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Abstract

We study d-dimensional scalar field theory in the Local Potential Approximation of the

functional renormalization group. Sturm-Liouville methods allow the eigenoperator equation

to be cast as a Schrödinger-type equation. Combining solutions in the large field limit with

the Wentzel–Kramers–Brillouin approximation, we solve analytically for the scaling dimension

dn of high dimension potential-type operators On(φ) around a non-trivial fixed point. We find

that dn = n(d − dφ) to leading order in n as n → ∞, where dφ = 1
2 (d − 2 + η) is the scaling

dimension of the field, φ, and determine the power-law growth of the subleading correction. For

O(N) invariant scalar field theory, the scaling dimension is just double this, for all fixed N ≥ 0

and additionally for N = −2,−4, . . . . These results are universal, independent of the choice of

cutoff function which we keep general throughout, subject only to some weak constraints.
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1 Introduction

The functional renormalization group (FRG) is one of the most widely used approaches to study quantum

field theories in non-perturbative regimes, as evidenced by an extensive literature (see, for instance, the

reviews [1–6]). Various realizations of the FRG exist [7–18], but the most prevalent version [12–18] focuses

on the flow of an appropriately defined Legendre effective action ΓΛ (also referred to as the effective average

action), with respect to an infrared cut-off scale Λ. This flow equation is given by:

∂

∂Λ
ΓΛ = −1

2
Tr

[
1

∆Λ

∂∆Λ

∂Λ

(
1 + ∆ΛΓ

(2)
Λ

)−1
]
. (1.1)

Here, Tr stands for a space-time trace and Γ
(2)
Λ is the Hessian with respect to the fields. The propagator

∆Λ(q) = CΛ(q)/q
2 is modified by the inclusion of a multiplicative infrared cutoff function CΛ(q) = C(q2/Λ2),

which is non-negative, monotonically increasing, and satisfies C(0) = 0 and C(∞) = 1.

In practical applications, some form of approximation becomes necessary. One frequently employed

approximation is the Local Potential Approximation (LPA) [19–28], which simplifies the flow equations by

disregarding the momentum dependence of the effective action, except for a local potential term, VΛ. For a

scalar field φ in d Euclidean dimensions, the effective action then takes the form:

ΓΛ =

∫
ddx

(
1

2
(∂µφ)

2 + VΛ(φ)

)
. (1.2)

While an exact analytical solution to this truncated FRG formulation is still not possible in general, the

LPA enables numerical treatments that provide valuable insights into the system’s behaviour. It allows

for numerical estimates of various physical quantities, including critical exponents and the scaling equation

of state [1–6, 23, 29–31]. Moreover, the LPA serves as the initial step in a systematic derivative expansion

[1, 23,29–31], which facilitates a more comprehensive exploration of the system’s properties [1–6,30].

Nevertheless it is important to acknowledge the limitations of the LPA and more generally the derivative

expansion. Since such truncations do not correspond to a controlled expansion in some small parameter,

the errors incurred can be expected to be of the same order in general as the quantities being computed.

Furthermore, quantities that should be universal, and thus independent of the specific form of the cutoff,

are not.

It has long been understood that an exception to this is the general form of a non-trivial fixed potential

V (φ) in the large field regime [1, 23,29,31], which follows from asymptotic analysis:

V (φ) = A|φ|d/dφ + · · · as φ→ ±∞ , (1.3)

where the ellipses stand for subleading terms (see later). The leading term coincides with the scaling equation

of state precisely at the fixed point. It is a simple consequence of dimensional analysis on using the scaling

dimension dφ = 1
2 (d − 2 + η) for the field φ at the fixed point, η being its anomalous dimension. However

asymptotic analysis does not fix the amplitude A or the anomalous dimension η, which have to be found by

other means, for example by numerical solution of truncated fixed point equations.
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In this paper, we will show that within LPA, asymptotic analysis combined with Sturm-Liouville (SL)

and Wentzel–Kramers–Brillouin (WKB) analysis,1 also allows one to determine asymptotically the scaling

dimension dn of the highly irrelevant (dn ≫ 1) eigenoperatorsOn = On(φ) of potential-type (those containing

no spacetime derivatives). Ordering them by increasing scaling dimension, we will show that dn = n(d−dφ)
to leading order in n. In the case of O(N) invariant scalar field theory with fixed N ≥ 0 the dimension dn

is doubled to dn = 2n(d − dφ). The scaling dimension is thus independent of N . It agrees with the result

for the single scalar field since these eigenoperators are functions of φ2 = φaφa, and thus pick out only the

even eigenoperators (those symmetric under φ ↔ −φ) in the N = 1 case. We also show that the scaling

dimension is dn = 2n(d− dφ) whenever N = −2k, where k is a non-negative integer.

Once again these results are independent of the choice of cutoff and thus universal. Indeed in this

paper, we will keep the cutoff function completely general throughout, subject only to some weak technical

constraints that we derive later. Note that, like the fixed point equation of state (1.3), the dn take the same

form, independent of the choice of fixed point, provided only that dφ > 0 and that the fixed point potential

is non-vanishing. We also show that the next to leading correction to dn behaves as a power of n. The power

is universal although the coefficient of the subleading correction is not.

Actually this approach was first employed to determine the scaling dimension of highly irrelevant eigen-

operators in an f(R) approximation [34, 35] to the asymptotic safety scenario [36–38] in quantum gravity.

The f(R) approximation serves as a close analogue to the LPA in this context [39–41]. However, while the

resulting scaling dimensions dn exhibit a simple nearly-universal form for large values of n, they neverthe-

less retained strong dependence on the choice of cutoff. This issue can be traced back [35] to the so-called

single-metric (or background field) approximation [36], where the identification of the quantum metric with

the background metric is made in order to close the equations. The present paper thus completes the

circle by demonstrating that, indeed, without such an approximation, the results become truly universal.

Additionally, it showcases the power of these methods in a simpler context.

The paper is organised as follows. We first analyse the functional renormalization group equations

for a single scalar field in the LPA. From the eigenoperator equation we write the resulting SL equation in

Schrödinger form and thus, by taking the large field limit, deduce the asymptotic form of the renormalization

group eigenvalues in the WKB limit. Sec. 3 extends the analysis to O(N) scalar field theory using the same

approach. Finally in sec. 4 we conclude and discuss the results, placing them in a wider context.

2 Flow equations in LPA

The LPA approximation amounts to setting the field φ in the Hessian to a spacetime constant, thus dropping

from a derivative expansion all terms that do not take the form of a correction to the potential. The flow

1See e.g. ref. [32] for textbook discussion of SL methods and ref. [33] for WKB methods.
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equation for VΛ(φ) then takes the form:(
∂t + dφφ

∂

∂φ
− d

)
VΛ(φ) = −1

2

∫
ddq

(2π)d
∆̇

∆

1

1 +∆V ′′
Λ (φ)

, (2.1)

where ∂t = −Λ∂Λ, t being the renormalization group ‘time’ which, following [7], we have chosen to flow

towards the IR. Here the momentum, potential and field are already scaled by the appropriate power of Λ

to make them dimensionless. Then ∆ = C(q2)/q2 no longer depends on Λ. The same is true of ∂t∆Λ, which

after scaling we write as ∆̇, where

∆̇ = 2C ′(q2) . (2.2)

Since C(q2) is monotonically increasing, we have that ∆̇ > 0.

The scaling dimension of the field is dφ = 1
2 (d − 2 + η), where η is the anomalous dimension. Since η

arises from the renormalization group running of the field, and is typically inferred from corrections to the

kinetic term, one would naturally conclude that it vanishes in LPA [2, 7, 19–26]. Nevertheless, as noticed in

refs. [27, 28], this assumption is not necessary. The flow equation (2.1) is still a mathematically consistent

equation with η ̸= 0. However, since we cannot determine η directly from (2.1), its value needs to be input

from elsewhere (either from experiment or other theoretical studies). We will follow this strategy, in the

expectation that it improves the accuracy of our final estimates for dn.

At a FP (fixed point) VΛ(φ) = V (φ), and η, have no renormalization group time dependence. The

eigenoperator equation follows from linearising about a FP:

VΛ(φ) = V (φ) + ε v(φ) eλt , (2.3)

ε being infinitesimal. Here λ is the RG eigenvalue. It is the scaling dimension of the corresponding coupling,

and is positive (negative) for relevant (irrelevant) operators. The scaling dimension of the operator v(φ)

itself is then d− λ. We write the eigenoperator equation in the same form as refs. [34, 35,41]:

−a2(φ)v′′(φ) + a1(φ)v
′(φ) + a0(φ)v(φ) = (d− λ)v(φ) , (2.4)

where the φ-dependent coefficients multiplying the eigenoperators are given by:

a0(φ) = 0 , (2.5)

a1(φ) = dφφ , (2.6)

a2(φ) =
1

2

∫
ddq

(2π)d
∆̇

(1 + ∆V ′′)2
> 0 , (2.7)

and we have noted that a2 is positive. We can now repeat the analysis carried out in [34,35,41] to solve for

λ in the case of high dimension eigenoperators.

2.1 Asymptotic solutions

For large φ, the RHS of (2.1) can be neglected. Thus at a fixed point, the equation reduces to a first order

ODE (ordinary differential equation) which is easily solved. It gives the first term (1.3) in an asymptotic
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series solution [29]:

V (φ) = A|φ|m +O
(
|φ|2−m

)
as φ→ ±∞ , (2.8)

where for convenience we introduce

m = d/dφ , (2.9)

and A is a real constant (that is determined by solving for the full FP solution). The subleading terms arise

from iterating the leading order contribution to next order.

Of course there is always the trivial V (φ) ≡ 0 fixed point solution, corresponding to the Gaussian fixed

point. We will not be interested in that (the scaling dimensions in that case are exactly known and reviewed

in the discussion in sec. 4). Instead we focus on non-trivial FP solutions for which A ̸= 0. In principle,

A could be different in the two limits φ → ±∞, although in practice the fixed point potentials (2.8) are

symmetric. Anyway, we will see that A drops out of the analysis in a few further steps.

It is helpful for the following to note that m > 3. Neglecting η (typically η ≪ 1, see e.g. [42]), we see

that m is a decreasing function of d for all d > 2. In practice, non-trivial FP solutions only exist for d < 4

(see e.g. [23]). In the limit d → 4−, η → 0 (by the ϵ expansion [42]) and thus m → 4. In d = 2 dimensions,

the asymptotic solution (2.8) corresponds to that of a unitary minimal model [43, 44]. The one with the

largest anomalous dimension is that of the Ising model universality class which has η = 1/4, thus in d = 2

dimensions we have m ≥ 8 for all the unitary minimal models.

Note that the solution (2.8) has a single free parameter even though the FP equation is a (non-linear)

second order ODE. The second parameter, if it exists, can be deduced by linearising around (2.8), writing

V (φ) 7→ V (φ) + δV (φ), and solving the flow equation (2.1) at the FP this time for δV . Since δV satisfies

a linear second order ODE and one solution is already known, namely δV = ∂AV (φ), it is easy to find the

solution that corresponds at the linearised level to the missing parameter [23,29]. However, one then discovers

that these ‘missing’ linearised solutions are rapidly growing exponentials. Such a linearised perturbation is

not valid asymptotically since for diverging φ it is much larger than the solution (2.8) we perturbed around.

Hence, the FP asymptotic solutions only have the one free parameter, A.

Substituting (2.8) into (2.7), we see that asymptotically a2(φ) scales as follows:

a2(φ) = F |φ|2(2−m) +O
(
|φ|3(2−m)

)
as φ→ ±∞ , (2.10)

where F is positive and cutoff dependent:

F =
1

2 (m(m− 1)A)
2

∫
ddq

(2π)d
∆̇

∆2
= − 1

(m(m− 1)A)
2

∫
ddq

(2π)d
q4

∂

∂q2
C−1(q2) . (2.11)

We will assume that the integral converges. This imposes some weak constraints on the cutoff profile. From

(2.11), we see that we require C(q2) to vanish slower than qd+2 as q → 0, and C → 1 faster than 1/qd+2 as

q → ∞. This is true for example for the popular form of additive (i.e. mass-type) cutoff [13] (which was the

one used in the analogous f(R) analyses in refs. [34, 35]):

r(q2) =
q2

exp(aq2b)− 1
, a > 0, b ≥ 1 , (2.12)

6



provided also we set b < 1
2 (d+ 2), the relation to C(q2) being q2C−1(q2) = q2 + r(q2).

Given that a2(φ) vanishes asymptotically, it is tempting to neglect the a2 term in (2.4). We will shortly

justify this. By neglecting the a2 term, the ODE becomes linear first order giving a unique solution up to

normalization. Thus we deduce that the eigenoperators asymptotically scale as a power of the field:

v(φ) ∝ |φ|
d−λ
dφ + · · · , (2.13)

where the ellipses stands for subleading corrections. The neglect of the a2 is justified as follows. The missing

solution is one that grows exponentially (again, so that a2(φ)v
′′(φ) cannot be neglected). Since the ODE is

linear, these are allowed solutions to (2.4), but they are ruled out because they do not evolve multiplicatively

in the RG [1,30,34,35,45,46].

Now, the asymptotic solution (2.13) imposes two boundary conditions (one for each limit φ→ ±∞) on

the second order ODE (2.4), but since the ODE is linear this overconstrains the equation2 which thus leads

to quantisation of the RG eigenvalue λ. We index the solutions as vn(φ), ordering them so that λn decreases

as n increases. We can now perform an SL transformation and deduce the asymptotic dependence of the

eigenvalues λn on n, as n→ ∞.

2.2 SL analysis

We can rewrite the eigenvalue equation (2.4) in a SL form by multiplying it with the SL weight function

w(φ) =
1

a2(φ)
exp

{
−
∫ φ

0

dφ′ a1(φ
′)

a2(φ′)
dφ′
}
, (2.14)

which is always positive due to the positivity of a2. Then the eigenvalue equation becomes

− (a2(φ)w(φ)v
′(φ))

′
= (d− λ)w(φ)v(φ) . (2.15)

The SL operator on the left, L = − d
dφ

(
a2w

d
dφ ·
)
, is self adjoint when acting on the space spanned by the

eigenoperators, i.e. it satisfies ∫ ∞

−∞
dφu1(φ)Lu2(φ) =

∫ ∞

−∞
dφu2(φ)Lu1(φ) , (2.16)

when the ui are linear combinations of the eigenoperators. This is so because the boundary terms at infinity,

generated by integration by parts, vanish in this case. This follows because, from (2.13), the ui diverge at

worst as a power of φ, whilst w(φ) → 0 exponentially fast as φ→ ±∞.

Thus from SL analysis [32], we know that the eigenvalues λn are real, discrete, with a most positive

(relevant) eigenvalue and an infinite tower of ever more negative (more irrelevant) eigenvalues, λn → −∞ as

n→ ∞ [30]. Let us define a ‘coordinate’ x:

x =

∫ φ

0

1√
a2(φ′)

dφ′ (2.17)

2We can see this for example by imposing a normalization condition on v.
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(always taking the positive root in fractional powers). Defining the wave-function as

ψ(x) = a
1/4
2 (φ)w1/2(φ)v(φ) , (2.18)

enables us to recast (2.15) as:

−d
2ψ(x)

dx2
+ U(x)ψ(x) = (d− λ)ψ(x) . (2.19)

This is a one-dimensional time-independent Schrödinger equation for a particle of massm = 1/2, with energy

E = d− λ i.e. just the eigenoperator scaling dimension, and with potential [34, 35,41]:

U(x) =
a21
4a2

− a′1
2

+ a′2

(
a1
2a2

+
3a′2
16a2

)
− a′′2

4
, (2.20)

where the terms on the right hand side are functions of φ.

From the limiting behaviour of a2(φ), (2.10), we see that asymptotically the coordinate x scales as

x =

∫ φ

0

(
|φ′|m−2

√
F

+O(1)

)
dφ′ = ± |φ|m−1

(m− 1)
√
F

+O(|φ|) as φ→ ±∞ , (2.21)

so in particular when φ→ ±∞ we have x→ ±∞. On the right hand side of (2.20), the first term dominates

at leading order (LO) and next-to-leading order (NLO). Since asymptotically,

a21(φ)

4a2(φ)
=
d2φ
4F

|φ|2m−2 +O(|φ|m) , (2.22)

we thus find that

U(x) =
1

4
(d− dφ)

2x2 +O(|x|1+
1

m−1 ) as x→ ±∞ . (2.23)

To LO, this is the potential of a simple harmonic oscillator of the form 1
2mω

2x2, where

ω = d− dφ =
1

2
(d+ 2− η) . (2.24)

2.3 WKB analysis

We can now use WKB analysis to compute the asymptotic form of the energy levels, a.k.a. operator scaling

dimensions, En, at large n. This follows from solving the equality∫ xn

−xn

dx
√
En − U(x) =

(
n+

1

2

)
π , (2.25)

for the total phase of the wave oscillations described by ψ(x), in the limit of large En [33]. Here xn are the

classical turning points, i.e. such that En = U(±xn). Now, the above integral is dominated by the regions

close to the turning points, where we can substitute the asymptotic form (2.23). Including the subleading

correction proportional to some constant γ (that depends on the cutoff profile) the integral is

ω

2

∫ xn

−xn

dx

√
x2n + γx

1+ 1
m−1

n − x2 − γ|x|1+
1

m−1 =
ω

2
x2n

∫ 1

−1

dy

√
1− y2 + γx

1
m−1−1
n (1− |y|1+

1
m−1 ) . (2.26)
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Since the xn are also large we can now evaluate the right hand side and thus from (2.25) we get the asymptotic

relation between xn and n:

ωπ

4
x2n +O

(
x
1+ 1

m−1
n

)
= nπ . (2.27)

Hence, using (2.23), (2.24) and (2.27), the scaling dimension of the eigenoperators takes the form

dn = En = d− λn = U(xn) = nω +O
(
n

m
2(m−1)

)
= n(d− dφ) +O

(
n

m
2(m−1)

)
as n→ ∞ . (2.28)

The subleading correction to the critical exponents contain information about the cutoff via the constant γ

introduced in (2.26). However, at leading order the result is independent of the cutoff, and is hence universal.

3 O(N) scalar field theory

Now let us apply the same treatment to N scalar fields φa (a = 1, . . . , N) with an O(N) invariant potential

VΛ(φ
2) = VΛ(ρ), in the LPA. We use the shorthand ρ = φaφa = φ2. The flow equation (2.1) becomes [31,47]:(

∂t − d+ 2dφρ
∂

∂ρ

)
VΛ(ρ) = −1

2

∫
ddq

(2π)d
∆̇

∆

(
M−1

)aa
, (3.1)

where the matrix M is given by:

Mab = δab +∆
∂2VΛ(ρ)

∂φa∂φb
= δab + 2∆

[
δabV ′

Λ(ρ) + 2φaφbV ′′
Λ (ρ)

]
. (3.2)

Inverting and tracing, yields:(
M−1

)aa
=

N − 1

1 + 2∆V ′
Λ(ρ)

+
1

1 + 2∆V ′
Λ(ρ) + 4∆ρV ′′

Λ (ρ)
. (3.3)

In the limit of large ρ, the right hand side of the flow equation (3.1) can be neglected at leading order. This

implies that a FP solution VΛ(ρ) = V (ρ) takes the following asymptotic form:

V (ρ) = Aρ
m
2 +O

(
ρ1−

m
2

)
as ρ→ ∞ , (3.4)

where as before the subleading term has been calculated by iterating the leading contribution to next order.

The RG eigenvalue equation follows by linearising (3.1) around the fixed point solution,

VΛ(ρ) = V (ρ) + ε v(ρ) eλt , (3.5)

giving an equation for v(ρ) with the same structure as (2.4), i.e.

−a2(ρ)v′′ + a1(ρ)v
′ + a0(ρ)v = (d− λ)v , (3.6)

the same value for a0(ρ) = 0, but different expressions for a1(ρ),

a1(ρ) = 2dφρ−
∫

ddq

(2π)d
∆̇

[
1

(1 + 2∆V ′ + 4∆ρV ′′)
2 +

N − 1

(1 + 2∆V ′)
2

]
, (3.7)
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and a2(ρ), which however is again always positive:

a2(ρ) =

∫
ddq

(2π)d
2∆̇ρ

(1 + 2∆V ′ + 4∆ρV ′′)
2 . (3.8)

Using the asymptotic fixed point solution (3.4) (and assuming A ̸= 0) we get that asymptotically a2 scales

as follows:

a2(ρ) = 4Fρ3−m +O
(
ρ4−

3m
2

)
as ρ→ ∞ , (3.9)

where F was already defined in (2.11). By similar arguments to before, we see that m > 3 in practice, so

this implies a2(ρ) → 0. We also find that a1 scales as follows:

a1(ρ) = 2 dφρ+O
(
ρ2−m

)
as ρ→ ∞ . (3.10)

If we substitute ρ = φ2 into the above asymptotic expansions, they differ from the large φ behaviour (2.6) of

a1(φ) and (2.10) of a2(φ). However they reproduce the previous results once we transform the ODE (3.6) by

changing variables ρ = φ2. Thus by the same arguments as before, cf. (2.13), we also know that for ρ→ ∞,

we must have

v(ρ) ∝ ρ
d−λ
2dφ + · · · . (3.11)

However, this now imposes only one boundary condition on the linear ODE (3.6) since ρ is restricted to

be non-negative. On the other hand we see from (3.8) that a2(0) = 0, so the ODE has a so-called fixed

singularity at ρ = 0. In order to ensure that v(ρ) remains non-singular at this point, an additional boundary

condition is then required:

a1(0)v
′(0) = (d− λ)v(0) . (3.12)

Now we again have two boundary conditions, overconstraining the equation, and leading to quantisation of

the RG eigenvalue λ.

3.1 SL analysis

The last step is to perform the SL analysis, which also differs because of the ρ = 0 boundary. For small ρ

we have

a2(ρ) = 2Gρ+O(ρ2) and a1(ρ) = −GN +O(ρ) , (3.13)

where we have set

G =

∫
ddq

(2π)d
∆̇

[1 + 2∆V ′(0)]
2 . (3.14)

Note that G is of course positive. (By Taylor expanding (3.1) one sees that its convergence is guaranteed

for any such solution to the flow equation.) The SL weight function now takes the form

w(ρ) =
1

a2(ρ)
exp

{
−
∫ ρ

ρ0

dρ′
a1(ρ

′)

a2(ρ′)

}
, (3.15)

where by (3.13) a non-zero lower limit, ρ0 > 0, is required to avoid the integral diverging (when N ̸= 0).
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Using w(ρ) we can now cast (3.6) in SL form (2.15). However, for the SL operator to be self-adjoint, we

need the boundary contributions that appear on integration by parts, to vanish. This is still true for large

field since as ρ → ∞, the eigenoperators diverge at worst as a power, whilst from (3.9) we have a2(ρ) → 0,

and thus w(ρ) → 0 exponentially fast. At the ρ = 0 boundary we require:3

lim
ρ→0

a2(ρ)w(ρ)
(
vi(ρ)v

′
j(ρ)− vj(ρ)v

′
i(ρ)

)
= 0 , (3.16)

for any two eigenfunctions vi(ρ) and vj(ρ). This is true for all N > 0 since by (3.13) and (3.15) we see that

for small ρ,

a2(ρ)w(ρ) ∝ ρN/2 [1 +O(ρ)] . (3.17)

We have thus determined that the SL operator is self-adjoint for all N > 0.

Actually, N = 0 is also interesting since it corresponds to the universality class of fluctuating long

polymers [42]. In this case, the above analysis shows that a2(0)w(0) > 0, which would appear to imply that

(3.16) is no longer satisfied. However from (3.13) we see that a1(0) = 0 now and thus, from (3.12), either

λi = d or vi(0) = 0 [31]. The first possibility corresponds to the uninteresting solution v(ρ) ≡ 1, i.e. the

unit operator, which we discard. All the other eigenoperators must thus satisfy vi(0) = 0, and so (3.16) is

satisfied in this reduced space. Therefore, with this one proviso, the SL operator is actually self-adjoint for

all N ≥ 0.

For general N < 0, the SL operator fails to be self-adjoint, and thus SL analysis is no longer applicable.

However for N = −2k, k a non-negative integer, something special happens. The first k + 1 eigenoperators

with the lowest scaling dimension turn out to have exactly soluble scaling dimensions, in fact coinciding

with the Gaussian ones [48–50]. (The case N = 0 above is the first example, the lowest dimension operator

being the unit operator with scaling dimension zero.) Again, the SL operator is self-adjoint in the remainder

of the space. For example for N = −2, one knows from ref. [31] that the remaining eigenoperators satisfy

vi(0) = v′i(0) = 0, and thus vi(ρ) ∝ ρ2 for small ρ, whilst for N = −4 boundary conditions force the

remaining eigenoperators to satisfy vi(ρ) ∝ ρ3 for small ρ. From that analysis it is clear that in general at

N = −2k, we have that the remaining operators satisfy

vi(ρ) ∝ ρk+1 as ρ→ 0 . (3.18)

Combining these observations with (3.16) and (3.17), we see that the SL operator is indeed self-adjoint in

the reduced space defined by excluding the first k + 1 operators.

The SL equation can now be recast in the same way as before, using (2.17) for x and (2.18) for ψ(x)

(except for the obvious replacement of φ by ρ). The resulting Schrödinger equation is then precisely as

before, viz. (2.19), and the potential U(x) also takes precisely the same form in terms of the ai, viz. (2.20).

However the ρ = 0 boundary turns into an x = 0 boundary since, by (3.13) and (2.17), we have

x =
√
2ρ/G+O

(
ρ

3
2

)
as ρ→ 0 . (3.19)

3Using (3.12) and (3.13), this can be reduced to limρ→0 a2(ρ)w(ρ)(λi − λj) vi(ρ)vj(ρ) = 0 (when N ̸= 0).
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Thus, using a2 from (3.13) and a2w from (3.17), we see that

ψ(x) ∝ x
N−1

2 v(x) (3.20)

for small x. Hence for all N > 1, ψ(x) vanishes as x → 0. On taking into account the behaviour (3.18) we

see that in the reduced space, ψ(x) also vanishes for the special cases N = −2k. In this limit the leading

contributions to the potential come from the first, third and fourth terms in (2.20), and thus we find:

U(x) =
(N − 1)(N − 3)

4x2
+O(1) as x→ 0 . (3.21)

The cases N = 1, 3 are exceptional since this leading behaviour then vanishes, whilst the range 1 < N < 3

will need a separate treatment because the potential is then unbounded from below.

At the other end of x’s range, we find that

x =

∫ ρ

0

dρ′

(
(ρ′)

1
2 (m−3)

2
√
F

+O
(
ρ′−

1
2

))
=

ρ
1
2 (m−1)

(m− 1)
√
F

+O
(
ρ

1
2

)
as ρ→ ∞ . (3.22)

Identifying ρ = φ2, this is the same formula (2.21) as before. The potential U(x) is again dominated by the

first term in (2.20), both at LO and NLO. Substituting the asymptotic expressions (3.10) and (3.9) for a1

and a2, we find exactly the same formula (2.23) for the large x behaviour of U(x). In particular the leading

term is again that of a simple harmonic oscillator with angular frequency ω = d− dφ.

3.2 WKB analysis

For the cases N > 3, 0 < N < 1 and N = −2m, we can now proceed with the WKB analysis in the usual

way. In this case we have for the total phase of the wave function:∫ x+
n

x−
n

dx
√
En − U(x) =

(
n+

1

2

)
π , (3.23)

where x−n and x+n are the classical turning points, i.e. En = d − λn = U(x−n ) = U(x+n ). In contrast to the

previous case, the potential is not symmetric and there is no simple relation between x−n and x+n .

In the large n limit, the contribution from the right hand boundary gives half of what we obtained before.

To see this in detail, let x+0 be some fixed finite value but sufficiently large to trust the asymptotic form

(2.23) of the potential, then the contribution from the right hand boundary is∫ x+
n

x+
0

dx
√
En − U(x) =

ω

2
(x+n )

2

∫ 1

x+
0 /x+

n

dy

√
1− y2 + γ(x+n )

1
m−1−1(1− |y|1+

1
m−1 ) . (3.24)

Taking into account the multiplying factor of (x+n )
2 we see that the lower limit x+0 /x

+
n of the integral can

be set to zero, since the correction is of order O(x+n ) which is smaller than that given by the γ correction.

Thus we get half the integral in (2.26) (with xn replaced by x+n ) giving half the left hand side of (2.27):∫ x+
n

x+
0

dx
√
En − U(x) =

ωπ

8
(x+n )

2 +O
(
(x+n )

1+ 1
m−1

)
. (3.25)
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Using the asymptotic form of the potential, we see that the leading term can be written as πEn/(2ω). In

the large n limit, the left hand boundary makes a contribution that can be neglected in comparison. To see

this let x−0 be some fixed finite value but sufficiently small to use (3.21). Then the contribution from the left

hand boundary is∫ x−
0

x−
n

dx
√
En − U(x) =

1

2

√
(N − 1)(N − 3)

∫ x−
0 /x−

n

1

dy

(√
y2 − 1

y
+O(x−n )

)
. (3.26)

Since x−n is vanishing for large En, we see that this integral is O(1/x−n ) or, using again the relation (3.21),

O(E
1/2
n ). That only leaves the portion of the integral that goes from x−0 to x+0 , but since these boundaries

are fixed and finite, we see that this part also grows as
√
En and thus it too can be neglected in comparison

to (3.25).

Therefore asymptotically the integral in (3.23) is given by (3.25). Inverting the relation to find (x+n )
2

asymptotically in terms of n, we thus find

dn = En = d− λn = U(x+n ) = 2nω +O
(
n

m
2(m−1)

)
= 2n(d− dφ) +O

(
n

m
2(m−1)

)
as n→ ∞ , (3.27)

i.e. precisely double the value we found for a single component field in (2.28) and independent of N .

We see that technically this arises because the WKB integral is precisely half as large in the O(N)

case, the leading contribution coming from the x+n boundary only. Recall that at N = 1, 3, the leading

behaviour (3.21) of U(x) is no longer applicable. Since the potential is now finite as x → 0, it is clear from

the above analysis that the left hand boundary continues to contribute at most O(E
1/2
n ) ∼

√
n and so can

be neglected. Thus we see that (3.27) applies also to these exceptional cases. Thus also for N = 1 we find

twice the previous scaling dimension as a function of large index n. This is in agreement with that single

field result however, because these eigenoperators are a function of φ2 only. Hence for a single component

field, the current n indexes only the even eigenoperators (those symmetric under φ↔ −φ).
Finally, let us show that our result (3.27) is also applicable to the range 1 < N < 3. Although in this

case, from (3.21), the potential U(x) → −∞ as x→ 0, we know from (3.20) that the solutions we need, have

ψ(x) vanishing there. These solutions are consistent with the Schrödinger equation (2.19) because for small

x we have, by (3.20), a diverging second derivative:

−d
2ψ(x)

dx2
∝ − (N − 1)(N − 3)

4x2
ψ(x) , (3.28)

which is precisely the right behaviour to cancel the divergence in the Schrödinger equation coming from

the U(x)ψ(x) term. Meanwhile the v(x) term in (3.20) is well behaved in terms of oscillations at small x,

behaving similarly to the above cases. Therefore we are only neglecting a subleading contribution to the

total phase, if we work instead with a modified WKB integral where we replace the lower limit in (3.23)

with some finite value x−0 . By the above analysis we then recover (3.27) again. In this way we have shown

that the result (3.27) is actually applicable for all N ≥ 0 and to the special cases N = −2k (where k is a

non-negative integer).
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4 Summary and discussion

We have used SL theory and WKB methods to derive the scaling dimension dn of highly irrelevant operators

On around a non-trivial fixed point for scalar field theory, in the Local Potential Approximation (LPA).

The scaling dimensions dn are ordered so that they increase with increasing index n. The dn are derived

following the methods developed in [34]. They are given to leading order in n, together with the power-law

dependence on n of the next-to-leading order. The results apply to all the non-trivial (multi)critical fixed

points in 2 < d < 4, for single component scalar field theory and for O(N) invariant scalar field theory, and

also to the unitary minimal models in d = 2 dimensions. The dn are universal, independent of the choice

of fixed point (except through the anomalous dimension η) and independent of the cutoff choice which we

have left general throughout, apart from the weak technical constraints discussed below eqn. (2.11). In

particular these constraints allow for the popular smooth cutoff choice (2.12). The crucial property leading

to universality is that the results depend only on asymptotic solutions at large field, which can be derived

analytically, and are also universal in the same sense. Although non-universal cutoff-dependent terms, in

particular (2.11) and (3.14), enter into the calculation at intermediate stages, they drop out in the final

stages. For a single component real scalar field, dn is given in (2.28). For O(N) scalar field theory, the dn

are just twice this, cf. (3.27), independent of N . This is in agreement with the single field result because

here n indexes the eigenoperators that are a function of φ2 only.

The first steps in deriving these results is to recast the eigenoperator equation in SL form, and then

establish that the SL operator is self-adjoint in the space spanned by the eigenoperators. For a single

component scalar field this follows after demonstrating that the SL weight decays exponentially for large

field, since the eigenoperators grow at most as a power of the field. For the O(N) case the analysis is more

subtle because the relevant space is now the positive real line (parametrised by ρ = φ2 ≥ 0) and thus the SL

operator is self-adjoint only if the boundary terms at ρ = 0 also vanish. By analytically determining the small

ρ dependence of the relevant quantities we see that the SL operator is self-adjoint when N > 0. For N ≤ 0,

the SL operator is not self-adjoint and the analysis does not apply. Presumably in these cases one would

find that the scaling dimensions dn are no longer real. However for a sequence of special cases N = −2k, k a

non-negative integer, the SL operator is self-adjoint on a reduced space spanned by all eigenoperators apart

from the first k + 1. The analysis can then proceed on this reduced space. As we already noted, while most

of these special cases are presumably only of theoretical interest, the N = 0 case describes the statistical

physics of long polymers.

The next step is to cast the SL equation in the form of a one-dimensional time-independent Schrödinger

equation with energy levels En = dn and potential U(x). For the single component field this potential

is symmetric, and in order to determine the energy levels En asymptotically at large n, using the WKB

approximation, we need only the behaviour of U(x) at large x. The latter follows from our asymptotic

analysis. For O(N) scalar field theory, the space is the positive real line x ≥ 0, and thus for WKB analysis

we need also the behaviour of the potential U(x) at small x. Here we find that the range 1 ≤ N ≤ 3 requires
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a separate treatment because the leading term in U(x) turns negative leading to a potential unbounded from

below. Nevertheless we are able to treat this case and the end result for dn, (3.27), is the same, thus applying

universally to all N ≥ 0 and the N = −2k special cases.

Although these results are universal, they are still derived within the LPA, which is an uncontrolled

model approximation. One might reasonably hope however that the fact that these results are universal in

the sense of being independent of the detailed choice of cutoff, is an indication that they are nevertheless

close to the truth. On the other hand the LPA [22] of the Polchinski flow equation [9] is in fact completely

cutoff independent, although this property arises rather trivially. It is actually equivalent under a Legendre

transformation [51] to the flow equation (2.1) for the Legendre effective action in LPA, as we study here,

but only for a special (but actually popular) choice of additive cutoff known as the optimised cutoff [52].

However the optimised cutoff does not satisfy our technical constraints given below (2.11) so our analysis is

invalid for this case. Nor in fact does a sharp cutoff [14,20,23,53] or power-law cutoff [29] satisfy the technical

constraints. What this means is that these particular cutoffs fail to regularise completely the region of large

fields, in the sense that a2, defined by (2.7) or (3.8), no longer has an asymptotic expansion given simply

by integrating over the asymptotic expansion of its integrand. For these three particular cutoffs, regions of

momenta far from Λ alter the asymptotic expansion of a2 so that it is no longer of the form (2.10), or (3.9),

and for this reason these cutoffs are less satisfactory.

Nevertheless, following our methods, it would be straightforward to derive the asymptotic scaling dimen-

sions dn in LPA for any or all of these three special choices of cutoff, by using the particular form of the LPA

flow equation in these cases (which are known in closed form, since the momentum integrals can be calculated

analytically in these cases). The results will differ from the dn derived here and amongst themselves, but

their investigation would improve insight into the accuracy of the LPA in this regime. Furthermore it would

seem possible to generalise any of these special choices of cutoff to their own class of cutoffs with similar

properties, and thus understand the extent to which the results could still be cutoff independent, up to some

appropriate constraints, in these cases, and gain a more detailed understanding of why the dn differ.

Unfortunately our dn do not seem to match in a useful way to existing results in the literature. The

LPA restricts us to eigenoperators that contain no spacetime derivatives, and thus our index n counts only

over these. In reality all eigenoperators (apart from the unit operator) contain spacetime derivatives, so in

particular it is not clear how our index n would map into the exact sequence.

However in some special limits the LPA is effectively exact. This is true for the Gaussian fixed point for

example, where dn = ndφ (with η = 0). Our scaling dimensions dn differ from this, but the Gaussian fixed

point is specifically excluded from our analysis since our results apply only to non-trivial fixed points, such

that the asymptotic expansion of the fixed point potential takes the form (1.3) or (3.4) with A ̸= 0.

The LPA also becomes effectively exact in the large N limit [47], and there the scaling dimensions are

dn = 2n (with η = 0) which again differs from our result (as well as differing from the Gaussian fixed point

result). Furthermore they continue to disagree even if we now take a second limit such that both n and N

are sent to infinity. However in this case we have an example where the order of the limits matters. The
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N → ∞ result is derived for dn whilst first holding n fixed, while our result applies first for fixed N while

n→ ∞.

The difference can be seen at the technical level. The first term on the right hand side of the flow

equation (3.1) is proportional to N . In our analysis however it is the denominators that dominate. On the

other hand in the large N analysis, only the first term survives, resulting in a first order ODE with no SL

properties (or Schrödinger equation representation). The universal results fall out on the one hand in our

analysis from the asymptotic behaviour at large field, but on the other hand in large N they fall out from

a Taylor expansion around the minimum of the fixed point potential [47]. There seems unfortunately to be

no way to bridge the gap between these two limiting regimes.

An even clearer example where the exchange of limits do not commute, is provided by the special cases

N = −2k. As we recalled in sec. 3, in these cases the first k+1 eigenoperators degenerate, gaining Gaussian

scaling dimensions. But our dn apply to the highly irrelevant eigenoperators that are found in the reduced

space, which excludes these first k + 1 operators, and hence have non-trivial scaling dimensions. However

if instead we fix on the nth eigenoperator and let N → −∞ by sending k → ∞, we see that this nth

eigenoperator will fall into the excluded space and thus end up with Gaussian scaling dimensions. The

disagreement between the two results will then remain even if we choose next to send n→ ∞.
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