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Relativistic quantum metrology provides an optimal strategy for the estimation of parameters
encoded in quantum fields in flat and curved spacetime. These parameters usually correspond
to physical quantities of interest such as proper times, accelerations, gravitational field strengths,
among other spacetime parameters. The precise estimation of these parameters can lead to novel
applications in gravimeters, spacetime probes and gravitational wave detectors. Previous work in
this direction only considered pure probe states. In realistic situations, however, probe states are
mixed. In this paper, we provide a framework for the computation of optimal precision bounds
for mixed single- and two-mode Gaussian states within quantum field theory. This enables the
estimation of spacetime parameters in case the field states are initially at finite temperature.

PACS numbers: 03.70.+k, 11.10.-z

I. INTRODUCTION

The main aim of quantum metrology is to provide opti-
mal strategies to estimate physical quantities of interest
exploiting quantum properties. Usually, these quanti-
ties do not correspond to observables of the system, but
rather to real parameters, such as time or field strengths,
that are encoded on initial probes states through the evo-
lution of the system. The scheme requires that infinitesi-
mally close quantum states can be distinguished after the
parameter has been encoded. Therefore, it is necessary
to determine what are the optimal measurements that
enable to distinguish the states more accurately. The
quantum Fisher information is a function that quantifies
how well states can be distinguished by optimal measure-
ments. The ultimate limit of precision for estimating the
parameter is given by the so-called quantum Cramér-Rao
bound, which depends on the quantum Fisher informa-
tion and the number of measurements made on N iden-
tical copies of the state [1–3].

Recently, it has become of great interest to exploit
quantum metrology techniques to measure gravitational
parameters. Novel applications could not only provide
important improvements in seismology and oil explo-
ration, but also provide insights on fundamental ques-
tions in the overlap of quantum theory and relativity.
Our understanding of quantum phenomena in the pres-
ence of spacetime remains rather limited. This is not
surprising, incompatibilities arise since quantum theory
assumes time to be absolute, while in general relativity
time is an observer dependent quantity. Quantum field
theory in curved spacetime is a theory that succeeds at
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describing phenomena in the overlap of quantum theory
and relativity by considering that in some regimes space-
time is a classical background underlying the dynamics
of quantum fields [4–6]. Metrology techniques applied
to quantum field theory in curved spacetime enables the
estimation of spacetime parameters [7–16] using quan-
tum systems providing a method that is compatible with
both quantum and relativistic principles. Applications
include accelerometers, gravitational wave detectors and
relativistic quantum clocks. The parameters in this case
are encoded through Bogoliubov transformations on ini-
tial quantum field states.

The paradigmatic predictions of the quantum field the-
ory in curved spacetime are particle creation in an ex-
panding Universe and Hawking radiation [17, 18]. The
theory has not been demonstrated in the laboratory yet
and currently, experiments are aimed at testing analogue
effects [19–21]. However, recent results show that real
space-time effects can be measured with current technolo-
gies. In particular, it has been shown that particle cre-
ation by gravitational waves produce observable effects in
the phononic field of a Bose-Einstein condensate [22, 23].
Space-time effects on BECs can be used to develop a
new generation of measurement instruments by applying
quantum metrology techniques. Until now, techniques
in relativistic quantum metrology have focused on using
pure states as quantum probes. However, in practice,
systems interact with the environment and probe states
are usually mixed. In this paper we compute explicit
formulas to estimate parameters of quantum field the-
ory in flat and curved space-time in the case that the
probe states are in a thermal (mixed) state. Because of
their mathematical simplicity, we restrict our analysis to
Gaussian states.

The structure of the paper is the following. In sec-
tion II we present the basic notions of quantum metrol-
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ogy for Gaussian states using the covariance matrix for-
malism. In section III we review the quantisation of rela-
tivistic fields. In section IV we compute the expression of
the quantum Fisher information associated to one- and
two-mode mixed Gaussian states as a function of the Bo-
goliubov coefficients. Then we compute explicitly the
quantum Fisher information for the case where we wish
to estimate a state parameter around the value ε0 = 0.
Finally, we apply these results to calculate the quantum
Fisher information for the estimation of the proper accel-
eration using one- and two-mode squeezed thermal states.
We conclude with a review of our results and identify fu-
ture directions.

Throughout the paper, matrices and vectors will be
denoted in bold, M ,v. Identity matrices will be repre-
sented as I and we will be using Planck units h̵ = c =
kB = 1.

II. PHASE SPACE FORMALISM OF
QUANTUM METROLOGY

In this section we outline the basic tools of quantum
metrology for Bosonic systems via their quantum phase
space description. This formalism considerably simpli-
fies computations for continuous variable systems when
the analysis is restricted to Gaussian states. For a more
detailed analysis of Gaussian states, we refer the reader
to [24, 25] and appendix A.

We consider a system that consists of a collection of
Bosonic modes described by creation and annihilation

operators, âj , â
†
j . It is convenient to introduce a vector

of operators Â = â⊕ â†, where â = (â1, â2, . . .) and the
symbol † denotes Hermitian conjugation. The canonical
commutation relations are given by

[Âm, Â†
n] = Kmn id ⇒ K = [I 0

0 −I] , (1)

where id denotes the identity element of an algebra. Note
that K−1 =K† =K and K2 = I. The operators Âj are
functions of the generalised position and momentum op-
erators x̂j and p̂j (see appendix A). These definitions de-
fine the “complex form” of the continuous variable phase
space [26], which is particularly convenient when working
with Bogoliubov transformations.

In quantum theory it is common to describe the state
of the system using the density operator ρ̂, which satisfies
the normalisation condition tr ρ̂ = 1 where tr denotes the
trace map. The density operator is positive semi-definite
and self-adjoint in the Hilbert space inner product. An
alternative, and completely equivalent, description of a
bosonic quantum state is given by the symmetric char-
acteristic function defined as

χ(ξ) = tr [ρ̂ D̂(ξ)], (2)

Note here that the operator D̂(ξ) = eÂ
†
Kξ is the Weyl

displacement operator with a complex variable of the

form ξ = γ ⊕ γ which represents the displacement vec-
tor for the modes under consideration. Gaussian states
are defined as states with characteristic functions of the
form,

χ(ξ) = e− 1
4ξ

†σξ−id†Kξ. (3)

Gaussian states are completely represented by their first
and second statistical moments, which can be collected
in the vector d and covariance matrix σ. The statistical
moments are given in terms of the density operators ρ̂
by,

d = tr [ρ̂ Â], (4a)

σ = tr [ρ̂{Â, Â†}]. (4b)

The anti-commutator in the second moments is given
“element-wise” in the entires of Â. In the convention
used in this paper the vacuum state is given by the iden-
tity matrix I, i.e. the variance of the quadrature opera-
tors x̂j and p̂j are var (x̂j) = var (p̂j) = 1. Other work
often defines the vacuum variances as 1/2. In the com-
plex form, the first and second moments of a state have
block forms given by,

d = [da
da

] , σ = [X Y

Y X
] , (5)

where X† = X and Y tp = Y , and tp denotes transposi-
tion. For further details on the complex form of the first
and second moments and their relation to the “real” form
that is often used in the literature see appendix A. At the
level of first and second moments, unitary transforma-
tions on the state are represented by symplectic transfor-
mations and displacement vectors. In particular, given
a Gaussian preserving unitary Û , the first and second
moments of a Gaussian state change as

d′ = S d + b, (6a)

σ′ = SσS†, (6b)

and b denotes an arbitrary displacement in phase space.
The defining property of a symplectic matrix S is [26]

SKS† = K. (7)

Some examples of Gaussian unitaries are the beam split-
ter and two-mode squeezing operators [27], which are well
known operations in quantum optics.

A fundamental quantity in quantum information is
the fidelity, which quantifies the “distance” between two
states. The fidelity typically employed in the literature is
the Uhlmann fidelity [28, 29]. Given two quantum states
ρ̂1 and ρ̂2, the Uhlmann fidelity F takes the form

F(ρ̂1, ρ̂2) = [tr
√√

ρ̂1 ρ̂2

√
ρ̂1]

2

. (8)

The square roots above denote the unique positive semi-
definite operator which has the property

√
ρ̂
√
ρ̂ = ρ̂.
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Making the identification ρ̂1 → (d1,σ1) and ρ̂2 →
(d2,σ2), we define the difference of the two displace-
ment vectors as δd = d1 − d2 and the following useful
quantities,

∆ =̇det[σ1 +σ2], (9a)

Γ =̇det[Kσ1Kσ2 + I], (9b)

Λ =̇det[σ1 +K]det[σ2 +K]. (9c)

In terms of first and second moments, the fidelity between
one- or two-mode Gaussian states then reads [29],

F1(ρ̂1, ρ̂2) = 2
e−δd

†
(σ1+σ2)

−1δd

√
∆ +Λ −

√
Λ
, (10a)

F2(ρ̂1, ρ̂2) = 4
e−δd

†
(σ1+σ2)

−1δd

√
Γ +

√
Λ −

√
(
√

Γ +
√

Λ)2 −∆
. (10b)

Note that we have used different factors of 2 and the
matrix K instead of the usual Gaussian symplectic form
used by other authors. This is for a matter of convenience
only.

We now define and compute the quantum Fisher infor-
mation. There are usually two definitions for the quan-
tum Fisher information. One is given by the Bures dis-
tance induced by the Uhlmann fidelity on the space of
quantum states, while the second is given by the symmet-
ric logarithmic derivatives [1, 2]. For our purposes, we

will employ the Uhlmann fidelity for one and two mode
systems.

The Bures distance dB for two states ρ̂1, ρ̂2 is defined
using the Uhlmann fidelity [30],

d2
B(ρ̂1, ρ̂2) = 2(1 −

√
F(ρ̂1, ρ̂2)). (11)

One can then define the quantum Fisher information Hj

as [31],

Hj(ε) = lim
dε→0

8
⎛
⎝

1 −
√
Fj(ρ̂ε, ρ̂ε+dε)

dε2
⎞
⎠
, (12)

where Fj , j = 1,2, denotes the j-mode Uhlmann fidelity
between the state ρ̂ε and a state ρ̂ε+dε infinitesimally sep-
arated away from it. The existence of the quantum Fisher
information is dependent upon the differentiability of the
Uhlmann fidelity around the point of interest ε. Further-
more, the first derivative of the fidelity must vanish such
that the limit in Eq. (12) is well defined. Further details
about this can be found in [32]. Therefore, the one- and
two-mode quantum Fisher information in terms of the
first and second moments are given by,

H1(ε) = 1

2

tr[(Ξ−1Ξ̇)2]
1 + det[Ξ]−1

+ 1

2

(det[Ξ])−1tr[Ξ−1Ξ̇]2
1 − det[Ξ]−2

, (13)

H2(ε) = 1

2(det[Ξ] − 1)
⎛
⎝

det[Ξ]tr[(Ξ−1Ξ̇)2] +
√

det[I +Ξ2]tr[((I +Ξ2)−1Ξ̇)2]

+ 4(1 + det[Ξ])(tr[ΞΞ̇]2 − det[Ξ]tr[Ξ−1Ξ̇]2) + det[Ξ]tr[Ξ−1Ξ̇]tr[Ξ2](tr[Ξ−1Ξ̇]tr[Ξ2] − 4 tr[ΞΞ̇])
4(1 + det[Ξ])2 − tr[Ξ2]2

⎞
⎠
.

(14)

In the above Ξ =̇Kσ and Ξ̇ denotes the derivative with
respect to the parameter ε. Its is also possible to in-
clude the contribution to the quantum Fisher informa-
tion from changes in displacement by adding the term
2 ḋ(ε)†σ(ε)−1ḋ(ε) to either Eq. (13) or Eq. (14).

The quantum Fisher information was derived in [33] in
the single mode case and in [32] for two-mode states. In
this paper we will consider that the first moments do not
change with a small variation in epsilon. i.e. ḋ = 0.

III. MODELING QUANTUM CHANNELS IN
QUANTUM FIELD THEORY

Quantum metrology provides strategies to estimate
very precisely physical quantities related to quantum me-
chanical systems such as time, temperature and mag-
netic field strengths. However, estimating parameters

that play a role in quantum field theory in flat and
curved spacetime promise to enable the development
of new measurement technologies such as gravimeters,
accelerometers, relativistic quantum clocks and gravi-
tational wave detectors [7, 8, 13]. In order to do so
it is necessary to apply quantum metrology techniques
to relativistic quantum fields and develop formulas for
the quantum Fisher information in terms of Bogoliubov
transformations. In quantum field theory parameters are
encoded into the state of the system through a channel
that is implemented by a Bogoliubov transformation [34].
Such transformations arise when two different observers
describe the same quantum field and when the spacetime
undergoes some kind of dynamical transformation. More
details can be found in [4–6, 35, 36].

We consider a scalar field φ(t,x) that obeys the Klein-
Gordon equation,

∇µ∇µ φ(t,x) = 0. (15)
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The operator ∇µ is the covariant derivative defined with
respect to the metric tensor g in some suitable coordi-
nates (t,x). We restrict our analysis to spacetimes that
admit global or asymptotic time-like Killing vector fields
since in this case it is posible to quantise the field. We de-
note the positive frequency mode solutions of the Klein-
Gordon equation (15) by un(t,x), where n ∈ N is the
mode number. We can collect these solutions, along with
their complex conjugates (negative frequency solutions),
in the vectorU = u⊕u with u = (u1, u2, . . .). The field is
quantised by associating bosonic annihilation (creation)
operators an (a†

n) to the positive (negative) mode solu-
tions of the Klein-Gordon equation,

φ(t,x) = ∑
n

(anun(t,x) + c.c.). (16)

The bosonic operators satisfy the canonical commutation
relations,

[âm, â†
n] = δmn id. (17)

In vector form the field is given by,

φ(t,x) = [u
u
] . [a
a
] (18)

where the dot product is defined as x⋅y =̇xtpy, for vectors
x, y. The vacuum state of the field ∣0⟩ is defined by the
equation ân∣0⟩ = 0 for all n.

The field expansion (16) is not unique. It can be writ-
ten in a different basis of solutions to the Klein-Gordon
equation denoted vn(t,x) and in vector form given by
V = v ⊕ v. The space of solutions is a linear vector
space. Therefore, the solutions are related via,

U = SV (19)

where the matrix S is called a Bogoliubov transforma-
tion. It is easy to show that the transformation has the
following block structure,

[u
u
] = [α β

β α
] [v
v
] . (20)

where α and β are the Bogoliubov coefficients [35]. The
choice of basis U or V is equivalent therefore,

φ̂ (t,x) = [u
u
] . [ â
â†] ≡ [v

v
] .

⎡⎢⎢⎢⎣
b̂

b̂
†

⎤⎥⎥⎥⎦
. (21)

This equivalence defines the dual of Eq. (20) for the trans-
formation between different annihilation and creation op-
erators,

[ â
â†] = [ α −β

−β α
]
⎡⎢⎢⎢⎣
b̂

b̂
†

⎤⎥⎥⎥⎦
. (22)

The transformation between the real and complex form
of the Bogoliubov transformations can be found in ap-
pendix B. As the Bogoliubov transformation is a linear

transformation on the classical phase space, it should
not influence the canonical quantisation of the field and
hence should preserve the canonical commutation rela-
tions of the mode operators. This is also a statement
of the preservation of commutation relations under uni-
tary transformations. This requirement leads to the well
known Bogoliubov identities

αα† −ββ† = I, (23a)

αβtp −βαtp = 0. (23b)

The Bogoliubov identities (23) imply that the Bogoliubov
transformation S satisfies

SKS† = K. (24)

This condition coincides with the definition of the sym-
plectic group, as identified in the previous section. We
notice that due to the infinite dimensional nature of the
field basis, the matrices S are infinite dimensional. This
implies that all vector or matrix expressions are to be
understood element-wise. With this in mind, the mode
operator transformation in Eq. (22) can be written as

S̃ =̇ [ α −β
−β α

] = (S−1)tp = KSK, (25)

which is also symplectic.
We can use the inner product of the Klein-Gordon so-

lutions to calculate the transformation coefficients as [37]

αmn = (um, vn)∣Σ, (26a)

βmn = (um, vn)∣Σ. (26b)

These coefficients encode the information of a transfor-
mation between two sets of solutions of the Klein-Gordon
equation on a given time-like hypersurface Σ. However,
as they are defined only for a fixed time, they will not
in general be suitable to describe the continuous evolu-
tion of a quantum state. In particular, our Bogoliubov
transformations transform an initial state at time τ0 to
a final state at time τ . These general Bogoliubov trans-
formations will therefore depend on ε (our parameter of
interest) and the time elapsed between initial and final
state defined as τ − τ0. As our results do not depend
on the particular method of construction, we only re-
quire they satisfy the Bogoliubov identities in Eq. (23).
Hence we shall neglect the technical details of continuous
Bogoliubov transformation construction. For a detailed
account of constructing various types of continuous Bo-
goliubov transformations see [38].

The transformation between the initial and final state
of the field, when restricted to the Gaussian case, is given
by the Bogoliubov matrix S̃ and by the transformation
properties of the first and second field moments Eq (6).
We consider σ̃0 to be the initial covariance matrix of the
field and trE[σ̃0] = σ0 is the (one or two-mode) reduced
state of interest. We assume that tr¬E[σ̃0] = σE are the
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remaining modes (or “environment” E) which contains
no initial correlation with the system modes σ0. There-
fore, the initial state σ̃0 is separable in the subsystem-
environment bipartition. Concretely, the block structure
of the initial state is,

σ̃0 =̇ [X0 Y 0

Y 0 X0
] (27)

Next, we can describe the transformation from the initial
subsystem state σ0 to a final subsystem state σ(ε) via a
map E defined as

E[σ0] = trE[S̃(ε) σ̃0 S̃(ε)†] =̇σ(ε). (28)

The Bogoliubov transformation between the initial and
final states can be viewed as a quantum channel on the
space of quantum states. The expression for an arbi-
trary Gaussian state, and in particular, for initial one-
and two-mode squeezed thermal states, can be found in
appendix C. As an example, we choose a state initially in
the vacuum σ̃0 = I given by X0,ab = δab and Y0,ab = 0.
Therefore, the reduced state after a Bogoliubov transfor-
mation takes the form,

Xij = ∑
a

(αia αja + βiaβja), (29a)

Yij = ∑
a

(βia αja + αia βja). (29b)

IV. ULTIMATE PRECISION: QUANTUM
FISHER INFORMATION FOR BOSONIC FIELDS

We now compute the quantum Fisher information for
Bogoliubov channels that encode physical quantities of
interest in quantum field theory in curved space-time.
We will pay particular attention to the case where we
want to estimate the difference between an initial state
undergoing some transformation and a state that does
not undergo the transformation. This is equivalent to
evaluating the quantum Fisher information at ε0 = 0.
We will also implicitly assume that the Bogoliubov coef-
ficients have the following property

d

dε
αjj(ε)∣ε=0

= d

dε
βjj(ε)∣ε=0

= 0. (30)

This is equivalent to the statement that the first or-
der coefficients of the diagonal α and β are zero i.e.

α
(1)
jj = β

(1)
jj = 0. As an example, these assumptions

hold when the symplectic operation is symmetric around
zero, i.e., α(ε) = α(−ε), β(ε) = β(−ε), and also for the
special case of αmn, βmn ∈ R. Physically, this condition
means that the channel does not affect the same mode
up to the first order in ε. I.e., the channel is mostly
mode-entangling channel. It is possible to generalise this

work to cases where diagonal first order Bogoliubov co-
efficients are non-zero, however, since Bogoliubov coeffi-
cients considered in previous literature [8, 38–40] all sat-
isfy Eq. (30), we will restrict to such case. In the follow-
ing sections, we consider that all quantities (matrix and
scalar) can be expanded in the form,

f(ε) = f (0) + f (1)ε + f (2)ε2 +O(ε3). (31)

A. One-mode systems

We first compute the quantum Fisher information of
a single mode undergoing a Bogoliubov transformation
that depends on the physical parameter to be estimated.
We consider the following initial state,

σ0 = νm [cosh(2r) sinh(2r)
sinh(2r) cosh(2r)] , σE = ⊕

j≠m

νj I, (32)

which corresponds to a single mode squeezed thermal
state with squeezing parameter r, thermal parameter
νm ≥ 1 and all other modes in a separable thermal state.
The temperature of the state, denoted by T , is related
to the thermal parameter through νm = coth(Em/2T )
where Em = ωm is the energy of each mode. Note that
for zero temperature, the thermal parameter reduces to
νm = 1.

We can write the final state as a series expansion in ε
around the point ε0 = 0,

σ(ε) = σ(0) +σ(1) ε +O(ε2). (33)

The exact final state elements can be computed using
the expressions in appendix C3. It should also be noted

that, in general, the covariance matrix elements X
(j)
mn and

X
(j)
mn will depend on both squeezing, r, and the thermal

parameters νm. We will also denote phases acquired due
to free time evolution as Gm = e+iωmτ with ωm the ze-
roth order contribution to a modes frequency.

We now proceed to choose specific values for the tem-
perature and squeezing to find analytically the quantum
Fisher information in regimes of interest.

1. Initial zero temperature

We start by considering an initial state with zero tem-
perature. The perturbative expansion of Λ in Eqs. (10)
needs particular attention. If we consider a state which is
initially pure one finds that the denominators in Eqs. (13)
and (14) vanish. This potentially problematic point can
be handled in multiple ways, for more details see [32].
However, one can make a series expansion of each term
and by applying L’Hôpital’s rule one obtains a finite re-
sult,
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H1(ε) = X(2)mm cosh(2 r) −Re[G2
m Y

(2)
mm] sinh(2r) + 2

3
(X(3)mm cosh(2 r) −Re[G2

m Y
(3)
mm] sinh(2 r)) ε +O(ε3) (34)

For convenience and clarity, we have left the second order
covariance matrix elements written in the general form

X
(2)
mm and Y

(2)
mm. This elegant expression builds upon the

zeroth order result of [41] and extends it to the linear
regime in ε. It should be noted that, for the expansion
(34) to be valid, the initial squeezing r and parameter ε
must satisfy e2r ε≪ 1.

2. Initial “small” temperature

A case of physical relevance is that of small tempera-
ture. In realistic situations the field is never in the vac-
uum state. It is possible to compute analytical formulas
in different regimes of interest that depend on the relative
magnitude of the temperature parameter and the param-
eter ε. We start by analysing the case where the tempera-
ture is “small” as compared to ε. The thermal parameter
νm in this case has the form νm = 1+2Z2 +O(Z3), with

Z = e−Em/2T . We can identify the ratio Z2/ε2 as our
new expansion parameter. This defines our “small” tem-

perature regime as the one where Z2 ≪ ε2. We find the
quantum Fisher information takes the expression

H1(ε) ≈ H(0)1 − 4
Z2

ε2
. (35)

One notes that the main contribution is the zeroth or-
der and zero temperature QFI H

(0)
1 which coincides with

the zeroth order contribution from Eq. (34). The second
term is a small correction. We have neglected the linear
contribution to the zero temperature result for simplicity.

3. Initial “large” temperature

In this case we find that the zeroth order quantum
Fisher information for a single mode is identically zero,

i.e. H
(0)
1 = 0 for any non-zero temperature. This implies

that the estimation of the parameter ε around zero is
impossible for a one-mode squeezed state with a non-zero
temperature. The first non-trivial contribution comes at
O(ε2). The result is,

H
(2)
1 =

⎛
⎝
∣Y (2)mm∣2
ν2
m + 1

+ (X(2)mm)2

ν2
m − 1

− 2ν2
mX

(2)
mmRe[G2

mY
(2)

mm]
ν4
m − 1

sinh(4r) +
2ν2

m((X(2)mm)2 +Re[G4
m(Y (2)mm)2])

ν4
m − 1

sinh2(2r)
⎞
⎠

(36)

Clearly the condition νm > 1 is key and the equation
holds in the regime ε2 ≪ νm − 1 or, in terms of the previ-
ous subsections notation, ε2 ≪ Z2 by which the “large”
temperature regime is defined.

B. Two-mode states

Here we compute the quantum Fisher information for
thermal two-mode states with non-degenerate thermal
parameters (i.e., the frequencies of the two modes are
different). The initial state has the form,

σ0 =

⎡⎢⎢⎢⎢⎢⎢⎣

Dmn 0 0 Cmn
0 Dnm Cmn 0
0 Cmn Dmn 0

Cmn 0 0 Dnm‘

⎤⎥⎥⎥⎥⎥⎥⎦

, σE = ⊕
j≠m,n

νj I, (37)

where we have introduced

Dmn =̇νm cosh2(r) + νn sinh2(r), (38a)

Cmn =̇ (νm + νn) cosh(r) sinh(r). (38b)

1. Initial zero temperature

In the two-mode case, the QFI for zero temperature is
given as a series expansion in ε. The resulting expressions
are computable but considerably more involved. Here we
present the results for the zero and first order contribu-
tions in ε. In the linear contribution, we present only the
case of zero squeezing. The formula for non-zero squeez-
ing is too long and therefore, we have chosen to focus on
the quantitative behaviour.

H
(0)
2 = (X(2)mm +X(2)nn ) cosh(2r)

− 4∣β(1)mn∣2 − 2 Re[GmGnY (2)mn ] sinh(2r)

− 4 (∣α(1)mn∣2 + Im[Gm β
(1)

mn]2) sinh2(2r),
(39a)

H
(1)
2 ∣

r =0
= 2

3
(6 Re[Gnβ(1)mnY (2)mn ] +X(3)mm +X(3)nn ]).

(39b)

At zeroth order, the quantum Fisher information depends
on the squeezing parameter in the same way as in the sin-
gle mode channels studied in the previous section. How-
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ever, at first order, particle creation terms β
(1)
mn appear

generating entanglement in the system. Therefore, we
conclude that in this case entanglement does not pro-
vide an important improvement in precision. A highly
squeezed single mode probe state could be enough to en-
able a good measurement strategy for the estimation of
parameters uncoded in Bogoliubov transformations. Sin-
gle mode states are usually more accessible in realistic
experiments and this could provide an important advan-
tage in quantum metrology for quantum fields.

2. Initial “small” temperature

We now compute the “small” temperature contribution
to the QFI for two mode probe states by expanding the
thermal parameters as νm = 1+2 qmZ

2+O(Z3) where qm
is a fixed constant. We find that for zero squeezing, the
first contribution to the QFI in the small temperature

regimes has the following form,

H2(ε) ≈ H(0)2 − 4 (qm + qn)
Z2

ε2
, (40)

where the zeroth order H
(0)
2 coincides with Eq. (39a). It

should be noted that due to the complexity of the two-
mode non-zero squeezing expression, the first correction
term in Eq. (40) has only been verified for zero squeezing.

3. “Large” temperature

As in the single mode case, the thermal parameters
take values strictly greater than unity, i.e. νj > 1. The
components of the state can be exactly computed and are
given in appendix C4. We find that the quantum Fisher
information, including linear contributions, is given by

H2(ε) = H(0)2 +H(1)2 ε +O(ε2), with coefficients,

H
(0)
2 = h00 + h02 sinh2(2r),

h00 = 2 (νm − νn)2∣α(1)mn∣2
νmνn − 1

+ 2 (νm + νn)2∣β(1)mn∣2
νmνn + 1

,

h02 = 2 (νm + νn)2((νmνn − 1)2 + ν2
m + ν2

n − 2)∣α(1)mn∣2
(ν2
m + 1)(ν2

n + 1)(νmνn − 1) + 2 (νm + νn)2Im[Gmβ
(1)

mn]2
νmνn + 1

.

(41)

H
(1)
2 = h10 + h11 sinh(2r) + h12 sinh2(2r),

h10 = 4
⎛
⎝
νn − νm
νmνn − 1

Re[Gnα(1)mnX
(2)

mn] −
νm + νn
νmνn + 1

Re[Gnβ(1)mnY (2)mn ] cosh(2r)
⎞
⎠
,

h11 = 2 (νm + νn)Re[Gmβ
(1)

mn]
νmνn + 1

(X(2)mm +X(2)nn ) − 16νmνn(ν2
m − ν2

n)2∣α(1)mn∣2Re[Gmβ
(1)

mn]
(ν2
m + 1)(ν2

n + 1)(ν2
mν

2
n − 1) cosh(2r)

− 2(νm + νn)(νmνn + 1)
(ν2
m + 1)(ν2

m + 1) Re[Gnα(1)mn(GmGnY
(2)

mm −GmGnY (2)nn )]

+ 2(νm − νn)(νm + νn)2

(ν2
m + 1)(ν2

n + 1)(νmνn − 1)Re[Gnα(1)mn(GmGnY
(2)

mm +GmGnY (2)nn )] cosh(2r),

h12 = 4 (νn − νm)(νn + νm)2Re[Gnα(1)mnX
(2)

mn]
(1 + ν2

m)(1 + ν2
n)(νmνn − 1) .

(42)

In general, the coefficients α
(1)
mn, β

(1)
mn and the covariance

matrix are time dependent. In the large temperature
regime, to zeroth order, the quantum Fisher information
for two-mode probe states is non-zero. This result is in
contrast with the single-mode case. Even when the probe
state has zero squeezing, the quantum Fisher information
is non-zero and it is proportional to the number of parti-
cles created after the Bogoliubov transformation [42]. We
can also analyse the effect of temperature on the quan-
tum Fisher information by varying the parameters νm

and νn. We note that at when estimating around the
point ε = 0, the zero order expressions for the quantum
Fisher information are exact, H(0) =H(0).

V. EXAMPLE: ESTIMATION OF THE PROPER
ACCELERATION

To illustrate the power of the derived formulae, we
calculate the bound on the estimation of the proper ac-
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celeration using cavities. Assume a quantum state inside
of a non-moving cavity. Starting at proper time τ0 = 0,
the cavity goes through a period τ of the proper accel-
eration a (as measured in the centre of the cavity) and
period τ of retardation −a, stopping again at time 2τ .

Since we wish to estimate the proper acceleration a we
identify a ≡ ε. The proper length of the cavity L = 1
is considered constant during the whole procedure. Bo-
goliubov transformation of the state in this scenario has
been calculated in [38] using a continuous perturbative
expansion in the small parameter a,

αmn(a) = eiωn2τ +O(a2), m = n

= − 8i
√
mn

(m − n)3π2
e

1
2 iπ(m+n−2mτ+6nτ) sin (m+n)π

2
sin2 (m−n)πτ

2
a +O(a2), m ≠ n (43a)

βmn(a) = − 8i
√
mn

(m + n)3π2
e

1
2 iπ(m+n−2mτ+2nτ) sin (m+n)π

2
sin2 (m+n)πτ

2
a +O(a2), (43b)

FIG. 1. The zeroth order of the quantum Fisher information
for the estimation of the acceleration parameter a using a
one-mode squeezed state with initial zero temperature. Cal-
culated using Eq. (34) while choosing m = 1 (using a Fock
space corresponding to the first excited state within a cav-
ity). The graph shows that to achieve the highest possible
precision in estimation it is appropriate to measure at certain
times (τ = 1,3,5, . . . ). This periodic behavior is due to the
fact that the information about the parameter moves into the
modes we cannot access – the environment – and back. At
times when the quantum Fisher information is the highest the
estimation precision grows exponentially with the squeezing
parameter r.

where ωn = nπ
L

is a natural frequency of the n-th mode.
Using these transformations, we calculate the zeroth or-
der quantum Fisher information for a one-mode squeezed
vacuum and a two-mode squeezed thermal state as shown
on figures 1 and 2.

FIG. 2. The zeroth order of the quantum Fisher information
for the estimation of the acceleration parameter a using a
two-mode squeezed thermal state with initial “large” temper-
ature. Calculated using Eq. (41) while choosing m = 1, n = 2
(Fock spaces corresponding to the first and the second ex-
cited state within the cavity). Different combinations of initial
temperatures are used, νm,n = 2,6,10. Similarly to the one-
mode scenario, it is appropriate to measure at certain times
(τ = 1,3,5, . . . ) when the estimation precision grows exponen-
tially with the squeezing parameter r. Moreover, the graph
shows that the highest precision in estimation is achieved with
large temperature difference between the modes, i.e., when
ν1 = 2 and ν2 = 10, or ν1 = 10 and ν2 = 2. The diagonal
ν1 = ν2 →∞ quickly converges to the double of the two-mode
squeezed vacuum value given by ν1 = ν2 = 1. An opportunity
of using temperature difference between the modes is not the
only advantage of using the two-mode states. In contrast to
the one-mode states, two-mode states also achieve one order
higher precision with the same amount of squeezing.
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VI. CONCLUSIONS

In order to provide a general framework for estimat-
ing parameters of interest in gravity and relativity us-
ing quantum metrology, we have extended previous pure
state analysis to the mixed case. The main motivation is
that, for any practical and experimental purposes, quan-
tum systems are always mixed. We have restricted our
analysis to Gaussian probe states since, in this case, the
covariance matrix formalism provides advantageous sim-
plifications of the mathematical description of the states.
In particular, Gaussian states are also relatively easy
to prepare in quantum optical laboratories. We have
computed general and exact expressions for the quan-
tum Fisher information for one- and two- mode mixed
Gaussian probe states undergoing arbitrary Bogoliubov
transformations and illustrated its use on the estimation
of the proper acceleration.

By employing a series expansion in the Bogoliubov co-
efficients around the point ε0 = 0, we were able to evalu-
ate the quantum Fisher information for the case of one-
and two-mode Gaussian probe states. We obtained exact
expressions for the quantum Fisher information at point
ε = 0, and perturbative expressions for ε ≠ 0. In the
single mode case, for a finite temperature, the quantum
Fisher information is identically zero at ε = 0. This im-
plies that for states which are at some temperature other
than absolute zero, one cannot distinguish between two
states in the neighbourhood of ε = 0. For larger values
of ε, the quantum Fisher information is non-zero and the
quantum Cramér-Rao bound is finite. On the other hand,
in the case of a thermal two-mode state there is always
the possibility of distinguishing between infinitesimally
close states in the neighbourhood of ε = 0.

Higher squeezing and a high temperature difference
of modes significantly improves the precision in estima-
tion. Squeezed states are generally more sensitive to rota-
tions and mode-mixing as well as particle creation when
the squeezed state is appropriately oriented. The differ-
ence in temperature also helps because any mode-mixing
channel given by a non-trivial passive coefficient α will,
in general, mix temperatures of different modes. This
effect vanishes when modes have the same temperature.
Ultimately, this is due to the fact that squeezed ther-
mal states have high variance in energy which, according
to the general equation for the quantum Fisher informa-
tion [30], leads to a greater precision in estimation.

Our results will enable researchers to evaluate how well
space-time parameters, such as the amplitude of gravita-
tional waves, accelerations and local gravitational fields,
can be estimated in the presence of background temper-
ature [8, 43]. We observe that strategies involving one-
and two-mode probe states exhibit the same exponential
gain for large squeezing. However, single mode thermal
states do not perform well in the scenario when the chan-
nel is mostly mode-entangling, which is a common case
in the literature [8, 38–40].

Our results lead naturally to other important ques-

tions. The quantum Fisher information is the optimisa-
tion of the classical Fisher information over all possible
measurements. Therefore, what is the optimum measure-
ment for our scheme? An analysis of the symmetric log-
arithmic derivative would certainly shed light on this and
general knowledge in this direction has already been de-
veloped [44]. Furthermore, if the optimal measurement
is found to be impractical then an analysis of more real-
istic measurements, such has homodyne and heterodyne
for Gaussian states, could prove fruitful. These questions
are left for future work.
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Appendix A: Real and complex form of first and
second moments

Here we present the connection between the “real”
form of the covariance matrix formalism (commonly used
in the literature), and the “complex” form, used in this
paper. Our choice was based on mathematical simplicity.

The real form of the covariance matrix formalism is
usually defined with respect to the collection of quadra-
ture operators Q̂ =̇ x̂ ⊕ p̂ = {x̂1, x̂2, . . . , p̂1, p̂2, . . .}. The
canonical commutation relations of these operators can
be conveniently expressed as

[Q̂m, Q̂n] = +iΩmn id ⇒ Ω = [ 0 I
−I 0

] . (A1)

Notice some properties of Ω are −Ω2 = +I and Ωtp =
−Ω, in contrast to the complex form version K. In the
real form, the definitions of the first and second moments
are,

dR = tr [ρ̂ Q̂] = [x
p
] , (A2a)

σR = tr [ρ̂{Q̂, Q̂}] = [AR BR

Btp
R CR

] . (A2b)

Note that the sub-matrices AR and CR are not the re-
duced states of a subsystem. We can now switch between
the two different representations via the transformation,

Â = LQ̂, L =̇ 1√
2

[I +iI
I −iI] . (A3)
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The transformation between the two forms is then given
by,

d = LdR, σ = LσRL†. (A4)

In terms of the components of the first and second mo-
ments, we have the identification,

α = x + iy√
2

, X =
AR +CR − i (BR −Btp

R )
2

,

Y =
AR −CR + i (BR +Btp

R )
2

.

(A5)

Notice the required conditions X† = X and Y tp = Y .
Collecting these expressions back into the first and second
moments gives us the representation,

d = [da
da

] , σ = [X Y

Y X
] . (A6)

This is the source of the notation used in the main body
of the paper.

Appendix B: Real and complex form of Bogoliubov
coefficients

Bogoliubov transformations can be represented as a
matrix acting on the space of classical Klein-Gordon field
solution space or as a matrix acting on the space of
canonical field creation and annihilation operators. Al-
gebraically these are, respectively,

S = [α β

β α
] , S̃ = [ α −β

−β α
] . (B1)

Using the transformation rule in appendix A4, we can
find the real form of Bogoliubov transformation via SR =
L†SL. The results are

SR = [Re [α +β] −Im [α −β]
Im [α +β] Re [α −β] ] , (B2a)

S̃R = [ Re [α −β] −Re [α +β]
−Im [α +β] −Im [α −β]] . (B2b)

The matrices SR and S̃R have been used to define the
Bogoliubov transformations in previous literature, such
as [8, 40, 41].

Appendix C: One- and two-mode state elements

We can define the initial state of the whole system via,

σ̃0 = [X0 Y 0

Y 0 X0
] (C1)

Note this takes into account any modes of interest and
also the remaining “environment” modes of the system.
The general components for the matricesX and Y which
constitute a covariance matrix after a general Bogoliubov
transformation, given by the quantum channel Eq. (28),
can be written as

Xij = ∑
a,b

(αiaX0,ab αjb + βia Y 0,abαjb + αiaY0,abβjb + βiaX0,abβjb), (C2a)

Yij = ∑
a,b

(βiaX0,ab αjb + αia Y0,ab αjb + βia Y 0,ab βjb + αiaX0,ab βjb). (C2b)

These expressions, coupled with the exact definitions
of the quantum Fisher information and Bogoliubov co-
efficients, can be used to compute the quantum Fisher
information for any state within our quantum field the-
ory framework. The resulting expressions are rather un-

wieldy and hence we have not written them out explicitly.

1. One-mode covariance matrix elements

For the two-mode state considered in Eq. (32), the ex-
act two-mode covariance matrix elements after a general
Bogoliubov transformation are given by,
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Xmm = νm ( cosh(2r) (∣αmm∣2 + ∣βmm∣2) − 2 Re[αmmβmm] sinh(2r)) + ∑
a≠m

νa (∣αma∣2 + ∣βma∣2), (C3a)

Ymm = νm( − 2 cosh(2r)αmmβmm + (α2
mm + β2

mm) sinh(2r)) − 2 ∑
a≠m

νaαmaβma. (C3b)

2. Two-mode covariance matrix elements

For the single mode state considered in Eq. (37), the
exact one-mode covariance matrix elements after a gen-
eral Bogoliubov transformation are given by,

Xij =Dmn(αimαjm + βimβjm) +Cmn(βimαjn + αimβjn) +Dnm(αinαjn + βinβjn)
+Cnm(βinαjm + αinβjm) + ∑

a≠m,n

νa(αiaαja + βiaβja), (C4a)

Yij =Dmn(βimαjm + αimβjm) +Cmn(αimαjn + βimβjn) +Dnm(βinαjn + αinβjn)
+Cnm(αinαjm + βinβjm) + ∑

a≠m,n

νa(βiaαja + αiaβja). (C4b)
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