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We introduce a microscopic computation which shows that the Hamiltonian of a Bose-Einstein
Condensate can be analytically solved in the two-mode approximation, in particular, in the case
of an asymmetric double-well condensate in the dilute regime. Our model is exactly diagonalisable
when the overlap of the quasilocalized modes in each well is small enough with respect to the trap
asymmetry. For larger overlaps or highly symmetric traps, our diagonalisable Hamiltonian acquires
extra terms that we treat within perturbation theory.
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The Hamiltonian of a two-mode Bose-Einstein conden-
sate (BEC) has been extensively studied in the litera-
ture [1–5] due to its relative simplicity and application
to double-well [4] or spin-1/2 [5] condensates.

In spite that the two-mode BEC corresponds to the
most simple multi-mode situation, canonical models em-
ployed, such as the Bose-Hubbard Hamiltonian [1], can-
not be solved analytically. Therefore, common tech-
niques to study this system involve numerical meth-
ods, approximations (such as the use of Bethe ansatz)
and semiclassical analysis (mean-field theory) where the
modes are treated classically. However some of the au-
thors of this paper have introduced a model which Hamil-
tonian can be diagonalized analytically [6, 7]. The model
is a generalization of the Bose-Hubbard Hamiltonian
which includes mode-exchange and coherent tunneling
interactions previously ignored or neglected. Interest-
ingly, physical effects produced by such interactions have
been experimentally observed [8]. Since our model in-
volves certain constraints among the different terms of
the Hamiltonian, the question of to what extent it de-
scribes a realistic BEC remains open. This is the ques-
tion that we address here.

In this paper we show that the exactly solvable model
of the two-mode BEC introduced in [6, 7] can be de-
rived from the microscopical description of a double-well
BEC. Showing this simply involves a generalization of
the modes commonly employed in the two-mode approx-
imation. The microscopic calculation we carry out here
yields directly the diagonalizable model plus extra-terms
that can be treated perturbatively as long as the overlap
between the quasi localised modes in each well is much
smaller than the trap asymmetry. We find that this is
indeed the case in a wide variety of experiments involv-
ing double-well BECs. The behaviour of the diagonaliz-
able model under generic perturbations has already been
studied in [9]. Exploiting these results we compute the
relevant corrections of the eigenstates within perturba-
tion theory. Thus, we provide a complete toolbox for
the analytical description of a wide range of double-well
BECs, which includes not only the ground state of the
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FIG. 1: An asymmetric double-well BEC consisting of wells
A and B with energy offset A1. φa, φB are almost-localised
modes with a small overlap characterised by ε (see the text).
In the Bose-Hubbard model, the two-mode approximation
considers two equally balanced superpositions of φa and φb.
Here, we consider a more general superposition (see Eq. (13)
which allows to treat the Hamiltonian analytically, as long as
ε << A1.

system but all the eigenvalues and eigenvectors.
Let us discuss our results in more detail. We start

with the microscopic description of a BEC. Consider
the many-body energy functional for bosonic particles of
mass m trapped in a potential V (r) undergoing two-body
collisions with s-wave scattering length a:

Ĥ = Ĥ1 + Ĥ2,

Ĥ1 =

∫
dr
(
− ~2

2m
Ψ̂†∇2Ψ̂ + Ψ̂†V (r)Ψ̂

)
,

=

∫
drΨ̂†HtΨ̂,

H2 =
g

2

∫
drΨ̂†Ψ̂†Ψ̂Ψ̂, (1)

where g = 4π~2a
m is the coupling strength and Ht is the

Hamiltonian of the trap. The wavefunction Ψ̂ can be
expanded in terms of the eigenfunctions φi of the total
Hamiltonian Ĥ and their corresponding annhilation op-
erators ĉi as

Ψ̂ =
∑
i

φiĉi. (2)
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At absolute zero temperature and in the absence of par-
ticle collisions, all particles occupy the ground level of
the single-particle Hamiltonian Ĥ1 producing a BEC. In
this case, the ground-state wavefunction φS is symmet-
ric. However, in the case that particles collide with inter-
action energy small compared to the single-particle en-
ergy, we can consider that particles occupy the two low-
est eigenstates of the Hamiltonian, i.e the antisymmetric
mode φA is also populated. In this case, a two-mode
approximation is valid and the total wavefunction of the
system is well described by

Ψ̂ = φ1ĉ1 + φ2ĉ2. (3)

The real wavefunctions φ1 and φ2 are orthonormal modes∫
drφiφj = δi,j with i, j = 1, 2 which have a small tran-

sition amplitude such that

E12 =

∫
drφ1Htφ2. (4)

Typically, the modes in terms of the symmetric and an-
tisymmetric solutions are written as,

φ1 =
1√
2

(φS + φA),

φ2 =
1√
2

(φS − φA).

(5)

By substituting the two-mode approximation Eq. (10) in
the Hamiltonian (1) we obtain,

H1 = E1c
†
1c1 + E2c

†
2c2 + E12(c†1c2 + c†2c1)

H2 = U1111c
†2
1 c

2
1 + U2222c

†2
2 c

2
2 + +4U1212c

†
1c
†
2c1c2

+ 2U1112(c†21 c1c2 + h.c) + 2U2212(c†22 c1c2 + h.c)

+ U1122(c†21 c
2
2 + h.c)

where

E1 =

∫
drφ1Htφ1 , E2 =

∫
drφ2Htφ2,

U1111 =

∫
drφ21φ

2
1 , U2222 =

∫
drφ22φ

2
2

U1212 =

∫
dr|φ1|2|φ2|2 , U1112 =

∫
drφ21φ1φ2

U1222 =

∫
drφ22φ1φ2 , U1122 =

∫
drφ21φ

2
2. (6)

The Hamiltonian Eq. (15)describes a constant number
of particles N = n1 + n2 where

n1,2 = c†1,2c1,2 (7)

of them occupy mode 1,2 with corresponding energy E1,2.
The number of particles in each mode change with prob-
ability amplitude E12. In addition to this, particles un-
dergo same-mode collisions with scattering lengths U1111

and U2222, elastic collisions between particles in different
modes U1122 and mode-exchange collisions U1112, U1222,
U1122. While the latter terms are usually neglected, their
effects have been observed in the laboratory [8] and they
have been extensively discussed theoretically [7].

Let us now focus in double-well BECs and distinguish
two cases of interest, namely symmetric and asymmetric
potentials. We label the symmetric and antisymmetric
solutions of the single particle Hamiltonian correspond-
ing to the symmetric well as φsA, φ

s
S and φaA, φ

a
S the solu-

tions in the asymmetric potential. Therefore, in the case
of the symmetric potential the two-mode approximation
corresponds to two almost-localized modes

φs1 =
1√
2

(φaS + φaA)

φs2 =
1√
2

(φaS − φaA). (8)

In the literature of double-well BECs [1], these modes are
commonly labeled

φs1 = φa ; φs2 = φb (9)

to emphasize that they are almost localized modes in well
A and B respectively. We will use this notation here as
well.

In the asymmetric potential case, we can write the
modes φa1 and φa2 in terms of the symmetric quasilocal-
ized modes,

φa1 = cos(θ/2)φa − sin(θ/2)φb

φa2 = cos(θ/2)φb + sin(θ/2)φa

It is easy to see that in terms of the symmetric and anti-
symmetric solutions of the symmetric potential we obtain

φa1 = cos ΩφsA + sin ΩφsS

φa2 = − sin ΩφsA + cos ΩφsS

(10)

where Ω = 1
2 (θ+ π

2 ). Note that we recover the symmetric
case when θ = 0.

We have introduced the set of quasilocalized modes
because the integrals in the Hamiltonian are easily eval-
uated in the φa and φb basis. They are nearly normalized
modes with

∫
drφaφa = 1 + ε,

∫
drφbφb = 1 − ε , where

the amplitude of transition between them

ε =

∫
dr φaHtφb (11)

is assumed to be very small. Therefore, all the fourth-
order integrals containing both modes, such as :

I1 =

∫
drφ2bφ

2
a , I2 =

∫
drφ3aφb, , I3 =

∫
drφ3bφa (12)

are of order O(ε2).



3

Relaxing the notation, the modes of the asymmetric
potential are related with the quasilocalized modes by
the transformation:

φ1 = cos(θ/2)φa − sin(θ/2)φb

φ2 = cos(θ/2)φb + sin(θ/2)φa. (13)

Note that for the case θ = 0, the two-mode approxi-
mation becomes

Ψ̂ = φaâ+ φbb̂, (14)

which yields a Hamiltonian which describe two non-
interacting well-localised modes,

H = Eaa
†a+ Ebb

†b+ Uaaa
†2a2 + Ubbb

†2b2

with

Ea =

∫
drφaHtφa , Uaa =

∫
drφ4a,

Eb =

∫
drφbHtφb , Ubb =

∫
drφ4b . (15)

In this case the modes φa and φb become orthonormal.
Another case of interest is that of θ = π/2. In this case
we obtain the two-mode approximation commonly used
in the literature for a symmetric double well potential
which leads to the well known Hubbard-Bose Hamilto-
nian after neglecting the terms corresponding to mode-
exchange collisions U1212, U1112, U2212 and U1122.

Here we consider a more general mode decomposition
parametrized by the angle θ. However, this simple change
has strong consequences. After evaluating the integrals
in this new set of modes and adding the constant −N we
obtain the Hamiltonian,

H = H0 +H
′
+H

′′
(16)

where H0 is diagonalizable: [6, 7]

H0 = A1 cos θ(c†1c1 − c
†
2c2) +A1 sin θ(c†1c2 + c†2c1)

+ A2(1 + cos2 θ)(c†21 c
2
1 + c†22 c

2
2) + 4A2 sin2 θc†1c

†
2c1c2

+ 2A2 cos θ sin θ(c†21 c1c2 − c
†2
2 c1c2 + h.c)

+ A2 sin2 θ(c†21 c
2
2 + h.c) (17)

and H′
, H′′

are of order O(ε), O(ε2) respectively. Here

A1 =
1

2
(Ea − Eb) (18)

and

A2 =
1

2
U (19)

for U = Uaa = Ubb assuming that the scattering length
of particles in each mode is equal. Close attention must

be taken in evaluating A1 and A2 since the wavefunc-
tions must be renormalized before the integration is car-
ried out. H0 describes a BEC in an asymmetric double-
well potential. c†1c1 and c†2c2 correspond to the number
of particles in each well. The wave functions φ1 and
φ2 overlap giving rise to tunneling of particles through
the potential barrier. Particles undergo on-site colli-
sions c†1,2c

†
1,2c1,2c1,2 and in the overlapping region of

the wavefuntions particles of different wells can collide
c†1c
†
2c2c1. Two other interesting effects are present in

the Hamiltonian. One of them in coherent tunneling in
which two particles collide and tunnel as a single particle
c†1,2c

†
1,2c2,1c2,1. These effects has already been observed

in laboratory. A less known effect is collision assisted
tunneling in which a particle tunnels thanks to energy
gained during a on-site collision c†1c

†
1c1c2.

The eigenstates of the Hamiltonian H0 are

|Φn1,n2
〉 = exp(

θ

2
(c†1c2 − c1c

†
2))|n1, n2〉 (20)

with corresponding eigenenergy

En1,n2 = A1(n1 − n2) +A2(n1 − n2)2. (21)

Note also that the two-mode approximation requires that
on-site interactions are much stronger than the interac-
tions between particles in different wells. This is possible
if we restrict ourselves to small values of θ such that

sin θ ' θ << 1 , cos θ ' 1. (22)

Let us consider the term H′
,

H
′

= −ε(θ
2

(c†1c1 − c
†
2c2) + c†1c2 + c†2c1), (23)

where we have already assumed the approximation in Eq.
(22).

By comparing Eqs. (17) and (23), we see that we can
treat H′

as a perturbation, as long as ε << A1θ. This is
indeed the case in a wide variety of experiments involv-
ing double-well condensates [10–12]. The tunnelling rate
E12 ' A1θ + ε takes experimental values ranging from
5 · 10−4 Hz×h [11] to 2 Hz×h [10], while the energy off-
set between the wells can be as high A1 = 530 Hz×h [12].
Even if the wells are intended to be perfectly symmetric,
the uncertainty in the trap depth leads us to assume a
minimum trap asymmetry of A1 ' 20 Hz×h [10].

Using the results in [9], we find the following non-
vanishing matrix elements in perturbation theory:

〈Φn1 n2 |H
′
|Φn1 n2〉 = −3

2
ε θ (n1 − n2)

〈Φn1+1n2−1|H
′
|Φn1 n2

〉 = −ε
√
n2 (n1 + 1)

〈Φn1−1n2+1|H
′
|Φn1 n2〉 = −ε

√
n1 (n2 + 1). (24)

Now let us discuss the term H′′
, which includes all the

fourth-order integrals containing both modes:

H
′′

= 4 I1c
†
1c
†
2c1c2 + 2 I2(c†21 c1c2 + h.c)

+ 2 I3(c†22 c1c2 + h.c) + I1(c†21 c
2
2 + h.c) +O(θ),(25)
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where the O(ε2) integrals I1, I2, I3 are defined in Eq. 12.
The leading contributions to the non-vanishing matrix
elements of the perturbation are:

〈Φn1 n2 |H
′
|Φn1 n2〉 = 4n1 n2 I1

〈Φn1+1n2−1|H
′
|Φn1 n2〉 = 2 (I2 + I3)

√
n2 (n1 + 1)

〈Φn1−1n2+1|H
′
|Φn1 n2

〉 = 2 (I2 + I3)
√
n1 (n2 + 1)

〈Φn1+2n2−2|H
′
|Φn1 n2

〉 = I1
√

(n1 + 1) (n1 + 2)n2 (n2 − 1)

〈Φn1−2n2+2|H
′
|Φn1 n2

〉 = I1
√

(n2 + 1) (n2 + 2)n1 (n1 − 1)

The behaviour of several physical quantities of interest
in a model described by a Hamiltonian H0 under generic
perturbations with the same mathematical structure as
H′

and H′′
was thoroughly discussed in [9].

In summary, we introduce a toolbox for the analytical
description of a two-mode BEC. Our results are found by
means of a generalisation of the modes commonly used in
the two-mode approximation. The Bose-Hubbard model
corresponds to a particular case of the modes we intro-
duce here. An important advantage of our scheme is
that it includes mode-exchange and coherent tunnelling
interaction terms that have been observed experimentally
and are typically neglected. Moreover, while the Bose-
Hubbard hamiltonian is commonly solved numerically,
our model can be fully treated with analytical methods.
We not only find the ground state but the full spectrum
and the eigenstates. We believe that this will be of great
benefit for quantum information and metrology applica-
tion with BEC setups. As a first example of interest, our
discussion has been focused on the asymmetric double-
well BEC. However, the theory we have here developed
can be applied to a more general situation since the only
assumptions we have made are that the condensate wave-
function can be approximated by two modes and that the
transition amplitude between them is very small. For in-
stance, a case of interest is a single-well Bose-Einstein
condensate consisting of atoms in two hyperfine levels
[5]. In such case, mode-exchange collisions have been
predicted by microscopic calculations [13]. The exactly
solvable model can be generalized to the multi-mode case
(including optical lattices) and many-body interactions.
It is therefore of great interest to explore as well the mi-

croscopic derivation of those cases.
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