READ ME File For 'Dataset of the thesis Linearized Reynolds-Averaged Navier-Stokes model for the prediction of secondary flows on heterogeneous surfaces' Dataset DOI: https://doi.org/10.5258/SOTON/D2734 Date that the file was created: Aug, 2023 ------------------- GENERAL INFORMATION ------------------- ReadMe Author: Gerardo Zampino, University of Southampton Dataset available under a CC BY 4.0 licence Publisher: University of Southampton, U.K. -------------------------- SHARING/ACCESS INFORMATION -------------------------- Licenses/restrictions placed on the data, or limitations of reuse: This dataset supports the publication: AUTHORS: G. Zampino TITLE: Linearized Reynolds-Averaged Navier-Stokes model for the prediction of secondary flows on heterogeneous surfaces -------------------------- DATA-SPECIFIC INFORMATION -------------------------- This dataset presents the numerical data from the PhD thesis by G. Zampino "Linearized Reynolds-Averaged Navier-Stokes model for the prediction of secondary flows on heterogeneous surfaces" The data are presented for each figure of the paper. The file name corresponds to the number of the figure in the paper. The data are reported in MATLAB .mat format for convenience. Further information regarding the data files: 1. Figure 4.7: x2 -->Wall-normal coordinate x2_DNS -->wall-normal corrdinate from the DNS tau33-tau22_DNS --> difference tau33-tau22 from the DNS tau33-tau22_Cr1_X --> difference tau33-tau22 from Linearised RANS with Cr1=X For Re_tau=550 -------------------------- 2. Figure 4.8: x2 -->Wall-normal coordinate x2_DNS -->wall-normal corrdinate from the DNS dtau33-dtau22_DNS --> derivative of tau33-tau22 from the DNS dtau33-dtau22_Cr1_X --> derivative of tau33-tau22 from Linearised RANS with Cr1=X For Re_tau=550 -------------------------- 2. Figure 4.9: x2 -->Wall-normal coordinate x2_DNS -->wall-normal corrdinate from the DNS tau33-tau22_DNS --> difference tau33-tau22 from the DNS tau33-tau22_Cr1_X --> difference tau33-tau22 from Linearised RANS with Cr1=X For Re_tau=5200 -------------------------- 3. Figure 5.3: x3 --> spanwise coordinate x2 --> wall-normal coordinate u2_DNS --> u2 from DNS u2_RANS --> u2 from linearised RANS -------------------------- 4. Figure 5.5: x3 --> spanwise coordinate x2 --> wall-normal coordinate u3_DNS --> u3 from DNS u3_RANS --> u3 from linearised RANS 4. Figure 5.5: x3_DNS/RANS_epsilon --> spanwise coordinate where epsilon is 0.0125 0.05 x2_DNS/RANS_epsilon --> wall-normal coordinate u3_DNS/RANS_epsilon --> u3 from DNS or Linearised RANS -------------------------- 5. Figure 5.7 (a) and (b): x2_DNS/RANS_Rey --> wall-normal coordinate where Rey is the Reynolds number u1_DNS/RANS_Rey --> u1 from DNS or Linearised RANS 5. Figure 5.7 (c) and (d): x2_DNS/RANS_Rey --> wall-normal coordinate where Rey is the Reynolds number nut_DNS/RANS_Rey --> nu_t from DNS or Linearised RANS -------------------------- 6. Figure 5.8: x3 --> spanwise coordinate x2 --> wall-normal coordinate u2_lambda_X --> u2 from Linearised RANS where X is the corresponding value of lambda_3 psi_lambda_X --> psi from Linearised RANS -------------------------- 7. Figure 5.9 (a): x2 --> wall-normal coordinate u1_lambda_X --> u1 from Linearised RANS where X is the corresponding value of lambda_3 8. Figure 5.9 (b): x2 --> wall-normal coordinate u1_lambda_X --> u1 from Linearised RANS where X is the corresponding value of lambda_3 -------------------------- 9. Figure 5.10 (a,c): x2 --> wall-normal coordinate u1_lambda_X_gamma --> u1 from Linearised RANS where X is the corresponding value of lambda_3 and Gamma x_2 is subtracted to the profile u1_lambda_X_Cr1_0 --> u1 from Linearised RANS where X is the corresponding value of lambda_3 and Cr1=0 For Re_tau=550 10. Figure 5.10 (b,d): x2 --> wall-normal coordinate u1_lambda_X_gamma --> u1 from Linearised RANS where X is the corresponding value of lambda_3 and Gamma x_2 is subtracted to the profile u1_lambda_X_Cr1_0 --> u1 from Linearised RANS where X is the corresponding value of lambda_3 and Cr1=0 For Re_tau=5200 -------------------------- 11. Figure 5.11 (a,c): x2 --> wall-normal coordinate u2_lambda_X --> u2 from Linearised RANS where X is the corresponding value of lambda_3 u3_lambda_X --> u3 from Linearised RANS where X is the corresponding value of lambda_3 For Re_tau=550 12. Figure 5.11 (b,d): 2 --> wall-normal coordinate u2_lambda_X --> u2 from Linearised RANS where X is the corresponding value of lambda_3 u3_lambda_X --> u3 from Linearised RANS where X is the corresponding value of lambda_3 For Re_tau=5200 -------------------------- 13. Figure 5.12 (a,c,e): lambda_plus --> wavelength scaled in inner units K_Retau_X --> K where X is the corresponding Re_tau value max_psi_Retau_X --> maximum of psi where X is the corresponding Re_tau value max_u2_Retau_X --> maximum of u2 where X is the corresponding Re_tau value -------------------------- 14. Figure 5.12 (b,d,f): lambda --> wavelength K_Retau_X --> K where X is the corresponding Re_tau value max_psi_Retau_X --> maximum of psi where X is the corresponding Re_tau value max_u2_Retau_X --> maximum of u2 where X is the corresponding Re_tau value -------------------------- 15. Figure 5.13 (a,c): x2_X --> wall-normal coordinate where X is the corresponding Re_tau value u2_Retau_X --> u2 where X is the corresponding Re_tau value u3_Retau_X --> u3 where X is the corresponding Re_tau value 16. Figure 5.13 (b,d): x2_X --> wall-normal coordinate where X is the corresponding Re_tau value u2_Retau_X --> u2 where X is the corresponding Re_tau value u3_Retau_X --> u3 where X is the corresponding Re_tau value -------------------------- 17. Figure 5.14: x2 --> wall-normal coordinate tauxx_lambda_X --> Reynolds stresses tau_xx from Linearised RANS where X is the corresponding value of lambda_3 For Re_tau=550 -------------------------- 18. Figure 5.15 (a,c,e): x2 --> wall-normal coordinate nut --> nu_t from the linearised RANS u1 --> u1 from the linearised RANS u2 --> u2 from the linearised RANS -------------------------- 19. Figure 5.15 (b,d,f): x2 --> wall-normal coordinate nut --> nu_t from the linearised RANS u1 --> u1 from the linearised RANS u2 --> u2 from the linearised RANS -------------------------- 20. Figure 5.16: lambda_3 --> wavelength K_SA --> K obtained using the SA model K_nut_shift --> K obtained using the Cess formula and shifting the nu_t profile K_ut_nut_shift --> K obtained using the Cess formula and shifting the u1 and nu_t profiles -------------------------- 21. Figure 5.17: G --> Gap W --> Width K --> Kinetic energy density max_psi --> Maximum of the streamfunction -------------------------- 22. Figure 5.18: S --> Spacing K_DC_X --> K for constant DC=X K_harmonic --> K for harmonic modulation K_W_067 --> K for W=0.67 max_psi_DC_X --> maximum of psi for constant DC=X max_psi_harmonic --> maximum of psi for harmonic modulation max_psi_W_067 --> maximum of psi for W=0.67 -------------------------- 23. Figure 5.19: x3 --> spanwise coordinate x2 --> wall-normal coordinate u2_W_X --> u2 for W=X phi_W_X --> psi for W=X -------------------------- 24. Figure 5.20: x3 --> spanwise coordinate x2 --> wall-normal coordinate u2_G_X --> u2 for W=X phi_G_X --> psi for W=X -------------------------- 25. Figure 5.21: x2 --> wall-normal coordinate u2_W_X_x3_Y --> u2 for W=X and at x_3=Y. Here Y= 0, W/4, W/2, 3/4 W, W -------------------------- 26. Figure 5.22: x3_W_X --> wall-normal coordinate for W=X I2_W_X --> I_2^2 for W=X -------------------------- 27. Figure 5.23: G --> Gap W --> Width I2 --> I_2^1 -------------------------- 28. Figure 5.24: x3 --> spanwise coordinate x2 --> wall-normal coordinate tauxx --> Reynolds stress tau_xx dtau33_dtau22 --> Difference of the stresses d/dx_2dx_3(tau33-tau22) -------------------------- 29. Figure 5.25: x3 --> spanwise coordinate x2 --> wall-normal coordinate tauxx --> Reynolds stress tau_xx dtau33_dtau22 --> Difference of the stresses d/dx_2dx_3(tau33-tau22) -------------------------- 30. Figure 5.26: x2 --> wall-normal coordinate tauxx_G_Y --> tau_xx for G=Y -------------------------- 31. Figure 6.1: x3_W_X --> spanwise coordinate for W=X x2_W_X --> wall-normal coordinate for W=X u2_shape_W_X --> u2 for W=X and different shape. Shapes are= ell, rect, tri psi_shape_W_X --> psi for W=X and different shape. Shapes are= ell, rect, tri -------------------------- 32. Figure 6.2: S --> Spacing W --> Width K_shape_W_X --> K for W=X and different shape. Shapes are= ell, rect, tri max_psi_shape_W_X --> max psi for W=X and different shape. Shapes are= ell, rect, tri R12_shape_W_X --> R_12 for W=X and different shape. Shapes are= ell, rect, tri -------------------------- 33. Figure 6.3: S --> Spacing W --> Width K_hat_shape --> K hat different shape. Shapes are= ell, rect, tri max_psi_hat_shape --> max psi hat different shape. Shapes are= ell, rect, tri R12_hat_shape --> R_12 hat different shape. Shapes are= ell, rect, tri -------------------------- 34. Figure 6.5: S --> Spacing W --> Width Delta_R12 --> Detlta R_12 in percentage -------------------------- 35. Figure 6.6: x2 --> wall-normal coordinate u2_0 --> u2 at x_3=0 u2_S --> u2 at x_3=S/2 u3 --> u3 at x_3=W/2 for W=2 (a,d,g) W=0.67 (b,e,h) W=1 (c,f,i) -------------------------- 36. Figure 6.7: x3 --> spanwise coordinate x2 --> wall-normal coordinate u2_alpha_X --> u2 for alpha=X psi_alpha_X --> psi for alpha=X -------------------------- 37. Figure 6.8: S --> Spacing W --> Width K_alpha0_5 --> K for alpha=0.5 K_rect --> K for rectangular ridges K_tria --> K for triangular ridges -------------------------- 38. Figure 7.1: y --> Wall-normal coordinate scaled in inner units d_0_plus --> d_0 scaled in inner units hs_plus --> hs scaled in inner units u1_hs_X --> u1 for hs=X Delta_u --> Delta_u from the Colebrook-Grigson formula Delta_u_RANS --> Delta_u from nonlinear RANS -------------------------- 39. Figure 7.2: x2 --> Wall-normal coordinate u1_lambda_X_cr1_Y --> u1 for lambda=X and Cr1=Y -------------------------- 40. Figure 7.3: lambda_3 --> Wavelength cr1_Y --> Delta_u_plus for Cr1=Y -------------------------- 41. Figure 7.4: x2 --> Wall-normal coordinate u2_lambda_X_cr1_Y --> u2 for lambda=X and Cr1=Y u3_lambda_X_cr1_Y --> u2 for lambda=X and Cr1=Y -------------------------- 42. Figure 7.5: lambda_3 --> Wavelength DeltaU_hs_X --> Delta_u_plus for hs=X -------------------------- 43. Figure 7.7: Wh --> Width of the high-roughness strips Wl --> Width of the low-roughness strips K --> Kinetic energy density max_psi --> Maximum of the streamfunction -------------------------- 44. Figure 7.8: x3_A --> spanwise coordinate for the panel A x2_A --> wall-normal coordinate for the panel A u2_A --> u2 for the panel A psi_A --> psi for the panel A -------------------------- 45. Figure 7.9: x2 --> Wall-normal coordinate u1_Wh_X_cr1_Y --> u1 for Wh=X and Cr1=Y -------------------------- 46. Figure 7.10: x2 --> Wall-normal coordinate u2_Wh_X --> u2 for Wh=X u3_Wh_X --> u3 for Wh=X -------------------------- 47. Figure 7.12 (a): beta --> shape_factor Kbeta_Kzero_Wh_X --> K_beta/K_0 for Wh=X for constant Wl=0.67 -------------------------- 48. Figure 7.12 (b): beta --> shape_factor Kbeta_Kzero_Wh_X --> K_beta/K_0 for Wh=X for constant Wh=Wl -------------------------- 49. Figure 7.13: x2 --> Wall-normal coordinate x3 --> spanwise coordinate u2_beta_X --> u2 for beta=X u3_beta_X --> u3 for beta=X -------------------------- 50. Figure 8.1: y_DNS/RANS --> Wall-normal coordinate from DNS/RANS disp --> dispesive stress disp_RANS --> dispersive stress from RANS pres --> pressue term turb --> turbulent term vis --> viscous term -------------------------- 51. Figure B1 (a): x2_n_X --> Wall-normal coordinate for n=X u1_n_X --> u1 for n=X for Re_tau=550 -------------------------- 52. Figure B1 (b): x2_n_X --> Wall-normal coordinate for n=X u1_n_X --> u1 for n=X for Re_tau=5200 -------------------------- -------------- Notes: 1. Rename file, giving it an appropriate name and removing the word 'template'. 2. Remove [] adding in information where required. 3. Remove any sections not relevant to your dataset 4. Remove these notes before saving