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As is generally acknowledged, the work of Jan Willems on dissipativity has formed the
foundation for large parts of systems and control theory as developed in the past fifty years. While
working as an assistant professor in the Department of Electrical Engineering at MIT during
the period between 1968 to 1973, he wrote the ground-breaking papers “Dissipative dynamical
systems, General theory”; and “Dissipative dynamical systems, Linear systems with quadratic
supply rates” in Archive for Rational Mechanics and Analysis [1], [2]. In these seminal papers he
introduced the notion of a dissipative system. During the same period, he also made fundamental
contributions to the subject of optimal control, in particular to linear quadratic problems with
indefinite cost, and the associated algebraic Riccati equation [3]. Indeed, the most appealing
framework for studying the Riccati equation is that of dissipative systems, because there the
Riccati equation emerges in a natural way by reformulating the dissipation inequality (which
expresses the fact that the system under consideration is dissipative) as a so-called linear matrix
inequality (LMI). Together, [1], [2] and [3] are generally considered to provide the main concepts
and analysis tools in many areas of linear and nonlinear systems and control, ranging from
stability theory, linear quadratic optimal control and stochastic realization theory, to network
synthesis, differential games and robust control.

In the early 1980s, Jan Willems became conscious of the limitations of input-output
thinking as the framework for systems and control theory. This led him to develop the behavioral
approach, in which a dynamical system is simply viewed as a family of trajectories. The fourth
author of this paper has had the opportunity to collaborate with Jan Willems on dissipativity in
the context of the behavioral approach to linear systems. A central concept in that theory is the
notion of quadratic differential form (QDF), introduced in 1998 in [4]. In the behavioral theory of
dissipativity, supply rates and storage functions are represented by QDFs. Using this framework,
in [5] it was shown that every storage function of a given dissipative system can be written
as a quadratic function of the state of that system. Also, in [6] and [7], the well-known H∞
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control problem for linear input-state-output systems [8] was reformulated as a behavioral control
problem of finding a suitable dissipative controlled behavior. The famous conditions from [8]
(requiring the existence of two solutions of Riccati equations that satisfy a coupling condition)
were generalized in [6], requiring the existence of storage functions (as QDFs) satisfying a
coupling condition.

In addition, it was shown in [4] that computations on QDFs can be represented as formal
operations on two-variable polynomial matrices. Using this framework, this led the third and
fourth authors of the present paper to apply behavioral dissipativity theory to the problems of J-
spectral factorization [9] and the existence of sign-definite solutions to the algebraic Riccati
equation [10]. Also the second author has employed dissipativity theory in the contexts of
uncontrollable systems [11] and discontinuous systems [12], [13], [14].

In the present paper, we study dissipativity of linear finite-dimensional input-state-output
systems from a data-driven perspective. It is well-known that for a given input-state-output system
with given supply rate, one can test dissipativity by checking the feasibility of a linear matrix
inequality involving the system matrices. In this paper, we assume that the system dynamics
is unknown, in the sense that we do know the state space dimension and the input and output
dimensions, but the system matrices are not known. In this situation, the question arises whether
we can verify dissipativity using measured system trajectories, instead of a system model.

Recently, the problem of inferring dissipativity properties from data has received consider-
able attention. In [15], the set of supply rates with a given structure with respect to which a (not
necessarily linear) system is dissipative was computed on the basis of a finite number of its input-
output trajectories. In [16] an iterative procedure was illustrated to compute the input feedforward
passivity index and the shortage of passivity for discrete-time linear systems. The most relevant
references for the problem studied in this paper are [17], [18], [19]. In [17], the notion of (finite-
horizon) L-dissipativity was introduced and also studied in [18]. A discrete-time system is L-
dissipative if the average of the supply rate over the interval [0, L] is nonnegative for all system
trajectories. This is a sufficient condition for dissipativity, equivalent to a matrix inequality set
up from the supply rate and a system trajectory over [0, L]. In both these contributions, a crucial
assumption is that the input trajectory is persistently exciting of a sufficiently high order (see [20]
and [21]). This property of the input sequence can be shown to imply that the data-generating
system is uniquely identifiable from the data.

In this paper we adopt the more classical notion of dissipativity for linear systems, rather
than L-dissipativity. We consider a setup similar to that of [19]. In that paper, sufficient data-
based conditions were given for dissipativity. The main difference between our results and those
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in [19] is that we provide necessary and sufficient conditions for dissipativity based on data, for
noiseless and noisy data. An additional (but smaller) difference is that in our setting, also the
output system matrices are unknown.

Our approach involves bounding the noise by a quadratic matrix inequality, which implies
that also the unknown system parameters satisfy a quadratic matrix inequality. Our goal is
to ascertain dissipativity of all systems satisfying this inequality. The method thus fits in the
robust control literature, where quadratic uncertainty descriptions have been studied in detail.
We mention contributions to integral quadratic constraints [22], the quadratic separator [23],
and the full block S-procedure [24], [25]. At a high level, our approach differs from classical
robust control in that we provide direct mappings from data to storage functions. At a more
technical level, we make use of a new matrix S-lemma that was recently established in [26] as
a generalization of the famous S-lemma by V. A. Yakubovich [27]. We refer to [26] for a more
detailed comparison between this approach and the robust control literature.

Specifically, our contributions are the following. First, we prove that dissipativity of an
unknown linear system can only be ascertained on the basis of the given data if a matrix
constructed from measured states and inputs has full rank. In the noiseless data case, this implies
that one can only verify dissipativity from data if the data-generating system is the only one that
explains the data, in other words, if the true system is identifiable from the data. In this case,
dissipativity of the unknown system can be ascertained by checking the feasibility of a given
data-based linear matrix inequality. In the noisy data case, it turns out that one does not need
identifiability. In order to check dissipativity in this case, we combine the matrix S-lemma with
a basic dualization lemma to provide a data-driven test for dissipativity.

Notation

The inertia of a symmetric matrix S is denoted by In(S) = (ρ−, ρ0, ρ+) where ρ−, ρ0, and
ρ+ respectively denote the number of negative, zero, and positive eigenvalues of S. The interior
of a set V is denoted by int(V ).

Dissipativity of linear systems

Consider a linear discrete-time input/state/output system

x(t+ 1) = Ax(t) +Bu(t) (1a)

y(t) = Cx(t) +Du(t) (1b)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m.
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Let S = S> ∈ R(m+p)×(m+p). The system (1) is said to be dissipative with respect to the
supply rate

s(u, y) =

[
u

y

]>
S

[
u

y

]
(2)

if there exists P ∈ Rn×n with P = P> > 0 such that the dissipation inequality

x(t)>Px(t) + s
(
u(t),y(t)

)
> x(t+ 1)>Px(t+ 1) (3)

holds for all t > 0 and for all trajectories (u,x,y) : N→ Rm+n+p of (1).

It follows from (3) that dissipativity with respect to the supply rate (2) is equivalent with
the feasibility of the linear matrix inequalities P = P> > 0 and[

I 0

A B

]> [
P 0

0 −P

][
I 0

A B

]
+

[
0 I

C D

]>
S

[
0 I

C D

]
> 0. (4)

Problem formulation

Consider the linear discrete-time input/state/output system

x(t+ 1) = Asx(t) +Bsu(t) + w(t) (5a)

y(t) = Csx(t) +Dsu(t) + z(t) (5b)

where (u,x,y) ∈ Rm+n+p are the input, state and output, and (w, z) ∈ Rn+p are noise terms.
Throughout the paper, we assume that the “true” system matrices (As, Bs, Cs, Ds) and the
noise (w, z) are unknown. What is known instead are a finite number of input/state/output
measurements of (5), which we collect in the matrices

U− :=
[
u(0) u(1) · · · u(T − 1)

]
X :=

[
x(0) x(1) · · · x(T )

]
Y− :=

[
y(0) y(1) · · · y(T − 1)

]
.

We will also make use of the auxiliary matrices

X− :=
[
x(0) x(1) · · · x(T − 1)

]
X+ :=

[
x(1) x(2) · · · x(T )

]
.

The goal of this paper is to infer dissipativity properties of the true system from the data
(U−, X, Y−).
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We define

ΣN =

{
(A,B,C,D) |

[
X+

Y−

]
−

[
A B

C D

][
X−

U−

]
∈ N

}
,

where N ⊆ R(n+p)×T is a set defining a noise model to be specified below. We assume that

(As, Bs, Cs, Ds) ∈ ΣN . (7)

In the sequel, we will consider three types of noise models. The first one will capture noise-free
situations in which the measurements (U−, X, Y−) are exact:

N0 := {0}. (8)

The second noise model is defined by

N1 :=

V ∈ R(n+p)×T |

[
I

V >

]>[
Φ11 Φ12

Φ>12 Φ22

][
I

V >

]
> 0

 , (9)

where Φ11 = Φ>11 ∈ R(n+p)×(n+p), Φ12 ∈ R(n+p)×T , and Φ22 = Φ>22 ∈ RT×T are known matrices.
This noise model was studied before [26] in the context of data-driven quadratic stabilization
and H2 and H∞ control. In order to be able to discuss some special cases of the noise model
(9), we label the columns of V as

[
v(0) v(1) · · · v(T − 1)

]
. In the special case Φ12 = 0 and

Φ22 = −I , the bound in (9) reduces to

V V > =
T−1∑
t=0

v(t)v(t)> 6 Φ11. (10)

This inequality can be interpreted as a type of energy bound on the noise. If v is a random
variable, the sample covariance matrix of v(0), v(1), . . . , v(T − 1) is given by

1

T − 1
V (I − 1

T
J)V >,

where J is the matrix of ones. Thus, the noise model (9) can also capture known bounds on the
sample covariance by the choices Φ12 = 0 and Φ22 = − 1

T−1(I − 1
T
J). We emphasize, however,

that we do not make any assumptions on the statistics of the noise and work with the general
model (9) instead.

Finally, we remark that norm bounds on the individual noise samples v(t) also give rise
to bounds of the form (10), although this generally leads to some conservatism. Indeed, note
that ‖v(t)‖2 6 ε implies that v(t)v(t)> 6 εI for all t. As such, the bound (10) is satisfied for
Φ11 = TεI .
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The third noise model that we will consider is defined by

N2 :=

V ∈ R(n+p)×T |

[
I

V

]>[
Θ11 Θ12

Θ>12 Θ22

][
I

V

]
> 0

 (11)

where Θ11 = Θ>11 ∈ RT×T , Θ12 ∈ RT×(n+p), and Θ22 = Θ>22 ∈ R(n+p)×(n+p) are known matrices.
This noise model was studied before in [28] in the context of data-driven state feedback control.
It turns out that under mild assumptions, it is possible to convert noise model N1 to N2 and
vice versa. The interested reader is referred to Corollary 1.

We now define the property of informativity for dissipativity, which is the main concept
studied in this paper. This definition is inpired by [29], and we refer to that paper for a
general treatment of data informativity and an application to data-driven controllability analysis,
stabilization and optimal control.

Definition 1: Let a noise model N be given. The data (U−, X, Y−) are informative for
dissipativity with respect to the supply rate (2) if there exists a matrix P = P> > 0 such that
the LMI (4) holds for every system (A,B,C,D) ∈ ΣN .

The rationale behind Definition 1 is as follows: on the basis of the given data we are
unable to distinguish between the systems in ΣN in the sense that any of these systems could
have generated the data. Nonetheless, if all of these systems are dissipative, then we can also
conclude that the true data-generating system is dissipative. Note that we restrict our attention
to the situation in which the systems in ΣN are dissipative with a common storage function.

The following assumptions will be valid throughout the paper:

(A1) The matrix S has inertia In(S) = (p, 0,m).
(A2) The sets N1 and N2 are bounded and have nonempty interior.

It is a well-known fact that a necessary condition for dissipativity of any system of the
form (1) is that m 6 ρ+, i.e., the input dimension does not exceed the positive signature of
S. Assumption (A1) requires that the input dimension is equal to this positive signature, and
in addition that the matrix S is nonsingular. This assumption is satisfied, for example, for the
positive-real and bounded-real case [30]. Indeed, in the positive-real case we have that m = p

and

S =

[
0 Im

Im 0

]
,
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so that In(S) = (m, 0,m). In the bounded-real case we have

S =

[
γ2Im 0

0 −Ip

]
for γ > 0, which implies that In(S) = (p, 0,m). Assumption (A1) also turns out to be
instrumental in computing storage functions of the “dual” system from those of the primal
one, see Proposition 2. Assumption (A2) can be verified straightforwardly by assessing certain
definiteness properties of the matrices Φ and Θ in (9) and (11); for more details see “How to
verify Assumption (A2)?”.

The main contribution of this paper is to provide necessary and sufficient conditions for
data informativity for the noise models N0, N1, and N2.

Main results

A necessary condition for informativity

We begin with a necessary condition for informativity, that applies to all three noise models.

Theorem 1: Let a noise model N be given. If the data (U−, X, Y−) are informative for
dissipativity with respect to the supply rate (2), then

rank

[
X−

U−

]
= n+m. (12)

Essentially, Theorem 1 and the rank condition (12) formalize the intuition that dissipativity
can only be assessed from data that are sufficiently rich. In the noise-free setting (involving
model N0), the rank condition (12) implies that the system matrices As, Bs, Cs and Ds can be
uniquely identified from the (U−, X, Y−)-data. In this setting, the interpretation of Theorem 1
is that dissipativity can only be verified from data that are rich enough to uniquely identify the
underlying data-generating system.

Proof: Suppose that (12) does not hold. Then, there exist ξ ∈ Rn and η ∈ Rm such that
ξ>ξ + η>η = 1 and [

ξ> η>
] [X−

U−

]
= 0. (13)

The set Γ = {u | ∃ y such that s(u, y) < 0} has nonempty interior since there exists (û, ŷ) with
s(û, ŷ) < 0 due to Assumption (A1). We claim that there exist x ∈ Rn and u ∈ Γ such that

ξ>x+ η>u = 1. (14)
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Indeed, if ξ 6= 0, then one can construct x and u by selecting u ∈ Γ arbitrarily, and by defining
x := 1−η>u

ξ>ξ
ξ. If ξ = 0 then x ∈ Rn can be selected arbitrarily. In this case, we can choose u as

follows. Since Γ has nonempty interior, there exists ū ∈ Γ such that η>ū 6= 0. Note that αū ∈ Γ

for all nonzero α ∈ R. As such, there exists an α ∈ R such that u := αū ∈ Γ and η>u = 1. For
this u, we obtain (14) which proves our claim.

Since u ∈ Γ, there exists y such that s(u, y) < 0. Let (A0, B0, C0, D0) ∈ ΣN . Define

ζ := x− A0x−B0u and θ := y − C0x−D0u, (15)

and [
A B

C D

]
:=

[
A0 B0

C0 D0

]
+

[
ζ

θ

] [
ξ> η>

]
.

It follows from (13) that (A,B,C,D) ∈ ΣN . Since the data are informative for dissipativity
with respect to the supply rate (2), there must exist P = P> > 0 such that[

I 0

A B

]> [
P 0

0 −P

][
I 0

A B

]
+

[
0 I

C D

]>
S

[
0 I

C D

]
> 0. (16)

Note that [
I 0

A B

][
x

u

]
=

[
x

x

]
and

[
0 I

C D

][
x

u

]
=

[
u

y

]
,

due to (14) and (15). Therefore, the following inequality holds:[
x

u

]>[I 0

A B

]> [
P 0

0 −P

][
I 0

A B

]
+

[
0 I

C D

]>
S

[
0 I

C D

][x
u

]

=

[
x

x

]> [
P 0

0 −P

][
x

x

]
+

[
u

y

]>
S

[
u

y

]
= s(u, y) < 0 .

However, this contradicts (16). Consequently, (12) holds.

Informativity and noiseless data

We now give a characterization of informativity for dissipativity for the noiseless case. We
note that the condition of Theorem 2 has appeared in a similar setting in [31, Thm. 4] and [19,
Thm. 3], where an “if”-statement was proven. Here we prove that these conditions are necessary
and sufficient by leveraging Theorem 1.

Theorem 2: Consider the noise model N0. The data (U−, X, Y−) are informative for
dissipativity with respect to the supply rate (2) if and only if

rank

[
X−

U−

]
= n+m (17)
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and there exists P = P> > 0 such that[
X−

X+

]> [
P 0

0 −P

][
X−

X+

]
+

[
U−

Y−

]>
S

[
U−

Y−

]
> 0. (18)

Proof: To prove the “if” part, note that (17) implies that ΣN0 is a singleton. It follows
from (7) that

ΣN0 = {(As, Bs, Cs, Ds)}

and hence [
X+

Y−

]
=

[
As Bs

Cs Ds

][
X−

U−

]
.

Define

L :=

[
I 0

As Bs

]>[
P 0

0 −P

][
I 0

As Bs

]
+

[
0 I

Cs Ds

]>
S

[
0 I

Cs Ds

]
.

Then (18) implies [
X−

U−

]>
L

[
X−

U−

]
> 0. (19)

It follows again from (17) that L > 0. By (4), this means that the system (As, Bs, Cs, Ds) is
dissipative with respect to the supply rate (2).

To prove the “only if” part, note that it follows from Theorem 1 that (17) holds. Hence
we have

ΣN0 = {(As, Bs, Cs, Ds)}.

Since the data are informative for dissipativity for the given N0, there exists P = P> > 0

such that L > 0. By post- and pre-multiplying this expression by

[
X−

U−

]
and its transpose, we

conclude that (18) holds.

Theorem 2 provides a data-based condition for dissipativity in terms of a linear matrix
inequality. Linear matrix inequalities can be solved using standard software packages. We note,
however, that such solvers are known to be unreliable for LMI’s which define feasible sets
without interior points. As such, from a numerical point of view it is desirable that there exists
a positive definite P such that left-hand side of (18) is positive definite.

Remark 1: Condition (17) implies that even if the state is measured (a more advantageous
situation than knowing only the input-output data, as is typically assumed in data-driven
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applications), it is only possible to ascertain dissipativity from noise-free data if the plant
is uniquely identifiable, i.e., if |ΣN0 | = 1. Consequently, in the noise-free setting, methods
for determining dissipativity directly from data are conceptually equivalent with indirect ones
consisting of a system identification stage, followed by a second one involving a check on the
solvability of an LMI (condition (4)).

Informativity and noisy data

We first consider the noise model N1 defined in (9). Define

N1 :=


I

X+

Y−

0
−X−
−U−


[

Φ11 Φ12

Φ>12 Φ22

]
I

X+

Y−

0
−X−
−U−


>

. (20)

Note that (A,B,C,D) ∈ ΣN1 if and only if
I

A> C>

B> D>


>

N1


I

A> C>

B> D>

 > 0. (21)

Partition

S =

[
F G

G> H

]
,

where F ∈ Rm×m, G ∈ Rm×p, H ∈ Rp×p, and define

M1 :=


P 0 0 0

0 F 0 G

0 0 −P 0

0 G> 0 H

 .
With this notation in place, the problem of characterizing informativity for dissipativity is
equivalent to finding conditions under which the inequality

I

A B

C D


>

M1


I

A B

C D

 > 0 (22)

holds for all (A,B,C,D) satisfying
I

A> C>

B> D>


>

N1


I

A> C>

B> D>

 > 0 . (23)
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Our strategy to solve this problem is to invoke the so called matrix S-lemma [26]. The
matrix S-lemma is a powerful generalization to matrix variables of the classical S-lemma (also
called S-procedure) developed in the seventies of the previous century by V. A. Yakubovich
[27]. We recall this result below.

Proposition 1 (Matrix S-lemma): Let M,N ∈ R(q+r)×(q+r) be symmetric matrices. As-
sume that there exists a matrix Z̄ ∈ Rr×q such that[

I

Z̄

]>
N

[
I

Z̄

]
> 0. (24)

Then we have that[
I

Z

]>
M

[
I

Z

]
> 0 for all Z ∈ Rr×q satisfying

[
I

Z

]>
N

[
I

Z

]
> 0

if and only if there exists a scalar α> 0 such that M − αN> 0.

Before we can apply Proposition 1 we note that the inequality (22) is in terms of
(A,B,C,D) while the inequality (23) is in terms of the transposed matrices (A>, C>, B>, D>).
Therefore, we will need an additional dualization result that we formulate in the following
proposition.

Proposition 2: Consider a real n× n matrix P = P> > 0 and a matrix[
A B

C D

]
∈ R(n+p)×(n+m).

Suppose that S = S> ∈ R(m+p)×(m+p) satisfies Assumption (A1). Define

Ŝ :=

[
0 −Ip
Im 0

]
S−1

[
0 −Im
Ip 0

]
. (25)

Then we have that [
I 0

A B

]>[
P 0

0 −P

][
I 0

A B

]
+

[
0 I

C D

]>
S

[
0 I

C D

]
> 0 (26)

if and only if[
I 0

A> C>

]>[
P−1 0

0 −P−1

][
I 0

A> C>

]
+

[
0 I

B> D>

]>
Ŝ

[
0 I

B> D>

]
> 0. (27)

Proof: Partition the matrix S as

S =

[
S11 S12

S>12 S22

]
,
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where S11 ∈ Rm×m, S12 ∈ Rm×p and S22 ∈ Rp×p. By positive definiteness of P and Assumption
(A1), the matrix

Ψ :=


P 0 0 0

0 S11 0 S12

0 0 −P 0

0 S>12 0 S22

 (28)

satisfies In(Ψ) = (n+ p, 0, n+m). The proposition now readily follows by applying Lemma 3
to the matrix Ψ in (28).

Proposition 2 can be interpreted as saying that the system defined by the quadruple
(A,B,C,D) is dissipative with respect to the supply rate S, with storage function P if and
only if the dual system (A>, C>, B>, D>) is dissipative with respect to the supply rate Ŝ, with
storage function P−1. A behavioral analogue of this result was obtained in [6], Proposition 12.

By combining Propositions 1 and 2, we now arrive at the following characterization of
informativity for dissipativity, given the noise model N1.

Theorem 3: Suppose that there exists V ∈ R(n+m)×(n+p) such that[
I

V

]>
N1

[
I

V

]
> 0. (29)

Partition [
F̂ Ĝ

Ĝ> Ĥ

]
:= −S−1,

where F̂ = F̂> ∈ Rm×m, Ĝ ∈ Rm×p, and Ĥ = Ĥ> ∈ Rp×p. Given the noise model N1, the data
(U−, X, Y−) are informative for dissipativity with respect to the supply rate (2) if and only if
there exist a real n× n matrix Q = Q> > 0 and a scalar α > 0 such that

Q 0 0 0

0 Ĥ 0 −Ĝ>

0 0 −Q 0

0 −Ĝ 0 F̂

− α

I

X+

Y−

0
−X−
−U−


[

Φ11 Φ12

Φ>12 Φ22

]
I

X+

Y−

0
−X−
−U−


>

> 0. (LMI)

We note that a sufficient condition for data-driven dissipativity with a common storage
function was given in [19, Thm. 4]. The attractive feature of Theorem 3 is that it provides a
necessary and sufficient condition, by making use of the matrix S-lemma.

We will prove Theorem 3 by means of the following auxiliary lemma. This lemma shows
that if all systems in ΣN1 are dissipative with common storage function P = P> > 0, then P

is necessarily positive definite. We note that conditions under which all storage functions are
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positive definite have been studied before in [32, Lem. 1], even for nonlinear systems. In that
paper, certain minimality conditions were imposed as well as a signature condition on the supply
rate. Here, we do not assume minimality but we conclude that all storage functions are positive
definite by using Assumption (A1) and an argument related to the noise model.

Lemma 1: Suppose that there exists a matrix V such that (29) holds. If P = P> > 0

satisfies the dissipation inequality (4) for all (A,B,C,D) ∈ ΣN1 then P > 0.

Proof: Let ξ ∈ kerP . It follows from (4) that[
α

η

]>−[ξ>A>
B>

]
P
[
Aξ B

]
+

[
0 I

Cξ D

]>
S

[
0 I

Cξ D

][α
η

]
> 0

for all α ∈ R, η ∈ Rm, and (A,B,C,D) ∈ ΣN1 . This implies that[
0 I

Cξ D

]>
S

[
0 I

Cξ D

]
> 0

for every (A,B,C,D) ∈ ΣN1 . It follows from [33, Theorem 3.1] that

dim

(
ker

[
0 I

Cξ D

])
> 1.

Therefore, Cξ = 0 for every (A,B,C,D) ∈ ΣN1 . By hypothesis, the set ΣN1 has nonempty
interior. Consequently, we can conclude that ξ = 0 and hence P > 0.

Proof of Thm. 3: To prove the “if” statement, let (A,B,C,D) ∈ ΣN1 . We multiply (LMI)
from right and left by 

I 0

0 I

A> C>

B> D>


and its transpose. By the assumption on the noise (see Equation (9)), this leads to[

I 0

A> C>

]>[
Q 0

0 −Q

][
I 0

A> C>

]
+

[
0 I

B> D>

]>
Ŝ

[
0 I

B> D>

]
>0,

where Ŝ is related to S via (25). Finally, by Proposition 2 we conclude that (26) holds for
P = Q−1. That is, the data (U−, X, Y−) are informative for dissipativity with respect to the
supply rate (2).

To prove the “only if” part, suppose that the data (U−, X, Y−) are informative for
dissipativity, equivalently, there exists a matrix P = P> > 0 such that (4) holds for all
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(A,B,C,D) ∈ ΣN1 . Note that P > 0 by Lemma 1. Now, by Proposition 2 it follows that
(27) holds for all (A,B,C,D) ∈ ΣN1 . We define Q := P−1. By rearranging terms in (27) we
see that 

I 0

0 I

A> C>

B> D>


> 

Q 0 0 0

0 Ĥ 0 −Ĝ>

0 0 −Q 0

0 −Ĝ 0 F̂



I 0

0 I

A> C>

B> D>

 > 0

holds for all (A,B,C,D) ∈ ΣN1 , i.e., for all (A,B,C,D) satisfying (23). Finally, by Proposition
1 there exists a scalar α > 0 such that (LMI) holds. This completes the proof. �

Theorem 3 provides a tractable method for verifying informativity for dissipativity, given
the noise model N1. The procedure involves solving the linear matrix inequality (LMI) for Q
and α. Given Q, a common storage function P for all systems in ΣN1 is also readily computable
as P = Q−1.

Remark 2: It follows from Corollary 1 that, under Assumption (A2), we can always
transform the noise model N1 to N2 and vice versa. Therefore, by combining Theorem 3
and Corollary 1 we can also establish necessary and sufficient conditions for informativity for
dissipativity given the noise model N2. This again results in a data-based LMI condition for
dissipativity, analogous to (LMI).

Conclusions

In this paper we have provided methods to verify dissipativity properties of linear systems
directly from measured data. We have considered both the case of exact data and the case that
the data are corrupted by noise. In the case of exact data, we have proven that one can only
ascertain dissipativity of a system from given data if the system can be uniquely identified
from the data. If this is the case, dissipativity can be verified by means of a data-based linear
matrix inequality. In the case of noisy data, we have combined the matrix S-lemma [26] with a
dualization property relating dissipativity properties of the original system with those of its dual
to characterize data informativity for dissipativity. As in the noiseless case, also in this setting,
dissipativity properties of the data-generating system can be ascertained if a data-based LMI is
solvable.

Apart from conditions for verifying dissipativity based on data, we have derived a number
of additional results as byproducts that are interesting in their own right. First of all, we have
shown in Corollary 1 that, under mild assumptions, the different noise models studied in [28]
and [26] are actually equivalent. Moreover, it follows from Lemma 1 that informativity for

14



dissipativity (given the noise model N1) requires the common storage function to be positive
definite. This is a surprising conclusion, since the definition of dissipativity only requires positive
semidefinite storage functions.
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Sidebar: How to verify Assumption (A2)?

Assumption (A2) can be verified using the following lemma.

Lemma 2: Let Ψ11 = Ψ>11 ∈ Rq×q, Ψ12 ∈ Rq×r, and Ψ22 = Ψ>22 ∈ Rr×r. Then, the set

N :=

R ∈ Rr×q |

[
I

R

]> [
Ψ11 Ψ12

Ψ>12 Ψ22

][
I

R

]
> 0


is bounded and has nonempty interior if and only if Ψ22 < 0 and Ψ11 −Ψ12Ψ

−1
22 Ψ>12 > 0.

Proof: Let

Ψ =

[
Ψ11 Ψ12

Ψ>12 Ψ22

]
.

To prove sufficiency, note that Ψ22 < 0 implies that N is bounded. Define R := −Ψ−122 Ψ>12 and
note that Ψ11 −Ψ12Ψ

−1
22 Ψ>12 > 0 implies

f(R) :=

[
I

R

]>
Ψ

[
I

R

]
> 0.

This means that N has nonempty interior.

To prove necessity, we first show that Ψ22 < 0. Let R ∈ int(N ) and let ξ ∈ Rr be such
that ξ>Ψ22ξ > 0. Then f(R + αξξ>(Ψ>12 + Ψ22R)) > 0 for all α > 0. Since N is bounded, we
conclude that

ξ>(Ψ>12 + Ψ22R) = 0. (30)

Since R ∈ int(N ) is arbitrary, it follows that for all R1, R2 ∈ int(N ) the equality ξ>Ψ22(R1 −
R2) = 0 holds. This implies that ξ>Ψ22 = 0 and, by (30), also ξ>Ψ>12 = 0. Now, observe that
f(R + αξξ>) = f(R) > 0 for all α ∈ R and R ∈ N . By boundedness of N , this implies that
ξ = 0. Therefore, Ψ22 < 0.

To prove the rest of the claim, let ζ ∈ Rq and η ∈ Rr be such that

Ψ

[
ζ

η

]
= 0. (31)

If R ∈ N then

0 6 ζ>f(R)ζ =

[
ζ

Rζ

]>
Ψ

[
ζ

Rζ

]

=

([
0

Rζ − η

]
+

[
ζ

η

])>
Ψ

([
0

Rζ − η

]
+

[
ζ

η

])
,
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and thus 0 6 (Rζ−η)>Ψ22(Rζ−η). Since Ψ22 < 0, we conclude that Rζ−η = 0 for all R ∈ N .
This implies that (R1 − R2)ζ = 0 for all R1, R2 ∈ N . Since the interior of N is nonempty,
we conclude that ζ = 0. Thus, (31) leads to Ψ22η = 0 and since Ψ22 < 0, we conclude η = 0.
Therefore, Ψ is nonsingular. By Haynsworth’s inertia formula (see [34, Fact 6.5.5]),

In(Ψ) = In(Ψ22) + In(Ψ11 −Ψ12Ψ
−1
22 Ψ>12). (32)

Let ν be the number of negative eigenvalues of Ψ. From Ψ22 < 0 and (32) we see that ν > r.
Since N is nonempty, it follows from [33, Thm. 3.1] that ν 6 r. Therefore, we conclude that
ν = r. Since Ψ is nonsingular, (32) implies that Ψ11 −Ψ12Ψ

−1
22 Ψ>12 > 0, proving the claim.
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Sidebar: A dualization result

Dualization is an important concept in robust control, see e.g. [25], [30]. In this paper, we
provide a dualization result in Lemma 3. It is instrumental to prove Proposition 2 that dualizes
the dissipation inequality, and Corollary 1 stated below, that relates the noise models N1 and N2.
These two results can also by obtained from the dualization lemma in [30, Lem. 4.9] by choosing
appropriate complementary subspaces U and V in that result. Here, we give an alternative proof
by exploiting inertia properties in Lemma 3.

Lemma 3: Consider the nonsingular symmetric matrices

Ψ =

[
Ψ11 Ψ12

Ψ>12 Ψ22

]
and Ξ =

[
0 −Ir
Iq 0

]
Ψ−1

[
0 −Iq
Ir 0

]
,

where Ψ11 = Ψ>11 ∈ Rq×q, Ψ12 ∈ Rq×r, and Ψ22 = Ψ>22 ∈ Rr×r. For any R ∈ Rr×q we have that

In

[I
R

]>
Ψ

[
I

R

]+ In
(
−Ψ−1

)
= In

[ I

R>

]>
Ξ

[
I

R>

]+ (q, 0, q). (33)

In particular, if In(Ψ) = (r, 0, q) then[
I

R

]>
Ψ

[
I

R

]
> 0 ⇐⇒

[
I

R>

]>
Ξ

[
I

R>

]
> 0. (34)

Proof: Let [
Ψ̂11 Ψ̂12

Ψ̂>12 Ψ̂22

]
:= −Ψ−1

where Ψ̂11 ∈ Rq×q, Ψ̂12 ∈ Rq×r, and Ψ̂22 ∈ Rr×r. Also let R ∈ Rr×q and define

MR :=

0 I R>

I Ψ̂11 Ψ̂12

R Ψ̂>12 Ψ̂22

 .
By Haynsworth’s inertia theorem (see [34, Fact 6.5.5]) we have

In(MR) = In(−Ψ−1) + In

[I
R

]>
Ψ

[
I

R

] . (35)

Next, we define

N :=

[
0 I

I Ψ̂11

]
.
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Note that

N−1 =

[
−Ψ̂11 I

I 0

]
.

By [35, Lemma 5.1] the matrix N has inertia In(N) = (q, 0, q). We also have that the Schur
complement of MR with respect to N is given by

Ψ̂22 −
[
R Ψ̂>12

] [−Ψ̂11 I

I 0

][
R>

Ψ̂12

]
=

Ψ̂22 +RΨ̂11R
> −RΨ̂12 − Ψ̂>12R

> =[
I

R>

]> [
Ψ̂22 −Ψ̂>12
−Ψ̂12 Ψ̂11

][
I

R>

]
=

[
I

R>

]>
Ξ

[
I

R>

]
.

This implies that

In(MR) = In(N) + In

[ I

R>

]>
Ξ

[
I

R>

] . (36)

By combining (35) and (36) we obtain (33), as desired. Finally, suppose that In(Ψ) = (r, 0, q).
This implies that In(−Ψ−1) = (q, 0, r) and thus

In

[I
R

]>
Ψ

[
I

R

] = In

[ I

R>

]>
Ξ

[
I

R>

]+ (0, 0, q − r).

This implies (34) which proves the lemma.

Corollary 1: Suppose that Assumption (A2) holds. Then the noise models N1 and N2 are
equivalent in the following sense: N1 = N2 if the partitioned matrices Φ and Θ in (9) and (11)
are related by [

Φ11 Φ12

Φ>12 Φ22

]
=

[
0 −I
I 0

][
Θ11 Θ12

Θ>12 Θ22

]−1 [
0 −I
I 0

]
.

Proof: By Assumption (A2) and Lemma 2 we have In(Θ) = (n + p, 0, T ). The corollary
now follows readily from Lemma 3.
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Article summary

The concept of dissipativity, as introduced by Jan Willems, is one of the cornerstones
of systems and control theory. Typically, dissipativity properties are verified by resorting to
a mathematical model of the system under consideration. In this paper, we aim at assessing
dissipativity by computing storage functions for linear systems directly from measured data.
As our main contributions, we provide conditions under which dissipativity can be ascertained
from a finite collection of noisy data samples. Three different noise models will be considered
that can capture a variety of situations, including the cases that the data samples are noise-free,
the energy of the noise is bounded, or the individual noise samples are bounded. All of our
conditions are phrased in terms of data-based linear matrix inequalities, which can be readily
solved using existing software packages.
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