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ABSTRACT In a transmit preprocessing aided frequency division duplex (FDD) massive multi-user
(MU) multiple-input multiple-output (MIMO) scheme assisted orthogonal frequency-division multiplexing
(OFDM) system, it is required to feed back the frequency domain channel transfer function (FDCHTF)
of each subcarrier at the user equipment (UE) to the base station (BS). The amount of channel state
information (CSI) to be fed back to the BS increases linearly with the number of antennas and subcarriers,
which may become excessive. Hence we propose a novel CSI feedback compression algorithm based
on compressive sensing (CS) by designing a common dictionary (CD) to reduce the CSI feedback of
existing algorithms. Most of the prior work on CSI feedback compression considered single-UE systems.
Explicitly, we propose a common dictionary learning (CDL) framework for practical frequency-selective
channels and design a CD suitable for both single-UE and multi-UE systems. A set of two methods is
proposed. Specifically, the first one is the CDL-K singular value decomposition (KSVD) method, which
uses the K-SVD algorithm. The second one is the CDL-orthogonal Procrustes (OP) method, which relies
on solving the orthogonal Procrustes problem. The CD conceived for exploiting the spatial correlation of
channels across all the subcarriers and UEs compresses the CSI at each UE, and upon reception reconstructs
it at the BS. Our simulation results show that the proposed dictionary’s estimated channel vectors have
lower normalized mean-squared error (NMSE) than the traditional fixed Discrete Fourier Transform (DFT)
based dictionary. The CSI feedback is reduced by 50%, and the memory reduction at both the UE and
BS starts from 50% and increases with the number of subcarriers.

INDEX TERMS Wideband, frequency domain channel transfer function (FDCHTF), channel state infor-
mation (CSI), compressive sensing (CS), massive MIMO, common dictionary learning (CDL), common
dictionary (CD), orthogonal Procrustes (OP) problem, K-SVD algorithm.

I. INTRODUCTION
Massive multiple-input multiple-output (MIMO) systems
constitute a promising enabling technique for 5G/6G cellular
networks as a benefit of their substantial spatial multiplexing
gain [1] in both time division duplex (TDD) and frequency
division duplex (FDD) scenarios. At the base station (BS),
combining the massive MIMO technology with orthogo-
nal frequency-division multiplexing (OFDM) is capable of

transmitting multiple data symbols to multiple UEs on the
same time-frequency resource block, resulting in increased
system throughput [2]. In a multi-user (MU) massive MIMO-
OFDM system, the knowledge of CSI1 is needed at the BS
to implement transmit precoding (TPC) for suppressing the
co-channel interference (CCI) [3]. In FDD systems, due to
the absence of channel reciprocity [4], the user equipment

1We use the terms CSI and FDCHTF interchangeably
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(UE) has to feed back the downlink (DL) frequency domain
channel transfer function (FDCHTF) of each subcarrier to
the BS. Feeding back the accurate CSI becomes more chal-
lenging with the increased number of antennas, subcarriers,
and UEs [5] .

The compression of high-dimensional CSI is essential for
reducing the CSI feedback. The wireless channels can be
represented in a sparse form in the spatial-frequency domain
using ‘sparsifying’ bases termed as a dictionary [6]. In the
compressive sensing (CS)-based feedback schemes [7], the
original CSI is mapped to a sparse domain using a dictionary.
The traditional choice of the dictionary is a fixed Discrete
Fourier Transform (DFT) matrix. Then a random Gaussian
measurement matrix is introduced to compress the sparse
vector for feeding it back to the BS at a reduced rate. The
sparse signal is then reconstructed at the BS using CS-
based algorithms, such as the orthogonal matching pursuit
(OMP) [8], basis pursuit (BP) [9] or covariance-assisted
matching pursuit (CAMP) [10] procedures. The original CSI
is then reconstructed by mapping the regenerated sparse
signal back to the same dictionary used at the UE side.

The authors of [11] proposed a rotated version of the DFT
basis to provide improved sparsity that results in reduced
CSI mean-squared error (MSE) for a narrowband multi-
user system with each UE having a single receive antenna.
However, the proposed rotated basis does not exploit the
antennas’ spatial correlation. The massive MIMO-OFDM
channel between a multi-antenna UE and the BS can be
represented by a matrix [12]. In such systems, the UE has to
feed back the FDCHTF of each subcarrier, which results in
huge feedback overhead. The FDCHTF feedback algorithm
of a massive MIMO-OFDM single-UE system based on
multidimensional compressive sensing theory using Tucker’s
tensor decomposition model is developed in [13]. Briefly,
Tucker’s tensor decomposition exploits the structure hidden
in all the dimensions of the channel matrix and compresses
it simultaneously in each dimension. The proposed scheme
has a significant feedback reduction and hence improves the
spectral efficiency. However, both the basis and measurement
matrices should be learned. The authors of [14] introduced a
recursive least squares dictionary learning algorithm (RLS-
DLA) for CSI feedback. The proposed scheme achieves a
substantial reduction in feedback requirements, however it
requires the computation of large matrix inverses during the
dictionary learning process.

Another line of work focused on designing non-dictionary-
based methods for FDCHTF feedback [19]. In [20], an an-
tenna grouping-based method was proposed for reducing the
feedback overhead by grouping multiple correlated antenna
elements into a single representative value. By considering
a ray-based channel model, the authors of [21] and [22]
designed an angle-of-departure (AoD) based adaptive sub-
space codebook for feedback compression. In [16] and [23]
the authors exploited the low-rank characteristics of a large
channel matrix for recovering the CSI at the BS.

Recent solutions include Deep Learning (DL) techniques
conceived for CSI compression and recovery using so-called
the Bi-LSTM [24], CsiNet-LSTM [25], DNNet [26], CS-
ReNet [27], and DCRNet [28] frameworks2. Additionally,
the application of Deep unfolding techniques has also shown
promising results, as demonstrated in [29], [30]. These
techniques have better reconstruction performance than the
conventional CS algorithms of [31], albeit at significantly
increased computational complexity.

Massive MIMO-OFDM channels tend to be individually
sparse and simultaneously share a common support set that
typically exhibit joint sparsity in the time domain (TD) [32],
which results in correlation among subcarriers in the fre-
quency domain (FD). Since the DFT dictionary does not
exploit spatial correlation across antenna arrays, we design
a dictionary for massive MIMO-OFDM systems that can
exploit the spatial correlation, hence achieving improved
CSI reconstruction performance. The dictionary is generally
learned from a training data set by relying on learning-
based approaches [17], [18], [33]–[35]. The dictionaries
learned have the potential to offer improved normalized
mean squared error (NMSE) performance compared to fixed
dictionaries, like the DFT-based one. In [15] a CS-based
method was proposed, which exploited the spatial correlation
among the antennas in a narrowband single-UE system using
the K-SVD [36] algorithm. The method relies on learning the
K-SVD dictionary from the training data set and on feeding
back the K-SVD dictionary learned at the UE to the BS.
Using this K-SVD dictionary, the CSI is compressed at the
UE and reconstructed at the BS. The motivation for this K-
SVD based dictionary is not only to reduce the CSI feedback,
but also to reduce the NMSE of CSI reconstruction.

As the channel-induced dispersion is increased, the num-
ber of OFDM subcarriers also has to be increased to avoid
an excessive performance degradation. Hence upon using
the K-SVD algorithm of [15], the number of subcarrier K-
SVD based dictionaries increases as the number of sub-
carriers increases. Handling ubiquitous subcarrier K-SVD
based dictionaries is cumbersome in terms of memory man-
agement and feedback load. To circumvent this problem,
we propose a novel common dictionary learning (CDL)
technique, which can replace the requirement of individual
subcarrier K-SVD dictionaries, leading to the concept of
a common dictionary (CD). The CD effectively captures
the channel characteristics of all the subcarriers and UEs,
making it the optimal sparsifying dictionary for representing
the channel’s sparsity in massive MIMO systems. Given the
CD learned, compressive channel estimation techniques can
be constructed for acquiring the CSI. A set of two methods
having different pros and cons are proposed for CDL, namely
the CDL-KSVD method and the CDL-orthogonal Procrustes
(OP) [37] based method. These methods are detailed in
Section III of the paper. Again, our primary motivation is
to reduce the CSI feedback overhead on the uplink as well

2For the expansion of these acronyms please refer to the relevant papers
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TABLE 1: COMPARING OUR CONTRIBUTION TO THE EXISTING LITERATURE

[11] [14] [15] [16] [17] [18] Our
Massive MIMO architecture X X X X X X X
Spatially correlated channels X X X X X
Sparsity X X X X X X
Dictionary learning X X X X X
Feedback savings X X X X X X X
Memory savings at UE X X
Multi-user MIMO OFDM X X
UE mobility X

TABLE 2: LIST OF ACRONYMS

Acronyms Meaning
AOD Angle-of-Departure
BER Bit Error Rate
BS Base Station
CD Common Dictionary
CDL Common Dictionary Learning
CFR Channel Frequency Response
CIR Channel Impulse Response
CS Compressive Sensing
CSI Channel State Information
DFT Discrete Fourier Transform
DL Deep Learning
FD Frequency Domain
FDD Frequency Division Duplex
FDCHTF Frequency Domain Channel

Transfer Function
GR-SVD Golub-Reinsch SVD
K-SVD K Singular Value Decomposition
MIMO Multiple-Input Multiple-Output
MP Matching Pursuit
MSE Mean Squared Error
MU Multi User
NMSE Normalized Mean Squared Error
OF Objective Function
OFDM Orthogonal Frequency Division

Multiplexing
OMP Orthogonal Matching Pursuit
OP Orthogonal Procrustes
QuaDRiGa Quasi Deterministic Radio

Channel Generator
RA Receive Antenna
SU Single User
TA Transmit Antenna
TD Time Domain
TDD Time Division Duplex
TPC Transmit Precoding
UE User Equipment
VQC Vector Quantization Codebook

as the memory requirement at both the UE and the BS in
FDD massive MU-MIMO-OFDM systems.
Main contributions of this article:

1) We proposed a novel CDL framework for learning a
CD, mainly using the CDL-KSVD and the CDL-OP
methods. In the CDL framework proposed for a multi-
UE system, the CD conceived exploits the spatial cor-
relation of the FD channels across all the subcarriers
and the UEs. We demonstrate that this implementation
improves the NMSE performance when compared to
the existing methods.

2) In the CDL framework proposed for a single-UE
system, the learning of CD is implemented at the UE.
The UE sends only the CD to the BS in the uplink
instead of all the subcarrier K-SVD dictionaries. This
implementation reduces the dictionary feedback to the
BS by a factor of Nc and also reduces the memory
requirement by having a single CD at the UE and the
BS.

3) We evaluate the proposed CD in the context of various
system configurations and channel conditions in the
face of UE mobility. The numerical results show a
significant reduction in the NMSE of channel esti-
mation and highlight the bit error rate (BER) perfor-
mance of the channel estimates when using our learned
dictionary. This corroborates the effectiveness of the
CDL framework proposed over existing methods in
wideband massive MIMO systems.

The remainder of this paper is organized as follows.
Section II presents the system model, CS procedure, and
the motivation. In Section III, the proposed methods are
discussed. Then the application of the proposed methods in
wideband systems is discussed in Section IV. Our simulation
results are provided in Section V to show the NMSE perfor-
mance of the proposed method compared to state-of-the-art
methods. Finally, in Section VI, our conclusions are given.

Notations: We use lower (upper) bold letters to denote
column vectors (matrices) and super-scripts (.)−1, (.)∗, (.)H

to represent the inverse, complex conjugate and Hermitian
operators respectively, ‖.‖F denotes the Frobenius norm of
a matrix; ⊗ denotes the Kronecker product, tr(.) is the trace
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TABLE 3: LIST OF NOTATIONS

Nt(Nr) Number of TAs (RAs)
L Number of channel taps in TD
i Index of the channel tap
Nc Number of subcarriers in FD
l Index of the subcarrier
K Number of UEs
k Index of the UE
V Velocity of the UE
S Sparsity index
n Frame index
Ψ Dictionary
Φ Measurement (Sensing) matrix
Θ Product of a dictionary and Φ
Ng Number of rows in Φ
g Compression factor
M ′ Total number of training channel vectors
N Number of training channel vectors

considered across each subcarrier
UEk k-th user equipment
RBS Spatial correlation matrix at the BS
RUE,k Spatial correlation matrix at the k-th UE
H̄n,k TD channel matrix across the n-th tap

of the k-th UE
H̆n,k TD i.i.d channel matrix
H Concatenated channel matrix of K UEs
Hk Channel matrix of the k-th UE
Ĥk Reconstructed channel matrix of the k-th UE

at the BS
H′ Matrix of training channel vectors at the UE
H̃′ Sparse channel matrix representation of H′

Ĥ′ Matrix of reconstructed training channel
vectors at the BS

ˆ̃H′ Sparse channel matrix representation of Ĥ′

Hln,k Channel matrix or FDCHTF across the
l-th subcarrier of the k-th UE in n-th frame

Ĥln,k Reconstructed channel matrix across the
l-th subcarrier of the k-th UE in n-th frame

hln,k Channel vector transformation of Hln,k

h̃ln,k Sparse channel vector representation of hln,k

ĥln,k Channel vector transformation of Ĥln,k

ˆ̃
hln,k Sparse channel vector representation of ĥln,k

hk
c,ln

Compressed channel vector across the
l-th subcarrier of the k-th UE in n-th frame

ΨDFT DFT dictionary
Ψk

ksvd,l K-SVD dictionary across the l-th subcarrier
of the k-th UE

Ψc Common dictionary
∆saved Total memory storage reduction
Υ Dictionary feedback reduction factor
Tksvd Feedback required for sending

Nc subcarrier dictionaries
Tcom Feedback required for sending Ψc

Tsaved Total dictionary feedback reduction

TABLE 4: References for CSI compression techniques
Single-UE Multi-UE

Narrowband CS basis [14], [31]
Rotated DFT [11]
K-SVD dictionary [15]
Bi-LSTM [24]

Wideband

Multidimensional CSI [17]
CsiNet [38]
CsiNet-LSTM [25]
DNNet [26]

CS-ReNet [27]

of the matrix, vec(.) operation returns a column vector by
stacking all the columns of a matrix.

Base station

UE 1

Massive MU-MIMO-OFDM system with K users

UE K

UE k

HK

H1

:

:

:

:

Nr

Nt

2

Nr

1

Nr

1

1

1

FIGURE 1: Overview of the considered massive MU-MIMO-OFDM
system. Right: K UEs with Nr RAs each for k = 1 to K; Left: massive
MIMO base station with Nt TAs. Hk represents the complete FDCHTF of
the k-th UE and Hl,k represents the FDCHTF across the l-th subcarrier of
the k-th UE.

II. System Model
In this section, we first introduce the massive MU-MIMO-
OFDM channel and the associated spatial correlation matri-
ces at the BS and UEs. Furthermore, we conceive the CS-
based channel reconstruction procedure of massive MIMO
channels. Next, we highlight the dictionary learning algo-
rithms available in the literature. Then, in the final sub-
section we describe the motivation of the proposed CDL
framework.

A. The Massive MU-MIMO-OFDM Channel
We consider a massive MU-MIMO-OFDM system using a
uniform linear array (ULA) of Nt TAs at the BS, Nr RAs
at all the K UEs and Nc subcarriers. For the k-th UE (k
= 1 to K), consider a frequency-selective channel having L
taps in the TD. Let Hl,k represent the FDCHTF of the l-th
subcarrier of the k-th UE given by

Hl,k =

L−1∑
i=0

H̄i,ke
− j2πilNc , (1)

where H̄i,k ∈ CNr×Nt is the i-th tap TD channel matrix.
The tap coefficient H̄i,k(p, q) represents the channel impulse
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h𝑙,k = vec (H𝑙,k)

At the k-th UE

hk
c,𝑙 sent to BS

Dictionary (Ψ) of 
dimension NrNt × NrNt

Measurement matrix (Φ)
of dimension NrNt/g × NrNt

Vectorization of the k-th UE
and 𝑙-th subcarrier FDCHTF

At the BS and k-th UE the known matrices are: Ψ, Φ

At the BS

De-vectorize to 
obtain matrix form

h̃𝑙,k is compressed to obtain
hk

c,𝑙 of dimension NrNt/g × 1

Dictionary (Ψ)

ℓ0- norm to recover 
sparse FDCHTF

hk
c,𝑙 = Φ Ψ h̃𝑙,k

min ||h̃𝑙,k||0

s.t hk
c,𝑙 = Φ Ψ h̃𝑙,k

^ h̃𝑙,kh𝑙,k = Ψ h̃𝑙,k

^
^

^ h𝑙,kH𝑙,k = reshape (h𝑙,k)

H𝑙,k h𝑙,k

Sparse FDCHTF transformation,
h̃𝑙,k is sparse with sparsity S and 
dimension NrNt × 1

h𝑙,k = Ψ h̃𝑙,k

h̃𝑙,k

H𝑙,k is of dimension Nr × Nt

h𝑙,k is of dimension Nr Nt × 1           

Measurement matrix (Φ)
of dimension NrNt/g × NrNt

Reconstructed 𝑙-th subcarrier 
FDCHTF as a vector

^
^^

H𝑙,k

1

2

7

43 5 6

FIGURE 2: Overview of the considered CSI feedback compression scheme in the massive MU-MIMO-OFDM system. The FDCHTF across the l-th
subcarrier of the k-th UE is compressed at the UE and reconstructed at the BS.

response (CIR) of the link spanning from the q-th BS antenna
to the p-th UE antenna.

The spatial correlation of massive MIMO channels can be
modeled by a Kronecker structure having separable transmit
and receive correlation matrices [31], with H̄n,k given by

H̄i,k =
1√

tr(RUE,k)
R

1
2

UE,kH̆i,kR
1
2

BS , (2)

where H̆i,k is a Nr × Nt matrix whose elements are
independent and identically distributed (i.i.d.) complex zero-
mean, unit variance, Gaussian random entries. Furthermore,
RBS and RUE,k are the spatial correlation matrices at the
BS and k-th UE, respectively.

The spatial correlation matrices are generated by Jakes’
model often used in the literature, so the uv-th element of
RBS and RUE,k, can be modeled by ruv = J0( 2πduv/λ)
where duv is the distance between the antennas u and v, λ
is the carrier wavelength and J0(.) denotes the zeroth-order
Bessel function of first kind [39].

B. Compressive Sensing Based Channel Reconstruction
Fig. 2 shows the basic schematic of the FDCHTF compres-
sion and reconstruction across the l-th subcarrier of the k-th
UE. More specifically, observe in Fig. 3 that at the k-th UE
we present the FDCHTF view across all the subcarriers and
its sparsification using the existing as well as the proposed
methods in parallel. The remainder of this section introduces
each of the steps numbered in both figures.

1 In between the BS and a k-th UE the complete channel
frequency response matrix that includes all the Nc subcarrier
channels is formed by stacking the channel matrices column-
wise:

Hk = [H1,k, . . . , Hl,k, . . . , HNc,k]. (3)

2 We assume that the k-th UE perfectly estimates its
channel matrix Hk, which should be shared with the BS
through feedback. Instead of sending the FDCHTF of each
subcarrier, the matrix Hl,k is vectorized first into an NrNt×
1 column vector using the vec(.) operation

hl,k = vec(Hl,k). (4)

3 4 In practical systems, the UE has to compress the
estimated channel vector hl,k ∈ CNrNt×1 to avoid high
feedback load. The wireless channel vector hl,k can be
represented by a sparse vector [31] after a transformation

hl,k = Ψh̃l,k, (5)

where h̃l,k is the sparse representation of hl,k. The number
of non-zero components of a sparse channel vector is called
the sparsity or sparsity index, and it is denoted by S, while Ψ
is a NrNt×NrNt dictionary known to both the UE and the
BS. A popular example of Ψ is the DFT matrix. Next, we
introduce the measurement (sensing) matrix Φ, which plays
a crucial role in compressive sensing. The measurement
(sensing) matrix defines the measurement process in CS,
which influences the reconstruction quality and efficiency of
the signal recovery algorithm. It is responsible for mapping
the original high-dimensional signal to a lower-dimensional
signal.

5 6 To compress the channel vector hl,k, a measure-
ment matrix Φ ∈ CNg×NrNt (Ng<<NrNt) that satisfies
the Restricted Isometry Property (RIP) [8], which facilitates
sparse vector recovery relying on:

hk
c,l = ΦΨh̃l,k, (6)

where hk
c,l is the compressed channel vector with dimension

Ng × 1. Let us now define Θ = ΦΨ.
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Ψc

HkBS UEk
Nt antennas Nr antennas

HNc,k

Ψk
ksvd,1

ΨDFT Ψk
ksvd,Nc

DFT dictionary does 
not exploit the 
spatial correlation 
and results in poor 
NMSE performance

K-SVD dictionary
exploits the spatial 
correlation and improves 

the NMSE compared to 
method 1, but requires 
one dictionary at each 
subcarrier

CD exploits the spatial 
correlation and improves the 
NMSE compared to method 
1 and has an NMSE 
performance similar to that 
of the method 2 but requires 
only a single dictionary

h̃Nc,k

h1,k hNc,k

h̃1,k

FDCHTF

For 𝑙 = 1,…,Nc :
• Subcarrier matrix H𝑙,k dimension is Nr x Nt

• h𝑙,k, h̃𝑙,k dimensions are NrNt x 1
• 𝑙-th sparse vector h̃𝑙,k sparsity

is S ≤ NrNt/4

All dictionaries are of 
dimension NrNt x NrNt

Channel estimation and sparse 
transformation are done at the UE

Vectorization of all
subcarrier matrices

Existing 
method 1

Proposed CDL 
framework

Vectorization of all
subcarrier matrices

2

4

3

1

H𝑙,kH1,k

.. ..

Existing 
method 2

h𝑙,k h𝑙,k h𝑙,k

..

..
......

Ψk
ksvd,𝑙

h̃𝑙,kh̃𝑙,k h̃𝑙,kh̃1,k
h̃1,kh̃Nc,k h̃Nc,k

.. ..

....
.... ..

.. .... ..
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..
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hNc,k hNc,k
h1,k h1,k
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FIGURE 3: Overview of the massive MU-MIMO-OFDM system having a k-th UE with Nr RAs and a BS with Nt TAs. Hk represents the complete
FDCHTF at the k-th UE and Hl,k represents the FDCHTF across the l-th subcarrier of the k-th UE. The FDCHTFs are vectorized and then undergo
sparse transformation using the dictionary obtained from the existing methods 1, 2 of [15] and the proposed framework. The circled numbers and the
notations are the same as in Fig.2.

7 Then the reconstruction of hl,k can be formulated as
an `0-norm minimization problem and the sparse vector h̃l,k

can be obtained by solving

min
h̃l,k

‖h̃l,k‖0 s.t. hk
c,l = Θh̃l,k. (7)

Thus, instead of feeding back hl,k, the UE sends a low-
dimensional vector hk

c,l to the BS for reducing the FDCHTF
feedback. The BS reconstructs ĥl,k from hk

c,l, where ĥl,k

represents the reconstructed hl,k. The reconstructed channel
vector ĥl,k at the BS is utilized for precoding during the
data transmission stage. The precoder matrices employed at
the BS are denoted as Wg and Wg

op, which correspond to
the beamforming weights. These weights are obtained from
the true channels and the channels estimated using CDL-OP
dictionary, respectively, for a compression factor of g. Here,
the compression factor g is defined as g = NrNt

Ng
, where

Ng × 1 represents the dimension of the compressed channel
vector hk

c,l.

C. Motivation for the Common Dictionary Learning
Framework
In CS-based feedback schemes, the traditional choice of the
dictionary is a fixed DFT matrix, which does not exploit
the spatial correlation between the antennas. The authors

of [11] proposed a rotated version of the DFT dictionary for
better exploiting the sparsity, resulting in reduced FDCHTF
mean-squared error (MSE) for a narrowband multi-user
system supporting single antenna UEs. But this rotated basis
still failed to exploit the antenna’s spatial correlation for
improving the MSE further.

The authors of [15] have shown that a dictionary can
be learned using the K-SVD algorithm for narrowband
FDD massive SU-MIMO systems. This K-SVD dictionary
learned exploits the spatial correlation between the antennas,
and its FDCHTF reconstruction performance is improved
compared to the fixed DFT dictionary. The proposed method
requires FDCHTF and dictionary feedback to the BS. How-
ever, in practical communication systems, the channels are
frequency-selective, and OFDM is a ubiquitous technique
for such systems. In a massive MU-MIMO-OFDM system,
to extend the idea of dictionary learning, it is necessary to
feed back the FDCHTF and K-SVD based dictionary of each
subcarrier of all UEs. Feeding back the entire FDCHTF
Hk of the k-th subcarrier will be a huge burden in the
uplink. Another important issue is that substantial memory
is required for saving all the Nc subcarrier dictionaries at
both the UE and the BS. The dimension of each subcarrier
dictionary is NrNt ×NrNt, hence the memory required to
store Nc dictionaries is Nc(NrNt)

2.
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To overcome these challenges, we propose the novel idea
of a common dictionary, which can replace the requirement
of individual subcarrier dictionaries. The CD is designed for
exploiting the spatial correlation across all the subcarriers
and UEs in the FD, hence improving the CSI reconstruction
accuracy. The proposed CD reduces the CSI feedback load
and memory requirement in both single and multi-UE sys-
tems. In particular, the feedback load is further reduced for a
single-UE system by sending only a single CD from the UE
to the BS. Hence, the proposed CDL framework reduces the
CSI feedback and memory requirements, and we also study
the NMSE performance compared to the DFT and subcarrier
K-SVD dictionaries.

Step1. Main Objective:

Obtaining the common dictionary Ψc that
results in a low NMSE.

Step2. Optimization Problem:

Finding the optimal CD that could minimize

the objective function {∥Ĥ′ − Ψ ˆ̃H′∥2F } and
ultimately minimizes NMSE.

Step3. Designing the CD:

We first initialize Ψ with a DFT matrix and
then find Ψc that minimizes the product

term Ψ ˆ̃H′ and approaches Ĥ′.

Step4.The Strategy to Solve the Objective Function:

Since the objective function is a non-convex
problem, iterative algorithms are one of the
solutions shown in Section III. A. 1.

Step5. Proposed Solutions:

Two solutions the CDL-OP and the CDL-
KSVD are proposed in Section III to obtain
Ψc.

1

FIGURE 4: Flow of the mathematical analysis.

III. Proposed Common Dictionary Learning Framework
In this section, we detail the CDL framework proposed for
a multi-UE system that constructs a dictionary from the
estimated channel vectors and K-SVD based dictionaries
of UEs. Before introducing the framework proposed, in
Fig. 4 we provided a diagram showing the flow of the
analysis described in the paper. This diagram guides the
reader through the paper.

A. Common Dictionary Learning Framework
The main goal of the proposed CDL framework is to con-
struct a CD, denoted by Ψc, that can exploit the correlation
of channels across all the UEs and BS, for improving
the CSI reconstruction at the BS. The matrix of training
channel vectors is denoted by H′, which consists of M ′

channel vectors collected for N different frames across Nc

subcarriers and K UEs. Then we have M ′ = N ×Nc×K.
To elaborate further, H′ is structured as H′ =

[H′1, . . . ,H
′
k, . . . ,H

′
K ], and each sub-matrix in H′ is rep-

resented as H′k = [H′1,k, . . . ,H
′
l,k, . . . ,H

′
Nc,k

] ∀k ∈
{1, 2, . . . ,K}, ∀l ∈ {1, 2, . . . , Nc}. Similarly, H′l,k is de-
fined as H′l,k = [hl1,k, . . . ,hln,k, . . . ,hlN ,k], where hln,k

represents the channel vector transformation of Hln,k at the
n-th MU-MIMO-OFDM frame (time-instant). We assume
that the channel envelope remains constant for an OFDM
frame and then changes for the successive frames, according
to the vehicular velocity. Hence the consecutive frames are
correlated.

The sparse representation of the matrix H′ is denoted
as H̃′ = [H̃′1, . . . , H̃

′
k, . . . , H̃

′
K ], and each sub-matrix in

H̃′ is represented as H̃′k = [H̃′1,k, . . . , H̃
′
l,k, . . . , H̃

′
Nc,k

]

∀k ∈ {1, 2, . . . ,K}, ∀l ∈ {1, 2, . . . , Nc}. Similarly H̃′l,k =

[h̃l1,k, . . . , h̃ln,k, . . . , h̃lN ,k], where h̃ln,k denotes the sparse
representation of the channel vector hln,k.
The CDL optimization problem is formulated as:

min
Ψ,H̃′

{‖H′ −ΨH̃′‖2F }

s.t. ‖h̃ln,k‖0 ≤ S, ∀ n ∈ {1, 2, . . . , N},

∀ l ∈ {1, 2, . . . , Nc}, ∀ k ∈ {1, 2, . . . ,K}. (8)

To solve the optimization problem in (8) we propose the
following methods.

1) CDL-KSVD method:
In the CDL-KSVD method the training set H′ consists of the
channel vectors of all the UEs. The training set is employed
to learn the dictionary Ψc using the K-SVD algorithm [36].
The K-SVD algorithm has two stages: the sparse coding
stage and the dictionary update stage. In the sparse coding
stage, each column of H′ is sparsely represented using a
dictionary. The dictionary update stage involves updating
each column of Ψ with a dominant singular vector. As a
result, the learned dictionary Ψc has unit-norm columns.

• Sparse coding stage: In the first stage of the K-SVD
algorithm, the optimization problem is formulated as:

min
H̃′
{‖H′ −ΨH̃′‖2F }

s.t. ‖h̃ln,k‖0 ≤ S, ∀ n ∈ {1, 2, . . . , N},

∀ l ∈ {1, 2, . . . , Nc}, ∀ k ∈ {1, 2, . . . ,K}. (9)

To solve (9), we begin by initializing the matrix Ψ
with a DFT dictionary. The next step involves finding
the matrix H′ having a sparse representation, which is
an `0 problem and it is carried out by using the OMP
algorithm [8]. The objective of the OMP algorithm is to
find a sparse representation of H′ using a small number
of non-zero elements in the matrix H̃′.
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• Dictionary update stage: In the second stage of the K-
SVD algorithm, the optimization problem is formulated
as:

min
Ψ
{‖H′ −ΨH̃′‖2F }. (10)

The solution to the problem posed in (10) is obtained by
updating each column of the dictionary by computing
a partial SVD of a matrix [6]. After the dictionary
update stage, the dictionary Ψ gets updated to Ψc.
It is to be noted that this method updates only the
columns corresponding to sparse coefficients of the
channel matrix H̃′.

• Repeat sparse coding and dictionary update stages until
the stopping criterion is met.

The main advantage of the CDL-KSVD method is that it
captures the spatial correlation of the channel vectors. But
its drawback is that it requires a partial SVD operation for
each column update in the dictionary update stage, which is
computationally expensive.

2) CDL-OP method:
The CDL-OP method stands for common dictionary learning
- orthogonal Procrustes method. In this method we solve the
orthogonal Procrustes problem to learn the CD [37]. The
CD obtained is a square matrix with dimensions NrNt ×
NrNt. The constraint imposed is that the columns of the
dictionary should be orthogonal. The optimization problem
is formulated as:

min
Ψ
{‖H′ −ΨH̃′‖2F } s.t. ΨHΨ = I, (11)

where Ψ in (11) may be found explicitly by singular value
decomposition (SVD).

Let C = H̃′H′H

[U,Σ,V] = SVD(C)

Ψ = VUH . (12)

The resulting dictionary Ψ obtained in (12) is the CD
(Ψc). The main advantage of the CDL-OP method is that
it captures the spatial correlation of the channel vectors, but
at the cost of an SVD operation.

B. Common Dictionary for Wideband Multi-UE System
A wideband channel has a broader signal bandwidth than
the coherence bandwidth. In this section, we first discuss the
CDL framework conceived for a wideband system support-
ing K UEs, and then highlight the simplified scenario, where
a single UE is present. Next, we will quantify the memory
savings of storing only a single CD. Then in the final sub-
section, we elaborate on the dictionary feedback reduction
by sending only a single CD in a single-UE system.

In the multi-UE system, since no communication takes
place among the K UEs, CDL is impossible at any UE.
Consequently, the CDL is only feasible at the BS. For

the CDL at the BS, we require the subcarrier dictionaries
and the reconstructed channels (used as training channel
vectors). Let the reconstructed sparse channel matrix at
the BS be represented by ˆ̃H′ = [ ˆ̃H′1, . . . ,

ˆ̃H′k, . . . ,
ˆ̃H′K ],

where each sub-matrix in ˆ̃H′ is represented as ˆ̃H′k =

[ ˆ̃H′1,k, . . . ,
ˆ̃H′l,k, . . . ,

ˆ̃H′Nc,k] ∀k ∈ {1, 2, . . . ,K}, with
ˆ̃H′l,k = [

ˆ̃
hl1,k, . . . ,

ˆ̃
hln,k, . . . ,

ˆ̃
hlN ,k], containing N recon-

structed sparse channel vectors of each subcarrier, i.e.,
∀l ∈ {1, 2, . . . , Nc}.

Let the reconstructed matrix of training channel vectors
at the BS be represented by Ĥ′ = [Ĥ′1, . . . , Ĥ

′
k, . . . , Ĥ

′
K ],

where each sub-matrix in Ĥ′ is represented as Ĥ′k =
[Ĥ′1,k, . . . , Ĥ

′
l,k, . . . , Ĥ

′
Nc,k

] ∀k ∈ {1, 2, . . . ,K}, with
Ĥ′l,k = [ĥl1,k, . . . , ĥlN ,k] when considering N reconstructed
channel vectors for each subcarrier i.e., ∀l ∈ {1, 2, . . . , Nc}.
The total number of reconstructed training channel vectors
in Ĥ′ is M ′ = N ×Nc ×K.
Importantly, at this stage we have to consider Ĥ′ instead of
H′ and ˆ̃H′ instead of H̃′ in (8). The optimization problem of
finding Ψc in the multi-UE system is formulated as follows:

min
Ψ, ˆ̃H′

{‖Ĥ′ −Ψ ˆ̃H′‖2F }

s.t. ‖ˆ̃hln,k‖0 ≤ S, ∀ n ∈ {1, 2, . . . , N},

∀ l ∈ {1, 2, . . . , Nc}, ∀ k ∈ {1, 2, . . . ,K}. (13)

The single-UE system (K = 1) is a special case of a multi-
UE system. For the current system when compared to the
multi-UE system of Fig. 5 there is no need to send the
subcarrier dictionaries (Ψk

ksvd,l, ∀ n ∈ {1, 2, . . . , N}, ∀ l ∈
{1, 2, . . . , Nc}) from the UEs to the BS. The CD is learned
at the UE itself using one of the two proposed methods and
then the UE sends Ψc to the BS. Now both the BS and the
UE will start using Ψc. The total number of training channel
vectors in H′ is M ′ = N ×Nc.
The optimization problem of finding Ψc is as follows:

min
Ψ,H̃′

{‖H′ −ΨH̃′‖2F }

s.t. ‖h̃ln‖0 ≤ S, ∀ n ∈ {1, 2, . . . , N},

∀ l ∈ {1, 2, . . . , Nc}. (14)

The CDL framework of our multi-UE system is outlined
in Algorithm 1 and its block diagram is shown in Fig. 5.
More specifically, in the Algorithm 1 we present the step-
by-step procedure of the CDL framework. The remainder of
this sub-section introduces each of the steps numbered in the
Fig. 5 and the corresponding steps in the algorithm.

1 The BS sends the pilots to all the K-UEs in the system
and each UE estimates its channels and follows the steps 4
to 10 in the algorithm for N frames and learns the K-SVD
based subcarrier dictionaries.

2 Each UE sends the Nc K-SVD dictionaries to the
BS. For the next N frames each UE compresses the l-th
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Collect all K-SVD 
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CDL framework for massive MU-MIMO-OFDM system with K UEs
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:
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1
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LearnΨc using 
proposed methods 
and send Ψc to all 
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Estimate channel matrices
H1 = [H1,1,….,HNc,1] at UE1

and collect for N frames

LearnΨ for 𝑙 = 1 to Nc

and send the dictionaries 
to BS

Estimate channel matrices
HK = [H1,K,….,HNc,K] at UEK
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:

1
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K
ksvd,𝑙

FIGURE 5: Overview of the CDL framework for FDD massive MU-MIMO-OFDM system. Right: K UEs with Nr receive-antennas each; Left: massive
MIMO base station with Nt transmit antennas; Center: For simplicity, only dictionary feedback is shown.

subcarrier FDCHTF using the K-SVD dictionary (Ψk
ksvd,l)

and sends it to the BS. Then the BS reconstructs the l-
th subcarrier FDCHTF with the aid of the same K-SVD
dictionary. Using the reconstructed FDCHTFs and the K-
SVD based subcarrier dictionaries of all the K UEs, the BS
learns the Ψc. The 2 procedure corresponds to the steps
14 to 19 in the algorithm.

3 After learning the CD at the BS, the BS sends the
CD to all the K-UEs, the UEs and the BS will follow the
steps 22 to 25 in the algorithm for FDCHTF compression
and reconstruction using Ψc.

1) Memory Reduction Calculation:
• The memory required to store each subcarrier dictio-

nary Ψk
ksvd,l is (NrNt)

2, ∀l ∈ {1, 2, . . . , Nc},∀k ∈
{1, 2, . . . ,K}.

• The total memory required to store Nc subcarrier
dictionaries is Nc(NrNt)

2.
• The memory required to store Ψc is (NrNt)

2.
• Total memory storage reduction for a K-UE system =
K× ([Memory required to store Nc subcarrier dictio-
naries] − [Memory required to store Ψc]), which is
formulated as:

∆saved = K(Nc − 1)(NrNt)
2. (15)

• The total memory storage reduction for a single-UE is

∆saved = (Nc − 1)(NrNt)
2. (16)

2) Dictionary Feedback Reduction Calculation by Sending a
CD in a Single-UE System:
• The dimension of each subcarrier K-SVD dictionary

Ψksvd,l is NrNt ×NrNt, ∀l ∈ {1, 2, . . . , Nc}.

• The total dimension of Nc subcarrier dictionaries is
Nc ×NrNt ×NrNt.

• The dimension of Ψc is NrNt ×NrNt.
• Total dictionary feedback reduction for a single-UE

(Tsaved) = [Feedback required for sending Nc sub-
carrier dictionaries (Tksvd)] − [Feedback required for
sending Ψc (Tcom)], where we have

Tksvd = Nc(NrNt)
2

Tcom = (NrNt)
2

Tsaved = Tksvd − Tcom = (Nc − 1)(NrNt)
2.

• Reduction in dictionary feedback: We define the feed-
back reduction factor by (Υ):

Υ =
Tcom
Tksvd

=
1

Nc
(17)

TABLE 5: Dictionary feedback reduction factor in a single-
UE System.

Nt Nr Nc Tksvd Tcom Υ

64 1 4 16384 4096 1/4

64 1 32 131072 4096 1/32

3) Computational Complexity of the Algorithm:
We calculate the computational complexity of the dictionary
learning stage for both the CDL-OP and the CDL-KSVD
methods.
a) CDL-OP method:

• In (12), the SVD operation requires all the eigenvectors,
resulting in a full SVD operation.
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Algorithm 1: CDL Framework for K Users
Input: ΨDFT , Pilots
Output: Ψc

1 Variables: Frame index n, UE index k, subcarrier
index l.

2 Implementation: ∀k ∈ {1, . . . ,K}, ∀l ∈ {1, . . . , Nc}
3 for n = 1 to N do
4 BS transmits pilot sequences for UE1 to UEK .
5 The k-th UE estimates its channel matrix Hln,k

across l-th subcarrier from the pilots.
6 After transformatation of Hln,k to vector hln,k,

k-th UE at l-th subcarrier computes its
compressed vector hk

c,ln
using hln,k, h̃ln,k,

ΨDFT and sends hk
c,ln

to BS.

7 BS reconstructs ˆ̃
hln,k and ĥln,k using ΨDFT and

hk
c,ln

. BS uses ĥln,k for precoding.
8 In parallel k-th UE at l-th subcarrier collects

training channel vectors hln,k’s to form matrix
[hl1,k, . . . ,hlN ,k].

9 if n = N then
10 The k-th UE learns Ψk

ksvd,l from
[hl1,k, . . . ,hlN ,k] and ΨDFT using K-SVD
algorithm and sends Ψk

ksvd,l(once) to BS.
11 end
12 end
13 for n = N + 1 to 2N do
14 Follow steps 4 and 5 for another N frames.
15 The k-th UE at l-th subcarrier computes

compressed vector hk
c,ln

using hln,k, h̃ln,k,
Ψk

ksvd,l and sends hk
c,ln

to BS.

16 BS reconstructs ˆ̃
hln,k, ĥln,k using Ψk

ksvd,l, hk
c,ln

.
17 if n = 2N then
18 BS computes Ψc using one of the two

methods from ĥln,k’s, ˆ̃
hln,k’s and Ψk

ksvd,l

of all UEs and sends Ψc to all the UEs.
19 end
20 end
21 for i > 2N do
22 Follow steps 4 and 5
23 The k-th UE starts using Ψc instead of Ψk

ksvd,l

for step 15 and sends compressed vector hk
c,ln

to BS.

24 BS reconstructs ˆ̃
hln,k and ĥln,k of k-th UE using

Ψc and hk
c,ln

(obtained from step 23).
25 BS uses ĥln,k of each UE for precoding.
26 end

• The computation of a full SVD operation, specif-
ically using the Golub-Reinsch SVD (GR-SVD)
method, requires 21(NrNt)

3 floating-point operations

(FLOPS) [6]. On the other hand, the Chan-SVD (R-
SVD) method requires 26(NrNt)

3 FLOPS [6].
• Therefore, to update the dictionary, we require a com-

putational complexity of O[(NrNt)
3].

b) CDL-KSVD method:

• In (10), updating each column of the dictionary requires
an SVD operation. This SVD operation only requires
the dominant eigenvector, resulting in a partial SVD
computation.

• The GR-SVD method requires 14NrNtN
′2
c + 9N ′3c

FLOPS [6], while the R-SVD method requires
6NrNtN

′2
c + 20N ′3c FLOPS [6]. Here, N ′c represents

the number of non-zero coefficients corresponding to
the k-th row in H̃′, and N ′c ranges from 0 to M ′.

• Therefore, to update the complete dictionary, a total of
NrNt partial SVD operations are required.

c) For example, let us consider Nt = 64, Nr = 1,
M ′ = 1600, and an average value of N ′c = M ′/4. The
computational complexity in FLOPS is provided in Table 6.
We represent the number of FLOPS required for updating a
single column in the dictionary by CDL-KSVD (min), and
that imposed by updating all columns in the dictionary using
CDL-KSVD (max).

TABLE 6: Computational complexity in FLOPS

Method GR-SVD Chan-SVD

CDL-OP 5.505 ∗ 106 6.8157 ∗ 106

CDL-KSVD (min) 7.1936 ∗ 108 1.3414 ∗ 109

CDL-KSVD (max) 4.6039 ∗ 1010 8.5852 ∗ 1010

4) CSI Feedback Case Study in a Single UE:
The dimension of the compressed channel vector hk

c,l (∈
CNg×1) sent from the UE in the uplink can be varied
by adjusting the compression factor g. Specifically, the
dimension is given by Ng = NrNt

g . By tuning the value of
g, we can beneficially reduce the amount of CSI feedback
required.

To quantify the feedback requirements, we introduce the
variables γu and γc to represent the feedback for the non-
dictionary and dictionary-based methods, respectively. In a
non-dictionary based method without compression, the CSI
fed back from the UE corresponds to NcNrNt elements
for one frame. For N ′ frames the CSI feedback will be
γu = N ′NcNrNt. However, in a dictionary-based method
associated with compression, the feedback is constituted by
the CSI information having NcNrNt

g elements for one frame,
along with a one-time transmission of a dictionary with
(NrNt)

2 elements. So, for a total of N ′ frames the feedback
is given by γc = (NrNt)

2 + N ′NcNrNt
g .

We define Γ as the CSI feedback ratio, which is calculated
as the ratio between γc and γu. If Γ < 1, it indicates that
the value of γc is lower than γu, resulting in a saving in CSI
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feedback.

Γ =
γc
γu

=
(NrNt)

2 + N ′NcNrNt
g

N ′NcNrNt
=
NrNt

N ′Nc
+

1

g
(18)

For example in Table 7 we consider a scenario associated
with N ′ = 210 and vary the values of Nc, Nr, and g.
Using the formula given in 18, we demonstrate significant
reductions in CSI feedback. The level of compression applied
to the channel vector hk

c,l depends on the sparsity parameter
S. As per the lower bound, the number of elements in hk

c,l

must satisfy Ng > 2S [9]. In Fig. 13, we illustrate the impact
of the compression factor g on the BER vs. signal-to-noise
ratio (SNR) performance for both the non-dictionary and
dictionary-based methods.

TABLE 7: CSI feedback savings comparison table for N ′ =
210.

g Nc Nt Nr Γ = γc
γu

2 32 64 1 0.5

2 64 64 2 0.5

4 32 64 1 0.252

4 64 64 2 0.252

IV. Numerical Results
In this section, we provide the simulation results for char-
acterising the NMSE performances of the DFT dictionary
(ΨDFT ), of the individual K-SVD based subcarrier dictio-
naries (Ψk

ksvd,l) and of the proposed CD (Ψc). Using the
DFT dictionary as the initial reference dictionary, we obtain
the individual K-SVD based subcarrier dictionaries. Then Ψc

is learned by the proposed methods. For NMSE calculations,
each dictionary is used for reconstructing the P channel
vectors of each subcarrier at the BS.
The NMSE of the reconstructed channel is used as a perfor-
mance metric defined as

NMSE =
1

P

P∑
i=1

‖ĥln,k − hln,k‖22
‖hln,k‖22

, (19)

where ĥln,k is the reconstructed channel vector and hln,k is
the original one.

A. Simulation Settings
The simulations are carried out for a massive MIMO-OFDM
system having Nt = 64, antenna spacing of d = λ/15,
carrier wavelength λ, operating at a carrier frequency of fc =
2 GHz. Furthermore, we have a communication bandwidth of
B = 20 MHz, K = 1 and K = 3 UEs, N = 50, P = 500 test
channel vectors, Nc = 32 and M = NrNt/2. For M = 32,
all the existing and the proposed dictionaries reduce the CSI
feedback by 50% in the uplink. For all the experiments, the
subcarrier K-SVD based dictionaries are learned for N = 50
from each subcarrier.

For experiments in the multi-UE system, the channels
are generated using a Quasi Deterministic Radio Channel

Generator (QuaDRiGa) [40], [41] for the three UEs having
velocities of V = 10, 15 and 20 kmph. For experiments
in the single-UE system, the channels are taken from the
UE of V = 20 kmph. The channel update rate (CUR)
considered to generate channels in QuaDRiGa is 10 ms.
The QuaDRiGa simulation platform is recommended by
3GPP (3rd Generation Partnership Project) for designing and
simulating wireless communications systems.

The main motivation for the CDL is not only to reduce
the CSI feedback but also to reduce the CSI reconstruction
NMSE. The benefit of the proposed methods in terms
of the NMSE performance has to be studied. Hence we
have conducted experiments for determining which of the
proposed methods will best replace the DFT dictionary and
subcarrier K-SVD based dictionaries in both single-UE and
multi-UE systems. Since we have considered Nc = 32, it
is not feasible to show the CD performance across all the
subcarriers. In the single-UE system, we have considered
subcarriers l = 1 or 8, since the channel gains of these two
subcarriers are relatively low over the period of time. In
the multi-UE system, we have considered the first subcarrier
l = 1 of all three UEs to evaluate the NMSE performance as
a function of sparsity and compared the proposed methods’
CD performance to the DFT and K-SVD dictionaries in the
literature.

In OFDM systems, the need for subcarrier K-SVD based
dictionaries increases with the number of subcarriers. The
FDCHTFs of each subcarrier are considered to be indepen-
dent in a wideband OFDM system, but this is only realistic
for extremely long CIRs. Hence in the proposed system we
assume having realistic correlation among subcarriers in the
FD. This correlation among the subcarriers is captured by
the CD using one of the two proposed methods. Our CDL
procedure may also be extended to larger Nc.

In all the simulation results, for each subcarrier it can be
observed that the NMSE decreases as the sparsity increases.
This is because in the sparse vector transformation (5) the
sparse vector h̃ picks many columns in the dictionary for
higher sparsities, which in turn helps to solve the optimiza-
tion problem (7) by minimizing the distance between h and
h̃. Hence, higher sparsity will improve the reconstruction
performance.

Experiment 1. In this single-UE experiment, we study the
NMSE performance across a particular subcarrier of the
UE using the CD learned from the proposed methods and
existing methods as a function of sparsity. The proposed
methods’ CD is learned across all the subcarriers of the
UE. For this experiment we consider a massive SU-MIMO-
OFDM system having Nc = 32 subcarriers and a UE having
Nr = 1 RA and moving with a velocity of 20 kmph.

In Fig. 6, we consider the subcarrier l = 1 to study the
NMSE performance of all the dictionaries. For a particular
sparsity index of S = 8, the NMSE of the CDL-KSVD
dictionary is 1.7 × 10−2, of the CDL-OP dictionary is
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FIGURE 6: A single-UE system is considered, where the NMSE
performance comparison among all the dictionaries is carried out for Nt

= 64, Nr = 1 and Nc = 32. Subcarrier 1 is considered for comparison and
the UE velocity is 20 kmph.

1.3 × 10−2, of the subcarrier K-SVD based dictionary is
1.8 × 10−2, and of the DFT dictionary is 3.3 × 10−2. The
CDL-OP dictionary has the lowest NMSE at S = 8. For all
other sparsities, the CDL-OP and the CDL-KSVD method
dictionaries perform similarly, and the NMSE values are
close to those of the subcarrier K-SVD dictionary. All the
proposed methods’ CD exhibit better performance than the
DFT dictionary.

In Fig. 7, we consider a scenario where the BS has a
different number of antennas, namely Nt = 16, 32, and 64.
We consider the subcarrier l = 1 to study the NMSE perfor-
mance of the CDL-OP dictionaries learned for different Nt

values. We observe that the NMSE value increases with the
number of antennas at the BS.

Experiment 2. In this single-UE experiment, we study the
NMSE performance across different subcarriers of the UE
employing the CD learned by the proposed methods and the
individual subcarrier K-SVD based dictionaries as a function
of sparsity. For this experiment we consider a massive SU-
MIMO-OFDM system having Nc = 32 subcarriers. The UE
is equipped with Nr = 1 (and 2) RAs and is moving at a
velocity of 20 kmph.

In Fig. 8, the Ψc employed for NMSE characterization
is learned from the CDL-KSVD method and in Fig. 9, the
Ψc employed for NMSE characterization is learned from the
CDL-OP method. Observe from Figs. 8 and 9, for subcarriers
l = 1 and 8 at all the sparsity index values, the NMSE
values are close to each other, but the CDL-OP method is
the best among all the three methods in terms of the NMSE
performance attained. Both the CDL-KSVD and CDL-OP
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FIGURE 7: A single-UE system is considered, where the NMSE
performance comparison among the CDL-OP dictionaries is carried out for
Nt = 16, 32 and 64, Nr = 1 and Nc = 32. Subcarrier 1 is considered for
comparison and the UE velocity is 20 kmph.
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FIGURE 8: A single-UE system is considered, where the NMSE
performance of the K-SVD dictionary and the CDL-KSVD dictionary are
used for Nt = 64, Nr = 1 and Nc = 32. Subcarriers 1 and 8 are considered
for comparison and the UE velocity is 20 kmph.

methods rely on the SVD operation and learn the CD from
the channels estimated at the UE. Consequently, the NMSE
reconstruction results shown in Figs. 8 and 9 exhibit a high
degree of similarity.

We have carried out a simulation and presented the results
in Fig. 10, where we specifically focus on the scenario where
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FIGURE 9: A single-UE system is considered, where the NMSE
performance of the K-SVD dictionary and the CDL-OP dictionary are used
for for Nt = 64, Nr = 1 and Nc = 32. Subcarriers 1 and 8 are considered
for comparison and the UE velocity is 20 kmph.

Nr > 1, indicating the presence of multiple receive antennas.
By considering this scenario, we ensure that our analysis is
not limited to a specific number of receive antennas. It is
observed that all the proposed methods’ CD exhibit better
NMSE performance than the DFT dictionary.
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FIGURE 10: A single-UE system with multiple UE antennas is consid-
ered, where the NMSE performance comparison among all the dictionaries
is carried out for Nt = 64, Nr = 2 and Nc = 32. Subcarrier 1 is considered
for comparison and the UE velocity is 20 kmph.

Experiment 3. In this multi-UE experiment, we initially
study the NMSE performance of the dictionary generated
using the CDL-OP method and existing methods for a
particular UE’s subcarrier as a function of sparsity. Then
we study the NMSE performance of the CDL-OP dictionary
across different UEs for a particular subcarrier. The CDL-
OP dictionary is learned across all the subcarriers and all
the K UEs. For the experiment, we consider a massive
MU-MIMO-OFDM system having Nc = 32 subcarriers and
K = 3 UEs each associated with Nr = 1 RA.
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FIGURE 11: A multi-UE system is considered, where the NMSE
performance comparison of the DFT, the K-SVD and the CDL-OP methods
is carried out for K = 3, Nt = 64, Nr = 1 and Nc = 32. Subcarrier 1 of
UE1 is considered for comparison. The velocities of the three UEs are 10,
15, and 20 kmph.

The wireless channels are generated for three UEs having
velocities of V = 10, 15, and 20 kmph using a QuaDRiGa
simulator. Let us assume that a UE changes its velocity
to that of another UE, but experiences different channel
characteristics. In that case, there is no need to learn a
new dictionary for that particular UE. The CD has already
captured all the three UE channel characteristics, and this
procedure can be extended to larger K and Nc values.

In Fig. 11, we consider the first UE and subcarrier l = 1
to study the NMSE performance of the dictionaries from
the full set of Nc = 32 subcarriers and K = 3 UEs. For a
particular sparsity of S = 8, the NMSE value of the CDL-
OP dictionary is 1.3×10−2, of the subcarrier K-SVD based
dictionary is 1.8× 10−2, and of the DFT dictionary is 3.3×
10−2. We observe that all the proposed methods’ CD have
better NMSE performance than the DFT dictionary. Among
the proposed methods, the CDL-KSVD method exhibits the
poorest NMSE performance. Therefore, we are not pursuing
this method any further in the simulations.
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FIGURE 12: In a multi-UE system, the NMSE performance of the K-
SVD dictionary and CDL-OP method’s dictionary for K = 3, Nt = 64,
Nr = 1 and Nc = 32. Subcarrier 1 of UE2 and UE3 are considered for
comparison. Velocities of three UEs are 10, 15, and 20 kmph.

In Fig. 12, the Ψc employed for NMSE characterization is
learned from the CDL-OP method. Observe from the Fig. 12,
for subcarrier l = 1 of UE2 and UE3 at almost all the sparsity
index values, the NMSE values for the proposed CDL-OP
method’s dictionary is better than subcarrier K-SVD based
dictionaries, because the CDL-OP dictionary is learned from
the estimated channels of K-SVD based dictionaries.

Experiment 4. In this single-UE experiment, we study the
BER performance at the UE as a function of the SNR. The
data symbols are transmitted from the BS to the UE in two
ways: a) Using the true channel estimates without compres-
sion and b) Using the channel estimates with compression
that are obtained from the CDL-OP dictionary.

To elaborate further on the performance of our proposed
framework, we analyze the BER in a downlink scenario. In
Fig. 13 we evaluate the BER using two sets of channels:
the true uncompressed channels and the channels estimated
using the CDL-OP dictionary on subcarrier 1. The pre-
coder matrices employed at the BS are denoted as Wg =

diag(
hH1
|h1| ) and Wg

op = diag(
ĥH1,op

|ĥ1,op|
), which correspond to

the weights obtained from the true channels and to the
channels estimated using CDL-OP dictionary, respectively.
Let x represents the modulated symbol vector. Explicitly,
in our BER analysis, we harness a half-rate convolutional
encoder having the generator sequences of G = [101, 111]
and the resultant bits are 16-PSK modulated for generating
the symbol vector x. The received signal in the case of
true uncompressed channels at the UE can be represented as
y = hT

1 Wgx+n, where n is the additive noise. Similarly the
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FIGURE 13: In a single-UE system with 64 TAs at the BS and a UE
with 1 RA, we examine the BER performance of channel estimates using the
CDL-OP methods’ dictionary. We consider two scenarios: Ng = NrNt/2

and Ng = NrNt/4. For comparison, we assume uncompressed channel
estimates for subcarrier 1. The UE has a velocity of 20 kmph.

receieved signal for channels estimated using the CDL-OP
dictionary can be represented as yop = hT

1 Wg
opx + n.

The CDL-OP dictionaries used in this experiment are
learned at a sparsity of 16 for g = 2 and at a sparsity of 8 for
g = 4. As we increase the compression factor g to reduce the
CSI feedback from the UE, we observe a BER performance
erosion. The lower bound shown in Fig. 13 represents the
BER performance when the BS employs uncompressed CSI.
Notably, as depicted in Fig. 13, the BER of the UE, recorded
for g = 2 when utilizing the CDL-OP dictionary approaches
the lower bound.

V. Summary and Conclusions
We proposed a novel CDL framework for reducing the
FDCHTF feedback and memory requirement of the UE
and BS. The framework is more beneficial for the UE,
which is usually resource-constrained, and the savings can be
significant. For the simulations, the channels are generated
using the QuaDRiGa simulator. In a multi-UE system of
three UEs and in a single-UE system, all the proposed
method’s dictionaries have better NMSE performance than
the DFT dictionary. The CDL-OP dictionary performs better
than the CDL-KSVD dictionary for all the sparsities. Hence
the CDL-OP method can be beneficially employed for CDL
to compress the CSI and improve the CSI reconstruction
performance. In terms of the computational complexity, the
CDL-OP method requires only a single SVD operation to
learn the CD, while the CDL-KSVD method requires an
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SVD operation for learning each column in the CD. So the
CDL-OP method has lower computational complexity than
the CDL-KSVD method. To minimize the impact imposed
on the BER performance, it is important to choose an
appropriate compression ratio g. In our case, a compression
ratio of g = 2 is considered to have a modest impact on
the BER performance. By selecting a suitable compression
ratio, the system can strike a balance between reducing the
amount of feedback, while maintaining a satisfactory BER
performance.

We conclude by highlighting the differences between the
multi-UE and single-UE systems as follows:

1) In the multi-UE system, the memory is reduced by
a factor of Nc at the UE and KNc at the BS by
having only a single CD instead of multiple subcarrier
dictionaries. For Nt = 64 and Nc = 32, the memory
required for storing the CD at each UE is reduced by
a factor of 32 and the CSI feedback is reduced by a
factor of two.

2) In the single-UE system, the memory is reduced by a
factor of Nc at both the UE and BS, the dictionary
feedback is also reduced by a factor of Nc in the
uplink. This is achieved by sending only a single CD
instead of Nc subcarrier dictionaries to the BS. For
Nt = 64 and Nc = 32, the memory is reduced by a
factor of 32 for storing only a CD, and the dictionary
feedback is also reduced by a factor of 32. Finally, the
CSI feedback is reduced by a factor of two.

3) In the multi-UE system, the CD (Ψc) generated using
the CDL-OP has a better NMSE performance to that of
the individual subcarrier K-SVD dictionaries Ψk

ksvd,l

∀l ∈ [1, Nc],∀k ∈ [1,K].
4) In the single-UE system, the CD (Ψc) generated using

the CDL-OP method has a better NMSE performance
to that of the individual subcarrier K-SVD dictionaries
Ψksvd,l ∀l ∈ [1, Nc].
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