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Amplitudes at strong coupling as hyperkähler scalars
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Abstract

Alday & Maldacena conjectured an equivalence between string amplitudes in AdS5 × S5

fixed by null polygonal boundaries in Minkowski-space with both amplitudes and Wilson

loops in planar N = 4 super-Yang-Mills (SYM). At strong coupling this leads to an identi-

fication of SYM amplitudes with areas of minimal surfaces in AdS. Together with Gaiotto,

Sever & Vieira, they introduced a ‘Y-system’ for computing this area. We first establish a

correspondence between Y-systems and twistor spaces that will apply more generally, and

which, in the cases considered here determine a geometry on the space of kinematic data.

In the case of minimal surfaces in AdS3 with boundaries on null polygons with 4k+2 edges,

we show that the geometry in question is a split signature pseudo-hyperkähler structures

and that the remainder function for the amplitude is a Plebanski scalar that generates the

geometry. This geometry leads to explicit overdetermined completely integrable systems

of differential equations for the area, and we also give its Lax system.
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1 Introduction

In N = 4 super Yang-Mills, the geometry of the spaces of kinematic data, K, has been a

fertile ground for advancing the understanding of scattering amplitudes. Most of this work

has focused on the cluster structures and positive geometries that arise in perturbation

theory [1–3]. This paper initiates a study of the geometry that arises at strong coupling.

We focus here on restricted kinematics. We find that the amplitude defines local differential

geometric structures on the space of kinematics, K. Our results are distinct in flavour from

the more combinatorial ideas that arise naturally at weak coupling.

Alday-Maldacena conjectured a correspondence between three distinct objects: planar

amplitudes, A; planar null-polygonal Wilson-loops, 〈Wγ〉, both for N = 4 super-Yang-

Mills; and type IIB string amplitudes in AdS5 × S5. The correspondences are summarised

by the equations:

A = 〈Wγ〉 =
∫

∂Σ=γ
D[Σ ⊂ AdS5 × S5] e−

1

α′ Sstring , (1.1)

where γ is a null polygon made up from the null momenta in the amplitude. The α′ string

parameter in this correspondence is related to the ’t Hooft coupling, λ, by R2
AdS/α

′ =
√
λ.

The first equality has been proved3 in perturbation theory using MHV diagrams [4] and also

by recursion arguments [5]. The second equality is a conjecture arising from the AdS/CFT

correspondence. It has only been systematically investigated at strong coupling as λ → ∞
(and α′ → 0), where the equality becomes, using the semi-classical approximation for the

string,

〈Wγ〉 ∼ e−Area(Σ)/α′

, (1.2)

where Area(Σ) is the area of the minimal surface, Σ, bounded by γ. Like the Wilson-

loop, 〈Wγ〉, the area of Σ is divergent. The minimal surface has cusps at infinity where it

3for the 4d all-loop integrand; the tree-level MHV amplitude is removed in the definition of A.

2



meets the boundary. The divergences in the infinite areas of these cusps correspond to the

infrared divergences of the amplitude. These divergences can be removed in such a way

that agrees with our expectations for both the amplitude and Wilson loop. The result is a

regularized area or remainder function, R(γ), which is our main object of study.

Alday-Maldacena relate minimal surfaces in AdS to a Hitchin system and express the

area as the Hamiltonian for a circle action that acts on a certain subspace of the Hitchin

moduli space that has coordinates given by the kinematic data [6]. Hitchin moduli spaces

are often hyperkähler [7, 8]. But to relate the Hitchin systems to minimal surfaces, discrete

symmetries are imposed that restrict us to a subspace of the full Hitchin moduli space. This

means that standard results (from, e.g., [9, 10]) do not directly apply, and this subspace is

not generally expected to be hyperkähler, see for example those in [11]. However, we will

show that these smaller moduli spaces are often pseudo-hyperkähler, i.e., the analogue of

hyperkähler appropriate to metrics of split signature.

In restricted kinematics, we take the momenta andWilson loop to lie in 1+1 dimensions

and the spanning minimal surface lives in AdS3. For restricted kinematics, we prove that

the regularized area is a Kahler scalar for a pseudo-hyperkähler structure on the kinematic

space K, when K has 4k dimensions. A key step in the proof is to use the Y -system [12]

to define a twistor space for K, analogous to the twistor spaces for full Hitchin moduli

spaces; we expect this novel connection between Y -systems and twistor constructions to be

of much wider applicability. Having proved this, we derive a system of integrable equations

satisfied by the regularized area, which can be used to solve for the area. In §2 we introduce

the kinematic space K and both its cluster and associated Poisson or symplectic structure.

In §3 we recall the Y -system [12] and explain how it defines a twistor space for K. In §4 we

find the hyperkähler structure explicitly and show the regularized area is a split signature

analogue of a Kähler scalar that satisfies an integrable system of generalized Plebanski

equations. Finally in §5 we mention a number of checks and further developments. We

also consider how these results might relate to amplitudes at finite coupling.

2 The spaces of kinematic data in 1 + 1-dimensions

In restricted kinematics, the kinematic space Kn is the moduli space of null polygonal

Wilson loops in 1 + 1-dimensions with 2n sides. Such a Wilson loop is given by a set of

ordered null momenta (the ‘edges’ of the loop) that sum to zero (so that the loop closes).

Take null coordinates (X+,X−) on Minkowski space with metric

ds2 = 2dX+dX−. (2.1)

The null edges of a polygonal Wilson-loop alternate between lines of constant X+ and lines

of constant X−. The kinematic data for a 2n-sided Wilson loop in AdS3 is therefore given

by two cyclically ordered sets of real numbers {X+
i }, {X−

i }, with i = 0, . . . , n− 1. Vertices

of the polygon are given by the points (X+
i ,X−

i−1), (X
+
i ,X−

i ) then (X+
i+1,X

−
i ) and so on.

Conformal invariance means that functions of these parameters should be invariant under

Möbius transformations on the X+
i and X−

i separately. Thus the space of kinematic data

3
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Figure 1. Null coordinates on M1,1.

Kn is

Kn = MR
0,n ×MR

0,n . (2.2)

where

MR
0,n = {X±

i , i = 1, . . . , n}/PSL2 . (2.3)

is the moduli space of n points on RP
1 modulo Mobius transformations.

Möbius invariant functions on K are given by cross-ratios

(ij|kl)± =
(X±

i −X±
j )(X±

k −X±
l )

(X±
i −X±

l )(X±
j −X±

k )
. (2.4)

There are special sets of cross-ratios that can be grouped into so-called clusters, which give

local systems of coordinates for K.

A cluster forMR
0,n is specified by choosing a triangulation of the n-gon. A triangulation

defines an antisymmetric matrix, ǫss′ where s, s′ = 1, . . . , n − 3 index the chords of the

triangulation. For two such chords s and s′, write ǫss′ = 0 if the two chords do not share

a triangle. If they share a triangle, write ǫss′ = 1 if s′ is clockwise of s, or write ǫs′s = 1

is s′ is counter-clockwise of s.4 The matrix ǫss′ in turn defines a quiver as its incidence

matrix with nodes placed on the edges of the n-gon and the chords of its triangulation.

Fix a triangulation. A chord s in the triangulation will be the diagonal, i − k, or some

quadrilateral (i, j, k, l) of the triangulation. To this chord we associate the coordinate

χ±
s = (il|kj)±. (2.5)

The set of these cross ratios, {χ±
s } define a cluster of coordinates on Kn.

4This matrix is related to the so-called b-matrix of the A-type cluster algebra: sgn bij = sgn ǫij = ǫij .
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Figure 2. Left: The correspondence between a chord of a triangulation and the cross ratios. Right:

The “zig-zag” triangulation of the polygon and corresponding chart on kinematic space.

Different choices of clusters of coordinates are related by mutation relations. Flipping

a chord s, inside a quadrilateral that it is a diagonal of, gives a new chord, s′, and the new

cross-ratios are related to the old ones by

µ(χs) = χ−1
s , µ(χt) = χt(1 + χǫst

s )ǫst . (2.6)

The only cross-ratios that change are those sharing a triangle with s in the triangulation.

Finally, there is a natural 2-form on Kn that is symplectic when Kn is even dimensional,

i.e., for n odd. Fixing a triangulation of the n-gon as above, on each copy of MR
0,n define

ω± =
∑

i,j

ǫij d logχ
±
i ∧ d logχ±

j . (2.7)

It follows directly from the mutation rule (2.6) that Mutating, or flipping, a chord of the

triangulation preserves the 2-form, i.e., after one mutation

ω± = µ(ω±) :=
∑

i,j

ǫ̃ijd log µ(χi) ∧ d log µ(χj), (2.8)

where µ(χi) are the new cross-ratios, and ǫ̃ij is the matrix of the new triangulation. Thus,

a series of mutations leaves ω± invariant and so we write ω± independently of the choice

of cluster.

Example. A useful example is the ‘zig-zag’ triangulation given by Figure 2. The associ-

ated cluster has cross-ratios given by (s = 1, ..., n − 3)

χ±
s =

{
(s− 1, s| − s− 1,−s)± s odd

(s− 1, s| − s,−s+ 1)± s even,
(2.9)

where we specify vertices of the polygon mod n. The matrix ǫss′ is given by ǫs,s+1 = 1 (for

s odd) and ǫs,s+1 = −1 (for s even). For this triangulation, as in [12], we have

ω =
∑

d logχ2i ∧ (d logχ2i−1 − d logχ2i+1). (2.10)
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3 From the Y-system to the twistor space

We now show how the ‘Y-system’ can be used to construct a twistor space, which will we

use in Section 4 to prove new results about the remainder function. In the first instance, fix

the ‘zig-zag’ choice of cluster coordinates (χ+
s , χ

−
s ) on Kn as given in (2.9). The Y-system

of [12] is the family of functions (s = 1, . . . , n− 3)

Ys = Ys(χ
+
r , χ

−
r , ζ) : Kn × CP

1 −→ C, (3.1)

that are complex analytic in the spectral parameter ζ ∈ CP
1. We define a Y-system

associated to this cluster by the following conditions. First, the Ys are fixed to yield the

cluster coordinates (χ+
s , χ

−
s ) at ζ = 1 and i:

Ys(1) = χ+
s , Ys(i) = χ−

s . (3.2)

Second, we impose that the Ys, are holomorphic except for branching singularities at ζ = 0

and ζ = ∞, taking the branch cut to be R
−. We further require exponential asymptotics,

so that logYs has residues at 0 and ∞.5 Finally, to fully determine the Ys we define their

analytic continuation across the R
− branch cut. Write Y++

s (ζ) = Y(eiπζ). In the case of

the zigzag triangulation, the analytic continuation is given by the relations

Y++
2k+1Y2k+1 = (1 + Y2k+2)(1 + Y2k) ,

Y++
2k Y2k = (1 + Y++

2k+1)(1 + Y++
2k−1) . (3.3)

These relations are a consequence of the mutation relations, (2.6), applied to the Ys. In

general, the Y++
s are given by performing a series of 2(n− 3) mutations that implement a

‘rotation’ of the cluster triangulation by 2π/n.

The Ys are expected to be uniquely determined by these conditions, and solutions

can be obtained from iterating integral equations known in the form of a Thermodynamic

Bethe Ansätze described in [12, 13], which we do not review here.

As a smooth manifold, define the twistor space to be Tn = Kn×CP
1. The Ys-functions

defined above turn Tn into a complex manifold defining holomorphic coordinates on Tn.
The following proposition summarizes the key properties of Tn that we will need.

Proposition 3.1 Tn is a complex n−2-manifold with local holomorphic coordinates (Ys, ζ),

with a holomorphic projection: p : Tn → CP
1. There is a family of symplectic 2-forms Σ(ζ)

on the fibres of p. For odd n, Σ(ζ) is non-degenerate. Moreover, Σ(ζ) is invariant under

the holomorphic circle action

(Ys, ζ) −→ (Ys, e
iθζ).

Finally, there is an anti-holomorphic involution on Tn given by

(Ys, ζ) −→ (Ys, 1/ζ̄),

so that the Ys are real on the unit circle |ζ| = 1.

5These can be written as logYs = Zsζ
−1 + . . . as ζ → 0 and logYs = Z̄sζ + . . . as ζ → ∞ for some

Zs(χ
+
r , χ

−
r ), but we will not use this in what follows.
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Proof: The twistor space can be constructed by gluing together holomorphic coordinate

patches. Take U = {−π < arg ζ < π} and U++ = {0 < arg ζ < 2π}. The two patches

are related by ζ 7→ eiπζ. The Ys functions are holomorphic on U . The Y++
s functions

are holomorphic on U++. These two holomorphic patches can be glued together on the

overlap, U ∩ U++, by the Y-system equations, (3.3).

For fixed ζ, define the closed 2-form

Σ(ζ) :=
∑

ǫijd logYi ∧ d logYj . (3.4)

By the same argument given below (2.7), Σ(ζ) is preserved by mutations. In particular,

Σ++(ζ) ≡ Σ(eiπζ) = Σ(ζ). So Σ(ζ) is defined for all ζ, except for ζ = 0 and ζ = ∞.

Moreover, Ys are invariant under the circle symmetry, so Σ is likewise circle invariant.

Finally, the functions Ys(1/ζ̄) have the same analytic properties and special values

as the functions Ys(ζ), and satisfy the same Y-system equations as Ys(ζ). But the Ys

functions are unique, so we must have that Ys(1/ζ̄) = Ys(ζ). ✷

4 Integrable system for the remainder function

The nontrivial part of the regularised area of the minimal surface in AdS3 is called the

remainder function, R(χ+
r , χ

−
s ). The remainder function can be presented in integral form

using the Thermodynamic Bethe Ansatze (as in appendix E of [14]). Here we take a

different approach. Following §3 of [6], we identify R with the Hamiltonian for the circle-

action on Tn, we find a completely integrable system of differential equations for R. This

system generalizes the Plebanski equations for four-dimensional self-dual metrics:

Proposition 4.1 For n odd, the remainder function satisfies the equations

RpqRrsǫpr = ǫqs, (4.1)

together with circle invariance, e.g. (4.21). Here ǫpqǫ
qr = δrp and Rpq is the Hessian matrix:

Rrs =
∂2R

∂x+r ∂x
−
s
,

with x±p := logχ±
p . The system (4.1) and (4.21) follow from the consistency of the Lax

system {Lr, Ṽ } where

Lr := (ζ2−1)
∂

∂x+r
+(ζ2+1)iRrs ∂

∂x−s
, Ṽ := ǫrs

(
∂R

∂x+s

∂

∂x+r
+

∂R

∂x−s

∂

∂x−r

)
+iζ

∂

∂ζ
. (4.2)

A pseudo-hyperkähler structure is the analogue of a hyperkahler structure appropriate

to a metric of split signature, in which two of the three Kähler structures become transverse

maximal null foliations. As the proof of Proposition 4.1 will show, our integrable system

implies that Kn is pseudo-hyperkähler:
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Proposition 4.2 For n odd, Kn is pseudo-hyperkähler, with split-signature metric

ds2 := Rrsdx+r dx
−
s , (4.3)

and the three symplectic 2-forms

ω± = ǫrsdx+r ∧ dx+s ± ǫrsdx+r ∧ dx+s , Ω = Rrsdx+r ∧ dx−s . (4.4)

Proof (of Proposition 4.1). The 2-form, Σ(ζ), defined in (3.4), is globally defined on

the ζ-plane, with poles at ζ = 0,∞. Consider a Laurent series expansion of Σ(ζ) in ζ. It

follows from (3.2) that Σ(ζ) has the special values

Σ(1) =
∑

ǫijdx
+
i ∧ dx+j , Σ(i) =

∑
ǫijdx

−
i ∧ dx−j . (4.5)

Moreover, the logarithms, ys := logYs ∼ 1/ζ at 0 and ζ at ∞. So Σ(ζ), which is now single

valued, has double poles at ζ = 0 and ζ = ∞. By Proposition 3.1,

Σ(−ζ) = Σ(ζ), (4.6)

so that the Laurent series of Σ(ζ) does not have terms linear in ζ, ζ−1. Equations (4.5)

and (4.6) together imply that the Laurent expansion takes the form

Σ(ζ) =
(ζ2 + 1)2

4ζ2
Σ(1)− (ζ2 − 1)2

4ζ2
Σ(i) +

(ζ4 − 1)

4ζ2
iΩ . (4.7)

for some ζ-independent closed 2-form Ω. Grouping terms gives

Σ(ζ) =
1

ζ2
A(−2) +A(0) + ζ2A(2), (4.8)

where

A(±2) =
1

4
Σ(1)− 1

4
Σ(i)∓ i

4
Ω, A(0) =

1

2
Σ(1) +

1

2
Σ(i). (4.9)

Since Σ(ζ) is non-degenerate with rank n− 3,

(Σ(ζ))(n−1)/2 = 0 . (4.10)

Consider the Laurent expansion of (4.10) in ζ. The coefficients of the leading terms (mul-

tiplying ζn−3 and ζ−(n−3)) are

(Σ(1))(n−3)/2 ∧ Ω = 0 , (Σ(i))(n−3)/2 ∧ Ω = 0 . (4.11)

It follows that Ω is linear in both the dx+r and the dx−s , so that

Ω =
1

4
Jrsdx+r ∧ dx−s (4.12)

for some functions Jrs(x+, x−). But Ω is closed, so

Jrs =
∂2J

∂x+r ∂x
−
s
, (4.13)

8



for some potential function, J(x+, x−). The vanishing of the sub-leading terms in the

expansion of (4.10) imply the following Plebanski-like system of differential equations for

J :

ǫrr′J
rsJr′s′ = ǫss

′

. (4.14)

We briefly note that we can give a Lax formulation for (4.14). The rank of Σ(ζ) implies

that we can find n − 3 operators Lr satisfying LryΣ(ζ) = 0. By (4.7) and (4.12), we can

take Lr to be

Lr = (ζ2 − 1)
∂

∂x+r
+ (ζ2 + 1)iJrs ∂

∂x−s
. (4.15)

Then it follows that Lrys(ζ) = 0. Moreover, by the closure of Σ(ζ), [Lr,Ls] = 0, and this

is equivalent to (4.14). The Lax system can be used to solve for the Yr functions. Near

ζ = 1, i, we find

yr(ζ) = x±r + (ζ2 ∓ 1)ǫrsi
∂J

∂x±s
+O((ζ2 ∓ 1)2) , (4.16)

and the Lax system further determines all higher order terms.

Up to a constant, the remainder function R is the Hamiltonian that generates the

circle action of Tn. Suppose that the rotation symmetry acts on x±r by some vector field

V . Its lift to Tn acts on ζ by Ṽ (ζ) = iζ so that Ṽ = V + iζ∂ζ . The circle action leaves

Σ(ζ) invariant, so that Ṽ annihilates Σ(ζ). Consider again the Laurent expansion of Σ in

ζ. The coefficient of ζ0, A(0), must be invariant under V . Given that R is the Hamiltonian

for V , we therefore have that

V = ǫrs

(
∂R

∂x+s

∂

∂x+r
+

∂R

∂x−s

∂

∂x−r

)
. (4.17)

Moreover, invariance of Σ(ζ) under Ṽ also implies that A(±2) has weight ∓2 under V :

£VA
(±2) = ∓2iA(±2), (4.18)

where the Lie derivative is £V A
(−2) = d

(
iV A

(−2)
)
. Adding together both signs of (4.18)

gives
∂2R

∂x+r ∂x
−
s

=
∂2J

∂x+r ∂x
−
s
. (4.19)

Since the potential J is only defined up to a sum of a function of x+r and another of x−r ,

we can fix this freedom by identifying J ≡ R. The difference between the ± parts of (4.18)

gives

0 = ∂x+
r
(J tsV +

t ) + ∂x−
s
(JrtV −

t ), ǫrs = ∂x±
s
(JrtV ∓

t ), (4.20)

With J = R, the first of these equations reads

0 = ∂x+
r

(
∂2R

∂x+t ∂x
−
s

∂R

∂x+u
ǫtu

)
+ ∂x−

s

(
∂2R

∂x+r ∂x
−
t

∂R

∂x−u
ǫtu

)
. (4.21)

Likewise, with J = R, the remaining two equations simplify, and are both solved by

Plebanski equation, which we can now write as:

0 = ǫrsR
rr′Rss′ + ǫr

′s′ . (4.22)

9



Equations (4.21) and (4.22) together define an integrable system for the remainder function,

R. Equivalently, in Lax form, these equations are given by the Lax system {Lr, V + iζ∂ζ},
where V + iζ∂ζ is the circle symmetry generator.

To complete the proof, we show that (4.21) is essentially a single further constraint on

R over (4.22). Write ∂r = ∂/∂x+r and ∂r′ = ∂/∂x−r′ for derivatives with respect to x+r and

x−r′ . Then (4.22) can be written in two equivalent ways as

∂[r(Rs]s′Rr′ǫr′s′ + ǫqsx+q ) = 0, ∂[r′(Rs′]sRrǫrs + ǫq
′s′x−q′) = 0 . (4.23)

These are integrability conditions for the existence of functions S and S′ satisfying

Rss′Rr′ǫr′s′ + ǫqsx+q = ∂sS , Rs′sRrǫrs + ǫq
′s′x−q′ = ∂s′S′ (4.24)

where S is defined up to functions of x−r′ , and S′ is defined up to functions of x+r . Given

this, (4.21) becomes ∂r∂r′S′ + ∂r′∂rS = 0, and this imposes one additional constraint on

the system, namely, that S + S′ = 0. ✷

Note that (4.24) together with S+S′ = 0, provides an alternative form of the integrable

system, with one fewer derivatives, at the price of introducing the additional function S.

The equations have the trivial flat solution R = ǫrsx+r x
−
s , S = 0 but it is clear from the

expansions arising from the TBA that the true solution is much more complicated.

5 Conclusions and discussion

We have seen that the Y-system of [14] defines a twistor space for the kinematic space,

Kn, of null polygonal Wilson loops with 2n sides. When n is odd, the remainder function,

R, satisfies a completely integrable system on Kn. The system is a higher dimensional

analogue of the first Plebanski equation for 4d self-dual gravity. It follows from the fact

that Kn is pseudo-hyperkähler, and that the remainder function, R, is the split signature

analogue of a Kahler scalar for a split signature metric on Kn.

Given appropriate boundary conditions, our integrable system should inductively de-

termine R at all n. Boundary conditions arise from colinear limits of the kinematics. The

colinear limit, for two adjacent vertices of the Wilson loop, defines a codimension two

boundary of Kn that can be identified with Kn−1. The remainder function R on Kn re-

stricts to that for Kn−1 on the boundary (see [6, 15, 16] for a summary of colinear limits

in restricted kinematics). Although these boundaries have co-dimension two, the equa-

tions are over determined by at least that co-dimension. For the example of n = 5, K5 is

4-dimensional, and as the 4d deterministic equations are further subject to a circle sym-

metry, so they should propagate data from the 2d boundary K4, where integral formulae

for R are known [6]. It follows from the complex dimension n− 2 of the twistor space (on

which the data is holomorphic) versus that, 2n − 6 of Kn that the equations only become

more overdetermined for larger n. Thus it should be possible to determine the remainder

functions for all n inductively. However, more work needs to be done on the geometry at

even n to make this systematic.
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We have seen the close interaction between the cluster geometry of Kn and that of the

twistor space and the pseudo-hyperkähler geometry via the naturally defined logarithmic 2-

forms. Positive geometry also potentially plays a role. The Euclidean region in K is defined

to be the region where non-adjacent vertices are space-like separated. On this region

we expect the area and hence the remainder function R to be positive with boundaries

corresponding to (multi-)collinear limits.

The pseudo-hyperkähler spaces studied here are not directly related to the other hy-

perkähler structures that arise in studies of Hitchin systems. Hitchin showed that moduli

spaces of regular Hitchin systems admit hyperkähler structures, [8] and this result has been

partially extended to the irregular case relevant here in [9] but this freezes the relevant data

here. Gaiotto, Moore and Neitzke [10, 17] incorporate our data and more. However, these

do not apply directly to amplitudes at strong coupling as Kn parameterises an invariant

subspace of the Hitchin moduli space under an involution [6, 12, 13]. It can be checked

directly that the hyperkähler structure of [10, 17] does not restrict to this subspace to yield

the structures discussed here even in their simplest versions (details to appear elsewhere).

We comment on some implications of our result for further research. First, our meth-

ods here can be applied to many other cluster varieties and associated Y -systems, to find

new differential equations. It will be interesting to study the generalization to other ADE

Y-systems [18], and also beyond ADE to the affine and surface-type cluster algebras. These

cases correspond, in physics, to other contributions in the 1/N expansion at strong cou-

pling (for restricted kinematics). Beyond these cases, the Grassmannian cluster algebras

appear when computing strong coupling amplitudes and form factors for full N = 4 SYM

kinematics. The Y-systems associated to these cluster algebras are well known, [12] and

indeed generalizations incorporating form-factors in [15]. These should all define twistor

spaces, and we expect to find integrable systems for the amplitudes in these cases. How-

ever, the geometry is not as simple as in restricted kinematics. For the full strong coupling

planar amplitude, Kn has dimension 3n − 15, and so Kn can not be hyperkähler unless

3n − 15 is a multiple of 4 (i.e. n = 9, 13, 17...).

Secondly, our results suggest some new approaches to going beyond the strong coupling

limit. It is known from numerical studies that the perturbation series computation of the

amplitude is numerically close to the strong-coupling amplitude [19]. This suggests that the

differential equations that we have discovered at strong coupling might hold approximately

in perturbation theory, possibly with deformations that could provide a new approach for

studying the amplitude beyond strong coupling. In this direction, there are several other

connections to explore. It should be possible to view our integrable system as arising from a

twistor sigma model action [20, 21]; expressing the string quantization in this model might

allow computations beyond the strong coupling limit. Links to the finite coupling results

for the anomalous dimension spectrum problem might also arise by making contact with

the quantum spectral curve of [22] via its underlying Y-system. The coupling constant

should then be incorporated by incorporating the ‘Joukowski correspondence’ of [23–25].
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and the Laboratoire Physique at the ENS, Paris for hospitality while this was being writ-

ten up and the STFC for financial support from grant number ST/T000864/1. ÖCG is

supported by UKRI/EPSRC Stephen Hawking Fellowship EP/T016396/1 and the Royal

Society University Research Fellowship URF\R1\221236.

References

[1] J. Golden, A. B. Goncharov, M. Spradlin, C. Vergu, and A. Volovich, Motivic Amplitudes

and Cluster Coordinates, JHEP 01 (2014) 091, [arXiv:1305.1617].

[2] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. B. Goncharov, A. Postnikov, and J. Trnka,

Grassmannian Geometry of Scattering Amplitudes. Cambridge University Press, 4, 2016.

[3] N. Arkani-Hamed and J. Trnka, The Amplituhedron, JHEP 10 (2014) 030,

[arXiv:1312.2007].

[4] L. J. Mason and D. Skinner, The Complete Planar S-matrix of N=4 SYM as a Wilson Loop

in Twistor Space, JHEP 12 (2010) 018, [arXiv:1009.2225].

[5] S. Caron-Huot, Notes on the scattering amplitude / Wilson loop duality, JHEP 07 (2011)

058, [arXiv:1010.1167].

[6] L. F. Alday and J. Maldacena, Null polygonal Wilson loops and minimal surfaces in

Anti-de-Sitter space, JHEP 11 (2009) 082, [arXiv:0904.0663].

[7] N. J. Hitchin, The Selfduality equations on a Riemann surface, Proc. Lond. Math. Soc. 55

(1987) 59–131.

[8] N. J. Hitchin, The Geometry and topology of moduli spaces, Lect. Notes Math. 1451 (1990)

1–48.

[9] O. Biquard and P. Boalch, Wild non-abelian Hodge theory on curves, Compos. Math. 140

(2004), no. 1 179–204.

[10] D. Gaiotto, G. W. Moore, and A. Neitzke, Wall-crossing, Hitchin Systems, and the WKB

Approximation, Adv. Math. 234 (2013) 239–403, [arXiv:0907.3987].

[11] N. J. Hitchin, Lie groups and Teichmüller space, Topology 31 (1992), no. 3 449–473.

[12] L. F. Alday, J. Maldacena, A. Sever, and P. Vieira, Y-system for Scattering Amplitudes, J.

Phys. A 43 (2010) 485401, [arXiv:1002.2459].

[13] L. F. Alday, D. Gaiotto, and J. Maldacena, Thermodynamic Bubble Ansatz, JHEP 09 (2011)

032, [arXiv:0911.4708].

[14] L. F. Alday, D. Gaiotto, J. Maldacena, A. Sever, and P. Vieira, An Operator Product

Expansion for Polygonal null Wilson Loops, JHEP 04 (2011) 088, [arXiv:1006.2788].

[15] J. Maldacena and A. Zhiboedov, Form factors at strong coupling via a Y-system, JHEP 11

(2010) 104, [arXiv:1009.1139].

[16] T. Goddard, P. Heslop, and V. V. Khoze, Uplifting Amplitudes in Special Kinematics, JHEP

10 (2012) 041, [arXiv:1205.3448].

[17] D. Gaiotto, G. W. Moore, and A. Neitzke, Four-dimensional wall-crossing via

three-dimensional field theory, Commun. Math. Phys. 299 (2010) 163–224,

[arXiv:0807.4723].

12

http://arxiv.org/abs/1305.1617
http://arxiv.org/abs/1312.2007
http://arxiv.org/abs/1009.2225
http://arxiv.org/abs/1010.1167
http://arxiv.org/abs/0904.0663
http://arxiv.org/abs/0907.3987
http://arxiv.org/abs/1002.2459
http://arxiv.org/abs/0911.4708
http://arxiv.org/abs/1006.2788
http://arxiv.org/abs/1009.1139
http://arxiv.org/abs/1205.3448
http://arxiv.org/abs/0807.4723


[18] A. B. Zamolodchikov, On the thermodynamic Bethe ansatz equations for reflectionless ADE

scattering theories, Phys. Lett. B 253 (1991) 391–394.

[19] Y. Hatsuda, K. Ito, and Y. Satoh, T-functions and multi-gluon scattering amplitudes, JHEP

02 (2012) 003, [arXiv:1109.5564].

[20] T. Adamo, L. Mason, and A. Sharma, Twistor sigma models for quaternionic geometry and

graviton scattering, arXiv:2103.16984.

[21] L. Mason, Gravity from holomorphic discs and celestial Lw1+∞ symmetries,

arXiv:2212.10895.

[22] N. Gromov, V. Kazakov, S. Leurent, and D. Volin, Quantum spectral curve for arbitrary

state/operator in AdS5/CFT4, JHEP 09 (2015) 187, [arXiv:1405.4857].

[23] N. M. J. Woodhouse and L. J. Mason, The geroch group and non-hausdorff twistor spaces,

Nonlinearity 1 (feb, 1988) 73.

[24] L. J. Mason and N. M. J. Woodhouse, Integrability, self-duality, and twistor theory, vol. 15 of

London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford

University Press, New York, 1996. Oxford Science Publications.

[25] A. Ferrari and L. Mason, Meromorphic Painlevé III transcendents and the Joukowski
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