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Abstract: The aim of this study is to provide a comprehensive decision-making method that can
be applied to investment decisions based on the Environmental, Social and Governance (ESG)
performance. The study contributes to the existing literature by introducing the CPT-TOPSIS model, a
pioneering approach that incorporates the effect of non-rational factors on decision-making results in
uncertain conditions by combining cumulative prospect theory (CPT) with the classic TOPSIS model.
Moreover, by conducting an application to ESG evaluation on five state-owned mining enterprises in
China, the study provides evidence of the effectiveness and improvement offered by the new model
in comparison with the classic TOPSISI model and prospect theory TOPSIS (PT-TOPSIS) model. The
results suggest that the CPT-TOPSIS model considers risk preferences and probability distortion in
the decision-making process, narrows the gap between ESG scores, and makes ESG performance
evaluation more realistic.

Keywords: TOPSIS; cumulative prospect theory; ESG performance evaluation; state-owned
mining enterprise

1. Introduction

Social responsibility investment is gaining importance [1] as investors are increasingly
under pressure to consider ESG factors in their investment decisions [2]. ESG score, a key
tool for ESG investment, evaluates a company’s sustainable development capability based
on its performance in the environment, social, and corporate governance dimensions. MSCI,
one of the most representative ESG score providers, uses an ESG indicator system with
assigned weights based on impact and risk time frame. As professional rating agencies’ ESG
scores serve as the main reference for ESG investment, ESG score is essential for investors
interested in sustainable investments. However, the ESG impact factors of companies
may vary depending on national and industry characteristics [3]. Therefore, it is critical to
provide a comprehensive evaluation method to help investors make investment decisions
based on ESG performance. This study proposes a new model, called the CPT-TOPSIS
model, incorporating non-rational factors into the evaluation method to assist investors in
decision-making.

In the process of ESG assessment for enterprises, the MCDM (Multiple Criteria Deci-
sion Making) model can effectively assist in decision-making, which allows making com-
parisons of the effects of different criteria based on their quantitative indicators. Among
these methods, the Technique for Order Preference by Similarity to Ideal Solution (TOP-
SIS) is one of the most widely used methods. Tzeng [4] first proposed using TOPSIS
as a decision-making tool for multiple attributes due to its advantages of simplicity, di-
mensional elimination, and no requirement for data format. Currently, TOPSIS has been
applied to various fields of study, such as marketing strategy and energy selection [5–7].
For example, Mehra [8] combined Analytic Hierarchy Process (AHP) with TOPSIS to
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form AHP-TOPSIS for fuel selection, Memari [9] developed the Intuitionistic Fuzzy TOP-
SIS method (IF-TOPSIS) by combining intuitionistic fuzzy sets with TOPSIS to deal with
fuzzy and uncertain problems in supplier selection decisions. Liang [10] incorporated
hesitant Pythagorean fuzzy sets (HPFS) into TOPSIS for the evaluation of energy projects,
and Khan [11] combined rough sets with TOPSIS to solve site selection problems. These
methods improve TOPSIS in terms of weight calculation and handling uncertainty, thus
enhancing the reliability and effectiveness of TOPSIS in decision-ranking problems under
different situations.

However, the classic TOPSIS method fails to capture the decision maker’s internal
psychological cognition [12] when making decisions based on the evaluation scores [13],
which indicates that the decision-making results may be influenced by subjective factors
such as perception, memory, and experience [14]. In ESG investing, both companies and
capital markets need to assess the risks and growth prospects of companies based on
ESG information to make investment decisions [15,16]. Subjectivity pervades the entire
decision-making process, as each decision is influenced by the decision maker’s perception
of the industry and their investment preferences. In investment decision-making, subjec-
tive experiences as non-rational factors unavoidably distort psychological perceptions of
objective outcomes [17,18], leading to cognitive biases such as loss aversion and probabil-
ity distortion that may result in poor investment decisions and capital losses [19]. As a
result, the ESG scores calculated using the classic TOPSIS method may not reflect investors’
true evaluations. To reflect non-rational factors in decision-making and approach a more
accurate evaluation of ESG performance, we can introduce prospect theory to reflect the
decision outcomes after subjective judgments. Therefore, in this paper, we combine TOPSIS
with prospect theory to evaluate the ESG performance of state-owned mining enterprises
and incorporate psychological cognition into the evaluation process.

The combination of prospect theory and TOPSIS has been employed in many studies
but there are issues in their applications. They ignored the distortion of objective weights
caused by the weighting function when combining the prospect theory with the TOPSIS
model [20–23]. The studies did not take the impact of prospect theory on decision-making
psychology into consideration when the prospect theory was used for calculation. Fur-
thermore, some researchers, such as Mullor [24], failed to improve the indicator system
based on industry characteristics when using the TOPSIS model for the ESG evaluation
of companies.

To ensure a comprehensive reflection of the sustainability of state-owned mining enter-
prises, we establish an indicator system with industry characteristics to improve the evaluation
capability of the indicators. Moreover, investment managers take into account ESG factors
to align with clients’ sustainable development values when developing strategies [25]. If
the decision-making process of investment agents is non-rational, it does not meet the as-
sumptions of traditional models [26]. To incorporate the impact of non-rational factors under
uncertainty into the ESG evaluation results, we need to integrate the cumulative prospect
theory into the traditional TOPSIS model to compensate for its deficiencies.

The study builds on the previous literature with a CPT-TOPSIS model that combines
entropy-weighted TOPSIS with prospect theory, considering both value and weight func-
tions of prospect theory to address the imperfect fusion of the models. We provide a
detailed explanation of the key components of the CPT-TOPSIS model, which correspond
to the reference point and the ideal point. Moreover, a practical application provides
supportive evidence of the CPT-TOPSIS model. We introduce the industry-specific ESG
index evaluation system by adding two new indicators, tailings discharge and ownership
concentration to the existing ESG evaluation system. The new evaluation system is tailored
to the characteristics of state-owned mining enterprises to cover the incompleteness of the
current evaluation system. Compared with traditional models, the CPT-TOPSIS model
provides more realistic evaluation results closer to decision-makers’ psychology in situ-
ations of non-rationality and uncertainty, narrowing the gap between evaluation results
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and actual conditions. The results suggest the significance of psychological factors when
analyzing the decision-making process.

The rest of this paper is organized as follows. Section 2 reviews relevant literature,
Section 3 introduces the calculation steps and relevant formula principles of the model,
Section 4 applies the model to evaluate the ESG performance of state-owned mining
enterprises and compares the results with other models, and Section 5 summarizes the
shortcomings and prospects for future research.

2. Literature Review
2.1. TOPSIS

The TOPSIS model, as an excellent MCDM method, is widely used in the evaluation
of indicator performance, so it can also be applied to measure ESG performance to evaluate
the sustainability of enterprises.

Firstly, TOPSIS is an important model for indicator evaluation analysis [27,28]. Lin [29]
established a risk factor system containing 13 impact mining systems and used TOPSIS
to evaluate and rank the risk levels of different mining systems. Bilbao-Terol [30] con-
structed four sustainability indicators and evaluated the sustainability of government
bond funds using entropy-weighted TOPSIS. Aras [31] selected 86 sustainability evalu-
ation indicators from five dimensions of economic, environmental, social, governance,
and financial company sustainability and used TOPSIS to score and rank the sustainable
performance of Turkish banks. Secondly, as an MCDM model, TOPSIS can be used to solve
multidimensional sustainability assessment problems [32,33]. Watrobski [34] developed a
DARIA-TOPSIS method to assess the sustainability of cities and societies that considered
the dynamic changes in temporal dimension. Boggia [35] used case studies to prove that
multi-criteria decision-making models can be used to measure the level of sustainable
development in regions. Mateusz [36] used the TOPSIS model to assess and rank the level
of sustainable development of European countries.

2.2. Prospect Theory

TOPSIS calculates rankings based on the assumption of rational behavior, without
considering the distortion caused by non-rational factors. However, cumulative prospect
theory can reflect the decision-making process of individuals in complex and uncertain
situations. Therefore, this paper combines TOPSIS with cumulative prospect theory to
demonstrate the ESG evaluation bias driven by non-rational cognition.

Chen [37] tested the momentum effect of ESG and found that investors’ attitudes
toward a company’s development prospects can be excessively affected by its ESG rating.
Meanwhile, Tversky and Kahneman [38] proposed prospect theory, which can be applied
to both risk and uncertainty decision-making and can avoid problems caused by probability
distortion and loss aversion brought about by non-rational factors. This helps to explain
the excessive reaction of investors to ESG ratings.

Wu [39] used interval fuzzy sets to process data and combined prospect theory with
TOPSIS to calculate the importance of DRs factors for e-commerce companies at different
stages of development. Sha [40] constructed a probabilistic hesitant fuzzy TOPSIS model
based on cumulative prospect theory, which fully considers the risk attitudes of decision-
makers with limited rationality in emergency decision-making for epidemics.

Luo [41] incorporated the distance solution obtained from Grey-TOPSIS into the
comprehensive prospect value of the health evaluation system index based on cumulative
prospect theory for calculation and ranking. Some scholars have only combined the loss
aversion principle of prospect theory with TOPSIS, while others have combined it with
an improved and complete cumulative prospect theory. Therefore, the combination of
cumulative prospect theory and TOPSIS can be flexibly applied to multicriteria decision-
making based on different research objectives.
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2.3. ESG Score and Investment

ESG score, as a method for measuring a company’s sustainable development capability
in the areas of environment, society, and corporate governance, has been proven to be related
to a company’s risk resistance, innovation capability, and financing capability. Currently, a
company’s ESG performance has been regarded as an important investment reference factor.

With the frequent occurrence of environmental problems such as extreme climate
brought by global warming, Rau [42] found that investors and national regulatory agencies
are increasingly focusing on the disclosure of ESG information by companies to better
identify risks and opportunities in their development. Lins [43] found through firm fixed
effects models that companies with good ESG performance during the financial crisis had
stronger risk resistance, mainly manifested in better profitability and financing capabilities.
Albuquerque [44] confirmed that for companies with strong product differentiation, ESG
rating can better reduce systematic risk and enhance profitability. Xu [45] believed that
ESG ratings can reduce information asymmetry between companies and shareholders,
and through empirical tests, they proved that ESG rankings have a positive impact on the
green innovation ability of forward-looking investors and non-state-owned enterprises.
Luo [46] believed that ESG performance is beneficial for reducing corporate risks, gaining
the trust of stakeholders, and improving the company’s trade credit financing ability.
Agnese [47] studied 63 European banks and found that banks with higher ESG ratings have
lower financing costs when issuing bonds because investors believe that banks with high
ESG performance may face lower default risks. Gregory [48] believed that in developed
countries, incorporating ESG factors into daily decision-making processes by companies
can promote cash flow and ultimately benefit the company’s bondholders.

3. Methodology

Here, we are going to build the CPT-TOPSIS model, the calculation process is shown
in Figure 1, we first use the entropy weight method to normalize the matrix and then use
the cumulative prospect theory to calculate the prospect weight and prospect value matrix
separately. After combining the two to form a weighted prospect matrix, we apply the
TOPSIS method to the matrix and rank the results.

In this paper, we build the CPT-TOPSIS model using three main theories: the entropy
weight method, the TOPSIS model and the cumulative prospect theory. The three methods
will be introduced later.

Before introducing the methods, we first assume that there are n alternatives
A = {A1, A2, A3, . . . , An}, and m criteria M = {M1, M2, M3, . . . , Mm}. i ∈ A, j ∈ M,
i = {1, 2, 3, . . . , n}, j = {1, 2, 3, . . . , m}. The matrix X′ =

(
x′ij
)

n×m in Equation (1) is a
decision matrix of n×m. The weights of criteria M can be represented by weight vector

W = {w1, w2, w3, . . . , wm}, which satisfy
m
∑

j=1
wj = 1.

X′ =


x′11 x′12 . . . x′1m
x′21 . . . . . . x′2m

... . . . . . .
...

x′n1 x′n2 . . . x′nm

 (1)

3.1. Entropy Weight Method

The entropy weight method proposed by Shannon [49] can determine the weight by
the degree of dispersion of the data. We first use the Min-Max method to standardize the
n×m original decision matrix {x′ ij}, and then translate the standardized formula to the
right by 0.001 units to facilitate subsequent logarithmic calculations [50,51].

xij =
x′ ij −min

(
x′ j
)

max
(

x′ j
)
−min

(
x′j
) + 0.001, i = 1, 2, 3, . . . , n, and j = 1, 2, 3, . . . , m. (2)
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The entropy value ej is calculated using Equation (4). The entropy value can measure
the degree of dispersion of the data. The more dispersed the data, the smaller the entropy
value, which means the more information the data contain. The more concentrated the
data, the larger the entropy value, which means the less information the data contain.

rij =
xij

∑n
i=1xij

, i = 1, 2, 3, . . . , n, and j = 1, 2, 3, . . . , m. (3)

ej = −
1

ln n

n

∑
i=1

rij· ln rij, i = 1, 2, 3, . . . , n, and j = 1, 2, 3, . . . , m. (4)

The weight wj is calculated using Equation (5).

wj =
1− ej

∑m
j=1

(
1− ej

) (5)
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3.2. TOPSIS Model

The TOPSIS model proposed by Hwang and Yoon [52] ranks the alternatives based on
their relative closeness to the ideal solutions. The closeness is determined by calculating the
Euclidean distance between each target alternative and the ideal and anti-ideal solutions.
The ideal solution represents the optimal values for each evaluation criterion, while the
anti-ideal solution represents the worst value for each evaluation criterion. Ultimately, the
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solution which is closest to the ideal solution and farthest from the anti-ideal solution is
selected as the best ideal solution.

Firstly, the positive and negative criteria of the initial decision matrix in Equation (1) are
standardized separately to eliminate the dimensional differences among different criteria [53].
It should be noted that adopting standardization in different directions by the Min-Max
method in Equation (6) is necessary as it is helpful to correspond to the gains and losses in
prospect theory when constructing CPT-TOPSIS.

positive : xij
+ =

x′ ij−min(x′ j)
max(x′ j)−min(x′ j)

negative : xij
− =

max(x′ j)−x′ ij
max(x′ j)−minin(x′ j)

min
(
x′ j
)
=

{
min

i
x′ ij|1 < i < n, 1 < j < m

}
max

(
x′ j
)
=

{
max

i
x′ ij|1 < i < n, 1 < j < m

}
(6)

Then, the dimensionless standardized decision matrix
{

xij
}

is formed by standard-
izing the initial decision matrix in Equation (6) with normalized positive and negative
criteria, as shown in Equation (7).

X =


x11 x12 . . . x1m
x21 . . . . . . x2m

... . . . . . .
...

xn1 xn2 . . . xnm

, i = 1, 2, 3, . . . , n, and j = 1, 2, 3, . . . , m. (7)

The comprehensive decision matrix in Equation (8) is obtained using vij = wj × xij,

where wj = (w1, w2, w3, . . . , wm) is obtained from Equation (5) and satisfies
m

∑
j=1

wj = 1, and

xij is obtained by Equation (7)

V =


v11 v12 . . . v1m

v21 v22
... v2m

...
...

...
...

vn1 vn2 . . . vnm

 =


w1x11 w2x12 . . . wmx1m

w1x21 w2x22
... wmx2m

...
...

...
...

w1xn1 w2xn2 . . . wmxnm

 (8)

According to Equation (9), the maximum and minimum values under each criterion
are taken as the positive ideal solution (PIS) and negative ideal solution (NIS), respectively.

PIS : P+ =
{

v+1 , v+2 , . . . , v+m
}
=

{(
max

i
vij|j ∈ M

)}
NIS : P− =

{
v−1 , v−2 , . . . , v−m

}
=

{(
min

i
vij|j ∈ M

)} (9)

Calculate the distance of each alternative to PIS and NIS based on (10) and (11).

d+i =

√√√√ m

∑
j=1

(
vij − v+j

)2
, i = 1, 2, 3, . . . , n, and j = 1, 2, 3, . . . , m. (10)

d−i =

√√√√ m

∑
j=1

(
vij − v−j

)2
, i = 1, 2, 3, . . . , n, and j = 1, 2, 3, . . . , m. (11)
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Finally, compute the relative closeness (RC) coefficient.

RCi =
d−i

d−i + d+i
, i = 1, 2, 3, . . . , n (12)

3.3. Cumulative Prospect Theory

Cumulative prospect theory consists of two parts: the value function and the cumu-
lative weight function, which were first proposed and improved by Tversky and Kahne-
man [54].

The value function is composed of the gains and losses, and its curve is S-shaped,
as shown in Figure 2. It is a concave function for gains and a convex function for losses,
indicating that people are risk-averse for gains and risk-seeking for losses.
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In the value function Equation (13), α and β are the risk attitude coefficients, and
λ is the loss aversion coefficient. The values of these coefficients are α = β = 0.88 and
λ = 2.25, according to the research results of Tversky and Kahneman. This indicates that
the psychological pain caused by a certain loss is much greater than the pleasure brought
by an equivalent gain, and the pain is about 2.25 times greater than the pleasure.

v(x) =
{

∆ xα,
−λ(−∆ x)β,

i f
∆ x ≥ 0
∆ x < 0

(13)

where ∆x represents the distance between xi and the reference point xmax or xmin.
When calculating the cumulative weights, the non-linear function p needs to be linked

with the occurrence probability w, as shown in Equation (14). The non-linear function p
is called the weight function, and its curve is S-shaped, with a specific image as shown
in Figure 3. Under low probability conditions, it is concave upward, and under medium
and high probability conditions, it is convex downward. This indicates that in the process
of probability change from 0 to 1, people’s subjective evaluation of probability will be
distorted. When the true weight value is close to 1, people’s estimated probability of the
evaluated object will be close to the actual probability; when the true weight value is far from 1,
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people tend to overestimate low-probability events and underestimate high-probability events.

π−−f = p−(w−f)

π+h = p+(wh)

π−j = p−
(

w− f + . . . + wj

)
− p−

(
w− f + . . . + wj−1

)
, 1− f ≤ j ≤ 0

π+j = p+
(
wj + . . . + wh

)
− p+

(
wj+1 + . . . + wh

)
, 0 ≤ j ≤ h− 1

(14)
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Assume that the prospect is (sj, wj) and sj =
n

∑
i=1

∆xj, where the sj corresponding to each

criterion Mj is arranged in ascending order as s−f < s−f+1 < . . . < 0 < . . . < sh−1 < sh and
wj is the weight of the criterion Mj. In addition, the calculation of ∆xj refers to Equation (13),
and the prospect weight of the corresponding criterion Mj is πj.

p−(w) = wδ[
wδ+(1−w)δ

]1/δ

p+(w) = wγ

[wγ+(1−w)γ]
1/γ

(15)

In the weight function Equation (15), γ and δ determine the curvature of the weight
function curve. The smaller the curvature, the greater the bending degree of the curve, and
the distortion of the probability is more serious. Additionally, the weight function needs
to consider both profit and loss situations. In this paper, the parameter under the profit
condition is set as γ = 0.61, and the parameter under the loss condition is set as δ = 0.69.

3.4. CPT-TOPSIS Model: TOPSIS Model Based on Cumulative Prospect Theory

When processing the decision matrix, it is necessary to determine the gain or loss
situation based on the reference point. As shown in Equation (16), if the minimum value of
the criterion in Equation (7) is taken as the reference point, then the utility of all evaluated
options is higher than expected, which can be regarded as gain; if the maximum value of
the criterion in Equation (7) is taken as the reference point, then the utility of all alternatives
is lower than expected, which can be regarded as a loss. By incorporating ∆x+ the distance
between the alternative and the minimum value (NIS) into the value gain function in
Equation (13) and ∆x− the distance between the alternative and the maximum value (PIS)
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into the value loss function in Equation (13), we can obtain the prospect value matrix under
the gain and loss situation in Equation (17), respectively.

∆ x+ =
(

xij − x−j
)
> 0, x−j =

(
min

i
xij|j ∈ M

)
∆ x− =

(
xij − x+j

)
< 0, x+j =

(
max

i
xij|j ∈ M

) (16)

V∗+ =


v11 v12 . . . v1m

v21 v22
... v2m

...
...

...
...

vn1 vn2 . . . vnm

 and vij = ∆x+α, i f ∆x+ > 0

V∗− =


v11 v12 . . . v1m

v21 v22
... v2m

...
...

...
...

vn1 vn2 . . . vnm

 and vij = −λ(−∆x−)
β, i f ∆x− < 0

(17)

In the specific practice of ESG assessment, we believe that the prospect value matrix
under the loss situation reflects the decision-maker’s negative evaluation of different
target alternatives based on the maximum alternative, while the prospect value matrix
under the gain situation reflects the decision-maker’s positive evaluation of different target
alternatives based on the minimum alternative. The two prospect decision value matrices
together reflect the decision-maker’s evaluation level of the alternatives under different
reference point choices.

The obtained weights from Equation (5) are used to calculate the prospect weights
using the cumulative prospect weight function Equations (14) and (15), which are then
multiplied with the prospect value matrix Equation (17) to obtain positive and negative
weighted prospect matrices Equation (18). Here, the distortion of the weight function can
be understood such that as the weight of criterion approaches 1, the decision maker’s
evaluation of different criteria of the alternative becomes close to reality. As the criterion
weight deviates further from 1, the decision maker tends to overestimate the importance of
low-weighted criteria and underestimate the importance of high-weighted criteria.

V+ =


v11π+

1 v12π+
2 . . . v1mπ+

m

v21π+
1 v22π+

2
... v2mπ+

m
...

...
...

...
vn1π+

1 vn2π+
2 . . . vnmπ+

m

, i f ∆x+ > 0

V− =


v11π−1 v12π−2 . . . v1mπ−m

v21π−1 v22π−2
... v2mπ−m

...
...

...
...

vn1π−1 vn2π−2 . . . vnmπ−m

, i f ∆x− < 0

(18)

The distance Di is calculated through Equations (19) and (20) after obtaining the
positive weighted prospect matrix and negative weighted prospect matrix in Equation (18).
Then we can obtain the relative closeness (RC) under CPT -TOPSIS model from Equation (21).

D+
i =

√√√√ m

∑
j=1

(
vijπ

−
j − vmaxπ−j

)2
, vmax =

(
max

i
vij|j ∈ M

)
, i = 1, 2, 3, . . . , n when ∆x− < 0 (19)
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D−i =

√√√√ m

∑
j=1

(
vijπ

+
j − vminπ+

j

)2
, vmin =

(
min

i
vij|j ∈ M

)
, i = 1, 2, 3, . . . , n when ∆x+ > 0 (20)

RCi =
D−i

D−i + D+
i

, i = 1, 2, 3, . . . , n (21)

As the value function of cumulative prospect theory depends on the reference point,
in this paper, the minimum value is taken as the reference point to calculate the gain and
the maximum value is taken as the reference point to calculate the loss. At the same time,
TOPSIS also needs to determine the positive and negative ideal solutions and calculate the
distance between the target alternatives and their ideal solutions. The reference point of
prospect theory coincides with the ideal solution in TOPSIS, as shown in Figure 4. Therefore,
we can correspond the reference point with the ideal solution.
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4. Case Study: Evaluating ESG Performance of State-Owned Mining Enterprises

Bowker [55] found that the increase in tailings production in the mining industry,
coupled with cost-cutting measures, increases the likelihood of tailings accidents. Innis [56]
believed that the occurrence of tailings incidents is closely related to corporate governance,
and tailings risk can cause financial losses to mining companies. The environmental and
social impacts of large-scale tailings discharge have made tailings storage facilities (TSFs)
an important part of ESG. Tang [57] empirically demonstrated that the concentration of
corporate ownership is a key condition that affects the effective governance of state-owned
mining enterprises. Based on the above literature, we introduced two indicators, namely
the ownership concentration and tailings discharge, focusing on the characteristics of
“state-owned” and “mining enterprises”, and formed a new ESG indicator system with
industry characteristics based on the MSCI and Run-Ling Global ESG indicator systems.

The new ESG indicator system and the weights of indicators are as Table 1. All the
weights are obtained through calculation, the entropy weights are calculated by the entropy
weight method, using Equations (2)–(5). The positive and negative prospect weights are
obtained by substituting the entropy weights into the weight function of the cumulative
prospect theory, using Equations (14) and (15).



Sustainability 2023, 15, 10046 11 of 20

Table 1. Explanation of indicator system and weight.

Tier 1 Tier 2 Code Interpretation Entropy
Weight

Positive
Prospect Weight

Negative
Prospect Weight

Environment

Greenhouse
Gas

Emissions
M1 Measuring greenhouse gas

emissions. 0.041 0.028 0.04

Wastewater toxic
gas emissions M2

Measuring wastewater
emissions and toxic and
harmful gas emissions.

0.064 0.052 0.048

Energy saving
and emission

reduction
M3

Whether there are policies
and measures to conserve
energy, reducing emissions
of waste gas, wastewater,
sludge and greenhouse
gases, and using renewable
energy or adopting a
circular economy.

0.05 0.039 0.056

Tailings
Discharge M4

Whether innovative
products, equipment or
technologies have been
developed or applied that
are beneficial to the
environment.

0.124 0.071 0.078

Social

Supply Chain
Management M5

Whether there are relevant
policies and measures on
supply chain responsibility
management, supplier
qualification requirements,
and supply chain
monitoring system.

0.085 0.043 0.056

Product
Management M6

Whether there is quality
management system
certification, quality
certification honor, perfect
after-sales service, etc.

0.033 0.043 0.058

Employee
Management M7

Measuring the diversity and
inclusiveness of company’s
employee.

0.073 0.05 0.049

Human
Resource

Management
M8

Measuring the department’s
reliance on highly educated
personnel, talent
development and
management, compensation
and benefits, etc.

0.057 0.03 0.035

Occupational
Health and Safety M9

Measure the company’s
attention to safety and
health, work injury rate, etc.

0.074 0.039 0.053

Public Welfare
and Philanthropy M10 Availability of pro bono and

philanthropic activities 0.037 0.037 0.052

Corporate
Governance

Board
Effectiveness M11

Measuring board structure,
board effectiveness,
diversity of members, and
professional experience of
members.

0.054 0.027 0.034

ESG Risk
Management M12

Measuring risk governance
structure, risk management
policy, ESG risk
identification, management
and monitoring.

0.036 0.036 0.123
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Table 1. Cont.

Tier 1 Tier 2 Code Interpretation Entropy
Weight

Positive
Prospect Weight

Negative
Prospect Weight

Corporate
Governance

Executive
Compensation M13

Measuring executive
compensation incentives
and reasonableness of
executive compensation.

0.178 0.374 0.178

Business
Ethics M14

Measure the risk
identification and
assessment of
anti-corruption and
anti-commercial bribery, as
well as related policy
measures and supervision
mechanisms.

0.048 0.027 0.038

Ownership
Concentration M15

Measuring the control ratio
of state-owned effective
controllers.

0.046 0.028 0.04

4.1. Calculation Process

In this section, we evaluated and ranked the ESG performance of five Chinese state-
owned metal mining enterprises in 2020 based on the established indicator system. These
enterprises are Xiyee Mining, Western Mining, Jinduicheng Molybdenum, Baosteel Group,
and Jiangxi Copper, corresponding to the codes C1, C2, C3, C4, and C5, respectively. All
indicator data for these enterprises were obtained from China’s ESG data company, Run
Ling Global, the China National Research Data Service (CNRDS), and China Stock Market
and Accounting Research Database (CSMAR).

The Table 2 above shows the asset size of different state-owned mining enterprises.
It can be seen from the Table 2 that the size of the five enterprise samples selected in this
paper varies from small to large, so as to make the data as representative as possible. In
addition, it can be seen from the data on operating profits that a company with a large asset
scale does not represent a good business return, so investment decisions should be made
based on multiple factors.

Table 2. Financial performance overview.

Code Enterprise Total Assets (Million Yuan) Operating Profit (Million Yuan) Asset Net Profit
Ratio (ROA)

C1 Xiyee Mining 37,459.09 1063.96 0.023
C2 Western Mining 47,903.82 1715.51 0.028

C3 Jinduicheng
Molybdenum 14,299.12 318.42 0.018

C4 Baosteel Grou 144,222.27 765.14 0.005
C5 Jiangxi Copper 140,881.55 3318.64 0.017

The data above are obtained from China Stock Market and Accounting Research Database (CSMAR).

The original data matrix is shown in Table 3. For all indicators, the larger the value,
the better the performance, except for M15 (Ownership Concentration), which is directly
expressed by ratio. Among other indicators which are expressed by scores, M10 (Public
Welfare and Philanthropy) has the largest score difference among companies, and M14
(Business Ethics) has the smallest score difference, which is 6.2 and 1.7, respectively.

The calculation results of the standardized decision matrix (Table A1) and prospect
value matrix (Table A2) are shown in Appendix A. By multiplying the prospect weights
(Table 1) with the corresponding prospect value matrix (Table A2), the weighted prospect
decision matrix for gain and loss (Table 4) can be obtained through Equations (16)–(18).
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Table 3. 2020 raw scores for corporate ESG indicators.

x′ij M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

C1 2.4 2.0 3.0 2.5 0.5 2.0 5.8 2.4 3.9 7.3 6.0 3.6 2.4 0.7 45
C2 1.2 1.5 0.1 0.3 2.5 0.1 0.4 2.0 1.4 5.5 4.4 1.8 5.9 0.2 30
C3 4.7 2.7 3.0 2.9 0.5 3.0 2.3 3.5 3.2 6.0 3.9 2.6 2.4 1.9 75
C4 3.5 5.0 1.0 0.3 2.0 2.0 2.8 1.6 1.5 1.1 4.4 3.6 2.4 1.2 55
C5 2.7 2.5 1.0 0.3 1.0 2.0 0.6 2.1 1.1 3.4 3.4 3.6 2.7 0.7 44

Min 1.2 1.5 0.1 0.3 0.5 0.1 0.4 1.6 1.1 1.1 3.4 1.8 2.4 0.2 30
Max 4.7 5.0 3.0 2.9 2.5 3.0 5.8 3.5 3.9 7.3 6.0 3.6 5.9 1.9 75

Difference 3.5 3.5 2.9 2.6 2.0 2.9 5.4 1.9 2.8 6.2 2.6 1.8 3.5 1.7 45

The data of M1 to M14 are obtained from Run Ling Global and the China National Research Data Service
(CNRDS). The data of M15 are from China Stock Market and Accounting Research Database (CSMAR); The
specific descriptions of criteria are in Table 1.

Table 4. Weighted prospect decision matrix.

V+ M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

C1 0.01 0.01 0.04 0.06 0.00 0.03 0.05 0.01 0.04 0.04 0.03 0.04 0.00 0.01 0.01
C2 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.01 0.01 0.03 0.01 0.00 0.37 0.00 0.00
C3 0.03 0.02 0.04 0.07 0.00 0.04 0.02 0.03 0.03 0.03 0.01 0.02 0.00 0.03 0.03
C4 0.02 0.05 0.01 0.00 0.03 0.03 0.02 0.00 0.01 0.00 0.01 0.04 0.00 0.02 0.02
C5 0.01 0.02 0.01 0.00 0.01 0.03 0.00 0.01 0.00 0.02 0.00 0.04 0.04 0.01 0.01

V− M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

C1 −0.06 −0.09 0.00 −0.03 −0.13 −0.05 0.00 −0.05 0.00 0.00 0.00 0.00 −0.40 −0.06 −0.06
C2 −0.09 −0.11 −0.13 −0.18 0.00 −0.13 −0.11 −0.06 −0.11 −0.04 −0.05 −0.28 0.00 −0.08 −0.09
C3 0.00 −0.07 0.00 0.00 −0.13 0.00 −0.08 0.00 −0.04 −0.03 −0.06 −0.17 −0.40 0.00 0.00
C4 −0.03 0.00 −0.09 −0.18 −0.04 −0.05 −0.07 −0.08 −0.10 −0.12 −0.05 0.00 −0.40 −0.04 −0.04
C5 −0.05 −0.08 −0.09 −0.18 −0.10 −0.05 −0.11 −0.06 −0.12 −0.08 −0.08 0.00 −0.37 −0.06 −0.06

In Table 4, the maximum value in the loss decision matrix was determined as the
positive ideal solution, and the minimum value in the gain decision matrix was determined
as the negative ideal solution, which is shown in the Table A3 of Appendix A, and the
calculation corresponds to Equations (20) and (21) and Figure 4.

The distance D between the target alternative and the ideal solution was calculated
according to Equations (19) and (20), and the relative closeness (RC) of each alternative was
calculated using the TOPSIS proximity degree Equation (21) and ranked accordingly. The
results are shown in Table 5.

Table 5. Relative closeness and ranking.

Code D+ D− RC Ranking

C1 0.45 0.31 0.409 2
C2 0.46 0.48 0.512 1
C3 0.47 0.32 0.407 3
C4 0.50 0.32 0.391 4
C5 0.50 0.30 0.374 5

According to the 2020 indicator data and the CPT-TOPSIS method, we calculated
the closeness rankings of five state-owned mining enterprises, with the following order:
C2 > C1 > C3 > C4 > C5. Based on this, we determined the ESG performance level of these
enterprises, which are ranked from high to low as follows: Xiyue Industry, Western Mining,
Jinduicheng Molybdenum, Baosteel Group, and Jiangxi Copper, with the corresponding
codes C1, C2, C3, C4, and C5.

4.2. Comparative Analysis

We first compare the calculation process of these three models in Figure 5. The prospect
TOPSIS method is based on Liu [58], which combines classic TOPSIS with prospect value
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function and regret theory. After calculating the distance between the target alternative and
the ideal solution in classic TOPSIS, he uses the distance between the target alternative and
the positive ideal solution in the loss situation value function and the distance between the
target alternative and the negative ideal solution in the gain situation value function. Then,
the two new prospect value distances obtained are brought into the proximity equation
to calculate the proximity degrees. Because this model only considers the value function
and does not consider the weight function, we call this calculation process PT-TOPSIS.
Our constructed weighted prospect TOPSIS is abbreviated as CPT-TOPSIS. Moreover, the
classic model in this paper is the entropy weight TOPSIS model [59,60] without considering
prospect theory.
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We compared the distance values of the three methods for calculating proximity in
Table 6. It can be seen that in PT-TOPSIS, the distance value to the positive ideal solution
becomes negative after incorporating the value function with the distance value of classic
TOPSIS. To facilitate calculation, PT-TOPSIS reversed the sign of v− (S+) to make it positive,
so this difference will be eliminated in the subsequent calculation of proximity. In addition,
we found that PT-TOPSIS magnifies the distance values under the gain situation, while
CPT-TOPSIS magnifies the distance values under the loss situation. Compared with classic
TOPSIS, the CPT-TOPSIS model and PT-TOPSIS model magnify the distance values under
both profit and loss situations due to the influence of subjective cognitive bias.

Table 6. Comparison of distance values.

CPT-TOPSIS PT-TOPSIS Classic TOPSIS
D+ D− v− (S+) v+ (S−) S+ S−

C1 0.45 0.31 −0.583 0.219 0.22 0.18
C2 0.46 0.48 −0.565 0.244 0.21 0.20
C3 0.47 0.32 −0.579 0.225 0.21 0.18
C4 0.50 0.32 −0.658 0.153 0.25 0.12
C5 0.50 0.30 −0.688 0.090 0.26 0.06

Table 7 displays the closeness and ranking results of the three methods. Firstly, the
rankings remain unchanged from classic TOPSIS to PT-TOPSIS, but in CPT-TOPSIS, the
second and third places were reversed. Secondly, the comparison of closeness reveals that
PT-TOPSIS reduced the closeness and decreased the differences between closeness values
compared to classic TOPSIS. Relatively speaking, CPT-TOPSIS shows a significant deviation
in closeness due to subjective irrationality, and the changes in differences are irregular. This
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absolute and relative difference in closeness may be due to the fact that PT-TOPSIS simply
scales the distance between the target alternatives and ideal points differently based on the
value function, while CPT-TOPSIS considers the fundamental changes in the alternatives
caused by the distortion of decision weights under rank-dependent utility.

Table 7. Comparison of the ranking and relative values of relative closeness.

CPT-TOPSIS PT-TOPSIS Classic TOPSIS
Code RC Normalize Rank Code RC Normalize Rank Code RC Normalize Rank

C1 0.409 0.25 2 C1 0.27 0.84 3 C1 0.45 0.86 3
C2 0.512 1.00 1 C2 0.30 1.00 1 C2 0.49 1.00 1
C3 0.407 0.24 3 C3 0.28 0.88 2 C3 0.46 0.90 2
C4 0.391 0.12 4 C4 0.19 0.39 4 C4 0.32 0.42 4
C5 0.374 0.00 5 C5 0.12 0.00 5 C5 0.20 0.00 5

CPT-TOPSIS: C2 > C1 > C3 > C4 > C5; PT-TOPSIS: C2 > C3 > C1 > C4 > C5; Classic TOPSIS: C2 > C3 > C1 > C4 > C5.

Furthermore, we normalize the data to compare the internal differences between the
three methods. The maximum proximity degree was set as 1, and the minimum proximity
degree was set as 0 so that the values were distributed in the range of [0, 1]. This allows
us to improve the comparability of the data while maintaining the relative relationships
between the three methods. Figure 6 shows the normalized results in a line chart format.
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As shown in Figure 6, in CPT-TOPSIS, the result of proximity values is significantly
biased after the weight function under level dependence transforms objective weights into
subjective weights. The relative value of C2 did not change in all three methods, because the
relative closeness (RC) of C2 becomes 1 after standardization and rank first. Additionally,
the relative closeness of C1, C3 and C4 is closer to the minimum value C5 compared to
classic TOPSIS and PT-TOPSIS, among which C5 is assigned a value of 0 as the minimum.
Overall, the proximity values in CPT-TOPSIS are closer to the tail end. This means that
when considering more subjective uncertainty, the changes in weights under the influence
of the risk attitude coefficient reduced the difference in indicator scores. The similarity
between the evaluation results of CPT-TOPSIS and classic TOPSIS indicates that our model
is robust. The calculation results of CPT-TOPSIS are more in line with human cognitive
psychology than PT-TOPSIS and classic TOPSIS and can reflect the decision-making results
influenced by subjective non-rational factors.

From the comparison results, we found that CPT-TOPSIS has reversed the ranking
of C1 and C3 compared with the other two models. In order to evaluate the effectiveness
of using the model for ESG investment, we selected the company’s total asset net profit
ratio (ROA) as a reference for measuring the value of investment [61], which is specifically
shown in Table 2. According to the data of the CSMAR database, the ROA of C1 and
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C3 in 2020 are 0.022924 and 0.018202, respectively, so the return on investment of C1 is
higher than that of C3, which means the financial performance of C1 is better than C3, and
investors may prefer to invest in C1. Thus, the ranking results of CPT-TOPSIS have more
advantages in actual investment evaluation.

4.3. Psychological Cognitive Evaluation of the Model

The transformation from classic TOPSIS to PT-TOPSIS, combined with the reference
dependence principle of the prospect value function can be understood as investors per-
ceiving that most companies’ scores are better than expected when using the minimum
score as a reference point. Under optimistic expectations of returns, they tend to exhibit
risk aversion and conservative evaluations of indicators. As the comprehensive score is a
decimal number, the distance value from the negative ideal point will increase under the
exponential shrinkage effect. Conversely, when using the maximum score as a reference
point, investors may perceive that most companies’ scores are lower than expected, and
the negative psychological effect of losses is greater than the positive psychological effect
of gains. This may lead investors to exhibit risk-seeking behavior and pay more attention
to indicators, resulting in a greater change in score evaluations under loss conditions,
including negative values.

Compared with PT-TOPSIS, CPT-TOPSIS transforms the decision matrix and decision
weights with the cumulative prospect value function at the outset. According to the function
expression, investors sort criteria based on their potential states to allocate attentional
resources and thereby distort the given decision weights. The resulting weighted prospect
matrix considers both the investors’ risk aversion and risk-seeking behavior, as well as
their attentional allocation. Thus, CPT-TOPSIS provides ESG performance evaluations that
consider more non-rational cognitive effects than PT-TOPSIS and classic TOPSIS.

5. Conclusions

In this study, a model combining entropy-weighted TOPSIS and cumulative prospect
theory was developed, and the calculation method was introduced. We applied the new
model to ESG ratings to reflect subjective and non-rational factors in the decision-making
process. The ESG rating system was also improved by adding two indicators of tailings
discharge and ownership concentration to the general ESG rating system, helping invest-
ment managers more reasonably assess the sustainable development value of state-owned
mining enterprises.

Moreover, the new model was compared with classic TOPSIS and PT-TOPSIS, which
did not consider the weight function. The results indicate that compared with classic
TOPSIS and PT-TOPSIS, the ESG scores obtained by CPT-TOPSIS for state-owned mining
enterprises more effectively reflect the non-rational factors in decision-making. Classic
TOPSIS ignores people’s psychological preferences in decision-making behavior, while
PT-TOPSIS only reflects risk preferences at the first-level indicator level, resulting in a
proportional decrease in classic TOPSIS scores. However, in actual situations, investment
managers not only consider the first-level indicators but also need to evaluate the sus-
tainability performance of enterprises in more detail based on second-level indicators.
The CPT-TOPSIS model presented in this paper takes into account cognitive biases at the
psychological level, while also considering risk preferences and probability distortions
under uncertainty and risk scenarios, to obtain more realistic evaluation results closer to
decision-makers’ psychology. The herd effect [62] in the capital market makes it easy for the
public to imitate the behavior of certain investment managers. Therefore, the psychological
assessment scores obtained through CPT-TOPSIS can help us grasp the market psychology
in the field of sustainable investment and plan investments reasonably.

Further research with more data available could evaluate the CPT-TOPSIS model
across various industries and extend the analysis of how the evaluation systems affect
investor behaviors in sustainable investments with this improved method. The extensive
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analysis would enable a comprehensive examination and application of the CPT-TOPSIS in
the financial markets.
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Appendix A

Table A1. Standardized decision matrix.

xij M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

C1 0.3 0.1 1.0 0.8 0.0 0.7 1.0 0.4 1.0 1.0 1.0 1.0 0.0 0.3 0.3
C2 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.2 0.1 0.7 0.4 0.0 1.0 0.0 0.0
C3 1.0 0.3 1.0 1.0 0.0 1.0 0.4 1.0 0.8 0.8 0.2 0.4 0.0 1.0 1.0
C4 0.7 1.0 0.3 0.0 0.8 0.7 0.4 0.0 0.1 0.0 0.4 1.0 0.0 0.6 0.6
C5 0.4 0.3 0.3 0.0 0.3 0.7 0.0 0.3 0.0 0.4 0.0 1.0 0.1 0.3 0.3

Table A1 is derived by standardizing Table 1 using Equation (6), then we used
the matrix based on the minimum values as the profit matrix and the matrix based on
the maximum values as the loss matrix. We then input the values of the profit matrix
and loss matrix into the prospect value function to obtain the prospect value matrix by
Equations (16) and (17), the results are shown in Table A2.

Table A2. Decision matrix under the prospective value function.

V*
+ M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

C1 0.39 0.18 1.00 0.86 0.00 0.69 1.00 0.47 1.00 1.00 1.00 1.00 0.00 0.34 0.38
C2 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.25 0.14 0.74 0.43 0.00 1.00 0.00 0.00
C3 1.00 0.39 1.00 1.00 0.00 1.00 0.40 1.00 0.78 0.81 0.23 0.49 0.00 1.00 1.00
C4 0.69 1.00 0.36 0.00 0.78 0.69 0.49 0.00 0.18 0.00 0.43 1.00 0.00 0.63 0.60
C5 0.47 0.33 0.36 0.00 0.30 0.69 0.06 0.31 0.00 0.42 0.00 1.00 0.12 0.34 0.35

V*
− M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

C1 −1.55 −1.96 0.00 −0.43 −2.25 −0.88 0.00 −1.39 0.00 0.00 0.00 0.00 −2.25 −1.66 −1.57
C2 −2.25 −2.25 −2.25 −2.25 0.00 −2.25 −2.25 −1.83 −2.04 −0.76 −1.47 −2.25 0.00 −2.25 −2.25
C3 0.00 −1.55 0.00 0.00 −2.25 0.00 −1.54 0.00 −0.66 −0.57 −1.86 −1.34 −2.25 0.00 0.00
C4 −0.88 0.00 −1.62 −2.25 −0.66 −0.88 −1.34 −2.25 −1.96 −2.25 −1.47 0.00 −2.25 −1.03 −1.10
C5 −1.38 −1.67 −1.62 −2.25 −1.75 −0.88 −2.18 −1.72 −2.25 −1.50 −2.25 0.00 −2.08 −1.66 −1.63

Based on Section 3, we can calculate the prospect weights for both gain and loss
situations by Equations (14) and (15). The ideal solutions under different criteria obtained
by Equation (9) in the two matrices are shown in Table A3.
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Table A3. Positive and negative ideal solution.

Matrix Ideal M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

V+ vmin NIS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V− vmax PIS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After normalization, the ideal solution of every criterion belongs to 1 or 0.
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