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Abstract 

Railway simulation models can be used to assess the robustness of timetables by subjecting the simulated traffic 

to minor disruptions and analysing their impact. For the output of such models to be meaningful, signallers' 

actions in the event of disruptions need to be represented with a reasonable level of accuracy. This paper 

presents a hybrid modelling approach that combines simulation software with a model for making traffic 

management decisions. The construction of the traffic management model is flexible, and this paper considers 

different approaches. Each approach takes a pair of trains as input and predicts which one will have priority at 

a conflict location. Traffic management models created using conditional logic are compared with machine 

learning models built using years of historical data. Results are presented using a case study of six conflict 

locations: the models make predictions for a dataset of pairs of conflicting trains gathered over 90 days. The 

machine learning models demonstrate a higher level of agreement with the data than the programmatic models, 

although the gains for some conflict locations were more significant than others, indicating that each conflict 

location has its unique characteristics. The traffic management models were then integrated with the simulation 

software, and a week's worth of historical data was simulated. The machine learning approach for predicting 

traffic management actions again showed better agreement with the real data.  
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1. Introduction 

Railway simulation models have the potential to help planners deliver better services for passengers by 

modelling timetable changes ex-ante. One challenge of simulation modelling is the representation of traffic 

management when delays occur. The ability to model realistic decisions is necessary if using a simulation to 

assess the robustness of a new timetable. When trains deviate from their schedules, there is a risk of conflicts 

arising between train pathways, and it is a challenge to model the resolution of these conflicts realistically in a 

simulation model.  

This paper compares traditional programmatic methods for deciding traffic management actions within a 

simulation model with machine learning approaches. The methodology uses historical data to evaluate the 

effectiveness of the different models and uses them to make traffic management decisions in a simulation. 

The next section of this paper discusses simulation models and machine learning in the railway domain. Section 

3 describes the methodology with the results presented in Section 4. The concluding section discusses future 

work.  

 

2. Simulation and machine learning in railway applications 

There are many different simulation modelling approaches; railway simulations that can replicate operations 

in a high level of detail are usually microscopic, synchronous and stochastic [1]. Microscopic models replicate a 

railway network to a low level of detail; for example, the track may be represented to the nearest metre. 

Synchronous railway simulations are capable of running trains simultaneously across the network. Stochastic 

models include random variables to account for uncertainty in, for example, run- or dwell-times.  

Railway simulations typically require large amounts of data input to represent the network. They also require 

rules that control interlocking and the management of traffic. The output of such a simulation model may be 

metrics, such as total minutes delayed. All models employ some abstraction and simplification, but the rules 
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governing how traffic is managed in a railway simulation need to be sufficiently realistic so that the outputs are 

meaningful.  

Machine learning (ML) is a subfield of artificial intelligence. As with simulation modelling, there are many 

branches and types of ML, one of which is supervised ML, whereby the models are trained to learn rules that 

will map a set of input values to outputs. In a railway context, there are examples of supervised machine 

learning being used to predict the travel times of trains between locations [2]. Relevant to the work in this 

paper, a supervised machine learning model in [3] mimics the decisions of signallers. The model takes the 

details of two trains in conflict as input and outputs which train will be allowed to pass and which will be 

delayed. Using a set of 331 test data records, the model correctly predicted which train was given priority for 

327 records, an accuracy of over 98%. 

Simulations and ML are two different modelling approaches, but there are examples of hybrid models that 

combine the two techniques outside the railway domain. One example is in the healthcare domain, where ML 

models are used to predict the travel speed of ambulances; the learned ML models are then used in 

simulations to model the travel durations of ambulances to emergencies and hospitals [4].  

3. Methodology 

3.1 Aims 

This work aims to build machine learning models that can resolve conflicts between pairs of trains on a railway 

network; that is, to determine which train will have priority at a conflict location. In this work the models seek 

to replicate the most likely decisions taken by signallers, rather than aiming to find the optimal decision. The 

ability to model other traffic management actions such as re-routing or cancelling services are out of scope.  

The accuracy of the ML models will be compared to more straightforward modelling techniques and 

programmatic rules. The ML models will be used to control traffic management within a railway simulation 

model. 

3.2 Case study area 

This work will be demonstrated using a small section of the Havant train describer (TD) on the south coast of 

England, which is shown in Figure 1. The area comprises three junctions and six possible locations where 

conflicts may occur. The conflict locations are described as pairs of 'steps' from one signal to another and are 

listed in Table 1. There are three 'joining' conflicts (locations 1 – 3), where the conflicting routes are stepping 

into the same berths, and three 'crossing' conflicts (locations 4 – 6).  

Figure 1: The junctions included in the case study 
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3.3 Data 

The dataset for this work has been put together using Network Rail's open data feeds1. A process has been 

developed that creates a master dataset of train movements by matching historical train movements from 

Network Rail's train describer (TD) C-Class data to long- and short-term schedules. The TD data represent the 

times that trains move from and to berths, controlled by a main signal. 

The dataset comprises passenger trains, freight trains and empty coaching stock (ECS). Data has been collected 

from 2018-04-06 to 2021-09-16 (inclusive) – a period of 1260 days. The data were mined to identify pairs of 

trains approaching the mutually exclusive steps listed in Table 1.  

 

 

3.4 Modelling process 

Models are developed individually for each conflict location; they may be viewed as binary classification 

models where the output will be one or zero. For each conflict location, an output of one will correspond to 

the train moving towards Step 1 having priority. Conversely, an output of zero corresponds to the train moving 

towards Step 2 having priority.  

The modelling process first consists of a period of exploration that experiments with a wide range of models. 

The records from the first 1170 dates in the dataset were used during this phase to create and validate 

different models and are referred to as the training dataset. Data from the last 90 days are referred to as the 

testing dataset. These data were held out during the exploration phase and were only used once the most 

promising machine learning models had been identified. These data were then used to evaluate the models. 

The number of records used for building and testing the models is shown in Table 2.  

Table 2: Number of records in the training and testing datasets for each conflict location 

The model exploration phase considers three different model types: baseline, programmatic and machine 

learning (ML). The baseline models are computationally inexpensive and straightforward to understand. Any 

 
1 https://www.networkrail.co.uk/who-we-are/transparency-and-ethics/transparency/open-data-feeds/ 

 Step 1 Step 2 

Conflict Location From berth To berth From berth To berth 

1 HT_0042 HT_0040 HT_0400 HT_0040 

2 HT_0320 HT_0318 HT_0401 HT_0318 

3 HT_0325 HT_0041 HT_0039 HT_0041 

4 HT_0037 HT_0401 HT_0042 HT_0040 

5 HT_0044 HT_0042 HT_0325 HT_0041 

6 HT_0323 HT_0325 HT_0401 HT_0318 

Table 1: The conflict locations in the case study 

 Conflict Location 

 1 2 3 4 5 6 

Number of records in the training dataset 34203 21528 49585 34040 83533 21166 

Number of records in the testing dataset 2674 1883 4402 2320 6432 1617 

https://www.networkrail.co.uk/who-we-are/transparency-and-ethics/transparency/open-data-feeds/
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more complex model must, at the very least, be capable of producing a higher accuracy than the baseline 

models. A range of baseline models was developed, two of which are presented here: 

• Baseline 1: This model makes a constant prediction for each conflict location based on the direction of 

travel that is most often given priority. 

• Baseline 2: The records are grouped by the berths each train is in, their destinations, the types of 

trains (passenger, freight or ECS) and the train scheduled to go first. A constant prediction is made for 

each group, depending on which trains are most frequently given priority. 

Programmatic models are defined by conditional statements (if… then… else…). Like the baseline models, their 

logic can be simple to interpret. As with the baseline models, a wide range of programmatic models were 

considered, three of which are presented here: 

• Programmatic 1: The train scheduled to travel across the conflict first will have priority. 

• Programmatic 2: A passenger train will have priority over a freight train or ECS if it is at least one 

signal closer to the conflict, and express passenger trains will have priority over non-express trains, 

again if it is at least one signal closer to the conflict. Otherwise, the trains will travel in scheduled 

order. 

• Programmatic 3: A train that is stopping between its current location and the conflict location will give 

priority to a train that is not stopping. Otherwise, the trains will travel in their scheduled order.  

A classification algorithm known as gradient boosting [5] was used to build ML models for each conflict 

location. The disadvantage of ML models is that they are more difficult to interpret than either the 

programmatic or baseline models. However, they can exploit more complex relationships in the data. The 

model exploration phase is more intensive for the ML models than the other modelling approaches, as many 

hyperparameters can be adjusted. A randomised search was used to explore the range of possible 

hyperparameters, and the hyperparameters that produced the highest accuracy may vary between conflict 

locations. The machine learning models output a value between zero and one, and the values are then 

rounded so that all the output predicts zero or one.  

3.5 Simulation model 

A discrete event simulation model has been developed using the Python programming language. It may be 

classed as a mesoscopic model, as it does not include the same level of detail as many commercial models. It is 

capable of modelling on a deterministic or stochastic basis. The simulation is designed to be integrated with 

the range of models described in the previous section. Therefore, it is possible to compare the impact of using 

baseline, programmatic and machine learning models within the simulation.  

A week's worth of historical data between 2021-08-09 and 2021-08-15 was used to create input into the 

simulation model, referred to as the simulation dataset. The date range was selected as it contained good 

quality data and was a subset of the date range of the testing dataset. A small number of trains had to be 

removed due to incomplete data (for example, not being able to match a train's movements to a known 

schedule). The network area modelled in the simulation was larger than that shown in Figure 1 as it was 

necessary to simulate the trains as they approached the conflict locations from some distance away. 

4. Results  

4.1 Traffic management models 

The agreement between the testing data set and the model output is shown in Table 3. The results show that 

the gradient boosting models can achieve the highest accuracies. However, the accuracies of many of the other 
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modelling approaches were not significantly lower than the gradient boosting models. The gradient boosting 

models were sensitive to the values of their hyperparameters, and it was possible to create variations of the 

models that would produce poor results; this meant that the baseline and programmatic models were essential 

for judging the ML models.  

The results show that each conflict location is unique, and some locations are more predictable than others. The 

so-called 'joining' locations (1, 2 and 3) achieve higher levels of agreement than the 'crossing' locations. This 

observation may indicate that deviating from the scheduled order of services can have a significant impact at 

joining locations. For example, for two trains approaching a joining location close in time, an express service 

would be scheduled ahead of slower services that stop regularly; reversing the order of such services at joining 

locations could have a detrimental impact on the remainder of the express train's journey. 

 

 Conflict Location 

Model Name 1 2 3 4 5 6 

Baseline 1 61.3% 92.4% 81.5% 51.7% 78.9% 87.1% 

Baseline 2 93.3% 96.0% 89.6% 79.9% 89.4% 87.2% 

Programmatic 1 95.0% 94.5% 86.7% 78.4% 86.5% 76.0% 

Programmatic 2 92.3% 94.2% 76.3% 80.7% 79.0% 79.0% 

Programmatic 3 85.7% 94.8% 88.5% 77.8% 88.2% 83.9% 

Gradient Boosting 95.0% 96.7% 93.6% 83.9% 92.5% 90.9% 

Table 3: Accuracy of each model (given to one decimal place) when applied to the testing data set; for each 
conflict location, the highest result for each model type is in bold, and the highest overall result is underlined 

Table 4: Simulation results by traffic management model 

4.2 Simulation model 

The simulation model was run deterministically in a series of experiments using different models for 

determining traffic management actions. The simulation used historical run-times of the trains to determine 

when the trains moved between berths apart from when an adverse signal prevented a train from moving, in 

which case the train would take longer to travel in the simulation than it did in reality. Therefore, any 

experiment that modelled the signalling actions with 100% accuracy would also find perfect agreement 

between the travel times of the trains in the simulation with the historical travel times. Table 4 shows how 

many trains in each experiment had an inaccurate travel time compared to reality: a lower number represents 

more agreement with the historical data. The 'Best Programmatic' model followed the programmatic logic that 

provided the highest accuracy for each conflict location.  

Traffic management model 
Number of trains with 

inaccurate travel times 
Percentage of all trains 

Baseline 2 112 4.3% 

Programmatic 1 135 5.2% 

Best Programmatic 134 5.2% 

Gradient Boosting 105 4.1% 
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The gradient boosting traffic management model provided the best agreement with the historical data. 

However, none of the experiments produced significantly poor results. This is likely due to the selection of the 

particular junctions and the date range chosen to model.  

5. Conclusions and further work 

This paper has presented various approaches to modelling the resolution of conflicts in railway traffic and has 

shown that these can be used to take signalling actions in a simulation model. Machine learning models were 

shown to have higher levels of agreement with reality than programmatic logic. However, no modelling 

approach was entirely accurate, and, for some conflict pairs, uncertainty remains about the action a signaller 

would actually take.  

The uncertainty may be due to a lack of information: additional data not identified in this work may improve the 

decision-making of the models. Alternatively, there may be some uncertainty that cannot be easily modelled. 

For example, signallers with different levels of experience may take alternative actions when faced with the 

same scenario. Similarly, there may be some conflicts where the action taken is of little consequence, for 

example, if an amount of buffer time has been added to schedules at a conflict location. Human signallers may 

also make mistakes and schedule trains in non-optimal fashions. 

Future work will consider whether supplementary data can improve the model accuracy and explore 

probabilistic versions of these models that will capture this uncertainty in stochastic simulations. Machine 

learning models can be calibrated so that the quality of their probabilistic output is improved, and being able to 

model the uncertainty in traffic management decisions may provide an additional benefit compared to 

programmatic models. Similar models will also be created for other traffic management decisions, such as re-

routing trains, and the case study area will be expanded to a more extensive section of the network. 

Furthermore, the work will be carry on to generate traffic management rule bases using optimisation 

techniques. For this, some objective function would be required, such as total minutes delayed. The simulation 

model presented in this study could then be used to compare the signalling actions learned by the machine 

learning algorithms with an optimised rule base.  

Acknowledgement 

This research was funded by Network Rail and EPSRC through an Industrial CASE research studentship. The 

authors acknowledge the helpful discussions with Ben Ford and Lloyd Barson from Network Rail, and the use of 

the IRIDIS High Performance Computing Facility at the University of Southampton. 

References 

[1] Medeossi, G. and de Fabris, S., "Simulation of Rail Operations", Handbook of Optimization in the Railway 

Industry, pp 1-24, 2018, https://doi.org/10.1007/978-3-319-72153-8_1 

[2] Kecman, P. and Goverde, R. M. P., "Adaptive, data-driven, online prediction of train event times", 

International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), 2013, 

https://doi.org/10.1109/ITSC.2013.6728330 

[3] Dündar, S. and Şahin, İ., "Train re-scheduling with genetic algorithms and artificial neural networks for 

single-track railways", Transportation Research Part C: Emerging Technologies, 2013, 

https://doi.org/10.1016/j.trc.2012.11.001 

[4] Olave-Rojas, D. and Nickel, S., "Modeling a pre-hospital emergency medical service using hybrid simulation 

and a machine learning approach", Simulation Modelling Practice and Theory, 2021, 

https://doi.org/10.1016/j.simpat.2021.102302 

[5] Hastie, T., Tibshirani, R. and Friedman, J., "Boosting and Additive Trees", The Elements of Statistical 

Learning: Data Mining, Inference, and Prediction, pp 337-387, 2009, https://doi.org/10.1007/978-0-387-

84858-7_10 

 

https://doi.org/10.1007/978-3-319-72153-8_1
https://doi.org/10.1109/ITSC.2013.6728330
https://doi.org/10.1016/j.trc.2012.11.001
https://doi.org/10.1016/j.simpat.2021.102302
https://doi.org/10.1007/978-0-387-84858-7_10
https://doi.org/10.1007/978-0-387-84858-7_10

