CB 1.49
Leuven1 N22 c1 3830.43 CB 4313 BC2 12.60
Leuven1 N22 c3 4208.75 CB 4611 CB 9.56
Leuven1 N22 c4 3983.89 BC2 4124 BC1 3.52
Leuven1 N22 c5 4146.48 CB 4448 BC2 7.27
Leuven1 N25 c1 4698.83 BC1 5404 CB 15.01
Leuven1 N25 c2 4583.51 BC2 5407 BB 17.97
Leuven1 N25 c3 4202.04 BC2 4668 BC1 11.09
Leuven1 N25 c4 4748.35 BC1 4943 BC2,BC3 4.10
Leuven1 N25 c5 4536.94 CB 5469 BC1 20.54
Leuven1 N28 c1 5337.42 CB 6392 BC1 19.76
Leuven1 N28 c2 5031.48 CB 5465 CB 8.62
Leuven1 N28 c3 5002.97 CB 6286 CB 25.65
Leuven1 N28 c4 5133.50 CB 6035 CB 17.56
Leuven1 N28 c5 4780.21 CB 5777 CB 20.85
Leuven1 N31 c1 5606.95 CB 6418 CB 14.47
Leuven1 N31 c2 5570.33 CB 6143 CB 10.28
Leuven1 N31 c3 5666.61 CB 6906 CB 21.87
Leuven1 N31 c4 5155.39 CB 6213 CB 20.51
Leuven1 N31 c5 5281.71 CB 6734 CB 27.50
Leuven1 N34 c1 5769.37 CB 9876 BC1 71.18
Leuven1 N34 c2 5351.83 CB 7426 CB 38.76
Leuven1 N34 c3 5496.00 CB 7134 CB 29.80
Leuven1 N34 c4 6008.81 CB 7505 CB 24.90
Leuven1 N34 c5 5905.82 CB 6516 CB 10.33
Leuven1 N37 c1 5639.75 CB 9412 BC2 66.89
Leuven1 N37 c2 6094.25 CB 10453 BC2 71.52
Leuven1 N37 c3 6643.50 CB 10429 CB 56.98
Leuven1 N37 c4 5864.68 CB 10223 BC2 74.31
Leuven1 N37 c5 6444.60 CB 8038 CB 24.72
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Table A11: The performance of the VNS algorithm.

gap (%)
instance optimal best worst av fs

Leuven1 N13 a1 2984 0.00 0.00 0.00 5
Leuven1 N13 a2 3721 0.00 0.00 0.00 5
Leuven1 N13 a3 3133 0.00 0.00 0.00 5
Leuven1 N13 a4 3269 0.00 0.00 0.00 5
Leuven1 N13 a5 2886 0.00 0.00 0.00 5
Leuven1 N16 a1 3248 0.00 0.00 0.00 5
Leuven1 N16 a2 3388 0.00 0.00 0.00 5
Leuven1 N16 a3 3812 0.00 0.00 0.00 5
Leuven1 N16 a4 3682 0.00 0.00 0.00 5
Leuven1 N16 a5 4081 0.00 0.00 0.00 5
Leuven1 N19 a1 4786 0.00 0.00 0.00 5
Leuven1 N19 a2 3865 0.00 0.00 0.00 5
Leuven1 N19 a3 4394 0.00 0.00 0.00 5
Leuven1 N19 a4 4988 0.00 0.00 0.00 5
Leuven1 N19 a5 3675 0.00 0.00 0.00 5
Leuven1 N22 a1 4533 0.00 0.00 0.00 5
Leuven1 N22 a2 4363 0.00 0.00 0.00 5
Leuven1 N22 a3 4777 0.00 0.00 0.00 5
Leuven1 N22 a4 4591 0.00 0.00 0.00 5
Leuven1 N22 a5 4555 0.00 0.00 0.00 5
Leuven1 N25 a1 5324 0.00 0.00 0.00 5
Leuven1 N25 a2 5475 0.00 0.00 0.00 5
Leuven1 N25 a3 5027 0.00 0.00 0.00 5
Leuven1 N25 a4 5950 0.00 0.00 0.00 5
Leuven1 N28 a2 5989 0.00 0.00 0.00 5
Leuven1 N31 a2 6347 0.00 0.00 0.00 5
Leuven1 N34 a4 7104 0.00 0.00 0.00 5
Leuven1 N34 a5 7031 0.00 0.00 0.00 5
Leuven1 N13 b1 3099 0.00 0.00 0.00 5
Leuven1 N13 b2 3418 0.00 0.00 0.00 5
Leuven1 N13 b3 3138 0.00 0.00 0.00 5
Leuven1 N13 b4 3188 0.00 0.00 0.00 5
Leuven1 N13 b5 2601 0.00 0.00 0.00 5
Leuven1 N16 b1 3318 0.00 0.00 0.00 5
Leuven1 N16 b2 3548 0.00 0.00 0.00 5
Leuven1 N16 b3 3568 0.00 0.00 0.00 5
Leuven1 N16 b4 3421 0.00 0.00 0.00 5
Leuven1 N16 b5 3384 0.00 0.00 0.00 5

(continued on next page)
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Table A11: (continued)

gap (%)
instance optimal best worst av fs

Leuven1 N19 b2 3832 0.00 0.00 0.00 5
Leuven1 N19 b3 4118 0.00 0.00 0.00 5
Leuven1 N19 b4 4702 0.00 0.00 0.00 5
Leuven1 N19 b5 3774 0.00 0.00 0.00 5
Leuven1 N22 b2 4815 0.00 0.00 0.00 5
Leuven1 N22 b3 4777 0.00 0.00 0.00 5
Leuven1 N22 b4 4348 0.00 0.00 0.00 5
Leuven1 N13 c1 2644 0.00 0.00 0.00 5
Leuven1 N13 c2 3314 0.00 0.00 0.00 5
Leuven1 N13 c3 2944 0.00 0.00 0.00 5
Leuven1 N13 c4 2947 0.00 0.00 0.00 5
Leuven1 N13 c5 2597 0.00 0.00 0.00 5
Leuven1 N16 c1 2971 0.00 0.00 0.00 5
Leuven1 N16 c2 3186 0.00 0.00 0.00 5
Leuven1 N16 c3 3481 0.00 0.00 0.00 5
Leuven1 N16 c4 3338 0.00 0.00 0.00 5
Leuven1 N16 c5 3371 0.00 0.00 0.00 5
Leuven1 N19 c2 3726 0.00 0.00 0.00 5
Leuven1 N19 c3 3945 0.00 0.00 0.00 5
Leuven1 N19 c5 3605 0.00 0.00 0.00 5
Leuven1 N22 c2 4075 0.00 0.00 0.00 5
average 0.00 0.00 0.00 295
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Table A12: The performance of the VNS algorithm.

best gap (%) best gap (%)
instance LB best worst av UB best worst av

Leuven1 N25 a5 5698.50 2.10 2.10 2.10 5818 0.00 0.00 0.00
Leuven1 N28 a1 6119.50 3.46 3.46 3.46 6351 -0.31 -0.31 -0.31
Leuven1 N28 a3 5674.00 3.45 3.45 3.45 5914 -0.74 -0.74 -0.74
Leuven1 N28 a4 6254.50 3.61 3.61 3.61 6502 -0.34 -0.34 -0.34
Leuven1 N28 a5 5848.00 3.73 3.73 3.73 6115 -0.80 -0.80 -0.80
Leuven1 N31 a1 6351.00 3.67 3.67 3.67 6695 -1.66 -1.66 -1.66
Leuven1 N31 a3 6678.68 4.54 4.54 4.54 7082 -1.41 -1.41 -1.41
Leuven1 N31 a4 6308.94 2.00 2.00 2.00 6437 -0.03 -0.03 -0.03
Leuven1 N31 a5 6256.45 4.52 4.52 4.52 6603 -0.97 -0.97 -0.97
Leuven1 N34 a1 6888.58 4.11 4.11 4.11 7300 -1.75 -1.75 -1.75
Leuven1 N34 a2 6471.82 1.41 1.41 1.41 6569 -0.09 -0.09 -0.09
Leuven1 N34 a3 6415.06 2.90 2.90 2.90 6637 -0.54 -0.54 -0.54
Leuven1 N37 a1 6708.13 2.44 2.44 2.44 6908 -0.52 -0.52 -0.52
Leuven1 N37 a2 7354.49 1.42 1.42 1.42 7502 -0.57 -0.57 -0.57
Leuven1 N37 a3 8093.65 2.67 2.67 2.67 8318 -0.10 -0.10 -0.10
Leuven1 N37 a4 7026.00 2.72 2.72 2.72 7402 -2.50 -2.50 -2.50
Leuven1 N37 a5 7852.34 3.06 3.06 3.06 8296 -2.45 -2.45 -2.45
Leuven1 N19 b1 4317.49 3.16 3.16 3.16 4454 0.00 0.00 0.00
Leuven1 N22 b1 4451.04 2.34 2.34 2.34 4555 0.00 0.00 0.00
Leuven1 N22 b5 4650.17 4.49 5.82 5.29 4921 -1.26 0.00 -0.50
Leuven1 N25 b1 5212.18 5.10 5.10 5.10 5596 -2.11 -2.11 -2.11
Leuven1 N25 b2 4990.50 6.14 6.14 6.14 5509 -3.85 -3.85 -3.85
Leuven1 N25 b3 4665.91 3.65 3.65 3.65 4868 -0.66 -0.66 -0.66
Leuven1 N25 b4 5113.45 1.07 1.07 1.07 5168 0.00 0.00 0.00
Leuven1 N25 b5 5176.37 4.69 4.69 4.69 5436 -0.31 -0.31 -0.31
Leuven1 N28 b1 5582.50 4.43 4.43 4.43 5891 -1.04 -1.04 -1.04
Leuven1 N28 b2 5466.77 3.92 3.92 3.92 5815 -2.30 -2.30 -2.30
Leuven1 N28 b3 5560.94 4.28 4.28 4.28 6049 -4.13 -4.13 -4.13
Leuven1 N28 b4 5431.31 4.89 4.89 4.89 5749 -0.90 -0.90 -0.90
Leuven1 N28 b5 5032.17 6.85 6.85 6.85 5770 -6.81 -6.81 -6.81
Leuven1 N31 b1 5972.50 5.35 5.35 5.35 6417 -1.95 -1.95 -1.95
Leuven1 N31 b2 5950.61 4.51 4.51 4.51 6398 -2.80 -2.80 -2.80
Leuven1 N31 b3 6492.83 5.12 5.12 5.12 7168 -4.79 -4.79 -4.79
Leuven1 N31 b4 5347.41 4.65 4.65 4.65 5699 -1.81 -1.81 -1.81
Leuven1 N31 b5 5477.75 7.33 7.33 7.33 6016 -2.28 -2.28 -2.28
Leuven1 N34 b1 6339.95 7.29 7.29 7.29 7848 -13.33 -13.33 -13.33
Leuven1 N34 b2 6075.12 3.77 3.77 3.77 6518 -3.28 -3.28 -3.28
Leuven1 N34 b3 6048.92 5.03 5.03 5.03 6739 -5.73 -5.73 -5.73

(continued on next page)
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Table A12: (continued)

best gap (%) best gap (%)
instance LB best worst av UB best worst av

Leuven1 N34 b4 6359.81 5.21 5.21 5.21 7663 -12.68 -12.68 -12.68
Leuven1 N34 b5 6118.35 1.99 1.99 1.99 6278 -0.61 -0.61 -0.61
Leuven1 N37 b1 6256.70 5.90 6.13 5.95 7506 -11.72 -11.54 -11.69
Leuven1 N37 b2 6886.38 7.62 7.62 7.62 7738 -4.23 -4.23 -4.23
Leuven1 N37 b3 7145.17 4.10 4.10 4.10 7783 -4.43 -4.43 -4.43
Leuven1 N37 b4 6434.92 7.79 7.79 7.79 7562 -8.28 -8.28 -8.28
Leuven1 N37 b5 7115.35 6.19 6.19 6.19 8905 -15.15 -15.15 -15.15
Leuven1 N19 c1 4117.90 2.87 2.87 2.87 4236 0.00 0.00 0.00
Leuven1 N19 c4 4413.11 1.49 1.49 1.49 4479 0.00 0.00 0.00
Leuven1 N22 c1 3830.43 9.10 9.10 9.10 4313 -3.11 -3.11 -3.11
Leuven1 N22 c3 4208.75 5.76 5.76 5.76 4611 -3.47 -3.47 -3.47
Leuven1 N22 c4 3983.89 3.52 3.52 3.52 4124 0.00 0.00 0.00
Leuven1 N22 c5 4146.48 4.98 4.98 4.98 4448 -2.14 -2.14 -2.14
Leuven1 N25 c1 4698.83 7.69 7.69 7.69 5404 -6.37 -6.37 -6.37
Leuven1 N25 c2 4583.51 8.02 8.02 8.02 5407 -8.43 -8.43 -8.43
Leuven1 N25 c3 4202.04 8.02 8.02 8.02 4668 -2.76 -2.76 -2.76
Leuven1 N25 c4 4748.35 4.10 4.10 4.10 4943 0.00 0.00 0.00
Leuven1 N25 c5 4536.94 7.83 7.83 7.83 5469 -10.55 -10.55 -10.55
Leuven1 N28 c1 5337.42 5.29 5.29 5.29 6392 -12.08 -12.08 -12.08
Leuven1 N28 c2 5031.48 4.66 4.66 4.66 5465 -3.64 -3.64 -3.64
Leuven1 N28 c3 5002.97 6.06 6.06 6.06 6286 -15.59 -15.59 -15.59
Leuven1 N28 c4 5133.50 6.98 6.98 6.98 6035 -9.00 -9.00 -9.00
Leuven1 N28 c5 4780.21 5.89 5.89 5.89 5777 -12.38 -12.38 -12.38
Leuven1 N31 c1 5606.95 6.08 6.46 6.16 6418 -7.32 -7.00 -7.26
Leuven1 N31 c2 5570.33 6.19 6.19 6.19 6143 -3.71 -3.71 -3.71
Leuven1 N31 c3 5666.61 10.82 10.82 10.82 6906 -9.06 -9.06 -9.06
Leuven1 N31 c4 5155.39 5.71 5.71 5.71 6213 -12.28 -12.28 -12.28
Leuven1 N31 c5 5281.71 8.09 8.09 8.09 6734 -15.22 -15.22 -15.22
Leuven1 N34 c1 5769.37 11.68 11.68 11.68 9876 -34.76 -34.76 -34.76
Leuven1 N34 c2 5351.83 7.22 7.22 7.22 7426 -22.73 -22.73 -22.73
Leuven1 N34 c3 5496.00 5.48 5.48 5.48 7134 -18.74 -18.74 -18.74
Leuven1 N34 c4 6008.81 8.22 8.87 8.61 7505 -13.35 -12.83 -13.04
Leuven1 N34 c5 5905.82 4.46 4.46 4.46 6516 -5.33 -5.33 -5.33
Leuven1 N37 c1 5639.75 8.04 8.04 8.04 9412 -35.26 -35.26 -35.26
Leuven1 N37 c2 6094.25 14.06 14.06 14.06 10453 -33.50 -33.50 -33.50
Leuven1 N37 c3 6643.50 10.56 10.56 10.56 10429 -29.57 -29.57 -29.57
Leuven1 N37 c4 5864.68 10.34 11.17 10.67 10223 -36.70 -36.22 -36.51
Leuven1 N37 c5 6444.60 11.29 11.71 11.45 8038 -10.77 -10.44 -10.64
average 5.38 5.43 5.41 -6.70 -6.66 -6.68
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Table A13: The result of solving G1 instances of MTVRP.

gap(%)
name m TH optimal best worst av opt fs

CMT1 1 551 524.61 0.00 0.00 0.00 5 5
2 275 533.00 0.00 1.89 1.37 1 5
1 577 524.61 0.00 0.00 0.00 5 5
2 289 529.85 0.00 0.18 0.07 3 5
4 144 546.29 NF NF NF 0 0

CMT2 1 877 835.26 0.00 0.62 0.24 2 5
2 439 835.26 0.00 1.10 0.23 3 5
3 292 835.26 0.00 0.67 0.26 3 5
4 219 835.26 0.00 0.94 0.30 3 5
5 175 835.80 0.12 1.85 0.72 0 5
1 919 835.26 0.00 0.54 0.19 3 5
2 459 835.26 0.00 0.75 0.37 1 5
3 306 835.26 0.00 0.67 0.35 2 5
4 230 835.26 0.00 1.19 0.26 3 5
5 184 835.26 0.40 1.02 0.69 0 5
6 153 839.22 0.46 1.54 1.05 0 5

CMT3 1 867 826.14 0.15 0.59 0.24 0 5
2 434 826.14 0.15 0.71 0.31 0 5
3 289 826.14 0.00 0.43 0.23 1 5
1 909 826.14 0.15 0.40 0.25 0 5
2 454 826.14 0.15 0.67 0.36 0 5
3 303 826.14 0.15 0.59 0.40 0 5
4 227 826.14 0.15 0.41 0.20 0 5

CMT11 1 1094 1042.11 0.00 0.00 0.00 5 5
2 547 1042.11 0.00 0.00 0.00 5 5
3 365 1042.11 0.00 0.00 0.00 5 5
5 219 1042.11 0.00 0.00 0.00 5 5
1 1146 1042.11 0.00 0.00 0.00 5 5
2 573 1042.11 0.00 0.00 0.00 5 5
3 382 1042.11 0.00 0.00 0.00 5 5
4 287 1042.11 0.00 0.00 0.00 5 5
5 229 1042.11 0.00 0.00 0.00 5 5

CMT12 1 861 819.56 0.00 0.00 0.00 5 5
2 430 819.56 0.00 0.00 0.00 5 5
3 287 819.56 0.00 0.00 0.00 5 5
4 215 819.56 0.00 0.00 0.00 5 5
1 902 819.56 0.00 0.00 0.00 5 5
2 451 819.56 0.00 0.00 0.00 5 5

(continued on next page)
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Table A13: (continued)

gap(%)
name m TH optimal best worst av opt fs

CMT12 3 301 819.56 0.00 0.00 0.00 5 5
4 225 819.56 0.00 0.00 0.00 5 5
5 180 824.78 0.00 0.00 0.00 5 5
6 150 823.14 0.00 0.00 0.00 5 5

average 0.05 0.41 0.20
total 130 205

‘NF’ implies that no feasible solution was found within the time limit.
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Table A14: The result of solving G2 instances of MTVRP.

best gap(%)
name m TH UB best worst av fs

CMT1 3 192 552.68 0.00 0.00 0.00 5
CMT2 6 146 855.34 0.26 0.26 0.26 1

7 131 844.55 1.42 2.13 1.71 4
CMT3 4 217 829.45 0.00 0.29 0.11 5

5 173 832.89 0.00 0.00 0.00 1
6 145 836.22 NF NF NF 0
5 182 831.20 0.15 0.80 0.46 5
6 151 834.35 0.07 0.62 0.20 5

CMT4 1 1080 1031.00 -0.25 1.20 0.63 5
2 540 1031.07 0.23 1.50 0.69 5
3 360 1028.42 0.35 0.77 0.63 5
4 270 1031.10 1.17 1.93 1.45 5
5 216 1029.65 -0.05 1.51 0.81 5
6 180 1034.61 0.64 1.61 1.11 5
7 154 1067.10 NF NF NF 0
8 135 1056.54 NF NF NF 0
1 1131 1031.07 -0.14 1.10 0.42 5
2 566 1030.45 0.10 1.37 0.62 5
3 377 1031.59 0.44 1.10 0.83 5
4 283 1031.07 -0.22 1.85 0.53 5
5 226 1030.86 -0.12 1.26 0.82 5
6 189 1030.45 0.22 1.36 0.78 5
7 162 1032.07 0.64 1.54 1.19 5
8 141 1044.32 0.18 0.18 0.18 1

CMT5 1 1356 1298.35 1.74 3.14 2.41 5
2 678 1302.15 0.83 1.73 1.33 5
3 452 1301.29 1.19 2.63 1.85 5
4 339 1299.70 1.20 3.14 2.01 5
5 271 1300.02 1.53 2.64 2.11 5
6 226 1303.37 0.19 2.14 1.28 5
7 194 1304.02 1.07 1.85 1.57 4
8 170 1303.11 1.44 2.34 1.78 3
9 151 1307.93 0.58 1.66 1.12 2

10 136 1315.47 NF NF NF 0
1 1421 1299.86 1.07 2.48 1.70 5
2 710 1305.35 0.43 1.74 1.26 5
3 474 1301.03 1.45 2.40 1.78 5
4 355 1303.65 1.22 2.19 1.69 5

(continued on next page)
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Table A14: (continued)

best gap(%)
name m TH UB best worst av fs

CMT5 5 284 1300.62 1.19 2.20 1.55 5
6 237 1306.17 0.99 2.31 1.47 5
7 203 1301.54 0.63 2.21 1.36 5
8 178 1308.78 0.56 1.03 0.82 5
9 158 1304.28 1.19 1.89 1.52 5

10 142 1305.01 0.80 5.75 2.73 4
CMT11 4 274 1078.64 0.01 0.01 0.01 1
CMT12 5 172 845.37 NF NF NF 0
F11 1 254 241.97 0.00 0.00 0.00 5

2 127 250.85 0.00 0.00 0.00 5
1 266 241.97 0.00 0.00 0.00 5
2 133 241.97 0.00 0.00 0.00 5
3 89 254.07 0.00 0.00 0.00 5

F12 1 1221 1162.96 0.00 0.30 0.23 5
2 611 1162.96 0.00 0.38 0.08 5
3 407 1162.96 0.00 0.00 0.00 5
1 1279 1162.96 0.00 0.11 0.02 5
2 640 1162.96 0.00 0.31 0.07 5
3 426 1162.96 0.00 0.26 0.05 5

average 0.47 1.33 0.87
total 236

‘NF’ implies that no feasible solution was found within the time limit.
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Table A15: New feasible solutions for some MTVRP instances.

name v t τt lt

CMT4 1 1 128.71 200 0-46-57-23-69-7-61-114-99-43-86-97-24-96-14-68-0
1080 2 85.46 196 0-77-81-60-8-31-82-140-113-26-112-48-138-27-0

3 113.82 197 0-108-44-107-65-93-88-40-136-13-67-134-55-47-0
4 80.69 197 0-56-146-4-149-111-66-41-94-19-64-42-92-137-147-17-0
5 57.32 199 0-63-145-142-148-87-150-141-135-143-109-144-0
6 97.05 200 0-38-9-104-30-105-75-117-89-39-54-10-49-76-0
7 89.82 197 0-90-71-123-122-124-125-106-73-33-72-91-45-15-52-37-0
8 77.47 199 0-32-51-22-101-3-59-20-131-83-2-100-11-0
9 77.33 199 0-139-18-110-133-25-95-58-98-132-6-102-0

10 21.32 64 0-5-103-12-0
11 123.68 199 0-129-29-128-84-35-85-36-115-121-116-28-70-80-120-1-119-0
12 75.76 188 0-78-126-16-127-53-21-79-74-34-130-50-118-62-0

CMT4 1 1 128.71 200 0-46-57-23-69-7-61-114-99-43-86-97-24-96-14-68-0
216 2 85.46 196 0-27-138-48-112-26-113-140-82-31-8-60-81-77-0

2 1 123.68 199 0-129-29-128-84-35-85-36-115-121-116-28-70-80-120-1-119-0
2 89.82 197 0-37-52-15-45-91-72-33-73-106-125-124-122-123-71-90-0

3 1 113.82 197 0-108-44-107-65-93-88-40-136-13-67-134-55-47-0
2 97.05 200 0-76-49-10-54-39-89-117-75-105-30-104-9-38-0

4 1 82.94 200 0-63-137-92-42-64-19-94-41-66-111-148-142-147-17-0
2 77.47 199 0-11-100-2-83-131-20-59-3-101-22-51-32-0
3 21.32 64 0-5-103-12-0

5 1 77.33 199 0-139-18-110-133-25-95-58-98-132-6-102-0
2 75.76 188 0-62-118-50-130-34-74-79-21-53-127-16-126-78-0
3 55.80 196 0-144-145-109-87-150-141-135-143-4-149-146-56-0

CMT4 1 1 128.71 200 0-46-57-23-69-7-61-114-99-43-86-97-24-96-14-68-0
1131 2 123.68 199 0-129-29-128-84-35-85-36-115-121-116-28-70-80-120-1-119-0

3 112.86 188 0-37-44-107-65-93-88-40-136-13-67-134-55-47-0
4 111.07 198 0-90-10-54-106-73-117-89-39-75-105-30-104-38-0
5 85.46 196 0-27-138-48-112-26-113-140-82-31-8-60-81-77-0
6 80.69 197 0-17-147-137-92-42-64-19-94-41-66-111-4-149-146-56-0
7 78.44 199 0-78-126-16-127-53-21-79-74-34-118-130-50-9-62-0
8 77.47 199 0-11-100-2-83-131-20-59-3-101-22-51-32-0
9 77.33 199 0-139-18-110-133-25-95-58-98-132-6-102-0

10 75.30 197 0-108-52-15-45-91-72-33-125-124-122-123-71-49-76-0
11 57.32 199 0-63-145-142-87-148-150-141-135-143-109-144-0
12 21.32 64 0-12-103-5-0

(continued on next page)
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Table A15: (continued)

name v t τt lt

CMT4 1 1 97.05 200 0-76-49-10-54-39-89-117-75-105-30-104-9-38-0
283 2 59.35 199 0-146-109-143-135-141-150-148-87-142-147-145-144-0

3 89.82 197 0-37-52-15-45-91-72-33-73-106-125-124-122-123-71-90-0
4 21.32 64 0-12-103-5-0

2 1 113.82 197 0-108-44-107-65-93-88-40-136-13-67-134-55-47-0
2 85.46 196 0-27-138-48-112-26-113-140-82-31-8-60-81-77-0
3 75.76 188 0-78-126-16-127-53-21-79-74-34-130-50-118-62-0

3 1 123.68 199 0-129-29-128-84-35-85-36-115-121-116-28-70-80-120-1-119-0
2 77.33 199 0-102-6-132-98-58-95-25-133-110-18-139-0
3 79.01 197 0-56-149-4-111-66-41-94-19-64-42-92-137-17-63-0

4 1 128.71 200 0-46-57-23-69-7-61-114-99-43-86-97-24-96-14-68-0
2 77.47 199 0-32-51-22-101-3-59-20-131-83-2-100-11-0

CMT4 1 1 128.71 200 0-46-57-23-69-7-61-114-99-43-86-97-24-96-14-68-0
226 2 85.46 196 0-27-138-48-112-26-113-140-82-31-8-60-81-77-0

2 1 123.68 199 0-129-29-128-84-35-85-36-115-121-116-28-70-80-120-1-119-0
2 80.69 197 0-56-146-4-149-111-66-41-94-19-64-42-92-137-147-17-0
3 21.32 64 0-5-103-12-0

3 1 112.86 188 0-37-44-107-65-93-88-40-136-13-67-134-55-47-0
2 111.07 198 0-38-104-30-105-75-39-89-117-73-106-54-10-90-0

4 1 78.44 199 0-62-9-130-50-118-34-74-79-21-53-127-16-126-78-0
2 77.47 199 0-11-100-2-83-131-20-59-3-101-22-51-32-0
3 57.32 199 0-63-145-142-148-87-150-141-135-143-109-144-0

5 1 77.33 199 0-102-6-132-98-58-95-25-133-110-18-139-0
2 75.30 197 0-108-52-15-45-91-72-33-125-124-122-123-71-49-76-0



146 BIBLIOGRAPHY

Table A16: The result of solving large-size instances with QP = 20 and
TP = 1800.

WP = 100 WP = 1000
name TPRP1 TPRP2 TPRP3 TPRP1 TPRP2 TPRP3

Leuven1 R1 a1 a5 17955 20399 18076 22219 23638 22793
Leuven1 R1 b1 b5 16929 21311 17259 21333 23834 22849
Leuven1 R1 c1 c5 15669 22185 15989 20429 23373 22456
Leuven1 C1 a1 a5 17316 19668 17462 21747 23087 22648
Leuven1 C1 b1 b5 16360 20486 16591 20889 23186 22709
Leuven1 C1 c1 c5 15249 21010 15620 20117 22631 22638
Leuven1 C2 a1 a5 16599 19470 16704 20662 22364 21053
Leuven1 C2 b1 b5 15477 20385 15730 19834 22545 21228
Leuven1 C2 c1 c5 14001 20904 14161 19064 21804 20479
Leuven1 C3 a1 a5 15373 17983 15442 19077 20697 19673
Leuven1 C3 b1 b5 14297 19679 14529 18653 21479 19457
Leuven1 C3 c1 c5 12990 20438 13301 17586 21338 18975
Leuven1 R1 a6 a10 33774 38056 33928 41812 43497 43015
Leuven1 R1 b6 b10 31931 40360 32114 40560 44274 43012
Leuven1 R1 c6 c10 29808 42168 30113 39471 43972 42715
Leuven1 C1 a6 a10 33795 38298 33925 41996 44081 42973
Leuven1 C1 b6 b10 32069 40245 32353 40802 44203 43547
Leuven1 C1 c6 c10 29651 41756 30078 39093 43630 42920
Leuven1 C2 a6 a10 30948 36215 31001 38367 41013 38885
Leuven1 C2 b6 b10 28387 38295 28497 36756 41715 38133
Leuven1 C2 c6 c10 26122 40130 26348 35429 41930 37448
Leuven1 C3 a6 a10 30622 36005 30751 37817 40734 38322
Leuven1 C3 b6 b10 28764 39046 28842 36992 42652 38251
Leuven1 C3 c6 c10 26227 40869 26330 35575 42675 37628
Leuven1 R1 a11 a15 49582 56258 49556 61509 63994 62616
Leuven1 R1 b11 b15 46600 59761 46732 59944 65256 62320
Leuven1 R1 c11 c15 43340 62624 43462 58299 65326 61991
Leuven1 C1 a11 a15 49399 56086 49443 62082 64294 63128
Leuven1 C1 b11 b15 46404 59322 46525 59753 65000 62961
Leuven1 C1 c11 c15 42963 62007 43204 57429 64714 62410
Leuven1 C2 a11 a15 46885 54370 46868 58331 61861 59040
Leuven1 C2 b11 b15 43324 57896 43332 55984 63113 58315
Leuven1 C2 c11 c15 39744 60728 39781 54210 63429 57447
Leuven1 C3 a11 a15 45771 53085 45789 57264 60391 57699
Leuven1 C3 b11 b15 42321 57000 42415 55590 61780 57350
Leuven1 C3 c11 c15 38864 60399 38945 53523 63121 56542
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Table A17: The result of solving large-size instances with QP = 20 and
TP = 3600.

WP = 100 WP = 1000
name TPRP1 TPRP2 TPRP3 TPRP1 TPRP2 TPRP3

Leuven1 R1 a1 a5 17670 20138 17704 19950 21939 20406
Leuven1 R1 b1 b5 16535 21115 16798 19140 22733 19505
Leuven1 R1 c1 c5 15203 22102 15422 17865 22930 19020
Leuven1 C1 a1 a5 17055 19475 17174 19414 21275 19874
Leuven1 C1 b1 b5 15990 20362 16249 18536 21982 19169
Leuven1 C1 c1 c5 14910 20930 15232 17688 21830 18724
Leuven1 C2 a1 a5 16359 19352 16434 18398 21152 18954
Leuven1 C2 b1 b5 15247 20198 15382 17532 21458 18083
Leuven1 C2 c1 c5 13650 20904 13771 16367 21804 16838
Leuven1 C3 a1 a5 15074 17887 15137 16876 19687 16933
Leuven1 C3 b1 b5 14017 19571 14217 16126 20471 16919
Leuven1 C3 c1 c5 12647 20438 12900 15221 21338 15599
Leuven1 R1 a6 a10 33180 37722 33313 37216 40408 37816
Leuven1 R1 b6 b10 31279 40088 31437 35816 41889 36849
Leuven1 R1 c6 c10 28993 42049 29280 34282 42948 35566
Leuven1 C1 a6 a10 33230 37904 33373 37381 40613 37896
Leuven1 C1 b6 b10 31448 39997 31684 36028 41974 37111
Leuven1 C1 c6 c10 28974 41635 29257 34211 42535 35567
Leuven1 C2 a6 a10 30424 35924 30478 34062 38625 34269
Leuven1 C2 b6 b10 27763 38115 27863 31900 39908 32362
Leuven1 C2 c6 c10 25374 40030 25617 30150 40930 31048
Leuven1 C3 a6 a10 30134 35641 30202 33702 38343 33985
Leuven1 C3 b6 b10 28102 38805 28173 32353 40605 32676
Leuven1 C3 c6 c10 25487 40768 25583 30110 41668 30791
Leuven1 R1 a11 a15 48606 55688 48677 54489 59298 54970
Leuven1 R1 b11 b15 45497 59388 45613 52371 62087 52812
Leuven1 R1 c11 c15 42110 62516 42196 49941 64316 51055
Leuven1 C1 a11 a15 48553 55541 48595 54716 59681 55067
Leuven1 C1 b11 b15 45436 58971 45552 52501 61682 53416
Leuven1 C1 c11 c15 41838 61888 42035 49952 63685 51075
Leuven1 C2 a11 a15 46109 53873 46063 51687 57476 51659
Leuven1 C2 b11 b15 42353 57561 42352 48741 60269 49190
Leuven1 C2 c11 c15 38611 60608 38602 46076 62228 46923
Leuven1 C3 a11 a15 44902 52569 44962 50295 56177 50393
Leuven1 C3 b11 b15 41337 56679 41424 47623 59375 47939
Leuven1 C3 c11 c15 37742 60278 37753 44823 62084 45644
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Table A18: The result of solving large-size instances with QP = 40 and
TP = 1800.

WP = 100 WP = 1000
name TPRP1 TPRP2 TPRP3 TPRP1 TPRP2 TPRP3

Leuven1 R1 a1 a5 17777 20363 17895 21481 23600 22573
Leuven1 R1 b1 b5 16617 21222 16983 20637 23564 22386
Leuven1 R1 c1 c5 15353 22114 15698 19751 23374 21946
Leuven1 C1 a1 a5 16617 19264 16737 20553 21965 21236
Leuven1 C1 b1 b5 15637 20339 15768 19928 22859 20968
Leuven1 C1 c1 c5 14375 20894 14574 19037 22334 20372
Leuven1 C2 a1 a5 16014 19152 16054 19679 21852 20014
Leuven1 C2 b1 b5 14638 20206 14785 18436 22186 19465
Leuven1 C2 c1 c5 12934 20721 12999 17644 21621 18203
Leuven1 C3 a1 a5 14773 17657 14818 17690 19997 18419
Leuven1 C3 b1 b5 13510 19563 13521 17063 21363 17841
Leuven1 C3 c1 c5 11757 20375 11832 15925 21275 16513
Leuven1 R1 a6 a10 32544 37502 32898 39583 42585 41009
Leuven1 R1 b6 b10 30443 40003 30613 38070 43614 40038
Leuven1 R1 c6 c10 28125 41924 28425 36778 43725 39403
Leuven1 C1 a6 a10 32550 37701 32588 39766 42739 40386
Leuven1 C1 b6 b10 30433 39985 30530 38291 43780 39896
Leuven1 C1 c6 c10 27656 41589 27902 36630 43389 38556
Leuven1 C2 a6 a10 29561 35616 29597 35750 40104 36252
Leuven1 C2 b6 b10 26619 37836 26569 33754 40896 34305
Leuven1 C2 c6 c10 23871 39842 23975 32015 41642 33341
Leuven1 C3 a6 a10 29287 35301 29418 35529 39614 36077
Leuven1 C3 b6 b10 27103 38665 27130 34130 41910 35238
Leuven1 C3 c6 c10 23883 40715 24070 32173 42515 33194
Leuven1 R1 a11 a15 47656 55434 47771 57770 62624 58883
Leuven1 R1 b11 b15 44406 59268 44521 56023 64259 58064
Leuven1 R1 c11 c15 40533 62333 40857 53621 65033 56820
Leuven1 C1 a11 a15 46999 54849 47015 57185 62049 57936
Leuven1 C1 b11 b15 43438 58746 43420 55185 63829 56383
Leuven1 C1 c11 c15 39440 61744 39623 52638 64446 55015
Leuven1 C2 a11 a15 44578 53132 44485 54009 59641 54585
Leuven1 C2 b11 b15 40300 57018 40267 51270 61514 52156
Leuven1 C2 c11 c15 35941 60148 36050 48696 62128 49913
Leuven1 C3 a11 a15 43273 51788 43304 52154 57908 52919
Leuven1 C3 b11 b15 39128 56130 39134 49763 60456 50465
Leuven1 C3 c11 c15 35030 60000 35128 47078 62519 48451
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Table A19: The result of solving large-size instances with QP = 40 and
TP = 3600.

WP = 100 WP = 1000
name TPRP1 TPRP2 TPRP3 TPRP1 TPRP2 TPRP3

Leuven1 R1 a1 a5 16821 19780 16816 18870 21580 19516
Leuven1 R1 b1 b5 15478 20834 15616 18089 21914 18313
Leuven1 R1 c1 c5 13882 22031 13953 16600 22931 17071
Leuven1 C1 a1 a5 15531 18668 15557 17668 20468 18108
Leuven1 C1 b1 b5 14283 19994 14346 16937 21434 17046
Leuven1 C1 c1 c5 12814 20748 12827 15680 21648 15745
Leuven1 C2 a1 a5 15232 18659 15259 17120 20463 17274
Leuven1 C2 b1 b5 13842 19817 13926 16046 20717 16446
Leuven1 C2 c1 c5 11958 20721 12004 14709 21621 14739
Leuven1 C3 a1 a5 14145 17370 14144 15947 18810 15968
Leuven1 C3 b1 b5 12871 19250 12942 14738 20150 14938
Leuven1 C3 c1 c5 11239 20383 11241 13767 21283 13923
Leuven1 R1 a6 a10 31033 36605 31118 34841 39315 35157
Leuven1 R1 b6 b10 28564 39438 28594 33181 41239 33284
Leuven1 R1 c6 c10 25638 41787 25754 31084 42687 31305
Leuven1 C1 a6 a10 30547 36484 30560 34606 39185 34651
Leuven1 C1 b6 b10 27985 39225 28069 32856 41026 32911
Leuven1 C1 c6 c10 24726 41401 24790 30442 42301 30580
Leuven1 C2 a6 a10 28480 34855 28512 31805 37189 32125
Leuven1 C2 b6 b10 25235 37438 25192 29098 39238 29183
Leuven1 C2 c6 c10 22151 39678 22127 26899 40578 26851
Leuven1 C3 a6 a10 28240 34656 28218 31676 36996 31640
Leuven1 C3 b6 b10 25570 38191 25508 29349 39991 29484
Leuven1 C3 c6 c10 22253 40494 22232 26814 41394 26903
Leuven1 R1 a11 a15 45221 54005 45257 50873 57620 50859
Leuven1 R1 b11 b15 41266 58298 41215 48117 60998 48196
Leuven1 R1 c11 c15 36771 62020 36720 44834 63820 44946
Leuven1 C1 a11 a15 44293 53241 44334 50178 56999 50167
Leuven1 C1 b11 b15 40274 57697 40242 47357 60388 47378
Leuven1 C1 c11 c15 35651 61403 35686 44000 63203 44060
Leuven1 C2 a11 a15 42724 52004 42650 47585 55444 47553
Leuven1 C2 b11 b15 38075 56489 37994 44013 59188 43844
Leuven1 C2 c11 c15 33300 60003 33218 40367 60904 40229
Leuven1 C3 a11 a15 41777 50861 41785 46565 53716 46465
Leuven1 C3 b11 b15 37393 55619 37334 43041 58156 43070
Leuven1 C3 c11 c15 32746 59701 32679 39559 60959 39583
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Mathematical formulation for the TPRPS

The model uses six types of decision variables. The truck binary variable
x̄ij takes value 1 if and only if the truck traverses arc (i, j) ∈ A, otherwise
its equal to zero. The load’s size and weight after leaving node i to node
j, where i, j ∈ V , by the truck is denoted by f̄ v

ij and f̄w
ij respectively. The

porter binary variable xkij takes value 1 if and only if porter k ∈M traverses
arc (i, j) ∈ A, otherwise its equal to zero. The load’s size and weight carried
by porter k ∈M when moving from node i to node j, where i, j ∈ S ∪ C, is
represented by f vk

ij and fwk
ij respectively. Thus, the TPRPS can be formulated

as follows:

min
∑
i∈V

∑
j∈V

c̄ijx̄ij +
∑
k∈M

∑
i∈S∪C

∑
j∈S∪C

cijx
k
ij (43)

s.t.
∑
i∈V

x̄ij +
∑
k∈M

∑
i∈S∪C

xkij = 1, ∀j ∈ C (44)∑
i∈V

x̄iz −
∑
j∈V

x̄zj = 0, ∀z ∈ V (45)∑
i∈S∪C

xkiz −
∑

j∈S∪C

xkzj = 0, ∀z ∈ C, ∀k ∈M (46)∑
s∈S

∑
i∈C

xkis −
∑
s∈S

∑
j∈C

xksj = 0, ∀k ∈M (47)

∑
j∈V

x̄sj ≥ min

(
1;
∑
k∈M

∑
j∈C

xksj

)
, ∀s ∈ S (48)∑

i∈C

xkis −
∑
j∈C

xksj ≤ 1, ∀s ∈ S, ∀k ∈M (49)∑
i∈S∪C

∑
j∈S∪C

t′ijx
k
ij ≤ TP , ∀k ∈M (50)∑

i∈S∪C

∑
j∈S∪C

cijx
k
ij ≤

∑
i∈S∪C

∑
j∈S∪C

cijx
k−1
ij , ∀k ∈M\{1} (51)

∑
i∈V

(
f̄ v
ij − f̄ v

ji

)
+
∑
k∈M

( ∑
i∈S∪C

(
f vk
ij − f vk

ji

))
= qvj , ∀j ∈ C (52)

∑
i∈V

(
f̄w
ij − f̄w

ji

)
+
∑
k∈M

( ∑
i∈S∪C

(
fwk
ij − fwk

ji

))
= qwj , ∀j ∈ C (53)∑

i∈V

f̄ v
is −

∑
j∈V

f̄ v
sj =

∑
k∈M

∑
j∈C

f vk
sj , ∀s ∈ S (54)
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∑
i∈V

f̄w
is −

∑
j∈V

f̄w
sj =

∑
k∈M

∑
j∈C

fwk
sj , ∀s ∈ S (55)∑

i∈V

f̄ v
is −

∑
j∈V

f̄ v
sj ≤ Sv, ∀s ∈ S (56)

qvj x̄ij ≤ f̄ v
ij ≤ (Qv

T − qvi )x̄ij, ∀i, j ∈ V (57)

qwj x̄ij ≤ f̄w
ij ≤ (Qw

T − qwi )x̄ij, ∀i, j ∈ V (58)

qvjx
k
ij ≤ f vk

ij ≤ (Qv
P − qvi )xkij, ∀i, j ∈ S ∪ C, ∀k ∈M (59)

qwj x
k
ij ≤ fwk

ij ≤ (Qw
P − qwi )xkij, ∀i, j ∈ S ∪ C, ∀k ∈M (60)

x̄ij ∈ {0, 1}, ∀i, j ∈ V, i 6= j (61)

xkij ∈ {0, 1}, ∀k ∈M, ∀i, j ∈ S ∪ C, i 6= j (62)

f̄ v
ij, f̄

w
ij ≥ 0, ∀i, j ∈ V, i 6= j (63)

f vk
ij , f

wk
ij ≥ 0, ∀s ∈ S, ∀k ∈M, ∀i, j ∈ S ∪ C, i 6= j (64)

The objective function minimises the total distribution cost. Constraints
(44) ensure that every customer is visited exactly once. Constraints (45)
guarantee that entering and leaving truck’s arcs to each node are equal.
Whereas constraints (46) guarantee that entering and leaving arcs to each
customer by each porter are equal. Constraints (47) ensure that the number
of ingoing and outgoing arcs to the set of satellites are equal. Constraints
(48) are logical constraints. They impose the truck to visit each satellite that
has been used by any porter. Constraints (49) guarantee that the difference
between the number of entering and leaving arcs from each satellite by each
porter is less than or equal to one. Each porter cannot travel more than the
pre-set time limit with constraints (50). Constraints (51) are the symmetry
breaking constraints, they ensure that the first porter travel at least as much
as porter the second porter. Constraints (52) and (53) ensure that the de-
mand (size and weight) of each customer is met. With constraints (54) and
(55), the amount of demands (size and weight) delivered to each satellite by
the truck is equal to the amount of demands collected from that satellite
by porters. The storage capacity of satellites cannot be violated with con-
straints (56). Constraints (57) – (60) ensure that the load after visiting a
node is equal to the load before minus the demand of the respective node.
Constraints (61)–(64) define the variable domains.
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