The University of Southampton
University of Southampton Institutional Repository

Land surface model spin-up behavior in the North American Land Data Assimilation System (NLDAS)

Land surface model spin-up behavior in the North American Land Data Assimilation System (NLDAS)
Land surface model spin-up behavior in the North American Land Data Assimilation System (NLDAS)

The process of a model adjusting to its forcing (model spin-up) can severely bias land surface simulations, and result in questionable land surface model (LSM) output during the spin-up process. To gain a better understanding of how spin-up processes affect complex spatial and temporal land surface modeling situations in general, and the Retrospective North American Land Data Assimilation System (NLDAS) simulations in particular, a two-phase study was conducted. The first phase examined results from Control, Wet, and Dry 11 year-long Mosaic simulations, while the second phase attempted to explain spin-up behavior in NLDAS Retrospective simulations from the Mosaic, Noah, VIC and Sacramento LSMs based in part on the results from phase 1. Total column and root zone soil moisture spin up slowly, while evaporation and deep soil temperature spin up more quickly. Mosaic soil moisture initialization with NCEP/DOE Global Reanalysis 2 (NCEP/DOE R-2) data (Control run) leads to a faster spin-up time than saturated (Wet run) or dry (Dry run) initialization, with the Control run reaching equilibrium 1 to 2 years sooner than the Wet run and 3 to 4 years more quickly than the Dry run. Overall, practical drift of land surface stores and output ceased in the Control run within approximately 1 year, and fine-scale equilibrium was reached within 5.5 years. Spin-up times exhibited large spatial variability, and although no single causal factor could be determined, they were correlated most strongly with precipitation and temperature forcing. In general, NLDAS models reach a state of rough equilibrium within the first 1 to 2 years of the 3-year Retrospective simulation. The Sacramento LSM has the shortest spin-up phase, followed by the Mosaic, VIC, and Noah LSMs. Initial NCEP/DOE R-2 conditions were too dry in general for the VIC and Noah LSMs, and too moist for the Mosaic and Sacramento LSMs. These results indicate that in most cases, the 1-year spin-up time used in the Retrospective NLDAS simulations eliminated spin-up problems from the subsequent period that was used for analysis.

LDAS, LSM, Spin-up
0148-0227
GCP 6-1 - GCP 6-19
Cosgrove, Brian A.
04c1e698-3d7c-412a-8d15-1fe35635e687
Lohmann, Dag
f8974c4b-bc29-499f-8270-9adf64cd0afe
Mitchell, Kenneth E.
91d961dc-4337-4c48-aace-74ebe14f1e2b
Houser, Paul R.
67aba422-f8ae-4d1d-a33f-2e6117ee1d54
Wood, Eric F.
8352c1b4-4fd3-42fe-bd23-46619024f1cf
Schaake, John C.
d9224d5c-d695-4d9b-88bb-2bfbfe8eeb61
Robock, Alan
48548a44-cb37-4c27-b96c-3826a9769fef
Sheffield, Justin
dd66575b-a4dc-4190-ad95-df2d6aaaaa6b
Duan, Qingyun
b75b3e1f-c6c8-4062-bc33-e1d10a87f25b
Luo, Lifeng
e9b25aa8-e877-45a6-bdca-53aba9bbde84
Higgins, R. Wayne
93759215-b563-4735-8137-9acc5f14fc93
Pinker, Rachel T.
42f0f84f-36c8-412d-a317-851f70c6fe7d
Tarpley, J. Dan
e4eb84c6-998f-4269-999a-bcddabb8796c
Cosgrove, Brian A.
04c1e698-3d7c-412a-8d15-1fe35635e687
Lohmann, Dag
f8974c4b-bc29-499f-8270-9adf64cd0afe
Mitchell, Kenneth E.
91d961dc-4337-4c48-aace-74ebe14f1e2b
Houser, Paul R.
67aba422-f8ae-4d1d-a33f-2e6117ee1d54
Wood, Eric F.
8352c1b4-4fd3-42fe-bd23-46619024f1cf
Schaake, John C.
d9224d5c-d695-4d9b-88bb-2bfbfe8eeb61
Robock, Alan
48548a44-cb37-4c27-b96c-3826a9769fef
Sheffield, Justin
dd66575b-a4dc-4190-ad95-df2d6aaaaa6b
Duan, Qingyun
b75b3e1f-c6c8-4062-bc33-e1d10a87f25b
Luo, Lifeng
e9b25aa8-e877-45a6-bdca-53aba9bbde84
Higgins, R. Wayne
93759215-b563-4735-8137-9acc5f14fc93
Pinker, Rachel T.
42f0f84f-36c8-412d-a317-851f70c6fe7d
Tarpley, J. Dan
e4eb84c6-998f-4269-999a-bcddabb8796c

Cosgrove, Brian A., Lohmann, Dag, Mitchell, Kenneth E., Houser, Paul R., Wood, Eric F., Schaake, John C., Robock, Alan, Sheffield, Justin, Duan, Qingyun, Luo, Lifeng, Higgins, R. Wayne, Pinker, Rachel T. and Tarpley, J. Dan (2003) Land surface model spin-up behavior in the North American Land Data Assimilation System (NLDAS). Journal of Geophysical Research: Atmospheres, 108 (22), GCP 6-1 - GCP 6-19. (doi:10.1029/2002jd003316).

Record type: Article

Abstract

The process of a model adjusting to its forcing (model spin-up) can severely bias land surface simulations, and result in questionable land surface model (LSM) output during the spin-up process. To gain a better understanding of how spin-up processes affect complex spatial and temporal land surface modeling situations in general, and the Retrospective North American Land Data Assimilation System (NLDAS) simulations in particular, a two-phase study was conducted. The first phase examined results from Control, Wet, and Dry 11 year-long Mosaic simulations, while the second phase attempted to explain spin-up behavior in NLDAS Retrospective simulations from the Mosaic, Noah, VIC and Sacramento LSMs based in part on the results from phase 1. Total column and root zone soil moisture spin up slowly, while evaporation and deep soil temperature spin up more quickly. Mosaic soil moisture initialization with NCEP/DOE Global Reanalysis 2 (NCEP/DOE R-2) data (Control run) leads to a faster spin-up time than saturated (Wet run) or dry (Dry run) initialization, with the Control run reaching equilibrium 1 to 2 years sooner than the Wet run and 3 to 4 years more quickly than the Dry run. Overall, practical drift of land surface stores and output ceased in the Control run within approximately 1 year, and fine-scale equilibrium was reached within 5.5 years. Spin-up times exhibited large spatial variability, and although no single causal factor could be determined, they were correlated most strongly with precipitation and temperature forcing. In general, NLDAS models reach a state of rough equilibrium within the first 1 to 2 years of the 3-year Retrospective simulation. The Sacramento LSM has the shortest spin-up phase, followed by the Mosaic, VIC, and Noah LSMs. Initial NCEP/DOE R-2 conditions were too dry in general for the VIC and Noah LSMs, and too moist for the Mosaic and Sacramento LSMs. These results indicate that in most cases, the 1-year spin-up time used in the Retrospective NLDAS simulations eliminated spin-up problems from the subsequent period that was used for analysis.

This record has no associated files available for download.

More information

Published date: 27 November 2003
Keywords: LDAS, LSM, Spin-up

Identifiers

Local EPrints ID: 480439
URI: http://eprints.soton.ac.uk/id/eprint/480439
ISSN: 0148-0227
PURE UUID: ce038d8a-7e40-4a40-b310-51b58e9dc7cb
ORCID for Justin Sheffield: ORCID iD orcid.org/0000-0003-2400-0630

Catalogue record

Date deposited: 02 Aug 2023 16:40
Last modified: 17 Mar 2024 03:40

Export record

Altmetrics

Contributors

Author: Brian A. Cosgrove
Author: Dag Lohmann
Author: Kenneth E. Mitchell
Author: Paul R. Houser
Author: Eric F. Wood
Author: John C. Schaake
Author: Alan Robock
Author: Qingyun Duan
Author: Lifeng Luo
Author: R. Wayne Higgins
Author: Rachel T. Pinker
Author: J. Dan Tarpley

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×