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ABSTRACT A new multi-antenna transmission scheme, referred to as difference-based spatial modulation
(DBSM), is proposed to enhance the reliability of spatial modulation (SM). With the DBSM, a pair of
amplitude/phase-shift keying (APSK) symbols are conveyed by each channel-use, but only one of them
is radiated from a single transmit antenna. In contrast to conventional SM, DBSM selects the active
transmit antenna based on the difference between the two symbols of a channel-use, rather than one
of them. The design principle of the APSK constellation in the DBSM is detailed, which guarantees
that the mean Euclidean distance between any two DBSM signals mapped by a pair of complementary
bit-sequences is the largest possible among all the candidates. In this way, DBSM improves the error
performance of conventional SM, even though they have the same achievable data rate given the same
system configuration. We demonstrate that channel coding techniques, e.g., convolutional and turbo codes,
will enhance the performance gain achieved by DBSM over conventional SM. Both theoretical analysis
and simulation results are provided to substantiate the advantages of our proposed DBSM scheme.

INDEX TERMS Achievable data rate (ADR), bit error rate (BER), difference-based spatial modulation
(DBSM), multiple-input-multiple-output (MIMO) systems, permutation modulation.

I. INTRODUCTION
While 5G services are rolled out around the world, the
research focus of practitioners has evolved towards 6G
networks. Aiming to provide ultra-reliable and high-rate
communications at extremely low end-to-end latency in a
wide range of applications, numerous physical-layer solu-
tions have been proposed for addressing the challenges and
opportunities of future wireless services [2], [3]. In this con-
text, permutation-based modulation is a competitive concept
[4], [5], which utilises the indices of activated resource units,
including transmit antennas (TAs), spectral bands, time slots,
channelisation codes, and polarisation states, to convey extra
information bits along with the conventionally modulated
symbols.

Spatial modulation (SM) is a prominent member in the
permutation modulation family, which was designed for
point-to-point open-loop multi-antenna configurations and

enables the index of every TA to be used as an additional
dimension for conveying information [6]. The delivery of the
information mapped into this dimension does not consume
any extra communication resource, which improves the spec-
tral efficiency at low hardware complexity. In each transmis-
sion, the SM activates only a single TA and requires only
a single radio-frequency (RF) chain. This achieves higher
energy efficiency than other multi-antenna approaches, while
additionally mitigating the inter-channel and/or inter-antenna
interference.

The SM channel capacity was derived in [7]. Then,
the achievable data rate (ADR) of SM in multiple-input-
multiple-output (MIMO) systems relying on imperfect chan-
nel estimation [8] and on realistic channel state impairments
[9] has been derived. Moreover, the optimal spatial-design
[10] and the optimal power-allocation [11] have been devel-
oped for SM, in order to further increase its ADRs in point-
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to-point closed-loop MIMO systems. Originally, the number
of TAs in an SM system was assumed to be a power of two
for the sake of convenient bit-to-TA mapping. To implement
SM along with an arbitrary number of TAs, specific bit-
padding [12] and modulation-varying [13] schemes have
been proposed for offering flexible scalability. Later on, SM
has been adopted in a wide range of applications, such
as visible light communications [14], [15], physical-layer
security [16], [17], and reconfigurable intelligent surfaces
[18], [19].

In general, the SM is composed of space-shift keying
(SSK) and amplitude/phase-shift keying (APSK). There are
two bit-sequences: one is mapped onto the SSK symbols via
TA selection, while the other is mapped onto the APSK sym-
bols via classic modulation. An SSK symbol and an APSK
symbol jointly form a group, where the latter is physically
radiated from the TA activated by the former. Since the two
bit-sequences are independent of each other, the radiation of
an APSK-modulated symbol and the mapping onto an SSK-
activated TA are two independent information processes in
the SM.

Through linking up these two processes, we propose a new
transmission scheme, referred to as difference-based spatial
modulation (DBSM), for improving the SM performance via
Euclidean distance maximisation. The DBSM consists of
two steps: Firstly, all the information bits (without channel
coding) or coded bits (with channel coding) to be transmit-
ted are mapped onto APSK symbols, and two consecutive
symbols form a group. Subsequently, the first APSK symbol
in a group is physically radiated from the TA activated by
the difference between the two symbols in the group. In
contrast to the conventional SM, the DBSM selects the active
TA based on the difference between two consecutive APSK
symbols rather than solely upon an independent SSK symbol.
For example, Fig. 1 compares the information mapping
patterns of DBSM and conventional SM in a binary phase-
shift keying (BPSK) system with 2 TAs. Each group contains
two bits, and the first bit is mapped onto a BPSK symbol.
Using the conventional SM, the second bit is mapped onto a
SSK symbol, determining which TA is activated to transmit
the BPSK symbol mapped by the first bit. Using our DBSM,
the active TA is determined by the difference between the
two bits in a group. If they are equal, TA 1 is activated.
If they are different, TA 2 is activated. We remark that,
the DBSM is fundamentally different from differential SM
[20], [21]. The latter is designed for non-coherent detection
dispensing with explicit channel estimation and its pilot
overhead. However, the non-coherent detection performance
is 3dB worse than that of the conventional SM with coherent
detection. By contrast, the DBSM is specifically designed
for improving the SM performance relying on coherent
detection, whose resultant Euclidean distance is larger than
that of conventional SM.

In essence, the DBSM allows the bits mapped onto the
active TA and the bits carried by the radiated APSK symbol
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FIGURE 1. Comparison of information mapping patterns in DBSM and
conventional SM.

to check each other. Although the second APSK symbol in
a group is not physically radiated, the bits carried by it are
conveyed not only through the selection of the active TA
but also through the radiation of the first APSK symbol.
As such, the DBSM enhances the detection performance by
taking advantage of the transmission diversity over two types
of physical resources.

As substantiated by the simulation results in [1], DBSM
outperforms the conventional SM for low modulation orders,
e.g., BPSK and quadrature phase-shift keying (QPSK). In
this paper, both the throughput and the reliability of DBSM
systems are analysed theoretically. In particular, the metrics
of ADR and bit error rate (BER) are formulated in analytic
expressions for the DBSM. Additionally, the BER perfor-
mance of channel-coded DBSM systems is characterised.

The main contributions of this paper are highlighted below
from four perspectives.

• Approach: A new multi-antenna transmission scheme,
referred to as DBSM, is proposed for improving the
reliability of SM systems, where the difference between
two consecutive APSK symbols, rather than an inde-
pendent SSK symbol, is mapped onto the active TA.

• Rationale: The design principle of the APSK constel-
lation used in the DBSM is outlined to ensure that
the mean Euclidean distance between any two DBSM-
formed signals having the largest number of different
bits is the largest among all the candidates, which is
the key for DBSM to achieve higher reliability than
conventional SM.

• Throughput: The ADR framework is established for the
DBSM performance analysis in various system configu-
rations, to create useful tools for information-theoretical
investigations in the context of spectral efficiency and
energy efficiency.

• Reliability: The BERs of DBSM are formulated by the
expressions in analytic form, for various system config-
urations, to facilitate the empirical performance evalu-
ation. The accuracy of BER expressions is explicitly
confirmed by illustrative simulation results. Finally, the
BERs of channel-coded DBSM systems are quantified.
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TABLE 1. Contrasting the novelty of our work to the literature.

Contribution This Work [1] [4]–[6] [7]–[11] [12] [13]

Source-Difference-Based Mapping ✓ ✓

Spatial Modulation ✓ ✓ ✓ ✓ ✓ ✓

Constellation Design ✓

Data Rate ✓ ✓ ✓

Bit Error Rate ✓ ✓ ✓ ✓

Channel-Coded Systems ✓

Furthermore, the novelty of our work is compared with
related works in Table 1.

To detail the aforementioned contributions, the remainder
of this paper is organised as follows. Section II presents
the proposed DBSM in the context of MIMO systems
and specifies the particular design principles of the APSK
constellation constructed for the DBSM. Section III analyses
the ADRs of the DBSM and compares the DBSM with the
conventional SM from an information-theoretical perspec-
tive. Section IV investigates the BERs of both uncoded and
channel-coded DBSM systems with various configurations,
as well as compares them with those of the conventional
SM in the same system configurations. Finally, Section V
concludes the paper and offers insights for future research
directions.

Throughout the paper, the acronyms listed in Table 2
and the following mathematical notations are used: boldface
uppercase and lowercase letters denote matrices and vectors,
respectively. In particular, 0N×1 denotes the N × 1 zero
vector, and IN represents the N × N identity matrix. The
transpose, the conjugate transpose and the Frobenius norm
of a vector or a matrix are denoted by (·)T, (·)† and ∥ · ∥,
respectively. Moreover, the modulus operator is represented
by | · |, and the expectation (mean) operator with respect to
the random variable x is denoted by Ex{·}. The Q-function
is given by Q(x) = (1/

√
2π)

∫∞
x

exp(−u2/2)du. More
specifically, the prime notations used in this paper are listed
in Table 3.

II. DIFFERENCE-BASED SPATIAL MODULATION
In this section, the DBSM concept is proposed for MIMO
systems and a BPSK-modulated paradigm is presented to
illustrate the DBSM design. Furthermore, the particular
design principle of the APSK constellation constructed for
DBSM is described.

A. SYSTEM MODEL
Consider a point-to-point (M,N) MIMO communication
system having M TAs and N receive antennas (RAs).
The flat-fading narrow-band channel, spanning from the

TABLE 2. List of Acronyms

Acronym Full Form

ADR Achievable Data Rate

APSK Amplitude/Phase-Shift Keying

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase-Shift Keying

DBSM Difference-Based Spatial Modulation

LLR Log-Likelihood Ratio

MIMO Multiple-Input-Multiple-Output

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase-Shift Keying

RA Receive Antenna

RF Radio Frequency

SM Spatial Modulation

SNR Signal-to-Noise power Ratio

SSK Space-Shift Keying

TA Transmit Antenna

V-BLAST Vertical Bell Laboratories Layered Space-Time

transmitter to the receiver, is modelled by an N ×M matrix

H =


h11 h12 · · · h1M

h21 h22 · · · h2M

...
...

. . .
...

hN1 hN2 · · · hNM

 , (1)

where the (n,m)th entry, denoted by hnm, is the chan-
nel coefficient of the link from TA m to RA n, with
m ∈ {1, 2, · · · ,M} and n ∈ {1, 2, · · · , N}. The entries
are assumed to be independent and identically distributed
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TABLE 3. List of Prime Notations.

Notation Description

(M,N) a system with M TAs and N RAs

hm the channel from TA m to the receiver

y a vector containing received signals

z a vector containing received noise

Θk or Θl an MQAM symbol

d = (l − k) mod M
the index difference of two MQAM
symbols

𝐇
Receiver

RA 1

RA 𝑁

⋮
𝑦1

𝑦𝑁

Grouping

𝛼 = Θ𝑘

𝑀QAM
𝑑 = 0

𝛼

𝛼

TA 2

TA 𝑚

𝛼

TA 1

𝛼

TA 𝑀

𝑑 = 1

𝑑 = 𝑀 − 1

Transmitter

⋮

⋮
𝑑 = 𝑚 − 1

𝑑 = 𝑙 − 𝑘 mod 𝑀

𝑥1, 𝑥2,⋯⋯

𝛽 = Θ𝑙

FIGURE 2. The DBSM with MQAM in an (M,N) system.

(i.i.d.) complex Gaussian random variables with zero-mean
and unit variance, i.e., we have hnm ∼ CN (0, 1). The
mth column in (1), denoted by an N × 1 vector hm =
[h1m, h2m, · · · , hNm]T, contains the channel coefficients of
the links from TA m to all the RAs, m = 1, 2, · · · ,M .

The DBSM within an (M,N) system is shown in Fig. 2,
where M -ary quadrature amplitude modulation (MQAM) is
adopted. The ith modulated symbol, i = 1, 2, · · · , is denoted
by xi ∈ {Θ0,Θ1, · · · ,ΘM−1}, where Θk is the kth symbol
in the MQAM constellation, k ∈ {0, 1, · · · ,M − 1}. For
example, the indexing and mapping of the symbols in BPSK,
QPSK, and 8QAM constellations are shown in Fig. 3.

With DBSM, a pair of modulated symbols are delivered
simultaneously in each channel-use. More specifically, the
two modulated symbols to be delivered in the pth transmis-
sion, p = 1, 2, · · · , are denoted by α = x2p−1 and β = x2p.
Without loss of generality, we set α = Θk and β = Θl,
k, l ∈ {0, 1, · · · ,M − 1}.

In the transmission, β is not physically radiated, while α
is radiated from one of the TAs. The active TA is determined
by the difference between β and α, which is informed by
the difference between the indices of the MQAM symbols
Θk and Θl, expressed as

d = (l − k) mod M. (2)

Elaborating slightly further, α is radiated from TA (d+1).
For instance, TA 1 is activated when d = 0, i.e., β = α, and
TA 2 is activated when d = 1, i.e., β = Θk+1 whilst α = Θk.

Θ6

Θ1

Θ7

Θ0

Θ2

Θ5

Θ3

Θ4

1 0 0

0 0 0

1 0 1

0 0 1

0 1 1

1 1 1

0 1 0

1 1 0

Θ1

Θ0Θ2

Θ3

0 0

0 1

1 1

1 0

1 + 3 𝑗

𝑗

−𝑗

0

− 1 + 3 𝑗

−(1 + 3) 1 + 31−1 0

(a) BPSK

1−1 0

𝑗

−𝑗

0

1−1 0

(b) QPSK

(c) 8QAM

Θ1 Θ0

01
0

FIGURE 3. BPSK, QPSK and 8QAM constellations in the DBSM.

The received signals are contained by an N × 1 vector
expressed as

y = hd+1α+ z, (3)

where y = [y1, y2, · · · , yN ]T with yn denoting the received
signal at RA n, and the N × 1 vector z = [z1, z2, · · · , zN ]T

contains i.i.d. additive white Gaussian noise (AWGN) com-
ponents at the receiver, with zn ∼ CN (0, σ2

Z) denoting
the AWGN component received by the nth RA, n =
1, 2, · · · , N . Moreover, the N×1 vector hd+1 represents the
channel spanning from the active TA, namely TA (d + 1),
to the receiver, with d given in (2).

The task of detection is to find not only the radiated
symbol α but also the activated channel hd+1. Apparently,
the maximum likelihood (ML) detection algorithm can be
used for estimating the symbols α and β simultaneously as
follows. Choose α̂ = Θk and β̂ = Θ(m−1+k) mod M if and
only if

∥y − hmΘk∥2 ⩽ ∥y − hm′Θk′∥2, (4)
∀m,m′ = 1, 2, · · · ,M, m ̸= m′,

k, k′ = 0, 1, · · · ,M − 1, k ̸= k′.

To reduce the computational complexity, the ML detection
in (4) can be partitioned into two steps: Firstly, the candidate
decisions are made concerning the symbol radiated from TA

4 VOLUME ,



TABLE 4. Computational Complexity.

ML Detection # Multiplications # Comparisons

(4) M2 M2 − 1

(5)-(6) 2M 2M − 1

m, denoted by α̂m, in terms of

α̂m = arg min
s∈{Θ0,Θ1,··· ,ΘM−1}

∣∣∣∣s− h†
my

h†
mhm

∣∣∣∣2 , (5)

m = 1, 2, · · · ,M ;

and then, choose α̂ = α̂m̂ and β̂ = Θ(m̂−1+♯α̂) mod M if and
only if

m̂ = arg min
m∈{1,2,··· ,M}

∥y − hmα̂m∥2, (6)

where ♯α̂ = k ∈ {0, 1, · · · ,M − 1} denotes the index of the
symbol α̂, given that α̂ = Θk.

The computational complexities of both the ML detection
(4) and the two-step ML detection (5)-(6) are characterised
in Table 4, where the detection complexity is quantified in
terms of the number of multiplications and the number of
comparisons. These two ML algorithms achieve the same
performance. However, the complexity of the two-step detec-
tion (5)-(6) is lower than that of the detection (4), especially
for high M .

Moreover, the detection complexity of the DBSM is the
same as that of the conventional SM in the same system
configuration [7], for both the ML algorithm (4) and the
two-step ML algorithm (5)-(6).

B. A PARADIGM
Herein, a BPSK-modulated (2, N) system is considered as
an example to further elucidate the DBSM design. There
are M = 2 columns in the channel matrix, i.e., we have
H = [h1,h2], where the N × 1 vectors h1 and h2 contain
the channel coefficients of the links spanning from TA 1 and
TA 2 to the receiver, respectively.

The DBSM paradigm is illustrated in Fig. 4, where the
modulated symbols are generated through the BPSK constel-
lation shown in Fig. 3(a), i.e., xi ∈ {+1,−1}, i = 1, 2, · · · .
For a group composed of two symbols α and β, we might
have either β = α or β = −α. Therefore, in an DBSM
transmission, α is radiated from TA 1 if β = α, and from
TA 2 if β = −α. Thus, the index of the active TA is denoted
by

♯(β = ±α) =

{
1, if β = α;

2, if β = −α.
(7)

As such, the received signals are contained by an N × 1
vector expressed as

y = h♯(β=±α)α+ z, (8)

Grouping

𝛼, 𝛽
BPSK

𝛽 = 𝛼
𝛼

𝛼

TA 1

TA 2
𝛽 = −𝛼

Transmitter

𝑥1, 𝑥2,⋯

𝐇
Receiver

RA 1

RA 𝑁

⋮
𝑦1

𝑦𝑁

FIGURE 4. The DBSM in a BPSK-modulated system.

where the N × 1 vector h♯(β=±α) denotes the channel
spanning from the active TA to the receiver.

Using the ML detection algorithm, the estimates of the
symbols α and β can be simultaneously obtained from

E = min
{
∥y − h1∥2,∥y + h1∥2,
∥y − h2∥2,∥y + h2∥2

}
. (9)

In detail, the estimation is formulated as
α̂ = β̂ = +1, if E = ∥y − h1∥2;
α̂ = β̂ = −1, if E = ∥y + h1∥2;
α̂ = +1, β̂ = −1, if E = ∥y − h2∥2;
α̂ = −1, β̂ = +1, if E = ∥y + h2∥2.

(10)

Note that, as M = 2 in this paradigm, the detection
complexity using (4) is the same as that using the two-step
ML of (5)-(6).

C. DESIGN PRINCIPLE
The key for the DBSM to improve the reliability of SM
systems is the MQAM constellation design, specifically
for higher-order APSK modulations. In particular, every
MQAM symbol Θk has to be appropriately indexed by
k ∈ {0, 1, · · · ,M − 1} and mapped by the bit-sequence
b1b2 · · · bU , where U = log2 M and bu ∈ {0, 1} denotes a
bit in the sequence, u ∈ {1, 2, · · · , U}.

The main objective of the indexing k ∈ {0, 1, · · · ,M−1}
and the mapping b1b2 · · · bU ↔ Θk is to ensure that the mean
Euclidean distance between any two DBSM signals mapped
by the complementary bit-sequences of length 2 log2 M is
the largest possible among all the candidates.

1) BPSK-Modulated DBSM
Based on Fig. 3(a) and (10), all the DBSM-formed signals in
a BPSK-modulated system associated with M = 2 are listed
in Table 5, where the conventional SM-formed signals in
the same system configuration are presented as well for the
sake of comparison. Subsequently, every Euclidean distance
between two DBSM signals with M = 2 is compared to that
between two conventional SM signals with the same system
configuration in Table 6, where each shaded cell contains the
Euclidean distance between a pair of DBSM signals mapped
by two complementary bit-sequences of length 2 log2 M =
2, i.e., the number of different bits in these two bit-sequences
is 2. In this case, the DBSM has the Euclidean distance
∥2hm∥ along with 2hm ∼ CN (0N×1, 4IN ), m = 1, 2,
whilst the conventional SM has the Euclidean distance

VOLUME , 5



Yang et al.: Source-Difference-Based Mapping Improves Spatial Modulation

TABLE 5. DBSM/SM-Formed Signals in the Systems with M = 2.

DBSM Conventional SM

00 h1 h1

01 h2 h2

10 −h2 −h1

11 −h1 −h2

TABLE 6. Euclidean Distances in the Systems with M = 2.

DBSM

00 01 10 11

00 0 ∥h1 − h2∥ ∥h1 + h2∥ ∥2h1∥

01 ∥h1 − h2∥ 0 ∥2h2∥ ∥h1 + h2∥

10 ∥h1 + h2∥ ∥2h2∥ 0 ∥h1 − h2∥

11 ∥2h1∥ ∥h1 + h2∥ ∥h1 − h2∥ 0

Conventional SM

00 01 10 11

00 0 ∥h1 − h2∥ ∥2h1∥ ∥h1 + h2∥

01 ∥h1 − h2∥ 0 ∥h1 + h2∥ ∥2h2∥

10 ∥2h1∥ ∥h1 + h2∥ 0 ∥h1 − h2∥

11 ∥h1 + h2∥ ∥2h2∥ ∥h1 − h2∥ 0

∥h1 + h2∥ with h1 + h2 ∼ CN (0N×1, 2IN ). That is, the
mean of the squared Euclidean distance using the DBSM is
twice that using the conventional SM in this case, i.e., we
have E{∥2hm∥2} = 2E{∥h1+h2∥2}. More specifically, the
BPSK-modulated DBSM guarantees that the largest mean
Euclidean distance E{∥2hm∥}, m ∈ {1, 2}, between two
DBSM signals is imposed on a pair of bit-sequences having
the largest number of different bits.

2) QPSK-Modulated DBSM
Based on Fig. 3(b) and (4), all the DBSM signals of a
QPSK-modulated system associated with M = 4 are listed
in Table 7, along with the conventional SM signals using
the same system configuration, where the two bit-sequences
of length 2 log2 M = 4 in each row are the complements
of each other, i.e., they have 4 different bits. Obviously, the
Euclidean distance between the two DBSM signals in each
row is ∥2hm∥, and the Euclidean distance between the two

TABLE 7. DBSM/SM-Formed Signals in the Systems with M = 4.

DBSM SM DBSM SM

0000 h1 h1 1111 −h1 −h3

0001 h2 h2 1110 −h2 −h4

0011 h3 h3 1100 −h3 −h1

0010 h4 h4 1101 −h4 −h2

0100 jh4 jh1 1011 −jh4 −jh3

0101 jh1 jh2 1010 −jh1 −jh4

0111 jh2 jh3 1000 −jh2 −jh1

0110 jh3 jh4 1001 −jh3 −jh2

conventional SM signals in each row is ∥hm+hm′∥, where
m,m′ = 1, 2, 3, 4 and |m − m′| = 2. As such, the largest
mean Euclidean distance E{∥2hm∥}, m ∈ {1, 2, 3, 4}, is
guaranteed by the QPSK-modulated DBSM for any two
DBSM signals mapped by the two bit-sequences that have
the largest number of different bits, namely 2 log2 M = 4.

3) 8QAM-Modulated DBSM
Based on Fig. 3(c) and (4) with M = 8, the Euclidean
distance between any two DBSM signals mapped by the
complementary bit-sequences of length 2 log2 M = 6 is
∥
√

8 + 4
√
3hm∥, m ∈ {1, 2, · · · , 8}. As the average energy

per 8QAM symbol in Fig. 3(c) is 3 +
√
3, the normalised

Euclidean distance applied to the two bit-sequences having

the largest number of different bits is ∥
√

2 + 2/
√
3hm∥.

4) Generalised Criteria
For an MQAM-modulated DBSM system, the MQAM
constellation design meets the following criteria.

• For the indexing, the index difference between the two
MQAM symbols mapped by a pair of complementary
bit-sequences having length U = log2 M is M/2,
i.e., |k − k′| = M/2 given that b1b2 · · · bU ↔ Θk

and b̄1b̄2 · · · b̄U ↔ Θk′ , where b̄u is the complement
of bu, u = 1, 2, · · · , U . This criterion guarantees
that the same TA, i.e., the same channel state hm,
m ∈ {1, 2, · · · ,M}, will be activated in the two
DBSM signals that are mapped by complementary bit-
sequences of length 2 log2 M .

• For the mapping, any pair of complementary bit-
sequences having length U = log2 M , i.e., b1b2 · · · bU
and b̄1b̄2 · · · b̄U , are mapped onto the two specific
MQAM symbols that have the same largest possible
Euclidean distance δ. In other words, the same δ
is applied to each pair of MQAM symbols mapped
by complementary bit-sequences. This criterion further
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RDB = log2(M
2)− 1

M2

M−1∑
k=0

M−1∑
l=0

Ez
{
log2

(
1 +

M−1∑
k′=0

M−1∑
l′=0

(k′,l′ )̸=(k,l)

exp
(
−ρ
(
∥dk,k′

l,l′ + z∥2 − ∥z∥2
))

︸ ︷︷ ︸
fDB(ρ)

)}
(13)

constructs ∥δhm∥ as the Euclidean distance between
any two DBSM signals mapped by the complementary
bit-sequences of length 2 log2 M .

The indexing and mapping criteria ensure that any pair
of complementary bit-sequences having length 2 log2 M are
eventually mapped onto the two DBSM signals that have
the largest mean Euclidean distance, thus leading to the
DBSM having higher reliability than the conventional SM.
The detailed reason behind this will be further clarified using
the BER performance analysis in Section IV-A.

III. ACHIEVABLE DATA RATE
To evaluate the spectral efficiency and the spatial multi-
plexing gain achieved by the proposed DBSM, the analysis
framework of its ADRs is established in the discrete-input
continuous-output memoryless channel model, for various
system configurations. Moreover, the ADRs of the conven-
tional SM are presented within the same system configura-
tions for the sake of comparison.

Based on (3), the received signals of an (M,N) DBSM
system can be rewritten as

y = HW

[
α
β

]
+ z = HW

[
Θk

Θl

]
+ z, (11)

k, l ∈ {0, 1, · · · ,M − 1},
where

W =
1

2



1 −Θk/Θl

...
...

1 −Θk/Θl

1 Θk/Θl

1 −Θk/Θl

...
...

1 −Θk/Θl



 (l−k) mod M

 (M−1)− ((l−k) mod M)

(12)
is an M × 2 matrix carrying out the DBSM.

To keep consistency in the expression, the AWGN power
at the receiver is denoted by σ2

Z , and the normalised signal-
to-noise power ratio (SNR) is denoted by ρ = 1/σ2

Z ,
where the average energy per transmitted MQAM symbol
is normalised to unity.

Given a realisation of the channel matrix H, the instan-
taneous ADR of the DBSM using MQAM in an (M,N)
system is formulated by (13), where the N × 1 vector

dk,k′

l,l′ = H

(
W

[
Θk

Θl

]
−W′

[
Θk′

Θl′

])
(14)

is associated with k, k′, l, l′ ∈ {0, 1, · · · ,M − 1}, and
(k′, l′) ̸= (k, l) excludes the event when k′ = k and l′ = l

simultaneously occur from the summation, as dk,k′

l,l′ = 0N×1

and exp(−ρ(∥dk,k′

l,l′ + z∥2 − ∥z∥2)) = 1 in the case that
k′ = k and l′ = l simultaneously occur. The M × 2 matrix
W is given by (12), and

W′ =
1

2



1 −Θk′/Θl′

...
...

1 −Θk′/Θl′

1 Θk′/Θl′

1 −Θk′/Θl′

...
...

1 −Θk′/Θl′



 (l′−k′) mod M

 (M−1)− ((l′−k′) mod M)

is the M × 2 matrix to carry out the DBSM for the symbols
Θk′ and Θl′ .

By contrast, the instantaneous ADR of conventional SM
using MQAM in an (M,N) system is expressed as (15),
where the N × 1 vector

qk,k′

m,m′ = hmΘk − hm′Θk′ (16)

is associated with m,m′ ∈ {1, 2, · · · ,M} and k, k′ ∈
{0, 1, · · · ,M − 1}, excluding the event when m′ = m and
k′ = k occur together from the summation.

For a given channel realisation, fDB(ρ) in (13) and fSM(ρ)
in (15) are both monotonically decreasing functions of the
normalised SNR ρ, and both of them converge to 1, when ρ
tends to infinity, i.e.,

lim
ρ→+∞

fDB(ρ) = lim
ρ→+∞

fSM(ρ) = 1. (17)

Thus, as ρ approaches infinity, we have the limit

lim
ρ→+∞

RDB(ρ) = lim
ρ→+∞

RSM(ρ) = log2(M
2), (18)

which is the upper bound on the ADRs of both DBSM and
conventional SM, using MQAM in an (M,N) system.

In Fig. 5, the ergodic ADR of the DBSM, i.e., EH{RDB},
is compared with that of the conventional SM, i.e.,
EH{RSM}, for various system configurations using the con-
stellations given in Fig. 3. As shown in Fig. 5, the DBSM
achieves the same ergodic ADR as the conventional SM, i.e.,
EH{RDB} = EH{RSM}, in the same system configuration.
The reason behind this is that the varied forms of dk,k′

l,l′

in (14) with k, k′, l, l′ = 0, 1, · · · ,M − 1 are the same
as those of qk,k′

m,m′ in (16) with m,m′ = 1, 2, · · · ,M ,
k, k′ = 0, 1, · · · ,M − 1 and, moreover, all the varied forms
occur at the same probability, which leads to the same
ergodic values of (13) and (15).
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RSM = log2(M
2)− 1

M2

M∑
m=1

M−1∑
k=0

Ez
{
log2

(
1 +

M∑
m′=1

M−1∑
k′=0

(m′,k′ )̸=(m,k)

exp
(
−ρ
(
∥qk,k′

m,m′ + z∥2 − ∥z∥2
))

︸ ︷︷ ︸
fSM(ρ)

)}
(15)
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FIGURE 5. Ergodic ADR comparisons between DBSM and conventional
SM for various system configuration.

As the normalised SNR ρ increases, i.e., as the AWGN
power σ2

Z decreases, the ergodic ADRs of both the DBSM
and the conventional SM converge to the same value, namely
2 log2 M bits/sec/Hz, which agrees with the limit given in
(18). Since this limit is not affected by the number of RAs,
N , the ergodic ADR of an DBSM or SM system associated
with any number of RAs converges to the same value, as
exemplified by comparing the cases of N = 1 and N = 4
in Fig. 5.

In addition, the ADRs of the DBSM with M = 2 converge
faster than those of the DBSM with M > 2. The main reason
behind this is that the DBSM with M = 2 achieves higher
spatial multiplexing gain than the DBSM with M > 2.
The spatial multiplexing gain of a MIMO system having
Gaussian-distributed inputs is defined in [22, Eq. (3)] as

lim
ρ→∞

C(ρ)

log2 ρ
, (19)

where C(ρ) is the error-free channel capacity and log2 ρ
is the amount of bits carried by a signal, as the SNR ρ
tends to infinity. However, the definition (19) cannot be
directly applied to a MIMO system having finite-alphabet
modulations, since the ADR R(ρ) converges to a constant
and the ratio R(ρ)/ log2 ρ approaches zero as ρ goes to
infinity.

As such, the spatial multiplexing gain of a MIMO system
with finite-alphabet modulations can be characterised as the
ADR normalised with respect to the received SNR [22]. The
instantaneous SNR at the DBSM receiver can be expressed

as

ρHWRXW†H† = ρHWW†H† ≜ ρH̃H̃†, (20)

where RX = I2 is the covariance matrix of the two MQAM
symbols [α, β]T in an arbitrary transmission. Note that, in
an DBSM system with M = 2, i.e., using BPSK modulation
and two TAs, the matrix W in (12) is always

1

2

[
1 1
1 −1

]
. (21)

Thus, we have WW† = (1/2)I2 and H̃H̃† = (1/2)HH†

in (20) for the DBSM with M = 2.
In particular, the received SNR of the vertical Bell Labora-

tories layered space-time architecture (V-BLAST) is ρHH†

[23], and the received SNR of the DBSM with M = 2
is ρH̃H̃† = (1/2)ρHH†. This indicates that the spatial
multiplexing gain of the DBSM with M = 2 is equivalent to
that of the V-BLAST, which is the full spatial multiplexing
gain achieved by a MIMO system [22].

On the other hand, the received SNR of the DBSM with
M = 2 is 3dB lower than that of the V-BLAST in the
same system configuration. As observed from (11), the 3dB
loss is incurred because the total radiated power of a single
transmission in the DBSM system with M = 2 is half that of
a single transmission in the V-BLAST system with the same
configuration. In other words, if the total radiated power in
a single transmission is kept identical for both the DBSM
and the V-BLAST, i.e., by increasing the factor 1/2 in the
matrix (21) to 1/

√
2, the DBSM with M = 2 will achieve the

same received SNR as the V-BLAST with the same system
configuration, i.e., ρH̃H̃† = ρHH†.

As M increases, namely M > 2, the product WW† is
formed as

1

4



1 + θ2 · · · 1 + θ2 1− θ2 1 + θ2 · · · 1 + θ2

...
. . .

...
...

...
. . .

...
1 + θ2 · · · 1 + θ2 1− θ2 1 + θ2 · · · 1 + θ2

1− θ2 · · · 1− θ2 1 + θ2 1− θ2 · · · 1− θ2

1 + θ2 · · · 1 + θ2 1− θ2 1 + θ2 · · · 1 + θ2

...
. . .

...
...

...
. . .

...
1 + θ2 · · · 1 + θ2 1− θ2 1 + θ2 · · · 1 + θ2


,

where θ = Θk/Θl. More specifically, all the entries in the
([(l − k)modM ] + 1)th row and the ([(l − k)modM ] +
1)th column, except for the ([(l − k)modM ] + 1, [(l − k)
modM ]+1)th entry, are 1−θ2, whilst all the other entries are
1+ θ2. This matrix generates correlated rows and correlated
columns in the product H̃H̃† = HWW†H†, thus reducing
the spatial multiplexing gain.

8 VOLUME ,



IV. BIT ERROR RATE
From a mathematical perspective, the spatial diversity gain of
a MIMO system is essentially obtained from the chi-squared
distribution formed by multiple i.i.d. complex Gaussian
random variables. Equivalently, the spatial diversity gain
obtained by our DBSM is from the largest possible Euclidean
distance, as shown in Section II-C.

The spatial multiplexing gain of a MIMO system is
reflected by its ergodic ADR, and the spatial diversity gain
of a MIMO system is reflected by its BER [22]. The ADRs
of the DBSM associated with various system configurations
have been analysed in Section III, illustrating the throughput
and the spatial multiplexing gain achieved by the DBSM.
In this section, the BERs of the DBSM are investigated to
explicitly demonstrate its reliability while indicating the spa-
tial diversity gain achieved by the largest possible Euclidean
distance design.

To begin with, the BERs of the DBSM without channel
coding in various system configurations are analysed for
evaluating its stand-alone reliability and the performance
gain achieved by itself over conventional SM. Then, the
BERs of channel-coded DBSM systems are presented and
compared with those of the channel-coded conventional-
SM systems, to confirm that channel coding techniques will
further enhance the performance gain achieved by the DBSM
over conventional SM.

A. UNCODED SYSTEMS
As shown in (4), the ML algorithm is exploited for the
detection of our DBSM. Given a realisation of the channel
matrix H, the BER of the DBSM is upper-bounded by the
sum of pairwise error probabilities [24], expressed as

ϵDB =
1

M2

M−1∑
k=0

M−1∑
l=0

M−1∑
k′=0

M−1∑
l′=0

(k′,l′ )̸=(k,l)

Nk→k′

l→l′

2 log2 M
Q

(
∥dk,k′

l,l′ ∥√
2σ2

Z

)
,

(22)

where the N × 1 vector dk,k′

l,l′ is given in (14), and Nk→k′

l→l′

denotes the number of bits in error, when the vector
[Θk,Θl]

T is mistaken for [Θk′ ,Θl′ ]
T by the ML detector,

i.e., the number of different bits between these two pieces
of information, k, k′, l, l′ ∈ {0, 1, · · · ,M − 1}.

By contrast, the BER of the conventional SM using ML
detection is upper-bounded by

ϵSM =
1

M2

M∑
m=1

M−1∑
k=0

M∑
m′=1

M−1∑
k′=0

(m′,k′ )̸=(m,k)

Nk→k′

m→m′

2 log2 M
Q

(
∥qk,k′

m,m′∥√
2σ2

Z

)
,

(23)

where the N ×1 vector qk,k′

m,m′ is given in (16), and Nk→k′

m→m′

denotes the number of bits in error when the vector hmΘk

is mistaken for hm′Θk′ by the ML detector, i.e., the number
of different bits between these two pieces of information,
m,m′ ∈ {1, 2, · · · ,M}, k, k′ ∈ {0, 1, · · · ,M − 1}.
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FIGURE 6. BER comparisons between DBSM and conventional SM in
BPSK-modulated (2, 1), (2, 2), and (2, 4) systems.

To illustrate the accuracy of the upper-bounds (22) and
(23), Fig. 6 compares the BERs of the DBSM and the
conventional SM in BPSK-modulated (2, 1), (2, 2), and
(2, 4) systems, where the numerical results based upon (22)
and (23) are presented along with the simulation results.
As shown in this figure, the upper-bounds are a bit higher
than the simulation results at low SNRs, especially for the
(2, 1) and (2, 2) systems. As the SNR or the number of RAs
increases, the upper-bounds agree with the simulation results
very well.

Moreover, both the numerical results of the upper-bounds
and the simulation results substantiate that the BER per-
formance of the BPSK-modulated DBSM is about 1dB
better than that of the conventional SM. The main reason
behind this is that the overall Euclidean distance between
two DBSM-formed signals is larger than that between two
conventional SM-formed signals in the same configuration.
As shown by the shaded cells in Table 6, dk,k′

l,l′ = 2hm ∼
CN (0N×1, 4IN ), m = 1, 2, for the number of different
bits in a pair of DBSM-formed signals, Nk→k′

l→l′ = 2, while
qk,k′

m,m′ = h1 + h2 ∼ CN (0N×1, 2IN ) for the number of
different bits in a pair of conventional SM-formed signals,
Nk→k′

m→m′ = 2. More specifically, the Euclidean distance
between the DBSM signals mapped by 00 and 11 is ∥2h1∥,
and that between the DBSM signals mapped by 01 and 10
is ∥2h2∥. By contrast, the Euclidean distance between the
conventional SM signals mapped by 00 and 11 or 01 and 10
is ∥h1 + h2∥.

Since E{∥dk,k′

l,l′ ∥2} = 2E{∥qk,k′

m,m′∥2} for Nk→k′

l→l′ =

Nk→k′

m→m′ = 2, the DBSM guarantees the largest mean
Euclidean distance E{∥2hm∥}, m ∈ {1, 2}, pertaining to the
largest number of different bits, 2 log2 M = 2, in BPSK-
modulated systems. In (22) and (23), the Q-function is
a monotonically decreasing function and, accordingly, we
have Q(∥dk,k′

l,l′ ∥/
√

2σ2
Z) < Q(∥qk,k′

m,m′∥/
√

2σ2
Z) for the case
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FIGURE 7. BER comparisons between DBSM and conventional SM in
QPSK-modulated (4, 1), (4, 2), and (4, 4) systems.

of Nk→k′

l→l′ = Nk→k′

m→m′ = 2 from an ergodic perspective,
which leads to the DBSM having higher reliability than the
conventional SM.

In the same way, the largest mean Euclidean distance
E{∥2hm∥}, m ∈ {1, 2, 3, 4}, is guaranteed by the QPSK-
modulated DBSM for the case that Nk→k′

l→l′ = 4, which can
be observed from Table 7. In the case that Nk→k′

m→m′ = 4,
the mean Euclidean distance between two conventional
SM-formed signals is E{∥hm + hm′∥}, where m,m′ =
1, 2, 3, 4 and |m − m′| = 2. The BERs of the DBSM
and the conventional SM are compared in Fig. 7 for the
QPSK-modulated (4, 1), (4, 2), and (4, 4) systems, where
the DBSM achieves better BER performance. Explicitly,
the performance gain achieved by the QPSK-modulated
DBSM over the conventional SM is smaller than that
achieved by the BPSK-modulated DBSM. This is because
of the following two reasons. Firstly, the proportion of
the bit-sequence pairs having the largest number of differ-
ent bits, 2 log2 M , in all the pairs is 1/M2, which gets
lower as M increases. Secondly, the difference between
Q(∥2hm∥/

√
2σ2

Z) for the largest number of different bits
and (2 log2 M − 1)/(2 log2 M)Q(∥hm + hm′∥/

√
2σ2

Z) for
the second largest number scenario becomes negligible, as
M increases. As such, the contribution of the bit-sequence
pairs having the largest number of different bits to the
summation in the BER (22) is reduced upon increasing M ,
which shrinks the performance gain achieved by the DBSM
over the conventional SM.

To further expose the impact of increasing M on the
performance gain of the DBSM, Fig. 8 compares the BERs
of the DBSM and the conventional SM in (2, 1), (4, 1), and
(8, 1) systems. From Figs. 6 and 7, we may find that the
performance gain achieved by the DBSM over the conven-
tional SM remains the same with the increase in the number
of RAs, N . Therefore, the performance with more RAs can
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FIGURE 8. The impact of increasing M on the performance gain achieved
by DBSM over conventional SM.

be anticipated in a straightforward manner based on the case
of N = 1 investigated in Fig. 8. As shown in this figure, the
performance gain of the DBSM is reduced as M increases.
The main reason behind this is that all the bit-sequence pairs
appear at the same probability, and the contribution of the
pairs having the largest number of different bits to the BER
reduction is degraded upon increasing M , as justified in the
discussion on Fig. 7. More specifically, the DBSM systems
with M = 2, 4, and 8 achieve nearly 1dB, 0.6dB and 0.3dB
performance gains, respectively, over the conventional SM
systems with the same configurations.

B. CHANNEL-CODED SYSTEMS
Herein, channel coding techniques are applied to the DBSM
for augmenting the DBSM’s advantage in the largest mean
Euclidean distance imposed upon a pair of complementary
bit-sequences. For the information delivery over physical
channels, the Hamming distance between two codewords
is reflected by the Euclidean distance between the signals
mapped by the codewords. Thus, channel coding will boost
the performance gain achieved by the DBSM over the
conventional SM.

1) Convolutional Coding
The block diagram of a DBSM system relying on convo-
lutional coding is shown in Fig. 9. The counterpart of a
conventional SM system using convolutional coding can be
obtained directly upon replacing the circled DBSM modules
by conventional SM modules.

A popular convolutional encoder having a constraint
length of 7 and code rate of 1/2 is used as an example
for illustrating the performance gain of the DBSM. The
generator polynomials are 1 + u−1 + u−2 + u−3 + u−6 and
1+u−2+u−3+u−5+u−6. A hard-decision Viterbi decoder
having 64 states is utilised at the receiver for decoding. A

10 VOLUME ,
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FIGURE 9. A DBSM system with convolutional coding.
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FIGURE 10. BER comparisons between DBSM and conventional SM in
(2, 1), (4, 1), and (8, 1) systems with convolutional coding.

frame is composed of 2436 information bits. With 12 tail
bits added for the trellis termination, there are 4884 bits
in the resultant codeword. For each BER measurement, 105

frames are used for evaluating the statistics at a SNR in a
given system configuration.

The BERs of DBSM and conventional SM using convolu-
tional coding are compared in Fig. 10 for BPSK-modulated
(2, 1), QPSK-modulated (4, 1) and 8QAM-modulated (8, 1)
systems. Compared to the BERs of uncoded systems in Fig.
8, the channel-coded systems significantly enhance the per-
formance gain achieved by the DBSM over the conventional
SM, as shown in Fig. 10. The main reason behind this is that
complementary channel-coded bit-sequences tend to appear
in any pair of codewords at a near-unity probability. By
contrast, in uncoded systems all pairs of bit-sequences tend
to appear at a similar probability. As a benefit of channel
coding, the above observation results in a higher probability
for the largest Euclidean distance sequences to be picked by
the channel-coded DBSM, than in uncoded systems.

To elaborate briefly, the computational complexity of the
hard-decision Viterbi decoder in a DBSM system is exactly
the same as that in a conventional SM system of the same
configuration. Given this condition, for M = 2, 4, and 8, the
DBSM systems using convolutional coding achieve 1.5dB,
0.8dB and 0.5dB performance gains, respectively, over the
conventional SM systems with convolutional coding.

2) Turbo Coding
The block diagram of a turbo-coded DBSM system is shown
in Fig. 11. The counterpart of a turbo-coded conventional
SM system can be obtained directly by replacing the circled
DBSM modules with the conventional SM modules.

The turbo coding scheme used in the long-term evolution
(LTE) standard is adopted in our simulations. A frame is
composed of 2432 information bits, and the base rate is
1/3. The output of the turbo encoder is composed of three
streams: one contains systematic bits, and the other two
contain parity bits. The interleaver permutes the indices of
the input bits based on a quadratic polynomial permutation
[25]. The feed-forward and the feedback generator polyno-
mials are expressed as 1 + u−2 + u−3 and 1 + u−1 + u−3,
respectively, which are used to generate the two parity bit
streams [26]. With 4 tail bits added at each stream for the
trellis termination, the resultant length of a codeword is
(2432 + 4)× 3 = 7038.

The codewords are modulated either by the DBSM or
by the conventional SM, and then delivered through the
physical channels. At the receiver, the soft decision is used
for obtaining the log–likelihood ratio (LLR) of each bit in a
received codeword, calculated as [27]

LLR(vi) = ln

∑
vi=0

exp

(
−∥y(vi)− h♯viΘ(vi)∥2

σ2
Z

)
∑
vi=1

exp

(
−∥y(vi)− h♯viΘ(vi)∥2

σ2
Z

) , (24)

where vi is the ith bit in a codeword, i = 1, 2, · · · , 7038,
and the N × 1 vector y(vi) contains the received signals
given the bit vi in its position. The N × 1 vector h♯vi ∈
{h1,h2, · · · ,hM} contains the channel coefficients of the
links spanning from the TA activated by the bit vi to all
the RAs, and the TA is activated according to the DBSM or
the conventional SM design. The MQAM symbol Θ(vi) ∈
{Θ0,Θ1, · · · ,ΘM−1} is mapped by the bit-sequence with
vi in its position.

We remark that the computational complexity of the soft
decision in an DBSM system is exactly the same as that
in a conventional SM system, i.e., associated with M2

multiplications and 2M2 log2 M additions for the calculation
of each LLR. Using the LLRs of all the 7038 bits in a
received codeword, the turbo decoding is performed to get
the 2432 decoded information bits of a frame. For each BER
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FIGURE 11. A turbo-coded DBSM system.
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(b) 6 iterations in turbo decoding

FIGURE 12. BER comparisons between DBSM and conventional SM in
turbo-coded (2, 1), (4, 1), and (8, 1) systems.

measurement at a SNR in a given system configuration, 105

frames are conveyed to get the statistics.
The BERs of turbo-coded DBSM and turbo-coded con-

ventional SM are compared in Fig. 12 for BPSK-modulated
(2, 1), QPSK-modulated (4, 1), and 8QAM-modulated (8, 1)
systems, where the turbo decoder executing 2 iterations
and that executing 6 iterations are used in each system

to characterise the performance-versus-complexity tradeoff.
As shown in this figure, the performance gain achieved
by the DBSM over the conventional SM is significantly
enhanced in turbo-coded systems, compared to that in the
uncoded systems. Moreover, the performance gain achieved
by the DBSM over the conventional SM is further increased
when a more powerful decoder is utilised. More specifically,
upon executing 2 iterations in the decoding, the turbo-coded
DBSM systems with M = 2, 4, and 8 achieve 1.5dB, 0.8dB
and 0.5dB performance gains, respectively, over the turbo-
coded conventional SM systems having the same configura-
tions. These performance gains are 2dB, 1.3dB and 0.8dB,
respectively, if 6 iterations are executed. This reveals that the
engagement of more powerful decoders will better exploit
the advantages of our DBSM design.

V. CONCLUSION
A. SUMMARY
In this paper, a new multi-antenna transmission scheme,
referred to as DBSM, has been proposed to improve the
reliability of SM. In each DBSM transmission, two MQAM
symbols are conveyed in different ways. One is physically
radiated from an active TA, which is selected according to
the difference between the two symbols. Although the other
one is not radiated physically, its information is carried by
the radiated one and the specific selection of the active TA.

The benefit of the DBSM lies in the TA indexing and the
MQAM mapping, which ensures that the largest possible
Euclidean distance is applied to a pair of DBSM signals
that are mapped by complementary bit-sequences. This guar-
antees that the DBSM outperforms the conventional SM,
especially with the aid of channel coding techniques.

Our theoretical analysis and illustrative simulation results
have substantiated that DBSM has the following energy-
efficiency, spectral-efficiency, and reliability advantages:

(i) Similar with conventional SM, DBSM requires only a
single RF chain as it activates only a single TA in each
transmission. This improves the energy efficiency and
avoids inter-channel and/or inter-antenna interference.

(ii) The DBSM utilises a single TA to radiate a single
symbol in each transmission, which guarantees that
there is no inter-symbol interference at all in the si-
multaneous delivery of two symbols. In terms of the
ADR, the spectral efficiency of the DBSM is the same
as that of the conventional SM, given the same system
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configuration. In particular, the DBSM achieves full
spatial multiplexing gain in BPSK-modulated systems
having two TAs.

(iii) As the DBSM imposes the largest possible Euclidean
distance on the delivery of two complementary bit-
sequences, it achieves higher reliability than the con-
ventional SM. The performance gain achieved by
DBSM over conventional SM in the coded systems is
higher than that of uncoded systems, because comple-
mentary bit-sequence pairs appear at higher probability
when using channel coding techniques.

B. FUTURE WORK
We introduced the DBSM concept and its constellation
design. Furthermore, we characterised its performance in
terms of ADR and BER.

Since the idea of SM has opened the door for informa-
tion mapping through various dimensions, e.g., frequency
bands, time slots, spreading codes, and dispersion matrices,
our DBSM can also be applied to those dimensions in a
straightforward manner. Moreover, advanced channel coding
and signal detection solutions are being pursued to further
improve the DBSM performance, specifically for higher-
order modulated massive MIMO systems.
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