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Key points: 28 

• Long-term decline in North Atlantic sea surface temperatures (~5° C) between the early 29 

(~53 Ma) and the middle (~42 Ma) Eocene. 30 

• This indicates that CO2 was likely responsible for the onset of long-term Eocene cooling. 31 

• However, zonal temperature gradients in the North Atlantic appear decoupled due to 32 

inception of Northern Component Water formation. 33 

 34 

Abstract: 35 

The Eocene (56–34 million years ago) is characterised by declining sea surface temperatures 36 

(SSTs) in the low latitudes (~4°C) and high southern latitudes (~8-11°C), in accord with decreasing 37 

CO2 estimates. However, in the mid-to-high northern latitudes there is no evidence for surface 38 

water cooling, suggesting thermal decoupling between northern and southern hemispheres and 39 

additional non-CO2 controls. To explore this further, we present a multi-proxy (Mg/Ca, δ18O, TEX86) 40 

SST record from the western North Atlantic (~36°N paleolatitude). Our data confirm a long-term 41 

decline in SSTs of ~5°C between the early (~53 Ma) and the middle (~42 Ma) Eocene, supporting 42 

declining atmospheric CO2 as the primary mechanism of Eocene cooling. However, from the 43 

middle Eocene onwards, North Atlantic zonal temperature gradients are decoupled, which we 44 

attribute to the incursion of warmer waters into the eastern North Atlantic and the inception of 45 

Northern Component Water across the early-middle Eocene transition. 46 

 47 

Introduction  48 

The early Eocene Climatic Optimum (EECO; 53.3 to 49.1 million years ago; Ma) (Hollis et al., 49 

2019a) is characterised by a long-term maximum in atmospheric CO2 (~1470 ppm) (Anagnostou et 50 

al., 2020), followed by a gradual decline in atmospheric CO2 during the middle Eocene (47.8 to 51 

38.0 Ma) to ~800ppm (Anagnostou et al., 2020). This is consistent with declining  SSTs in the 52 

tropics (ca. 4°C) (Cramwinckel et al., 2018; Evans et al., 2018) and the mid-to-high southern 53 

latitudes (ca. 8-11 °C; Bijl et al., 2009; Hollis et al., 2009; Hollis et al., 2012). However, SST 54 



estimates from the eastern North Atlantic suggest relatively muted surface water cooling (~1°C) 55 

between the EECO and middle Eocene (~40 Ma) (Bornemann et al., 2016). Temperature 56 

asymmetry between the northern and southern hemisphere would not be expected from a long-57 

term decline in atmospheric CO2 alone (Liu et al., 2018) and suggests that other non-CO2 driving 58 

mechanisms (e.g. gateway reorganisation and/or changes in ocean circulation) may influence 59 

regional SST patterns. 60 

 Of particular relevance is the growing evidence for Northern Component Water (NCW) 61 

initiation in the North Atlantic during the early-middle Eocene (~47 to 49 Ma) (Boyle et al., 2017; 62 

Hohbein et al., 2012; Norris et al., 2001). The onset of NCW has been attributed to gateway 63 

reorganisation, specifically deepening of the Greenland-Scotland Ridge (GSR) (Boyle et al., 2017; 64 

Hohbein et al., 2012; Vahlenkamp et al., 2018), although other mechanisms have been proposed 65 

such as isolation of the Arctic Ocean (Zhang et al., 2011) or restriction of the Tethys Ocean 66 

(Roberts et al., 2009). The onset of NCW is followed by a period of weaker overturning (~42 to 38 67 

Ma) (Witkowski et al., 2021), before re-invigoration of NCW during the late Eocene (∼38 Ma) 68 

(Coxall et al., 2018) or Eocene-Oligocene transition (EOT; ∼34 Ma) (Hutchinson et al., 2019). The 69 

establishment of NCW can transport additional heat into the eastern North Atlantic (Vahlenkamp et 70 

al., 2018), potentially muting any long-term cooling trend in this region. This has been invoked to 71 

explain stable temperatures in the eastern North Atlantic during the middle Eocene (Bornemann et 72 

al., 2016). However, our understanding of long-term North Atlantic temperature change is based a 73 

single proxy record (planktonic foraminiferal δ18O) from a single site (ODP Site 401; Bornemann et 74 

al., 2016) and may not be regionally representative.   75 

To test whether the wider North Atlantic region exhibits stable temperatures during the 76 

Eocene, we use a multi-proxy approach (δ18O, Mg/Ca, TEX86) to reconstruct SST in the western 77 

North Atlantic (Bass River; ODP Leg 174AX; ~36°N paleolatitude) during the early-to-middle 78 

Eocene (53.7 to 42.0 Ma). We compare our new dataset with climate model simulations spanning 79 

a wide range of CO2 values to explore (i) temporal and spatial patterns of cooling in the North 80 

Atlantic during the Eocene and (ii) whether there is thermal decoupling between the northern and 81 

southern hemisphere during the Eocene. This allows us to test whether declining CO2 is the 82 



primary driver of long-term Eocene cooling or whether regional forcing mechanisms are also 83 

important. 84 

Methods 85 

Site description 86 

The Bass River section (ODP Leg 174AX; 39°36’N, 74°26’W) consists of calcareous marls and 87 

glauconitic silty clays deposited in middle to outer neritic palaeodepths between 30 and 150 m 88 

(Fung et al., 2019; Miller et al., 2003). The biostratigraphic age model was developed using 89 

planktonic foraminifera and nannofossils (following Fung et al., 2019) with datums converted to the 90 

GTS2012 (Vandenberghe et al., 2012).  91 

 92 

Analytical methods 93 

Lipid biomarker analysis was performed on 47 sediment samples. Approximately 5-10g of 94 

sediment was extracted with an Ethos Ex microwave extraction system using 15 ml of 95 

dichloromethane (DCM) and methanol (MeOH) (9:1, v/v). The total lipid extract was separated over 96 

silica into apolar and polar fractions using hexane:dichloromethane (9:1, v/v) and 97 

dichloromethane:methanol (1:2, v/v), respectively. The polar fraction (containing isoGDGTs) was 98 

dissolved in hexane/isopropanol (99:1, v/v), passed through 0.45μm PTFE filters and analysed by 99 

HPLC/APCI-MS following Hopmans et al. (2016). 100 

Trace element and stable oxygen isotope (δ18O) planktonic foraminiferal analysis was 101 

performed on multiple depth intervals (n = 8) spanning the early-to-middle Eocene. Foraminiferal 102 

preservation is excellent, appearing transparent or translucent under the light microscope, with no 103 

signs of diagenetic alteration observed under SEM (Figure S1). Analysis was performed on 104 

various surface-dwelling species (Acarinina praetopilensis, Morozovella formosa, Morozovelloides 105 

crassatus, and Pseudohastigerina wilcoxensis) and deeper, thermocline-dwelling 106 

species (Parasubbotina hagni, Parasubbotina inaequispira). Single-specimen Mg/Ca analysis was 107 

performed via laser ablation-inductively coupled mass spectrometry (LA-ICPMS) (see Müller et al., 108 

2009 and Supplementary Information). Mg/Ca values were determined in multiple chambers (~3 to 109 

5) within a single specimen and averaged. The same specimens were subsequently analysed for 110 



δ18O using a Multiprep-Isoprime 100 dual inlet system optimised for analysis of single specimens 111 

(Supplementary information).  112 

Temperature calibrations 113 

TEX86 data was screened using established indices for non-Thaumarchaeota inputs 114 

(Supplementary Information; Figure S5) and converted to SST using a Bayesian linear calibration 115 

(prior mean = 25, prior standard deviation = 10, n = 2000) (Tierney and Tingley, 2014). Planktonic 116 

foraminiferal δ18O values were converted to SST using the bayfox Bayesian calibration (prior mean 117 

= 25, prior standard deviation = 20, n = 2000). Seawater δ18O values (δ18Osw) were defined 118 

following the DeepMIP protocols (−1.0‰; see Hollis et al., 2019) with a latitude-specific temporal 119 

correction following Gaskell et al. (2022). Data (Meckler et al., 2022) and model-based approaches 120 

(Gaskell et al., 2022; Zhu et al., 2020) indicate only minor changes in δ18Osw at Bass River location 121 

through the early-middle Eocene (e.g., <0.05‰ in between x6 and x3 CO2 simulations using 122 

iCESM1.2).  123 

Mg/Ca values were converted to SST using a modified version of MgCaRB (Gray and Evans, 124 

2019) (Supplementary Information). We report pH-corrected Mg/Ca temperatures as the majority of 125 

modern foraminifer species are characterised by Mg/Ca-pH sensitivity (Gray and Evans, 2019). For 126 

Mg/Ca and δ18O, we report the ‘average’ SST estimates for a given time slice (n = 8) by combining 127 

(i) multiple-specimens from multiple size fractions and (ii) all surface-dwelling species within 128 

multiple genera (i.e., Acarinina praetopilensis, Acarinina pseudotopilensis, Morozovella formosa, 129 

Morozovelloides crassatus, Pseudohastigerina wilcoxensis) into a single estimate, following  130 

DeepMIP protocols and adjusting for ODP 174AX sample restrictions (Hollis et al, 2019; 131 

Supplementary Information).  Average ‘SST’ estimates comprise a minimum of two samples from a 132 

single depth horizon (see Data S4-S5). When SSTs are calculated using individual species 133 

(Figure S2) and size segregating species (Figure S2-S3), similar patterns in long-term trends are 134 

observed.  135 

 136 

Climate model simulations 137 
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Results  149 

During the EECO (53.3 to 49.1 Ma), TEX86 SST estimates average ~33°C (Figure 1a). Between 150 

the EECO and the middle Eocene (~40 Ma), TEX86 SST estimates decline by ~7°C (Figure 1a). 151 

Oxygen isotope SST estimates during the EECO from surface-dwelling planktonic foraminiferal 152 

average ~30°C (Figure 1a). Surface-dwelling species yield higher temperatures (~5 to 6°C) than 153 

thermocline-dwelling species but exhibit a similar magnitude of cooling (~3°C) between the EECO 154 

and the middle Eocene (~42 Ma) (Figure S3b). During the early Eocene, Mg/Ca SST estimates 155 

(calculated using the G. ruber calibration) average ~26°C (Figure 1a). These values are lower than 156 

δ18O and TEX86 SST estimates (~30°C and ~33°C, respectively; Figure 1a) but agree within the 157 

propagated calibration uncertainties. Mg/Ca SST estimates increase by ~3°C between the EECO 158 

and middle Eocene (42 Ma; Figure 1a). However, the absolute values (~29°C) are comparable to 159 

middle Eocene-aged TEX86 and δ18O SST estimates (28°C and 27°C, respectively) and agree 160 

within the propagated calibration uncertainties. 161 

 162 

Discussion 163 

Long-term cooling in the western North Atlantic during the Eocene 164 

TEX86 and δ18O values indicate very high SSTs at Bass River during the EECO (~30 to 33°C). 165 

These values are in agreement with existing low-resolution TEX86 estimates generated at Bass 166 

River (de Bar et al., 2019) and nearby South Dover Bridge (~34°C; Inglis et al., 2015). Mg/Ca SST 167 

estimated are also relatively high (~27°C; Figure 1) but are lower than TEX86 and δ18O-derived 168 

SST estimates by ~3-6°C. Between the EECO and middle Eocene (~43-41 Ma), TEX86 and δ18O 169 

values indicate gradual surface water cooling (6 and 3°C, respectively; Figure 1a), coherent with 170 

declining TEX86 SSTs (~7°C) at South Dover Bridge between the EECO and middle Eocene (~42 171 

Ma). Evidence of cooling in multiple proxies and locations provides the first compelling evidence for 172 

long-term surface ocean cooling in the (western) North Atlantic between the early and middle 173 

Eocene, which is in parallel with the inferred deep-ocean cooling in benthic foraminifera δ18O 174 

record (Figure 1b; Westerhold et al., 2020). 175 



In contrast, our new Mg/Ca SSTs increase by ~3°C between the EECO and middle 176 

Eocene. Although middle Eocene (~42 Ma) SST estimates are in excellent agreement with TEX86 177 

and δ18O values (Figure 1) and alkenone-derived SST estimates (~29-30°C; Liu et al, 2018) from 178 

nearby site IODP Site 1404, the temporal trends are  inconsistent with regional observations (this 179 

paper) (de Bar et al., 2019; Inglis et al., 2015) and declining global bottom water temperature 180 

(BWT) estimates inferred via changes in benthic foraminiferal δ18O values (Figure 1b) (Westerhold 181 

et al., 2020).To explore this mismatch further, we compared our proxy-derived temperature 182 

estimates (TEX86, Mg/Ca, δ18O) alongside iCESM1.2 simulations with different CO2 scenarios (x1 183 

to x9 pre-industrial CO2) (Figure 2). These simulations have previously been shown to replicate 184 

key large-scale features of the early Eocene including enhanced global mean surface temperature 185 

estimates (Lunt et al., 2021; Zhu et al., 2019), reduced meridional temperature gradients (Lunt et 186 

al., 2021), changes in the hydrological cycle (Cramwinckel et al., 2022), and the values and 187 

distribution of planktonic foraminifera δ18O values (Zhu et al., 2020). iCESM1.2 simulated SST at 188 

the Bass River is 30.7 and 26.6 ℃ in the ×6 and ×3 PI CO2 simulations, respectively, which 189 

overlaps with proxy reconstructions (Figure 2). For a two-fold decrease in atmospheric CO2 (i.e., 190 

from ×6 to ×3 PI CO2), the model predicted decrease in SST of ~4°C is comparable to the 191 

magnitude of cooling captured by TEX86 and δ18O (6 and 3 °C, respectively; Figure 2) between the 192 

EECO and middle Eocene, but is inconsistent with warming observed in Mg/Ca values. Given that 193 

proxy-derived CO2 estimates declines from ~1470 ppm (~×5 PI CO2) to ~800ppm (~×3 PI CO2) 194 

during this interval (Anagnostou et al., 2020), this implies additional non-thermal controls on Mg/Ca 195 

values at this site. 196 

The choice of Mg/Ca calibration remains uncertain when working with extinct species. 197 

However, the discrepancy between Mg/Ca-derived SSTs and other proxy data is insensitive to the 198 

choice of Mg/Ca calibration approach (see Supplementary Information). This is because seawater 199 

pH was substantially lower than modern throughout the Eocene (Anagnostou et al., 2020), such 200 

that choosing a G. ruber or T. sacculifer-like calibration has a minor effect on the long-term Mg/Ca-201 

derived trend in our dataset (Figure S4). Seawater Mg/Ca is also well-constrained for the Eocene 202 
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calculated for surface-dwelling foraminiferal genera (Acarinina and Morozovella spp.) using the 

bayfox Bayesian calibration (δ18Osw = -1.0, prior mean = 25, prior standard deviation = 20, n = 

2000). Error bars represent the 95% confidence intervals. b) iCESM1.2-derived SST estimates for 

Bass River (blue symbols) and ODP Site 401 (red symbols) under different CO2 concentrations, c) 

iCESM1.2-derived ΔSST estimates (x6 PI CO2 - x3 PI CO2) with proxy-derived cooling between the 

early- to middle Eocene shown for each site. 

 230 

Planktonic foraminifera at Bass River exhibit excellent preservation (Supplementary 231 

Information) and tests are translucent and ‘glassy’ (Figure S1), whereas post-PETM aged 232 

planktonic foraminifera at ODP Site 401 exhibit relatively poor preservation (Bornemann et al., 233 

2016) and have been classified as ‘recrystallized’ (see Hollis al. 2019). However, the influence of 234 

diagenesis would act to increase δ18O values and overestimate (rather than underestimate) the 235 

magnitude of cooling. Therefore, this is unlikely to explain the observed trends (Figure 3). 236 

Alternatively, changes in ocean circulation could have modulated regional temperature patterns in 237 

the eastern North Atlantic during the middle-to-late Eocene. Recent idealised modelling 238 

experiments show that deepening of the Greenland-Scotland Ridge can initiate Northern 239 

Component Water (NCW) formation in the North Atlantic and increase SST in the eastern North 240 

Atlantic by up to 7 °C (Vahlenkamp et al., 2018) and could have muted any long-term CO2-driven 241 

cooling at ODP Site 401. In contrast, deepening of the Greenland-Scotland Ridge has only a 242 

minimal influence (< 1°C) on SSTs in the western North Atlantic (i.e., where Bass River is located) 243 

(Vahlenkamp et al., 2018). 244 

There is growing geochemical and sedimentological evidence placing the initial onset of 245 

NCW between ~47 and 49 Ma, coincident with changes in zonal temperature gradients between 246 

the eastern and western North Atlantic. Evidence for early onset of NCW between ~47 and 49 Ma 247 

includes development of contourite drifts in the western North Atlantic (Boyle et al., 2017), changes 248 

in biosiliceous sedimentation (Witkowski et al., 2021) and a collapse in δ13C gradients between the 249 

North and South Atlantic (Hohbein et al., 2012). These changes would also influence local 250 

hydrography within the eastern North Atlantic and could exert an additional control on δ18Osw 251 



values at ODP Site 401. Proxy-based reconstructions during the Middle Eocene Climatic Optimum; 252 

have argued that northward expansion of the North Atlantic subtropical gyre could also act as a 253 

mechanism to increase SSTs within the North Atlantic (Van Der Ploeg et al., 2023). However, 254 

these large-scale regional patterns are not evident in Eocene model simulations and additional 255 

proxy data is required to test this further. Thus, we argue that (i) tectonic gateways and changes in 256 

ocean circulation may exert a local control on spatial patterns of cooling temperatures, especially in 257 

the North Atlantic during the early-to-middle Eocene, and (ii) that diverging zonal temperature 258 

gradients in the North Atlantic are consistent with the initial early onset of NCW.  259 

 260 

Synchronous surface water cooling in the northern and southern hemispheres during the Eocene 261 

Our new multi-proxy SST estimates (Figure 1) provide evidence for long-term cooling in the 262 

(western) North Atlantic during the middle Eocene. To explore whether long-term cooling is globally 263 

synchronous, we compiled early and middle Eocene (56 to 38 Ma) SST estimates from three key 264 

regions: (i) the equatorial Atlantic (0-30° N/S) (Cramwinckel et al., 2018; Zhang et al., 2013; Inglis 265 

et al., 2015), (ii) the Northwest Atlantic (30-50 °N) (this study; de Bar et al., 2019; Inglis et al., 2015; 266 

Liu et al., 2018; van der Ploeg et al., 2023) and (iii) the SW Pacific (>50°S) (Bijl et al., 2013; Bijl et 267 

al., 2009; Crouch et al., 2020; Hollis et al., 2009; Inglis et al., 2015). (Figure 4; see also 268 

Supplementary Information). 269 

 Our results show that the onset of long-term cooling (i.e., post EECO) occurs 270 

synchronously around 50-49 Ma in the North Atlantic and SW Pacific (i.e. towards the termination 271 

of the EECO; Figure 4a-c) and coincides with an increase in the latitudinal SST gradient (Figure 272 

4d). This illustrates that the onset of Eocene cooling is a globally feature and consistent with a 273 

decline in atmospheric CO2 as a forcing mechanism for cooling. During the middle Eocene (~47-42 274 

Ma), there is a gradual decrease in the latitudinal SST gradient between the equatorial Atlantic and 275 

North Atlantic (Figure 4d), implying that NCW formation may have also masked long-term CO2-276 

driven cooling in the eastern North Atlantic. This can be tested by developing new long-term SSTs 277 

records from other regions in the subpolar North Atlantic that could be sensitive to NCW formation 278 

(e.g., the Nordic Sea).  Alternatively, the magnitude of cooling in the equatorial Atlantic could be 279 



exaggerated. Indeed, ODP Site 959 (located in the eastern equatorial Atlantic) is unlikely to be 280 

representative of the global tropical ocean signal, because it is located in an area of upwelling, thus 281 

physically linked to subsurface waters. There is also evidence for an increase in upwelling during 282 

the middle-to-late Eocene at ODP Site 959 which could lead to lower-than-expected SSTs 283 

(Cramwinckel et al., 2018).  284 

There is also a dramatic decrease in SW Pacific SST estimates ~46-47 Ma (Figure 4c) and 285 

strengthening of the low-to-high latitude temperature gradient (Figure 4d) that is not reflected in 286 

either the low- or mid-latitude Atlantic (Figure 4d), suggesting additional non-CO2 controls in the 287 

SW Pacific. Previous work argues that the Tasman Gateway was open to shallow circulation at this 288 

time (~49 to 46 Ma) (Bijl et al., 2013) and deepening of the Tasman Gateway would initiate 289 

regional surface water cooling (Sijp et al., 2011; Sijp et al., 2016) and may account for declining 290 

SSTs. Our study reveals that changes in ocean gateways may have influenced spatial patterns of 291 

cooling in the North Atlantic (see above) and perhaps also in the SW Pacific (Sijp et al., 2016), but 292 

that CO2 was likely responsible for the majority of long-term Eocene cooling.  293 
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early Eocene Climatic Optimum (~27-33°C), in agreement with high atmospheric CO2 299 

concentrations. Our multi-proxy results indicate a slow decline (~5°C) in SSTs between the early 300 

(~53 Ma) and the middle Eocene (~42 Ma), consistent with long-term decrease in atmospheric 301 

CO2. However, zonal temperature gradients in the North Atlantic are likely decoupled during the 302 

early-to-middle Eocene. We attribute this to the inception of Northern Component Water at the 303 

early-middle Eocene transition and incursion of warmer waters into the eastern North Atlantic. We 304 

demonstrate that the onset of long-term Eocene cooling in the western North Atlantic (~50-49 Ma) 305 

occurs synchronously in other ocean basins (e.g., N. Atlantic vs S. Pacific) and across different 306 

latitudinal bands. This indicates that CO2 was likely responsible for the onset of long-term Eocene 307 

cooling, but that changes in ocean gateways likely influenced spatial patterns of cooling in different 308 

ocean basins, especially during the middle Eocene. 309 
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