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by Yuan Wang

The AlGaAs-like quantum wells sandwiched by high-quality microcavities can pro-
duce Wannier–Mott excitons and long-lifetime microcavity photons, forming the light-
weight exciton-polaritons (polaritons) in the strong coupling regime. Polariton con-
densates can occur at cryogenic temperatures through optically excited high-energy
excitons. Then the excitons follow a quick optical-phonon-induced relaxation into the
reservoir, high-momentum of the lower polariton branch (LP). Through multiple scat-
tering with acoustic phonons and parametric scattering in the vicinity of the LP bottle-
neck, the photonic components of the polaritons are increasing, and the polaritons on
the reservoir eventually fall into the bottom or higher position of the LP, leading to the
polariton condensates. The strong polariton-polariton interaction due to the excitonic
components of the polaritons makes the polariton condensates a promising testbench
for various nonlinear effects in the realm of quantum fluid of light.

Through numerically solving the generalized Gross-Pitaevskii model coupled with the
reservoir rate equation, this thesis studies methods to enhance and focus ballistic po-
lariton condensates with tailored reservoir driven by localized nonresonant asymmetric-
shaped excitation. This thesis demonstrates that the lens-shaped pump above the
threshold can drive the focus of condensate away from the pumping region; by em-
ploying a second excitation next to the lens, the planar condensate flow is generated
and can reflect and scatter with the lens-shaped blueshift, resulting in the focused con-
densate beating with hundreds of gigahertz. Furthermore, the source-lens system can
be reprogrammed to achieve different beating locations and frequencies, paving the
way for the realization of the all-optical transistor. This thesis also shows that in the po-
lariton lattices, the stronger interaction between the nearest neighbors is achieved in the
polygonal- rather than Gaussian-shaped pump due to the focused condensates flow-
ing towards the nearest neighbors; and, in comparison to a Gaussian-shaped pump, the
polygonal-shaped pump can increase the spatial coherence for a given power density
or lower the energy needed for condensation. This finding can greatly improve spatial
coherence in the needs of large-scale polariton condensates networks.
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Chapter 1

Introduction

Cavity quantum electrodynamics explains the interaction between the microcavity pho-
tons and the collective excitation confined in semiconductor quantum wells (QWs).
Consider a two-level system where an electron is present inside a cavity that has both
ground and excited states. Through spontaneous emission, the electron in the excited
state can drop to the ground state, emitting photons with energy equal to the electronic
transition energy. The remaining photons inside the cavity can either be reabsorbed by
the electron or decay away from the cavity. A high-quality cavity can diminish photon
losses and enhance the interaction between the photons and the excitation because of
long-lifetime photons. A clear statement was found in 1946 by Purcell that through
tailoring the density of states of the photons, in other words, by engineering the cavity
itself, the spontaneous emission rate of the system can be enhanced or suppressed [1].
That is to say, the cavity plays a vital role in light-matter interaction.

When the decay rate of any system’s component (e.g., the cavity photons and excita-
tion) exceeds light-matter coupling strength, the weak-coupling regime is dominant in
the system’s dynamics. In this regime, these emitted photons are damped away and
cannot stimulate electronic excitation again. Suppose the electrons are initially at the
ground state, and we measure the probability of finding electrons in an excited state
against time after the external stimulation on the electrons; the probability decays faster
when the density of states of photons is in resonance with the excitation frequency, or
it decays slower when they are off the resonance. These phenomena have been demon-
strated in experiments of quantum dot systems [2]. Now, it raises the question: what
if the quality of the cavity is good enough that the photons can exist long enough to
be reabsorbed by the electrons? To answer this question, the system needs to enter the
strong-coupling (SC) regime, where the decay rate is lower than that of any system’s
component. Assuming that the aforementioned measurements are taken again under
the SC regime, damped oscillation is expected in the probability curvature against time.
Such an oscillation is also called Rabi oscillation, which was first observed in the exper-
iment using Rydberg atoms [3].
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In the presence of external stimulation, the cavity photons, together with the QW exci-
tation, would participate in processing stimulation, emission, and reabsorption, under
the SC regime. Due to the fast energy exchange between the photons and the excita-
tion, the polaritons stemming from being part light and part matter are formed. There
are various types of polaritons in nature, such as exciton-polaritons, intersubband-
polaritons, surface-plasmon-polaritons, and many other couplings between quasipar-
ticles and light (more than 70 types of polaritons are known and are listed in [4]). The
number of components of the polaritons is not limited to two. A more complicated
mixture or interaction with more than two different matter modes with various forms is
possible and exists in nature. For example, one would expect intersubband-polaron po-
laritons because of the interaction among intersubband transitions, longitudinal-optical
phonons, and photons. In this thesis, we restrict ourselves to exciton-polaritons in the
SC regime.

Exciton-polaritons (from here on polaritons), in which the SC regime was observed
in experiment until 1992 [5] and originating from SC between microcavity photons
and confined QW excitons, are bosonic quasiparticles. Owing to the photonic com-
ponent of the polariton, a small effective mass (around 10−5 of the electron mass) can
be achieved. The critical temperature of Bose-Einstein condensates (BEC) for an ideal
three-dimensional noninteracting Bose gas is inversely proportional to the bosonic ef-
fective mass for a given bosonic gas density. Hence, due to the small effective mass,
polaritons can attain higher temperatures (around 10 K for inorganic material) for BEC
than the atomic gas has (around 170 nK for rubidium-87 atoms [6] and 2 µK for sodium
atoms [7]). The polariton condensates can be produced using nonresonant excitation
once the pumping power density exceeds the critical (threshold) one. Together with
a strong exciton-exciton interaction strength from the excitonic component of the po-
laritons, the phase transitions from nonresonant external lasers into a macroscopically
occupied coherent state are realized [8] even at room temperature [9–11].

In polariton condensates, the repulsive polariton-polariton interaction that contributes
the most to the excitonic part of the polaritons can produce a blue-shifting poten-
tial [12, 13]. This theoretically predicts the possibility of engineering the potential
landscape through shaping the nonresonant excitation. From the experiments’ per-
spective, the development and application of the spatial light modulator make it prac-
ticable to artificially design the pumping configurations, bringing the extra flexibility
to manipulate macroscopic quantum states directly [12, 14]. In the field of optics, irre-
versible fabrication methods like etching, deposition, and lithography are commonly
used to design samples for specific tasks. In contrast, the potential produced from
polariton condensates can be not only tailored by applying external excitation with
different pump profiles but also be able to be reprogrammed through the spatial light
modulator for different needs, leading to the realization of the all-optical devices. Sev-
eral important experiments have been made in all-optical manipulation of polariton
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condensates using nonresonant excitation methods [12, 14] over the past decade. For
example, the nonresonantly pulsed polariton wavepackets that could be reamplified
when crossing the excitation area due to stimulated scattering of reservoir excitons into
the wavepacket were demonstrated in 1D lithographically etched microcavities [15],
and the amplification without beam deflection was realized in experiment [16]. Other
applications, such as polariton trapping [17, 18], exceptional points [19], dissipative an-
nealing of the XY model [20], vortex manipulation [21, 22], and lattices [23, 24] have
been studied.

Another fascinating feature of polariton condensates is the synchronization and spon-
taneous coherence. Dating back to the double-slit experiment by Thomas Young in
1802, the coherence extracted from one or multiple quantities also plays a dominant
role in many aspects. In a polariton system, good coherence can give access to intricate
long-range and long-time condensate dynamics and also play a role in various optical
applications such as biological imaging [25], information processing [26, 27], neuro-
morphic computing [28], and metrology [29]. The application of polariton networks
usually requires the maintenance of spatial coherence in a large area; however, the
limited power from external excitation cannot always meet the demand for large-scale
polariton lattices.

In this thesis, the aim is to utilize the aforementioned features of polariton conden-
sates to develop all-optical devices capable of controlling and focusing the polariton
flow and enhancing coherence between internodes of polariton lattices. The challenge
lies in obtaining the analytical solution of the complex nonlinear phenomena resulting
from the interaction between polaritons and reservoir excitons. However, conventional
CPU-based methods become the bottleneck when it comes to large spatial grids and
long temporal scales. To overcome this problem, parallel computational algorithms are
applied to find the solution to the Gross-Pitaevskii equation (GPE) by leveraging the
power of the graphics processing unit. For the sake of clarity, the rest of the thesis is
organized as follows:

In chapter 2, backgrounds related to microcavity photons, QW excitons, and polariton
condensates are introduced. First, the general properties regarding microcavity pho-
tons and QW exciton are given by explaining how the microcavity’s geometry alters
the effective mass of microcavity photons and how confinement along the growth di-
rection of the QWs changes the dynamics of the excitons. Later, the behavior of the
coupling between photons and excitons under the SC regime and the condition of the
bosonic approximation of the exciton-polaritons are shown. In the last part, the phys-
ical model, GPE coupled with the reservoir rate equation, of polariton condensates in
the general nonlinear and linear case is shown and discussed; besides, the mutual first-
order spatial coherence in arbitrary two regions of a condensate map is introduced in
the chapter 5.
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In chapter 3, a self-built CUDA-based computational tool is introduced using the split-
step Fourier method (SSFM) to numerically solve the GPE. Specifically, the theoretical
expression and accuracy of SSFM are presented; besides, a brief introduction to CUDA,
from both software’s and hardware’s perspective, which is key to the manipulation of
the self-defined function, is given. Finally, some algorithms that integrate SSFM into
the CUDA are listed. Since a strong nonequilibrium input-output system is mostly
considered in this thesis, obtaining the exact theoretical expression for most cases is
impossible and the numerical solution introduced in this chapter covers most of the
numerical results.

In chapter 4, starting from a simplified case, the numerical studies of the Schrödinger
equation with the resonant planar wave, the lens-shaped complex-valued potential,
and the photonic losses are shown. Then taking all the nonlinear terms from the GPE
into consideration, an all-optical lens-shaped device is numerically studied to guide,
focus and enhance the outflowing polariton condensates away from the nonresonant
optically-excited pump region. Moreover, the combination of a planar condensate flow
produced by a second excitation and a lens-shaped one is investigated. Besides, several
pump configurations to produce the focused condensate outflows, the possibilities to
engineer the output of the condensate fluid from all-optical source-lens devices, and
possible applications are also proposed.

In chapter 5, the comparison of density maps among a polygonal- and Gaussian-shaped
pump profile is made first. The isometric from the duality of patterns perspective is
studied, and the rotation of the concentration from the corner of the condensate in real
and momentum space is observed. The different orientations among each polygonal
spot (example of triangular spots) in a single hexagonal structure are shown. Even-
tually, the enhancement of the coupling between the nearest neighbors in a polariton
condensate lattices is studied.

In chapter 6, overall conclusions are made.
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Chapter 2

Introduction to exciton-polariton
condensates

2.1 Introduction

As preparation for the subsequent sections and chapters, the terminology, physical
phenomena, quantum theory of the polariton system and polariton condensates, or
any technical details that need extra clarification are discussed in this chapter. The
light-matter system covering the microcavity photons, excitons, and strong coupling
between them is introduced first in section 2.2; In section 2.3, the condition, mecha-
nism, and methods to producing the polariton condensates are introduced; Section 2.4
is the conclusions of this chapter.

2.2 Introduction to light-matter system

This section aims to briefly and explicitly introduce each component of the polariton
system. Also, the approximation used to derive the theoretical description is men-
tioned. In section 2.2.1, how the microcavity photons are created and how the physical
property can be altered through the microcavity system are explained. For simplicity,
the metallic cavity, as a kind of the Fabry–Pérot cavity, is taken for the demonstration;
besides, the cavity, made of distributed Bragg reflectors (DBRs) and widely used in
polaritons, is also mentioned. In section 2.2.2, the formation of excitons is theoreti-
cally studied in an artificial lattice system embedded with a periodic infinity potential,
and the numerical analysis of the energy band of excitons in bulk lattices is obtained
through the Bloch theorem; moreover, the behavior of excitons with confinement from
the QW, the spin selection rule, and the bosonic limit of excitons are also explored. In
section. 2.2.3, the polariton operator is derived following the Hopfield diagonalization,



6 Chapter 2. Introduction to exciton-polariton condensates

Length of cavity

m=0

Barrier
Quantum well

Metallic mirror

X

Y

Z

FIGURE 2.1: Sketch of the planar metallic cavity and stacks of quantum wells. As
an example, the transverse magnetic mode (TMm, m ∈ N0) that the direction of the
electric field is perpendicular to the mirror (m = 0) and is highlighted in the red line.

and the spectrum of the polaritonic system with positive, zero, and negative detuning
is investigated.

2.2.1 Microcavity photons

The planar metallic cavity is widely used to generate cavity photons in cavity quantum
electrodynamics. For example, the Fabry–Pérot cavity consisting of two planer metallic
mirrors with high reflectivity and multiple QWs is sketched in Fig. 2.1. Let us assume
that the two large enough parallel mirrors are in the x-y plane and the growth of the
semiconductor heterostructures is along the z -axis, then the z -axis becomes the key
parameter altering the density of the photons coupled to the particles inside the QWs.
For simplicity, only the transverse magnetic photonic modes are considered, and the
photonic frequency as a function of mode and the length of the cavity is given by

εC

c2 ω2
n,k∥

= k2
∥ +

π2n2
C

L2
C

, (2.1)

where k∥ = (kx, ky) is the in-plane wavevector, c the speed of light, nC the photonic
mode with nC ∈ [0, 1, 2, ...], and εC is the dielectric constant of the cavity material.

Ideally, the total number of frequencies can reach infinity without applying any bound-
ary conditions; however, in reality, each cavity has a maximum frequency called the
cutoff frequency. When the frequency of the cavity exceeds this frequency, the cavity
becomes transparent. According to the description of the cut-off frequency, we obtain



2.2. Introduction to light-matter system 7

FIGURE 2.2: Dispersion relation of microcavity photons as a function of the in-plane
wavevector. The black dashed line refers to the parabolic approximation of photonic
frequency. The blue dashed line refers to the cutoff energy in parabolic approximation.
Parameters: εC = 12.9, LC = 2.0 µm, and nC = 2.

the relation

∑
n,k∥

|ωn,k∥ | ⩽ ωM, (2.2)

where ωM denotes the upper cut-off frequency of the metallic cavity. Furthermore,
the frequency of the cavity as the function of the k∥ with a parabola-like form can be
derived from Eq. (2.1) under Taylor expansion with relation |k∥| ≪ kz

ωC,k∥ ≈ ωC,0 +
h̄

2mC
k2
∥, (2.3)

with

ωC,0 =
c√
εC

kz, mC = h̄ωC,0
εC

c2 , kz =
πnC

LC
(2.4)

where ωC,0 is the minimum frequency taken at k∥ = 0, mC the effective mass of the cav-
ity, and kz is the out-of-plane wavevector. Figure 2.2 shows the comparison between the
dispersion relation with [see Eq. (2.3)] and without [see Eq. (2.1)] parabolic approxima-
tion. We can see that the parabolic model is accurate when the in-plane wavevector is
in the vicinity of zero. It is worth mentioning that Eq. (2.1) also reveals the nature of the
dispersion relation of the part-light part-matter quasiparticles. The photonic compo-
nents of the quasiparticles have inherently obtained the nature of microcavity photons
resulting in a similar dispersion relation of the quasiparticles, though the matter part
in QW also contributes to the coupled system.



8 Chapter 2. Introduction to exciton-polariton condensates

When exciton-polaritons are concerned, the microcavity mirrors used to reflect the pho-
tons are called distributed Bragg reflectors (DBRs). DBRs consist of multiple pairs of
dual layers; each pair is made of alternating materials with low and high refractive
indices. Unlike the semiconductor structure shown in Fig. 2.1 that the length of the
microcavity can be smoothly tuned, and the length of DBRs usually cannot be altered
once a stack of DBRs sandwiching the QWs are fabricated. Such DBRs and QWs sand-
wiched in between are illustrated in Fig. 2.3. The essence of using alternating materials

Top DBR

Low refractive index layer

Cavity

QW Barrier

Bottom DBR

High refractive index layer Substrate

FIGURE 2.3: Sketch of the DBR microcavity and quantum wells. Each DBR consists of
5 pairs of low (gray area) and high (black area) refractive index materials. 5 quantum
wells (blue area) and the attached barriers (yellow area) are shown as an example.
The magenta layer is the substrate at the end of the bottom. (Figure is adapted from
Ref. [30])

is to produce a stopband in the cavity region shown in Fig. 2.3. When the cavity wave-
length is in the vicinity of four times the optical thickness of each layer of DBR, the
DBRs behave with high reflectivity. In this case, constructive interference occurs from
the refractive wave resulting in a planar microcavity between two DBRs. In the cavity
region (see Fig. 2.3), the cavity wavelength matches twice the total optical thickness of
the QWs and barrier layers. It should be noted that the QW length in Fig. 2.3 seems
comparable to the length of the barrier or cavity, but it is not true in the real DBR mi-
crocavity. The length of the QW (around 6 nm) is much thinner compared to the length
of the cavity region (around 1700 nm) [31]. In this thesis, we do not get involved with
the property of the DBRs, and although the mechanics of producing the cavity mode
is different from that of the Fabry-Pérot cavity to that of the DBR planar cavity, what
affects the characteristic of microcavity photons most is still the losses of the microcav-
ity. As shown in Fig. 2.4, the microcavity is designed with a cavity resonance at 850 nm,
and the reflectivity is close to unity when the wavelength is around 850 nm± 50 nm.

2.2.2 Excitons and quasiparticles

Electrons below the Fermi level of the valence band (VB) are naturally fermions. How-
ever, through stimulation that has higher energy than the energy gap between the
VB and the conduction band (CB) of light, the electrons can transfer to the CB while
leaving holes with positive charges from the VB, resulting in boson-like quasiparticles.
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FIGURE 2.4: Reflectivity of the DBR microcavity versus wavelength. Top (Bottom)
DBR consists of 23 (26) pairs of GaAs and AlAs with GaAs cavity.

Such quasiparticles are called excitons, consisting of electron-hole pairs, because of the
Coulomb interaction. In nature, there are two main types of excitons: Frenkel excitons
and Wannier–Mott excitons. The former, commonly found in organic crystals, tends
to have a stronger electron-hole Coulomb interaction forming a delocalized exciton
state, while the latter, usually observed in inorganic materials, has a weaker Coulomb
interaction due to a high screening effect with a localized state. In this thesis, only
Wannier–Mott excitons are considered.

An exciton formation invokes a many-body problem that involves the attractive inter-
action from the electron-hole pairs and the repulsive interaction between the electrons
in CB and the residual electrons in VB, and it turns out that the competition diminishes
the attractive coupling between electrons and holes. However, assuming that the num-
ber of electrons in CB is much smaller than the number of residual electrons in VB, this
complex system can be further converted to a hydrogen-like problem if we consider
the residual electrons and holes in VB as a proton with a positive charge.

2.2.2.1 Energy band of zinc-blende crystal bulk lattice

To understand the band structure of the semiconductor material, k · p perturbation
theory is a useful tool to simplify the numerical model. To emulate the real crystal
structure in a bulk semiconductor system, we propose an infinity periodic potential
VC(r) satisfying VC(r) = VC(r + R). Thus, neglecting the external electromagnetic
field, the wavefunction Ψ(r) corresponding to the time-independent Hamiltonian of
an electron inside potential VC(r) considering the spin-orbit interaction (SOI) is{︃ ˆ︁p2

2m0
+ VC(r) +

h̄
4m2

0c2
ˆ︁p · σ × [∇rVC(r)]

}︃
Ψ(r) = EΨ(r), (2.5)

where r = (x, y, z) is the position of exciton, c is the speed of light, m0 the free electron
mass, σ = (σx, σy, σz) the Pauli matrices and ˆ︁p = −ih̄∇r is the momentum operator.
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The general solution of Eq. (2.5) is given by Bloch theorem1

ψn,k(r) = un,k(r)eik·r, (2.6)

where n is the band index, k = (kx, ky, kz) the wavevector, and un,k(r), a periodic func-
tion which has the same periodicity as the VC(r), is the Bloch amplitude. Substituting
the Eq. (2.6) into the Eq. (2.5), we arrive at

{︃ ˆ︁p2

2m0
+ VC(r)⏞ ⏟⏟ ⏞ˆ︁H0

+

∆ ˆ︁H0⏟ ⏞⏞ ⏟
h̄

4m2
0c2

ˆ︁p · σ × [∇VC(r)] +

∆ ˆ︁Hk⏟ ⏞⏞ ⏟
h̄

m0
k · ˆ︁P⏞ ⏟⏟ ⏞

∆ ˆ︁H

}︃
un,k =

(︃
En,k −

h̄2k2

2m0⏞ ⏟⏟ ⏞
En,k

)︃
un,k, (2.7)

in which En,k is considered to be the eigenvalue of the system, ˆ︁H0 and ∆ ˆ︁H are denoted
as a non-perturbed and perturbed system, respectively, and the operator ˆ︁P including
the SOI is

ˆ︁P = ˆ︁p +
h̄

4m0c2 σ × [∇VC(r)] . (2.8)

Note that the perturbed term in Eq. (2.7) can be further divided into k independent part
denoted as ∆ ˆ︁H0 and the dependent one ∆ ˆ︁Hk. The former contributes to the SOI at the
band edge with k = 0, which eventually leads to the spin-off band (see Fig. 2.5). Taking
the perturbation theory around k ≈ 0, the eigenenergy of Eq. (2.7) up to second order
is obtained

En,k −
h̄2k2

2m0⏞ ⏟⏟ ⏞
En,k

≈ En,0⏞⏟⏟⏞
En,0

+⟨un,0|∆ ˆ︁H|un,0⟩+ ∑
m ̸=n

⟨un,0|∆ ˆ︁H|um,0⟩⟨um,0|∆ ˆ︁H|un,0⟩
⟨un,0| ˆ︁H0|un,0⟩ − ⟨um,0| ˆ︁H0|um,0⟩

, (2.9)

where the second term on the right-hand side (RHS) of Eq. (2.9) is canceled because
un,0(r) and ˆ︁p are an even and odd functions, respectively. Rearranging the Eq. (2.9), we
have

En,k ≈ En,0 +
h̄2k2

2m0
+

h̄
m0

∑
n ̸=m

k · |⟨un,0| ˆ︁P|um,0⟩|2
En,0 − Em,0

+ ∑
n ̸=m

|⟨un,0|∆ ˆ︁H0|um,0⟩|2
En,0 − Em,0

. (2.10)

The last term of RHS of (2.10) is nonnegligible at k = 0 due to SOI. If we neglect the
entire SOI, operator ˆ︁P in Eq. (2.10) is replaced with ˆ︁p, thus we arrive at

En,k ≈ En,0 +
h̄2k2

2m0
+

h̄
m0

∑
n ̸=m

k · |⟨un,0|ˆ︁p|um,0⟩|2
En,0 − Em,0

. (2.11)

1Bloch theorem can also be written as ψn,k(r + R) = un,k(r + R)⏞ ⏟⏟ ⏞
un,k(r)

eik·reik·R = ψn,k(r)eik·R. This reveals

that the probability of finding an electron in position r is the same as in r + R.
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FIGURE 2.5: Calculated parabola-like band structure of GaAs around Γ point along
direction ⟨100⟩ and ⟨111⟩. Parameters: Lattice constant of GaAs is 5.653 25 Å, Eg =
1.424 eV, ESO = 0.34 eV, and mass of conduction band, heavy-hole band, light-hole
band, and spin-off band, are, respectively, 0.067 m0, 0.45 m0, 0.082 m0, and 0.154 m0.

If we replace the m0 with an effective mass m∗n in the nth band, Eq. (2.11) can be written
as

En,k ≈ En,0 +
h̄2k2

2m∗n
(2.12)

with effective mass satisfying relation

1
m∗n

=
1

m0
+

2
m2

0
∑

n ̸=m

|⟨un,0|ˆ︁p|um,0⟩|2
En,0 − Em,0

. (2.13)

Thus, Eqs. (2.12) and (2.13) indicate that the energy band can also follow parabolic
approximation with certain effective mass. And such effective mass is often considered
a good approximation when |k| is in the vicinity of zero.

The band structure of GaAs, which is a type of zinc-blende crystal structure, is calcu-
lated using Eq. (2.12) with different effective mass and shown in Fig. 2.5. The CB shows
an upward parabolic shape, while the VBs consisting of the heavy hole, light hole, and
spin-off band show a downward shape. The effective mass of the VB is negative to keep
the consistency with Eq. (2.12). It is noteworthy that the real band structure is much
more complicated than that shown in Fig. 2.5, and for the sake of simplicity, we have



12 Chapter 2. Introduction to exciton-polariton condensates

assumed that the band structure is isotropic along all directions and can be simplified
into a parabolic form. That is to say, in this thesis, the effective mass is considered as a
scalar quantity, although in real-world scenarios, the effective mass is more accurately
represented as a tensor. The energy gap between the minimal value of the CB and the
maximal value of the VB is denoted as Eg and the energy of splitting inside the VB due
to SOI is ESO as shown in Fig. 2.5. Although limited by the model, for bulk GaAs lattice,
the degeneracy of the heavy hole and the light hole from the band edge, as well as the
deviated spin-off band, is clearly shown in Fig. 2.5. However, for large wavevector, the
accuracy of the parabolic approximation is lost.

2.2.2.2 Confinement from quantum well

For the bulk lattice, the degeneracy that appears in VB from the band edge shown in
Fig. 2.5 is only valid for bulk material. If the material is structured in a QW with con-
finement from the growth axis of the semiconductor structure (see the horizontal axis
of Fig. 2.3), the potential of the crystal VC(r) appearing in Section 2.2.2.1 should also
include the confining energy along the growth axis. In other words, the exciton wave-
function can no longer be considered in 3D, but rather in quasi-2D. The degeneracy
of VB shown in the bulk material is thus lifted due to the extra confinement on the
growth axis, since the confining energy can result in an extra k-independent splitting
term in Eq. (2.12) giving rise to different energy from the band edge of two bands. The
QW system here, ideally speaking a 2D system, can be understood like this: There is a
quantum well with finite potential perpendicular to the xy-plane producing the bound
energy along the z-axis; since the heavy hole with a smaller effective mass (negative
effective mass in VB) has smaller bound energy than the light hole has, the degeneracy
of the heavy hole and the light hole at the Γ point shown in Fig. 2.5 is lifted leaving a
higher energy band from the heavy hole.

In Eq. (2.5), we have shown the Hamiltonian of an electron inside the perfect 3D peri-
odic potential; however, instead of using bulk materials, as we have mentioned before,
the extra confining potential along the z-axis should also be taken into account in the
Hamiltonian. If we neglect the SOI and assume the density of the electron-hole pairs
is low, the wavefunction of the exciton ΨX(r) and its corresponding eigenvalue EX of
exciton confined by extra quantum well for electron Ve(ze) and hole Vh(zh) can be ob-
tained from[︃ ˆ︁p2

e
2m∗e

+
ˆ︁p2

h
2m∗h
− e2

4πεrε0|re − rh|
+ Ve(ze) + Vh(zh)

]︃
ΨX = EXΨX, (2.14)

where m∗e and m∗h is the effective mass of electron and hole, respectively, εr is the di-
electric constant of the material of the QW, re (rh) the position conjugate to the electron
(hole), the first two terms and the third term on the left-hand side (LHS) of Eq. (2.14)
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are, respectively, the momentum energy of the electron and hole, and the Coulomb in-
teraction between them. It is worth mentioning that the exact exciton wavefunction
from Eq. (2.14) is still in 3D, and we will consider a more ideal 2D case later under cer-
tain circumstances where the width of the QW is comparable to the Bohr radius of the
exciton. For the electron-hole system, as a two-body system, Eq. (2.14) can be separated
into the center-of-mass (CM) part and relative motion (RM) part[︃ ˆ︁p2

CM
2m∗CM

+
ˆ︁p2

RM
2m∗RM

− e2

4πεrε0|rRM|
+ Ve(ze) + Vh(zh)

]︃
ΨX = EXΨX, (2.15)

where rRM = re− rh is the relative position between the electron and hole, m∗CM = m∗e +
m∗h the center of mass of the exciton, m∗RM = m∗e m∗h/m∗CM the reduced mass, ˆ︁pCM =

−ih̄∇CM and ˆ︁pRM = −ih̄∇RM are the corresponding momentum operators in center-
of-mass and relative coordinate, respectively. We define the wavefunction

ΨX,n,kCM =
1√
V

eikCM ·rCM⏞ ⏟⏟ ⏞
free particle

ψRM
n,kCM

(rRM)ϕe(ze)ϕh(zh), (2.16)

where V =
∫︁

drCM is the integrating volume, and the wavefunction consists of four
parts representing free particles from the center-of-mass solution, relative solution, and
wavefunction of electron and hole along the growth axis. Then replacing the wavefunc-
tion from Eq. (2.15) with the Eq. (2.16), we have[︃ ˆ︁p2

RM
2m∗RM

− e2

4πεrε0|rRM|
+ Ve(ze) + Vh(zh)

]︃
ψRM

n,kCM
(rRM)ϕe(ze)ϕh(zh)

=

(︃
EX,n,kCM −

h̄2

2m∗CM
k2

CM⏞ ⏟⏟ ⏞
kinetic energy of exciton

)︃
ψRM

n,kCM
(rRM)ϕe(ze)ϕh(zh), (2.17)

where the kinetic energy in the CM coordinate is the kinetic energy of the exciton. In
the following, we will show two siturations where exciton is in bulk lattices and in ideal
2D QW.

Bulk lattice

If we neglect the confinement along the z-axis, the confining potential in the Hamil-
tonian, as well as the confining wavefunction of electron and hole along the z-axis,
disappear, namely(︃ ˆ︁p2

RM
2m∗RM

− e2

4πεrε0|rRM|

)︃
ψBULK

n,kCM
(rRM) =

(︃
EBULK

X,n,kCM
− h̄2

2m∗CM
k2

CM

)︃
ψBULK

n,kCM
(rRM), (2.18)



14 Chapter 2. Introduction to exciton-polariton condensates

where ψBULK
n,kCM

(rRM) is the exciton wavefunction for the bulk materials. In this case, the
exciton is very similar to the hydrogen atom. Solving Eq. (2.18) will give us the ground
state (1s state) wavefunction of the exciton (hereafter, notation 1s is used to refer to case
when n = 1)

ψBULK
1s (rRM) =

1
√

πaBULK
Bohr

3/2 e−rRM/aBULK
Bohr (2.19)

with Bohr radius

aBULK
Bohr =

4πh̄2εrε0

m∗RMe2 . (2.20)

And, the exciton energy for 3D bulk material with different principle quantum number
n is

EBULK
X,n,kCM

=
h̄2

2mCM
k2

CM − EBULK
binding,n, (2.21)

where the first term on the right-hand side (RHS) of Eq. (2.21) is the kinetic energy of
the exciton and the binding energy of exciton inside the bulk material EBULK

binding,n is given
by

EBULK
binding,n =

ERydberg

n2 (2.22)

with the Rydberg energy analogy to the hydrogen atom

ERydberg =
m∗RMe4

32π2h̄2ε2
rε2

0

. (2.23)

The Rydberg energy ERydberg differs from different materials; for example, the Rydberg
energy of GaAs, the commonly used semiconductor material, is around 4.8 meV but for
Cu2O it can reach even around 98.0 meV. The exciton formed by the latter is called the
Rydberg exciton due to its large binding energy, and the maximum principle quantum
number observed by the experiment is up to n = 25 [32], which shows a contrast that
in GaAs due to a smaller Rydberg energy, theoretically even for very low temperature
(1.35 K) the maximum n that can be obtained is around 6 before it is ionized [33].

Quantum well

Taking into account the confinement from the growth direction, the QW can be consid-
ered a 2D system. Due to the confining energy from the growth axis, the energy for 2D
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QW is given by adding an extra energy term from Eq. (2.21)

EQW
X,n,kCM,∥

=
h̄2

2m∗CM
k2

CM,∥ − EQW
binding,n + EQW

con f ining, (2.24)

where we have replaced the wavevector with the one in 2D, and the last term on the
RHS of Eq. (2.24) refers to the confining energy. The differences between heavy hole and
light hole are mentioned in section 2.2.2.1 since they have different effective masses.
Moreover, Using the cylindrical coordinate system for relative motion rRM = (ρ, z), the
wavefunction for the relative motion is given by [30][︃

− h̄2

2m∗RM

1
ρ

∂

∂ρ

(︃
ρ

∂

∂ρ

)︃
− e2

εrε0ρ

]︃
ψQW

n (ρ) = EQW
binding,nψQW

n (ρ). (2.25)

The solution of Eq. (2.25) gives ground state (1s state) of the exciton in a 2D system:

ψQW
1s (ρ) =

√︃
2
π

1

aQW
Bohr

e−ρ/aQW
Bohr (2.26)

with the Bohr radius of the exciton in QW

aQW
Bohr =

1
2

aBULK
Bohr . (2.27)

And the binding energy from Eq.(2.24) for different quantum principle number is given
by

EQW
binding,n =

ERydberg

(n− 1
2 )

2
. (2.28)

Thus, for the ground state, we have EQW
binding,1s = 4EBULK

binding,1s. Through QW, the exciton
can not only be confined in 2D and treated as a 2D material but could also enhance the
exciton coupling with light due to the smaller Bohr radius in QW.

2.2.2.3 Optical transition

To understand the optical selection rule of the GaAs lattice, it is crucial to know the type
of orbital of the CB and VB. The electron configurations of Ga and As are [Ar]3d104s24p1

and [Ar]3d104s24p3, respectively. The outermost shells of Ga and As have, respectively,
3 and 5 valence electrons. For both Ga and As, the s and p orbitals can hybridize to form
four sp3 orbitals; then the empty 4p orbital of Ga can combine with the half-filled 4p
orbital of As to form a covalent bond. Eventually, the GaAs crystal forms through the
sharing of valence electrons between the Ga and As atoms in a tetrahedral arrangement.
The GaAs semiconductor considered in this thesis is also called a sp3 semiconductor.
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p orbital

p antibonding

p bondings orbital

s antibonding

s bonding

EgFermi level

s-type
conduction band

p-type
valence band

Atom Molecule Crystal

FIGURE 2.6: Illustration of the formation of the sp3 semiconductor under the linear
combination of atomic orbitals method. (Left column) Orbital s and p of the valence
electrons of a single atom. (middle column) Pairing of Ga and As atoms. (right col-
umn) A large number of molecules form the crystal where the conduction band is
s-type and the valence band is p-type. Eg is the band gap between the conduction
band and the valence band. The gray dots symbolize different electron states. (Figure
is adapted from Ref. [34])

According to the linear combination of atomic orbitals (LCAO) method, the molecule
orbitals can be obtained by the supposition of different atomic orbitals. As illustrated
in Fig. 2.6, the closed valence band and the conduction band closed to the Fermi level,
originating from the molecules, inherit the orbital property from the p bonding (occu-
pied state) and the s antibonding (empty state), respectively. Thus, the optical selection
rule between the s-type and the p-type bands is taken into consideration for the GaAs
lattice. The atomic band structure shown in Fig. 2.6 is a simplified atomic model that
refers to the atom with four outer electrons because the average number of valence
electrons of a single GaAs molecule is four.

The exciton is formed through photon stimulation with an energy larger than Eg [see
Fig. 2.6 or Fig. 2.5], and certain transitions between VB and CB show the preference of
photon with a certain polarization. The electrons in VB and CB can be described by
the orbital angular momentum quantum number l and the spin quantum number ms.
Without SOI, the CB wavefunction is of type s, we have state |l = 0, ms =

1
2 ⟩. Consid-

ering the SOI, the state can be further split into two bands with |j = 1
2 , mj = ± 1

2 ⟩where
j = l + ms defines the total angular momentum quantum number and mj = −j,−j +
1, · · · , j− 1, j is its corresponding projection on the z-axis. The VB wavefunction is of
type p with state |l = 1, ms =

1
2 ⟩ in the absence of SOI and |j = 1

2 , mj = ± 1
2 ⟩ (light hole

band) and |j = 3
2 , mj = ± 3

2 ⟩ (heavy hole band) in the presence of SOI. Figure 2.7 shows
the splitting of the bands from the edge of the band in the QW, and due to the confining
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|l = 0, s = 1
2 ⟩ |j = 1

2 , mj = − 1
2 ⟩ |j = 1

2 , mj =
1
2 ⟩

|l = 1, s = 1
2 ⟩

|j = 3
2 , mj = − 3

2 ⟩ |j = 3
2 , mj =

3
2 ⟩

|j = 1
2 , mj = − 1

2 ⟩ |j = 1
2 , mj =

1
2 ⟩

Energy

s-type
conduction band

p-type
valence band

Spin-orbit interaction on

Right polarization Left polarization Linear polarization

FIGURE 2.7: Optical selection rules for the zinc-blende quantum well. The energy
band is shown at the band edge, and the splitting between the heavy hole and light
hole is shown as a result of the confinement along the growth axis. (Figure is adapted
from Ref. [30])

energy of the growth axis of the QW, the splitting between the heavy hole and the light
hole is also illustrated.

If we denote mph
j the spin angular momentum quantum number of the photon, for the

light with right circular polarization, we have mph
j = +1 and for left polarized light we

have mph
j = −1. The optical selection rule can be explained in spin conservation: for

stimulation from a right-polarized photon, the electron in the heavy hole with mj = − 3
2

can transit to the CB with mj = − 1
2 under the condition that the addition of mj of

both photon and the heavy hole is equal to the mj of state from the conduction band.
Figure 2.7 lists all possible transitions and notes that for linear polarized light, we have
mj = 0. Also, linear polarization is the superposition of right- and left-polarized light.

2.2.2.4 Bosonic approximation

Using the language of second quantization, the Hamiltonian of the electron-hole sys-
tem can be simplified to a two-band system containing only the VB and CB. Thus, the
total Hamiltonian is divided into the part containing only the self-energy from electrons
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and holes, and the part considering the scattering among them

ˆ︁HX = ∑
k∥

h̄ωCB(k∥)ĉ
†
CB,k∥

ĉCB,k∥ + ∑
k∥

h̄ωVB(k∥)ĉ
†
VB,k∥

ĉVB,k∥⏞ ⏟⏟ ⏞
Self-energy of electrons and holes

+
1
2 ∑

q ̸=0,k′∥,k
′′
∥

V(q)
(︂

ĉ†
CB,k′∥+q ĉ†

CB,k′′∥−q ĉCB,k′′∥
ĉCB,k′∥

+ ĉ†
VB,k′∥+q ĉ†

VB,k′′∥−q ĉVB,k′′∥
ĉVB,k′∥

)︂
⏞ ⏟⏟ ⏞

electron-electron and hole-hole interaction

+ ∑
q ̸=0,k′∥,k

′′
∥

V(q)ĉ†
CB,k′∥+q ĉ†

VB,k′′∥−q ĉVB,k′′∥
ĉCB,k′∥⏞ ⏟⏟ ⏞

electron-hole interaction

, (2.29)

where ωCB(k∥) (ωVB(k∥)) is the angular frequency of the electron from CB (VB) as
the function of in-plane wavevector k∥, V(q) stands for the Coulomb interaction in
Fourier space, and ĉCB,k∥ (ĉVB,k∥) and ĉ†

CB,k∥
(ĉ†

VB,k∥
) are annihilation operator and cre-

ation operator of an electron from CB (VB) with in-plane wavector k∥, respectively.
Noting that the expression of Eq. (2.29) is retained because the ωCB and ωVB versus
in-plane wavevector is still considered positive upward and negative downward form,
as shown in Fig. 2.5. The Hamiltonian of Eq. (2.29) can be diagonalized into the form

ˆ︁HX = ∑
k∥

h̄ωX(k∥)b̂
†
k∥ b̂k∥ , (2.30)

where b̂
†
k∥ (b̂k∥) is the bosonic operator standing for the creation (annihilation) of an ex-

citon at in-plane wavevector k∥ which can be considered as CM wavevector we defined
in section 2.2.2.2. For brevity, assuming that only the direct transition from VB to CB is
considered, the expression of the excitonic creation operator is described by

b̂
†
n,k∥ = ∑

q
ϕn(q)ĉ†

CB,k∥/2+q ĉVB,k∥/2−q (2.31)

in which ϕn(k∥) is the Fourier transform of the exciton wavefunction of n-th state.
Eq. (2.31) describes the transition from VB to CB that forms excitons by annihilating
an electron from VB with the in-plane wavevector k∥/2− q and creating an electron
from CB with the in-plane wavevector k∥/2 + q. To ensure the Boson-like operator
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from Eq. (2.31) satisfy the bosonic commutation relation, we arrive at:

[b̂n,k∥ , b̂
†
n′,k′∥

] = ∑
q,q′

ϕ∗n(q)ϕn′(q′)
[︁
ĉ†

VB,k∥/2−q ĉCB,k∥/2+q, ĉ†
CB,k′∥/2+q′ ĉVB,k′∥/2−q′

]︁
= ∑

q
|ϕn(q)|2δn,n′δk∥,k′∥

−∑
q,q′

ϕ∗n(q)ϕn′(q′)ĉVB,k′∥/2−q′ ĉ
†
VB,k∥/2−qδk∥/2+q,k′∥/2+q′

−∑
q,q′

ϕ∗n(q)ϕn′(q′)ĉ†
CB,k′∥/2+q′ ĉCB,k∥/2+qδk∥/2−q,k′∥/2−q′

= δn,n′δk∥,k′∥
−∑

q
ϕ∗n(q)ϕn′(k∥/2− k′∥/2 + q)ĉVB,k′∥−k∥/2−q ĉ†

VB,k∥/2−q

−∑
q

ϕ∗n(q)ϕn′(k′∥/2− k∥/2 + q)ĉ†
CB,k′∥−k∥/2+q ĉCB,k∥/2+q. (2.32)

Define [A, B] = AB− BA and {A, B} = AB + BA, respectively, the commutator and
anticommutator. To derive Eq. (2.32), the relations

{ĉk1 , ĉk2} = 0, {ĉ†
k1

, ĉ†
k2
} = 0, {ĉk1 , ĉ†

k2
} = δk1,k2 , (2.33)

[ĉk1 , ĉk2 ] = 0, [ĉ†
k1

, ĉ†
k2
] = 0, [ĉk1 , ĉ†

k2
] = δk1,k2 − 2ĉ†

k2
ĉk1 , (2.34)

[ĉ†
k1

ĉk2 , ĉ†
k3

ĉk4 ] = ĉ†
k1

ĉk4 δk2,k3 − ĉ†
k3

ĉk2 δk1,k4 , (2.35)

are used. Applying the ground state |G⟩, indicating all the electrons are below the
Fermi level, to the communication relation of Eq. (2.32), and assuming all the transitions
are in the vicinity of the band edge, namely, |k∥| ≈ 0, we have

⟨G|[b̂1s,0, b̂
†
1s,0]|G⟩ = 1−∑

q
|ϕ1s(q)|2 ≈ 1−O[NXaQW

Bohr
2
], (2.36)

in which NX is the 2D excition density. Equation (2.36) shows that the bosonic ap-
proximation is still held in the low-density regime, where the number of excitons is
low-density. Such an upper limit of sets of all the possible densities that the bosonic
approximation still holds is also called the Mott density.

2.2.3 Strong coupling between Excitons and photons

The cavity quantum electrodynamics, dating back to the discovery of the Purcell effect
in 1946 [1], has been playing a key role in light-matter interaction. Although the Pur-
cell effect reveals the realization of enhancement of the spontaneous emission rate by
tailoring the cavity environment, it is still limited in the weak coupling regime because
the losses exceed the coupling strength. With the development of semiconductor de-
vice fabrication and cavity system, the coupling strength surpassing the damping was
achieved for the first time bringing the SC regime into reality [3].
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With photonic stimulation, electrons in the valence band below the Fermi level can
transit to the conduction band, leaving a hole with a positive charge. Such an electron-
hole pair that is a kind of quasiparticle is called an exciton. The Jaynes-Cummings
model describing the exciton-light coupling is

ˆ︁H = ∑
k∥

h̄ωC,k∥ â
†
k∥

âk∥ + ∑
k∥

h̄ωX,k∥ b̂
†
k∥ b̂k∥⏞ ⏟⏟ ⏞ˆ︁H0

+∑
k∥

h̄ΩR,k∥(â†
k∥

b̂k∥ + âk∥ b̂
†
k∥)⏞ ⏟⏟ ⏞ˆ︁HI

, (2.37)

where âk∥ (â†
k∥

) the annihilation (creation) operator of the photon with in-plane wavevec-
tor k∥, ωC,k∥ and ωX,k∥ are the angular frequency of cavity and excitons, respectively,
and ΩR,k∥ , also refers to Rabi frequency, is the coupling strength between the exciton
and photon. The total Hamiltonian is divided into two parts: the bare energy of exci-
tons and photons ˆ︁H0 and the Hamiltonian of the interaction ˆ︁HI . Note that the decaying
term has been neglected for simplicity, and in the SC regime, we have the relation
ΩR,k∥ ≫ Ωloss where Ωloss represents all possible losses in the system. Furthermore,
it is worth mentioning that when the Rabi frequency is comparable with the bare fre-
quency of the components of the system (e.g., ωC and ωX), we say the system enters the
ultrastrong coupling (USC) regime and the rotation wave approximation used in ˆ︁HI of
Eq. (2.37) is thus broken. The advantage of achieving USC is having faster energy ex-
change between light and matter and further introducing novel physical phenomena,
such as squeezed vacuum state, virtual photons, and virtual excitations [35, 36].

Equation (2.37) can be transferred into a diagonalized form

ˆ︁H = ∑
k∥

h̄ΩL,k∥
ˆ︁P†

L,k∥
ˆ︁PL,k∥ + ∑

k∥

h̄ΩU,k∥
ˆ︁P†

U,k∥
ˆ︁PU,k∥ , (2.38)

where ΩL,k∥ (ΩU,k∥) is the lower (upper) polariton frequency, ˆ︁PL,k∥ (ˆ︁P†
L,k∥

) the annihi-

lation (creation) operator of the lower polariton branch (LP), ˆ︁PU,k∥ (ˆ︁P†
U,k∥

) is the upper
polariton branch (UP). And these polariton operators are defined by

ˆ︁PL,k∥ = νL,k∥ âk∥ + χL,k∥ b̂k∥ , (2.39)ˆ︁PU,k∥ = νU,k∥ âk∥ + χU,k∥ b̂k∥ , (2.40)

in which ν and χ, reveling the ratio of the excitonic and photonic part in this po-
laritonic system, refer to Hopfield coefficients [37]. Since the bosonic commutation
[ˆ︁PL,k∥ , ˆ︁P†

L,k′∥
] = δk∥,k′∥

, [ˆ︁PU,k∥ , ˆ︁P†
U,k′∥

] = δk∥,k′∥
, [ˆ︁PL,k, ˆ︁P†

U,k] = 0, and [ˆ︁PU,k, ˆ︁P†
L,k] = 0 are held,

we arrive at

|νL,k∥ |
2 + |χL,k∥ |

2 = 1, (2.41)

|νU,k∥ |
2 + |χU,k∥ |

2 = 1, (2.42)

νL,kν∗U,k + χL,kχ∗U,k = 0. (2.43)
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Given that the system is free of losses or gains, both ν and χ are inherently real val-
ues, thereby the complex conjugate symbol can be omitted. From Eqs. (2.41), (2.42),
and (2.43), the polariton operators defined from Eqs. (2.39) and (2.40) can be further
simplified to

ˆ︁PL,k∥ = νL,k∥ âk∥ + χL,k∥ b̂k∥ , (2.44)ˆ︁PU,k∥ = χL,k∥ âk∥ − νL,k∥ b̂k∥ . (2.45)

Substituting Eqs. (2.44) and (2.45) into Eq. (2.38), and making the comparison with the
Eq. (2.37), we have

ωC,k∥ = ΩL,k∥ |νL,k∥ |
2 + ΩU,k∥ |χL,k∥ |

2, (2.46)

ωX,k∥ = ΩL,k∥ |χL,k∥ |
2 + ΩU,k∥ |νL,k∥ |

2, (2.47)

ΩR,k∥ = ΩL,k∥νL,k∥χL,k∥ −ΩU,k∥χL,k∥νL,k∥ , (2.48)

Through solving Eqs. (2.41), (2.46), (2.47), and (2.48), we obtain ΩL,k∥ and ΩU,k∥ as a
function of ωC,k∥ , ωX,k∥ , and ΩR,k∥ ,

ΩL,k∥ =
1
2

(︂
ωC,k∥ + ωX,k∥

)︂
−

√︃
1
4

∆2
k∥
+ Ω2

R,k∥
, (2.49)

ΩU,k∥ =
1
2

(︂
ωC,k∥ + ωX,k∥

)︂
+

√︃
1
4

∆2
k∥
+ Ω2

R,k∥
, (2.50)

where

∆k∥ = ωC,k∥ −ωX,k∥ . (2.51)

The frequency difference between the lower and upper polariton is 2
√︂

1
4 ∆2

k∥
+ Ω2

R,k∥
,

and the minimum value is achieved when ∆k∥ = 0, that is, the bare frequencies of
both microcavity photon and exciton are equal. In this simplified model, the minimal
frequency between the lower and upper polariton is exact 2ΩR,k∥ which is also called
the Rabi splitting frequency. The Hopfield coefficients of the lower polariton are

|χL,k∥ |
2 =

1
2

⎛⎝1 +
∆k∥√︂

4Ω2
R,k∥

+ ∆2
k∥

⎞⎠ , (2.52)

|νL,k∥ |
2 =

1
2

⎛⎝1−
∆k∥√︂

4Ω2
R,k∥

+ ∆2
k∥

⎞⎠ . (2.53)

The frequency of the microcavity photons is given in Eq. (2.1), and if we define the
detuning energy δ such that at |k∥| = 0, we have δ = h̄∆0 = h̄(ωC,0 − ωX,0). Thus, we
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FIGURE 2.8: (Top panel) The spectrum of the polaritonic system as a function of the
in-plane wavevector. The upper (lower) polariton branch is shown in the solid orange
(blue) line, and the uncoupled bare energy of the cavity photons and exciton is, respec-
tively, shown in the dashed orange and blue lines. (Middle panel) Energy difference
between the upper and lower polariton. (Bottom panel) The Hopefield coefficients of
the lower polariton. The red line refers to the photonic ratio and the black line rep-
resents the excitonic part. Parameters: m∗C = 5.0 × 10−5 m0, m∗X = 0.6 m0, and the
coupling between the exciton and photon is taken as constant, with h̄ΩR = 4.0 meV.
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have

h̄ωC,k∥ ≈ δ +
h̄2

2m∗C
k2
∥, (2.54)

h̄ωX,k∥ ≈
h̄2

2m∗X
k2
∥, (2.55)

where we make the excitonic dispersion relation also follow the parabolic shape like
what the microcavity photon does and m∗X is the effective mass of the exciton. Since
the exciton is much heavier than the microcavity photon, namely m∗X ≫ m∗C, excitonic
frequency is usually considered constant; however, the photonic frequency is more re-
sponsive to the in-plane wavevector.

The spectrum of polaritons with negative, zero, and positive detuning is shown in the
top left, top middle, and top right panels of Fig. 2.8, respectively. The middle panels
present the energy difference between the UP and LP, and there the minimum value
means the Rabi energy in the top panels; besides, as shown in the black dashed line, at
the exact position of the in-plane wavevector where the Rabi frequency and minimal
energy difference take place, the difference of the Hopfield coefficients between the
cavity mode and exciton mode of LP reaches the minimal, as shown in the bottom
panels. Especially for the negative and zero detuning, at the anticrossing point, their
Hopfield coefficients share 0.5 each, which means that the polariton consists of half
photonic and half exciton components.

From the top panels of Fig. 2.8, it seems that anticrossing also takes place where the
bare frequencies of the cavity mode and exciton mode cross, which is true when the
system is in the SC regime while not in the USC regime. When the system is in the USC
regime, the rotation wave approximation is broken; thus, the antiresonant term from
the interaction term of Eq. (2.37) should also be taken into account, resulting in a blue
shift in the in-plane wavevector for the Rabi frequency (see papers [35, 38] for examples
from intersubband polariton).

2.3 Exciton polariton condensates

2.3.1 Ideal non-interacting Bose gas

Polaritons are bosonic quasiparticles at the low-density limit of electron-hole pairs.
The Pauli exclusion principle states that electrons, being fermions with half-integer
spin, cannot have more than two electrons per quantum state; however, the excitons,
being the quasibosons with integer spin, can break the inherent limit from electrons’
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fermionic nature. Recalling the Bose-Einstein statistics

f (Ei) =
1

e(Ei−µ)/kBT − 1
, (2.56)

where Ei is the energy of i-th state, kB the Boltzmann constant, µ the chemical potential,
and T is the temperature. For bosons, µ should be negative or zero; thus, the probability
of finding a particle at ground state energy with Ei = 0, is close to infinity with T → 0,
while, the probability of finding particles at higher energy states is close to zero. When
we increase the temperature, more particles at excited states are expected. Moreover,
we can always set a special temperature TBE such that the probability of finding the
particle in the excited state is high enough to find NB particles for all excited states.
Thus, we arrive at

∑
i∈{excited states}

1
e(Ei−µ)/kBTBE − 1

= NB. (2.57)

To obtain the threshold temperature TBE, the sum over all the excited state in Eq. (2.57)
can be transformed to continuum states, namely

∑
i∈{excited states}

=
∫︂ ∞

0
ρ(E)dE, (2.58)

where

ρ(E) =
Vm∗3/2
√

2π2h̄3

√
E (2.59)

is the density of state in energy space of free bosons in 3D. Substituting Eqs. (2.58)
and (2.59) into Eq. (2.57) and setting µ = 0 from Eq. (2.57) due to the condition that
there is only one particle at excited states at TBE, we have

Vm∗3/2
√

2π2h̄3

∫︂ ∞

0

√
E

eE/kBTBE − 1
dE = NB. (2.60)

The TBE from Eq. (2.60) indicates that for T ⩾ TBE, the number of bosons at excited
states can exceed one. In other words, for T < TBE, all the bosons are in the ground
state. Thus, TBE can be extracted through solving Eq. (2.60) and we have

TBE =
2πh̄2

kBm∗
[︂ n

ζ(3/2)

]︂2/3
(2.61)

where n = NB/V is the density of bosons, and

ζ(s) =
∞

∑
n=1

1
ns =

1
Γ(s)

∫︂ ∞

0

xs−1

ex − 1
dx (2.62)
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is the Riemann zeta function and Γ(s) is the Gamma function, and ζ(3/2) ≈ 2.612 is
obtained from Eq. (2.62). In section 2.2.2, we have shown from an analytical perspective
that to ensure the bosonic approximation of the electron-hole paired quasiparticles is
still held, the low-density limit is required. Equation (2.61) describes that the lower
the density of the boson gas, the higher the threshold temperature of condensates is;
besides, the small effective mass can also increase the threshold temperature. This is
why polariton is a good candidate because the light branch of polaritons contributes
to the small effective mass. This is worth mentioning that Eq. (2.61) is only accurate
for ideal noninteracting boson gas in 3D rather than for the polaritons produced in
the quasi-2D QW systems. Still, it demonstrates the relation between effective mass,
temperature, and density of the bosonic gas in achieving the phase transition with the
Bose-Einstein condensates.

2.3.2 Exciton-polariton condensates

Thanks to the coupling with the photons, the effective mass is significantly light; for
GaAs, around 10−5 of the electron mass can be obtained. Because the polaritons are
Bose-like quasiparticles with much lighter effective mass than the bare electron, it is
easier to produce condensation in such a system than in an atomic system. On the basis
of the ideal bosonic model of Eq. (2.61), one expects a higher threshold temperature to
produce the polariton condensates. Nonresonant and resonant pumping are two main
methods of producing polariton condensates.

For the nonresonant pumping, in the beginning, the excitons with high energy are cre-
ated through nonresonant pumping, then quickly releax to the LP accompanied by
the longitudinal-optical phonon. Later on, the excitons keep cooling down on the LP
through the exciton-exciton scattering or the interaction between the exciton and the
acoustic photon, resulting in a further relaxation of excitons to a lower region of the
LP. This region is usually called the "bottleneck" region, where the energy difference
between the LP and UP is close to the Rabi frequency with a low scattering rate of the
polariton and acoustic phonon. As the polariton on the bottleneck region accumulates
to a certain degree over time, enhancement of the final-state stimulation is expected.
Thus, parametric scattering describing that some polaritons quickly fall to the bottom
of the LP, and some scatter to the higher-energy region of the LP, takes place, which
eventually gives rise to the polariton condensates.

Let us explain this phonon relaxation in more detail. On the LP with high momentum,
there are much more excitons than photons, so the quasiparticles there are still domi-
nated by the excitons; in other words, we can say polariton with almost zero photonic
components. When the excitons reach the bottleneck region, there are more photons
resulting in polaritons with relatively short lifetime (more photonic components) com-
pared to the exciton. Due to the short lifetime of the polaritons (ranging from 1 ps
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to 100 ps), the coupling between the excitonic branch of the polariton and the acous-
tic phonon is less efficient because the relaxation time is comparable to the polariton
lifetime. Parametric scattering, accompanied by energy and momentum conservation,
causes the polaritons to fall to the lower momentum (|k∥| ≈ 0 for zero or positive de-
tuning or |k∥| > 0 for negative detuning [39]) of LP.

For resonant pumping, resonant polaritons are directly pumped into the bottom of
the LP with zero in-plane momentum to produce the condensates.2 In the thesis, we
mainly consider the nonresonant pumping because of the rich nonlinearity occurring
at not only the condensates but also the processing involved with the phonon-induced
relativization and the parametric scattering.

If we define the threshold pumping power above which condensation occurs, the sys-
tem’s energy responds differently to the pumping power dependence. Note that we
consider only continuous-wave (CW) pumping in this thesis. When the pumping
power increases before reaching the threshold, the system’s energy increases linearly
to the input power; however, when it reaches the threshold power, the energy will
quickly drop from the bottleneck region due to the parametric scattering; later on, the
energy increases nonlinearly versus the pumping power due to the blue shift from the
polariton-polariton interaction when the pumping power crosses the threshold. The
condensation also brings about the phase transition from pumping to condensates.

2.3.3 Generalized Gross-Pitaevskii model

To numerically simulate the whole process, the system can be simplified into two
parts: the reservoir and the condensates. The former is described through the rate
equation involving pumping, scattering to the bottleneck, and condensates. The latter
system, which encompasses the pumping, decay, and scattering processes involving
the polariton-polariton interaction and the polariton-reservoir interaction, is character-
ized by the 2D generalized Gross-Pitaevskii equation (GPE). It is worth noting that the
derivation of this GPE is based on the principles of mean-field theory, which simplifies
complex interactions in the system. The GPE coupled with the reservoir rate equation

2Condensates can also be produced through resonant pumping directly into the region where the para-
metric scattering takes place with the highest scattering rate or somewhere with the lower or higher energy
of the branch where the excitons can eventually scatter to the ground state but with lower scattering rate.
For more details from the theoretical perspective of the parametric scattering, one may look at the review
paper [40].
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is given by [41]

ih̄
∂

∂t
Ψ(t, r∥) =

{︃
− h̄2

2m∗
∇2
∥ + α|Ψ(t, r∥)|2 + G

[︂
nX(t, r∥) +

η

ΓX
P(r∥)

]︂
+i

h̄
2
[︁
RnX(t, r∥)− γ

]︁}︃
Ψ(t, r∥), (2.63)

∂

∂t
nX(t, r∥) = −

[︁
ΓX + R|Ψ(t, r∥)|2

]︁
nX(t, r∥) + P(r∥). (2.64)

Equation (2.64) is the rate equation describing dynamics from the 2D nonresonant
pump P(r∥) to the condensates; ΓX is the damping term of the reservoir, and R is
the scattering rate from the reservoir to the condensate. Equation (2.63), describing
the dynamics of the condensates, where G = 2g|χ|2 and α = g|χ|4 are the polariton-
reservoir and polariton-polariton interaction strengths, respectively, g is the exciton-
exciton dipole interaction strength, |χ|2 is the excitonic Hopfield fraction of the polari-
ton introduced in section 2.2.3; γ is the decay rate of the polariton, and η quantifies
additional blueshift coming from dark excitons which do not scatter into the conden-
sate.

To avoid solutions containing "Not a Number" (known as NaN), in numerical com-
puting, at each spatial point, the initial condition of Ψ is assigned with the complex
random noises defined by

Ψt=0 = ε, (2.65)

where

ε = 10−16(grand + igrand). (2.66)

Notice that the two random number generator grand shown above usually differ for real
and imaginargy part of the wavefunction. The condition of Eq. (2.65) is applied for this
thesis, when it comes to the numerical solution to the GPE. Also, in chapter 3, since
using the split-step Fourier method, computing is prepared in multiple infinitesimal
time steps. At each time step, the complex noise ε is also applied at each time step.

The formalism of polariton condensates shown in Eq. (2.63) is valid under the condition
of linear pumping that produces the equal number of spin-up and spin-down polari-
tons, as demonstrated in Fig. 2.7. For the uncoupled components of the polariton, in the
presence of the magnetic field, the energy of the cavity mode remains the same, but the
exciton energy is modified by the Zeeman effect and the diamagnetic shift. As shown
in Fig. (2.8), this shift in exciton energy alters the detuning, suggesting that a majority
of the interactions, such as scattering from the reservior to the condensate, polariton-
polariton interactions, and polariton-reservoir interactions, depend on the magnetic
field. It turns out that the inherent properity of the polaritons is also modified by the
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magnetic field. Furthermore, the interaction and scattering among the polariton and
reservoir excitons with spin-up and spin-down configurations are not included, which
goes beyond the scope of the formalism discussed here involving spinless polaritons.
Consequently, Eqs. (2.63) and (2.64) are no longer applicable in this context. Please see
Ref. [30] for more details including polarization properties of polaritons.

2.3.3.1 Linear regime

The nonlinear term can be omitted if the pumping strength is just above the threshold.
Thus, |Ψ| ≈ 0 can be replaced in Eqs. (2.63) and (2.64). Assuming the reservoir rate
equation is in the stationary condition, we have ∂tnX(t, r∥) = 0 from Eq. (2.64), so that
we can simplify the 2D GPE in linear regime:

ih̄
∂

∂t
Ψ(t, r∥) =

{︃
− h̄2

2m∗
∇2
∥ +

G
ΓX

(1 + η)P(r∥) + i
h̄
2

[︂ R
ΓX

P(r∥)− γ
]︂}︃

Ψ(t, r∥). (2.67)

The nonresonant pumping directly contributes to the real and complex potential, as
shown in Eq. (2.67) when the system is just above the threshold. Equation (2.67) also in-
dicates that the blue shift from the nonresonant pump also shares similar patterns in the
pump profile, which makes it possible to tailor the potential landscape by engineering
the laser at the beginning. In chapters 4 and 5, the anisotropic pump shapes are studied
despite using the nonlinear form from Eqs. (2.63) and (2.64), based on Eq. (2.67), we
can conclude that the anisotropic shapes originating from the pump preserve a similar
pattern from the reservoir to the condensates. The GPE in linear regime from Eq. (2.67)
can also be further simplified by adding the real and imaginary potential and a driven
resonant electric field directly:

ih̄
∂

∂t
Ψ(t, r∥) =

[︂
− h̄2

2m∗
∇2
∥ + (Vr + iVi) f (r∥)− i

h̄
2

γ
]︂
Ψ(t, r∥) + E(r∥)e

−iωst, (2.68)

where f (r∥) is the 2D spatial profile of the potential, Vr and Vi quantify the real and
imaginary parts of the potential, and E(r∥) is a resonant driving field with frequency
ωs. One can see that with steady-state solutions Ψ(t, r∥) = ψ(r∥)e−iωst, Eq. (2.68) can be
transformed into a nonhomogeneous Helmholtz equation. From Eq. (2.68), it is more
intuitive to build the connections between the polariton flow and the hydrodynamics.
Of course, the potential terms Vr and Vi should be nonlinear in the realistic model of
Eq. (2.63) joined with the reservoir rate equation of Eq. (2.64). More discussions of
Eq. (2.68) can be found in chapter 4.
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2.3.3.2 Stochastic projection

The GPE, as referenced in Eq. 2.63, is derived based on the assumptions of mean-field
theory where the interactions between polaritons are treated as averaged and constant
for each particle. This approach neglects fluctuations arising from the quantum field
of the polaritons, and, as a result, its capacity to capture the intricate details of particle
correlations within the system is limited.

To address this issue inherent to mean-field theory, researchers have introduced the
Stochastic Gross-Pitaevskii Equation (SGPE). The SGPE, a Langevin type equation, is
derived from the GPE under the truncated Wigner approximation [42]. Unlike the GPE,
the SGPE incorporates random fluctuations, thereby more accurately representing the
quantum nature of polaritons and their interactions. The quantum fluctuations and
correlations, neglected in the standard GPE, are reintroduced in this stochastic version.
In this way, the SGPE provides a more complete picture of the dynamics of a quan-
tum system, allowing for a more nuanced understanding of polariton interactions. The
SGPE is given by

ih̄
∂

∂t
Ψ(t, r∥) =

{︃
− h̄2

2m∗
∇2
∥ + α|Ψ(t, r∥)|2 + G

[︂
nX(t, r∥) +

η

ΓX
P(r∥)

]︂
+i

h̄
2
[︁
RnX(t, r∥)− γ

]︁}︃
Ψ(t, r∥) + ih̄

dW
dt

. (2.69)

The last term on the RHS of Eq. (2.69) stands for a complex white noise operator. The
white noise satisfies,

⟨dWidWj⟩ = 0, (2.70)

⟨dW∗i dWj⟩ =
γ + RnX

2∆A
dtδi,j. (2.71)

Here, i and j refer to different spatial grid points (see chapter 3), and ∆A is the area
of each grid cell. From Eq. (2.69), we can see that the noise operator directly adds the
perturbation to the condensate phase and amplitude at each time step and in every
spatial grid. The stochastic projection is used in chapter 5 in order to measure how fast
a system can recover from the perturbation produced by the noise operator, and the
method for the measurement is introduced in section 2.3.3.3.

It is worth addressing that the truncated Wigner approximation we used here from
Ref. [42] is valid if the inequality

γ≫ g
∆A

(2.72)

is satisfied. Using the parameters from chapter 5, we obtain γ∆A/g ≈ 29.9≫ 1.
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2.3.3.3 First-order spatial coherence

The equal-time spatial coherence between two regions of 2D complex map Ψ(t, r∥) can
be given by the normalized complex first-order coherence function, which is usually
denoted as g(1), is given by

µLM =
⟨ψL∗ · ψM⟩√︁

⟨ψL∗ · ψL⟩ · ⟨ψM∗ · ψM⟩
, (2.73)

where ψL and ψM is two subset of Ψ(t, r∥) with spatial region L andM (see Fig. 2.9),
respectively. Note that the dimensions of L andM cropped from the entire spatial grid
are the same.

L
M

Ψ

FIGURE 2.9: Sketch of two regions denoted L andM from 2D wavefunction Ψ.

The time average operator ⟨. . . ⟩ from Eq. (2.73) is defined as

⟨ψL∗ · ψM⟩ =
(︃

Tcoh

∫︂
Cropped

dr∥

)︃−1 ∫︂
Tcoh

∫︂
Cropped

ψL
∗(r∥, t) · ψM(r∥, t)dr∥dt, (2.74)

where Tcoh is the time duration of time-averaged coherence and
∫︁

Cropped dr∥ is the
cropped area of L and M. The modulus of the first-order coherence function satis-
fies the relation |µLM| ⩽ 1, and its argument whereas its argument represents their
average phase difference

θLM = arg(µLM) (2.75)

represents their average phase difference. In chapters 3, a parallel computing algorithm
of calculating Eq. 2.73 is introduced, and the mutual coherence between different pairs
of L andM of the condensate in the polariton lattices is applied in chapter 5. Note that
in the absence of the perturbation from the white noise (see section 2.3.3.2), when the
system is in the stationary state, any arbitrary regions L andM are perfectly correlated
(reaching unity for |µLM|). In the presence of the perturbation, |µLM| is expected to
decrease.

2.4 Conclusions

This chapter introduces the polariton system from a theoretical perspective in the sec-
ond quantization formalism. From pure photonic mode to pure excitonic mode, the
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photonic and excitonic dispersion relations share a similar parabola-like form near the
band edge, shown in Figs. 2.2 and 2.5. The geometric condition also applies to the effec-
tive mass of both photonic and excitonic modes. The microcavity photons are produced
from the confinement of mirrors, and the effective mass can be tuned by the cavity di-
rectly (see section 2.2.1); meanwhile, the excitonic effective mass is also largely affected
by the confinement from the quasi-2D quantum well (see section 2.2.2). The polaritons
of part photonic components and part excitonic components introduced in section 2.2.3
are formed under the SC regime. The Hopfield coefficients, which characterize the ratio
of photonic and excitonic components, are core parameters because they can tune the
effective mass of the polariton. Cryogenic temperatures (around 10K) are required for
inorganic materials due to the effective mass of light that originates mainly from the
photonic branch of the polariton. Once the condensates occur when the pump power
density is above the threshold, the excitonic branch plays a main role in the repulsive
polariton-polariton interaction. In addition, such a nonlinear interaction of the GPE
(see section 2.3.3) can lead to a blueshift outside the pumping region, which is the main
argument for chapter 4, making it promising to have all-optical polariton devices.

The interface between the phase transition occurs when the system is just above the
threshold. To study the condensates near the threshold, the linear regime, where the
condensates are weak enough to neglect the nonlinear terms in both the main GPE and
reservoir rate equations, is usually applied (see section 2.3.3.1) for theoretical studies.
By employing the stochastic projection to the RHS of the general GPE, to what degree
the system responds to the white Gaussian noise is known by measuring the time-
integrated spatial mutual coherence function. In chapter 5, the stochastic methods in-
troduced in sections 2.3.3.2 and 2.3.3.3 are used, to make a comparison with triangular-
or circular-tailored spots in the polariton lattice. Until now, only half of the introduction
has been completed, and the rest concerning the numerical algorithm and the compu-
tational language with parallel computing are addressed in the chapter 3.



Chapter 3

Introduction to numerical methods
with graphics processing unit

3.1 Introduction

This chapter introduces numerical methods for simulating polariton condensates, along
with the associated, custom-built computational tool primarily based on the graph-
ics processing unit (GPU). As presented in section 2.3.3, the main GPE describing the
polariton condensates is a partial differential equation of first order in time and sec-
ond order in space. The split-step Fourier method (SSFM) [43] is particularly chosen
for all numerical simulations treated in this thesis to make the equation easy to solve
in the framework of a parallel computing system. Moreover, utilizing the concept of
SSFM in machine learning offers a novel approach, known as Fourier neural oepra-
tor, to tackling partial differential equations in a more efficient way [44]. Researchers
have explored the use of a CPU-based GPE solver [45–48]. Besides, the GPU and SSFM
based solver has been investigated [49] and can be applied for finding the solution of
the GPE [50–52]. One advantage of employing SSFM is the ability to convert the spa-
tial second derivative into a linear problem using the fast Fourier transform (FFT). In
particular, the computation tool for the application of SSFM is based on the NVIDIA
Compute Unified Device Architecture (CUDA)1 and is written in C++ utilizing mainly
the CUDA Runtime Application Programming Interface (API) and partially the Driver
API [53].

This chapter is arranged as follows: In section 3.2, I will briefly introduce SSFM with
the example of the GPE from Eq. (2.63). Section 3.3 introduces the basic principles of
CUDA from both hardware and software perspectives. In section 3.4, combining the

1Although different APIs of parallel computing architectures are available, for example, the Open
Computing Language (OpenCL), different from CUDA in terms of the grammar or exclusive features,
the general idea and algorithm behind the architecture may be similar.
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SSFM and CUDA introduced in the first two sections, the algorithm of the GPE solver is
shown. In addition, CUDA reduction methods for the summation of the total number
of particles, used to estimate the threshold power of the system, and the first-order
correlation factors of two quantities, mentioned in section 2.3.3.3, are also introduced.

3.2 Split-step Fourier method

The SSFM, a method to seek the numerical solution of the time-dependent linear or
nonlinear Schrödinger equation widely used in quantum mechanics or optics, deals
with higher-order time and spatial derivatives. The essence of SSFM is the divide-and-
conquer algorithm. The time and spatial domains are sliced into infinitesimal time
steps and small grids to reduce computational complexity. In this thesis, the first order
in time and second order in space, as in Eq. (2.63), are taken into account.

Let us first consider the time domain and assume that the total length of time can be
divided into multiple infinitesimal steps of equal spacing in which each step is denoted
as ∆t. Thus, only the spatial domain is considered for each infinitesimal time interval
[t, t + ∆t]. The second-order derivative in space is not trivial to solve directly; however,
with the help of the Fourier transform (FT), the second-order derivative in real space
can be reduced into a linear problem in Fourier space. Then, the inverse Fourier trans-
form (IFT) is applied after operations in Fourier space to put the quantity back in the
real space. Despite the fact that the second-order derivative can be omitted, there is a
clear disadvantage that iteration over significant pairs of FT and IFT can also lead to
significant consumption of computing resources.

However, the boost of the FFT algorithm and the inverse FFT (IFFT) greatly reduces
the time complexity from O(N2) to O(N log N) where N stands for the size of the
data [54]. For computational software, FFTW, a widely used open source FFT library, has
been architected to run on CPUs [55]; however, this is still computationally expensive,
in the case of a large spatial computational grid and the need to compute large datasets
in parallel. The GPU-intensive library called cuFFT from NVIDIA Toolkit [53] brings
parallelism to FFT, enabling the efficiency of SSFM involving massive iterations of FFT
and IFFT operations. In this thesis, the numerical results dealing with large polariton
lattices are shown in chapter 5 benefit significantly from cuFFT library.

Let us focus on the general concept of SSFM as an example of solving the two-dimensional
GPE from Eq. (2.63). The Hamiltonian from the GPE can be rearranged into two parts:

∂

∂t
Ψ(t, r∥) =

(︂ ˆ︁L+ ˆ︂N)︂
Ψ(t, r∥), (3.1)
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where

ˆ︁L = i
h̄

2m∗
∇2
∥, (3.2)

ˆ︂N = −i
α

h̄
|Ψ(t, r∥)|2 − i

G
h̄

[︂
nX(t, r∥) +

η

ΓX
P(r∥)

]︂
+

1
2
[︁
RnX(t, r∥)− γ

]︁
. (3.3)

ˆ︁L and ˆ︂N are linear and nonlinear operators, respectively. A direct solution of Eq. 3.1
gives

Ψ(t + ∆t, r∥) = e( ˆ︁L+ˆ︂N )∆tΨ(t, r∥). (3.4)

Since both operators do not commute, namely [L̂, N̂ ] ̸= 0, we have e ˆ︁L+ˆ︂N ̸= e ˆ︁Leˆ︂N .
However, through the Baker–Campbell–Hausdorff (BCH) formula at second-order

ln
(︂

e ˆ︁L∆teˆ︂N∆t
)︂
≈ ˆ︁L∆t + ˆ︂N∆t +

1
2
[ ˆ︁L, ˆ︂N ]∆t, (3.5)

we can further split the exponential term. To get better accuracy, as a result of the strang
splitting, Eq. (3.5) is rearranged to

ln
(︂

e
1
2
ˆ︂N∆te ˆ︁L∆te

1
2
ˆ︂N∆t

)︂
≈ ˆ︁L∆t + ˆ︂N∆t +

1
16

[[ˆ︂N , ˆ︁L], ˆ︂N ]∆t3, (3.6)

which is obtained by applying the BCH twice. The comparison of Eqs. (3.5) and (3.6)
shows that the latter gives higher accuracy at the third order of the time step. Thus, by
substituting Eq. (3.6) into Eq. (3.4), we obtain

Ψ(t + ∆t, r∥) = e
1
2
ˆ︂N∆te ˆ︁L∆te

1
2
ˆ︂N∆tΨ(t, r∥). (3.7)

Although Eq. (3.7) gives a clean solution at the time interval [t, t + ∆t] with third-order
approximation, there remains a question to be answered if the operation sequence
should be taken into account for the nonlinear term |Ψ(t, r∥)|2 that is appearing twice in
both nonlinear operators ˆ︂N defined from Eq. (3.7)? The answer is that it is crucial that
Ψ also follows the squence to maintain precision to a certain degree. Javanainen and
Ruostekoski have concluded that as long as each Ψ of operators ˆ︂N and ˆ︁L in Eq. (3.7)
is updated to the latest value, the third-order approximation is still valid, which is also
applied to the case when we exchange both operators ˆ︂N and ˆ︁L in Eq. (3.7) [56]. To be
clear, the procedure for the evolution of the wavefunction at the time interval [t, t + ∆t]
is shown in the following

Ψ(t, r∥) e
1
2
ˆ︂N [|Ψ(t,r∥)|2]∆tΨ(t, r∥) e ˆ︁L∆tΨ1(t, r∥)

Ψ(t + ∆t, r∥) e
1
2
ˆ︂N [|Ψ2(t,r∥)|2]∆tΨ2(t, r∥)

Ψ:=Ψ+ε Ψ1(t,r∥)

Ψ2(t,r∥) (3.8)
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Here, ε is the random noise defined in Eq. (2.66). It can be seen that in (3.8) at each step
with nonlinear operator ˆ︂N [|Ψ|2] the nonlinear term |Ψ|2 comes out of the previous step
and is updated to its latest value.

Let us focus on the nonlinear operation e ˆ︁L∆tΨ1(t, r∥) where the FT from the real space
to the momentum space takes place. The Schrödinger involving the linear operator ˆ︁L
and wavefunction Ψ1(t, r∥) can be expressed as

∂

∂t
Ψ1(t, r∥) = ˆ︁LΨ1(t, r∥). (3.9)

Taking the FT of both sides of the Eq. (3.9), we arrive at the relationship

∂

∂t
F [Ψ1(t, r∥)] = F [ ˆ︁LΨ1(t, r∥)] = ˆ︁PF [Ψ1(t, r∥)], (3.10)

where F [. . . ] stands for the operation of the FT and the momentum operator is

ˆ︁P = −i
h̄

2m∗
k2
∥. (3.11)

Thus, by replacing the linear operator ˆ︁L with the momentum operator ˆ︁P , the second-
order spatial derivative is dropped. To be able to replace the operator in Eq. (3.10), the
wavefunction should first be Fourier transformed to the Fourier space, then multiply
the exponential term containing the momentum operator, and finally Ψ2 is obtained
through the inverse Fourier transform. Thus, the procedure (3.8) at time interval [t, t +
∆t] becomes

Ψ(t, r∥) e
1
2
ˆ︂N [|Ψ(t,r∥)|2]∆tΨ(t, r∥) e ˆ︁P∆tF

[︁
Ψ1(t, r∥)

]︁

Ψ(t + ∆t, r∥) e
1
2
ˆ︂N [|Ψ2(t,r∥)|2]∆tΨ2(t, r∥) F−1 [︁Ψ2(t, k∥)

]︁
Ψ:=Ψ+ε Ψ1(t,r∥)

Ψ2(t,k∥)

Ψ2(t,r∥)

(3.12)

In procedure (3.12), F−1[. . . ] stands for the operation of the IFT. To complete the cal-
culation, the Ψ(t + ∆t, r∥) obtained at the end of the procedure (3.12) is transferred to
Ψ(t, r∥) multiple times until the system reaches the final time. The procedure (3.12) is
the core part of the SSFM, and a CUDA-enabled library cuFFT, is used to accelerate FFT
and IFFT, and is introduced in subsequent sections.

3.3 Parallel computing with CUDA

Unlike the conventional CPU-based architecture, where CPU cores are much more lim-
ited, GPU has many more cores, even in consumer products. A comparison of CPU and
GPU architecture is illustrated in Fig. 3.1. The terminologies "core" for both CPU and
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FIGURE 3.1: The comparison and the communication between the CPU and GPU ar-
chitecture. (Figure is adapted from CUDA C++ Programming Guide from NVIDIA [57])

GPU mentioned earlier, though, have different implications. For instance, dual physical
cores in an INTEL CPU can have up to four virtual threads, known as hyperthreading,
and each physical core consists of an arithmetic logic unit (ALU), a logic control unit,
and caches, while the NVIDIA CUDA core usually refers to a large number of execu-
tion units following the concept of "Single Instruction, Multiple Data" (SIMD) [57].2

Thanks to the SIMD feature, CUDA is used for the first time for deep convolutional
neural networks, known as AlexNet, in image identification in 2012 [58].

Generally speaking, each thread of a CPU comes with an execution of a task at a fast
speed, but is limited by the number of threads running concurrently; however, there are
thousands of threads running in parallel in GPU but with a slower execution speed per
thread. There are always advantages and disadvantages when choosing the preferable
architecture for executing certain tasks. Figure 3.1 depicts the main difference between
a CPU and a GPU in that unlike a CPU where each core has its control unit and can
access the CPU’s fast memory (cache), in a GPU, cores are organized into groups, with
each group controlled by a single control unit and sharing access to a cache. Both the
CPU and the GPU are connected to dynamic random-access memory (DRAM); the CPU
directly accesses the system’s DRAM, while the Nvidia GPU, designed for CUDA, op-
erates using its dedicated memory, often referred to as GPU global memory3, a specific
variant of DRAM, to handle its computations.

Before attempting to go into detail, keep in mind that parallel computing is not confined
to a particular type of hardware, such as a GPU. Instead, it is a concept that applies
to any hardware capable of concurrent operations, including multicore CPUs, which
can also perform parallel processing up to a certain extent. In other words, parallel
programming is fundamentally about algorithm design rather than the specifics of the
underlying hardware. For instance, in a parallel computing network, various units can

2The NVIDIA CUDA core usually means an execution unit that can perform a single-precision floating-
point (FP32) operation per clock cycle, and there is no direct comparison of threads and cores between
CPU and GPU.

3It is worthy noting that the memory configurations differ for different hardware archetectures. For
example, the unified memory that the CPU and GPU can access is part of the Apple M1 series chips.
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be interconnected, and each unit can comprise different elements, such as CPUs, GPUs,
Field Programmable Gate Arrays (FPGAs), or other computational units.

3.3.1 Host and device

To have parallel computing that fulfills the potential of such a complex system, the chal-
lenging part is how the task is divided into multiple parts that are conquered by dif-
ferent hardware and how these components efficiently communicate with each other.
Usually, the terminology "heterogeneous computing" is used when different comput-
ing units are involved. This chapter uses a heterogeneous computing system consisting
of only an INTEL x86-64 CPU and a single NVIDIA GPU with a compute capability of
8.6. The CPU and GPU are connected through Peripheral Component Interconnect Ex-
press (PCIe) (see Fig. 3.1), which is limited by the bandwidth between the CPU and
GPU. Before applying SSFM with the power of the GPU, basic concepts of the GPU
architecture and CUDA API should be introduced first. In this section, only the details
related to the integration of SSFM and CUDA are covered. For anyone looking for a
complete guide to CUDA, the official document CUDA C++ Programming Guide from
NVIDIA [57] is recommended.

To complete the story, as depicted in Fig. 3.1, we will introduce the terms "host" and
"device" in section 3.3.3. In the context of the system examined in this thesis, these ter-
minologies, frequently used in software discussions, denote that functions are typically
launched in the CPU (host) and executed in the GPU (device).

3.3.2 Thread and memory hierarchy

In the hardware hierarchy, a GPU is composed of several parts known as streaming
multiprocessors. These multiprocessors are where threads run concurrently, if they
belong to the same multiprocessor. The GPU’s structure can be explained from both
physical and logical standpoints, which in turn, determine the number of threads that
can be practically employed.

Let us first consider the physical perspective. In the context of a GPU with compute
capability 8.6, a set of 32 threads is referred to as a ’warp’. Threads within a warp are
scheduled sequentially, starting from 0 through 31. The maximum number of warps
each multiprocessor can host is 48. As such, the total number of resident threads per
multiprocessor is calculated by multiplying the number of threads in a warp (32) by the
maximum number of warps per multiprocessor (48), resulting in 1536 resident threads.

From a logical viewpoint, each multiprocessor can be partitioned into several ’thread
blocks’, with each block containing up to 1024 threads. In this role, the multiprocessor
orchestrates the scheduling of thread blocks and the number of threads within each
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block. For the GPU with a compute capability of 8.6, a maximum of 16 resident thread
blocks can be scheduled within each multiprocessor. If we disregard the physical lim-
itations, theoretically, the total number of threads per multiprocessor can be as high
as 1024 multiplied by 16, which equals 16384. However, in practice, due to physical
constraints, this figure cannot exceed 1536 resident threads per multiprocessor.

Thread Thread block Grid

Warp Multiprocessor Multiprocessors

up to 1024

32

up to (231−1)×65535×65535

up to×16

48 82

FIGURE 3.2: A simplified thread structure of a GPU from both physical and logical
perspectives. The information is based on compute capability 8.6 with 82 multiproces-
sors.

One crucial point to note is that once a warp is invoked, even if not all threads within it
are being actively executed, the remaining idle threads4 are still considered unavailable
for other instructions. Thus, one of the strategies for choosing the number of threads
per thread block is to have an integer multiple of the number of threads per warp,
namely 32. Furthermore, once the data size is fixed, distributing a proper number of
threads and thread blocks is very important to use the GPU resources fully. Figure 3.2
illustrates the relations between the thread blocks structure from the programming’s
perspective and the warp-multiprocessors from the physical perspective.

Up to now, only the thread-related feature is shown and the details of the memory
feature5 that also plays a core rule can be found in the official document [57]. This
section aims to deliver two messages: the first is that in CUDA, data are processed with
a group of CUDA threads, and the second is that the performance of the computation
highly depends on the optimization of the initiation of the threads. For the following
discussion, we will pay more attention to the programming side and limit ourselves to
the case of using a single multiprocessor.

3.3.3 Kernel and launch parameters

In practical CUDA coding, the address of a single thread is obtained through keyword
threadIdx, blockIdx, and blockDim, which return, respectively, the thread address of
its current thread block, the block address of the grid, and the dimension of the grid.
These keywords, indicating the address of each thread, can return vector up to three

4The idle threads stand for these threads that are inactive and waiting for computations.
5For example, all the threads in the same thread block can have access to the "shared memory" with

limited size. Thus, the size of the shared memory also becomes a bottleneck with respect to the dimension
of each thread block. The shared memory is much faster than the GPU global memory, so it is ideal for
some applications requiring certain data to be repeatedly used for certain operations. The operation of
image blurring calculated through the convolution of the original image and the mask is a good example
of using shared memory, since the mask can be stored in shared memory.
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directions of x, y and z. To give an example of the allocation of the thread from these
parameters defined in the Device API [53], given the number of threads and dimen-
sion of the threads blocks, the global unique address of all the threads printed in the
sequence is shown as

Id = threadIdx.x + blockIdx.x * blockDim.x, (3.13)

where Id refers to a specific thread address, and only the x-direction of the input pa-
rameters are considered. Alternatively, Eq. (3.13) can also be expressed in 2D:

Id_x = threadIdx.x + blockIdx.x * blockDim.x, (3.14)

Id_y = threadIdx.y + blockIdx.y * blockDim.y, (3.15)

Id = Id_x + stride_x * Id_y, (3.16)

where stride_x can be the length along one direction of a 2D vector. The thread ad-
dress is not limited by the expression mentioned above; this also reminds us of the log-
ical side of thread blocks and the flexibility based on the physical structure. Figures 3.3
sketches the 2D thread blocks structure with an example of taking blockDim=(3,3) and
gridDim=(3,3).

The self-defined function in CUDA is called the "kernel", which provides the instruction
of threads assigned from the launch parameters. The launch parameters that determine
the structure of thread blocks are called from syntax <<< ... >>>. For example, we
show below the addition of two arrays stored in the GPU global memory A and B with
length N, then transferring the result to C. Such the kernel is defined by

// Self-defined kernel executed from the device.

__global__ void vector_addition(int N, double* A, double* B, double* C)

{

for (int Id = threadIdx.x + blockIdx.x * blockDim.x;

Id < N; Id += blockDim.x * gridDim.x)

{

C[Id] = A[Id] + B[Id];

}

}

The iteration goes through all the elements from A and B; meanwhile, at each iteration,
the addition operation is applied while passing the results to C at the same thread ad-
dress of Id as the A and B. The declaration __global__ guarantees that the function
can be called in both the host (CPU) and device (GPU). Condition Id<N ensures that
each element of A and B is extracted. What if the input data size is larger than the max-
imum number of threads that we set on all the thread blocks? Here, the grid-stride
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FIGURE 3.3: Illustration of the thread blocks structure in 2D. Each small block refers
to a specific 2D thread address, and each large block means a specific 2D thread block
address. blockDim.x * blockDim.y is the number of threads per thread block and
gridDim.x * gridDim.y gives the total number of thread blocks.

blockDim.x * gridDim.x works like every time we run out of all the threads in grid,
the iteration starts again with the step of the total number of threads per grid [59]. The
kernel of this addition operation is launched on the host with launch parameters de-
fined at run time. And the example of launching the kernel function in host is given
by

// Call the kernel with launch parameters from the host.

int main()

{

...

vector_addition<<<dimBlock, dimThreadBlocks>>>(N, A, B, C);

...

}

Here, the launch parameters are dimBlock and dimThreadBlocks. A complete vector
addition example can be found in CUDA C++ Programming Guide from NVIDIA [57].
This kernel can also be understood in this way: It is an instruction sent to each thread
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attached with its ID inside a set of threads <<<dimBlock, dimThreadBlocks>>> and
thousands of threads are receiving an instruction, which is the kernel, and the bulit-in
varibales threadIdx.x and blockIdx.x help each thread find its unique position inside
the GPU. The goal of parallel computing is to fully utilize GPU resources. To make sure
that all the blocks are filled, one practical choice of the launch parameters can be given
by

dimThreadBlocks = floor
(︃
N + dimBlock - 1

dimBlock

)︃
. (3.17)

Given a 256× 256 matrix with data size N = 65536 and dimBlock = 512, using Eq. 3.17,
we arrive at dimThreadBlocks = 128.

3.4 Gross-Pitaevskii equation solver

In this section, we will show an application attached with pseudocode code to solve
the GPE with SSFM and CUDA introduced in sections 3.2 and 3.3. Recall the proce-
dure (3.12)

· · ·Ψ e
1
2
ˆ︂N [|Ψ|2]∆tΨ e ˆ︁P∆tF [Ψ1] F−1 [︁Ψk

2
]︁

e
1
2
ˆ︂N [|Ψ2|2]∆tΨ2 Ψ · · ·Ψ:=Ψ+ε Ψ1 Ψk

2 Ψ2

(3.18)
in which the first and the last Ψ refer to the input wavefunction and output wavefunc-
tion at time interval [t, t + ∆t], respectively.

3.4.1 Application to split-step Fourier transform

Algoithm 1 illustrates the overview of the GPE solver. Although the coupled reser-
voir rate equation from Eq. (2.64) and the stochastic projection from section 2.3.3.2 and
chapter 5 are very important, here we limit ourselves to a simplified case by consider-
ing only the main GPE from Eq. 2.63. The calculation of the mutual spatial coherence
function from section 2.3.3.3 is still taken into account to demonstrate the algorithm in
the absence of the stochastic term.

All input matrices, as well as relevant parameters, are described in Input of Algoithm 1.
It is worth mentioning that the 2D computational grid used here is initialized in a con-
catenated row-major order array. We want to use the concatenated array because it is
much simpler for pointwise operations; for example, the matrix addition of 2D arrays
introduced in section 3.3.3 can be executed through the non-nested loop. However,
using the concatenated array does not imply the loss of dimensional information. Typ-
ically, once the spatial grid is determined, the dimensions of the columns or rows of
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Algorithm 1: Gross-Pitaevskii Equation Solver

Input: D: Matrix row and column dimensions
d: Cropped matrix row and column dimensions
∆t: Time step size
∆x, ∆y: Grid cell dimensions along the x and y axes
T: Total simulation time (where ceil[T/∆t] = T/∆t holds)
Tave: Time-integrated intensity duration
Tµ: Time-integrated spatial coherence duration
Nn: Node count in the polariton lattice
{∑D−1

i=0 ∑D−1
j=0 Ψ(xi, yj)}: Wavefunction (complex-valued matrix)

{∑D−1
i=0 ∑D−1

j=0 P(ki, k j)}: Momentum operator (complex-valued matrix)

{∑D−1
i=0 ∑D−1

j=0 N (xi, yj)}: Nonlinear operator (complex-valued matrix)

{∑D−1
i=0 ∑D−1

j=0 I(xi, yj)}: Time-integrated intensity (real-valued matrix)

{∑T/∆t+1
tn=0 N(tn)}: Particle count (real-valued matrix)

{∑Nn−1
l=0 µ(l)}: Mutual spatial coherence (complex-valued matrix)

dimBlock: Thread count per block
dimThreadBlocks: Thread block count per grid

Output:
Final time Ψ
Updated I, N, µ

Initialize: Transfer data from host to device:
Ψdev ← Ψ, Pdev ← P , Ndev ← N , Idev ← I, Ndev ← N, µdev ← µ
Initialize Idev, Ψdev, and µdev to zero

1: for tn = 0, 1, . . . , T/∆t do
2: Inject background noise into Ψdev: Ψdev ← Ψdev + ε
3: Execute Sum-Kernel<<<dimBlock, dimThreadBlocks>>>(Ndev, Ψdev, D)
4: Perform SSFM-CELL(Ψdev, Pdev, Ndev, D, ∆t, dimBlock, dimThreadBlocks)
5: if tn∆t > T − Tave then
6: Execute

TI-Intensity-Kernel<<<dimBlock, dimThreadBlocks>>>(Idev, Ψdev, Tave, D)
7: if tn∆t > T − Tµ then
8: Perform

TI-COH-CELL(µdev, Ψdev, Tµ, Nn, d, D, dimBlock, dimThreadBlocks)
9: Execute Sum-Kernel<<<dimBlock, dimThreadBlocks>>>(Ndev, Ψdev, D)

then scale Ndev by grid cell area: Ndev ← Ndev · ∆x∆y
10: Transfer data from device to host: Ψ← Ψdev, I ← Idev, N ← Ndev, µ← µdev
11: return Ψ, I, N, µ

a 2D array are known. For most CUDA libraries, such a catenated data layout is well
supported.

In this context, the temporal progression of SSFT is observed from 0 to T, with incre-
ments of ∆t at each step. To calculate the real-time number of particles, the kernel,
which presents the summation of the matrix, denoted Sum-Kernel, is used through the
parallel reduction method of Ref. [60]. The operation of SSFM in time interval [t, t+∆t]
is packaged into a sequence of kernels called SSFT-CELL (see Algoithm 2). In this pseu-
docode, we focus on the time-integrated operation such as the intensity and the mutual
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spatial coherence (see section 2.3.3.3), which are obtained, respectively, through ker-
nel TI-Intensity-Kernel (see Algoithm 3) and a sequence of kernels denoted TI-COH-
CELL (see Algoithm 4). As mentioned in section 3.3.3, all the kernels of Algoithm 1 are
launched from the host and executed on the device. Moreover, all the size of the prede-
fined matrix in the host are known. To obtain the best performance, one goal of CUDA
computing is to reduce the data transfer between the host and the device [61] due to
the fact that the data transfer between them is expensive, so it is better to complete all
tasks before sending the data back to the host.

3.4.2 Algorithm of the self-defined kernels

Defining the kernel in CUDA is not very different from how the function is defined in
CPU, as long as extra attention is paid to the thread and memory hierarchy (see sec-
tion 3.3.2). The algorithms shown later may also be useful to the application running
on multicore-enabled CPUs or different hardware/software devices/network. In sec-
tion 3.4.2.1, I will briefly introduce the parallel reduction algorithm, widely used for
calculating the number of particles and finding the maximum/minimal value of the
arrays. In section 3.4.2.1, the algorithms related to SSFM in time interval [t, t + ∆t] (see
procedure 3.18) are explained. The physical quantities extracted in the real-time pro-
cedure, such as the time-integrated intensity and the time-integrated spatial mutual
coherence factor, are detailed in section 3.4.2.3.

3.4.2.1 Parallel reduction

jThe number of particles in the wavefunction at arbitrary time t is obtained by integra-
tion over all spatial space, that is,

∫︁
|Ψ(t, r∥)|2dr∥. Consider the rectangular approxi-

mation method. Integration is converted into a matrix summation problem multiplied
by the area of each grid of the spatial space (see line number 9 of Algoithm 1). The
economic way of performing matrix summation in CUDA is through parallel reduc-
tion, although it is less trivial than how it is executed in the CPU; for example, in the
CPU, we can loop through the whole matrix with the addition operator applied at each
iteration. For CUDA, the data is stored in different thread blocks (see section 3.3), and
the reduction algorithm performs the summation of each thread block independently.
As shown in Fig. 3.4, the reduction is expressed as a tree-based approach for a single
thread block.

In our practical application scenarios, data are further transferred from the GPU’s global
memory to its shared memory6. Each thread block has shared memory, similar to the

6Note that the reduction layout from Fig. 3.4 can lead to shared memory bank conflicts, resulting in
lower bandwidth usage. The example of a non-optimized case shown in Fig. 3.4 is for brevity, but it is
indicative of demonstrating the core of the parallel reduction. For more details on the optimization of the
parallel reduction, one may check Ref. [60].
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FIGURE 3.4: Illustration of the parallel reduction algorithm shown in (left) a single
black thread and (right) the tree. (The figure is adapted from Ref. [60])

CPU cache. All threads in the same thread block can access shared memory faster than
global memory. To prepare the data for shared memory, we still need to transfer them
from the global memory first, meaning that if the target data sets are used only once, it
may not be worth transferring them to shared memory. We want to use shared mem-
ory for the reduction because the tree-based approach requires the repetitive usage of
the same sets of data to perform the summation at different levels. The application of
the parallel reduction algorithm used here can also be modified to find the maximal or
minimal values of an array by replacing the addition operation with the comparison
operation.

3.4.2.2 Operations related to the Fourier transform

Algorithm 2: Split-Step Fourier Method for Time Interval [t, t + ∆t]

1: procedure SSFM-CELL(Ψdev, Pdev, Ndev, D, ∆t, dimBlock, dimThreadBlocks)
2: Ψ1←N -Kernel<<<dimBlock, dimThreadBlocks>>>(Ndev(Ψdev), Ψdev, D, ∆t)
3: Ψk

1 ← cuFFT[Ψ1, CUFFT_FORWARD]
4: Ψk

1 ← ZeroFrequencyShift-Kernel<<<dimBlock, dimThreadBlocks>>>(Ψk
1, D)

5: Ψk
2 ← P-Kernel<<<dimBlock, dimThreadBlocks>>>(Pdev, Ψk

1 , D, ∆t)
6: Ψk

2 ← ZeroFrequencyShift-Kernel<<<dimBlock, dimThreadBlocks>>>(Ψk
2 , D)

7: Ψ2 ← cuFFT[Ψk
2 , CUFFT_INVERSE]

8: Ψ2 ←Normalization-Kernel<<<dimBlock, dimThreadBlocks>>>(Ψ2, D)
9: Ψdev ← N -Kernel<<<dimBlock, dimThreadBlocks>>>(Ndev(Ψ2), Ψ2, D, ∆t)

10: return Ψdev

The SSFM-CELL referring to the procedure 3.18 is illustrated in Algoithm 2. In CUDA,
taking cuFFT for FFT first and then applying the IFFT, one cannot obtain the same input
data, but a normalization of the output data divided by the data size after the IFFT
is required. Algoithm 2.1 illustrates a self-defined kernel about normalization. The
iterations from both dimensions have access to the data following the thread blocks
data structure introduced in section 3.3.3. To simplify the procedure, we have assumed
that the data size is smaller than the total number of threads in a grid; otherwise, the
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grid-stride blockDim.x * gridDim.x should be added to the loop (see an example of
the addition operation from section 3.3.3). After execution, the matrix Ψdev is updated,
so it is unnecessary to allocate a new address to the memory for the output data.

Algorithm 2.1: Normalization Kernel for cufft Inverse Computation

1: kernel: Normalization-Kernel(Ψdev, D)
2: Id_x← threadIdx.x + blockIdx.x * blockDim.x
3: Id_y← threadIdx.y + blockIdx.y * blockDim.y
4: if (Id_x < D) && (Id_y < D) then
5: Ψdev(Id_x, Id_y) = Ψdev(Id_x, Id_y)/D2

6: return Ψdev

In line number 4 and 6 of Algoithm 2, two zero-frequency shifting kernels are called
because after the first cuFFT the data from the center are shifted to the edges. However,
the operation involved with the momentum operator should be performed in the ini-
tialized default ordering at the beginning; besides, after the operation with the momen-
tum operator, we still need to shift the 2D data from the center to the edges because the
input data ordering of the IFFT obtained from cuFFT (line number 7 of Algoithm 2) also
expects a shifted data ordering. Since the data size is always an even number (power

Algorithm 2.2: Implementing Zero-Frequency Shift in Even-Sized 2D Data

1: kernel: ZeroFrequencyShift-Kernel(Ψdev, D)
2: Id_x← threadIdx.x + blockIdx.x * blockDim.x
3: Id_y← threadIdx.y + blockIdx.y * blockDim.y
4: if (Id_x < D) then
5: i← (Id_x+ D/2) MOD D
6: if (Id_y < D) then
7: j← (Id_y+ D/2) MOD D
8: Ψdev(i, j) = Ψdev(Id_x, Id_y)
9: return Ψdev

of two, see section 3.3.2), it is identical for shifting the data from both center-to-edge
(forward) and edge-to-center (inverse) directions. Algoithm 2.2 illustrates the kernel of
the zero-frequency shifting. The kernel for nonlinear operation and momentum (lin-

Algorithm 2.3: Nonlinear Operator Kernel Implementation

1: kernel: N -Kernel(Ndev(Ψdev), Ψdev, D, ∆t)
2: Id_x← threadIdx.x + blockIdx.x * blockDim.x
3: Id_y← threadIdx.y + blockIdx.y * blockDim.y
4: if (Id_x < D) && (Id_y < D) then
5: Ψdev(Id_x, Id_y) = exp [ 1

2 ∗ Ndev(Id_x, Id_y)] ∗Ψdev(Id_x, Id_y)
6: return Ψdev

ear) operation is given, respectively, by Algoithm 2.3 and Algoithm 2.4. We need to
remember that both wavefunctions and exponential terms are complex-valued matri-
ces, and the pointwise product of two complex matrices needs to be treated separately
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in CUDA in real and complex components. The matrix representing the linear operator

Algorithm 2.4: Momentum Operator Kernel Implementation

1: kernel: P-Kernel(Pdev, Ψdev, D, ∆t)
2: Id_x← threadIdx.x + blockIdx.x * blockDim.x
3: Id_y← threadIdx.y + blockIdx.y * blockDim.y
4: if (Id_x < D) && (Id_y < D) then
5: Ψdev(Id_x, Id_y) = exp [Pdev(Id_x, Id_y)] ∗Ψdev(Id_x, Id_y)
6: return Ψdev

in momentum space is a constant [see Eq. 3.11]; instead, the nonlinear operator con-
tains all the information about pumping configurations, reservoir density, scattering,
and decay [see Eq. 3.3]. Since the Ψdev after each kernel from Algoithm 2 is up to date,
the accuracy up to ∆t3 still holds (see Section 3.2).

3.4.2.3 Time-integrated operation

The time-integrated intensity is frequently used in chapter 4 and chapter 5. The kernel
to carry out the intensity integrated in time is given by Algoithm 3. The conditional
statement of line number 5 or 7 of Algoithm 1 determines whether or not the integrated
operation in time is executed. In practice, the time step between wavefunctions can be
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time-sequence-spatial grid.
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chosen on a custom basis, which also applies to the kernel of the time-integrated spatial
coherence function (see Algoithm 4).

The realization of time-integrated intensity is straightforward: When the conditional
statement is true, the intensity of the complex-valued real-time wavefunctions is cal-
culated; then the addition of the current and the previously obtained intensity is exe-
cuted and eventually is divided by the averaged time period. Repeat the kernel Tave/∆t
times, and the final time updated Idev is the one we expect. The mutual coherence func-

Algorithm 3: Time-Integrated Intensity Calculation of Wavefunctions

1: kernel: TI-Intensity-Kernel(Idev, Ψdev, Tave, D)
2: Id_x← threadIdx.x + blockIdx.x * blockDim.x
3: Id_y← threadIdx.y + blockIdx.y * blockDim.y
4: if (Id_x < D)&&(Id_y < D) then
5: Idev(Id_x, Id_y) = (Idev(Id_x, Id_y) + |Ψdev(Id_x, Id_y)|2)/(Tave/∆t)
6: return Idev

tion first defined in Eq. (2.73) is given by

µLM =
CLM√

CMM · CLL
, (3.19)

CLM = ⟨ψL∗ · ψM⟩, CLL = ⟨ψL∗ · ψL⟩, CMM = ⟨ψM∗ · ψM⟩. (3.20)

Here, as shown in Fig. 3.5, for simplicity, we consider that the grid space consists of 5
nodes, namely Nn = 5 of Algoithm 1, indexed from 0 to 4. The first thing is to crop
the regions with d× d dimensions where all nodes are located, then resemble them in
a new array prepared for future operation. Thus, CLM can be expressed as

CLM =
1

Tcoh/∆t

T/∆t

∑
tn=(T−Tcoh)/∆t

Ctn
LM, (3.21)

Ctn
LM =

1
d2∆x∆y

d−1

∑
i=0

d−1

∑
j=0

ψtn
L
∗
(xi, yj) · ψtn

M(xi, yj). (3.22)

Since both (Tcoh/∆t)−1 and (d2∆x∆y)−1 are constant, these terms can be canceled when
calculating µLM [see Eq. (3.19)]. Equation (3.22) expresses that wavefunctions on L and
M are mapped onto the matrix with the same dimension; however, in CUDA, they are
regrouped into a d × Nnd matrix denoted Ωtn . Assume that the wavefunctions over
area L are taken to multiply with all possible wavefunctions overM, MOD operation
is needed when the thread iterates through Ωtn , as illustrated in Algoithm 4.1

Algoithm 4 illustrates the procedure for calculating the mutual spatial coherence func-
tion, in the time interval [t, t + ∆t], of polariton lattices consisting of Nn nodes. Before
the calculation, we crop the matrix Nn with dimension d× d and reassemble them into
the complex-valued matrix Ωtn (see Fig. 3.5 for the case with Nn = 5). The multiplica-
tion of two chosen matrices [see Eq. (3.22)], which are subsets of Ωtn , is illustrated in
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Algorithm 4: Computation of Time-Integrated Spatial Coherence

1: procedure TI-COH-CELL(µdev, Ψdev, Tµ, Nn, d, D, dimBlock, dimThreadBlocks)
2: Initialize:

▷ Prepare complex-valued matrices for the following quantities:
▷ Cropped wavefunctions:
{∑d−1

i=0 ∑Nnd−1
j=0 Ωtn(xi, yj)} (complex-valued matrix)

▷ Multiplied wavefunctions (type LM):
{∑d−1

i=0 ∑Nnd−1
j=0 Ctn

LM(xi, yj)} (complex-valued matrix)
▷ Multiplied wavefunctions (typeMM):
{∑d−1

i=0 ∑Nnd−1
j=0 Ctn

MM(xi, yj)} (complex-valued matrix)
▷ Summation of the type LM matrix:
{∑Nnd−1

l=0 SumCtn
LM(l)} (complex-valued matrix)

▷ Summation of the typeMM matrix:
{∑Nnd−1

l=0 SumCtn
MM(l)} (complex-valued matrix)

▷ Extract regions 0, 1, ...Nn − 1, from Ψdev and assign to Ωtn

3: Ωtn ← {∑Nn−1
l=0 ψtn

l }
▷ Execute CUDA kernel to compute Ctn

LM and Ctn
MM using Ωtn .

4: Ctn -Kernel<<<dimBlock, dimThreadBlocks>>>(Ctn
LM, Ωtn , Nn, d, LM)

5: Ctn -Kernel<<<dimBlock, dimThreadBlocks>>>(Ctn
MM, Ωtn , Nn, d,MM)

▷ Execute CUDA kernel to calculate the summation for each Ctn
LM and Ctn

MM, results
are stored in SumCtn

LM and SumCtn
MM.

6: Sum-Kernel<<<dimBlock, dimThreadBlocks>>>(SumCtn
LM, Ctn

LM, Nnd)
7: Sum-Kernel<<<dimBlock, dimThreadBlocks>>>(SumCtn

MM, Ctn
MM, Nnd)

▷ Compute temporary spatial coherence, µtem
dev based on the sums from previous step.

8: µtem
dev ← SumCtn

LM/
√︂

SumCtn
MM · SumCtn

LL
▷ Calculate final spatial coherence, µdev by averaging it with µtem

dev over time step
Tcoh/∆t.

9: µdev ← (µdev + µtem
dev)/(Tcoh/∆t)

10: return µdev

Algoithm 4.1. The summation of the matrix Ctn
LM and Ctn

LL is taken (see line number 6
and 7 of Algoithm 4.0) through the Sum-Kernel, which aims to sum up different seg-
ments of a matrix, is the same one defined in Algoithm 1, and both are realized with
the parallel reduction defined in section 3.4.2.1.

The mutual coherence factor over the area L and M at time tn is obtained directly
from Eq. (3.19) by replacing Ctn with the sum denoted SumCtn (see line number 8 of
Algoithm 4). The last step is similar to the way the time-integrated intensity is calcu-
lated: iterating through the current coherence factor with the previous one and then
dividing by Tµ∆t over the period. In addition to the brevity, the wavefunctions be-
longing to region L, which are multiplied by the rest of the regions (see Algoithm 4.1),
can also be uploaded to the shared memory for fast operation because the matrix is
used repeatedly. Similar data arrangement in the shared memory can also be found in
summation over the whole or part of the matrix (parallel reduction see section 3.4.2.1),
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Algorithm 4.1: Kernel Implementation for Cropped Matrix Dot Product

1: kernel: Ctn -Kernel(Ctn , Ωtn , Nn, d, instruction)
2: Id_x← threadIdx.x + blockIdx.x * blockDim.x
3: Id_y← threadIdx.y + blockIdx.y * blockDim.y
4: if (Id_x < d)&&(Id_y < Nnd) then
5: if instruction = LM is ture then
6: Ctn(Id_x, Id_y) = Ωtn∗(Id_x MOD d, Id_y MOD d) ·Ωtn(Id_x, Id_y)
7: if instruction =MM is ture then
8: Ctn(Id_x, Id_y) = Ωtn∗(Id_x, Id_y) ·Ωtn(Id_x, Id_y)
9: return Ctn

and the Gaussian convolution of the pump profile and the step function (see chapters 4
and 5).

3.5 Conclusions

The chapter begins by delving into an examination of SSFM, alongside a detailed ex-
ploration of the CUDA hardware and software structure. The discussion culminates
with the introduction of a novel algorithm that facilitates the efficient integration of
SSFM and CUDA.

Section 3.2 explains not only why the SSFM works to solve the nonlinear Schrödinger
equation, but also to what extent the accuracy it could achieve under what circum-
stances. To balance precision and performance, the time step we chose through this
thesis is ∆t = 0.01 ps, which also gives a larger energy scale, compared to ∆t larger
than we chose, for a given sampling time in the energy spectrum simulation (not shown
in this chapter for the brevity of the introduction). The accuracy used in this thesis
is O(∆t3) corresponding to Eq. (3.7), but one can have higher order like O(∆t4) and
O(∆t5) by modifying the expression of Eq. (3.7) which can be found in Ref. [56]. The
GPE simulation usually requires boundary conditions in real and momentum space,
which go, respectively, to the nonlinear operator [see Eq. (3.3)] and linear operator [see
Eq. (3.2)]. There are Dirichlet and periodic boundary conditions in most cases of GPE
simulation. Extra care should be taken with Dirichlet boundary conditions, especially
when pumping is strong near the boundary. In such cases, the reflection cannot be ne-
glected, but can still be diminished by either making the spatial grid larger due to the
constant lifetime of the polaritons or creating a perfectly matched layer (PML) around
the boundary where the incoming polariton flow can be absorbed. However, some-
times to match the real case in the experiment or to artificially produce such a feature
on the boundary, it does not mean that we have to diminish the reflection every time
we perform the simulation. Still, we can always make one layer of fake boundary to
satisfy the condition we need, then add another PLM as the real boundary.
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Section 3.3 gives a brief introduction to the CUDA from both hardware and software
perspectives. Due to the coherent integration with the thread and memory hierarchy,
the launch parameters may vary based on different devices to achieve the best perfor-
mance. For simplicity, more attention is paid to the thread block structure because it
has the closest connection with the programming side. The launch parameters, which
determine how the task is divided and conquered, are organically changing for differ-
ent data inputs or for the purpose of manipulating the data. Only tweaking the thread
block structure is not enough to achieve high bandwidth usage per kernel, and memory
management plays an important role in optimization through CUDA programming.

Section 3.4 shows the main algorithm that integrates with the GPE, the time-integrated
intensity, and the time-integrated spatial coherence factor. The parallel reduction in-
troduced in section 3.4.2.1 provides an example of summing up all the elements of a
matrix consisting of multiple submatrices which do not effectively communicate with
each other. The divide-and-conquer idea behind parallel reduction can also help build
the computing network. For example, to obtain the summation of an extremely large
matrix based on many CPU-based devices linked together, one may expect a similar al-
gorithm used in GPU is applied to this network. An earlier work on parallel reduction
can be found in Ref. [62].

The GPU solver incorporates two types of functions: self-defined kernels and inte-
grated kernels provided directly by the CUDA API. An example of the latter is the
cuFFT function from Algoithm 2. These built-in functions can be initiated without
specifying launch parameters, as the optimization is performed automatically based
on current hardware information.



51

Chapter 4

Reservoir optics with
exciton-polariton condensates

4.1 Introduction

The GPE governing the polariton flow presented in section 2.3.3 is similar to the Maxwell
equation ruling the electromagnetic wave, which naturally leads to the question: Can
the polariton flow be concentrated the same way that a planar light wave does through
the lens? This question will be answered in this chapter, and the system with all-optical
polariton beyond the scope of the conventional light-lens setup will be studied. At
the microscale level, progress related to guiding and focusing planar light waves has
been made in the scope of miniaturized optical technologies, reliant on dispersion man-
agement, ranging from microlens arrays [63] to optical circuitry and logic gates [64],
has been made. A variety of techniques exist to focus planar light, such as metama-
terials [65, 66], plasmonic lenses [67–69], phase change materials [70], photonic crys-
tals [71, 72], and disordered materials [73]. Despite this, the lensing performed on
samples usually cannot be reversed for different configurations.

This chapter introduces an all-optical planar microlensing approach in a semiconduc-
tor system, as illustrated in Figs. 2.3 and 4.1. The approach focuses on microcavity
polariton condensates with reversible lens configurations. This is made possible as
the shape of the blueshift potential landscape closely resembles that of the nonreso-
nant pump, and can be reprogrammed through the spatial light modulator (see sec-
tion 2.3.3). Many works have also combined the optical control provided by nonres-
onant lasers in conjunction with engineered photonic potentials such as micropillars,
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FIGURE 4.1: Sketch of the nonresonant lensing effect with exciton-polariton con-
densates in a semiconductor microcavity. Quantum well excitons are photoexcited
through nonresonant pumping (dark red profiles), while the cavity mirrors (symmet-
rically distributed Bragg reflectors) provide photon confinement and strong coupling.

microwires, or wedged cavities (i.e., photonic potential gradient) which led to the de-
velopment of optically controllable interferometers [74, 75]. Alongside these develop-
ments in optical control, there is a growing variety of cheaper room temperature mate-
rials that operate in the strong coupling regime [9–11] that opens new perspectives on
the role of exciton-polaritons in future optical-based technologies [76, 77].

This thesis explores the spatial control of propagating exciton-polariton condensates
using nonresonant excitation beams shaped into a planoconcave microlens (see Fig. 4.1).
The excitation beam induces a static reservoir of incoherent excitons, which provide
both gain and blueshift to the polariton modes [12, 14]. Consequently, excited po-
laritons experience a complex-valued effective potential landscape that can amplify
and phase modulate transmitted waves. When the excitation beam is removed, the
reservoir rapidly decays, allowing for rewriting new and different potential landscapes
on the same sample location. Recently, similar flexibility with phonon polaritons was
demonstrated in a hexagonal boron nitride heterostructure [78].

So far, several studies have addressed the potential of nonresonant all-optical control
to manipulate the flow of condensate polaritons. Planar waveguiding effects [79, 80],
amplification [15, 16], tailoring the condensate momentum distribution [81], and direc-
tional superfluids near equilibrium [82], ring-like potential landscape [83, 84] are stud-
ied. A transistor switch is all-optically designed in a source-barrier setup [85] and [86]
where the source (nonresonant laser) creates a ballistic flow on polaritons that travel
due to a potential gradient engineered into the photonic cavity. When a barrier (an-
other nonresonant laser) is switched on in the path of the traveling polaritons, they
are reflected, which characterizes the ’off’ state. However, no planar microlensing of
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exciton-polaritons has been widely investigated. Considering that lenses are funda-
mental optical elements in many scientific disciplines, there is an important missing
piece in the existing literature on all-optical polariton control.

The rest of the chapter is organized as follows: In section 4.2, as a preparation for the
more complicated non-linear polariton system, microlensing with both negative and
positive meniscus lens in a damped two-dimensional (2D) Schrödinger system cor-
responding to the linear (noninteracting) polariton regime is studied. In section 4.3,
a source condensate that approximately emits a coherent plane wave polariton flow
is nonresonantly excited. This flow impinges on the planoconcave microlens gener-
ated by a second nonresonant beam. The response of the condensate waves against
this additional microlens potential and developing an argument for the operational re-
quirements of efficient reservoir lensing is analyzed. In section 4.4, a simpler idea of
using only a lens-shaped beam pumped above the condensation threshold is investi-
gated, resulting in the spontaneous formation of condensate profiles strongly focused
away from their pumped region. Finally, the general conclusion of the reservoir optics
scheme is drawn in section 4.5.

4.2 Planar polariton microlensing in the linear regime

Recall a simplified case in the linear regime of GPE in chapter 2 of Eq. (2.67) by adding
the wavevector ks

∥,

ih̄
∂

∂t
Ψ(t, r∥) =

[︂
− h̄2

2m∗
∇2
∥ + (Vr + iVi) f (r∥)− i

h̄
2

γ
]︂
Ψ(t, r∥) + E(r∥)e

−i(ωst−ks
∥·r∥), (4.1)

here Vr and Vi quantify, respectively, the real and imaginary parts of the lens poten-
tial with a spatial profile f (r∥), and E(r∥) to produce the planar wave is a coherent
(resonant) driving field with frequency ωs and wavevector ks

∥.

Here, the complex lens potential of (Vr + iVi) f (r∥) is considered an optically generated
potential in polariton systems [? ] although many other methods are available for
designing polaritonic potential landscapes [87]. When it comes to the simulation, the
limited resolution coming from spatial light modulators and finite exciton diffusion is
accounted by applying Gaussian blurring (convolution) on a step function,

f (r∥) =
1

2πw2

∫︂
F(r′∥)e

−|r∥−r′∥|
2/2w2

dr′∥ (4.2)

where

F(r∥) =

⎧⎨⎩1 for r∥ ∈ G

0 else,
(4.3)
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where G is the lens area. This thesis uses 2.0 µm full-width-at-half-maximum (FWHM)
to calculate all lens shapes with a Gaussian blur corresponding to w ≈ 0.85 µm. To
cancel the time-dependent part, the steady-state solutions Ψ(r∥, t) = ψ(r∥)e−iωst is sub-
stituted into Eq. 4.1 leaving the time-independent Schrödinger equation,

h̄ωsψ =

[︄
− h̄2

2m∗
∇2
∥ + (Vr + iVi) f (r∥)− i

h̄
2

γ

]︄
ψ + E(r∥)e

iks
∥·r∥ . (4.4)

The spatial profile of the lens slowly decays from the deep inside the potential region
with 1 to the edge with 0. Taking the approximation f (r∥) ≈ 1, the homogeneous
Helmholtz equation is obtained,

∇2
∥ψ + k2

∥ψ = 0, (4.5)

k2
∥ =

2m∗

h̄2

[︃
h̄ωs −Vr − i

(︂
Vi −

h̄
2

γ
)︂]︃

. (4.6)

Under resonant driving, ks
∥ =
√

2m∗ωs/h̄, the refractive index of the complex-valued
potential with respect to the source is,

n′ =

√︄
1− Vr

h̄ωs
− i

h̄ωs

(︂
Vi −

h̄
2

γ
)︂

. (4.7)

Here, only propagating waves and not evanescent waves inside the lens region are
considered meaning that Vr < h̄ωs from Eq. (4.7). To separate the real and imaginary
parts of the refractive index, the system is taken to have net losses everywhere and thus
Vi − h̄γ/2 < 0, so it reads

n′ = n + iκ, (4.8)

where

n =

√︃
1− Vr

h̄ωs
, (4.9)

κ =
|Vi − h̄γ/2|

h̄ωsn
. (4.10)

Here, to obtain the above form, the assumption that the real detuning is larger than the
imaginary detuning |Vi − h̄γ

2 | ≪ |Vr − h̄ωs| is taken.

4.2.1 Negative meniscus lens

Here an example of a negative meniscus lens is considered. For a planoconcave-shaped
potential whose edge (i.e., FWHM) is depicted with a solid green line in Figs. 4.2(b)
and 4.2(e), recall the Lensmaker’s equation in the ray optics limit where the focal length
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fN follows,

fN =
R

1− nN
. (4.11)

Here, the subscript N denotes the negative meniscus lens, and R is the radius of cur-
vature of the back surfaces of the lens. In the case of planar microlenses, whose char-
acteristic spatial scale is only several wavelengths, the focal length will deviate from
Eq. (4.11) due to pronounced scattering and interference of the waves impinging on the

FIGURE 4.2: (a),(b) The normalized density, |Ψ|2, and (d),(e) phase, arg(Ψ), of the
wave function without (a),(d) and with (b),(e) the planoconcave-shaped-lens poten-
tial. The source and lens are outlined with solid green lines. (c),(f) Line profile of the
wavefunction density along the lens axis (y = 0) as a function of varying real (c) and
imaginary (f) parts of the potential. In (b) and (e), the yellow dashed lines indicate
the principal plane of the lens and the focal point with distance fN . The green vertical
dashed lines in (c) and (f) indicate the source location and the front and back surface
of the lens.
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lens. Thus, the steady state of Eq. (4.1) is numerically solved with CUDA (see chap-
ter 3) under resonant excitation of plane waves that pass through the planoconcave mi-
crolens. The parameters, based on state-of-the-art inorganic microcavities, for the gen-
eration of polariton condensates [31] are chosen: γ−1 = 5.5 ps and m∗ = 4.9× 10−5m0

where m0 is the mass of free electrons.

Since nN = 1 and nN < 1 are outside and inside the lens, respectively, an incident
planar wavefront from the left will transmit through the lens to converge into a cylin-
drical wavefront on the right side. The numerical solution for the steady states of
Eq. (4.1) under resonant excitation on the left side of the lens with a profile, E(r∥) ∝
exp[−x2/(2σ2

x) − y2/(2σ2
y )] whose FWHM is outlined green in Fig. 4.2(a) centered at

x = 0 is obtained. The energy of the source excitation is set to h̄ωs = 2.0 meV so
as to have a rapidly varying phase front and remain within the parabolic (dispersion)
regime. The corresponding steady-state density and phase profiles of Ψ(r∥) without
any lens potential are shown in Figs. 4.2(a) and 4.2(d).

When a planoconcave potential V(r∥), of size in the order of several wavelengths (λs ≈
3.9 µm), is introduced, both transmitted and scattered waves contribute in a compli-
cated way to the focal region on the right side of the lens [see Fig. 4.2(b)]. Here, we set
R = 10.0 µm and the lens’ thickness TN = 4.5 µm which corresponds to nN ≈ 0.4472
and fN ≈ 18.1 µm indicated by the yellow dashed lines in Figs. 4.2(b) and 4.2(e). A focal
region (i.e., the whiteish region of converged/focused waves) that lies outside the lens
curvature R and within the ray-optic focal length fN [Eq. (4.11)], as a consequence of
the microscopic nature of the lens shape, is observed. We stress that the low polariton
intensity in the focal region is dominated by the rapid decay rate γ used in our simu-
lation. However, condensation of polaritons with long lifetimes reaching γ−1 = 270 ps
has also been demonstrated [88], leading to longer propagation lengths and timescales
to manipulate the condensate flow.

Figure 4.2(c) shows the line profile of the wavefunction density at y = 0 to vary the
real potential strength Vr. The focal region shrinks and the focal length decreases as
the potential strength increases in qualitative agreement with Eq. (4.11) (solid yellow
line). It is worth mentioning that from Eq. (4.6), one can, in principle, achieve epsilon-
near-zero (nN = 0) lensing, which has been studied extensively in metamaterials [89],
by tuning the excitation frequency. However, at h̄ωs ≈ Vr, incident waves undergo
stronger reflection, leading to a pronounced interference pattern, as in Fig. 4.2(b) to the
left of the lens. In addition, varying the imaginary part of the potential Vi in Fig. 4.2(f)
shows a clear amplification of the transmitted waves in accordance with the imaginary
part of the refractive index in Eq. (4.10).
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4.2.2 Positive meniscus lens

For a potential with a double-concave-shaped spatial profile f (r∥), we recall the Lens-
maker’s equation in the ray optics limit where the focal length fP follows,

1
fP

= (nP − 1)
[︃

1
R1
− 1

R2
+

(nP − 1)TP

nPR1R2

]︃
. (4.12)

Here, the subscript P denotes the positive meniscus lens, R1,2 are the radius of curva-
ture of the front and the back surfaces of the lens, respectively (left and right edges),
and TP represents the lens thickness. In the case of using a positive meniscus lens where

FIGURE 4.3: (a),(b) The normalized density, |Ψ|2, and (d),(e) phase, arg(Ψ), of the wave
function without (a),(d) and with (b),(e) the lens potential. The source and lens are
outlined with solid green lines. (c),(f) Line profile of the wavefunction density along
the lens axis (y = 0) as a function of varying real (c) and imaginary (f) parts of the
potential. In (b), to detail the focal region, the value of the normalized density greater
than 0.4 is saturated in the colormap. In (b) and (e), the yellow dashed lines indicate
the principal plane of the lens and the focal point with distance fP, and δ is the distance
between the front surface and the principal plane (the first yellow dashed line from left
to right). The green vertical dashed lines in (c) and (f) indicate the source location and
the front and back surfaces of the lens, and T indicates the distance between two green
dashed lines.
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R1 > 0, the thickness TP of the lens in Eq. (4.12) needs to be taken into account. It is
instructive to define the distance,

δ = fP
TP

R1

(︃
1

nP
− 1

)︃
, (4.13)

which refers to the distance between the front surface in the positive meniscus lens
and the principal point [see Fig. 4.3(b)]. The radius of the front and back surfaces of
the lens is, respectively, R1 = 14.5 µm and R2 = 10.0 µm, and the thickness of the
lens TP = 4.5 µm. The radius of the back surface, the thickness of the lens, and the
resonant source are the same as those used in Fig. 4.2. For a lens with Vr = 1.6 meV
and Vi = 0 meV, δ ≈ 10.0 µm and fP ≈ 26.1 µm are obtained using Eq. (4.7) in to get
the effective refractive index n.

Figure 4.3 shows the same numerical experiment as in Fig. 4.2 using a positive meniscus
lens this time. Compared to the negative meniscus lens results, an enhanced scattering
of the incident plane wavefront onto the positive meniscus is obtained, resulting in a
poorer focused transmission. This result is in contrast to the case presented in Fig. 4.8,
where a positive meniscus emitter focuses waves more efficiently than a planoconcave
lens (detailed in section 4.4).

4.3 Planar reservoir microlensing with polariton condensates

4.3.1 Generalized Gross-Pitaevskii model

Having characterized the effects of the 2D planoconcave microlens on an incoming
plane wave, now the nonlinear regime with condensates of polaritons is taken into
account. Recall the 2D GPE coupled to a driven exciton reservoir from Eqs. (2.63)
and (2.64),

ih̄
∂

∂t
Ψ(t, r∥) =

{︃
− h̄2

2m∗
∇2
∥ + α|Ψ(t, r∥)|2 + G

[︂
nX(t, r∥) +

η

ΓX
P(r∥)

]︂
+i

h̄
2
[︁
RnX(t, r∥)− γ

]︁}︃
Ψ(t, r∥), (4.14)

∂

∂t
nX(t, r∥) = −

[︁
ΓX + R|Ψ(t, r∥)|2

]︁
nX(t, r∥) + P(r∥). (4.15)

The parameters used in all simulations of this chapter are based on negatively detuned
cavities, |χ|2 = 0.4, with GaAs-type quantum wells, g = 1 µeV µm2. The remaining
parameters are taken similar to those used to describe recent experiments, h̄R = 2.8g;
η = 5; and ΓX = γ [22, 23]. We also note that our findings do not critically depend
on the parameter values, which can be adjusted through the system properties (e.g.,
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exciton-photon detuning or the exciton dipole moment by the appropriate choice of
the semiconductor material).

Let us quantify the nonresonant pump as P(r∥) = P0 f (r∥) where P0 is a positive scalar
denoting the power density of the pump laser and f (r∥) is its profile. It is instructive to
define the condensation threshold, which, formally, is a bifurcation point that separates
the so-called normal (uncondensed) state (|Ψ| = 0) and the condensed state (|Ψ| ̸= 0).
The threshold can be identified as the point where a single frequency component of
our system in the linear regime crosses from negative to positive imaginary value (i.e.,
small |Ψ| starts to grow exponentially over time). Alternatively, one can also estimate
the threshold of Eq. (4.14) numerically by expanding the reservoir’s steady state,

N =
P(r∥)

ΓX + R|Ψ|2 =
P(r∥)

ΓX

[︃
1− R

ΓX
|Ψ|2 +O(|Ψ|4)

]︃
(4.16)

and compare the contribution between the zeroth and the first-order terms. Integrating
through space, we can write the following inequality:

R
ΓX

∫︂
f (r∥)|Ψ|2 dr∥ < ϵ. (4.17)

Here, ϵ ≪ 1 is some small, reasonably chosen numerical tolerance to determine the
threshold. Physically, this expression simply states that any nonlinear effects on the
reservoir are small around the threshold. In this weak nonlinear regime discussed in
section 2.3.3.1, the potential generated by the pump is approximately,

V(r∥) ≃
P(r∥)

ΓX

[︃
G (1 + η) + i

h̄
2

R
]︃

. (4.18)

Separating the real and imaginary parts gives,

Vr =
P0

ΓX
G(1 + η), (4.19)

Vi =
P0

2ΓX
h̄R. (4.20)

For a homogeneous pump P(r∥) = P0, the threshold power corresponds to the balance
of gain and dissipation Vi− h̄γ/2 = 0, which gives P0,th = γΓX/R. For inhomogeneous
pump spots, the threshold power is larger due to additional planar losses of waves from
the spatially finite-gain region.

4.3.2 Numerical results on reservoir lensing

Consider two separate pumps P(r∥) = PS(r∥) + PL(r∥), of characteristic sizes DS and
DL, which are referred to as the source and the lens as introduced in section 4.2 and
depicted in Fig. 4.1. Denote the complex-valued potential coefficients for the source
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FIGURE 4.4: (a) Normalized density |Ψ|2 and (d) phase map arg(Ψ) of the conden-
sate in the steady state under nonresonant pumping. (b),(e) Time-resolved density
line profile along y = 0 for two different pump powers. (c) Time-integrated density
line profile, and (f) corresponding spectral weight for varying lens power. Data are
normalized at each step in PL/PL,th. The FWHM of the pump profiles is outlined with
green solid lines. The green vertical dashed lines indicate the outer and inner bound-
aries of the source and lens at y = 0. The horizontal green dashed line indicates the
threshold of the isolated lens. The horizontal yellow dashed line indicates the onset of
periodic dynamics characterized by more than one spectral peak.

and lens potentials by VS = Vr,S + iVi,S and VL = Vr,L + iVi,L, respectively. Conservation
of energy tells us that polaritons generated at the source will obtain kinetic energy
following:

Vr,S = 2
h̄2π2

m∗λ2 . (4.21)

Let us list some requirements in order to obtain steady-state lensing of polariton waves
with wavelength λ coming from the source and passing through the lens:

(i) DL > λ, the lens has to be large enough to refract the incident waves.
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(ii) 0 < Vr,S −Vr,L = ∆, waves must be propagating in the lens.

(iii) PL < PL,th, the lens should be below the threshold.

(iv) PS > PS,th, the source must be above the threshold.

Here, PS(L),th are the threshold powers of the isolated source (lens) pumps.

One can rewrite requirements (i) and (ii) in terms of the model parameters, respectively,

DL > h̄π

√︄
2ΓX

m∗P0,SG(1 + η)
= λ, (4.22)

0 <
P0,S − P0,L

ΓX
G(1 + η) = ∆. (4.23)

Here, P0,S(L) denotes the power density of the nonresonant source (lens) pump. There-
fore, it becomes evident that increasing P0,S will satisfy both requirements. However, ∆
needs to be reasonably bounded to obtain good focusing of transmitted waves. This is
evident from the variable maximum intensity in the focal region in Fig. 4.2(c). There-
fore, arbitrarily increasing P0,S does not guarantee good focusing of polariton waves.
Also, notice that requirement (iii) is not strict, as we will see later.

The reservoir lensing scheme in Fig. 4.4 is demonstrated by numerically solving the
generalized Gross-Pitaevskii and reservoir model. Set the profile of the source pump
to be cigar-shaped to generate plane waves approximately

fS(r∥) = exp
[︃
− x2

2σ2
x
− y2

2σ2
y

]︃
(4.24)

in which σx ≪ σy. The lens is taken to be planoconcave shaped with R = 10.0 µm and
TN = 4.5 µm. The FWHM of the source and lens are outlined with solid green curves
in Figs. 4.4(a) and 4.4(d). It is worth noting that their threshold powers are different
because of the different profiles of the source and the lens.

One of the main differences between the resonant scheme discussed in section 4.2 and
the current nonresonant scheme is the vivid localization of the source condensate along
the vertical direction shown in Fig. 4.4(a). This effect stems from the anisotropic gain
region that favors modes with minimal losses, and effective attractive interactions be-
tween the condensate and the reservoir due to the gain-saturation mechanism [90].
However, the enhancement of propagating waves in the focal region can be clearly ob-
served in Fig. 4.4(a), partly due to amplification from the lens gain. The phase map
shown in Fig. 4.4(d) is very different from that in Fig. 4.2(d), which arises from the
large detuning between the source waves and the lens potential in simulation, i.e.,
∆ = Vr,S − Vr,L ≈ 2.0 meV− 0.8 meV = 1.2 meV. To reduce detuning ∆ and achieve
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stronger focusing, the lens could be pumped harder. However, this triggers conden-
sation inside the lens, and requirement (iii) is violated. Moreover, reinforcing “ballis-
tic" interactions between the source and the lens region have lowered the lens thresh-
old [91, 92] (yellow dashed line in Fig. 4.4). These complex wave dynamics make it
therefore a nontrivial task to arbitrarily adjust the detuning ∆ to obtain stronger focus-
ing while—at the same time—keeping the lens pump below the threshold.

If, on the other hand, requirement (iii) is relaxed and the lens power is made variable,
then interesting nonlinear physics becomes enhanced. Figure 4.4(c) shows the time-
integrated line profile of the wavefunction density at y = 0 for varying lens power PL,
and the corresponding energy spectrum in Fig. 4.4(f). As discussed at the beginning of
the section, the system favors a steady-state behavior when PL is small, characterized
by a single clear spectral line in Fig. 4.4(f). In this regime, the results are similar to
those of a static lens potential impinged by resonantly excited waves discussed in sec-
tion 4.2. However, as the lens power increases, an additional spectral line appears and
non-stationary periodic solutions form as a result of intricate interactions between the
condensate polaritons generated at the source and the lens, in agreement with experi-
ments [93, 94]. It is worth mentioning that such solutions are also captured in a density
matrix treatment [95]. An example of two such solutions in the time domain is shown
in Figs. 4.4(b) and 4.4(e). Clear ≈ 252 GHz intensity beatings in the focal region can be
observed in Fig. 4.4(b) whereas Fig. 4.4(e) shows two dominant beat frequencies.

4.4 Reservoir lenses above threshold

There are limitations to the source and lens scheme in the previous section, which can-
not be quantified nicely, given the complex wave dynamics at play. Firstly, reinforcing
behavior between the source and lens regions results in lowered threshold gain of the
interacting system, which can lead to condensation into extended quasinormal stand-
ing wave modes supported by both the source and the lens region. This is a general
feature of interacting dissipative systems, such as coupled lasers or interacting polari-
ton condensates [91, 92]. Second, the source pump size would, in general, need to
be larger than the lens in order to avoid ∆ becoming too large (that is, smaller source
pumps need to be driven with higher power and thus emit waves with higher energy).
This can lead to thermally induced self-trapping of the source condensate [96].

To overcome these issues, a more simple case is considered, in which the source pump
PS(r∥) = 0 is omitted and only the lens PL(r∥) is driven above the threshold. Indeed, the
lens region then plays the role of a carefully designed anisotropic planar emitter from
which waves radiate to interfere constructively. Figures 4.5 and 4.6 present the steady
condensate state for pump profiles shaped, respectively, into a planoconcave lens and
a double concave lens and driven above the threshold. Polariton waves generated in
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FIGURE 4.5: (a),(b) Steady-state condensate density |Ψ|2 and (c),(d) phase arg(Ψ) for
two different nonresonant pump configurations. The nonresonant pump is shaped
into a (a) planoconcave lens showing clear focusing of the emitted waves outside the
pumping area, and a (b) planoconcave resonator made from two lenses (emitter) facing
each other. Note that each lens is below the threshold, but the system/resonator as a
whole has a lower threshold and thus supports a standing wave condensate at lower
powers. The FWHM of the pump profiles is outlined in green.

the pump region propagate along the direction normal to the lens surface and form a
strong focal region with a clear phase shift.

When the "lens" power is increased, then the contrast between the condensate density
within and outside the lens region increases, as shown in Figs. 4.7(a) and 4.7(b) for the
planoconcave lens and Figs. 4.8(a) and 4.8(b) for the double concave lens. For single
pump configurations, the condensate density line profile along the lens axis is plotted1.
These results underpin the potential of using anisotropic-shaped nonresonant excita-
tion beams to generate high-density polariton condensates spatially separated from
any influence of the background exciton reservoir, such as strong dephasing or spatial
hole burning effects.

Moreover, the potential for designing planar resonators by setting two identical lens-
shaped pump profiles facing each other [see Figs. 4.5(b), 4.5(d), 4.6(b), and 4.6(d)]

1Note that states of spontaneously broken time-reversal symmetry |Ψ(kx, ky)| ̸= |Ψ(kx,−ky)| arise
more often when driving the condensate far above threshold [91]. These states are suppressed when the
role of the static potential term in Eq. (4.14) is enhanced. Therefore, in Figs. 4.7 and 4.8 we set η = 5→ 180
and, to keep the ratio Vr/Vi in Eqs. (4.19) and (4.20) fixed, we also change h̄R = 2.8g → 84.2g. This has
only minor quantitative effects on the results and aids in the simulation convergence to symmetric states
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FIGURE 4.6: (Left column) Condensate density |Ψ|2 and (Right column) phase arg(Ψ)
in the steady state. The nonresonant pump is shaped into a (a) positive meniscus lens
showing clear focusing of the emitted planar waves outside the pumping area and a
(b) positive meniscus resonator made from two lenses facing each other. Note that
each individual lens is below the threshold, but the system/resonator as a whole has a
lower threshold and thus supports a standing-wave condensate at lower powers. The
FWHM of the pump profiles is outlined in green.

is investigated. A clear standing condensate wave forms, strongly localized along the
horizontal direction. The mode number of this planar standing wave can easily be ad-
justed by changing the distance between two lenses or their pump power [94]. More-
over, the pump polarization of each pump lens can also be adjusted to design stand-
ing condensate waves with intricate polarization patterns [97]. These results open a
pathway for the generation of structured, high-density, polariton condensates spatially
separated from the direct influence of the reservoir by simply adjusting the geometric
configuration and the excitation power of the nonresonant pump.

Compared with the configurations of both lenses shown in Figs 4.7 and 4.8, the even
stronger localization and higher density of the condensate outside the pump region
are observed for a double concave lens (positive meniscus lens). However, compared
to the results in the linear regime shown in section 4.2, the enhanced scattering of the
incident plane wavefront onto the positive meniscus is observed, resulting in poorer
focused transmission. This result is in contrast to the case presented in Fig. 4.8 where a
positive meniscus emitter focuses waves more efficiently than a planoconcave lens.
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FIGURE 4.7: (a) Condensate density for a planoconcave-shaped nonresonant pump at
high powers and (b) line profile along y = 0 for varying power. The vertical green
dashed lines indicate the pumped region.

FIGURE 4.8: (a) Condensate density for a double-concave-shaped nonresonant pump
at high powers and (b) line profile along y = 0 for varying power. The vertical green
dashed lines indicate the pumped region.

4.5 Conclusions

This chapter demonstrates how a pumped planoconcave lens can strongly focus polari-
ton condensate wavelets. These wavelets may either impinge on the lens or be gener-
ated internally when the lens is driven above the threshold. Furthermore, it shows that
the nonresonant nature of these lenses can lead to tunable, high-contrast, condensate
density oscillations at the focal point, reaching frequencies as high as 250 GHz. From
an application perspective, such pumped lens elements might offer a building block in
generating a directional flow of optical information and focused high-density polariton
condensates with large nonlinear energy scales, which form an essential ingredient in
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any information processing scheme. The all-optical aspect is, then, particularly exciting
when considering circuitry whose elements can be easily reprogrammed.

In summary, this chapter theoretically investigates all-optical planar microlensing tech-
niques applied to exciton-polariton condensates. The lenses are created using spatially
patterned nonresonant excitation profiles that provide both gain and blueshift to the
polariton modes. It is worth mentioning that the scheme studied in this chapter should
not be confused with that of resonant control [98, 99] where auxiliary “condensates" are
directly injected to provide spatially patterned polariton blueshift.

In this chapter, the condensate dynamics within a source-and-lens pump setup (as
shown in Fig. 4.1) is first studied. A comparison of the rich nonlinear dynamics with
that of linear Schrödinger wave mechanics is provided. Scanning across pump power
parameters, we demonstrate that a departure of the steady condensate state, resem-
bling the linear Schrödinger dynamics, into a stable limit cycle state characterized by
multiple spectral peaks and rapid (≈ 252 GHz) density oscillations in the focal region.
This result holds promise for polaritonic clock generators in integrated circuits [100].
Next, we study the condensate behavior within a simpler setup, one that consists of
a single lens-shaped pump driven above threshold. This results in highly anisotropic
condensate emission and a strong focusing of condensate waves outside the pump re-
gion. This opens possibilities in generating polariton condensates that are separated
from detrimental reservoir dephasing effects and might obtain unprecedented coher-
ence times, favorable for highly sensitive planar matter-wave interferometers [74].

The possible reservoir devices and their applications are not limited to the examples
shown in this chapter. It is worth mentioning that the microlensing experiment with
similar configuration shown in Figs. 4.5(a) has been carried out after the theoretical
prediction described here [101]. The potential of this work to stimulate future the-
oretical and experimental applications of reservoir optics in polariton condensates is
promising. For example, one might add such planar lenses at the apertures of pumped
waveguides considered in [79] or even at the end of a staircase potential such as in [81],
to collect polariton waves and prevent diffraction and signal losses in future polari-
tonic circuitry. Indeed, the anisotropic shape of the lenses and their ability to focus
(concentrate) polariton condensates put them in a unique position to operate as nonlin-
ear directional elements for information processing in the same spirit as planar optical
transistors. The findings in this chapter are also relevant to atomtronics [102, 103] where
arbitrary all-optical control over the atom’s potential landscape is possible [104].

4.6 Disclaimer

Y. Wang performed the numerical simulation and all authors of [105] contributed to the
analysis of the simulation results. The theoretical modeling was developed by Y. Wang
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and H. Sigurdsson. The content, including text and figures, presented in this chapter is
adapted from the paper:
Y. Wang, H. Sigurdsson, J. D. Töpfer, and P. G. Lagoudakis, Reservoir optics with exciton-
polariton condensates, Physical Review B 104, 235306 (2021) [105].



Chapter 5

Enhanced coupling between
ballistic polariton condensates
through tailored pumping

5.1 Introduction

There has been a tremendous effort dedicated to scaling up the number of coupled po-
lariton condensates to form extended systems. The notable candidates for large-scale
networks and lattices of polariton condensates are etched micropillar arrays [106, 107],
metal-deposited cavity surface [108], etch-and-overgrowth techniques [109, 110], sur-
face acoustic waves [111], and structured nonresonant light source using spatial light
modulators [112, 113]. On the one hand, designing lattices of polariton condensates can
offer new insight into the non-Hermitian physics of driven-dissipative quantum fluids
obeying Bloch’s theorem with strong nonlinearities [114]. On the other hand, the large
state space and strong nonlinearities of a coupled polariton condensate network could
offer a platform for classical or even quantum computing protocols [115] given the ease
of optical write-in and read-out of polaritons (being part photonic) [116]. A common
challenge in the design of extended polariton condensate systems is to establish intern-
ode coupling that is strong enough to overcome the detrimental effects of disorder and
noise, which would otherwise diminish the system’s coherence.

This chapter proposes an all-optical method to enhance spatial coupling and coherence
between nonresonantly driven ballistic polariton condensates [94]. To achieve this, tai-
lored pump spots with reduced rotational Cn symmetry, which generate, refract, and
focus high-momentum condensate polariton waves between nearest neighbors, are nu-
merically modeled. This can be easily achieved in practice using liquid crystal spatial
light modulators [81]. As a case study, the idea is made by numerically solving the
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generalized stochastic GPE (see section 2.3.3.2) for a honeycomb lattice tiled with tri-
angular pump spots (C3) in comparison to more conventional cylindrically symmetric
Gaussian spots. Similar structures have been exploited in photonic crystal slabs to gen-
erate band gaps [117] but have not been widely explored in the context of polariton
fluids. The method presented in this chapter can be applied to optically driven lattices
of polariton condensates, which have currently reached the capacity of hundreds of co-
herently coupled condensates [113]. The results could also advance the performance of
polariton platforms to explore XY spin materials [20, 118], topological physics [23, 24],
vorticity [112, 119], and band structure engineering [120, 121].

5.2 Anisotropic pump shapes for polariton condensation

Recall the 2D GPE coupled to a driven exciton reservoir defined in chapter 2 from
Eqs. (5.1) and (2.64),

ih̄
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ΓX + R|Ψ(t, r∥)|2

]︁
nX(t, r∥) + P(r∥). (5.2)

Set the parameters similar to our previous works based on slightly negatively de-
tuned cavities with InGaAs quantum wells: m∗ = 0.28 meV ps2 µm−2, |χ|2 = 0.4,
g = 1 µeV µm2, h̄R = 2.0g, η = 2, and γ−1 = Γ−1

X = 5.5 ps. The nonresonant pump is
written P(r∥) = P0 f (r∥) where P0 is the power density multiplied by a spatial profile
that satisfies max( f ) = 1.

5.3 Shaping the polariton outflow

The numerical results of steady-state solutions of Eq. (5.1) using pump profiles f (r∥)
tailored to guide polariton waves into desired patterns will be analyzed in this section.
The reason why the guidance of the waves can work is that a local pumping region
(i.e., spot) produces a co-localized complex potential landscape felt by the generated
polaritons. In the low-density regime (see section 2.3.3.1), this potential is written as,

V(r∥) =
P(r∥)

ΓX

[︃
(1 + η)G + ih̄

R
2

]︃
. (5.3)

From the above equation one can appreciate two things:
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(i) The real part is positive because excitons interact repulsively (G > 0) which
means that polaritons are blueshifted at the spot location.

(ii) The imaginary part is also positive, which means that above a certain critical
power P0 = Pth the condensation threshold is reached (stimulation exceeds losses)
and coherent polaritons are amplified at the spot location until the reservoir clamps
and the condensate stabilizes.

For small pumping spots, the resulting steady state is a ballistic condensate [12, 122]
shown in Fig. 5.1. For cylindrically symmetric spots [see Figs. 5.1(a) to 5.1(c)], the real
space condensate density is co-localized with the spot and coherent polariton waves are
radially emitted in all directions with high momentum, as evidenced from the sharp
density ring in momentum-space. When multiple small spots are pumped and dis-
placed from each other, fascinating phenomena such as spontaneous synchronization
and multimodal emission can occur due to the complex non-Hermitian coupling be-
tween neighboring condensates [17, 94, 113, 121]. The condensate coupling is mediated
by propagating polariton waves in the plane of the cavity (near field) and should not
be confused with out-of-plane coupling like in the far field of laser arrays [123].

However, if the pump spot is not cylindrically symmetric, then the generated polariton
waves will experience refraction and interference, giving rise to anisotropic streams
of condensate polaritons, as shown in Figs. 5.1(d)–5.1(f) for a triangular spot. Such a
shaping of the pump spot can be realized using spatial light modulators in the incident
excitation, which allows focusing almost arbitrary excitation patterns into the micro-
cavity plane [81]. This has enabled the demonstration of all-optical in-plane polariton
waveguides [79, 80], transistor switches [85, 86], amplification [15, 16], tailored mo-
mentum distribution [81], and microlensing [105]. Notice how the triangular-shaped
condensate in Fig. 5.1(e) rotates by π/3 with respect to its pump pattern in Fig. 5.1(d).
This can be understood from the following consideration. Inside the pump spot, low-
momentum polariton waves (k ∼ 0) are amplified and subsequently dispersed, flow-
ing out of the pump spot and elastically converting their (pump-induced) potential
energy into kinetic energy. The waves that hit the edges of the triangle close to nor-
mal incidence scatter very little, whereas polaritons hitting the corners of the triangle
are at an oblique incidence and scatter more strongly. This leads to enhanced flow of
condensate particles along the normals of triangle edges, effectively forming the dual
pattern of the pump (i.e., pump edges map to condensate corners). The same holds
for higher-order polygonal-shaped pump spots. This interpretation can be easily ver-
ified by solving an initial value problem of a two-dimensional Schrödinger equation
wherein a Gaussian wave packet centered at k = 0 and r∥ = 0 in momentum and
real space is propagated in time. The following will show that shaping multiple spots
into triangles, as opposed to the conventional Gaussian-shaped spots, focuses and en-
hances the interaction between adjacent condensates, resulting in lowered threshold
and increased coherence in the extended polariton system.
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FIGURE 5.1: (a),(d) Circular and triangular pump configurations and corresponding
normalized condensate steady-state solutions |Ψ|2 in (b),(e) real space and in (c),(f)
momentum space. The green arrows in (b) illustrate the condensate flow emitted in all
directions, and in (e), the thicker green arrows show the anisotropic and concentrated
condensate flow. Notice how the triangular-shaped condensate in (e) is rotated by π/3
with respect to the pump in (d).

Since different pump profiles usually have different condensation threshold power
densities, the triangular spot needs to be calibrated against the circular (Gaussian) spot
so that they share the same threshold power density Pth,T = Pth,C. Under this condition,
polaritons experience the same blueshift at their respective spots, and thus populate
momentum components of similar magnitude in Fourier space [compare Fig. 5.1(e)
with 5.1(f)] enabling a more fair comparison. This calibration is achieved by fixing
the parameters of the model (5.1) and adjusting the side length of the triangle until
Pth,T = Pth,C for a given full-width-at-half-maximum of the circular spot.

After calibrating the system, the anisotropy of the ballistic flow from the steady con-
densate state by integrating the particle density N =

∫︁
|Ψ|2dr∥ over two segmented

regions, denoted NA and NB, shown schematically in Figs. 5.2(a) and 5.2(b) for varying
curvature κ = 1/R of the triangle spot sides, is quantified. For the circular pump, the
curvature satisfies κR0 = 1 where R0 is its radius, whereas for the circumscribed trian-
gle κ = 0 [see Fig. 5.2(c)]. For a cylindrically symmetric spot, the ratio is NA/NB = 1
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FIGURE 5.2: (a),(b) Triangular and circular pump profiles (red color) with overlaid
schematic blue and yellow integration areas to determine the amount of condensate
anisotropy in the system. (c) Example of pump profiles with zero, intermediate, and
maximal inner curvature denoted κ = 1/R. The white dotted line indicates the cir-
cumscribed triangle. (d) The ratio of condensate particles (integrated density) between
the blue and yellow areas NA/NB to vary the curvature for a fixed power density
above the threshold. The white bar in (a)–(c) is 10 µm and the radius of the circular
pump is R0 = 11.5 µm.

[see Fig. 5.2(d)] as expected since the steady condensate state also becomes cylindri-
cally symmetric. Approaching the equilateral triangle shape, κ → 0, the ratio increases
dramatically to almost NA/NB ≈ 16, underlining the strong focusing of the ballistic
polariton outflow from the sides of the triangular pump spots.

The coupling strength between adjacent condensates pumped with triangular spots of
different relative orientations is characterized. Four distinct hexagonal pumping pat-
terns [Figs. 5.3(a)–5.3(d)] and their corresponding condensate densities |Ψ|2 at P0 =

1.1Pth [Figs. 5.3(e)–5.3(h)] are considered here. The first three patterns can be catego-
rized as side-side-, side-vertex-, and vertex-vertex-facing triangles. In Fig. 5.3(i), it is
shown that the condensate population N =

∫︁
|Ψ|2 dr∥ when scanning the pumping

power density in time (linearly) while numerically integrating Eq. (5.1). The results
show that the lowest threshold belongs to the side-side-facing pattern in Fig. 5.3(a),
while the highest threshold belongs to the vertex-vertex-facing pattern in Fig. 5.3(c).
This result intuitively makes sense because the polariton outflow is strongest from the
sides of the triangular pump spots, which enhances the overlap and coupling between
neighbors, and weakest from the vertices, in agreement with the results from Figs. 5.1
and 5.2.
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FIGURE 5.3: Pump profiles structured into a hexagon with different relative orienta-
tions of the triangular spots: (a) side-side-, (b) side-vertex-, and (c) vertex-vertex-facing
nearest neighbors. (d) A reference hexagon of circular spots. (e)–(h) Corresponding
normalized condensate densities at P0 = 1.1Pth. (i) Corresponding number of conden-
sate particles for increasing power density marking the different condensation thresh-
olds for each configuration.

5.4 Spatial coherence enhancement

The enhanced coupling between side-side facing triangular pump spots shown in Fig. 5.3
implies stronger spatial coherence in an extended system of polariton condensates,
which is an essential property to study large-scale emergent phenomena such as macro-
scopic vorticity [119], universal behaviors and Kibble-Zurek scaling [124], and simula-
tion of spin systems [20, 118]. Here, we demonstrate this enhancement of the conden-
sate coherence length by tiling a large honeycomb lattice of side-side facing triangular
pump spots like in Fig. 5.3(a). The resulting condensate solution is shown in Fig. 5.4(a).

In order to calculate the mutual coherence between any two spatial locations of the
condensate in the lattice, the SGPE in the truncated Wigner approximation [42], dis-
cussed in section 2.3.3.2. Here, a complex white noise operator ih̄dW/dt is appended
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FIGURE 5.4: (a) Normalized time-integrated condensate density ⟨|Ψ|2⟩ for triangular
pump spots arranged into a honeycomb lattice. (b) Corresponding extracted mutual
complex coherence function µ1n. The color scale and the orientation of the arrows
depict the magnitude |µ1n| and the phase θ1n, respectively. The central black arrow
indicates the reference spot with zero phase. (c) The modulus of the coherence function
as a function of the absolute distance between the first and n-th spots |r∥1− r∥n| = d1n.
The black line is a fit of the stretched exponential function 5.9 which gives effective
coherence length of Lcoh = 279.3 µm.

to Eq. (5.1) representing small random fluctuations added at every time step with cor-
relators satisfying,

⟨dWidWj⟩ = 0, (5.4)

⟨dW∗i dWj⟩ =
γ + RnX

2∆A
dtδi,j. (5.5)

Here, i and j refer to different spatial grid points in the numerical simulation, and
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∆A = ∆x∆y is the area of the grid cells. The validation in using Eq. (5.5) is checked in
section 2.3.3.2 of chapter 2.

The spatial coherence across the lattice is quantified using the normalized complex first-
order coherence function (sometimes denoted as g(1)) between each pair of condensates
written,

µnm =
⟨ψ∗nψm⟩√︁

⟨ψ∗mψm⟩⟨ψ∗nψn⟩
, n, m = 1, 2, . . . (5.6)

where ψn(t) = Ψ(r∥n, t) is the phase and amplitude of the nth condensate at the center
of their respective pump spot location rn. The time average is defined as ⟨ψ∗mψn⟩ =
1

Tµ

∫︁
Tµ

ψ∗mψn dt where Tµ is the duration of the simulation that is taken to be much
greater than any other characteristic timescale in the model parameters. It is worth
noting that in the experiment the mutual coherence function can be measured through
multislit interferometry [113]. The modulus of the first-order coherence function |µnm| ⩽
1 serves as a normalized measure of coherence between any two condensates in the lat-
tice, whereas its argument represents their average phase difference

θnm = arg(µnm). (5.7)

Fig. 5.4(a) shows an example condensate time-integrated density for a finite-sized hon-
eycomb lattice of side-side facing triangular spots at a given lattice constant and pump
power. Clear interference fringes can be seen between the pumped condensate bright
spots, implying robust synchronization even in the presence of noise. Closer to the edge
of the lattice transverse losses due to the strong polariton outflow are more effective,
which results in weakened edge density.

In Fig. 5.4(b) the arrows denote the phase θ1n between all pairs of condensates with
respect to the central one (denoted with a black arrow) with a colorscale representing
the coherence amplitude |µ1n|. As expected, the coherence drops radially due to the
decreased coupling between distant neighbors. Note that the arrows have arranged
themselves antiparallel with respect to nearest neighbors, implying anti-phase (π) syn-
chronization between the condensates for the given lattice parameters. Other lattice
parameters can result in a condensate solution characterized by in-phase synchroniza-
tion between the lattice nodes [94]. In either case, the conclusions remain the same.
We also point out the slight twist in the angle of the arrows at the edge of the lattice
shown in Fig. ??. This twist was recently observed in experiment [113] and is due to
the polariton flowing out of the lattice, which corresponds to a phase gradient between
the condensates.

Figure 5.4(c) shows the modulus of the coherence function |µ1n| for increasing absolute
distance between the central condensate node and the rest, |r1− rn| = d1n. One obtains
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FIGURE 5.5: The modulus of the mutual coherence function |µ1n| for increasing ab-
solute condensate neighbor distance d1n and different power densities (colors) for (a)
triangular spots and (b) circular spots. Solid and dotted lines are fit using a stretched
exponential function. (c) Corresponding power density scan of the mutual coherence
between the first and second condensate |µ12| for both configurations. (d) Correspond-
ing effective coherence length extracted from the fitting for both configurations. The
color of the markers directly corresponds to the values on the horizontal axis in (c).

good fit using a stretched exponential function [124] (black curve) written,

µ(d) = Ae−(d/B)C
, d ⩾ 0. (5.8)

Here, A, B, C are fitting parameters. Integrating µ(d)/A from 0 → ∞ we obtain an
expression for the effective coherence length of the system [124],

Lcoh =
B
C
× Γ

(︂
C−1

)︂
, (5.9)
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where Γ is the gamma function. Equation (5.9) can be regarded as the spatial relaxation
length of first-order correlations in the condensate.

Repeat the calculation for the triangle lattice from Fig. 5.4(c) but now for several dif-
ferent power densities collated into Fig. 5.5(a) in different colors. Yellow is the weak-
est power, and blue is the strongest. For comparison, the modulus of the coherence
function for a lattice of circular spots is shown in Fig. 5.5(b). The comparison is more
clearly visualized in Figs. 5.5(c) and 5.5(d) where only the coherence between the cen-
tral nearest neighbor condensates |µ12| and the effective coherence length Lcoh, respec-
tively, are plotted. The former [Fig. 5.5(c)] shows that the coherence of the condensate
is stronger for the triangular pump spots across all powers, as expected. It also shows
a sharp increase in both cases followed by a saturation that is similar to past observa-
tions [113, 125]. At even higher powers (not shown here), coherence starts to drop as
the condensate becomes unstable and starts to fragment into multiple energy compo-
nents [94]. This result underlines the enhanced spatial coupling between triangularly
pumped condensate nodes as compared to circularly pumped nodes. Note that the
amplitude of the noise for a given power density P0 is the same for triangular and cir-
cular spots according to Eq. (5.5) since nX ∝ P0. Therefore, the increased coherence for
the triangular spots cannot be attributed to different levels of noise, as compared to the
circular spots, but rather to the focused ballistic emission of polaritons between nearest
neighbor condensate nodes in the lattice.

The latter [Fig. 5.5(d)] verifies that not only has the condensate coherence increased us-
ing triangular pump spots, but the relaxation of spatial correlations in the condensate
lattice is much slower, implying longer coherence lengths than for the circular spots
across all powers tested. On average, over all pump powers tested here, the improve-
ment in coherence is ≈ 36%. A more exhaustive numerical study over the parameter
space of the model will help to accurately quantify the improvement.

5.5 Conclusions

This chapter shows that by tailoring the shape of an incident nonresonant light source,
which excites ballistic exciton-polariton condensates, it is possible to enhance the spa-
tial coupling between separately pumped condensates. Compared to typical Gaussian
spots, the reduced symmetry of the tailored pump spots refracts and focuses outflow-
ing high-momentum polaritons from their pumped condensate centers. The coherent
flow of polaritons can be directed towards their nearest neighbors, thereby enhancing
the condensate’s spatial coupling. In this chapter, the method of numerically solving
the stochastic generalized Gross-Pitaevskii equation for a honeycomb lattice of trian-
gular pump spots, which displays lowered threshold and larger effective coherence
lengths as compared to a lattice of circular (cylindrically symmetric) pump spots, is
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verified and can be applied to today’s optical microcavities using standard spatial light
modulator technology to generate macroscopic fluids of light with improved coher-
ence scales. It can be used to help with exploration into complex long-range dynamics
in dissipative quantum fluids, designing large-scale structured coherent light sources
in the strong-coupling regime, and developing less noisy analog computing platforms
based on polariton networks [115].

5.6 Disclaimer

The numerical simulation presented in this chapter was done by Y. Wang. The theoret-
ical modeling was carried out by Y. Wang and H. Sigurdsson. The content, including
text and figures, presented in this chapter is adapted from the paper:
Y. Wang, P. G. Lagoudakis, and H. Sigurdsson, Enhanced coupling between ballistic exciton-
polariton condensates through tailored pumping, Physical Review B 106, 245304 (2022) [126].
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Conclusions

The introduction, which describes polariton condensates and the tools for numerical
simulation, is divided into two chapters. Chapter 2 provides the theoretical back-
ground, while chapter 3 discusses the tools for numerical simulation. Chapters 4 and 5
present numerical studies of the guidance and enhancement of the coherent exciton-
polariton condensate outflow in both simple and intricate condensate dynamics driven
by external-isometric nonresonant pumping. The summary, main findings, and future
perspectives of the thesis are given as follows:

Chapter 2 introduces polariton condensates, starting from each component of the po-
lariton system, namely QW excitons and microcavity photons, as well as the SC cou-
pling between them, to the production of the polariton condensates and introduction
of the 2D GPE. The materials, detuning, and dynamics of the DBRs and QWs used
in this thesis are discussed as follows: Good and slightly negatively detuned micro-
cavities with a long photon lifetime, and the AlGaAs-like QWs with Wannier–Mott
excitons, produce nonzero momentum above the condensates threshold. Furthermore,
the properties of the generalized 2D GPE coupled with the reservoir for pumping near
the threshold in stationary conditions reveal that the spatial area of the pump profile,
reservoir and condensates is similar. This explains why, in chapters 4 and 5, the ex-
pected tailored reservoir is possible by designing the external pump profile. As a tool
to measure the coupling between internodes with complex white noise in the polariton
lattices of chapter 5, the stochastic projection and the first-order spatial coherence are
introduced, and validation of the truncated Wigner approximation, derived from the
stochastic process, in the case of parameters chosen in this thesis, is checked.

Chapter 3 provides an SSFM-based with accuracy O(∆t3) and CUDA-enabled 2D GPE
solver. The main algorithms, such as parallel reduction, the core part of the SSFM, and
time-integrated intensity and spatial coherence, are shown in pseudocode for clarity
purposes. The computational methods not specifically covered in this chapter can be
obtained through proper adjustment or variation of the GPE solver exampled in the
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chapter. The numerical simulation given in chapter 5 requires a spatial grid consist-
ing of a 1024 by 1024 complex-valued matrix (256 µm× 256 µm in real space) running
with 2.0 ns total time and 10 fs time step, and 1.0 ns time-integrated sampling time for
both intensity and mutual coherence factor, with the same time step of the simula-
tion. Thanks to the power of parallel computing and good memory management of
the GPE solver presented in this chapter, it is easier to manipulate the large data size
and flow over a relatively long simulation time. From a future perspective, support
for multiple GPUs and integration of the current workflow with NVIDIA’s deep neu-
ral network library could open up new possibilities for polariton condensate studies.
Also, the option of switching different numerical methods, for example, the widely
used Runge–Kutta methods, can also be considered for future development.

Chapter 4 demonstrates the strongly focused polariton condensates, away from the
pumping region, produced by the nonresonant positive- and negative-meniscus-lens-
shaped excitation. To investigate condensates in an analog of the optical source-lens
system, the refractive index of the lens to the source is obtained from the simplified
modeling considering only the resonant planar driving term and complex-lens-shaped
potential, and the corresponding numerical simulation is done with an algorithm sim-
ilar to that introduced in the chapter 3. The results from the linear analysis show that,
with proper lens thickness and radius, the closer the energy difference between the lens
and the source, the less scattering occurs and the better accuracy from the lensmaker’s
equation is. With multiple energy modes enabled, the all-optical microscale lensing in
complete 2D GPE simulation can cause hundreds of GHz focused-condensates beat-
ing. The beating frequency can be tuned by the energy difference between the lens and
the source; moreover, the relative distance between the focal density and the lens can
be adjusted by tailoring the geometry of the lens profile. The standing focal waves are
also obtained by placing two face-to-face lenses. The reprogrammable capability makes
it promising to achieve the all-optical transistor.

Chapter 5 keeps the isometric pump configurations like the pump profile used in chap-
ter 4. For arbitrary Cn symmetric geometry rather than a perfect circle, the condensates
produce more density along the area, which is outside the pumping region and is per-
pendicular to each side of the polygon, than the rest of the space. A special case with
n = 3 is studied and compared with a circular pump. To make a fair comparison,
both configurations are calibrated with the same condensation energy at the thresh-
old power. The system consisting of side-side-facing nodes has the lower threshold
power due to the highest interaction between nodes, followed by side-vertex, circular-
, and vertex-vertex-facing configurations. In a large honeycomb lattice consisting of
150 nodes, in the presence of complex white noise, the side-side-facing triangular spots
achieve higher spatial coherence than the circular spots at the same power density. The
ballistic condensates outflow towards its nearest-neighbors spot, averaging over all the
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power density, demonstrates an around 36% improvement from using the triangle-
shaped spot. The bottlenecks of experiment in achieving higher spatial coherence in
a large lattice usually lie in the power limit from the external excitation. Shaping the
spots into an isometric shape, instead of the regular Gaussian spots, in the correspond-
ing lattice configurations with side-side-facing orientation, like the triangular spot in
a hexagonal lattice, greatly reduces the power consumption; in other words, higher
coherence can be expected with the same power density.
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