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Abstract— Despite the advantages of having robot swarms,
human supervision is required for real-world applications. The
performance of the human-swarm system depends on several
factors including the data availability for the human operators.
In this paper, we study the human factors aspect of the human-
swarm interaction and investigate how having access to high-
quality data can affect the performance of the human-swarm
system— the number of tasks completed and the human trust
level in operation. We designed an experiment where a human
operator is tasked to operate a swarm to identify casualties in
an area within a given time period. One group of operators had
the option to request high-quality pictures while the other group
had to base their decision on the available low-quality images.
We performed a user study with 120 participants and recorded
their success rate (directly logged via the simulation platform)
as well as their workload and trust level (measured through
a questionnaire after completing a human-swarm scenario).
The findings from our study indicated that the group granted
access to high-quality data exhibited an increased workload
and placed greater trust in the swarm, thus confirming our
initial hypothesis. However, we also found that the number
of accurately identified casualties did not significantly vary
between the two groups, suggesting that data quality had no
impact on the successful completion of tasks.

I. INTRODUCTION

Large robot swarms are an example of complex sys-
tems and efficient interaction with them can be extremely
challenging. Swarms typically operate in large numbers,
ranging from tens to thousands of individual robots. Coor-
dinating and communicating with such a large group can
be overwhelming for humans. Interacting with robot swarms
requires an interface that is understandable and transparent
in order for humans to trust the system. Transparency can
lead to improved trust in multi-robot teams [1], and increases
situational awareness by providing information about the
past (i.e. why the swarm exhibited a behaviour), present
(i.e. what its current state is), and future (i.e. what will it
do in the near and far future) [2]. Transparency in swarm
robotics can be expensive and may take on two distinct
levels: a micro-level and a macro-level [3]. Micro-level
transparency communicates each individual drone’s state and
intentions. Whereas macro-level transparency aggregates the
robot state information to provide an overall decision aid for
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the human operator. As swarm sizes increase, micro-level
transparency may exceed the operator’s ability to track and
manage the states of individual drones [4], [5]. Further, as
display requirements increase, the risk of increased cognitive
overload of the operator can have an impact on efficiency,
visual search performance, and ultimately task success [6],
[7]. In these scenarios, aggregated information may be
more appropriate for managing tasks, calibrating trust, and
relaying information between human operators and robotic
swarms. However, aggregated information, such as an image
collected by multiple robots to inform human operators
about a casualty within a fire area, may require higher
bandwidth to transfer the data to the operators. In high-
stakes scenarios, especially in adverse weather conditions
where communication may be limited, transferring high-
quality data to human operators can be expensive and can
cause latency in the human-swarm decision-making process.
To address this issue, one solution is to transfer low-quality
data to human operators and rely on their expertise to
make informed decisions. Studies have demonstrated that
humans are adept at analyzing visualized data quickly and
efficiently, and can also comprehend the context of data
even when it is subject to significant noise. Humans can
use heuristics to mitigate data noise and transformation,
providing a generalized understanding of the data [8], [9].
Low-quality data may allow a user to get a holistic picture of
the swarm status and scenario with minimal delay in relaying
the information and can be useful where communication is
limited. For instance, a robot swarm that is exploring an
area for search and rescue may send lightweight low-quality
images to the human operator.

Task density consideration is also important in human-
swarm interaction to avoid cognitive overload which results
in diminishing human performance. According to Hussein
and Abbass [10], workload needs to be maintained within an
acceptable range since both very low and very high levels of
workload can cause human performance degradation.

This paper presents the results of an experiment aimed
at examining the impact of data quality on human-swarm
interaction during high-stakes decision-making tasks. Specif-
ically, we investigate whether providing high-quality data to
human operators can significantly enhance the success of the
human-swarm scenario, and assess its effect on the operators’
trust, workload, and perception of the swarm’s performance
during the scenario. In order to establish the connections
between these components, quantitative data was collected,
incorporating both subjective and objective measurements.



II. RELATED WORK

Robotic swarms consist of a distributed cognitive network
promising to enhance tasks in terrestrial, aerial, and aquatic
environments [11], [12]. Robotic swarms are currently being
used in a variety of application domains such as agricul-
ture [13], search and rescue [14], monitoring and patrol [15],
warehouse operation [16], last-mile delivery [17], military
scenarios [18], environmental monitoring [19], and space
exploration [20]. The move from multi-UAVs to those of
greater numbers is challenging, as the ability of a human
operator to manage each drone individually becomes less
feasible as the swarm size increases [21], [5].

Research investigating the balance between task com-
pletion speed and performance accuracy in order to op-
timise human-swarm performance is not new [22], [23].
However, works focusing on the interplay between human-
robot performance (speed and accuracy) against trust are
scarce. Hussein et al [23] develop a model to study the
combined effect of speed and reliance (accuracy) on trust.
Their model was based on an assumption that both speed
and reliance were crucial to mission performance. They
validated their model by conducting human experiments with
33 subjects and suggested that their model generated data
which closely mirrored the human data and can be used in
trust experiments. This computational trust model was used
in identifying components required for the development of
trust-aware human automation interaction [24]. Further re-
search showed that reliability and transparency have distinct
effects on trust calibration in human-swarm interaction [25].
Trust in human-swarm interaction is thought to decrease as
performance degrades [26]. The level of human reliance on
the system in human-swarm interaction is dependent on the
level of trust [27]. In our research, we used trust metrics
established in human factors and psychology to determine
the effect of the trade-off between speed and accuracy on
trust. 120 participants used the HARIS simulator [28] to
interact with an aerial swarm.

Yin et al. [29] investigated the effect of stated accuracy
and observed accuracy on trust in human-robot interaction.
They found that users’ perception of accuracy was influenced
by the observed accuracy than the stated accuracy. This
suggests that humans are likely to trust a system based on
their perception of how well it is performing. In our study,
we investigate how this performance perception in human-
swarm interaction can be affected by the quality of data
transmitted. Selah et al. [30] and Naiseh et al. [31] warn that
highly reliable (accurate) machines tend to cause humans
to over-trust the system which is usually exhibited as the
complacency that limits the ability to detect and fix machine
errors. The researchers argued that designing trust-aware
human swarm interaction systems may reduce this negative
impact of human reliance. In our research, we establish an
empirical and qualitative relationship between performance
and trust in the human-swarm interaction system. This could
inform future designs of such trust-aware human swarm
interaction systems.

Szafr et al [32] investigated the effect of data visualisation
in human-robot interaction. They highlighted the fact that
data visualisation is essential for effective human decision-
making. This requires that robot data be represented in a
way that supports fast and accurate analyses by humans.
They suggested that a well-designed interface would in-
crease performance speed, system trust, and understanding
in detecting anomalous behaviours by the human operator.
A survey of literature on human-swarm interaction suggested
that information transparency was a key component for
setting up effective human-swarm teams [33]. In a multi-
operator and multi-robot swarm study [34], it was found
that responsibility overlap and balance task density (work-
load) increased mutual trust and system performance. They
proposed the need for the relationship between humans and
robots to be more legible and transparent. Another study
investigated ergonomic display of human-swarm interaction
and highlighted that a complex situation with high dynamics
increases the demand on a user [18].

In our previous work [35], we showed how different
visualisation techniques affect human-swarm interaction. We
found that heatmap displays (macro-transparency) were pre-
ferred in situations with larger swarm sizes, time-critical
applications, and tracking motion or progress coverage,
whereas individual drone displays (micro-transparency) were
preferred for troubleshooting or detecting errors within the
swarm. In this research, we extend our investigation into how
detailed a visualisation must be to increase trust and overall
system performance.

III. METHOD

Our study aimed to investigate the impact of data quality
in the transmitted data between humans and swarms on the
subjective perception of the swarm. We focused on three
key subjective perceptions: trust, workload, and performance.
Additionally, we explored the effects of increased workload
(task density) on our independent variables. Finally, we used
performance metrics for the human-swarm task to measure
the effect of data quality in an objective way. To achieve
this, we designed a scenario that involved collaborative
work between a human operator and a swarm of robots
for searching and identifying casualties in a specific area.
We selected search and rescue as the use case scenario
based on our previous research [36], as it encompasses
data quality, workload, and trust as crucial factors for an
effective human-swarm partnership. Our study involved par-
ticipants completing the same scenario while we controlled
the variables of data quality and task density. One group
performed the scenario with only low-quality images of
casualties, while the remaining participants also had the
option to request high-quality images. However, there was
a simulated delay in receiving high-quality images to mimic
real-world conditions. Participants were required to complete
two scenarios, one with a low workload and the other with
a high workload. By comparing these conditions, our study
aimed to explore the potential effects of data quality and
task density on human operators’ subjective perception of



the swarm and the overall performance of the human-swarm
team. We formulated the following hypotheses to guide our
investigation:

• H1: The presence of high-quality data would increase
participants’ trust perception and overall human-swarm
performance;

• H2: Increasing the task density would decrease trust
perception and overall human-swarm performance.

These hypotheses suggest that other components could
also affect human trust perception of the swarm other than
transparency [25], accuracy [29], and interface design [32].

Fig. 1: The operator view allows a human to task the swarm
with searching the area for potential casualties

A. Experiment Design

In this section, we describe the design of the experiment
to examine these hypotheses.

1) Human-Swarm Simulator: We extended the Human
And Robot Interactive Swarm (HARIS) simulator to run
our experiment [28]. Originally developed for human-swarm
interaction [37], HARIS allows the human operator to
continuously monitor and control the swarm’s behaviour.
We selected HARIS over other popular options because it
features continuous human interaction with the swarm as a
core feature of its engine. HARIS allows us to record and
analyze the users’ interactions throughout the scenario. We
use the search and rescue scenario, modelling a small swarm
of drones which must search an area for potential human
casualties, discovering potential casualties when they fly near
them; this is reported live to the user. The operator’s role
in this scenario is to designate regions of interest for the
swarm to search, and either use the in-built task allocation
algorithm (e.g., MaxSum [38], [39]) to suggest an allocation
of drones to search regions, or override this and manually
assign each drone; these allocations can always be adapted
by the operator in real-time (see Fig. 1).

2) Human Operator’s Role: To explore the dynamics of
human-swarm interaction, we used the HARIS simulator
to devise an instructive scenario that involved participants
managing and controlling a swarm consisting of numerous
drones. Our experiment focused on casualty identification,
which did not require extensive prior knowledge or training.

During the scenario, the swarm provided participants with
a series of images, and their objective was to determine
whether each image depicted a human casualty or not. To
emphasize the significance and potential consequences of
accurate classification, we informed participants that these
tasks carried a high-risk factor, as an erroneous classification
could lead to harm in real-life scenarios. The images used
in the experiment were pre-designed and retrieved from a
database, without any image processing performed by the
robots. They were carefully selected to pose challenges in
identifying human casualties amidst other objects in the field,
such as trees or animals. This deliberate selection aimed to
simulate real-world scenarios where differentiating human
casualties from other elements could be difficult. To assess
the efficacy of the images in fulfilling their intended purpose,
we conducted a manipulation check study involving nine
participants. Their task was to determine whether the target
in each image was a human or non-human casualty. Each
participant completed a total of 24 classification tasks. Our
analysis of the results revealed that participants achieved an
average accuracy of 64.28% in completing the classification
task. These findings provided valuable insights into the
suitability and difficulty level of the images for casualty
identification within the context of our scenario.

Fig. 2: The scan view shows the target image. The user can
classify the target if they are certain of what they see, or can
request a better image

Participants were assigned the role of a swarm operator,
allocating search regions for a swarm of Unmanned Aerial
Vehicles (UAVs) to find human casualties on a map. The
drones automatically return low-resolution images of poten-
tial casualties; the participant is required to confirm whether
these are real casualties via the buttons on the view tab of
the interface as shown in Fig. 2. Participants in the high
data quality group have an extra feature in their interface, a
button to request high-resolution images to aid the casualty
classification task. Every image is a top-down view of an
open area that includes the image of a human or an object
edited in. Requesting a high-resolution image results in an
unallocated drone being tasked from the drone hub (home
position) to the position where the low-resolution image was
taken to fetch a higher-resolution scan and return back to the
home position before presenting the image scan back to the
human for classification.



3) Study conditions: To examine our hypotheses, the
experiment followed a 2x2 mixed design, encompassing both
between-subject and within-subject factors. The independent
variables included data quality and task workload (density).
Participants were randomly assigned to one of two main
conditions, namely the high-resolution group or the low-
resolution group. Each participant was given an hour to
complete the experiment. The experiment consisted of two
scenarios: a low workload scenario and a high workload
scenario, both of which participants had to complete. In the
low task density condition, a set of 8 images was utilized,
comprising 5 valid casualties and 3 decoys. On the other
hand, the high task density condition involved 12 images,
with 7 of them being valid casualties and the remaining 5
serving as decoys. Participants had 8 minutes to complete
each task density scenario. Thus, the key distinction between
the two task density groups was the relative proportion of
decoys. Each participant was expected to locate a total of
20 targets. These targets were distributed within a park
located in Southampton, United Kingdom, at coordinates
(50.929544, −1.409595).

We employed a mixed design for several reasons. Firstly,
by using a between-subject design, we aimed to assess
the impact of data quality while assuming that any other
differences between groups were evenly distributed through
random assignment. Thus, we designated data quality as the
between-subject factor. Secondly, the within-subject design
was chosen to mitigate potential random noise in the data
caused by individual characteristics. This was particularly
relevant when collecting subjective measures of workload, as
a between-subject design could introduce noise. Therefore,
we selected workload as the within-subject factor to ensure
more precise and reliable results. To minimize potential
learning effects and biases, we implemented a counterbal-
anced study design. This approach helped ensure that half
of the participants completed the low workload scenario
first followed by the high workload scenario (AB), while
the remaining participants underwent the high workload
scenario first and then the low workload scenario (BA). By
counterbalancing the order of the scenarios, we aimed to
reduce the influence of any potential order-based biases and
optimize the validity of the findings.

4) Measures: At the end of each condition, we asked
participants to complete three scales: a) We used the NASA
TLX questionnaire (6 questions) [40] to measure partici-
pants’ workload after each condition, b) We also used Jian’s
questionnaire (7 questions) [41] to check participants’ trust
perception after completing each condition, c) Users also
completed a performance questionnaire (8 questions). We
included two manipulation-check questions to test partici-
pants’ attention when answering the scales. The behaviour
of the users was captured in log files of the HARIS simulator
to measure other behavioural aspects such as Human-Swarm
performance, interaction with the high-resolution feature, and
scenario completion time.

B. Experiment Procedure

The study started with the participants being briefed on
what the study was about and a 10 minutes video tutorial
hosted on YouTube 1. A three-question validation check was
performed to ensure that participants paid attention while
watching the tutorial video. This was an essential inclusion
criterion for our participants to make sure they understood
the scenario. The participants were then provided with the
participant information sheet and required to consent in order
to continue their participation. After this, the participant
demographic details of gender, education level, computer
expertise, and familiarity with drone/Swarm Robotics were
collected.

Participants were then required to complete a 5-minute
tutorial on the online simulator to familiarise themselves
with how the simulator works and the type of tasks they
would perform. After this, the first scenario of the exper-
iment is loaded. Each scenario interface is similar to that
shown in Fig. 1. Participants had 8 minutes to complete the
scenario. Immediately after completing this, the participants
were required to complete the study questionnaire for the
scenario as presented in the previous section. They then
proceeded to complete the second condition and completed
the questionnaire for the second condition. Once this is
completed, they were guided to the submission page where
they could submit their data and were redirected back to the
Prolific platform (online study crowd-sourcing platform [42])
to confirm participation and data submission.

C. Participants Demographic

We recruited a total of 120 participants through Prolific.
The study was conducted using the cloud-hosted version of
the HARIS simulator 2. We received ethics approval from
the University of Southampton ethics committee (ERGO
number: 69418). All participants were compensated for their
time participating in the study.

The gender distribution of the participant was 75 male,
41 female, 3 non-binary, and 1 “preferred not to say”. 74
of the participants had at least a Bachelor’s or a Master’s
degree. 67 of the participants were above-average computer
users. In terms of UAV/Swarm experience or knowledge, 7
of the participants had experience in operating drones, 55
only knew a little about the technology, and the remaining
58 had no knowledge about drones or Swarm Robotics.

IV. RESULTS

In this section, we present the quantitative results and
annotate each subsection regarding the RQs that they primar-
ily answer. We conducted quantitative analysis on various
dependent variables related to participants’ scenario per-
formance, behavioural patterns interacting with the swarm,
and subjective measures. For each dependent variable, we
performed a separate mixed-effects regression with data
quality and task density as the fixed effects and participants

1User study tutorial available online: https://www.youtube.com/
watch?v=HhD3zU6jTSQ

2Online HARIS simulator: https://uos-hutsim.cloud/



as the random effects. The regression model further included
participants’ self-reported swarm knowledge, age group,
gender, and qualifications as control variables. We report
the descriptive statistics (mean values and standard division)
for each quantitative measure and significant results from
the regression analysis. On average, participants found and
classified 11.5 targets in 16 minutes (8 minutes per scenario).

A. Task performance

We started by analysing the measurements reflecting how
well participants performed the tasks as described in the
Method (Section III), specifically the total number of ca-
sualties detected, and the Precision and Recall of their
identified problems. Descriptive statistics, including means
and standard deviations are presented in Table I.

TABLE I: The mean and standard deviation (in parenthesis)
of task performance measures: the number of casualties
detected by participants (N casualties) normalised by the
number of ground-truth casualties in each condition, the
precision and recall of the identified casualties. (Legend: DQ
- Data Quality. TD - Task Density.)

N casualties Precision Recall

Low DQ Low TD 0.74 (0.08) 0.750 (0.032) 0.662(0.024)
High TD 0.64 (0.05) 0.802 (0.047) 0.603(0.037)

High DQ Low TD 0.69 (0.08) 0.921 (0.056) 0.632(0.041)
High TD 0.55 (0.04) 0.872 (0.061) 0.581(0.039)

We performed a mixed-effects regression model on the
number of identified casualties, Precision, and Recall respec-
tively. For the number of identified casualties (normalised),
we found significant two-way interaction between data qual-
ity and workload (B = −0.34, SE = 0.15, F (2, 114) =
5.42, p < 0.05). The posthoc analysis found the contrast
between low and high workload marginally significant for
high data quality conditions (p = 0.1), but not significant for
low data quality (p = 0.35), suggesting that the interactive
effect was mainly caused by the delay that requesting more
data quality pictures for casualties will result in a lower
number of casualties detected.

While we did not find any significant effect on recall,
we found the same significant one-way interaction for data
quality on Precision (B = 0.29, SE = 0.06, F (2, 114) =
5.98, p < 0.05). This suggests that data quality indeed
increased the quality of the decision (Precision) but does
not necessarily increase the number of human casualties
(Recall). These two-way interactions on the total number
of casualties (human and non-human) and precision implies
that when interacting with high-quality images participants
found significantly fewer casualties (human and non-human),
in low and high workload scenarios.

B. Behavioural Patterns

We have also examined behavioural metrics that reflected
how participants interacted with the simulator, including the
time spent completing each scenario and the number of times
they accessed the high-quality images feature.
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Fig. 3: Comparing DQ group target classification duration.
Box plot pairs (Low Resolution and High Resolution) show
the mean classification duration for each of the 20 targets.

The distribution of the time spent classifying each of the
20 targets by each study group is shown in Fig. 3. By
aggregating this performance, the mean classification dura-
tion for the low data quality group was 265.3 seconds. The
mean classification duration for the high-resolution group
was 283.7 seconds. This shows that the mean classification
duration for the low-resolution group was shorter than that
of the higher-resolution group by about 18.4 seconds. A one-
way ANOVA was performed to determine if this difference
was significant and we see that there was a statistically
significant difference in the mean classification duration
between the two groups (F (1, 1374) = 8.675, p = 0.003).
The value of F is 8.675, which reaches significance with a
p-value of 0.003 (which is less than the 0.05 alpha level).

TABLE II: Participant groups classification summary with
the number of high-resolution image requests in parenthesis.
(Legend: DQ - Data Quality. TD - Task Density.)

Quality Density Group Cx Correct Incorrect Fatal

Low DQ
Low TD 284 (-) 206 (-) 78 (-) 42 (-)
High TD 438 (-) 318 (-) 118 (-) 41 (-)
Subtotal 720 (-) 524 (-) 196 (-) 83 (-)

High DQ
Low TD 253 (144) 207 (119) 46 (25) 29 (20)
High TD 403 (167) 363 (155) 40 (12) 20 (11)
Subtotal 656 (311) 570 (274) 86 (37) 49 (31)

Total 1376 (311) 1094 (274) 282 (37) 132 (31)

Table II provides a quantitative summary of the per-
formance result obtained from the simulator. From this
table, a total of 1376 target classifications were made by
the 120 participants, 720 by the low data quality group,
and 656 by the higher quality group. The classification
accuracy of the low data quality group was 73% and that
of the high data quality group was 87%. To achieve this
level of performance accuracy, the high data quality group
requested high-resolution images 47% of the time. Fatal
misclassifications are classifications where a valid human
casualty has been misclassified as “not a casualty”. This is
a costly misclassification as the consequence is a definite
loss of life rather than a mere waste of resources due to
the alternative misclassification. The column labelled Fatal
in Table II records this. The low data quality group made
more fatal misclassifications than the high data quality group
(83 : 49).

Breaking down this analysis further, Fig. 4 shows the
quantitative performance of the participants. The perfor-
mance trade-off between speed and accuracy is obvious.
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Fig. 4: Quantitative performance of the participants grouped
by data quality (Q) and task density (D). QD-00: low data
quality, low task density. QD-01: low data quality, high task
density. QD-10: high data quality, low task density. QD-11:
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The group with lower quality data (QD-00 and QD-01) has
lower accuracy but higher speed. The group with the higher
quality data (QD-10 and QD-11) had a higher classification
accuracy but lower classification speed. The performance
bar is the weighted sum of the normalised accuracy (As)
and speed (Rs) data. That is, the performance per scenario
Ps = (As ∗ 0.33) + (Rs ∗ 0.67). It shows that although
the group that had high data quality option perceived their
performance to be higher, their performance was actually
similar to the low data quality group. Accuracy As and speed
(rate of task completion, Rs) are computed per scenario as,

As =

K∑
i=1

ns,i

Ns,i
and Rs =

K∑
i=1

Ns,i

Ts,i
(1)

Where K is the number of participants in the scenario,
ns,i is the number of correct classifications of participant i
in scenario s, Ns,i is the total number of targets classified,
Ts,i is the scenario completion time which is 8 minutes by
default. The speed Rs for the high task density group QD-01
and QD-11 is normalised by dividing by 1.5, the standard
rate of completing all 12 classifications in 8 minutes. The
speed Rs for the low task density group QD-00 and QD-10 is
normalised by dividing by 1, the standard rate of completing
all 8 classifications in 8 minutes.

C. Subjective perceptions

In this section, we test the two hypotheses proposed in
Section III. We analysed the measurements of the subjective
perceptions of the swarm. After completing each casualty
detection scenario, participants completed a questionnaire
rating their trust perception, workload and performance per-
ception, as described in Section III-B. Table III shows the
descriptive statistics of these questionnaire responses.

Analysis of the Covariance (ANCOVA) test was conducted
with Trust, Workload and Performance as the dependent
variables; data quality as the independent variable; and
gender, age group, and UAV experience as the covariates
in order to test the first hypothesis, H1. Our results show
that participants’ cognitive workload significantly increased
when the data quality increased [Estimated Marginal Mean
(EMM) low data quality = 4.1383(1.841), EMM high data
= 4.8367(1.945), F (1, 239) = 8.260, P < 0.01]. We

TABLE III: The subjective perception (Trust, workload, and
performance) of the swarm in the post-scenario question-
naire, with mean values and standard deviation. (Legend:
DQ - Data Quality. TD - Task Density.)

Trust Workload Performance

Low DQ
Low TD 2.266(1.241) 4.126 (1.805) 67.03 (22.674)
High TD 2.093(1.204) 4.150 (1.841) 70.67(22902)
Total DQ 2.180(1.220) 4.1383 (1.841) 68.85(22.765)

High DQ Low TD 2.516(1.279) 4.720(1.981) 72.88 (16.014)
High TD 2.5467 (1.368) 4.953(1.919) 74.90(17.492)

Total 2.531(1.319) 4.8367(1.945) 73.89(16.729)

also found that participants’ trust significantly increased
when data quality increased [EMM low data quality =
2.180(1.220), EMM high data = 2.531(1.319), F (1, 239) =
4.593, P < 0.05]. A similar pattern was also observed in
the data for swarm performance perception [EMM low data
quality = 68.85(22.765), EMM high data = 73.89(16.729),
F (1, 239) = 3.822, p < 0.05]. All the results obtained were
statistically significant, which validates the H1 hypothesis
that the presence of high-quality data increases trust percep-
tion and overall human-swarm performance. These relation-
ships between data quality and trust, cognitive workload, and
performance are summarised graphically in Fig. 5.

In order to test the second hypothesis, H2, we also
conducted ANCOVA with Trust, workload and performance
as dependent variables and task density as independent
variables. All subjective measures were found non-significant
for task density. Therefore, we reject the second hypothesis,
H2, that suggested increasing the task density would decrease
trust perception and overall human-swarm performance.

V. DISCUSSION

The results show that although the performance of both
data quality groups was similar, the high-quality data group
had a higher sense of achievement, despite the higher cog-
nitive workload reported. This is attributed to the fact that
having more features means having more control and being
better equipped with the necessary tools needed for precise
classification. Our results support this as the group with the
higher quality images option used this feature 50% of the
time. This result agrees with the findings in [29] and [26]
that the perception of higher accuracy (performance) results
in increased trust. Therefore, the availability of high-quality
data increases trust and performance perception in human-
swarm interaction.

Increasing the task density did not affect trust perception
and overall human-swarm performance. The relationship
between the subjective measures of trust, workload, and per-
ceived performance against task density was not significant.

The total number of correct classifications between the
high and low data quality groups was similar. This implies
that procuring sophisticated agents equipped with complex
data acquisition sensors may not necessarily lead to higher
productivity and the human-swarm interaction experience
must always be considered. This observation may have
a significant effect on the design of future human-swarm
systems. Offering more features and data may lead to less
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(c) Performance perception

Fig. 5: Estimated marginal means of cognitive workload, trust, and performance perception for each of the four conditions
studied. a) The cognitive workload is higher for both experiment scenarios performed by the high-resolution group. b) The
high-resolution group trusted the system more than the low-resolution group in both of their experiment scenarios. c) The
high-resolution group reported a better performance perception than the low-resolution group for both of their experiments.

productivity in the swarm operation as the operator may
accomplish fewer tasks and spend more time on accuracy.
Swarm operators with simpler autonomous agents would
accomplish more tasks, cover wider areas, and complete the
mission more efficiently.

Higher priority to accuracy may be justified due to the cost
of resource allocation where the number of available ground
rescue teams is limited. In this case, accuracy becomes
a critical factor and there is a need to be certain of the
casualty before dispatching a rescue team. Therefore, to
assure certainty, the cost of procuring expensive autonomous
agents equipped with more features may be justifiable. Fatal
misclassifications are false negatives where the operator iden-
tifies a casualty as non-casualty and non-fatal classifications
are false positives where non-casualties are marked as human
casualties. Both cases can have significant consequences. In
fatal cases, the issue is clear but also in non-fatal cases, it
can be argued that they are as dangerous due to suboptimal
resource utilization. If the available rescue team is limited,
the cost of investigating a false casualty target means there
is less time to reach a true casualty and save a life. The
balance between requesting a high volume of data with
low accuracy or a low volume of data with high accuracy
could be dynamically modelled and implemented in human-
swarm search and rescue missions. This means that when
resources are abundant, false negatives can be investigated
but as resources become depleted, a slower but more accurate
approach is desired to increase resource utilization.

VI. CONCLUSION

In this paper, we investigated the effect of data visualisa-
tion quality (presence of high quality images) and task den-
sity (workload) in human-swarm interaction. We conducted
a user study using the online HARIS simulator with 120
participants. The operators allocated to search a grid and
classified images captured by the UAVs in the simulation.
We find that data quality has almost no effect on the number
of successful classifications but the high data quality leads
to a higher accuracy rate, as expected. The group with
access to low-quality data was able to classify more targets
which reinforces the common speed vs accuracy trade-off
issue. The availability of high-quality data increases trust and
performance perception in human-swarm interaction. It was

shown that although the performance of both data quality
groups was similar, the high-quality data group had a higher
sense of achievement despite the higher cognitive workload
reported, regardless of the actual scenario performance.

The trust and cognitive workload relationship to data
visualisation quality and task density presented in this work
relies on subjective data provided by experiment participants.
There is a need to corroborate this with objective tools
that measure trust and cognitive workload more quantita-
tively. Also, the ideal nature of our simulation environment
does not take into account the real-world conditions (such
as battery consumption, weather, etc.) that may affect the
UAVs’ performance in their flight or when capturing photos.
Future works would consider using brain signals to estimate
cognitive workload more accurately. In addition to this, field
studies that replicate real-world conditions would be required
to decrease the reality gap.

APPENDIX
List of Abbreviations

ANCOVA Analysis of the Covariance
DQ Data Quality
EMM Estimated Marginal Mean
HARIS Human And Robot Interactive Swarm
TD Task Density
UAV Unmanned Aerial Vehicle
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