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One of the main goals of homotopy theory is to determine the homotopy types of topological spaces.
Furthermore, given a space, one may hope there is a way to decompose this space into simpler spaces
whose homotopy theory is well understood. In particular, it can be useful to study product
decompositions of the based loop space of the object we wish to consider – doing so provides useful data
about the object’s homotopy groups, amongst other things. Furthermore, by considering manifolds
through the lens of homotopy theory, it is natural to broaden one’s scope to Poincaré Duality complexes:
such complexes are a topological generalisation of manifolds and have an underlying structure that is
readily exploitable. Thus, by studying the loop spaces of Poincaré Duality complexes, we may answer
questions about the homotopy theory of manifolds.

In particular, given two manifolds of the same dimension, a natural object to consider is their connected
sum. This situation is often flipped: one asks the question of whether a given manifold is decomposable
as a connected sum of simpler manifolds. In areas such as surgery theory and differential topology this
problem is of fundamental importance, despite the fact that in dimensions higher than two the problem
is often inaccessible. This thesis studies this highly geometric problem from a new topological viewpoint,
using elements of classical homotopy theory together with recent results.

In expanding upon these methods, we find that the loop space decompositions of several classes of
highly connected manifolds coincide with those of the loop spaces of certain connected sums, and thus
we have a homotopy theoretic perspective on the above question. Indeed, we apply these results to
comment on the Vigué-Poirrier Conjecture, a particular long standing question from rational homotopy
theory. We also prove a higher dimensional homotopy theoretic analogue to a theorem of C.T.C. Wall – a
fundamental calculation from differential topology that shows one may decompose a simply connected
6-manifold as a connected sum of two simpler manifolds – for (n − 2)-connected 2n-dimensional
Poincaré Duality complexes.

Key to these discussions is a consideration of inert maps, a concept brought across from rational
homotopy theory. By combining other results from this area, we provide an answer to another problem:
under what circumstances does the total space of a pullback fibration over a connected sum have the
rational homotopy type of a connected sum? We conclude with a reformatted version of a recent paper of
the author, which gives a condition on rational cohomology to yield an affirmative answer, but only after
taking based loop spaces. This takes inspiration from recent work of Jeffrey and Selick, in which they
study pullback bundles of this type, but under stronger hypotheses compared to our result.
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Notation

1X The identity map on a space X
ij The inclusion map Xj →

⋁︁n
i=1 Xi of the jth wedge summand

pj The projection map
⋁︁n

i=1 Xi → Xj to the jth wedge summand
X ≃ Y The spaces X and Y are homotopy equivalent
X ∼= Y The spaces X and Y are homeomorphic
ΩX The based loop space of a space X
LX The free loop space of a space X
ΣX The reduced suspension S1 ∧ X of a space X
X∧k The smash product of k copies of the space X
Sn The n-dimensional sphere

Pn(ℓ) The mod-ℓ Moore space, with ˜︁Hm(Pn(ℓ); Z) ∼=

⎧⎨⎩Z/ℓ m = n,

0 otherwise.
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Chapter 1

Introduction

Given a topological space X, the gold standard of unstable homotopy theory is to
determine its homotopy groups, denoted π∗(X). Doing so in general is a notoriously
difficult problem, even for relatively simple spaces like spheres (see for example
[Tod16]). Alternatively, one may hope to express X as a product of simpler spaces
whose homotopy groups may be easier to understand, taking advantage of the fact
that π∗(A × B) ∼= π∗(A)× π∗(B). Clearly, however, the vast majority of spaces are not
products.

Another space to study is the based loop space of X, denoted ΩX, which is the space of
basepoint preserving maps S1 → X. Understanding ΩX opens a door to finding the
homotopy groups of X, as there is an isomorphism πn(ΩX) ∼= πn+1(X). So,
combining this with our first fact, finding product decompositions of ΩX is a valuable
technique for seeking to understand π∗(X).

A natural class of spaces to study is the class of manifolds: these are highly geometric
objects, which carry deep structures. Indeed, the algebraic topology of manifolds has a
rich and varied history, and when studying their homotopy theory one can start by
considering those that are highly connected – we say a space X is n-connected if the
group πi(X) is trivial for all i ≤ n. Poincaré Duality complexes (of which smooth,
closed, oriented manifolds are a subclass; see Section 2.4 for a full definition) provide
us with a useful topological analogue to manifolds. By understanding their loop
spaces, we may answer questions about the homotopy theory of manifolds. This is the
titular task that will occupy our efforts for the following pages: to find loop space
decompositions of Poincaré Duality complexes, often those that are highly connected,
and thereby develop our homotopy theoretic understanding of manifolds.

The past decade has seen much activity studying highly connected manifolds in this
way, notably by Beben and Theriault [BT14, BT22], in which they consider the based
loop spaces of (n − 1)-connected 2n-manifolds. More recently, work of Huang
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[Hua22a] incorporated a study of torsion free (n − 2)-connected 2n-manifolds with
vanishing cohomology in dimension n. More broadly, extensive study of the wider
homotopy theoretic situation was made in [The20], which has lead to further recent
work, such as [Hua21, Hua22b, HT22, Che22, Che23].

In particular, given a manifold one may ask whether it is decomposable as a connected
sum of other manifolds, analogous to decomposing an integer as a product of primes.
Using our loop space decompositions, we will approach this highly geometric
problem from a novel topological viewpoint, using elements of classical homotopy
theory together with recent results to show that several classes of Poincaré Duality
complexes have the loop space homotopy type of connected sums. The techniques for
this are developed in Chapter 4, and they underpin much of what follows. Chiefly,
three main applications of this approach are demonstrated in this thesis.

The Vigué-Poirrier Conjecture

The first comes in Section 4.4, as a direct result of the preceding material in Chapter 4,
and is related to a particular long standing question of rational homotopy theory: the
Vigué-Poirrier Conjecture. Letting X be a simply connected space, we denote its free
loop space by LX. That is to say, LX := Map(S1, X), the space of continuous (not
necessarily based) maps from S1 to X. A simply connected space X is called rationally
elliptic if dim(π∗(X)⊗ Q) < ∞, and called rationally hyperbolic otherwise [FHT01].
Vigué-Poirrier made the following conjecture in [VP84].

Conjecture (Vigué-Poirrier). If X is rationally hyperbolic, then H∗(LX; Q) grows
exponentially.

In the same paper, Vigué-Poirrier herself proved that the Conjecture holds for finite
wedges of spheres. Furthermore, the Vigué-Poirrier Conjecture may be viewed as a
development of another conjecture (due to Gromov [Gro78]) that when X is a closed
manifold then H∗(LX; Q) ‘almost always’ grows exponentially. This has profound
implications in Riemannian geometry, in which one may give a lower bound for the
number of geometrically distinct closed geodesics on a simply connected closed
Riemannian manifold M using the rate of growth in the dimension of H∗(LM; Q).

The Vigué-Poirrier Conjecture has also been shown to hold for several other classes of
spaces, notably for non-trivial connected sums of closed manifolds which are not
monogenic in cohomology [Lam01]. This brings us to our application, which broadens
the class of spaces for which the Conjecture holds to Poincaré Duality complexes with
the loop space homotopy type of certain connected sums; in particular, such a
homotopy equivalence need not hold before taking loop spaces. The statement of the



3

Theorem A below uses the notions of inert maps and good exponential growth – these
are defined precisely in Definition 4.1 and Definition 4.14, respectively.

Theorem A. Let n > 3 and let M be a n-dimensional Poincaré Duality complex, and suppose
that there exist n-dimensional Poincaré Duality complexes N and P such that
ΩM ≃ Ω(N#P). If P is rationally elliptic and the attaching map of the top-cell of P is inert,
and if L(N#P) has good exponential growth, then M satisfies the Vigué-Poirrier
Conjecture.

In this context, L(N#P) having good exponential growth implies that it satisfies the
Vigué-Poirrier Conjecture – that is to say, N#P is an example of a rationally hyperbolic
space such that H∗(L(N#P); Q) grows exponentially. As said above, the Conjecture is
known to hold for connected sums of certain types of manifolds, so such examples
arise in nature. Theorem A therefore shows that the Conjecture holds for spaces with
the loop space homotopy type of connected sums of manifolds which satisfy the
simple cohomological condition of [Lam01].

A Theorem of Wall

In Chapter 5 we return explicitly to the highly connected case. The study of highly
connected manifolds has a long pedigree of intense research: Milnor recounts in
[Mil00] that much of his early work in the 1950s concerned (n − 1)-connected
2n-manifolds, Ishimoto classified π-manifolds of this type in [Ish69] for n ≥ 3, and the
study of simply connected 4-manifolds produced two Fields Medalists in Freedman
and Donaldson [Fre82, Don83]. Another prolific author in this area (and many more
besides) was C.T.C. Wall, who in [Wal62] classified (n − 1)-connected 2n-manifolds
which have a boundary component diffeomorphic to a sphere, and later also worked
on attempts to classify simply connected 4-manifolds up to diffeomorphism [Wal64].

Among the questions that developed from this study was whether these methods of
differential topology and surgery theory were applicable to more complicated families
of manifolds. For example, one could consider simply connected 6-manifolds, and
indeed, in [Wal66a] Wall formulated the following.

Theorem (Wall). Let M be a closed, smooth, simply connected 6-manifold. Then there is a
diffeomorphism

M ∼= M1#M2

where M1 is a connected sum of finitely many copies of S3 × S3 and H3(M2) is finite.

This is a highly influential theorem, often referenced as a fundamental result of
manifold theory. Generalising the theorem to higher dimensions leads one to consider
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decomposing (n − 2)-connected 2n-manifolds into constituent parts via the operation
of connected sums, and indeed, such generalisations have been the subject of active
research for several decades. Tamura gave decomposition results for closed, oriented,
torsion free (n − 2)-connected differentiable 2n-manifolds (for certain congruence
classes of n modulo 8) with vanishing nth homology group [Tam68]. Later, in the 70s,
Ishimoto was able to expand on this, giving a partial analogue to Wall’s Theorem for
(n − 2)-connected 2n-manifolds with torsion free homology, using results about
parallelisability [Ish73]. Indeed, [Ish73, Theorem 4] shows that a unique connected
sum decomposition (up to reordering the summands) always exists for these
manifolds, and a partial answer to the consequent classification problem is
subsequently developed - see for example [Ish73, Theorem 7]. In analogue to Wall’s
Theorem, both [Tam68] and [Ish73] detect copies of (n − 1)-connected 2n-dimensional
manifolds as summands in their connected sum decompositions. They also work hard
to gain more control over the diffeomorphism type of the space analogous to Wall’s
M2. Further work from the last century, for example [Fan96], continued this trend of
using geometric and differential methods developed from those of Wall in order to
provide higher dimensional analogues.

We, however, will take a different approach. Drawing on recent work in homotopy
theory and making use of known results for based loop spaces of certain complexes
(including but not limited to [BT14, BT22, The20, Hua22a]), we give the following
homotopy theoretic analogue to Wall’s Theorem, which we prove in Theorem 5.8.

Theorem B. Let n > 3 be an integer such that n ̸∈ {4, 8}, and let M be a (n − 2)-connected
2n-dimensional Poincaré Duality complex with rank(Hn(M)) = d > 1. Then there exists a
homotopy equivalence

ΩM ≃ Ω(M1#M2#M3)

where

(i) M1 is an (n − 1)-connected 2n-dimensional Poincaré Duality complex, with
rank(Hn(M1)) = d;

(ii) M2 is a connected sum of finitely many copies of Sn−1 × Sn+1 and;

(iii) M3 is a CW-complex with a single top-cell and Hn(M3) finite.

This result has several implications, notably that the homotopy groups of M are
determined by those of the connected sum M1#M2#M3. More deeply, it also implies
that in almost all cases, the homotopy groups of a (n − 2)-connected 2n-manifold are
rationally hyperbolic (see Corollary 5.10). Note however that we specifically exclude
the case of a simply connected and 6-dimensional Poincaré Duality complex – the
techniques required for decomposing such complexes are very different to those
discussed in Chapter 5 (see for example [CS22, Hua21]). Furthermore, it also bears
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mentioning that the complexes M1 and M3 in Theorem B may in some cases have the
homotopy type of a manifold: when the integer d is even we may take M1 to be a
connected sum of d

2 -many copies of Sn × Sn, and for M3 it depends on the total
surgery obstruction of Ranicki [Ran92].

As we discussed, Theorem B is by no means the first higher dimensional analogue to
Wall’s Theorem, and the methods used to prove Theorem B in Chapter 5 differ greatly
from those of the past authors mentioned above. Indeed, we focus on decomposing
Poincaré Duality complexes (again: smooth, closed, oriented manifolds are a
subclass), and our restrictions are far milder. We do not need to make assumptions
about parallelisability or restrict to the case when homology is torsion free. Though
the price we pay is to sacrifice geometric precision by passing to based loop spaces, we
still recover useful homotopy theoretic information, and demonstrate the value in
considering such decomposition problems from this point of view.

Pullback Fibrations over Connected Sums

Taking inspiration from [JS21], the final chapter of this thesis begins with a homotopy

fibration F → L
f−→ C in which all spaces have the homotopy type of Poincaré Duality

complexes. Writing dim(C) = n and dim(L) = m, let B be another n-dimensional
Poincaré Duality complex. Form the connected sum B#C, and take the natural
collapsing map p : B#C → C. Defining the m-dimensional complex M as the pullback
of f across p, we have a homotopy fibration diagram

F M B#C

F L C.

p

f

(1.1)

A natural question follows: to what extent does M behave like a connected sum?

Jeffrey and Selick give a partial answer in [JS21]; they consider the question when each
space is a closed, oriented, smooth, simply connected manifold, but in the stricter
setting of fibre bundles, and construct a space X′ with the property that there is an
isomorphism of homology groups

Hk(M; Z) ∼= Hk(X′; Z)⊕ Hk(L; Z)

for 0 < k < m [JS21, Theorem 3.3]. This suggests that in certain circumstances we
might expect there to be an m-dimensional manifold X, such that M ≃ X#L. Jeffrey
and Selick show that there are contexts in which such an X exists, and others where it
cannot exist.
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Similar questions to the above have been asked recently. Duan [Dua22] approaches
the topic from a much more geometric, surgery theoretic viewpoint. In this work, the
principal objects of concern are manifolds which exhibit a regular circle action;
namely, a free circle action on an n-dimensional closed, oriented, smooth, simply
connected manifold whose quotient space is an (n − 1)-dimensional closed, oriented,
smooth, simply connected manifold. Translated into the context of [JS21], Duan
studies the situation when F ≃ S1. If L is of dimension at least 5, it is shown in
[Dua22] that the total space of the pullback fibration is indeed always diffeomorphic
to a connected sum. Although the thrust of [Dua22] is mainly concerned with
constructing smooth manifolds that admit regular circle actions, it is interesting to
remark that its strategy yields a specific class of examples for the situation as in
Diagram (6.1). Other recent work includes that of Huang and Theriault [HT22], in
which they consider the loop space homotopy type of manifolds after stabilisation by
connected sum with a projective space. They do so by combining the results of
[Dua22] with a homotopy theoretic analysis of special cases of Diagram (1.1).

In Chapter 6 we give a special circumstance, recorded in Proposition 6.4, in which the
based loop space of M is homotopy equivalent to the based loops of a connected sum.
This takes its most dramatic form in the context of rational homotopy theory, which
we state in the Theorem below. Let C and L denote the (n − 1)- and (m − 1)-skeleta of
C and L, respectively.

Theorem C. Given spaces and maps as in Diagram (1.1), if

(i) the map α : F → P is (rationally) null homotopic, and,

(ii) both H∗(C; Q) and H∗(L; Q) are generated by more than one element,

there is a rational homotopy equivalence ΩM ≃ Ω(X#L) where X is an appropriate
CW-complex, which we construct in Section 6.2.

Thus we are able to give an affirmative answer in this situation, but after looping and
up to rational homotopy equivalence. Examples of homotopy fibrations that fulfil the
criteria of Theorem C include certain sphere bundles. Furthermore, note that a
consequence of Theorem C is that there is an isomorphism of rational homotopy
groups: π∗(M)⊗ Q ≃ π∗(X#L)⊗ Q.
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Outline of this Thesis

Chapter 2 introduces the necessary background in homotopy theory for the material
that follows in this thesis, with a few prerequisites: we will make use of elementary
concepts such as homotopy fibrations and cofibrations, and trust that the reader has
knowledge of these. This ground has been well covered by many authors of a
capability far higher than this one, so the uninitiated reader is encouraged to consult,
for example, [Hat02, Ark11].

Throughout this thesis, all topological spaces have the homotopy type of pointed
finite type CW-complexes unless otherwise stated, and products are taken with the
compactly generated topology. Furthermore, when discussing homology and
cohomology, we follow the convention that an omission of coefficients denotes
coefficients in Z.

Chapter 3 continues our exploration by discussing the context in which this thesis sits:
we cover much of the literature on loop space decompositions, and provide some
developments of that theory in Sections 3.3 and 3.4. Chapters 4, 5 & 6 are reformatted
versions of papers of the author, together with Sections 4.3 and 4.4, which are more
recent work.
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Chapter 2

Preliminary Homotopy Theory

This chapter lays the foundations of what is to come in this thesis. Throughout, we
will assume the reader has some prior knowledge of elementary homotopy theory
and homological algebra, though where necessary we will restate key results in order
to make this chapter somewhat self-contained. In particular however, we take our
definitions of homotopy pushout and homotopy pullback to be as in [Ark11,
Definition 6.2.1] and [Ark11, Definition 6.2.13], respectively.

Section 2.1 gives several elementary constructions and an exposition of generalised
connected sums, which forms one of our principal ideas throughout this work. Next,
Section 2.2 discusses the background of [The20] as well as some results from that
paper. Chief amongst these results is Theorem 2.14, which we will regularly use in the
chapters that follow. We then have Section 2.3, which provides two lemmas regarding
homotopy cofibrations involving connected sums.

Our foremost concern is the utility of these techniques is in describing the homotopy
theory of highly connected, closed, smooth manifolds. Much of this work will be done
using Poincaré Duality complexes, which define and discuss in Section 2.4.

2.1 Generalised Connected Sums

As mentioned above, we begin with some elementary constructions that form the
basis of much of this work. Manipulating homotopy cofibrations, and indeed
producing new homotopy cofibrations from given data, will enable us to prove the
loop space decompositions that are the central focus of this thesis. Given two
homotopy cofibrations

A
f−→ B h−→ C and X

g−→ B
j−→ Y
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one may form the following commutative diagram, in which the bottom-right square
is a homotopy pushout

X X

A B C

A Y Q.

g h◦g

f h

j

j◦ f

(2.1)

The following Lemma is an elementary fact of homotopy theory.

Lemma 2.1. The bottom row and right-hand column of (2.1) are homotopy cofibrations.

Proof. Representing the initial two homotopy cofibrations as homotopy pushouts, and
combining them with the homotopy pushout in the bottom-right square of (2.1), we
have the following homotopy commutative diagram of homotopy pushout squares

A ∗

X B C

∗ Y Q.

f

g h

j

Consider the bottom two squares and their outer rectangle. The two bottom squares
are homotopy pushouts, so recalling [Ark11, Theorem 6.3.3], the outer rectangle is

therefore a homotopy pushout as well. This is equivalent to X
h◦g−−→ C → Q being a

homotopy cofibration, and arguing by symmetry, we have that A
j◦ f−→ Y → Q is also a

homotopy cofibration.

Another way of stating Lemma 2.1 is that Diagram (2.1) is a homotopy cofibration
diagram, i.e. that the diagram is homotopy commutative and every complete row and
column is a homotopy cofibration. A homotopy fibration diagram is similarly defined,
namely that such a diagram is homotopy commutative and every complete row and
column is a homotopy fibration.

Remark 2.2. Lemma 2.1 is particularly useful if we have prior knowledge of the
homotopy cofibre of j ◦ f (for example), as this must then also be the homotopy cofibre
of h ◦ g. One special instance of this is in the situation of generalised connected sums,
which we explain after first giving the definition below.
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Definition 2.3. Given a co-H-space A with co-multiplication σ, spaces X and Y and
maps f : A → X and g : A → Y, define f +̌ g to be the composite

f +̌ g : A σ−→ A ∨ A
f∨g−−→ X ∨ Y.

Note that the choice of co-multiplication need not be unique for a given co-H-space,
and (letting p1 denote a pinch map, as per page xiii of this thesis) that p1 ◦ ( f +̌ g) ≃ f .
By symmetry we also have that p2 ◦ ( f +̌ g) ≃ g.

Suppose now that we have two homotopy cofibrations of simply connected spaces

A
f−→ B

j−→ C and A
g−→ D l−→ E

where A is a co-H-space with comultiplication σ.

Definition 2.4. With the set-up as above, the homotopy cofibre of f +̌ g is called the
generalised connected sum of C and E over A, written C#AE.

When the co-H-space A is clear, we will often omit the subscript. We wish to use the
construction of Diagram (2.1) to deduce some facts about generalised connected sums.

Proposition 2.5. There is a homotopy cofibration diagram

D D

A B ∨ D C#AE

A B C

i2

f +̌g

p1

f j

(2.2)

Proof. The middle row of (2.2) is a homotopy cofibration, by definition, and the
middle column is evidently also a homotopy cofibration. By Lemma 2.1, these
intersecting cofibrations yield a homotopy cofibration diagram

D D

A B ∨ D C#AE

A B Q

i2 q◦i2

f +̌g q

p1

f
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where the bottom-right square is a homotopy pushout, defining the space Q. We have,
however, that the homotopy cofibre of f is C, so therefore Q ≃ C and we have
Diagram (2.2) as claimed.

Example 2.6. A particular consequence of Proposition 2.5 is that there is a homotopy
cofibration D → C#AE → C. Indeed, suppose we had two path connected
n-dimensional CW-complexes M and N, both of which have a single n-cell. Let Mn−1

and Nn−1 denote their (n − 1)-skeleta, respectively. Then there are homotopy
cofibrations

Sn−1 → Mn−1 → M and Sn−1 → Nn−1 → N

which by Proposition 2.5 yields a homotopy cofibration Nn−1 → M#Sn−1 N → M. If M
and N are smooth, closed, oriented manifolds manifolds then we choose M#Sn−1 N
such that it coincides (up to homotopy) with the usual orientation preserving
connected sum of M and N.

2.2 Homotopy Fibrations with a Section after Looping

We give a homotopy theoretic construction that will form the basis of our method for
decomposing the loop spaces of certain highly connected complexes. The key
statements are those of Theorem 2.13 and Theorem 2.14. Much of what is given here
follows [The20, Chapters 1-2] but with some details added. To get started, we state the
Cube Lemma (due originally to Mather [Mat76]).

Theorem 2.7 (Cube Lemma). Let A, B, C, D, E, F, G and H be topological spaces, with
maps between them as in the cube diagram below, in which all faces are homotopy commutative
squares.

E F

G H

A B

C D

If the bottom square ABCD is a homotopy pushout and the four vertical squares EGAC,
GHCD, FHBD and EFAB are homotopy pullbacks, then the top square EFGH is a homotopy
pushout. □

Now, let us introduce the situation we wish to study. In what follows, we will assume
all spaces to be path connected. Consider a map f : A → B, whose homotopy cofibre
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is denoted by C. Suppose also that there is another map h : B → Z that extends to a
map h′ : C → Z. Further, let us denote the homotopy fibres of the maps h and h′ by E
and E′, respectively. We can arrange this data into the following homotopy
commutative diagram

E E′

A B C

Z Z

f

h h′

(2.3)

where the middle and right columns are homotopy fibrations and the middle row is a
homotopy cofibration.

Lemma 2.8. With the setup as in (2.3) above, there is a homotopy pushout square

ΩZ × A E

ΩZ E′

a

π1

where the map a is to be determined, and the map π1 denotes projection in the first factor.

Proof. Taking (2.3), we can augment it to give the following diagram.

ΩZ × A E

ΩZ E′

A B

∗ C

Z

Z

a

f

h

h′

(2.4)

The bottom face of the cube is a homotopy pushout because A
f−→ B −→ C is a

homotopy cofibration. All four vertical faces are forced to be homotopy pullbacks
because all the vertical homotopy fibrations are over a common base space. More
specifically, the right-hand face of the cube must be a homotopy pullback because both
the maps E → B and E′ → C have the same homotopy fibre, namely ΩZ. The front
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face of the cube is made by taking a homotopy pullback in the canonical way, and so is
the left-hand face. Thus we are in precisely the situation of the Cube Lemma, so the
top face is a homotopy pushout.

We now show that the map ΩZ × A → ΩZ may be chosen to be a projection. Indeed,
in general for spaces X and Y there exists a homotopy pullback

X × Y X

Y ∗

π1

π2

where the maps π1 and π2 are projections. Up to homotopy, this is exactly the left face
of the cube in (2.4), so we have the lemma as claimed.

We now work towards identifying the map a from Lemma 2.8. In general, suppose
there exists a homotopy fibration sequence

ΩZ δ−→ X → Y → Z.

There exists a homotopy action θ : ΩZ × X → X that extends the map ΩZ ∨ X δ∨1−−→ X.
This action is canonical, and letting µ denote the usual loop multiplication in the space
ΩZ, it satisfies the two homotopy pullback squares:

ΩZ × ΩZ ΩZ ΩZ × X X

ΩZ × X X X Y.

µ

1×δ δ

θ

π2

θ

(2.5)

Lemma 2.9. The map a : ΩZ × A → E from Lemma 2.8 is homotopic to the composite

φ : ΩZ × A
1×g−−→ ΩZ × E θ−→ E

where g is a lift of the map f that factors through the homotopy fibre of the map E → E′.

Proof. The condition on the lift g is equivalent to requiring that the composite of g
with the map E → E′ be null homotopic. Thus, by the commutativity of (2.4), up to
homotopy we may choose g to be the composite

A ι2−→ ΩZ × A a−→ E
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where ι2 denotes the inclusion of the second factor. Now, consider the diagram below

ΩZ × A ΩZ × E E

A E B

1×g

π2 π2

θ

g

where the right-hand square is one of the homotopy pullbacks given in (2.5). The left
square is also homotopy pullback, because of the projections, and therefore the whole
outer rectangle is a homotopy pullback.

The composite along the bottom recovers the map f . Thus we have constructed the
rear face of (2.4), and hence we have that a ≃ θ ◦ (1 × g).

Before we continue, we must introduce an operation on topological spaces.

Definition 2.10. Let X and Y be pointed path connected spaces. The (left) half-smash of
X and Y is the quotient space

X ⋉Y = (X × Y)/(X × y0)

where y0 denotes the basepoint of Y.

Observe that the half-smash fits into the cofibration sequence

X
ι1−→ X × Y → X ⋉Y ∂−→ ΣX

where the map ι1 is the inclusion of the first factor. Moreover, we have the following
well known homotopy equivalence.

Lemma 2.11. Let X and Y be pointed path connected spaces. If Y is a co-H-space, then
X ⋉Y ≃ (X ∧ Y) ∨ Y.

Proof. First, observe that the spaces X ⋉ (Y ∨ Y) and (X ⋉Y) ∨ (X ⋉Y) are
homeomorphic. Thus, the co-H structure σ on Y induces one on X ⋉Y, via the map

X ⋉Y 1⋉σ−−→ X ⋉ (Y ∨ Y) ∼= (X ⋉Y) ∨ (X ⋉Y).

Now, consider the homotopy cofibration Y i−→ X ⋉Y
q−→ X ∧ Y where i is the inclusion

into the second coordinate. The map i has a left inverse, denoted by α, which is given
by factoring the projection map π2 : X × Y → Y through X ⋉Y as in the commutative
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diagram below.

X × Y Y

X ⋉Y

π2

α

Thus we have that Y retracts off of X ⋉Y. The co-H structure on X ⋉Y then yields a
composite

ϵ : X ⋉Y 1⋉σ−−→ (X ⋉Y) ∨ (X ⋉Y)
q∨α−−→ (X ∧ Y) ∨ Y

which is a homotopy equivalence, by virtue of [Har02, Section 3.3].

Observe that the Lemma holds in the particular case when the space Y is a suspension.
Now we return to the situation we have been analysing, and move to considering the
consequences of the map h in (2.3) having a right homotopy inverse after looping.
Note that this implies that ΩZ retracts off ΩB.

Lemma 2.12. If the map Ωh has a right homotopy inverse, there exists a homotopy cofibration

ΩZ ⋉ A
φ−→ E → E′

for some map φ such that the composite ΩZ × A → ΩZ ⋉ A
φ−→ E is homotopic to φ.

Proof. Let us briefly consider a more general situation. As alluded to previously, the
left half-smash fits into the homotopy cofibration sequence

X
ι1−→ X × Y → X ⋉Y ∂−→ ΣX.

The inclusion ι1 has a left inverse, and therefore the map ∂ is null homotopic.
Therefore, for any space Z, the induced map [X ⋉Y, Z] → [X × Y, Z] is an injection.
Moreover, if there is a map f : X × Y → Z such that the composite f ◦ ι1 is null
homotopic, then there exists a map f : X ⋉Y → Z whose homotopy class is
determined by f , illustrated in the commutative diagram below.

X X × Y X ⋉Y

Z

ι1

f
f

Returning now to our specific case, if Ωh has a right homotopy inverse, this forces the
connecting map δ : ΩZ → E to be null homotopic. Moreover, by definition, the
restriction of the map φ to ΩZ is δ. By the homotopy commutativity of the pushout
square in Lemma 2.8, we see that this causes the map ΩZ → E′ to be null homotopic



2.2. Homotopy Fibrations with a Section after Looping 17

as well. This allows us to pinch out a copy of ΩZ from the square in Lemma 2.8, and
thus obtain the homotopy pushout square

ΩZ ⋉ A E

∗ E′

φ

which is equivalent to having a homotopy cofibration ΩZ ⋉ A
φ−→ E → E′.

Let us record the previous results together in following theorem, which the reader
may find as [The20, Theorem 2.2(a)].

Theorem 2.13 (Theriault). Suppose there exists a homotopy commutative diagram

E E′

ΣA B C

Z Z

α

f

h h′

where the middle and right columns are homotopy fibrations, the map α is an induced map of
fibres and the middle row is a homotopy cofibration. If Ωh has a right homotopy inverse, then

there exists a homotopy cofibration ΩZ ⋉ ΣA
φ−→ E → E′.

In the full statement of [The20, Theorem 2.2], much more detail over the homotopy
class of the map φ is given. We will not need this level of precision for the study we
wish undertake, so we neglect to state it - all we require is the existence of the stated
homotopy cofibration.

A fundamental special case of Theorem 2.13 is when we have Z = C. Indeed, it
underpins much of the work that will follow in this thesis. We record it the theorem
below, a version of which the reader will also find in [BT22, Proposition 3.5], where it
first appeared. Note that the need for the suspension ΣA is dropped.

Theorem 2.14 (Beben-Theriault). Suppose we have a homotopy cofibration A
f−→ B h−→ C

such that the map Ωh has a right homotopy inverse. Then there exists a homotopy fibration

ΩC ⋉ A → B h−→ C
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which splits after looping. Thus, there exists a homotopy equivalence

ΩB ≃ ΩC × Ω(ΩC ⋉ A).

Proof. To identify the fibre of the map h, let us consider the diagram

E E′

A B C

C C

f h

h

where E and E′ denote the appropriate homotopy fibres. Observe that this is a special
case of (2.3). One sees immediately that E′ ≃ ∗, since it is the fibre of an identity map,
so by Theorem 2.13 we obtain a homotopy cofibration

ΩC ⋉ A
φ−→ E → ∗

which forces the map φ to be a homotopy equivalence, proving the first part of the
corollary. Since Ωh has a right homotopy inverse, the homotopy fibration

Ω(ΩC ⋉ A) → ΩB Ωh−→ ΩC

splits, and therefore we have the homotopy equivalence as claimed.

Example 2.15. For two pointed, path connected spaces X and Y, let us use the above
Corollary to identify the homotopy fibre of the pinch map X ∨ Y

p1−→ X. The map p1

has a clear right inverse, namely the inclusion of the first wedge summand. Thus, Ωp
also has a right homotopy inverse. The map p1 fits into the homotopy cofibration

Y i2−→ X ∨ Y
p1−→ X

and thus Theorem 2.14 gives us that the homotopy fibre of p1 is the space ΩX ⋉Y.
Moreover, we have that

Ω(X ∨ Y) ≃ ΩX × Ω(ΩX ⋉Y).

Note that if X and Y were suspensions, we could repeatedly apply Lemma 2.11 and
Theorem 2.14 and recover the Hilton-Milnor Theorem, which we state below so that
we may refer to it later (the second equivalence is from [Sel97, Theorem 7.9.4]).
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Hilton-Milnor Theorem. Let X and Y be pointed, path connected spaces. Then there is a
homotopy equivalence

Ω(ΣX ∨ ΣY) ≃ ΩΣX × ΩΣY × ΩΣ

(︄
∞⋁︂

i=1

X ∧ Y∧i

)︄
≃ ∏

w∈W
ΩΣ

(︂
X∧(wx) ∧ Y∧(wy)

)︂
where W = W⟨x, y⟩ is a (vector space) basis for the free Lie algebra on generators x and y.

The Hilton-Milnor Theorem also functions in its own right as an example of a loop
space decomposition. Indeed, the results we will give later in this thesis on the
homotopy type of certain loop spaces will have a similar form.

Remark 2.16. We sketch how the homotopy equivalence in the above statement of the
Hilton-Milnor Theorem can be constructed, for the benefit of a later example. Taking
adjoints of inclusions maps i1 and i2 into the wedge, we have maps

x : X → Ω(ΣX ∨ ΣY) and y : Y → Ω(ΣX ∨ ΣY)

with which we can take a Samelson product s = ⟨x, y⟩ : X ∧ Y → Ω(ΣX ∨ ΣY). Next,
we use our knowledge of the James Construction (see [Sel97, Section 7.9]), thus giving
an extension as in the dashed arrow in diagram below

X ∧ Y Ω(ΣX ∨ ΣY)

ΩΣ(X ∧ Y).

s

(2.6)

It can be shown that the dashed arrow above is in fact Ω[i1, i2] the loop map on the
Whitehead product of the inclusions we began with. Taking advantage of the
suspension comultiplications on ΣX and ΣY, one can take multiples of the inclusion
maps i1 and i2 before taking adjoints and Samelson products. In this way one forms a
free Lie algebra W⟨x, y⟩ of maps, each with an extension analogous to the dashed
arrow in (2.6) with the homotopy class of a looped Whitehead product. Multiplying
all these looped Whitehead products together, via the usual loop space multiplication,
gives the homotopy equivalence in the Theorem. Furthermore it implies that for such
a Whitehead product w : Σ(X∧(wx) ∧ Y∧(wy)) → ΣX ∨ ΣY, letting πw be the projection
from the product to the relevant factor in the decomposition, the composite

ΩΣ(X∧(wx) ∧ Y∧(wy))
Ωw−−→ Ω(ΣX ∨ ΣY) πw−→ ΩΣ

(︁
X∧(wx) ∧ Y∧(wy)

)︁
is a homotopy equivalence.
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2.3 Homotopy Cofibrations with Wedge Sums

We give two elementary constructions of homotopy cofibrations that involve wedge
sums. These will be of particular use when we consider homology decompositions of
certain CW-complexes in Chapter 5. Recall that for a space X to be a homotopy retract
of another space Y, we mean that there exists a sequence of maps X → Y → X whose
composite is homotopic to 1X.

Lemma 2.17. Suppose that we have a homotopy cofibration

A
f−→ B ∨ C

q−→ D

such that the composition of f with the pinch map p1 : B ∨ C → B is null homotopic. Then B
is a homotopy retract of D.

Proof. Consider the homotopy commutative diagram below.

B

A B ∨ C D

B

i1

f q

p1
p

The composition p1 ◦ f is null homotopic, which gives rise to the extension p. The
composition of the inclusion map i1 with p is homotopic to the identity on B, and by
the homotopy commutativity of the diagram, so is p ◦ q ◦ i1. Thus we have that B is a
homotopy retract of D.

Lemma 2.18. Suppose that we have a homotopy cofibration

A ∨ B h−→ C → D

such that restriction of the map h to A is null homotopic. Then ΣA is a homotopy retract of D.

Proof. By the dual statement of [Sel97, Theorem 7.6.2], there exists a homotopy
commutative diagram of homotopy cofibrations (i.e. every row and column is a
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homotopy cofibration sequence)

A ∗ ΣA ΣA

A ∨ B C D ΣA ∨ ΣB

B C E

i1 f i1

h ∂

q

(2.7)

where f is the induced map of homotopy cofibres and the space E is its homotopy
cofibre. Furthermore, taking the righthand square and composing with the pinch map
p1 : ΣA ∨ ΣB → ΣA along the bottom row, we get a second homotopy commutative
diagram

ΣA ΣA

D ΣA ∨ ΣB ΣA.

f i1

∂ p1

which gives p1 ◦ ∂ ◦ f ≃ 1ΣA, and thus the desired homotopy retraction.

2.4 Poincaré Duality Complexes

When Henri Poincaré originally defined his duality in the late 19th century, it was in
terms of Betti numbers: the quite simple statement that, given an integer n > 0 and a
closed, orientable n-manifold, the kth and (n − k)th Betti numbers are equal. The
subsequent modern formulation expresses Poincaré Duality in terms of cup and cap
products (which we will assume the reader has knowledge of - see for example
[Hat02, Chapter 3]) and enables one to concretely ask which spaces satisfy Poincaré
Duality, other than closed, orientable manifolds.

Asking which CW-complexes have Poincaré Duality open us to the broader class of
spaces that are Poincaré Duality complexes. In brief language, for us such a complex will
be a finite, simply connected CW-complex whose (co)homology satisfies Poicaré
Duality for every coefficient ring. This works particularly well for our purposes: as we
are using homotopy theory to conduct our study, it makes sense to use spaces with an
underlying structure that we can exploit.

Our first concrete definition is due to Wall, which we state for posterity, who defines
what he called Poincaré complexes abstractly in [Wal67]. In stating it, we shall
incorporate notation from [Wal66b]: for a given CW-complex X let us write π = π1(X)

and let Λ = Z[π] be its associated integral group ring. Recall that a CW-complex is
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called finitely dominated if there exists a finite CW-complex of which it is a homotopy
retract. A connected CW-complex X is called a connected Poincaré complex if

(i) X is finitely dominated;

(ii) there exists a homomorphism w : π → {±1} that defines a Λ-module structure,
denoted Zt, on Z;

(iii) these exists an integer n and a class [X] ∈ Hn(X; Zt) such that for all integers r,
cap product with [X] induces an isomorphism

[X] ∩− : Hr(X; Λ) → Hn−r(X; Λ ⊗ Zt).

We will be making some simplifications to this abstract definition for our work in this
thesis. First, we will insist that our CW-complexes are finite, so we have finite
domination trivially. Second, we demand that our complexes are simply connected, so
that π is the trivial group. In practice, therefore, throughout this thesis we will make
use of the following simpler definition.

Definition 2.19. Let n > 0 be an integer, and let X be a space with the homotopy type
of a finite CW-complex of dimension n. The space X is a Poincaré Duality complex if for
every coefficient ring R there exists a class µX ∈ Hn(X; R), called the fundamental class,
such that the homomorphism induced by the cap product

µX ∩− : Hk(X; R) → Hn−k(X; R)

is an isomorphism for every integer k.

Remark 2.20. Note that we require something stricter than just an isomorphism
between Hk(X; R) and Hn−k(X; R): we need such an isomorphism to be induced by
some fundamental class.

Poincaré Duality complexes are indeed a large class of spaces. Examples include all
smooth, closed, oriented manifolds. In later sections, we will make use of the
symmetry inherent in Poincaré Duality complexes to aid us in unravelling their loop
spaces. An example of this symmetry is detailed in the Lemma below, a key
observation which the reader will also find proved in [BT14, Lemma 3.3].

Lemma 2.21. Let X be an n-dimensional Poincaré Duality complex such that H∗(X) is
torsion-free, and let µ∗

X denote the cohomology dual of the fundamental class. Then for any
positive integer i ≤ n and basis element x∗ ∈ Hi(X), there exists a choice of basis for
Hn−i(X) such that x∗y∗ = µ∗

X for some y∗ in this basis.

Proof. Let x ∈ Hi(X) be the homology dual of the class x∗. Consider a new element
y = µX ∩ x. Since X is a Poincaré Duality complex, the cap product with the class µX

induces an isomorphism, and therefore y is in a basis of Hn−i(X).
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Since H∗(X) is torsion-free, the cup product is dual to the cap product. In particular,
the homomorphism (−∩ x∗) sends the class µX to y, and therefore its dual (−∩ x∗)∗

sends y∗ to µ∗
X. But this dual homomorphism is nothing but the cup product with x∗,

and therefore we have shown that x∗y∗ = µ∗
X. Since y is an element of a basis for

Hn−i(X), the class y∗ is therefore an element in the dual basis for Hn−i(X), so we have
the Lemma as claimed.

Next we record an observation about even-dimensional Poincaré Duality complexes.

Proposition 2.22. Let X be an 2n-dimensional Poincaré Duality complex. If n is odd then the
rank of the middle (co)homology group is even.

Proof. Let d = rank(Hn(X)). By Poincaré Duality, Hn(X) ∼= Hn(X). If n is odd, then
taking coefficients in R, the cup product induces a non-degenerate skew-symmetric
bilinear form

Hn(X, R)× Hn(X, R) → H2n(X, R)

which we may represent by a (d × d)-matrix A. By some elementary linear algebra we
therefore have det(A) = (−1)ddet(A), so d must be even, otherwise we obtain a
contradiction.

Remark 2.23. The reader may well (rightly) ask if there are examples of Poincaré
Duality complexes that do not have the homotopy type of a manifold. We are not
especially concerned with this question, but it does deserve a remark. Indeed, the
answer is yes. In pursuit of his classification of simply connected 5-manifolds, Stöcker
studied simply connected 5-dimensional Poincaré Duality complexes in [Stö82]. There
he showed that there are indeed such complexes that are not homotopy equivalent to
manifolds, via a classification of invariants - most notably an exotic order. Stöcker
showed that this exotic order, taking the value either zero or one, indicates whether
there exists an orthogonal sphere bundle structure on the Spivak fibration. It then
follows, from some very deep theory due to Browder and Novikov, that a simply
connected 5-dimensional Poincaré Duality complex has the homotopy type of a
manifold if and only if the exotic order is zero. Remarkably, these complexes are not
pathological examples but arise in well known natural ways, such as the total space of
an S2-fibration over S3 [GS65].
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Chapter 3

Loop Space Decompositions

This chapter functions both as a development of the preliminary homotopy theory of
the previous chapter, and as a detailed discussion of the existing literature on loop
space decompositions of Poincaré Duality complexes. Many of the methods used fit
into a more general framework of the author, which we present in Chapter 4.

Much of what we write in Sections 3.1 and 3.2 of this chapter may be found in [BT14]
and [BT22], in which (n − 1)-connected Poincaré Duality complexes of dimension 2n
are discussed, where n > 1. In later chapters we will draw inspiration from this work,
enabling us to widen the scope of these arguments to Poincaré Duality complexes of
lower connectivity. We will use homotopy theoretic methods to provide product
decompositions of the loop spaces of highly connected complexes. In pursuit of the
goal of decomposing the loop spaces of highly connected Poincaré Duality complexes,
our main tool will be Theorem 2.14.

Sections 3.3 and 3.4 contain discussions of two developments that may be made from
the theory detailed in this chapter. Section 3.3 widens the scope of our earlier
exposition to a larger class of Poincaré Duality complexes of lower connectivity than
those covered in Sections 3.1 and 3.2. Indeed, the methods of Section 3.3 are also
developed later in this thesis in Chapter 5, which uses similar ideas to give a
homotopy theoretic analogue to well-known theorem of C.T.C. Wall. Section 3.4
focuses on making a brief comment on some aspects of the homotopy theory of this
larger class of Poincaré Duality complexes in Section 3.4.

3.1 (n − 1)-Connected 2n-Dimensional Poincaré Duality
Complexes

Throughout this section, let n > 1 be an integer and let M denote a 2n-dimensional
Poincaré Duality complex that is (n − 1)-connected. Our goal is to find the homotopy
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type of the loop spaces of such complexes. From the initial hypotheses on M, we can
immediately deduce that its cohomology has the form

Hm(M) ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z if m = 0 or m = 2n

Zd if m = n

0 otherwise

for some integer d. Applying the Universal Coefficient Theorem, we also have

Hm(M) ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z if m = 0 or m = 2n

Zd if m = n

0 otherwise.

Let Mn denote the n-skeleton of M. Since M in (n − 1)-connected and has the
homotopy type of a CW-complex, Mn ≃ ⋁︁d

i=1 Sn, and there is a homotopy cofibration

S2n−1 f−→ Mn ≃
d⋁︂

i=1

Sn −→ M (3.1)

for some attaching map f . To find the homotopy type of ΩM, we must divide this into
the following three cases, depending on the value of the integer d. Note that by
Proposition 2.22, if n odd then the integer d is even.

Case 1: d = 0

In this scenario, M is in fact (2n − 1)-connected. By the Hurewicz theorem there is a
map ψ : S2n → M which induces an isomorphism on H2n. Indeed, this map ψ induces
an isomorphism in all degrees of homology, and is therefore a homotopy equivalence,
by Whitehead’s Theorem. Thus we have ΩM ≃ ΩS2n.

Case 2: d = 1

The case when d = 1 is closely related to the Hopf invariant one problem. To begin, let
x∗ ∈ Hn(M) ∼= Z be a generator. Since M is at least path-connected, the class µ∗

M

generates H2n(M) ∼= Z. The fact that H∗(M) is torsion-free allows us to use Lemma
2.21, which yields the relation (x∗)2 = ±µ∗

M, and so the map f has a Hopf invariant of
1 or −1. Adams showed in [Ada60] that this can only happen for n ∈ {2, 4, 8}. In these
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cases, we obtain the following homotopy equivalences:

M ≃

⎧⎪⎪⎪⎨⎪⎪⎪⎩
CP2 if n = 2

HP2 if n = 4

OP2 if n = 8.

By the splitting of the complex and quaternionic Hopf fibrations, we have that

ΩCP2 ≃ S1 × ΩS5 and ΩHP2 ≃ S3 × ΩS11

so we have a suitable decomposition of ΩM when n = 2 and n = 4. There is no
corresponding decomposition for the octonionic case, when n = 8, due in part to the
fact that S7 in not homotopy associative and therefore does not have a classifying
space (see for example [Sel97, Theorem 14.6.4]). This is as far as we are currently able
to pursue this situation.

Case 3: d > 1

In this much more general case, we aim to make use of some of the homotopy
theoretic results laid out in Section 2.2. For the moment, we shall assume that
n ̸∈ {2, 4, 8} so that we may avoid Hopf invariant one cases; we postpone this
discussion until later in this chapter.

Let {x∗1 , . . . , x∗d} be a basis for Hn(M). By Lemma 2.21, there exists integers k and l
such that 1 ≤ k < l ≤ n and x∗k x∗l = µ∗

M. Note that x∗k ̸= ±x∗l , as otherwise we would
be in a Hopf invariant one case, which we have explicitly excluded. Dualizing, we
also have a homology basis {x1, . . . , xd} for Hn(M). Our first step in this case will be
to make a precise correspondence between our choice basis and the wedge of spheres
Mn.

Our Poincaré Duality complex M is (n − 1)-connected, so by the Hurewicz Theorem
there is a group isomorphism πn(M) ∼= Hn(M). Thus, for each i ∈ {1, . . . , d} there
exist maps si : Sn → M with Hurewicz image (si)∗(ιn) = xi, where ιn denotes the
generator of πn(Sn). Let σ :

⋁︁d
i=1 Sn → M be the wedge sum of the si. Note that for

dimensional reasons, this map σ must factor through Mn, so there is a factorisation as
below. ⋁︁d

i=1 Sn M

Mn

σ

σ′

The induced map (σ′)∗ is an isomorphism on homology, and therefore homotopy
equivalence by Whitehead’s Theorem. Thus we may adjust (3.1), the initial homotopy
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cofibration, by a self-equivalence of
⋁︁d

i=1 Sn, giving us a new homotopy cofibration

S2n−1 f−→
d⋁︂

i=1

Sn j−→ M

where the map j is such that the restriction to the ith wedge summand has Hurewicz
image xi. Reordering the wedge summands if necessary, we may also assume without
loss of generality that the spheres corresponding to our distinguished basis elements
xk and xl are in the (d − 1)st and dth places in the wedge sum, respectively.
Furthermore, there is a cofibration

d−2⋁︂
i=1

Sn I−→
d⋁︂

i=1

Sn p−→ Sn ∨ Sn

where I is the inclusion of the first (d − 2) wedge summands, and p is the pinch map
to the (d − 1)st and dth wedge summands.

For the next step, we combine the two above cofibrations, in the diagram illustrated
below. This defines a new space Q and the maps jQ and h. In this diagram, every
complete row and column is a homotopy cofibration.

⋁︁d−2
i=1 Sn ⋁︁d−2

i=1 Sn

S2n−1 ⋁︁d
i=1 Sn M

S2n−1 Sn ∨ Sn Q

I j◦I

f j

p h

p◦ f jQ

(3.2)

Lemma 3.1. There is a homotopy equivalence ΩQ ≃ ΩSn × ΩSn.

Proof. We first show that there is a ring isomorphism H∗(Q) ∼= H∗(Sn × Sn). By the
above construction, j∗ sends our distinguished classes x∗k and x∗l to the cohomology
generators of the (d − 1)st and dth wedge summands. The map p pinches to these two
wedge summands, and it is clear that j∗Q induces an isomorphism on Hn, so there is a
basis {u∗, v∗} of Hn(Q) such that h∗(u∗) = x∗k and h∗(v∗) = x∗l . Naturality of the cup
product implies that

h∗(u∗v∗) = h∗(u∗)h∗(v∗) = x∗k x∗l = µ∗
M.

Moreover, Q and M both have their top-dimensional cells in dimension 2n, so h∗ is an
isomorphism on H2n as well. Therefore if w∗ is a generator of H2n(Q) such that
h∗(w∗) = µ∗

M, we must have u∗v∗ = w∗. Hence we have the desired ring isomorphism.
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Dualising this ring isomorphism gives a co-algebra isomorphism in homology, namely
H∗(Q) ∼= H∗(Sn × Sn). Moreover, letting i1 : Sn → Sn ∨ Sm and i2 : Sm → Sn ∨ Sm

denote the inclusions of respective wedge summands, the composites jQ ◦ i1 and
jQ ◦ i2 induce the inclusions of the submodules Hn(Sn × ∗) and Hn(∗ × Sn) into
Hn(Sn × Sn), respectively.

A Serre spectral sequence calculation gives that H∗(ΩQ) ∼= H∗(ΩSn × ΩSn) (see
[BT14, Lemma 2.2]), and similarly to before, the composites ΩjQ ◦ Ωi1 and ΩjQ ◦ Ωi2
induce the inclusions of the submodules Hn(ΩSn × ∗) and Hn(∗ × ΩSn) into
Hn(ΩSn × ΩSn), respectively. Now, consider another composite, given by

α : ΩSn × ΩSn Ωi1×Ωi2−−−−→ Ω(Sn ∨ Sn)× Ω(Sn ∨ Sn)
µ−→ Ω(Sn ∨ Sn)

ΩjQ−−→ ΩQ

where µ denotes the usual loop multiplication. The above description of the maps
ΩjQ ◦ Ωi1 and ΩjQ ◦ Ωi2, together with the deduced co-algebra isomorphism, implies
that α∗ is a homology isomorphism, and therefore α is a homotopy equivalence by
Whitehead’s Theorem.

A consequence of Lemma 3.1 is that it implies the existence of a right homotopy
inverse for the map ΩjQ, which we will denote by s. Alternatively, given the
homotopy equivalence of the Lemma, one may infer the existence of such an inverse
from the Hilton-Milnor Theorem. Note that the pinch map p in (3.2) also has a right
homotopy inverse, given by the looping of the inclusion map of the (d − 1)st and dth

summands into the wedge sum
⋁︁d

i=1 Sn. The existence of these two homotopy
inverses yields the following Lemma.

Lemma 3.2. The map Ωh : ΩM → ΩQ has a right homotopy inverse. Moreover, we may
choose this inverse to be the composite

ΩQ s−→ Ω(Sn ∨ Sn)
ΩJ−→ Ω

(︄
d⋁︂

i=1

Sn

)︄
Ωj−→ ΩM

where J denotes the inclusion map of the (d − 1)st and dth wedge summands.

Proof. Consider the lower-right square of (3.2). The composite ΩJ ◦ s is a right
homotopy inverse for ΩjQ ◦ Ωp, so by the homotopy commutativity of the diagram
we have that Ωj ◦ ΩJ ◦ s is a right homotopy inverse for h.

So, we have deduced that the homotopy cofibration
⋁︁d−2

i=1 Sn → M h−→ Q in the
right-hand column of (3.2) is such that the map h has a right homotopy inverse after
looping. We may now apply results from the previous chapter.
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Theorem 3.3. Let M be an (n − 1)-connected 2n-dimensional Poincaré Duality complex
with n > 1, n ̸∈ {2, 4, 8} and Hn(M) of rank d > 1. Then there is a homotopy fibration

(ΩSn × ΩSn)⋉
(︄

d−2⋁︂
i=1

Sn

)︄
−→ M −→ Q

that splits after looping. Furthermore, there is a homotopy equivalence

ΩM ≃ ΩSn × ΩSn × Ω

(︄(︃
(ΩSn × ΩSn) ∧

d−2⋁︂
i=1

Sn
)︃
∨

d−2⋁︂
i=1

Sn

)︄
.

Proof. Applying Theorem 2.14 to the right-hand column of (3.2), we obtain the
following homotopy fibration, which splits after looping:

ΩQ ⋉
(︄

d−2⋁︂
i=1

Sn

)︄
−→ M −→ Q.

Applying the homotopy equivalence of Lemma 3.1 yields the desired homotopy
fibration. The splitting yields a homotopy equivalence

ΩM ≃ ΩSn × ΩSn × Ω

(︄
(ΩSn × ΩSn)⋉

(︃ d−2⋁︂
i=1

Sn
)︃)︄

.

Since
⋁︁d−2

i=1 Sn ≃ Σ
(︂⋁︁d−2

i=1 Sn−1
)︂

, we may apply Lemma 2.11, which gives the
homotopy equivalence claimed in the statement of the Theorem.

Remark 3.4. Note that if d = 2, since the left half-smash with a point is homotopy
equivalent to a point, the homotopy fibration in Theorem 3.3 becomes ∗ → M → Q.
We then have that M has the same homotopy type as Q, and so ΩM ≃ ΩSn × ΩSn.
Furthermore, for d > 2 we may use the homotopy equivalence in Theorem 3.3 in
conjunction with the James splitting, ΣΩSn ≃ ⋁︁∞

k=0 Sk(n−1)+1, to show that the space

(︃
(ΩSn × ΩSn) ∧

d−2⋁︂
i=1

Sn
)︃
∨

d−2⋁︂
i=1

Sn

is homotopy equivalent to an infinite wedge of spheres, which we will call W.
Explicitly, we have

W ≃
(︄

d−2⋁︂
i=1

Sn

)︄
∨
(︄

∞⋁︂
l,m=0

(︄
d−2⋁︂
i=1

S(l+m)(n−1)+n

)︄)︄

∨

⎛⎝ ∞⋁︂
j,k=0

(︄
d−2⋁︂
i=1

Sj(n−1)+n ∨ Sk(n−1)+n

)︄⎞⎠ .
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We may write that ΩM ≃ ΩSn × ΩSn × ΩW. The Hilton-Milnor Theorem then
implies that ΩM is homotopy equivalent to a product of loops on spheres, so the
homotopy groups of M are calculable to the same extent as the homotopy groups of
spheres.

To conclude this section, we note that the decomposition of Theorem 3.3 does not
depend on the attaching map f , but only on the rank of Hn(M). From this
observation, we obtain the following Corollary.

Corollary 3.5. Let M and N be two (n − 1)-connected 2n-dimensional Poincaré Duality
complexes, with n ̸∈ {2, 4, 8}. If the rank of Hn(M) equals that of Hn(N), then there is a
homotopy equivalence ΩM ≃ ΩN. □

3.2 Hopf Invariant One Cases

In the preceding discussions, we omitted the cases when n ∈ {2, 4, 8}. To see why, take
such an n and consider an (n − 1)-connected 2n-dimensional Poincaré Duality
complex M. Let {x∗1 , . . . , x∗d} be a basis for Hn(M), as before. Then Lemma 2.21
implies that for each basis element x∗i there exists an x∗j such that x∗i x∗j = µ∗

M, again as
before. However, in this case we cannot guarantee that x∗i and x∗j are distinct. Indeed,
consider the composite map

S2n−1 f−→
d⋁︂

i=1

Sn p−→ Sn

where p is the pinch map to the ith wedge summand. Because of the possible values of
n we have chosen, p ◦ f could yield a homotopy class in π2n−1(Sn) of Hopf invariant
one. If it does, then assuming the generator x∗i corresponds to the ith wedge
summand, we must have (x∗i )

2 = µ∗
X. Thus we may not be able to manipulate the

homotopy cofibration (3.1) in order to have two distinguished spheres retracting off
the n-skeleton of M, and our method from the previous section is lost.

We can however introduce another method to describe how to decompose the loop
spaces of simply-connected 4-dimensional Poincaré Duality complexes, from [BT14,
Chapter 4]. This approach also informs how one might find the homotopy type of the
loop space of a 3-connected 8-dimensional Poincaré Duality complex.

Our first step is to introduce a technique due to Duan and Liang, from [DL05].
Throughout this section, let M be a simply-connected 4-dimensional Poincaré Duality
complex, with H2(M) of rank d. From the last section of this report, recall that when
d = 0 we have M ≃ S4, and M ≃ CP2 when d = 1. Thus we may assume that d ≥ 2.

In general, for a space X and a coefficient ring R, any cohomology class in Hm(X; R)
may be represented by a map from X to the Eilenberg-MacLane space K(R, m). In our
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case, we will be concerned with maps M → K(Z, 2) representing classes in H2(M).
Note that K(Z, 2) ≃ CP∞ and ΩCP∞ ≃ S1.

Given a basis {x∗1 , . . . , x∗d} of H2(M), take the particular element x∗d . By Lemma 2.21
we may assume that the basis has been chosen so that there exists an k such that we
have x∗d x∗k = µ∗

X. Note that this k may be equal to d. Moreover, we could have
x∗k = −x∗d , but is fixed by taking a different orientation. Represent the class x∗d by the
map q : M → CP∞, and define the space Z by the homotopy fibration sequence

ΩCP∞ ≃ S1 → Z → M
q−→ CP∞.

It is an observation due to Quinn [Qui72, Remark 1.6] that in a fibration of spaces with
the homotopy type of finite CW-complexes, the total space is a Poincaré Duality
complex if and only if both the base and fibre spaces are Poincaré Duality complexes.
This also holds for homotopy fibrations, so since both S1 and M are Poincaré Duality
complexes, so is the space Z.

Now, by the Universal Coefficient Theorem, H2(M) ∼= H2(M). Since M is simply
connected, the Hurewicz Theorem implies that there is a map S2 → M whose
Hurewicz image is the homology class dual to x∗d . Therefore the composite

S2 → M
q−→ CP∞

is homotopic to the inclusion of the bottom cell. By looping and precomposing with
the suspension map E, we obtain another composite

S1 E−→ ΩS2 → ΩM
Ωq−→ ΩCP∞ ≃ S1

which is a degree 1 map, and therefore a homotopy equivalence. Thus the homotopy
fibration Z → M → CP∞ splits after looping, and we have the following lemma.

Lemma 3.6. With the set-up as above, ΩM ≃ S1 × ΩZ.

So our new objective is to discern the homotopy type of the loop space ΩZ. As a first
step, we have the following result. The proof uses a Serre spectral sequence argument,
which the reader may find in [BT14, Lemma 4.1].

Lemma 3.7. The Poincaré Duality complex Z satisfies the following:

(i) there is a homotopy cofibration

S4 γ−→
d−1⋁︂
i=1

(︁
S2 ∨ S3)︁→ Z

for some map γ;
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(ii) H∗(Z) is torsion-free.

That is, Z is a torsion-free, simply-connected 5-dimensional Poincaré Duality complex.
In this section we have so far not given the necessary general approach required to
identify ΩZ, though we shall briefly do so now; we proceed similarly to the earlier
case of (n − 1)-connected 2n-dimensional Poincaré Duality complexes.

Let n > 2 be an integer, and take another positive integer m such that m < n. Let P be
an (m − 1)-connected n-dimensional Poincaré Duality complex. Moreover, assume
that H∗(P) is torsion free, and that there is a homotopy equivalence

Pn−m ≃ Sm ∨ Sn−m ∨ J

where Pn−m denotes the (n − m)-skeleton of P, and J is some CW-complex. Further, if
x∗m and x∗n−m denote the cohomology generators associated with the spheres in the
above homotopy equivalence, we require that x∗mx∗n−m = µ∗

P. By pinching out to these
two distinguished spheres and following a similar program to Section 3.1, we may
produce a space Q′ and a map h′ : P → Q′ such that:

(a) there is a ring isomorphism H∗(Q′) ∼= H∗(Sm × Sn−m);

(b) ΩQ′ ≃ ΩSm × ΩSn−m;

(c) the map Ωh′ has a right homotopy inverse;

(d) there is a homotopy fibration ΩQ′ ⋉ J → P h′−→ Q′, that splits after looping.

This yields the following theorem, which may also be found in [BT14, Theorem 2.6].

Theorem 3.8. Let P be an (m − 1)-connected n-dimensional Poincaré Duality complex,
under the assumptions detailed above, and let j′ : Pn−m → P be the skeletal inclusion of the
(n − m)-skeleton of P. Then the following hold:

(i) there is a homotopy equivalence

ΩP ≃ ΩSm × ΩSn−m × Ω
(︁(︁

ΩSm × ΩSn−m)︁⋉ J
)︁

which, if J is a suspension, refines to

ΩP ≃ ΩSm × ΩSn−m × Ω
(︁(︁
(ΩSm × ΩSn−m) ∧ J

)︁
∨ J
)︁

;

(ii) the map Ωj′ has a right homotopy inverse.

Now, we return to our specific case for the complex Z. Since we have assumed that
d ≥ 2, by Lemma 2.21 we have the exact case of Theorem 3.8. We are thus able to
refine the homotopy equivalence of Lemma 3.6.
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Theorem 3.9. Let M be a simply-connected 4-dimensional Poincaé Duality complex, with
H2(M) of rank d ≥ 2. If d = 2 there is a homotopy equivalence

ΩM ≃ S1 × ΩS2 × ΩS3

and if d > 2 there is a homotopy equivalence

ΩM ≃ S1 × ΩS2 × ΩS3 × Ω

(︄
Ω
(︁
ΩS2 × ΩS3)︁⋉(︄d−2⋁︂

i=1

(︁
S2 ∨ S3)︁)︄)︄ .

Proof. In the context of Theorem 3.8, n = 5, m = 2 and J =
⋁︁d−2

i=1

(︁
S2 ∨ S3)︁. When

d = 2, ΩZ ≃ ΩS2 × ΩS3, and when d > 2 there is a homotopy equivalance

ΩZ ≃ ΩS2 × ΩS3 × Ω

(︄
Ω
(︁
ΩS2 × ΩS3)︁⋉(︄d−2⋁︂

i=1

(︁
S2 ∨ S3)︁)︄)︄ .

We then apply Lemma 3.6 to complete the proof of the Theorem.

Remark 3.10. Earlier in this section, we indicated that there in an analogous approach
for 3-connected 8-dimensional Poincaré Duality complexes. Let N be such a complex.
We may apply similar techniques to those above if there is a map N → HP2 that
induces a surjection in cohomology. When we have such a map, by composing with
the inclusion HP2 → HP∞ and using that ΩHP∞ ≃ S3, one obtains a homotopy
fibration

S3 → Z′ → N

where Z′ can be shown to be a 3-connected 11-dimensional Poincaré duality complex.
Indeed, the 7-skeleton of Z′ is homotopy equivalent to a wedge of 4-spheres and
7-spheres. The case of a 7-connected 16-dimensional complex remains unclear; this,
again, is complicated by the fact that S7 does not have a classifying space.

3.3 An Improvement

This section details a preliminary observation of the author, which widens the scope of
our earlier exposition to a larger class of Poincaré Duality complexes. The concepts
laid out here will be developed and expanded in Chapter 5.

Fix an integer n > 3, and consider an (n − 2)-connected 2n-dimensional Poincaré
Duality complex N. Further, assume that that H∗(N) is torsion-free. Similar to the case
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of Section 3.1, this assumption together with Poincaré Duality allows us to deduce that

Hm(N) ∼=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z if m = 0 or m = 2n

Zl if m = n − 1 or m = n + 1

Zd if m = n

0 otherwise

for some non-negative integers d and l. Likewise, by the Universal Coefficient
Theorem, we have the following for the homology of N:

Hm(N) ∼=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z if m = 0 or m = 2n

Zl if m = n − 1 or m = n + 1

Zd if m = n

0 otherwise.

The case where l = 0 reduces us to N being (n − 1)-connected, which we have already
discussed. Henceforth, let us assume that l > 0.

Now, consider the skeletal structure of N. For an integer k < 2n, let Nk denote the
k-skeleton of N. As N is (n − 1)-connected, there is a homotopy equivalence
Nn−1 ≃ ⋁︁l

i=1 Sn−1. Similar to our earlier discussion, we have varying outcomes
depending on the integer d; we will briefly consider the situation when d = 0, and
then move to a more complete picture for when d > 0.

Case 1: d = 0

For the case when d = 0, we shall draw upon a result of Huang from [Hua22a].
Having d = 0 is equivalent to demanding that Hn(N) ∼= 0, and therefore there are no
cells of consecutive dimensions in the CW-structure of N. Thus there is a homotopy
cofibration

l⋁︂
i=1

Sn φ−→
l⋁︂

i=1

Sn−1 → Nn+1

that defines the (n + 1)-skeleton of N. Further, letting ir denote the inclusion of the rth

wedge summand, for each r ∈ {1, . . . , l} the composite

φr : Sn ir−→
l⋁︂

i=1

Sn φ−→
l⋁︂

i=1

Sn−1

defines a homotopy class in the group πn(
⋁︁l

i=1 Sn−1). Since n > 3, this group is
isomorphic to

⨁︁l
i=1 Z/2Z [Tod16]. Thus we may from an (l × l)-matrix C with entries



36 Chapter 3. Loop Space Decompositions

in Z/2Z, where the rth column is the image of the homotopy class of φr under this
group isomorphism.

Huang shows that this matrix may be manipulated by row and column operations.
This yields the following result, whose proof we neglect to state here, but may be
found in [Hua22a, Lemma 6.1].

Lemma 3.11. With the set-up as above, there is a homotopy equivalence

Nn+1 ≃
(︄

c⋁︂
i=1

Σn−3CP2

)︄
∨
(︄

l−c⋁︂
i=1

(Sn−1 ∨ Sn+1)

)︄

where c = rank(C).

To proceed with finding a decompositon of ΩN when d = 0, we restrict to the scenario
when we have c < l, and make use the more general results summarised in Theorem
3.8. A direct application of this Theorem gives us the following.

Proposition 3.12. Let n > 3 and let N be an (n − 2)-connected 2n-dimensional Poincaré
Duality complex, with H∗(N) torsion-free, Hn−1(N) of rank l > 0 and Hn(N) = 0. Further,
assume that the matrix C detailed above has rank c < l. Then there is a homotopy equivalence

ΩN ≃ ΩSn−1 × ΩSn+1 × Ω
(︂(︂

ΩSn−1 × ΩSn+1
)︂
⋉ J
)︂

where J =
(︂⋁︁c

i=1 Σn−3CP2
)︂
∨
(︂⋁︁l−c−1

i=1 (Sn−1 ∨ Sn+1)
)︂

.

Note that in the above Proposition, the complex J is a suspension, so we may refine
the homotopy equivalence of ΩN further, as in Theorem 3.8 (i).

Remark 3.13. Note that if l = 1, we must have that c = 0. In that case, the Proposition
above simplifies to the statement that ΩN ≃ ΩSn−1 × ΩSn+1.

Case 2: d > 1

In this situation, our assumption that H∗(N) is torsion-free plays a major role. Note
also that having d = 1 gives rise to restrictions due to the Hopf invariant one problem;
we regrettably omit a discussion of these cases. Our first Proposition is more general,
however, and holds for d > 0.

Proposition 3.14. Let n > 3 and let N be an (n − 2)-connected 2n-dimensional Poincaré
Duality complex, with H∗(N) torsion-free, Hn−1(N) of rank l > 0 and Hn(N) of rank d > 0.
Then there exists a homotopy equivalence

Nn+1 ≃
(︄

c⋁︂
i=1

Σn−3CP2

)︄
∨
(︄

l−c⋁︂
i=1

(Sn−1 ∨ Sn+1)

)︄
∨
(︄

d⋁︂
i=1

Sn

)︄



3.3. An Improvement 37

for some non-negative integer c ≤ l.

Proof. First, restrictions of attaching maps to cells of consecutive dimensions must be
null homotopic, otherwise we would contradict our assumption that H∗(N) is
torsion-free. Therefore we have a homotopy equivalence

Nn ≃
(︄

l⋁︂
i=1

Sn−1

)︄
∨
(︄

d⋁︂
i=1

Sn

)︄

and a homotopy cofibration

l⋁︂
i=1

Sn −→
(︄

l⋁︂
i=1

Sn−1

)︄
∨
(︄

d⋁︂
i=1

Sn

)︄
−→ Nn+1

which defines Nn+1. Again, since maps between cells of consecutive dimensions must
be null homotopic, we must have Nn+1 ≃

(︂⋁︁d
i=1 Sn

)︂
∨ J′, where J′ is a CW-complex

consisting of l many (n − 1)-cells and l many (n + 1)-cells.

To complete the proof, we shall deduce the homotopy type of the complex J′. Let
f : S2n−1 → Nn+1 be the attaching map of the top-dimensional cell of N, and consider
the homotopy commutative diagram (3.3) below, which defines the complex P.

⋁︁d
i=1 Sn ⋁︁d

i=1 Sn

S2n−1
(︂⋁︁d

i=1 Sn
)︂
∨ J′ N

S2n−1 J′ P

I

f (3.3)

Each complete row and column in (3.3) is a homotopy cofibration. Moreover, the
middle row is the homotopy cofibration by which we attach the top cell of N, and the
middle column pinches out the wedge of spheres in Nn+1.

Now, observe that the bottom row of (3.3) implies that

Hm(P) ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z if m = 0 or m = 2n

Zl if m = n − 1 or m = n + 1

0 otherwise

and that H∗(P) also inherits the cup and cap product structures from H∗(N) in all
dimensions except for n. Therefore, P is an (n − 2)-connected 2n-dimensional
Poincaré Duality complex, with Hn(P) ∼= 0. Hence Lemma 3.11 applies, and there
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exists an integer c such that

J′ ≃
(︄

c⋁︂
i=1

Σn−3CP2

)︄
∨
(︄

l−c⋁︂
i=1

(Sn−1 ∨ Sn+1)

)︄

which completes the proof.

Now, let us assume that d > 1 and n ̸∈ {4, 8}, in order to avoid cases where maps of
Hopf invariant one may arise. Let I′ : J′ → Nn+1 be the inclusion of the complex J′

into the (n + 1)-skeleton of N. There is a diagram similar to (3.3), where we change
the inclusion I for I′, which defines the complex M and the maps jM and h.

J′ J′

S2n−1
(︂⋁︁d

i=1 Sn
)︂
∨ J′ N

S2n−1 ⋁︁d
i=1 Sn M

I′

f

q h

q◦ f jM

(3.4)

Similar to the proof of Proposition 3.14, we may infer that the complex M is an
(n − 1)-connected 2n-dimensional Poincaré Duality complex. As such, we may invoke
[BT14, Theorem 2.6 (ii)], giving the existence of a right homotopy inverse for ΩjM.
Further, there is also a clear right homotopy inverse for the pinch map q, and therefore
one for Ωq.

The existence of these inverses imply the existence of a right homotopy inverse for
Ωh, similar to the proof of Lemma 3.2. Hence we may immediately apply Theorem
2.14 and Theorem 3.3, obtaining the following result.

Proposition 3.15. Let n > 3 be an integer such that n ̸∈ {4, 8}, and let N be an
(n − 2)-connected 2n-dimensional Poincaré Duality complex, with H∗(N) torsion-free,
Hn−1(N) of rank l > 0 and Hn(N) of rank d > 1. Then there exists a homotopy equivalence

ΩN ≃ ΩM × Ω(ΩM ⋉ J′)

where

ΩM ≃ ΩSn × ΩSn × Ω

(︄(︃
(ΩSn × ΩSn) ∧

d−2⋁︂
i=1

Sn
)︃
∨

d−2⋁︂
i=1

Sn

)︄
and

J′ ≃
(︄

c⋁︂
i=1

Σn−3CP2

)︄
∨
(︄

l−c⋁︂
i=1

(Sn−1 ∨ Sn+1)

)︄
for some non-negative integer c ≤ l.
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3.4 p-Hyperbolicity of Poincaré Duality complexes

In this section, we will apply the previous results on the loop spaces of highly
connected Poincaré Duality complexes to comment on their homotopy groups. More
specifically, we shall discuss the p-hyperbolicity of these complexes, using some
results due to Boyde in [Boy21]. The definitions in this section are from the
introduction of this paper.

In rational homotopy theory, a finite simply-connected CW-complex X is called
rationally elliptic if π∗(X)⊗ Q is finite dimensional, and rationally hyperbolic otherwise.
We may also define similar terminology for discussing the growth of torsion
summands with respect to a chosen prime, the details of which were first introduced
by [HW20]. For any prime p, by a p-torsion summand in an abelian group A, we mean a
direct summand isomorphic to Z/prZ for some r ≥ 1.

Definition 3.16. Let X be a finite simply-connected CW-complex, and let p be a prime.
We say that X is p-hyperbolic if the number of p-torsion summands in π∗(X) grows
exponentially, in the sense that

lim inf
m

ln (Tm)

m
> 0

where Tm is the number of p-torsion summands in
⨁︁

i≤m πi(X).

This definition counts Z/prZ-summands in
⨁︁

i≤m πi(X) for all values of r, as m
increases. It is also possible to consider a single r, which gives rise to the next
definition.

Definition 3.17. Let X be a finite simply-connected CW-complex, let p be a prime and
fix r ∈ N. We say that X is Z/prZ-hyperbolic if the number of Z/prZ-summands in
π∗(X) grows exponentially, in the sense that

lim inf
m

ln (tm)

m
> 0

where tm is the number of Z/prZ-summands in
⨁︁

i≤m πi(X).

Note that Z/prZ-hyperbolicty for any r implies p-hyperbolicty, and so is a stronger
result. Many examples of spaces that exhibit these kinds of hyperbolicity are given in
[Boy21]; we record two of direct interest to us in the Lemmas below.

Lemma 3.18. Let n1, n2 > 0 be integers. Then Sn1+1 ∨ Sn2+1 is Z/prZ-hyperbolic for all
primes p and all r ∈ N.

Lemma 3.19. Let n > 0 be an integer. Then ΣnCP2 is p-hyperbolic for all primes p ̸= 2.
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We will use these to comment on the hyperbolicity of the highly connected Poincaré
Duality complexes we studied earlier in this chapter. We first look at
(n − 1)-connected 2n-dimensional complexes.

Proposition 3.20. Let n > 1 be an integer such that n ̸∈ {4, 8}, and let M be an
(n − 1)-connected 2n-dimensional Poincaré Duality complex with Hn(M) of rank d > 2.
Then M is Z/prZ-hyperbolic for all primes p and all r ∈ N.

Proof. We start with the case where n = 2, and make use of Theorem 3.9. When d > 2,
we had the decomposition

ΩM ≃ S1 × ΩS2 × ΩS3 × Ω

(︄
Ω
(︁
ΩS2 × ΩS3)︁⋉(︄d−2⋁︂

i=1

(︁
S2 ∨ S3)︁)︄)︄ .

Let us write A = Ω
(︁
ΩS2 × ΩS3)︁⋉ (

⋁︁d−2
i=1 (S

2 ∨ S3)). The wedge of spheres in A is
evidently a suspension, so applying Lemma 2.11, we see that

A ≃
(︄

Ω
(︁
ΩS2 × ΩS3)︁ ∧(︄d−2⋁︂

i=1

(︁
S2 ∨ S3)︁)︄)︄ ∨

(︄
d−2⋁︂
i=1

(︁
S2 ∨ S3)︁)︄ .

Since we demanded that d > 2, the above homotopy equivalence shows that there is at
least one copy of S2 ∨ S3 that retracts off A. Therefore Ω(S2 ∨ S3) retracts off ΩA.
Consequently, since ΩM ≃ S1 × ΩS2 × ΩS3 × ΩA, we deduce that π∗(S2 ∨ S3)

retracts off π∗(M) as a product, and therefore M is Z/prZ-hyperbolic for all primes p
and all r ∈ N, by Lemma 3.18.

For n > 2, recall that in Remark 3.4 we showed that an (n − 1)-connected
2n-dimensional Poincaré Duality complex M, with n ̸∈ {2, 4, 8} and Hn(M) of rank
greater than 2, has the property that

ΩM ≃ ΩSn × ΩSn × ΩW

where W is a wedge of infinitely many spheres (all of which are at least
simply-connected, since n > 2). Similar to the previous case, we deduce that there
exist p, q > 1 such that Ω(Sp ∨ Sq) retracts off ΩM. We therefore have that π∗(Sp ∨ Sq)

retracts off π∗(M) as a product, and again by Lemma 3.18, M is Z/prZ-hyperbolic for
all primes p and all r ∈ N.

Next, we consider torsion-free (n − 2)-connected 2n-dimensional Poincaré Duality
complexes. We first deal with the simplest case, when Hn is non-trivial.

Proposition 3.21. Let n > 3 be an integer such that n ̸∈ {4, 8}, and let N be an
(n − 2)-connected 2n-dimensional Poincaré Duality complex with Hn−1(N) of rank l > 0
and Hn(N) of rank d > 1. Then N is Z/prZ-hyperbolic for all primes p and all r ∈ N.
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Proof. Recall that Proposition 3.15 gave us a decomposition of the form

ΩN ≃ ΩM × Ω(ΩM ⋉ J′)

where M is an (n − 1)-connected 2n-dimensional Poincaré Duality complex. By
Proposition 3.20, the complex M is Z/prZ-hyperbolic for all primes p and all r ∈ N.
Therefore, because ΩN contains ΩM as a product, N exhibits this hyperbolicity as
well.

Next, we move to when Hn(N) is trivial. Recall that the decomposition we obtained in
Proposition 3.12 depended on the rank of a matrix C. For what follows, we require
that Hn−1(N) be of rank l > 1. Further, let c = rank(C), and assume that c < l. Before
we continue with the hyperbolicity of Poincaré Duality complexes, we have a
preparatory lemma. As in Proposition 3.12, we define the complex J by

J =

(︄
c⋁︂

i=1

Σn−3CP2

)︄
∨
(︄

l−c−1⋁︂
i=1

(Sn−1 ∨ Sn+1)

)︄
.

Lemma 3.22. If c = l − 1 then J is p-hyperbolic for all primes p ̸= 2. On the other hand, if
c < l − 1, then J is Z/prZ-hyperbolic for all primes p and all r ∈ N.

Proof. When c = l − 1, the wedge sum of spheres in J vanishes. Clearly, a copy of
Σn−3CP2 retracts off J, and therefore π∗(Σn−3CP2) retracts off π∗(J), so J is
p-hyperbolic for all odd primes p. Applying Lemma 3.19 completes this part of the
proof.

If c < l − 1, then we instead have at least one Sn−1 ∨ Sn+1 retracting off J. Hence
π∗(Sn−1 ∨ Sn+1) retracts off π∗(J), and we apply Lemma 3.18.

With the hyperbolicity of the auxiliary complex J now described, we are able to
consider such characteristics for torsion-free (n − 2)-connected 2n-dimensional
Poincaré Duality complexes that have trivial homology in dimension n.

Proposition 3.23. Let n > 3 be an integer such that n ̸∈ {4, 8}, and let N be an
(n − 2)-connected 2n-dimensional Poincaré Duality complex with Hn−1(N) of rank l > 1 and
Hn(N) ∼= 0. Further, let c = rank(C), and assume that c < l. Then we have the following:

(i) if c = l − 1, then N is p-hyperbolic for all primes p ̸= 2;

(ii) if c < l − 1 then N is Z/prZ-hyperbolic for all primes p and all r ∈ N.

Proof. We will make use of Proposition 3.12, which gave the homotopy equivalence

ΩN ≃ ΩSn−1 × ΩSn+1 × Ω
(︂(︂

ΩSn−1 × ΩSn+1
)︂
⋉ J
)︂
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with J as above. The complex J is evidently a suspension, so let us write J ≃ ΣJ. By
applying Lemma 2.11, we then have that

Ω
(︂(︂

ΩSn−1 × ΩSn+1
)︂
⋉ J
)︂
≃ Ω

(︂
Σ
(︂(︂

ΩSn−1 × ΩSn+1
)︂
∧ J
)︂
∨ ΣJ

)︂
which by the Hilton-Milnor Theorem, we may write as ΩΣJ × X, where X is some
infinite product of loop spaces. Therefore we have

ΩN ≃ ΩSn−1 × ΩSn+1 × ΩJ × X.

Applying Lemma 3.22 then proves the Proposition.

Remark 3.24. Proposition 3.23 (i) may not be the optimal statement of hyperbolicity
for a complex such as N when c = l − 1. If c > 1 then Ω(Σn−3CP2 ∨ Σn−3CP2) retracts
off ΩJ. It may be the case that this wedge sum exhibits some stronger property like
Z/prZ-hyperbolicity for some odd primes p and some r, but further investigation is
needed here.
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Chapter 4

Loops on Connected Sums and
Applications to the Vigué-Poirrier
Conjecture

Having discussed much established work in the literature in the previous chapter, we
are now able to progress to developing the existing theory and prove new results. Our
first step in this chapter is to make some adjustments to an existing construction, so
that we have the precision required to introduce the concept of inert map and discuss it
in detail. Indeed, it must be emphasised that inert maps are a cornerstone of much of
what follows. We use this to give new insights into loop space decompositions of
connected sums of Poincaré Duality complexes, culminating in Theorem 4.8.

We will use this result to remark on a long standing conjecture of rational homotopy
theory, due to Vigué-Poirrier, in Section 4.4. Let X be a simply connected space, and as
per page xiii, denote its free loop space by LX. Such a space X is called rationally
elliptic if dim(π∗(X)⊗ Q) < ∞, and called rationally hyperbolic otherwise [FHT01]. As
stated in the Introduction, Vigué-Poirrier made the following conjecture in [VP84].

Conjecture (Vigué-Poirrier). If X is rationally hyperbolic, then H∗(LX; Q) grows
exponentially.

Theorem 4.17 shows that (under certain conditions) the Vigué-Poirrier Conjecture
holds for Poincaré Duality complexes with the loop space homotopy type of a
connected sum when one of these summands in rationally elliptic, which expands the
cases for which it is known to hold.

The structure of this chapter is as follows. Sections 4.1 and 4.2 are reformatted
versions of [Che22, Sections 2 & 3] (a paper of the author) together with new material
in Sections 4.3 and 4.4. Indeed, Section 4.1 establishes some modifications to a
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construction of Theriault [The20, Section 8] in order to prove Theorem 4.2, which
underpins much of what follows and provides a basis for how we will use inert maps.
In particular this is employed in Section 4.2 to give an important fact in Lemma 4.5,
and then to give further results in the context of the homotopy theory of Poincaré
Duality complexes, including a new proof of [The20, Theorem 9.1(b)-(c)].

As alluded to earlier, the key theorem of this chapter is Theorem 4.8, which gives a
general framework for our analysis. We follow this by giving a family of examples of
Poincaré Duality complexes which have the homotopy type of a connected sum after
looping, but not before. We then conclude the chapter with Section 4.4 by using
Theorem 4.8 to expand class of spaces for which the Vigué-Poirrier Conjecture is
known to hold, which we give in Corollary 4.16 and Theorem 4.17.

4.1 Adapting a Construction of Theriault

In this section, we shall make some small adjustments to a construction of Theriault
from [The20, Section 8] in order to prove a slightly more general result, which forms
the basis of what follows in this chapter. Unless otherwise stated, all spaces are
assumed to be simply connected. We also give the following definition.

Definition 4.1. For a homotopy cofibration A
f−→ B

j−→ C the map f is called inert if Ωj
has a right homotopy inverse.

This an integral version of a notion used in rational homotopy theory, namely rational
inertness, which we will see in Section 6.3.

Second, recall our standard notation for pinch maps and inclusions regarding wedges
of spaces (see page xiii) . Note that every projection map pj has a right inverse, given
by the inclusion ij. Our focus in this section will be on analysing homotopy
cofibrations of the form

ΣA
f−→ X ∨ Y

q−→ C

and the key to our considerations will be the following homotopy commutative
diagram of homotopy cofibrations

Y Y

ΣA X ∨ Y C

ΣA X M

i2

f q

p1 φ

p1◦ f j

(4.1)
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where the bottom-right square is a homotopy pushout. Our goal is to prove the
following theorem.

Theorem 4.2. Consider Diagram (4.1). If the map Ωj has a right homotopy inverse, then so
do Ωφ and Ωq. In particular, if the composite p1 ◦ f is inert, then so is f .

We will be following the method set out by Theriault in [The20, Section 8] very closely,
though with some alterations. We include much of the argument here for the sake of
transparency, though we will not include sections where we argue identically to
Theriault; we will instead make this clear and give precise references for where the
arguments can be found.

First, recall that for two path connected and based spaces X and Y, the (left) half-smash
of X and Y is the quotient space

X ⋉Y = (X × Y)/(X × y0)

where y0 denotes the basepoint of Y. We begin by recalling some of the main results
from Section 2.2, starting with Theorem 2.13.

Theorem 2.13 (Theriault). Suppose there exists a homotopy commutative diagram

E E′

ΣA B C

Z Z

α

f

h h′

where the middle and right columns are homotopy fibrations, the map α is an induced map of
fibres and the middle row is a homotopy cofibration. If Ωh has a right homotopy inverse, then
there exists a homotopy cofibration

ΩZ ⋉ ΣA θ−→ E → E′

for some map θ.

Further, recall the special case in which C = Z and h′ is the identiy map, which
implies that E′ is contractible and therefore that θ is a homotopy equivalence. This
gave Theorem 2.14, which we restate here for the benefit of the reader.

Theorem 2.14 (Beben-Theriault). Suppose there is a homotopy cofibration

A
f−→ B h−→ C
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such that the map Ωh has a right homotopy inverse. Then there exists a homotopy fibration

ΩC ⋉ A → B h−→ C.

Moreover, this homotopy fibration splits after looping, so there is a homotopy equivalence
ΩB ≃ ΩC × Ω(ΩC ⋉ A).

Returning to the situation of Diagram (4.1), since p1 ◦ f is inert, the map Ωj has a right
homotopy inverse. Let E′′ be the homotopy fibre of j. Theorem 2.14 applies to the
bottom row of (4.1), which implies that E′′ ≃ ΩM ⋉ ΣA. Equivalently, there is a
homotopy cofibration

ΩM ⋉ ΣA θ−→ E′′ → ∗.

Now, let s denote a right homotopy inverse of Ωj, and t that of Ωp1. Then the
composite Ωq ◦ t ◦ s is a right homotopy inverse for Ωφ. Let h = j ◦ p1 and let E and E′

denote the homotopy fibres of h and φ, respectively. We have the following homotopy
commutative diagram

E E′

ΣA X ∨ Y C

M M

α

f q

h φ

(4.2)

where the middle and right columns are homotopy fibrations, the map α is an induced
map of fibres and the middle row is a homotopy cofibration. Therefore, by Theorem
2.13, there exists a homotopy cofibration

ΩM ⋉ ΣA
θ f−→ E α−→ E′. (4.3)

Moreover, the right homotopy inverse for Ωφ enables us to apply Theorem 2.14 to the
right-most column of (4.1), so we have homotopy equivalences

E′ ≃ ΩM ⋉Y and ΩC ≃ ΩM × Ω(ΩM ⋉Y).

The proof strategy for Theorem 4.2 will be as follows: we wish to gain more control
over the homotopy class of the first equivalence, and use this knowledge to deduce
further facts about the second. The next step is to consider the homotopy fibration
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diagram

E E′′

X ∨ Y X

M M.

l

p1

h j

(4.4)

The bottom square of (4.4) is commutative by definition of the map h, so the induced
map of fibres l exists. A naturality condition for Theorem 2.13 is given in [The20,
Remark 2.7], which is satisfied in by virtue of (4.4). Thus there is a homotopy
cofibration diagram

ΩM ⋉ ΣA E E′

ΩM ⋉ ΣA E′′ ∗.

θ f α

l

θ

(4.5)

Note that since θ is a homotopy equivalence, (4.5) implies that the map θ f always has a
left homotopy inverse. Moreover, observe also that in constructing the above we only
considered with the behaviour of f when restricted to X. We record this in the lemma
below, for ease of reference.

Lemma 4.3. With the set-up of Diagram (4.5) above, the map θ f has a left homotopy inverse
whose homotopy class depends only on the homotopy class of the composite f when restricted
to X.

This enables us to switch focus for the time being, and consider the special case in
which C ≃ M ∨ Y. Diagram (4.1) now becomes the homotopy cofibration diagram

Y Y

ΣA X ∨ Y M ∨ Y

ΣA X M

f j∨1

p1 p1

p1◦ f j

(4.6)

where we have q = j ∨ 1 and φ = p1. Since the map Ωp1 has a right homotopy
inverse, we may apply Theorem 2.14 to the homotopy cofibration in the right-most
column of (4.6), again giving a homotopy equivalence E′ ≃ ΩM ⋉Y. Thus Diagram



48
Chapter 4. Loops on Connected Sums and Applications to the Vigué-Poirrier
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(4.2) becomes

E ΩM ⋉Y

ΣA X ∨ Y M ∨ Y

M M

α′

f j∨1

h p1

(4.7)

and, analogously to (4.3), there is a homotopy cofibration

ΩM ⋉ ΣA
θ′f−→ E α′−→ ΩM ⋉Y.

Noting that the upper square of (4.7) is a homotopy pullback and arguing exactly as in
the proof of [The20, Lemma 8.3] gives the following.

Lemma 4.4. The map α′ has a right homotopy inverse r : ΩM ⋉Y → E such that the
composite l ◦ r is null homotopic.

Combining this with the general situation, we have homotopy cofibrations

ΩM ⋉ ΣA
θ f−→ E α−→ E′ and ΩM ⋉ ΣA

θ′f−→ E α′−→ ΩM ⋉Y.

By Lemma 4.3 there is a left homotopy inverse k for both θ f and θ′f . Lemma 4.4 gives a
right homotopy inverse r for α′, and since l ◦ r ≃ ∗, Diagram (4.5) implies that we have
k ◦ r ≃ ∗. By [The20, Lemma 8.5], this implies that the composite

ΩM ⋉Y r−→ E α−→ E′ (4.8)

is a homotopy equivalence. This achieves our first goal of gaining more control over
the homotopy equivalence E′ ≃ ΩM ⋉Y; we will use the fact that it factors through E
to prove Theorem 4.2. Recall that applying Theorem 2.14 to the right-most column of
Diagram (4.2) yields a homotopy equivalence

ΩC ≃ ΩM × Ω(ΩM ⋉Y).

Proof of Theorem 4.2. We have already shown that the map Ωφ has a right homotopy
inverse given by Ωq ◦ s ◦ t, due to homotopy commutativity of (4.1), thus all that
remains to prove is that the map Ωq also has a right homotopy inverse. We shall do
this by showing that the above homotopy equivalence for ΩC factors through Ωq,
from which the existence of a right homotopy inverse for Ωq follows immediately. Let
λ = s ◦ t, which is a right homotopy inverse for the map Ωh. Taking loops on the
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middle and right columns of (4.2) gives

ΩE ΩE′

Ω(X ∨ Y) ΩC

ΩM ΩM.

Ωα

Ωq

Ωh Ωφ

(4.9)

Letting r′ denote ΩM ⋉Y r−→ E → X ∨ Y, we have the composite

e : ΩM × Ω(ΩM ⋉Y) λ×Ωr′−−−→ Ω(X ∨ Y)× Ω(X ∨ Y)
µ−→ Ω(X ∨ Y)

Ωq−→ ΩC

where µ is the loop multiplication. The homotopy commutativity of (4.9) together
with the fact that Ωq is an H-map implies that that e is a homotopy equivalence, so the
proof is complete. □

4.2 Inert Maps and Decompositions of Connected Sums

We wish to apply Theorem 4.2 to the situation of connected sums. Recall from Section
2.1 that if we have two homotopy cofibrations of simply connected spaces

ΣA
f−→ B

j−→ C and ΣA
g−→ D l−→ E

we may form the generalised connected sum of C and E over ΣA, as per Definition2.4,
written C#ΣAE.

Recall also that p1 ◦ ( f +̌ g) ≃ f . By Proposition 2.5, we have the diagram below, in
which each complete row and column is a homotopy cofibration and the bottom-right
square is a homotopy pushout. We label the induced map C#ΣAE → C by h.

D D

ΣA B ∨ D C#ΣAE

ΣA B C.

f +̌g q

p1 h

f j

(4.10)

It follows immediately from Theorem 4.2 and by applying Theorem 2.14 to the
rightmost column of Diagram (4.10).
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Lemma 4.5. Take the setup of Diagram (4.10). If the map f is inert, then so is f +̌ g.
Moreover, there is a homotopy equivalence Ω(C#ΣAE) ≃ ΩC × Ω(ΩC ⋉ D).

Remark 4.6. Lemma 4.5 shows that whatever the homotopy class of the map g, the
map f +̌ g inherits inertness from f regardless.

We may also consider connected sums of Poincaré Duality complexes. Recall that a
Poincaré Duality complex is a finite, simply connected CW-complex whose
cohomology ring exhibits Poincaré Duality. For such a complex, there exists a cell
structure that has a single top-dimensional cell, and we may define the connected sum
operation similarly to that of manifolds. Namely, for two n-dimensional Poincaré
Duality complexes M and N, the space M#N is formed by removing an n-dimensional
open disc from the interior of the top-cells of M and N and joining the resulting
complexes along their boundaries. Up to homotopy, M#N coincides with the
generalised connected sum M#Sn−1 N.

In pursuit of our homotopy theoretic analysis, we seek a framework whereby it may
be shown that Poincaré Duality complex has the homotopy type of a connected sum,
after looping. To begin to give this we have the following Proposition, which is a
restatement of [The20, Theorem 9.1 (b)-(c)], though we provide a new proof.

Proposition 4.7 (Theriault). Let M and N be two Poincaré Duality complexes of dimension
n, where n > 3, such that the attaching map of the top-cell of M is inert. Then there is a
homotopy equivalence

Ω(M#N) ≃ ΩM × Ω(ΩM ⋉ Nn−1)

where Nn−1 denotes the (n − 1)-skeleton of N. Furthermore, the attaching map of the top-cell
of M#N is inert.

Proof. Let fM and fN be the attaching maps of the top-cells of M and N, respectively,
onto their (n − 1)-skeleta Mn−1 and Nn−1. We have homotopy cofibrations

Sn−1 fM−→ Mn−1 → M and Sn−1 fN−→ Nn−1 → N.

Similar to Diagram (4.10), we have the following homotopy cofibration diagram.

Nn−1 Nn−1

Sn−1 Mn−1 ∨ Nn−1 M#N

Sn−1 Mn−1 M.

fM+̌ fN q

p h

fM j
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The result then follows from Lemma 4.5.

So far we have only used Theorem 4.2 to show that a sum of attaching maps is inert.
The next theorem switches that focus, giving conditions for an attaching map to be
inert without first supposing that it is a sum.

Theorem 4.8. Let n > 3 and suppose that M, N and P are n-dimensional Poincaré Duality
complexes. Let fM and fP denote the attaching maps of the top-cells of M and P, respectively,
and suppose further that:

(i) Mn−1 ≃ Pn−1 ∨ Nn−1;

(ii) the composite p1 ◦ fM : Sn−1 → Pn−1 is inert;

(iii) the homotopy cofibre of p1 ◦ fM, Q, is such that ΩQ ≃ ΩP;

(iv) the map fP is inert.

Then the attaching map fM is inert and ΩM ≃ Ω(N#P).

Proof. From (i) we have the following homotopy cofibration diagram

Nn−1 Nn−1

Sn−1 Pn−1 ∨ Nn−1 M

Sn−1 Pn−1 Q.

fM

p1

p1◦ fM

(4.11)

Condition (ii) places us in the situation of Theorem 4.2, therefore fM is inert and there
is a homotopy equivalence ΩM ≃ ΩQ × Ω(ΩQ ⋉ Nn−1). By condition (iii), we
therefore have

ΩM ≃ ΩP × Ω(ΩP ⋉ Nn−1). (4.12)

Now consider the connected sum N#P. There is a homotopy cofibration diagram

Nn−1 Nn−1

Sn−1 Pn−1 ∨ Nn−1 N#P

Sn−1 Pn−1 P.

fN+̌ fP

p1

fP
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By (iv), Lemma 4.5 gives a homotopy equivalence Ω(N#P) ≃ ΩP × Ω(ΩP ⋉ Nn−1)

and consequently that ΩM ≃ Ω(N#P), due to (4.12).

4.3 A Constructive Example

In order for Theorem 4.8 to carry weight and not be vacuous, we should provide an
example of a Poincaré Duality complex with the homotopy type of a connected sum
after looping, but not before. Indeed, in this section we will give an explicit family of
such examples. Letting n > 2 be an integer, we take

w1 : S2n−1 → Sn ∨ Sn , w2 : S2n−1 → Sn−1 ∨ Sn+1 and w3 : S2n−2 → Sn ∨ Sn−1

to be the Whitehead products attaching the top-dimensional cells of the sphere
products Sn × Sn, Sn−1 × Sn+1 and Sn × Sn−1, respectively. Furthermore, let η denote
the classical Hopf map and let r = 2n − 4. We form three composites, namely

f1 : S2n−1 w1−→ Sn ∨ Sn i1,2−→ Sn ∨ Sn ∨ Sn−1 ∨ Sn+1

f2 : S2n−1 w2−→ Sn−1 ∨ Sn+1 i3,4−→ Sn ∨ Sn ∨ Sn−1 ∨ Sn+1

f3 : S2n−1 Σrη−−→ S2n−2 w3−→ Sn ∨ Sn−1 i2,3−→ Sn ∨ Sn ∨ Sn−1 ∨ Sn+1

where ij,k is the inclusion of the jth and kth sphere. Before continuing with our
construction, we will verify that the composite w3 ◦ Σrη is essential (i.e. not null
homotopic). To see this, we will study adjoints. In what follows, we let E denote the
usual suspension map X → ΩΣX, and for a map of topological spaces f : ΣX → Y we
let f̂ : X → ΩY denote its adjoint. Recall that such a map f is essential if and only if f̂
is, and that f̂ is homotopic to the composite

X E−→ ΩΣX
Ω f−→ ΩY.

Lemma 4.9. The composite w3 ◦ Σrη is essential.

Proof. In what follows, let γ = w3 ◦ Σrη. We will describe its adjoint γ̂ to show it is
essential. We first consider the following diagram

S2n−2 S2n−3 Ω(Sn ∨ Sn−1)

ΩS2n−1 ΩS2n−2 Ω(Sn ∨ Sn−1)

Σr−1η

E

ˆ︂w3

E

ΩΣrη

Ωγ

Ωw3

(4.13)
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in which right square commutes by definition of the adjoint, the left square homotopy
commutes by the naturality of the suspension map E, and the bottom row is the
definition of Ωγ. Thus the whole diagram commutes up to homotopy, and in
particular we have γ̂ ≃ ŵ ◦ Σr−1η. Now, by the Hilton-Milnor Theorem we have a
homotopy equivalence

Ω(Sn ∨ Sn−1) ≃ ∏
k,l∈N

ΩS(k+l)n+(1−k−2l)

in which k = l = 1 gives a factor of ΩS2n−2. Indeed, via Remark 2.16, the composite

ΩS2n−2 → ∏
k,l∈N

ΩS(k+l)n+(1−k−2l) ≃−→ Ω(Sn ∨ Sn−1)

is homotopic to Ωw3. Letting p : Ω(Sn ∨ Sn−1) → ΩS2n−2 be the projection map from
the product to this factor, consider the diagram

S2n−2 Ω(Sn ∨ Sn−1) ΩS2n−2

S2n−3 ΩS2n−2.

Σr−1η

γ̂ p

ˆ︂w3

E

Ωw3
(4.14)

In particular, the right-hand triangle commutes, so the whole diagram commutes up
to homotopy. To check that γ̂ is essential, it therefore it suffices to check that Σr−1η is
not null homotopic, which always holds since r > 0.

We return now to the main content of this long-form example. Let σ be the usual
comultiplication on S2n−1 and let ∇ denote the fold map; we write σ′ = (1 ∨ σ) ◦ σ

and ∇′ = ∇ ◦ (1 ∨∇) for three-fold uses of these maps. Consider now the composite

f : S2n−1 σ′
−→

3⋁︂
S2n−1 f1∨ f2∨ f3−−−−−→

3⋁︂
(Sn ∨ Sn ∨ Sn−1 ∨ Sn+1)

∇′
−→ Sn ∨ Sn ∨ Sn−1 ∨ Sn+1

Letting pj,k be the pinch map to the jth and kth sphere in Sn ∨ Sn ∨ Sn−1 ∨ Sn+1 note
that we have

p1,2 ◦ f ≃ w1 , p3,4 ◦ f ≃ w2 and p2,3 ◦ f ≃ γ. (4.15)

The complex we wish to study is the homotopy cofibre of the map f , which we shall
denote by M. The construction of the map f implies that M does not have the
homotopy type of a connected sum before looping; if this were true, f would be
representable in the form f ≃ g +̌ h. This is not the case, by virtue of Lemma 4.9,
otherwise we would have M ≃ (Sn × Sn)#(Sn−1 × Sn+1). After looping, however, we
have the following homotopy equivalence.

Lemma 4.10. There is a homotopy equivalence ΩM ≃ Ω((Sn × Sn)#(Sn−1 × Sn+1)).
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Proof. In the context of Theorem 4.8, take N = Sn × Sn and P = Sn−1 × Sn+1. We have
the following homotopy cofibration diagram

Sn ∨ Sn Sn ∨ Sn

S2n−1 Sn ∨ Sn ∨ Sn−1 ∨ Sn+1 M

S2n−1 Sn−1 ∨ Sn+1 Sn−1 × Sn+1

f

p3,4 h

w2

(4.16)

from which, since the map w2 is inert, Theorem 4.8 gives the homotopy
equivalence.

So, the complex M is not a connected sum before looping, but does have the loop
space homotopy type of one. Our construction also carries a deeper structure, as the
following lemma shows.

Lemma 4.11. M is a Poincaré Duality complex.

Proof. We will show that M inherits a Poincaré Duality structure via an algebra
isomorphism H∗(M) ∼= H∗((Sn × Sn)#(Sn−1 × Sn+1)). To begin, consider taking the
pinch map p1,2 or p2,3 in the middle-column of Diagram (4.16), instead of p3,4. Via
(4.15) we therefore have, in addition to the map h : M → Sn−1 × Sn+1, maps

h′ : M → Sn × Sn and h′′ : M → Cγ

where Cγ denotes the homotopy cofibre of γ. It has cells in dimensions 0, n − 1, n and
2n, so all cup products in H∗(Cγ) are trivial. Next we must establish notation: we
write

H∗(Sn × Sn) = Z⟨x1, x2, µ1⟩ and H∗(Sn−1 × Sn+1) = Z⟨x3, x4, µ2⟩

where |x1| = |x2| = n, |x3| = n − 1, |x4| = n + 1, |µ1| = |µ2| = 2n, and we have cup
products x1 ∪ x2 = µ1 and x3 ∪ x4 = µ2. We shall do similarly for M: it has cells in
dimensions 0, n − 1, n, n + 1 and 2n, so may write H∗(M) = Z⟨y1, y2, y3, y4, µM⟩
where |y1| = |y2| = n, |y3| = n − 1, |y4| = n + 1, |µM| = 2n. By construction, the
induced homomorphisms h∗ and (h′)∗ on cohomology take generators to generators;
explicitly, we have

h∗(x1) = y1, h∗(x2) = y2, (h′)∗(x3) = y3, (h′)∗(x4) = y4 and h∗(µ1) = (h′)∗(µ2) = µM

which in turn induces cup products y1 ∪ y2 = y3 ∪ y4 = µM, which are the only
possible cup products for dimensional reasons. Thus there is a clear algebra
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isomorphism H∗(M) ∼= H∗((Sn × Sn)#(Sn−1 × Sn+1)) by virtue of which M gains a
Poincaré Duality struture as per Definition 2.19.

Lemmas 4.10 and 4.11 combine to give the following Proposition, constituting the
thrust of this section.

Proposition 4.12. For each integer n > 2 there exists a 2n-dimensional Poincaré Duality
complex with the homotopy type of a connected sum after looping, but not before.

In the construction that lead to Proposition 4.12, there are two subtleties that bear
noting. First, we could have used something other than the Hopf map η.

Indeed, suppose we have two wedges of spheres W1 and W2, in which all spheres are
of dimension at least 2, and for each i = 1, 2 there are maps gi : S2n−1 → Wi such that
their homotopy cofibres Mi are 2n-dimensional Poincaré Duality complexes (for
example, our Wi could be wedges of n-spheres, and the gi would be the attaching
maps of the 2n-cells of (n − 1)-connected 2n-dimensional Poincaré Duality
complexes). We then take fi : S2n−1 gi−→ Wi → W1 ∨ W2. Suppose also that there are
integers a, b > 1 such that 2n > a + b and that spheres Sa and Sb are wedge summands
of W1 and W2, respectively.

Now, let us suppose further that there is some non-trivial class α ∈ π2n−1(Sa+b−1).
Similar to the proof of Lemma 4.10, let γ′ denote the composite

γ′ : S2n−1 α−→ Sa+b−1 w−→ Sa ∨ Sb

where w is again a Whitehead product. Analogous to Diagram (4.14), we have the
following

S2n−2 Ω(Sa ∨ Sb) ΩSa+b−1

ΩSa+b−1.

α̂

ˆ︁γ′ p

Ωw (4.17)

The adjoint α̂ is essential because α is, by definition, so therefore we have that γ̂′ is
non-trivial, and equivalently that γ′ is essential. One way to guarantee this would be
to have another class β ∈ π2n−2(Sa+b−2) that suspends non-trivially and take α = Σβ,
as we did previously with β = Σr−1η.

We then define f3 to be the composite S2n−1 γ′
−→ Sa ∨ Sb → W1 ∨ W2 and proceed as

before, constructing a map f via a threefold wedge of maps. In essence, the question
now is whether the homotopy cofibre M of f is a Poincaré Duality complex in this
context. A constructive argument in the style of Lemma 4.11 gives an affirmative
answer. Indeed, the cup product structure induced by the maps gi is preserved, and
the only way cup products could come from interactions between spheres in different
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Wi would be via f3. There are none, however, since cup products in the homotopy
cofibre of γ′ all vanish for dimensional reasons (because a + b < 2n). Thus we again
build an algebra isomorphism H∗(M) ∼= H∗(M1#M2) from which M inherits its
Poincaré Duality structure.

The second subtlety is that, in principle, one could seat this section in a more general
context by considering maps of a sphere into a wedge, say f : Sn → A ∨ B. By Ganea’s
Theorem, we have π∗(A ∨ B) ∼= π∗(A)× π∗(B)× π(ΩA ∗ ΩB). The philosophy
behind the construction of Proposition 4.12 is that we wish to construct a map whose
homotopy cofibre, which we again call M,

(a) is a Poincaré Duality complex;

(b) does not have the homotopy type of a connected sum before looping;

(c) but does have the homotopy type of a connected sum after looping;

and this is acheived by constructing an appropriate map whose homotopy class is in
all three factors of π∗(A ∨ B). The point here is that if M did have the homotopy type
of a connected sum, f could be written as some sum of maps g +̌ h, where g : Sn → A
and h : Sn → B. Then the homotopy class of f would have no part in π∗(ΩA ∗ ΩB).
Our strategy is therefore to construct f so this is not the case, to ensure M is not a
connected sum before looping. In this section we are in effect using our knowledge of
the Hilton-Milnor Theorem to provide the necessary clarity when A and B are wedges
of spheres.

4.4 An Application to the Vigué-Poirrier Conjecture

Let us briefly recall the framework of the Vigué-Poirrier Conjecture. We consider a
simply connected space X, and call such a space rationally elliptic if
dim(π∗(X)⊗ Q) < ∞, and rationally hyperbolic otherwise. The conjecture is as
follows.

Conjecture (Vigué-Poirrier). If X is rationally hyperbolic, then H∗(LX; Q) grows
exponentially.

Now we establish some terminology, which we take chiefly from [HT21, FHT13]. A
graded vector space V = {Vi}i≥0 of finite type grows exponentially if there exist
constants 1 < C1 < C2 < ∞ such that for some K

Ck
1 ≤ ∑

i≤k
dim(Vi) ≤ Ck

2 for all k ≥ K.
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The log-index of V is defined by

log-index(V) = lim sup
i

ln(dim(Vi))

i
.

For a topological space X let log-index(π∗(X)) = log-index(π≥2(X)⊗ Q). Note that if
X is rationally elliptic then log-index(π∗(X)) = −∞ and if X is rationally hyperbolic
then log-index(π∗(X)) > 0. The following two stronger definitions were formulated
by Félix, Halperin and Thomas in [FHT13], after which they then give Theorem 4.15
(see [FHT13, Theorem 3]).

Definition 4.13. A graded vector space V as described above has controlled exponential
growth if log-index(V) ∈ (0, ∞) and for each λ > 1 there is an infinite sequence
n1 < n2 < · · · such that ni+1 < λni for all i ≥ 0 and dim(Vni) = eαini with
αi → log-index(V).

Definition 4.14. Let X be a simply connected topological space with rational
homology of finite type, and such that log-index(H∗(ΩX; Q)) ∈ (0, ∞). Then LX has
good exponential growth if H∗(LX; Q) has controlled exponential growth and

log-index(H∗(LX; Q)) = log-index(H∗(ΩX; Q)).

Theorem 4.15 (Félix-Halperin-Thomas). Let F → Y → Z be a fibration between simply
connected spaces with rational homology of finite type. If

log-index(π∗(Z)) < log-index(π∗(Y))

then LY has good exponential growth if and only if LF does.

We are now ready to provide our application using Theorem 4.8.

Corollary 4.16. Let n > 3 and suppose that M, N and P are n-dimensional Poincaré Duality
complexes that satisfy conditions (i)-(iv) of Theorem 4.8. If

log-index(π∗(P)) < log-index(π∗(N#P))

then LM has good exponential growth if and only if L(N#P) does.

Proof. Recall from the proof of Theorem 4.8 that we had homotopy cofibrations

Nn−1 → M
h1−→ Q and Nn−1 → N#P h2−→ P

in which both h1 and h2 have right homotopy inverses after looping. In particular, by
Theorem 2.14, these give rise to homotopy fibrations

ΩP ⋉ Nn−1 → M
h1−→ Q and ΩP ⋉ Nn−1 → N#P h2−→ P. (4.18)
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Taking the second of these homotopy fibrations, since we supposed that

log-index(π∗(P)) < log-index(π∗(N#P))

we have by Theorem 4.15 that L(N#P) has good exponential growth if and only if
L(ΩP ⋉ Nn−1) does. Since we have assumption (iii) of Theorem 4.8, ΩQ ≃ ΩP. It is
evident that

log-index(π∗(P)) = log-index(π∗(Q))

and by the result Theorem 4.8 of we have

log-index(π∗(M)) = log-index(π∗(N#P)).

Therefore log-index(π∗(Q)) < log-index(π∗(M)) and we may once again apply
Theorem 4.15 to the first homotopy fibration of (4.18) and deduce that the good
exponential growth of L(ΩP ⋉ Nn−1) is equivalent to good exponential growth of
LM.

Note in particular that if P is rationally elliptic, the assumption of Corollary 4.16
always holds. We record this in the Theorem below, and then close this section with an
example.

Theorem 4.17. Let n > 3 and suppose that M, N and P are n-dimensional Poincaré Duality
complexes that satisfy conditions (i)-(iv) of Theorem 4.8. If P is rationally elliptic, then LM
has good exponential growth if and only if L(N#P) does.

In the situation of Theorem 4.17, L(N#P) having good exponential growth implies
that it satisfies the Vigué-Poirrier Conjecture – that is to say, N#P is an example of a
rationally hyperbolic space such that H∗(L(N#P); Q) grows exponentially. From a
result of [Lam01], the Conjecture is known to hold non-trivial connected sums of
closed manifolds which are not monogenic in cohomology (i.e. that their cohomology
rings are generated by more than one element), so such examples are known to arise
in nature. Theorem 4.17 therefore shows that the Conjecture holds for spaces with the
loop space homotopy type of connected sums of manifolds which satisfy this simple
cohomological condition.

Example 4.18. Consider our Poincaré Duality complex M from the main part of
Section 4.3. We had the homotopy equivalence

ΩM ≃ Ω((Sn × Sn)#(Sn−1 × Sn+1)).

By [FHT13, Theorem 1], L((Sn × Sn)#(Sn−1 × Sn+1)) has good exponential growth.
Moreover, it is easily verified that both Sn × Sn and Sn−1 × Sn+1 are rationally elliptic.
Thus Theorem 4.17 applies, and M satisfies the Vigué-Poirrier Conjecture.
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Chapter 5

A Homotopy Theoretic Analogue to
a Theorem of Wall

This chapter is a reformatted version of the later sections of a paper of the author,
namely [Che22, Sections 4 & 5] together with some illustrative examples from [Che22,
Section 3]. It provides another use of the theory we have developed in this thesis,
again to do with loop space decompositions of connected sums. Our aim is to make a
higher dimensional homotopy theoretic analogue to the following theorem of C.T.C.
Wall, given in [Wal66a], which was proved using methods of differential topology and
surgery theory.

Theorem (Wall). Let M be a closed, smooth, simply connected 6-manifold. Then there is a
diffeomorphism

M ∼= M1#M2

where M1 is a connected sum of finitely many copies of S3 × S3 and H3(M2) is finite.

Generalising this theorem to higher dimensions leads one to consider decomposing
(n − 2)-connected 2n-manifolds into constituent parts via the operation of connected
sums. As we saw in Chapter 3, there has been much recent activity studying the based
loop spaces of (n − 1)-connected 2n-manifolds, notably by Beben and Theriault
[BT14, BT22]. More recently, work of Huang [Hua22a] incorporated a study of torsion
free (n − 2)-connected 2n-manifolds with vanishing cohomology in dimension n.
These papers do not explore connected sums directly, but instead give decompositions
of loop spaces as products of other spaces. By drawing on this recent work, and
making use earlier results covered in this thesis, we give a homotopy theoretic
analogue to this Theorem of Wall in Theorem 5.8.

We begin the chapter with a corollary and some illustrative examples from [Che22,
Section 3] relating to Theorem 4.8, which help to bring our focus to connected sums
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where we have summands that are products of pairs of spheres. In Section 5.2 we
decypher the skeletal structure of (n − 2)-connected 2n-dimensional Poincaré Duality
complexes using a homology decomposition argument; this expands on the ideas in
Section 3.3 of this thesis, and we will use it to prove the Main Theorem of this chapter.
The titular homotopy theoretic analogue is proved in Section 5.3, which is given by
applying the methods developed throughout the preceding sections.

5.1 Some Illustrative Examples

In order to provide a more tangible link to the case where we have connected
summands that are products of pairs of spheres, we have a neat corollary to Theorem
4.8, which we form by drawing on results of Beben-Theriault from [BT14]. We then
follow with two examples.

Corollary 5.1. Let n, m ≥ 2 be integers. Suppose that M and N are two
(n + m)-dimensional Poincaré Duality complexes such that there is a cohomology
isomorphism H∗(M) ∼= H∗(N#(Sn × Sm)) and there exists a homotopy equivalence

Mn+m−1 ≃ Sn ∨ Sm ∨ Nn+m−1.

Then there is a homotopy equivalence ΩM ≃ Ω(N#(Sn × Sm)) and the attaching map of the
top-cell of M is inert.

Proof. Once again letting fM denote the attaching map of the top-cell of M, there is a
homotopy commutative diagram of homotopy cofibrations

Nn+m−1 Nn+m−1

Sn+m−1 Sn ∨ Sm ∨ Nn+m−1 M

Sn+m−1 Sn ∨ Sm Q.

i j◦i

fM j

p

p◦ fM h

(5.1)

Because of the conditions we imposed in the statement of the Corollary, the complex Q
precisely satisfies the situation of [BT14, Lemma 2.3], so there is a homotopy
equivalence ΩQ ≃ ΩSn × ΩSm and the map Ωh has a right homotopy inverse.
Therefore the composite p ◦ fM is inert (by definition), so Theorem 4.8 applies and
there is a homotopy equivalence ΩM ≃ Ω(N#(Sn × Sm)) and fM is inert.
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Example 5.2. An immediate application of Corollary 5.1 is that the attaching map of
the top-cell of the r-fold connected sum

r
#

i=1
(Sn × Sn)

is inert. We can generalise this further: fix an integer k > 3 and take an index set I and
integers ni, mi ≥ 2 such that ni + mi = k for all i ∈ I. Corollary 5.1 then gives that the
attaching map of the top-cell of the connected sum #

i∈I
(Sni × Smi) is inert.

Example 5.3. Using Corollary 5.1 we can deduce some facts about manifolds
discussed in [BT14]. Let n > 3 be an integer such that n ̸= 4, 8 (to avoid cases where
maps of Hopf invariant one may arise) and let M be an a smooth, closed, oriented,
(n − 1)-connected 2n-dimensional manifold with rank(Hn(M)) = d ≥ 2. The
manifold M is Poincaré Duality complex, and we are in the situation of Corollary 5.1.
Consequently, all such manifolds have their top-cells attached by inert maps.
Moreover, by Proposition 2.22, if n is an odd number then Poincaré Duality implies
that d must be even, and so [BT14, Theorem 1.1(b)] implies that there is a homotopy
equivalence

ΩM ≃ Ω
(︃

d/2
#

i=1
(Sn × Sn)

)︃
and consequently an isomorphism of homotopy groups. Thus, for such a manifold M,
its homotopy groups are determined entirely by the rank of its middle (co)homology
group Hn(M).

5.2 A Homology Decomposition

Let us fix an integer n > 3 such that n ̸∈ {4, 8}, again to avoid cases where maps of
Hopf invariant one may arise. Consider an (n − 2)-connected 2n-dimensional
Poincaré Duality complex. Take such a complex M; the Universal Coefficient Theorem
together with Poincaré Duality enables us to deduce that

H∗(M) ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z if ∗ = 0 or ∗ = 2n

Zl ⊕ T if ∗ = n − 1

Zd ⊕ T if ∗ = n

Zl if ∗ = n + 1

0 otherwise

(5.2)

where T ∼=
⨁︁k

i=1 Z/pri
i Z for (not necessarily distinct) primes pi and integers ri ∈ N. In

this section we shall construct an appropriate homology decomposition of M, so that
the homotopy theoretic methods we have developed previously can be applied. This
will provide the basis for proof of the analogue to Wall’s Theorem (see Theorem 5.8).
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To begin, recall from [Hat02, Section 4H] (or indeed [Ark11, Section 7.3]) that for a
sequence of groups Gj, j ≥ 1, one may inductively construct a CW-complex X via a
sequence of subcomplexes X1 ⊂ X2 ⊂ . . . with

Hi(Xj) ∼=

⎧⎨⎩Gi if i ≤ j

0 if i > j

such that

(i) X1 is a Moore space M(G1, 1);

(ii) Xj+1 is the homotopy cofibre of a cellular map hj : M(Gj+1, j) → Xj that induces
a trivial map in homology;

(iii) X =
⋃︁

j Xj.

In [Hat02, Theorem 4H.3], it is noted that every simply connected CW-complex has a
homology decomposition. As per our standard notation on page xiii, we let Pn(pri

i )

denote the mod-pri
i Moore space. Recall that we may one may equivalently view such

a Moore space as the homotopy cofibre of the degree pri
i map Sn−1 → Sn−1, or use the

more general notation M(Z/pri
i Z, n − 1).

Proposition 5.4. Let M be an (n − 2)-connected 2n-dimensional Poincaré Duality complex,
as described in (5.2). Then there exists an integer c, with 0 ≤ c ≤ l, such that there is a
homotopy cofibration

S2n−1 →
(︄

d⋁︂
i=1

Sn

)︄
∨
(︄

l−c⋁︂
i=1

Sn−1 ∨ Sn+1

)︄
∨ J → M

for some appropriate CW-complex J.

To prove Proposition 5.4 we will make use of Lemmas 2.17 and 2.18 from Section 2.3,
regarding homotopy cofibrations and wedge sums. We restate them here for the
benefit of the reader.

Lemma 2.17. Suppose that we have a homotopy cofibration

A
f−→ B ∨ C

q−→ D

such that the composition of f with the pinch map p1 : B ∨ C → B is null homotopic. Then B
is a homotopy retract of D.
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Lemma 2.18. Suppose that we have a homotopy cofibration

A ∨ B h−→ C → D

such that restriction of the map h to A is null homotopic. Then ΣA is a homotopy retract of D.

Proof of Proposition 5.4. To give the asserted homotopy cofibration, we will construct a
homology decomposition M. We start with

M1 ≃ M2 ≃ · · · ≃ Mn−2 ≃ ∗

and then

Mn−1 ≃
(︄

l⋁︂
i=1

Sn−1

)︄
∨
(︄

k⋁︂
i=1

Pn(pri
i )

)︄
.

The next complex Mn is constructed via the homotopy cofibration

M(Zd ⊕ T, n − 1)
hn−1−−→ Mn−1 → Mn

for which we shall take

M(Zd ⊕ T, n − 1) =

(︄
d⋁︂

i=1

Sn−1

)︄
∨
(︄

k⋁︂
i=1

Pn(pri
i )

)︄
.

Since (hn−1)∗ = 0, the Hurewicz Theorem implies that the restriction of hn−1 to the
wedge

⋁︁d
i=1 Sn−1 is null homotopic. By Lemma 2.18, we therefore have that the

suspension of the wedge
⋁︁d

i=1 Sn−1 retracts off Mn. Hence we have a homotopy
equivalence

Mn ≃
d⋁︂

i=1

Sn ∨ E

where E denotes the homotopy cofibre of the inclusion
⋁︁d

i=1 Sn → Mn.

We now deduce some further information about the homotopy type of the complex E.
Since hn−1 induces a trivial map in homology, we may suppose that there exists an
integer c1, with 0 ≤ c1 ≤ l, such that the composite(︄

2d⋁︂
i=1

Sn−1

)︄
∨
(︄

k⋁︂
i=1

Pn(pri
i )

)︄
hn−1−−→ Mn−1 ≃

(︄
l⋁︂

i=1

Sn−1

)︄
∨
(︄

k⋁︂
i=1

Pn(pri
i )

)︄
p−→

l−c1⋁︂
i=1

Sn−1

is null homotopic, where p denotes a pinch map. Moreover, without loss of generality
we may suppose that c1 is the minimal integer with this property. Here we use Lemma
2.17, and thus we may write

E ≃
(︄

l−c1⋁︂
i=1

Sn−1

)︄
∨ J1
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for some CW-complex J1. The next step in our construction is to form Mn+1 via the
homotopy cofibration

M(Zl , n) =
l⋁︂

i=1

Sn hn−→ Mn → Mn+1.

First, note that the composite

l⋁︂
i=1

Sn hn−→ Mn ≃
(︄

d⋁︂
i=1

Sn

)︄
∨
(︄

l−c1⋁︂
i=1

Sn−1

)︄
∨ J1

p1−→
d⋁︂

i=1

Sn

is forced to be null homotopic, otherwise we would generate additional torsion in
Mn+1, which is not permissible because Hn+1(M) ∼= Zl . Therefore, again by Lemma
2.17,

⋁︁d
i=1 Sn is a homotopy retract of Mn+1. Furthermore, let c2 ≤ c1 be the smallest

integer such that the composite

l⋁︂
i=1

Sn hn−→ Mn
p−→

l−c2⋁︂
i=1

Sn ⊆
l−c1⋁︂
i=1

Sn

is null homotopic. Such a c2 ≥ 0 exists, and we may assume it is minimal without loss
of generality.

Let c3 be the least integer, 0 ≤ c3 ≤ l, such that the restiction of hn to the sub-wedge⋁︁l−c3
i=1 Sn is null homotopic. Once again using Lemma 2.18, this gives rise to a

homotopy equivalence

Mn+1 ≃
(︄

d⋁︂
i=1

Sn

)︄
∨
(︄

l−c2⋁︂
i=1

Sn−1

)︄
∨
(︄

l−c3⋁︂
i=1

Sn+1

)︄
∨ J2

for some other CW-complex J2. Rewriting this, letting c = Max{c2, c3}, we have

Mn+1 ≃
(︄

d⋁︂
i=1

Sn

)︄
∨
(︄

l−c⋁︂
i=1

Sn−1 ∨ Sn+1

)︄
∨ J

where J arises from taking the wedge of J2 with the discarded spheres. We call the
CW-complex J the auxiliary complex. Letting f denote the attaching map of the top-cell,
our Poincaré Duality complex M is then given by the homotopy cofibration

S2n−1 f−→
(︄

d⋁︂
i=1

Sn

)︄
∨
(︄

l−c⋁︂
i=1

Sn−1 ∨ Sn+1

)︄
∨ J

j−→ M

as asserted. □

Example 5.5. In the general case, we deliberately leave the homotopy type of the
auxiliary complex mysterious, but there are circumstances in which we may deduce
its homotopy type. To see this, we shall revisit the construction of [Hua22a] that we
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used in Case 1 of Section 3.3. We demand that H∗(M) is torsion free and d = 0. This
implies Hn(M) ∼= 0, and therefore there are no cells of consecutive dimensions in the
CW-structure of M. Thus there is a homotopy cofibration

l⋁︂
i=1

Sn ψ−→
l⋁︂

i=1

Sn−1 → Mn+1

that defines the (n + 1)-skeleton of M. Further, letting ir denote the inclusion of the rth

wedge summand, for each r ∈ {1, . . . , l} the composite

ψr : Sn ir−→
l⋁︂

i=1

Sn ψ−→
l⋁︂

i=1

Sn−1

defines a homotopy class in the group πn(
⋁︁l

i=1 Sn−1). Since n > 3, this group is
isomorphic to

⨁︁l
i=1 Z/2Z [Tod16], where each Z/2Z summand is generated by the

homotopy class of the attaching map for the (n + 1)-cell of Σn−3CP2. Thus we may
from an (l × l)-matrix C with entries in Z/2Z, where the rth column is the image of
the homotopy class of ψr under this group isomorphism. Huang shows that this
matrix may be manipulated by row and column operations, and that these operations
are homotopy invariant. Letting c = rank(C), [Hua22a, Lemma 6.1] shows that there
exists a homotopy equivalence

Mn+1 ≃
(︄

l−c⋁︂
i=1

(Sn−1 ∨ Sn+1)

)︄
∨
(︄

c⋁︂
i=1

Σn−3CP2

)︄
.

If d > 0, then as with Proposition 3.12, we have

Mn+1 ≃
(︄

d⋁︂
i=1

Sn

)︄
∨
(︄

l−c⋁︂
i=1

(Sn−1 ∨ Sn+1)

)︄
∨
(︄

c⋁︂
i=1

Σn−3CP2

)︄

so the summand
⋁︁c

i=1 Σn−3CP2 is playing the role of the auxilliary complex here.

Remark 5.6. Our aim in the construction of this section was to write the skeletal
structure of M in such a fashion as to have as many wedges of pairs of spheres
retracting off it. This is key to our approach and to sustaining the analogy with Wall’s
Theorem and it’s generalisations (recall our discussion of [Tam68, Ish73, Fan96] from
the introduction of this thesis). One may think of Proposition 5.4 as giving a
separation of the skeleton into two parts: those from which trivial and non-trivial
Steenrod squares may arise. Our eventual aim is to obtain a decomposition of M
which maximises the number of sphere products in the connected sum
decomposition, for which the step of Proposition 5.4 is essential.

As M is a Poincaré Duality complex, it has a fundamental class, which we will denote
by µM.
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Lemma 5.7. Assume d > 1 and let x ∈ Hn(M) be a generator induced by an Sn wedge
summand in Mn+1. Then there is a class y ∈ Hn(M), is induced a different Sn wedge
summand, such that x ∪ y = µM.

Proof. The given class x associated with an Sn wedge summand in Mn+1 is a basis
element in the cohomology group Hn(M). By [Hat02, Corollary 3.39] there exists a
class y ∈ Hn(M) that generates an infinite cyclic summand of Hn(M), such that
x ∪ y = µM. Therefore, up to a change of basis of H∗(M) (i.e. up to a self equivalence
of Mn+1) we have that the class y is also induced by an Sn wedge summand.
Furthermore, because we excluded Hopf invariant one cases in the setup of this
section, we have ±x ̸= ±y, so the spheres that induce the classes x and y are
distinct.

5.3 Proving the Analogue

We now apply the methods we have developed to give the titular homotopy theoretic
analogue. Recall from the previous section that for a smooth, closed, oriented,
(n − 2)-connected 2n-dimensional manifold Poincaré Duality complex M, with n > 3
such that n ̸∈ {4, 8}, we have integral homology

H∗(M) ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z if ∗ = 0 or ∗ = 2n

Zl ⊕ T if ∗ = n − 1

Zd ⊕ T if ∗ = n

Zl if ∗ = n + 1

0 otherwise

where T ∼=
⨁︁k

i=1 Z/pri
i Z for primes pi and integers ri ∈ N.

Theorem 5.8. Let n > 3 be an integer such that n ̸∈ {4, 8}, and let M be a
(n − 2)-connected 2n-dimensional Poincaré Duality complex with d > 1. Then there exists a
homotopy equivalence

ΩM ≃ Ω(M1#M2#M3)

where

(i) M1 is an (n − 1)-connected 2n-dimensional Poincaré Duality complex, with
rank(Hn(M1)) = d;

(ii) M2 is a connected sum of finitely many copies of Sn−1 × Sn+1 and;

(iii) M3 is a CW-complex with a single top-cell and Hn(M3) finite.
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Proof. We first produce a loop space decomposition for M1#M2#M3. In general, we
take M1 to be as in (i) above, but note that if d is even (which, by Proposition 2.22,
always holds when n is odd) we may simply take M1 to be a connected sum of
d
2 -many copies of Sn × Sn. Letting c and J be as in Proposition 5.4, we define

M2 =
l−c
#

i=1
(Sn−1 × Sn+1) and M3 = J ∪ e2n.

Note that we neglect to denote the map by which we attach the 2n-cell to J, as its
homotopy type is of no consequence. For brevity, let

W1 =
d⋁︂

i=1

Sn, W2 =
l−c⋁︂
i=1

(Sn−1 ∨ Sn+1) and X =

(︄
d−2⋁︂
i=1

Sn

)︄
∨ W2 ∨ J

so by construction (M1)2n−1 ≃ W1 and (M2)2n−1 ≃ W2. By Lemma 5.7, we can always
isolate two n-spheres in W1 that are associated with classes that cup together to give
the fundamental class, thus giving rise to the homotopy cofibration diagram

X X

S2n−1 W1 ∨ W2 ∨ J M1#M2#M3

S2n−1 Sn ∨ Sn Q

i

p h

q

(5.3)

where the space Q has the property that H∗(Q) ∼= H∗(Sn × Sn). By [BT14, Lemma 2.3],
the map Ωq has a right homotopy inverse and ΩQ ≃ Ω(Sn × Sn). By homotopy
commutativity of (5.3) the map Ωh therefore has a right homotopy inverse, and
applying Theorem 2.14 to the right-hand column gives the loop space decomposition

Ω(M1#M2#M3) ≃ Ω(Sn × Sn)× Ω(Ω(Sn × Sn)⋉ X).

Now consider the Poincaré Duality complex M. Similarly to above, letting f denote
the attaching map of the top-cell of M, by Proposition 5.4 and Lemma 5.7 we have the
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following diagram of homotopy cofibrations

X X

S2n−1 W1 ∨ W2 ∨ J M

S2n−1 Sn ∨ Sn Q′

i j◦i

f j

p h

p◦ f q

(5.4)

where, again, Q′ is such that H∗(Q′) ∼= H∗(Sn × Sn). Reasoning identically to before
gives the loop space decomposition

ΩM ≃ Ω(Sn × Sn)× Ω(Ω(Sn × Sn)⋉ X). (5.5)

Comparing this to the decomposition for Ω(M1#M2#M3) gives us the desired
homotopy equivalence.

The proof of Theorem 5.8 shows that after we take loop spaces, the homotopy class of
the attaching map of the top-cell ceases to be important. Indeed, the principal object of
concern in the proof is the (2n − 1)-skeleton of the complex M, and the connected sum
M1#M2#M3 is constructed so that its (2n − 1)-skeleton exactly matches that of M.
Observe also that Theorem 5.8 also gives inertness of the attaching map of the top-cell
of M, by application of Proposition 4.7 and Example 5.3.

Remark 5.9. Proving Theorem 5.8 for Poincaré Duality complexes, as we have done,
implies we have such a composition in the case when M is in fact an smooth, closed,
oriented, (n − 2)-connected 2n-manifold. In that case, the complex M3 may also have
the homotopy type of a manifold - this depends on whether the total surgery
obstruction of Ranicki (see [Ran92, Theorem 17.4]) is zero. It would be interesting to
make further investigation here.

Theorem 5.8 enables us to make a further observation regarding rational hyperbolicity.
Indeed, recall that a simply connected space Y is called rationally elliptic if
dim(π∗(Y)⊗ Q) < ∞, and called rationally hyperbolic otherwise [FHT01]. For example,
any wedge of spheres

⋁︁r
i=1 Smi with r > 1 and all mi > 1 is a rationally hyperbolic

space.

Corollary 5.10. Let n > 3 be an integer such that n ̸∈ {4, 8}, and let M be a
(n − 2)-connected 2n-dimensional Poincaré Duality complex with d > 1. Then M is
rationally hyperbolic if and only if d > 2 or Hn−1(M; Q) ̸∼= 0.
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Proof. Recall from the proof of Theorem 5.8 that we had the homotopy equivalence
(5.5), namely

ΩM ≃ Ω(Sn × Sn)× Ω(Ω(Sn × Sn)⋉ X)

where X =
(︂⋁︁d−2

i=1 Sn
)︂
∨ W2 ∨ J. By assuming d > 2 or Hn−1(M; Q) ̸∼= 0, the

construction of Proposition 5.4 guarantees that X does not have the rational homotopy
type of a point. More than this, as X is an (n − 2)-connected (n + 1)-dimensional
CW-complex, since our restrictions on n give n ≥ 5, we are able to invoke [Gan70] and
show that X in fact has the homotopy type of suspension. Let us write X ≃ ΣX′.

Thus we have Ω(Sn × Sn)⋉ ΣX′ ≃ Σ(Ω(Sn × Sn) ∧ X′) ∨ X′). Rationally, a
suspension is homotopy equivalent to a wedge of spheres, so there is a rational
homotopy equivalence

Ω(Sn × Sn)⋉ ΣX′ ≃
r⋁︂

i=1

Smi

for some integers mi > 1 and r > 1. Therefore, rationally, Ω(
⋁︁r

i=1 Smi) retracts off ΩM,
and M is consequently rationally hyperbolic.

We prove the other direction by negation: if d = 2 and Hn−1(M; Q) ∼= 0, then by the
construction of Proposition 5.4 we have that X must be a torsion space, and
consequently have the rational homotopy type of a point. Since left half-smash with a
point is contractible (by definition), the homotopy equivalence of (5.5) then implies
that there is a rational homotopy equivalence ΩM ≃ Ω(Sn × Sn), and so

π∗(M) ∼= π∗(Sn)× π∗(Sn).

The complex M is therefore rationally elliptic, and in particular, not rationally
hyperbolic.
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Chapter 6

The Rational Homotopy Type of
Homotopy Fibrations Over
Connected Sums

This chapter, which is a reformatted version of [Che23] (a paper of the author),
provides another example of results we can obtain through the methods expounded in
this thesis.

We begin with a homotopy fibration F → L
f−→ C in which all spaces have the

homotopy type of Poincaré Duality complexes. Writing dim(C) = n and dim(L) = m,
let B be another n-dimensional Poincaré Duality complex. Form the connected sum
B#C, and take the natural collapsing map p : B#C → C. Defining the m-dimensional
complex M as the pullback of f across p, we have a homotopy fibration diagram

F M B#C

F L C.

p

f

(6.1)

The central question of this chapter is as follows: to what extent does M behave like a
connected sum? Using our methods, we will attempt to answer this up to the
homotopy type of ΩM.

We give a special circumstance in Proposition 6.4, in which the based loop space of M
is homotopy equivalent to the based loops of a connected sum. This takes its most
dramatic form in the context of rational homotopy theory, in Theorem 6.7. Thus we
give an affirmative answer to our question, but after looping and up to rational
homotopy equivalence.
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6.1 Recalling Some Preliminaries

Recall that for two path connected and based spaces X and Y, the (left) half-smash of X
and Y is the quotient space

X ⋉Y = (X × Y)/(X × y0)

where y0 denotes the basepoint of Y. Furthermore, we had Lemma 2.11, which gives a
homotopy equivalence X ⋉Y ≃ (X ∧ Y) ∨ Y when Y is a co-H-space.

Recall also from Section 4.2 that for a homotopy cofibration A
f−→ B

j−→ C, the map f is
called inert if Ωj has a right homotopy inverse. We will see the rational homotopy
theoretic definition that inspired this, namely rational inertness, in Section 6.3 of this
chapter. We will also once again make use of the Theorem 2.14, which we restate for
the benefit of the reader.

Theorem 2.14 (Beben-Theriault). Suppose we have a homotopy cofibration A
f−→ B h−→ C

such that the map Ωh has a right homotopy inverse. Then there exists a homotopy fibration

ΩC ⋉ A → B h−→ C

which splits after looping. Thus, there exists a homotopy equivalence

ΩB ≃ ΩC × Ω(ΩC ⋉ A).

Take now a different situation, in which we have two homotopy cofibrations of simply
connected spaces

A
f−→ B

j−→ C and Y i−→ B
p−→ X.

In the diagram below, each complete row and column is a homotopy cofibration, and
the bottom-right square is a homotopy pushout, defining the new space Q and the
maps h and q:

Y Y

A B C

A X Q.

i j◦i

f j

p h

p◦ f q

(6.2)

We record an elementary fact in the following lemma, for ease of reference, which is a
slightly more general version of Lemma 4.5.
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Lemma 6.1. Take the setup of Diagram (6.2). If the maps Ωp and Ωq have right homotopy
inverses, then so does Ωh. Moreover, there is a homotopy equivalence

ΩC ≃ ΩQ × Ω(ΩQ ⋉Y).

Proof. Let us denote the right homotopy inverses of Ωq and Ωp by s and t,
respectively. Then, by the homotopy commutativity of Diagram (6.2), Ωh has right
homotopy inverse given by the composite Ωj ◦ t ◦ s.

As Y and C are simply connected, the space Q is as well, and the map j ◦ i is by
definition inert. Hence we may apply Theorem 2.14 to the right-most column of (6.2),
obtaining the asserted homotopy equivalence.

Finally, recall that the spaces considered by Jeffrey and Selick in [JS21] have the
homotopy type of oriented, smooth, closed, simply connected manifolds, and are thus
Poincaré Duality complexes; that is to say, they satisfy Definition 2.19. For such a
complex there exists a CW structure having a single top-dimensional cell. For brevity,
given a k-dimensional Poincaré Duality complex Y, let Y denote its (k − 1)-skeleton,
and note that there exists a homotopy cofibration

Sk−1 f−→ Y → Y ∪ f ek ≃ Y

where f is the attaching map of the top-cell of Y. Furthermore, given two
k-dimensional Poincaré Duality complexes X and Y, we may form their connected
sum by means of Definition 2.4. In particular, X#Y ≃ X ∨ Y, and there is a homotopy
cofibration

X → X#Y → Y.

6.2 Pullbacks over Connected Sums

The situation we wish to study begins with a homotopy fibration F → L
f−→ C, in

which each space has the homotopy type of a Poincaré Duality complex. As in the
introduction, let dim(C) = n and dim(L) = m, and let B be another n-dimensional
Poincaré Duality complex. We form the connected sum B#C, and take the natural
collapsing map p : B#C → C. Defining the m-dimensional complex M as the pullback
of f across p, we have a homotopy fibration diagram

F M B#C

F L C

α

π p

f

(6.3)
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where we denote the induced map M → L by π and the fibre map F → M by α.

Lemma 6.2. With spaces and maps as in Diagram (6.3), there is a homotopy pushout square

F × B M

F L.

p1 π

Where the map p1 is projection to the first factor. In particular, if α is null homotopic, there is a
homotopy cofibration F ⋉ B → M π−→ L.

Proof. To prove the existence of the asserted homotopy pushout, we will use Mather’s
Cube Lemma (see Theorem 2.7). Indeed, consider the following diagram

F × B M

F L

B B#C

∗ C.

β

p1p2

f
p

(6.4)

We must show is that (6.4) commutes up to homotopy, that bottom face is a homotopy
pushout and that the four vertical faces are homotopy pullbacks.

The bottom face of (6.4) arises from the homotopy cofibration B → B#C
p−→ C, and so is

homotopy pushout. The front face is evidently a homotopy pullback, because it comes
from the homotopy fibration we began with, as is the right-hand face of the cube,
which is the right-hand sqaure in Diagram (6.3). Furthermore, it is an elementary fact
that the left-hand face of the cube, together with the projection maps, is also homotopy
pullback.

What remains to show is that the map β : F × B → M is chosen such that the diagram
commutes up to homotopy and that the rear face is a homotopy pullback. Indeed, as
the right-hand face is a homotopy pullback, β is induced by the existence of the
composites F × B → F → L and F × B → B → B#C, so the diagram does indeed
homotopy commute. One then applies [Ark11, Theorem 6.3.3], which forces the rear
face to be a homotopy pullback. In the special case in which the fibre map α is null
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homotopic, we may pinch out a copy of F in the asserted pushout, giving the square

F ⋉ B M

∗ L.

π

which is equivalent to the stated homotopy cofibration.

Remark 6.3. Note that, because Diagram (6.3) is homotopy commutative, requiring α

to be null homotopic forces the fibre map F → L to have also been null homotopic to
begin with.

We now give the thrust of this section, providing a circumstance in which the based
loop space of the Poincaré Duality complex M is homotopy equivalent to the based
loop space of a connected sum. Let X′ = F ⋉ B and X = X′ ∪ em (the homotopy class
of the attaching map Sm−1 → X′ plays no role in what is to follow, so we suppress it in
the definition of X).

Proposition 6.4. Take the situation as in Diagram (6.1), and suppose that the map Ωp has a
right homotopy inverse. Then the map Ωπ has a right homotopy inverse. Moreover, if α is null
homotopic and the attaching map of the top cell of L is inert, then

ΩM ≃ Ω(X#L).

Proof. Denoting the right homotopy inverse of Ωp by s : ΩC → Ω(B#C), consider the
diagram

ΩL ΩC

ΩM Ω(B#C)

ΩL ΩC

λ

Ω f

s

Ωπ Ωp

Ω f

where the map λ will be detailed momentarily. Since the right-hand square of
Diagram (6.3) is a homotopy pullback, so is the square in the above. Furthermore,
since Ωp ◦ s ≃ 1ΩC, the diagram commutes. As ΩM is the homotopy pullback of Ω f
across Ωp, the map λ exists and we have that Ωπ ◦ λ ≃ 1ΩL. In other words, the map
λ is a right homotopy inverse for Ωπ.

Consequently, in the case when α is null homotopic, we apply Theorem 2.14 to the
homotopy cofibration

X′ → M π−→ L
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from the special case of Lemma 6.2. Indeed, since Ωπ has a right homotopy inverse,
the map X′ → M is by definition inert, so Theorem 2.14 immediately gives us that

ΩM ≃ ΩL × Ω(ΩL ⋉ X′).

On the other hand, let us now consider the connected sum X#L. Take two homotopy
cofibrations: one is the attaching map of the top-cell of X#L, and the other is from
inclusion of a wedge summand

Sm−1 → X′ ∨ L → X#L and X′ → X′ ∨ L
q−→ L.

We combine these to give a cofibration diagram, in the sense of (6.2)

X′ X′

Sm−1 X′ ∨ L X#L

Sm−1 L L.

q

j

The map q pinches to the second wedge summand, and therefore has a right
homotopy inverse given by inclusion; therefore Ωq also has a right homotopy inverse.
Moreover, if the attaching map of the top-cell of L is inert, the map Ωj has a right
homotopy inverse, by definition. Thus Lemma 6.1 applies, implying there is a
homotopy equivalence

Ω(X#L) ≃ ΩL × Ω(ΩL ⋉ X′).

Thus ΩM and Ω(X#L) are both homotopy equivalent to ΩL × Ω(ΩL ⋉ X′), and are
therefore homotopy equivalent to each other.

Example 6.5. A general class of examples that satisfy the requirement that α ≃ ∗ are
sphere bundles, Sr → L → C, where the pullback M has trivial rth homotopy group.
Consider for example the classical Hopf bundle S3 → S7 η−→ S4. Taking products with
the trivial fibration ∗ → S6 → S6 yields a new homotopy fibration

S3 → S7 × S6 η×1−−→ S4 × S6.
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Applying our construction with B = S5 × S5, we have the following pullback diagram
of homotopy fibrations

S3 M (S5 × S5)#(S4 × S6)

S3 S7 × S6 S4 × S6.

π p

η×1

Using techniques from [The20, Section 9] it can be shown that Ω(S4 × S6) retracts off
Ω((S5 × S5)#(S4 × S6)) via a right homotopy inverse for Ωp. Moreover, the attaching
map for the top-cell of the product S7 × S6 is known to be inert.

Now we show that π3(M) ∼= 0. The existence of a right homotopy inverse for the map
Ωp implies that its homotopy fibre (and consequently the homotopy fibre of π) is
homotopy equivalent to (ΩS4 × ΩS6)⋉ (S5 ∨ S5), by Theorem 2.14. It is now easy to
check that the long exact sequence of homotopy groups induced by the fibration
sequence (ΩS4 × ΩS6)⋉ (S5 ∨ S5) → M π−→ S3 × S4 forces π3(M) to be trivial.
Therefore Proposition 6.4 applies, with

X′ ≃ S3 ⋉ (S5 ∨ S5) ≃ S5 ∨ S5 ∨ S8 ∨ S8.

By gluing a 13-cell to X′, we may take X = (S5 × S8)#(S5 × S8). Hence we obtain a
homotopy equivalence

ΩM ≃ Ω((S7 × S6)#(S5 × S8)#(S5 × S8)).

To conclude this example, we remark that many of the situations considered by Duan
in [Dua22] also fit into this framework.

6.3 The Rational Homotopy Perspective

We wish to apply Proposition 6.4 in the context of rational homotopy theory. Let

Sk−1 f−→ Y i−→ Y ∪ f ek

be a homotopy cofibration, where the map f attaches a k-cell to Y and i is the inclusion.
The map f is rationally inert if Ωi induces a surjection in rational homology. This
implies that, rationally, Ωi has a right homotopy inverse. The following theorem was
first proved in [HL87, Theorem 5.1], though we prefer the statement found in [FH19].

Theorem 6.6 (Halperin-Lemaire). If Y ∪ f ek is a Poincaré Duality complex and H∗(Y; Q)

is generated by more than one element (as an algebra), then the attaching map f is rationally
inert.
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This leads us to the statement and proof of the Main Theorem.

Theorem 6.7. Given spaces and maps as in Diagram (6.3), if

(i) the map α is (rationally) null homotopic, and,

(ii) both H∗(C; Q) and H∗(L; Q) are generated by more than one element (as algebras),

there is a rational homotopy equivalence ΩM ≃ Ω(X#L).

Proof. By Theorem 6.6, the attaching maps for the top-cells of C and L are rationally
inert. We have the homotopy pullback below, which is the right-hand square of (6.3)

M B#C

L C.

π p

f

Rationalising spaces and maps in this pullback square, we see that Proposition 6.4
would apply if the map Ωp has a rational right homotopy inverse, as the attaching
map for the top-cell of L is rationally inert. Thus we would have a rational homotopy
equivalence ΩM ≃ Ω(X#L).

It therefore remains to show that the map Ωp has a rational right homotopy inverse.
With this in mind, consider the following homotopy cofibration diagram

B B

Sn−1 B ∨ C B#C

Sn−1 C C.

q p

iC

As the pinch map q has a right homotopy inverse, so does Ωq. Furthermore, the
attaching map of the top-cell of C is rationally inert, and therefore ΩiC has a right
homotopy inverse after rationalisation. Therefore the map Ωp also has a (rational)
right homotopy inverse, by Lemma 6.1.

Remark 6.8. Recall that a simply connected space Y is called rationally elliptic if
dim(π∗(Y)⊗ Q) < ∞, and called rationally hyperbolic otherwise [FHT01]. We remark
briefly on the rational hyperbolicity of the spaces discussed above.

Indeed, suppose that the skeleton B is a suspension. Then, as X′ = F ⋉ B, we have a
homotopy equivalence X′ ≃ (F ∧ B) ∨ B, which is again a suspension. Thus,
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rationally, X′ is homotopy equivalent to a wedge of spheres. Assuming X′ is rationally
homotopy equivalent to a wedge containing more than one sphere of dimension
greater than 1, this would imply the rational hyperbolicity of ΩX. Indeed, this is
guaranteed if the ring H∗(B; Q) has more that one generator of degree 2 or more, or if
H∗(B; Q) has one such generator and F is not rationally contractible. Since X′

homotopy retracts off ΩL ⋉ X′, by Theorem 6.7 we have that ΩX′ retracts off ΩM.
With the assumptions on X′ above, this implies that ΩM is rationally hyperbolic.

As a final observation, note that a natural situation in which B has the homotopy type
of a suspension would be when B is sufficiently highly connected: by [Gan70], if B is
k-connected, B has the homotopy type of a suspension if n ≤ 3k + 1. For example, take
B to be an (n − 1)-connected 2n-dimensional Poincaré Duality complex.
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