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Higher-Order Stereophony
Jacob Hollebon and Filippo Maria Fazi

Abstract—This work introduces a new theory for spatial audio
recording and reproduction named Higher Order Stereophony.
Through the use of the Taylor expansion, the technique accurately
reproduces a sound field across a line that is orientated as the
interaural axis of a listener, to attempt to recreate a set of desired
binaural signals. The technique utilises loudspeaker amplitude
panning, and is shown to encompass in its framework traditional
Stereophony approaches such as the stereo sine law. Therefore,
the technique expands Stereophony to higher orders and more
loudspeakers, leading to a greater frequency range of accurate
reproduction, in a similar manner to Higher Order Ambisonics.
Higher Order Stereophony is shown to exhibit many similarities
to Higher Order Ambisonics, and decoders to transition between
the different sound field representations are derived. Higher
Order Stereophony is also re-derived through a mode matching
approach using a subset of spherical harmonics, those with degree
index equal to zero only. The theoretical results are then validated
through experimental measurements using various microphone
arrays, considering the reproduced sound field across a single
line and the reproduced spherical harmonic coefficients of the
sound field.

Index Terms—Spatial Audio, Panning, Stereophony, Higher
Order Ambisonics (HOA).

I. INTRODUCTION

THE goal of a spatial audio system is to reproduce the
acoustic illusion of virtual acoustic scenes to a listener.

In its most classic case, this takes the form of a virtual sound
source positioned somewhere in 3D space about the listener.
Most commonly, loudspeaker amplitude panning is utilised to
create the illusion of a virtual source through the phenomenon
of summing localisation [1], [2]. Interestingly, some panning
approaches such as Higher-Order Ambisonics (HOA) can also
reproduce the physical properties of the target sound field over
a region of space, through calculating loudspeaker gains by
representing the sound field in terms of an orthogonal basis
such as the spherical harmonics. The HOA mode matching
approach leads to sound field reproduction over a circular
or spherical region about an expansion point in 2D and 3D,
respectively [3], [4].

The Taylor expansion is a method to represent an analyt-
ical function by means of its derivatives evaluated about an
expansion point. However, the Taylor expansion has found
little use in sound field reproduction literature, mainly with
the work by Dickins at the turn of the century [5], [6].
Dickins compared the multivariable (3D) variant of the Taylor
expansion to the spherical harmonic expansion of a sound
field. When restricting to physical sound fields that satisfy the
wave equation and considering that both descriptions contain
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the same amount of information, the Taylor expansion was
found to be over-specified resulting in a greater number of
terms on truncation to the N -th order when compared to the
spherical harmonic expansion. Interestingly, this is true only
when n ≥ 2, because the zeroth and first order for both
expansions contain equal number of terms. It was therefore
concluded that the spherical harmonic expansion was more
compact and thus the most convenient sound field descriptor
when considering 3D sound fields. This has likely led to
many preferring to use the spherical harmonic expansion, for
example as noted in the seminal work by Poletti [2]. Some
work has utilised the Taylor expansion to first order only for
analysis of spatial audio reproduction systems [7]–[9], and
amplitude panning with listener head-tracking [10], [11].

The main contribution of this work is the introduction of
a new approach for spatial audio reproduction titled Higher-
Order Stereophony (HOS). HOS reproduces the sound field
accurately across a line which is designed to align with
the listener’s interaural axis, through the use of the single
variable (1D) Taylor expansion. This creates an efficient sound
field reproduction approach, which only aims to recreate the
sound field correctly at the position of the listener’s ears,
ideally leading to the reproduction of the desired binaural
signals. This simplification leads to a significant reduction
in the number of loudspeakers required and their positioning
compared to other sound field reproduction approaches, as
N -th order stereo requires only (N + 1) loudspeakers. The
classic stereo sine law is derived using this framework, and the
new approach is shown to generalise classic stereo to higher
orders and generalised loudspeaker arrays, in a similar manner
as HOA generalises First Order Ambisonics. HOS is verified
as a sound field reproduction technique across a line through
measurements of the reproduced sound field using a linear
microphone array.

A secondary contribution of the article is the demonstra-
tion of a fundamental relationship between HOA and HOS.
Decoders are derived to transition between the two sound
field representations, ensuring all existing HOA content can
be reproduced using simpler and smaller loudspeaker arrays
through the HOS approach. An alternative derivation for HOS
is also presented through mode matching using a subset of
spherical harmonics. These results are also verified using
measurements utilising a spherical microphone array.

The article is arranged as follows. First, the theory of the
technique is presented, resulting in a set of order matching
equations (analogous to mode matching) that define the nec-
essary HOS loudspeaker gains for any given loudspeaker array.
Next, the classic stereo sine law is derived through the new
HOS framework and it is demonstrated that the technique
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generalises the traditional stereo technique to higher orders
and any number of loudspeakers. Next, the link between HOA
and HOS is explored and decoders are derived to transition
between the two representations. Finally, experiments using
various microphone arrays are used to validate the approach.

II. THE TAYLOR EXPANSION

A. The Single Variable Taylor Expansion

The Taylor expansion expresses a well-behaved function
about an expansion point as a infinite summation of its
derivatives evaluated at the expansion point. In 1D, if p(x)
is an infinitely differentiable function at a point x0, then [12]

p(x) =

∞∑
n=0

(x− x0)
n

n!

dnp(x0)

dxn
. (1)

The n-th order term depends on the n-th derivative. Prac-
tically, the infinite summation must be truncated to a finite
order N introducing an error into the representation. In this
case, increasing the order N results in a better approximation
for larger arguments of (x−x0) and thus the approximation’s
accuracy further away from the expansion point x0.

B. Expansion Of A Plane Wave sound field

The goal of a 3D audio reproduction system is to reproduce
a given sound field by recreating the correct binaural signals at
the listener’s ears. The HOS approach is to suggest that this
can be achieved, under certain conditions and assumptions,
by accurately reproducing the sound field along the listener’s
interaural axis only. The interaural axis is that which the
listener’s ears lie upon. This differs to other sound field
reproduction methods, such as HOA, that aim to reproduce
the sound field accurately over a region of space, not just a
single axis [2], [3]. The HOS approach is advantageous as it
leads to less stringent requirements on the number of audio
channels, loudspeakers and the loudspeaker positions com-
pared to HOA. The approach is preferable to alternatives such
as Crosstalk Cancellation (CTC) [13]–[16] which consider the
sound field at the two ear positions only, as these techniques
lead to more complicated frequency-dependent loudspeaker
filters as opposed to simple panning gains. Furthermore, CTC
makes explicit assumptions about the listener’s Head-Related
Transfer Function (HRTF) which are not required when using
sound field reproduction approaches such as HOS.

The analysis is restricted to 2D by considering the hori-
zontal plane only, using a coordinate system defined by radial
distance, r and azimuthal angle, θ. The 2D scenario leads
to symmetry which greatly simplifies the 3D case, which
will be discussed after. Consider a listener with their head
centred at the origin as in Fig. 1. Let n̂ be the unitary vector
pointing from the head centre, rc, to the left ear, rl, thus
defining the interaural axis. Assuming the listener’s ears are
diametrically opposed across the head and that the head radius
is given by a, the two ear positions are rl,r = ±an̂. While
the context is considering reproduction across the listener’s
interaural axis, for now in the mathematics no complex HRTF
is included, a common assumption when deriving spatial

Fig. 1: Example head orientation with the interaural axis
aligned along the y axis.

audio panning laws/sound field reproduction techniques. The
acoustical effects of the HRTF will dictate the performance
of the technique, however this analysis will be considered in
future work. It may also be noted that a valid low frequency
approximation of the plane wave rigid sphere HRTF model
is a shadowless head model with enlarged head radius and
therefore may be modelled as two points in free field [17],
which suggests at low frequencies for plane wave sources
the HRTF has minimal effect. The consequence for now is
the head orientation is purely used to define the position of
the expansion/reproduction line and free field conditions are
assumed. The head orientation is fixed such that n̂ = ŷ.

The incident sound source is assumed to act as a plane
wave. Plane wave sources are a common assumption in the
literature, and form the basis for deriving the stereo sine and
stereo tangent law as well as HOA mode matching [4], [18].
The sound field due to a plane wave incident with wavevector
ki = k[cos(θi), sin(θi)]

T , wavenumber k and measured at r =
[x, y]T is

p(r) = ejki·r = ejk[x cos(θi)+y sin(θi)]. (2)

Next, the Taylor expansion will be used to expand the sound
field about the centre of the listener’s head, rc = [xc, yc]

T ,
along the interaural axis, n̂ = ŷ. The n-th order term of the
Taylor expansion is dependent on the n-th order derivative of
the function, which for a plane wave source with respect to
the y axis is

∂n

∂yn
p(rc) = [jk sin(θi)]

np(rc) (3)

hence the Taylor expansion of the plane wave along the y axis
with step size (y − yc), is

p(y) =

∞∑
n=0

[jk(y − yc) sin(θi)]
n

n!
p(rc). (4)

Finally, apply the expansion to be to the listener’s two ears
as per the head orientation and definition in Fig. 1, so that
the step size is simply the head radius, (y − yc) = a. Let the
head be centred at the origin. Setting the plane wave to have
unitary amplitude at the centre of the head implies p(rc) = 1.
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Therefore the pressure at the listener’s ear positions, rl,r =
±aŷ, is given by

p(±a) =

∞∑
n=0

[jk(±a) sin(θi)]
n

n!
. (5)

This formulation is the result of an expansion of a plane
wave sound field along a line using the Taylor series as the
expansion basis. The n-th order term is defined by the n-th
order derivative of the sound field, which for the simple case
of a plane wave and expansion along the y axis results in sine
terms to the power of n. Interestingly, defining the expansion
to be across the x axis (for a rotated head orientation such
n̂ = x̂) results in a similar representation except considering
cosine terms to the power of n. Both approaches are equally
valid, and can be transformed between by applying a rotation
of the reference system. The cosine formulation is given by

p(±a) =
∞∑

n=0

[jk(±a) cos(θi)]
n

n!
. (6)

The spatial/frequency quantity is ka, relating to the expan-
sion step a from the origin along the line. For the context of
reproduction of binaural signals, the derivation has considered
the geometry of a listener’s head including a head radius a and
interaural axis n̂. However, the approach remains generalised
to the expansion across a line utilising any finite step size or
direction from the expansion centre. That is we are considering
the sound field across a line, motivated by the interaural axis.
To accurately represent the sound field to a higher value of
ka, higher order terms of the expansion are required. On
truncation of the series this fixes the ka value to which
accurate representation can be achieved. Here the sound field
may be considered as a line in frequency (k) or spatially (a)
with the ka value setting a bound on accurate reproduction of
the sound field in either domain.

The expansion terms are not strictly modes as they do not
necessarily form an orthogonal basis over the expansion space,
unlike for example similar work with spherical harmonics in
HOA [3]. Thus from the presented Taylor expansion of a
plane wave, the HOS order matching (as opposed to ‘mode
matching’) equations will now be derived.

III. HIGHER-ORDER STEREOPHONY ORDER MATCHING

A. Target and Reproduced sound fields

The target sound field is that which the loudspeaker array
aims to reproduce, leading to the definition of a specific set of
loudspeaker gains. The target sound field, pT (ka), is simply
a plane wave as defined in (5):

pT (ka) =

∞∑
n=0

[jka sin(θT )]
n

n!
. (7)

A target of a single plane wave is considered for the deriva-
tion. The solution for a sound field consisting of a summation
of plane waves comprises of a linear superposition of the
individual plane wave contributions. Furthermore, most sound
fields can be represented as a summation of plane waves,

considering the plane wave density representation [19]. This
reasoning follows that of HOA mode matching derivations.

The reproduced sound field is that due to the summed con-
tributions of each individual loudspeaker in the reproduction
array. Consider an array of L loudspeakers radially equidistant
to the origin, which all act as plane waves. If the loudspeakers
are not equidistant, a delay may be applied to them such
that they are acoustically equidistant. The ℓ-th loudspeaker
is situated at an angle θℓ and driven by a gain gℓ. Considering
(5), the reproduced sound field along the y axis is given by

pR(ka) =

L∑
ℓ=1

gℓ

∞∑
n=0

[jka sin(θℓ)]
n

n!
. (8)

B. Loudspeaker Gains Definition

The goal is to find the loudspeaker gains which minimise
||pT (ka)− pR(ka)||22. For exact reproduction (no order trun-
cation) this leads to the condition pT (ka) = pR(ka) which
requires that the number of loudspeakers must be infinite.
Later, the effects of truncation will be considered.

∞∑
n=0

[jka sin(θT )]
n

n!
=

L∑
ℓ=1

gℓ

∞∑
n=0

[jka sin(θℓ)]
n

n!
. (9)

Apply the order matching principle, such that the terms of
the two expansions are matched for each order n. Traditionally
an orthogonality condition is applied to lead to this condition.
However, directly equating the n-th order terms will still result
in the correct overall summation even though it may not be
the only possible solution. The order matching requirement is

[jka sin(θT )]
n

n!
=

L∑
ℓ=1

gℓ
[jka sin(θℓ)]

n

n!
∀ n ∈ N0. (10)

This reveals that the ka dependence of the n-th term is
given by (ka)n. Thus for small ka, only low order terms are
required. Increasing the value of ka leads to higher order terms
becoming significant. Removing all remaining common terms
gives the HOS order matching equation

sinn(θT ) =

L∑
ℓ=1

gℓ sin
n(θℓ) ∀ n ∈ N0. (11)

This means order matching with respect to powers of sin(x)
leads to an accurate reproduction of the sound field along
the y axis. Furthermore, truncating the expansion to a finite
order N , termed N -th order stereo, only requires L ≥ N + 1
loudspeakers, less than the HOA approach. Importantly, as
there is no frequency dependence in the order matching
equations, the loudspeaker gains are real-valued and define
simple amplitude panning laws.

To formulate the set of linear equations to find the loud-
speaker gains, assume truncation to the N -th order. Let pT be
a length (N+1) vector of target signals, Ψ be an (N+1)×L
plant matrix and g be a length L vector of loudspeaker
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gains. To define the loudspeaker gains an inverse problem is
formulated:

pT = Ψg =⇒ g = Ψ†pT

pT =
[
1 sin(θT ) sin2(θT ) . . . sinN (θT )

]T

Ψ =


1 1 1 . . . 1

sin(θ1) sin(θ2) sin(θ3) . . . sin(θL)
sin2(θ1) sin2(θ2) sin2(θ3) . . . sin2(θL)

...
...

...
. . .

...
sinN (θ1) sinN (θ2) sinN (θ3) . . . sinN (θL)


g =

[
g1 g2 g3 . . . gL

]T
.

(12)

The plant matrix formulates the contribution of each loud-
speaker to each order, which is dictated by the angular position
of the loudspeakers. The superscript (·)† indicates the Moore-
Penrose pseudoinverse, a common approach for solving similar
sets of linear equations in spatial audio reproduction [3], [4].
When (N + 1) ≥ L the problem is overdetermined, an exact
solution cannot be found and the pseudoinverse gives the least-
squares solution that minimises the error between the target
and reproduced sound field. When (N + 1) ≤ L an infinite
number of exact solutions exist, and the pseudoinverse chooses
the minimum norm solution with respect to the L2 norm.

So far, only the sine representation from expansion over
the y axis has been considered. As explained in Section II-B
considering reproduction across the x axis leads to a similar
style solution except using a cosine formulation for pT and
Ψ, where the set of resulting loudspeaker gains now leads to
reproduction across the x axis, not the y axis.

C. The Instability Condition

The contribution of each loudspeaker is governed by the
sine or cosine of its angular position. Consider an N -th order
system utilising the minimum required number of N + 1
loudspeakers. For a pair of loudspeakers i and j situated at
angles θi, θj respectively, the scenario when sin(θi) = sin(θj)
results in both loudspeakers contributing to the reproduction
axis identically and thus the system views both as ‘identical’
loudspeakers. That is, only N degrees of freedom are available
and an exact solution can no longer be achieved. This issue
arises from the cone of confusion, as the sound field recreated
by the loudspeakers across a single axis only is considered.
This means for a given loudspeaker at θi then θj ̸= π − θi.

In the limit where θj → π − θi, the plant matrix becomes
ill-conditioned leading to large loudspeaker gain definitions.
To overcome the ill-conditioning, an additional loudspeaker
can be added at a more appropriate angular position. Alter-
natively, a practical method to combat the large loudspeaker
gains whilst retaining the use of only N + 1 loudspeakers is
to employ Tikhonov regularisation when inverting the plant
matrix [20]. This approach seeks the solution that minimises
both the error between the reproduced and the target signals
as well as the energy of the loudspeaker gains, weighted by
a regularisation parameter. Practically this will apply a limit
to the loudspeaker gains however at the cost of introducing

further error into the solution. However, if the problem tends to
the overdetermined scenario the exact solution already cannot
be found. Thus this approach stabilises the loudspeaker gains
without adding more loudspeakers but at the cost of allowing
errors in the solution.

IV. EXAMPLE HIGHER-ORDER STEREOPHONY SYSTEMS

A. First Order Stereo

HOS loudspeaker gains will now be derived for a classic
stereo loudspeaker setup, revealing the link of the technique to
existing stereo systems. This motivates the naming as Higher-
Order Stereophony, where it is the generalisation of the stereo
theory. Consider HOS performed to just the first order. The
minimum number of loudspeakers required is L = N+1 = 2.
Let the two loudspeakers be positioned as a standard stereo
pair at ±θ, with the aim to reproduce a virtual source po-
sitioned at θT . In this case the target pressure vector, plant
matrix and loudspeaker gains are

PT =

[
1

sin(θT )

]
, Ψ =

[
1 1

sin(θ) sin(−θ)

]
g =

1

2

[
1 + sin(θT )

sin(θ)

1− sin(θT )
sin(θ)

]
.

(13)

This is traditional stereo sine law as defined in [1], [18].
Hence by using the Taylor expansion, the classic stereo sine
law has been derived and is a first order Taylor approximation
of reproducing the actual plane wave target sound field across
a line, with the assumption the reproduction line is that
of the interaural axis. The stereo sine law is defined as
a low frequency approach, HOS therefore both generalises
and expands the stereo theory to any given order, for any
given loudspeaker array and reproduction across any frequency
or spatial range (as restricted by the loudspeaker array and
truncation order).

B. Second Order Stereo

With the link between classic stereo and HOS established,
it is interesting to now consider a second order system. A
logical step would be to consider the loudspeaker gains for a
standard LCR (left-centre-right) loudspeaker setup [21]. The
LR loudspeakers are a standard symmetric stereo pair, whilst
the C loudspeaker is centred in front of the listener. Thus
θ1 = θL = θ, θ2 = θC = 0 and θ3 = −θL = −θ. This is the
frontal half of a standard surround sound system (for example
a 5.1, 7.1 or 5.1.2 system). For this setup with N = 2 the
target pressure vector, plant matrix and loudspeaker gains are

PT =

 1
sin(θT )
sin2(θT )

 , Ψ =

 1 1 1
sin(θ) 0 sin(−θ)
sin2(θ) 0 sin2(−θ)



g =
1

2


sin(θT )
sin(θ) +

(
sin(θT )
sin(θ)

)2

2− 2
(

sin(θT )
sin(θ)

)2

− sin(θT )
sin(θ) +

(
sin(θT )
sin(θ)

)2

 .

(14)

This article has been accepted for publication in IEEE/ACM Transactions on Audio, Speech and Language Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2023.3297953

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 01,2023 at 09:38:21 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

This scenario is interesting due to how each loudspeaker
contributes to each order of the reproduction. For this specific
setup, the centre loudspeaker fully controls the zeroth order.
The LR pair fully recreate the first order contributions, those
given by the sine terms to the power of 1 where each
loudspeaker of the pair has equal magnitude but opposite
phase. Finally, the second order terms, those that are sine
squared, are controlled by all three loudspeakers, however
the LR pair works at equal magnitude in phase whilst the
C loudspeaker requires a magnitude that equals the sum of
the LR contributions however working in opposite phase.

This second order system is demonstrated because it is a
readily available loudspeaker arrangement, used throughout
the audio industry. Thus the HOS technique could be easily
implemented without any new major loudspeaker arrange-
ments needing to be adopted. This second order system,
through reproducing one more order of the Taylor expansion,
will recreate the sound field within an error bound along
the reproduction line to a higher ka value, thus expanding
traditional stereo to a higher frequency limit.

V. RELATION TO HIGHER-ORDER AMBISONICS

A. Transformations Between sound field Representations

Upon inspection HOS is similar in nature to HOA. They
are both sound field reproduction methods, HOA in 2D and
3D reproduces the correct sound field within a circle or sphere
respectively, whilst HOS is correct reproduction across a line.
Both techniques utilise a mathematical sound field representa-
tion to a given order, then reproduction of said expansion by
matching order terms using a loudspeaker array. Increasing the
truncation order of the expansion increases its validity with
respect to both frequency and distance from the expansion
centre. All techniques are derived using similar assumptions
(primarily plane wave virtual sources and loudspeakers), and
define loudspeaker panning functions. Finally, to a first order
approximation HOS has been shown to be a subset of HOA,
and the sound field representations are intrinsically linked [4]–
[6], [8], [9]. A formal mapping between HOS and HOA will
thus now be derived.

Consider the system equation from (12), pT = Ψg. This
equation holds regardless of the expansion used to express
the sound field, as long as the same representation is used to
define all entries for pT ,Ψ and g. Truncation to an order N
is assumed. Let the superscript (·)′ indicate truncation to the
same order N but using a different sound field representation,
so that p′

T = Ψ′g′. Assume an order-limited mapping between
the two sound field expansions; that is under truncation to
order N the mapping exists for all terms, whilst the set of
basis functions used for the two representations both span the
same space. The target pressures and plant matrices are related
by

p′
T = ApT , Ψ′ = AΨ (15)

where A is a matrix that expresses the transformation
between the two representations. For the underdetermined case

when L ≥ (N + 1), the pseudoinverse of Ψ is used to define
the gains which are a minimum norm solution. Therefore

g = Ψ†pT

g′ = Ψ′†p′
T

= (AΨ)†ApT

= Ψ†A−1ApT

= g.

(16)

Here the identity (AB)† = B†A† has been used, as
well as noting that A is a square matrix and therefore the
psueodinverse equals the standard matrix inverse, leading to
A−1A = I. The above holds for the underdetermined case
as the loudspeaker gains are a minimum norm solution, which
means the solution g to pT = Ψg has zero projection onto the
null-space of Ψ. In the overdetermined scenario the solution
may have non-trivial elements that map to the null-space of
Ψ, in this case

g − g̃ = Ψ†pT , g′ − g̃′ = Ψ′†p′
T (17)

with g̃ the component of the solution that lies on the null
space of Ψ. The impact of this is that for the overdetermined
case the mapping can not be said to hold. Note for the
underdetermined scenario the definition of a minimum norm
solution is that g̃ = g̃′ = 0 which removes the issue. Hence
for the underdetermined case only both representations will
give identical loudspeaker gains, if and only if there is a
full mapping between the terms of each expansion type. This
would not hold if one term of the first expansion can not be
expressed as a linear combination of the terms of the second
expansion (the first expansion has a term mapped to the null
space of the second expansion), then the representations are
not equivalent and both will lead to differing loudspeaker
gains. This result is significant as it shows that two sound field
representations can be considered equivalent in the mode (or
order) matching sense, and can both give identical loudspeaker
gain definitions if using the minimum norm solution. As
such, the goal is to determine whether such a mapping exists
between any given sound field representations.

B. 2D Ambisonics To Higher Order Stereo Decoder

To consider the mapping between 2D HOA and HOS the
Chebyshev polynomials are utilised. The 2D HOA sound field
representation is a Fourier series, with the sound field p(kr, r̂)
and r̂ dependent on the azimuthal angle θ [22]

p(kr, θ) =
a0(kr)

2
+

∞∑
n=1

an(kr) cos(nθ) +

∞∑
n=1

bn(kr) sin(nθ).

(18)

Here a0(kr), an(kr) and bn(kr) are coefficients found util-
ising the orthogonality relationships for cos(nθ) and sin(nθ),
which form an orthogonal basis over the unit 1-sphere, S1

(a unit circle) [12]. The sound field across the x or y axis
may be formulated by setting θ = 0, π or θ = π/2, 3π/2
respectively. The HOS representation may be expressed using
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either cosn(θ) or sinn(θ) terms each corresponding to correct
reproduction across an orthogonal axis (x and y respectively).
Intuitively one might expect the two sets of cos(nθ) and
sin(nθ) terms to span the x, y axis, respectively, based on
the HOS results. However, this is not necessarily the case as
will now be discussed.

The goal is to find a mapping between the 2D HOA and the
HOS representations when considering the sound field across
only the x or the y axis in turn. For this, the Chebyshev
polynomials will be used. Notably, the Chebyshev polynomials
were used in a similar manner in [23] when mapping sound
field derivatives measured using a differential microphone
array to 2D HOA. The Chebyshev polynomials of the first
kind, Tn(x), expresses cos(nθ) as a polynomial up to order n
in terms of cos(θ) [12]. These polynomials provide exactly the
mapping which is required to transform between the two sound
field expansions when considering the x axis expansion only,
from the 2D HOA B-format representation to the equivalent
HOS representation. This shows that a subset of the 2D HOA
representation (cos(nθ) terms) spans the equivalent space as
the HOS representation (cosn(θ) terms)

As introduced in the previous section, the 2D mapping
matrix A2D is size (N +1)× (N +1) and is populated using
the Chebyshev polynomial coefficients to give the mapping
between HOA to HOS coefficients, having first discarded the
sine terms in the HOA representation. Furthermore, expressing
a plant matrix and target pressure vector in terms of cos(nθ)
or cosn(θ) up to the same truncation order N , using the
pseudoinverse and assuming the problem is underdetermined
will give identical gain definitions. This reinforces the concept
that HOS ensures accurate reproduction across a single axis,
and generalises previous work linking stereo and Ambisonics
from first order to any given order [8], [9].

The entries of the inverse transform (HOS to HOA) given
by (A2D)−1 are explicitly

A2D,−1
n′,n = tn′,nwhere Tn′(cos θ) =

n′∑
n=0

tn′,n cos
n θ (19)

with tn′,n the n-th coefficient of Tn′ whilst due to the nature
of the Chebyshev generating functions explicitly stating the
HOA to HOS transform entries (for A2D) is non trivial. An
example of the order N = 2 mapping matrix for both the
forward and inverse transform is

A2D =

1 0 0
0 1 0
1
2 0 1

2

 , (A2D)−1 =

 1 0 0
0 1 0
−1 0 2

 . (20)

These matrices will be lower triangular, which is a conse-
quence of the mapping being order-limited (the n-th term of
one representation is given by terms to order n of the second
representation, observable in (19)).

Interestingly the mapping does not exist if the HOS system
is expressed in terms of sinn(θ). This is significant, as the
HOS sinn(θ) representation is sufficient to represent the sound
field on the y axis, however the set of sin(nθ) from the
2D HOA representation is not, unlike with the corresponding
cosn(θ) and cos(nθ) scenario. Therefore, a decoder does not

exist to map from this subset of 2D HOA to the HOS sine
representation, even though in the eyes of HOS the sine
representation is as valid as the cosine form. This may be
intuitively observed from (18). Consider evaluation across the
x axis, such that θ = 0, π, then

p(kr, θ = 0, π) =
a0(kr)

2
+

∞∑
n=1

an(kr)(±1)n (21)

and only the coefficients corresponding to cos(nθ) functions
are required to represent the sound field across the x axis.
Thus this set of functions span the same space as the HOS
cosine representation with the transformation between the two
given by Chebyshev polynomials of the first kind. However,
when considering the y axis such that θ = π/2, 3π/2 then

p

(
kr, θ =

π

2
,
3π

2

)
=

a0(kr)

2
+

∞∑
n=2, n even

an(kr)(−1)
n
2

+

∞∑
n=1, n odd

bn(kr)(∓1)
n−1
2 .

(22)

Thus using the 2D HOA representation the sound field
across the y axis requires the cos(nθ) coefficients and the
sin(nθ) coefficients when n is odd and even respectively. No
clear mapping then exists between the HOS sine representation
which covers the y axis representation of the sound field.

This means in practice, a decoder from 2D HOA to HOS
first requires rotation of the 2D HOA sound field to ensure the
x axis aligns with the listener’s interaural axis (to pick out the
cos(nθ) terms), followed by multiplication of the HOA basis
weighting coefficients by the decoding matrix as defined by
the Chebyshev polynomials of the first kind. The impact of the
existence of this decoder is substantial. It means that all 2D
HOA content is able to be rendered over a HOS system. Whilst
this does result in discarding some information about the sound
field, the benefit is that 2D HOA requires a minimum of 2N+1
loudspeakers, whilst HOS requires just N+1. Discarding these
sound field coefficients corresponds to enforcing a cone of
confusion about the y axis, as will be explored in Section VI.

C. 3D Ambsionics To Higher Order Stereo Decoder

A similar decoder from 3D HOA to HOS may also be
derived. However, first the spherical harmonic expansion of
a plane wave sound field must be manipulated to reveal the
relationship between the two techniques. This will involve de-
riving the representation of a plane wave across the z axis only
by utilising the spherical harmonic expansion, then performing
mode matching using a subset of spherical harmonics to define
the final decoder.

Consider the pressure due to a plane wave incident with
wavevector and wavenumber ki = kk̂i at a point r = rr̂
is given by p(kr, r̂) = ejki·r. Note a 3D coordinate system is
now used and the unit vector r̂ denotes the angular dependence
through the azimuth and colatitude angles ϕi and θi. The
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3D Jacobi-Anger expansion expresses the plane wave as a
summation of spherical harmonics [22]

p(kr, r̂) = ejki·r =

∞∑
n=0

n∑
m=−n

4πjnjn(kr)Y
m
n (k̂i)Y

m
n (r̂)∗.

(23)
with jn the n-th spherical Bessel function and the direction
of arrival of the plane wave being given by k̂i. The spherical
harmonics are a set of functions that form an orthonormal basis
over the unit 2-sphere, S2 (a unit sphere). Hence, any square-
integrable well-behaved function on a sphere may be expressed
as a weighted linear summation of spherical harmonics. The
spherical harmonic Y m

n , of order n and degree m, may be
defined in complex form as [24]

Y m
n (θ, ϕ) =

√
(2n+ 1)

4π

(n−m)!

(n+m)!
Pm
n (cos θ)ejmϕ (24)

where Pm
n is the associated Legendre polynomial.

Using the spherical harmonic addition theorem the Jacobi-
Anger expansion may be expressed purely in terms of Legen-
dre polynomials [22]

p(kr, r̂) = ejki·r =

∞∑
n=0

jn(2n+ 1)jn(kr)Pn(k̂i · r̂) (25)

noting that k̂i · r̂ = cos(Θ), where Θ is the angle between k̂i

and r̂, and Pn is the n-th order Legendre polynomial.
Next, a slight change to the coordinate system is required.

In the literature it is common to align the wavevector of the
incident plane wave with the z axis such that ki = kẑ, in
which case ki · r = kr cos(θ) with θ the colatitude. Instead,
align r̂ with the z axis such that r = rẑ and the dot product
ki · r = kr cos(θi). This fixes the coordinates the sound field
can be evaluated at to positions with θ = 0, π which with
r ∈ [0,∞) spans the whole z axis.

Denote the positive and negative halves of the z axis with
subscripts +,−. For the evaluation positions on the positive
and negative z axis respectively, k̂i·r̂+ = cos(θi) and k̂i·r̂− =
cos(π− θi) = − cos(θi) . Utilising the parity of the Legendre
polynomials [22] the plane wave may be expressed as

p+,−(kr, ẑ) =

∞∑
n=0

(±1)njn(2n+ 1)jn(kr)Pn(cos θi). (26)

As the orthogonality of the spherical Bessel functions is
later required, their argument must be extended to cover the
region (−∞,∞). Thus define a change in coordinate system

r ∈ [0,∞) =⇒ r′ ∈ (−∞,∞)

θ = 0, π =⇒ θ = 0
(27)

with the sound field represented as

p(kr′) =


∞∑

n=0
jn(2n+ 1)jn(kr)Pn(cos θi) if kr′ ≥ 0

∞∑
n=0

(−1)njn(2n+ 1)jn(kr)Pn(cos θi) if kr′ < 0
.

(28)
Note that the expression for p−(kr) is the same as p+(kr)

except for the additional term (−1)n. In the new coordinate
system using r′, this factor of (−1)n may be absorbed back
into the spherical Bessel functions of argument kr′ using the
property jn(−x) = (−1)njn(x) [25]. Finally,

p(kr′) =

∞∑
n=0

jn(2n+ 1)jn(kr
′)Pn(cos θi). (29)

Crucially, in performing this rotation and fixing the evalua-
tion of the equation to along the z axis, only the zonal spherical
harmonics are required. These are the spherical harmonics with
m = 0 which have no dependence on the azimuthal angle
ϕ. It may be observed that these spherical harmonics form a
basis for all axisymmetric functions on a sphere which have
no azimuthal dependence. Thus from the full set of spherical
harmonics only the following are utilised:

Y 0
n (θ, ϕ) =

√
(2n+ 1)

4π
Pn(cos θ). (30)

Hence, instead of considering (N+1)2 spherical harmonics
to the N -th order, now only (N +1) play a role. Thus the 3D
HOA sound field representation has been manipulated using
a rotation to consider a subset of spherical harmonics that
represent the sound field along the z axis only.

1) Target and Reproduced sound fields: A set of mode
matching equations will now be defined but instead using the
expansion in (29). The target sound field, pT (kr′) is that of a
plane wave and given by

pT (kr
′) =

∞∑
n=0

jn(2n+ 1)jn(kr
′)Pn(cos θT ). (31)

For a reproduction array of L equidistant loudspeakers, that
act as plane waves with the ℓ-th loudspeaker making an angle
θℓ with the z axis and being driven by a gain gℓ, the reproduced
sound field, pR(kr′), is

pR(kr
′) =

L∑
ℓ=1

gℓ

∞∑
n=0

jn(2n+ 1)jn(kr
′)Pn(cos θℓ). (32)

2) Loudspeaker Gains Definition: As before, the aim is to
find the loudspeaker gains which lead to accurate reproduction
of the target sound field. Begin by equating pT (kr

′) =
pR(kr

′), that is equating (31) and (32). Unlike with normal
HOA mode matching, here is no colatitude or azimuthal angle
to integrate over and thus no corresponding angular dependent
function for which an orthogonality condition can be exploited.
Instead, make use of the orthogonality of the spherical Bessel
functions over the region (−∞,∞), corresponding to the fact
that the region being considered is an infinite line (the z axis).
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The spherical Bessel functions form an orthogonal basis over
the region [−∞,∞] [26]

∫ ∞

−∞
jn(x)jn′(x)dx =

π

(2n+ 1)
δnn′ . (33)

Multiplying both sides of the equality by a dummy variable
jn′(kr′), integrating over [−∞,∞], using the spherical Bessel
function orthogonality condition then removing common terms
leads to the relation

Pn(cos θT ) =

L∑
ℓ=1

gℓPn(cos θℓ). (34)

This is an interesting form of mode matching equation,
dependent on mode matching the Legendre polynomials. Due
to this specific rotation to align the evaluation along the z axis,
this actually equates to correct reproduction along the z axis
only. This bares striking resemblance to HOS.

3) Decoder Definition: Armed with the new mode match-
ing approach in (34), all that is needed to decode from the 3D
Ambisonics representation to HOS is a mapping between the
two sound field representations. This is in fact very simple, as
the n-th order Legendre polynomial is exactly a polynomial
in terms of cos(θ) to the n-th order by definition. Therefore,
the coefficients of the Legendre polynomials fill the entries of
the mapping matrix A3D to decode from the relevant subset
of the 3D Ambisonics representation (the space spanned by
the spherical harmonics with m = 0) to the cosine HOS
representation. Furthermore as proven earlier, because such
a mapping exists the gain definitions from mode matching
the Legendre polynomials in this manner will be exactly
the same as those from the HOS approach (when using the
pseudoinverse and assuming L ≥ N + 1).

The entries of the inverse transform (HOS to HOA) given
by (A3D)−1 are explicitly

A3D,−1
n′,n = ln′,nwhere Pn′(cos θ) =

n′∑
n=0

ln′,n cos
n θ (35)

with ln′,n the n-th coefficient of Pn′ . An example of such
of the decoder matrix up to order N = 2 is

A3D =

1 0 0
0 1 0
1
3 0 2

3

 , (A3D)−1 =

 1 0 0
0 1 0

− 1
2 0 3

2

 . (36)

As with the 2D case, these matrices will be lower triangular.
The rotation is key for the definition of the decoder. The sound
field must be rotated so that the HOS expansion axis is along
the z axis, or equivalently that θ is the angle from both the
z and interaural axis. This is the only rotation that will pick
out the set of (N + 1) spherical harmonics with m = 0 that
can represent the sound field along one axis only. This may be
viewed as actually rotating the sound field so that the listener’s
interaural axis lies along the z axis.

Therefore, a 3D Ambisonics to cosine HOS decoder exists
in a similar manner to the 2D Ambisonics decoder and is

shown as a signal flow in Fig. 2. First, the Ambisonics sound
field must be rotated such that the interaural axis aligns with
the z axis, using standard approaches for the rotation of B-
Format signals [4]. Then a subset of the 3D Ambisonic B-
format signals must be multiplied by a matrix A3D whose
entries are defined by the Legendre polynomials. As with the
2D Ambisonics decoder, the 3D Ambisonics decoder means all
3D Ambisonics content can be rendered over a HOS system,
using only (N + 1) loudspeakers as opposed to (N + 1)2.

VI. FORMULATION FOR ELEVATED SOURCES

So far the HOS approach has been defined using a 2D
coordinate system. However, the existence of the 3D HOA
to HOS decoder suggests the technique is also applicable for
virtual source positions in 3D. In Section III-C the instability
condition demonstrated how, by considering the sound field
reproduced across a single line only, a loudspeaker in front or
behind the listener are viewed as identical by the HOS system.
This is the scenario when sin(θi) = sin(θj) which is satisfied
when θi = π − θj , and is the 2D equivalent of the cone of
confusion. Whilst this creates a limitation on the reproduction
loudspeaker positions, it can be taken advantage of when
considering the virtual target source. That is a virtual source
behind the listener can be represented as a virtual source in the
frontal region, as both lead to an identical sound field across
the analysis axis and therefore identical loudspeaker gains.

Now consider the 3D scenario where the virtual source is
elevated. The cone of confusion about a given axis is defined
as all positions which have the same angle measured from
the interaural axis [27]. Therefore, in a similar manner to the
2D case, a source with elevation can be mapped to a source
position in the frontal horizontal plane (with no elevation)
through the cone of confusion, as both positions will lead to
the same sound field across the evaluation axis. This holds
when the free field and plane wave assumptions made in the
HOS derivation are satisfied. In this case, consider using a 3D
coordinate system with evaluation across the y axis, defined by
ϕy = π/2, θy = π/2. Let r̂e, r̂h be the desired elevated source
position and the equivalent horizontal only position mapped
through the cone of confusion respectively, which is illustrated
in Fig. 3. We will now derive the equivalent horizontal only
source position, with ϕh to be determined and θh = π/2,
that maps from r̂e to r̂h using the cone of confusion. Begin
with the scalar product and the great circle distance that states
between two positions on a circle

cos(Θ) = cos(θ1) cos(θ2) + sin(θ1) sin(θ2) cos(ϕ1 − ϕ2).
(37)

Θ is defined as the angle between r̂e and r̂h. The cone of
confusion requires the angle of the two source positions from
the y axis to be equal, cos(Θh) = cos(Θe), this leads to

ϕh = arccos
[
sin(θe) sin(ϕe)

]
+

π

2
. (38)

This relationship maps any elevated source position to the
equivalent horizontal only position that leads to the same
sound field across the y axis. Therefore, the resulting HOS
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Fig. 2: Signal flow for reproducing 3D HOA B-format utilising HOS.

x

z

y

̂rh

̂re

Fig. 3: Cone of confusion mapping of an elevated position (r̂e
with θe, ϕe) to one with no elevation (r̂h with θh = π/2, ϕh).
The planes indicate positions with equal elevation.

loudspeaker gains will be identical for both positions. In
this sense, HOS will reproduce any elevated source position
through an equivalent horizontal only position, using horizon-
tal only loudspeakers. However, elevation specific cues such
as pinna notches will not be reproduced as the assumption
holds only when the cone of confusion is valid, which is true
for low frequencies [27].

VII. EXPERIMENTAL VALIDATION

Measurements were performed to validate the analytical
results derived so far for the new proposed HOS technique.
The aim of the measurements was to collect a database of
transfer functions in anechoic conditions from a reference
source to a microphone array, with the source at a fixed radial
distance but measuring for different angular positions in the
horizontal plane. From these measurements, the reproduced
sound field due to any given arrangement of loudspeakers
in the horizontal plane can then be simulated. Measurements
were made in the horizontal plane only and therefore a 2D
HOA approach was considered.

Four systems were compared and are detailed in Fig. 4
and Table I. Three HOS systems with increasing truncation
orders (HOS O1, O2 and O12) were analysed to investigate if
increasing the order did yield increased accuracy in the repro-
duced sound field at higher frequencies/larger distances from
the reproduction point. HOS O12 with thirteen loudspeakers
spaced equally across a semicircle in front of the listener was

y

x

HOS O1

HOS O2

HOS O12

HOA O6

Fig. 4: Loudspeaker layouts for the three HOS and one 2D
HOA system. The plot indicates angular arrangements only,
as all loudspeaker were positioned at the same radial distance.

Approach Truncation Order Number of Loudspeakers
HOS 1 2
HOS 2 3
HOS 12 13
HOA 6 13

TABLE I: Details of the systems under comparison.

then chosen to compare to a reference sixth order 2D HOA
rig (HOA O6), which also requires thirteen loudspeakers but
now spaced equally across a circle surrounding the listener.
These systems were chosen as when using the same number of
loudspeakers HOS can achieve a higher truncation order than
HOA, as well as considering that the HOS approach requires
loudspeakers in front of the listener only.

All measurements were performed in the large anechoic
chamber at the Institute of Sound and Vibration Research
(ISVR), University of Southampton, to ensure freefield con-
ditions. The experimental apparatus was the same for all
measurements except for changing the microphone array. Each
microphone array was mounted in turn on a turntable. A
single Genelec 8020C loudspeaker was used as a reference
sound source, positioned 3 meters from the microphone array
to approximate a plane wave source. Transfer functions were
measured from the loudspeaker to the microphone array using
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exponential sine sweeps for all horizontal angular positions
to a 1 degree resolution. To remove reflections from any
equipment in the anechoic chamber, an adapted approach of
frequency-dependent windowing was applied as detailed in [9].

Two different microphone arrays were utilised. The first
was a linear array of 15 B&K type 4189 omnidirectional
microphones spaced with 0.037 m separation between each
microphone. This microphone spacing results in a spatial
aliasing frequency of approximately 4600 Hz. The linear array
was used to sample the sound field across a line, to investigate
the claim that HOS results in correct reproduction across
a given axis. A calibration procedure ensured the response
of all array channels were properly matched. The second
microphone array was an Eigenmike EM32 fourth order HOA
microphone, a 32 capsule spherical microphone array that can
be used to sample the spherical harmonic coefficients of a
sound field [28], [29]. This array was measured to consider the
contribution of a HOS system to the spherical harmonic modes
of the reproduced sound field, to verify whether HOS does
accurately reproduce the m = 0 modes in the rotated reference
coordinate system only as claimed through the 3D HOA to
HOS decoder derivation. The raw output of the Eigenmike
resulted in measurements from the loudspeaker to each of
the microphone capsules. Thus the accompanying Eigenmike
software was used to convert these measurements to B-format
signals, to obtain the impulse responses from the loudspeaker
to each B-format channel. This was performed up to order
N = 4. The B-format impulse responses then underwent a
rotation to align the z axis of the spherical harmonic expansion
basis with the reproduction axis (the y axis).

A. Linear Array Results

The reproduced sound field at each microphone position
was simulated using pR = Ψmeasuredg. Here, pmeasured

R is
the vector of pressures at the microphone positions, in this case
sampling the sound field across the reproduction axis (the y
axis). The target sound field, pmeasured

T , was defined as the
real measurement of the loudspeaker at the required virtual
source position. The measured transfer functions fill the entries
of the plant matrix, Ψmeasured, and the loudspeaker gains, g,
are specified as per the desired order HOS or HOA approach.
The normalised complex error as a function of frequency, ϵ(f),
is defined as the normalised difference between the reproduced
and target sound fields, such that for each microphone position

ϵ(f) =
|pmeasured

T (f)− pmeasured
R (f)|2

|pmeasured
T (f)|2 . (39)

This error metric takes into account both magnitude and
phase differences between the reproduced and target field. The
error is considered using a decibel scale, where a smaller value
indicates less error in which case the sound field reproduced
by the system better matches that of the target.

Fig. 5 shows the complex error across the array length (x
axis on the plots) and as a function of frequency for each of
the reproduction systems for θT = 10◦. The red dotted lines
indicate the N = kr limit for each of the systems [3], under
which it is expected that all systems should perform well with

little error in this region. These results confirm that increas-
ing the order of the HOS approach leads to more accurate
reproduction with respect to the kr quantity, as little error is
observed within the N = kr limit whilst outside of it maximal
error occurs. Therefore utilising a higher order system leads to
more accurate reproduction at higher frequencies and across a
larger distance across the y axis. In general, HOS appears to
follow this N = kr rule of thumb originally derived for HOA.
If the number of loudspeakers is fixed the HOS approach is
advantageous to the HOA technique. This is because a higher
order of reproduction can be achieved leading to a larger
region of validity across the reproduction axis, whilst also
only requiring loudspeakers in front of the listener making for
a more accessible loudspeaker array. Notably, even within the
N = kr bounds there is some error at high frequencies, due
to spatial aliasing dictated by the microphone array spacing.

Fig. 6 shows the complex error for all the systems across
the microphone array length, however now as a function of
all virtual source positions. Individual frequencies are shown
for 250, 1000 and 2000 Hz. Once more it is apparent that
increasing the order of the system leads to an increased area
of accurate reproduction across the y axis. As all systems
use the minimum number of loudspeakers required, both the
HOS and HOA gain definitions activate a single loudspeaker
when the virtual source is positioned at that given loudspeaker.
Therefore, lines of zero error are apparent throughout the
results when θT is at a loudspeaker position. This also reveals
how the HOS technique takes advantage of the instability
condition explained in Section III-C, as due to the cone of
confusion the sound field due a virtual source along the
analysis axis is equal for θT and θ′T = 180◦ − θT . This
can be viewed as a mirroring operation about the analysis
axis. Therefore at loudspeaker positions the sound field is also
correct for the mirrored position on the cone of confusion.
For example with HOS O1 the loudspeakers are positioned at
±30◦, thus correct reproduction is observed when θT = ±30◦

and ±150◦. Finally, comparing HOS O12 and HOA O6 it
is clear that as the frequency increases, the sound field is
reproduced correctly over a larger distance on the evaluation
axis for the HOS technique due to it working to a higher
truncation order.

Finally, Fig. 7 illustrates the complex error across the whole
sound field in the interior of the loudspeaker array for a single
frequency and virtual source position (2000 Hz, θT = 68◦).
This demonstrates that HOS, whilst reproducing the sound
field accurately along the reproduction line, does not reproduce
the sound field over a wider circular area, unlike with HOA.
For HOA O6 some error is seen within the N = kr boundaries
which is most likely experimental error, however, broadly the
sound field is correct across this region. For HOS O1 the
accurate reproduction region is very small at this frequency,
whilst for HOS O2 a slightly larger sweet spot is observed with
some minimal error off the reproduction axis. This suggests
some level of robustness to misalignment of the listener’s
interaural axis with the reproduction axis. HOS O12 exhibits a
significant area of correct reproduction close to the interaural
axis, thus here a significant amount of robustness to listener
misalignment is expected.
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Fig. 5: Complex error of the reproduced sound field, across frequency and distance along the y axis for θT = 10◦. The red
dotted lines indicate the N = kr limit. Columns varying renderer type (HOS O1, HOS O2, HOS O12, HOA O6 respectively).
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Fig. 6: Complex error for of the reproduced sound field, across all virtual source positions and distance along the y axis for
fixed frequencies. The red dotted lines indicate the N = kr limit. Rows varying frequency (a-d) 250 Hz, (e-f) 1000 Hz, (i-l)
2000 Hz. Columns varying renderer type (HOS O1, HOS O2, HOS O12, HOA O6 respectively).
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Fig. 7: Complex error of the reproduced sound field at 2000 Hz for θT = 68◦. The red dotted lines indicate the N = kr limit,
whilst the red circle indicates the virtual source position and the squares show the loudspeaker positions. Columns varying
renderer type (HOS O1, HOS O2, HOS O12, HOA O6 respectively).

B. Eigenmike Results

A similar approach was used for the Eigenmike except
the plant matrix was populated with the loudspeaker to B-
format transfer functions, with the vector pmeasured

R now
the reproduced spherical harmonic coefficients of order n ∈
[0, 4],m = 0 only. Only the m = 0 spherical harmonics are
considered as following the rotation to align the z axis with
the reproduction axis, only the m = 0 subset is required to
represent the sound field along this axis. However, notably
the sound field reproduced using HOS will be incorrect when
deviating from this line, unlike with HOA. The complex error
was again calculated between the reproduced and target sound
fields. The normalisation term was chosen as the measured
target n,m = 0, 0 coefficient, Wmeasured

T (an omnidirectional
microphone response).

ϵ(f) =
|pmeasured

T (f)− pmeasured
R (f)|2

|Wmeasured
T (f)|2 . (40)

Fig. 8 shows the complex error for the reproduced spherical
harmonic coefficients corresponding to each B-format channel,
as a function of frequency and virtual source angular position.
The Eigenmike introduces spatial aliasing above 6000 Hz,
therefore there is considerable error in this region regardless of
the technique. The results demonstrate that HOS does indeed
accurately reproduce the m = 0 coefficients up to the trun-
cation order. This experimentally verifies the link established
between HOS and HOA through the decoder definition, and
that controlling the m = 0 channels only corresponds to
accurate sound field reproduction along a single axis. The
HOS approaches all encounter issues when the virtual source is
positioned behind the listener where there are no loudspeakers
positioned. This suggests that whilst rear virtual sources can
be achieved with HOS and just frontal loudspeakers, they
may not be reproduced as robustly when compared to using
HOA. However, HOA requires a fully surrounding loudspeaker
array for optimal performance, unlike HOS. Interestingly, even
above the truncation order HOS reproduces the spherical
harmonic coefficient correctly up to approximately 800 Hz,
which can be observed for HOS O1, O2 and channels n = 3, 4.

VIII. CONCLUSIONS

This article has introduced the theoretical foundations for a
new sound field reproduction technique named Higher-Order
Stereophony (HOS). HOS is founded on the Taylor expansion
of the sound field due to an incident plane wave, across one
axis only. This expansion represents the sound field as an
infinite summation of the sound fields derivatives evaluated
about an expansion point. Thus HOS leads to accurate sound
field reproduction across a line only. The resulting loudspeaker
gains are panning functions and the stereo sine law has been
shown to be a first order HOS system. This motivates the
name of the technique, where HOS generalises this classic
audio reproduction approach to higher orders.

Decoders from both the 2D and 3D HOA representations to
HOS have been derived. Both decoders first require a rotation
to align the interaural axis across the x or z axis in 2D and
3D, respectively. The 2D HOA to HOS decoder then utilise the
Chebyshev polynomials, whilst the 3D HOA to HOS decoder
uses a subset of spherical harmonics with m = 0. Importantly,
N -th order HOS requires only (N +1) channels/reproduction
loudspeakers, whilst 2D and 3D HOA need (2N + 1) and
(N + 1)2, respectively. Ideally, HOA requires loudspeakers
uniformly distributed over a circle or sphere. In contrast, HOS
can use loudspeakers in front of the listener only, if desired.

Experimental validation was carried out using two different
microphone arrays, a linear microphone array, to evaluate the
reproduced sound field across a line, and a spherical micro-
phone array, to consider the reproduced spherical harmonic
coefficients of the sound field. These results have confirmed
that HOS reproduces the sound field accurately across a line,
following the N = kr rule. HOS also correctly reproduces the
m = 0 spherical harmonic coefficients of the sound field.

A dynamic version of HOS that is adaptive to listener
movements and head rotations has been developed by the
authors and will be presented in future publications. This
dynamic version of HOS leads to listener-adaptive sound field
reproduction and will be shown to encompass other classic
stereo techniques such as the tangent law. HOS will also be
analysed with the inclusion of more complex HRTFs, leading
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Fig. 8: Complex error of the reproduced degree m = 0 spherical harmonic coefficients as a function of frequency and virtual
source position. Rows each show a different order spherical harmonic (n = 0, 1, 2, 3, 4). Columns varying renderer type (HOS
O1, HOS O2, HOS O12, HOA O6 respectively).
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to a new binaural rendering approach based on HOS. The
observation that HOS follows the N = kr rule is also to be
formulated mathematically, and the inclusion of point sources
for the reproduction problem investigated with the expectation
this will lead to frequency-dependent loudspeaker filters as
opposed to panning gains, as in HOA [30].
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