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Abstract

We are given one input-output (i-o) trajectory (u, y) produced by a linear, continuous time-invariant system, and we compute its
Chebyshev polynomial series representation. We show that if the input trajectory u is sufficiently persistently exciting according
to the definition in [1], then the Chebyshev polynomial series representation of every i-o trajectory can be computed from that of
(u, y). We apply this result to data-driven simulation of continuous-time systems.
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1. Introduction

Before stating the problem we aim to solve and illustrat-
ing our contributions, we briefly recall the discrete time “fun-
damental lemma” of [2] and explain its relevance for data-
driven simulation and control of discrete-time systems. Let{[̂

uk

ŷk

]}
k=0,...,T

be input-output (i-o) samples produced by a sys-

tem B represented by a system of linear, constant-coefficient
difference equations, with ûk ∈ Rm and ŷk ∈ Rp, k = 0, . . . ,T .
Arrange the data in a Hankel matrix of depth L:

HL (̂u, ŷ) :=



û0 û1 . . . ûT−L

ŷ0 ŷ1 . . . ŷT−L
...

... . . .
...

ûL−1 ûL−1 . . . ûT

ŷL−1 ŷL−1 . . . ŷT


. (1)

We call û persistently exciting of order L if

rank HL (̂u) =


û0 û1 . . . ûT−L
...

... . . .
...

ûL−1 ûL−1 . . . ûT

 = Lm .

In the statement of the fundamental lemma we use the notion of
controllability (see the definition on p. 327 in [2]) and that of
state cardinality (see the definition on p. 326 in [2]).

Theorem 1. Assume that the system B producing the data{[̂
uk

ŷk

]}
k=0,...,T

is controllable, and denote by n its state cardi-
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nality. Define

V :=
{

v ∈ RL(m+p) | ∃

[
u
y

]
∈ B and k ∈ N

s.t. v⊤ =
[
u⊤0 y⊤0 . . . u⊤L−1 y⊤L−1

]}
.

If û is persistently exciting of order L+n, then im HL (̂u, ŷ) = V.

Proof. See Theorem 1 p. 327 in [2].

Theorem 1 provides a parametrization of all restrictions of
trajectories of B to the interval [0, L − 1] ∩ N in terms of the
shifts of the restrictions of one (sufficiently persistently excit-
ing) trajectory col(̂u, ŷ) to [0,T ] ∩ N. This parametrization is
used to generate i-o trajectories of the system directly from
data, without knowledge of a system model. The introduction
of [3] outlines some advantages of a data-driven solution to sim-
ulation as compared to the two-stage process of first identifying
a model for the system, and then using the model for generating
trajectories. We also remark that data-driven simulation has im-
portant applications in control (see [3, 4], and some of the more
recent data-driven control literature, that relies on this crucial
result).

In this paper we provide a parametrization analogous to that
of Theorem 1 for linear, continuous-time invariant systems. To
this purpose we identify system trajectories with the sequences
of their coefficients in the Chebyshev orthogonal polynomial
series representation (in the following called for brevity’s sake
the Chebyshev representation). It is well known (see section
2.4.2 of [5]) that the Chebyshev representation of the derivative
of a function can be computed directly from the Chebyshev rep-
resentation of the function itself, by matrix multiplication with
a known differentiation operator. Using this property, we as-
sociate to a given i-o trajectory a matrix whose rows are the
Chebyshev representation of the trajectory and those of a finite
number of its derivatives. Such matrix plays an analogous role
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to that of the Hankel matrix (1), in the sense that if the input
trajectory is sufficiently persistently exciting (according to the
definition in [1]), then the linear combinations of its columns
generate all possible Chebyshev representations of system tra-
jectories and a finite number of their derivatives. We use this
continuous-time version of the fundamental lemma to compute
the output trajectory corresponding to a given input trajectory
and initial conditions. Only in a couple of recent publications
concerned with stochastic systems (see [6, 7]) have orthogonal
basis concepts (polynomial chaos expansions in that case) been
used to solve data-driven control problems. We believe that ap-
proximation theory concepts and tools have great potential also
for the study of deterministic continuous-time systems.

The structure of the paper is as follows. In section 2 we re-
view some basic material about Chebyshev polynomials, and in
section 3 we recall the results of [1] on continuous-time per-
sistency of excitation and its characterization. The continuous-
time version of the fundamental lemma is stated in section 4;
two important consequences thereof are illustrated in section
5. Section 6 contains some applications of our results to data-
driven simulation. In section 7 we discuss some of the practical
issues arising in implementing our approach, and we compare
our results with the literature in data-driven control.

We state our results using standard systems and control con-
cepts, but some of the proofs require familiarity with the be-
havioral approach; we refer the interested reader to [8, 9] as
suitable introductions.

Notation

We denote by N, R and C respectively the set of natural, real
and complex numbers. We denote by R[s] the ring of polyno-
mials with real coefficients, and by Rg×q[s] the set of g×q matri-
ces with entries in R[s]. If p ∈ R[s], then deg(p) denotes the de-
gree of p. We associate polynomials and differential operators
with constant coefficients as follows: if p0 + . . . + pLsL ∈ R[s],
then we define p

(
d
dt

)
by p

(
d
dt

)
:= p0 + . . . + pL

dL

dtL . The notion
of degree extends in a natural way to polynomial differential
operators as the largest order of differentiation.
Rn, respectively Cn, denote the space of n-dimensional vec-

tors with real, respectively complex, entries. Rn×m denotes the
set of n×m matrices with real entries; Rn×∞ the set of real matri-
ces with n rows and an infinite number of columns; and R∞×∞
the set of real matrices with an infinite number of rows and
columns. The transpose of a matrix M is denoted by M⊤, and
its pseudoinverse by M†. If A and B are two matrices with the
same number of columns, we define col(A, B) :=

[
A⊤ B⊤

]⊤
.

Given a matrix M, im M denotes its image; left ker M := {v |
v⊤M = 0}, the space of its left annihilators; and row space M
the subspace spanned by its rows. The i-th row of a matrix M
is denoted by M(i, :); the submatrix consisting of the rows of M
from the i-th to the j-th is denoted M(i : j, :).
L2(I,R) denotes the space of square-integrable real-valued

functions defined on a finite interval I := [t0, t1] ⊂ R, equipped
with the standard inner product ⟨ f , g⟩ =

∫ t1
t0

f (t)g(t)dt.

2. Chebyshev polynomial orthogonal bases

Chebyshev polynomials are widely used due to their versa-
tility (differently from Fourier representations, which can only
be used to represent periodic functions); to the efficiency with
which series representations can be computed (via the FFT; this
is not possible e.g., for Legendre polynomials); and to their
“near best” approximation property. For details, see respec-
tively chapters 1 and 2 of [10] and section 2 in chapter 1 of
[11]; and chapter 16 of [10].

2.1. Fundamental definitions
Define I := [−1, 1]. The Chebyshev polynomials on I1 are

C0(t) := 1, C1(t) := t, and Cn+1(t) = 2tCn(t) − Cn−1(t), n ≥ 2.
Denote by w the Chebyshev weight function w : (−1, 1) → R
defined by w(t) := 1

√
1−t2

, t ∈ (−1, 1); the polynomials Ck are
orthogonal to each other with respect to the inner product on
L2(I,R) defined by ⟨ f , g⟩w :=

∫
I f (t)g(t)w(t)dt. They form a

complete basis for L2(I,R), equivalently their span is dense in
L2(I,R). Consequently, for every f ∈ L2(I,R) the sequence{∑N

k=0 f̃kCk

}
N∈N

, where f̃k := ⟨ f ,Ck⟩w ∈ R, k ∈ N is uniquely
determined by f , converges in the mean to f . If f is Lipschitz
continuous, then the sequence

{∑N
k=0 f̃kCk

}
N∈N

converges abso-
lutely and uniformly (see Theorem 3.1 p. 17 in [10]). More-
over (this follows from the Bessel equality, see Theorem 23 in
section 6 of [12]) the sequence of coefficients { f̃k}k∈N is square-
summable. Denoting

f̃ :=
[
f̃0 f̃1 . . .

]
and C :=

[
C0 C1 . . .

]⊤
, (2)

we write

f =
∞∑

k=0

f̃kCk = f̃C . (3)

We call the right-hand side of (3) the Chebyshev basis represen-
tation of f . We define the bijective projection Π : L2(I,R) →
ℓ2(N,R) by:

Π( f ) := f̃ . (4)

If f ∈ L2 (I,Rn) is a vector function, we denote by fi,
i = 1, . . . , n the i-th component of f . If fi =

∑∞
k=0 f̃i,kCk is the

Chebyshev polynomial basis representation of fi, i = 1, . . . , n,
then we write

f =


f̃1,0 f̃1,1 . . .
...

... . . .

f̃n,0 f̃n,1 . . .

︸              ︷︷              ︸
=: f̃

C . (5)

In the multivariable case, the projection analogous to (4) is the
map Π : L2(I,Rn) → ℓ2(N,Rn) defined by Π( f ) := f̃ , with
f̃ defined by (5); that is, the k-th coefficient of Π( f ) is the n-
dimensional vector

[
f1,k . . . fn,k

]⊤
.

See Comments 2 and 6 in Section 7 for details on the com-
putation of the Chebyshev coefficients.

1Shifted Chebyshev polynomials can be defined for general intervals (t0, t1)
with t0, t1 ∈ R by the transformation t → 2

t1−t0
t − t1+t0

t1−t0
.
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2.2. N-projection
Let f ∈ L2(I,R) be represented by (3); we define πN( f ) by

πN( f ) :=
N∑

k=0

f̃kCk , (6)

and we call it the N-truncation or N-projection of the Cheby-
shev representation of f . The projection of a vector-valued
function is defined in the natural way.

Since the sequence of N-projections {πN( f )}N∈N converges,
the approximation error

f − πN( f ) =
∞∑

k=N+1

f̃kCk , (7)

decays with N. It can be shown that the “more differentiable”
f is, the faster (7) goes to zero with N; consequently, “well-
behaved” functions can be represented up to machine precision
by truncated series. See Comment 3 in Section 7 for more de-
tails about the relation of smoothness and accuracy of the pro-
jection error.

2.3. Differentiation
Since Ck ∈ R[t], also d

dt Ck ∈ R[t], and there exist dk, j ∈ R
such that

d
dt

Ck =

∞∑
j=0

dk, jC j , k ∈ N . (8)

Using formula (2.4.22) p. 87 of [5], it can be proved that d0,k =

0 for all k ∈ N; if ℓ is even, then dℓ,k = 2ℓ if k < ℓ is even, 0
otherwise; and if ℓ is odd, then dℓ,0 = ℓ, dℓ,k = 2ℓ if k ≤ ℓ − 1
is even, and dℓ,k = 0 otherwise. From these expressions for dk, j

we define the infinite matrixD :=
[
dk, j

]
k, j∈N

:

D :=



0 0 0 0 0 . . .
1 0 0 0 0 . . .
0 4 0 0 0 . . .
3 0 6 0 0 . . .
0 8 0 8 0 . . .
...
...
...
...
...
. . .


. (9)

The nonzero entries of D increase linearly with their indices.
Define

d
dt
C :=

[
d
dt C0

d
dt C1 . . .

]⊤
. (10)

From (8) and (10) it follows that d
dtC = DC. Let f =

∑∞
k=0 f̃kCk;

assume that d
dt f ∈ L2(I,R). Then d

dt f =
∑∞

k=0 f̃k d
dt Ck and

consequently

d
dt

f = f̃
d
dt
C = f̃DC = f̃D︸︷︷︸

=: f̃ (1)

C . (11)

Equation (11) justifies the terminology differentiation operator
for D. Indeed, the map d

dt on L2(I,R) induces the map D :
ℓ2(N,R)→ ℓ2(N,R) defined by:

D( f̃ ) := f̃D . (12)

It is straightforward to check that if dk

dtk f ∈ L2(I,R), then the
Chebyshev representation of dk

dtk f is associated with f̃ (k) :=
f̃Dk, k ≥ 0. With the position (5), the derivative of a vector-
valued function satisfies the same equation as (11).

It follows from (11) that if f̃k decays much faster than the
entries of D (linearly) increase, then for practical purposes the
computation of the coefficients f̃ (1)

k can be performed via mul-
tiplication of finite vectors and matrices: a machine-precision
approximation of the (Chebyshev representation of the) deriva-
tive of a function can be directly computed from the (Cheby-
shev representation of the) function itself. See Comment 5 in
Section 7 for a discussion of error bounds for the derivative ap-
proximation error.

3. Persistency of excitation

We summarize the main result of [1]. Consider the input-
state-output representation

d
dt

x = Ax + Bu

y = Cx + Du , (13)

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m. We
associate to (13) its external behavior, defined by

B =
{
col(u, y) ∈ C∞(R,Rm+p) | ∃ x ∈ C∞(R,Rn)
s.t. col(u, x, y) satisfies (13)} . (14)

Remark 1. Other spaces than C∞ could be adopted for the so-
lution space, for example locally integrable functions, to ac-
commodate functions relevant for engineering purposes such
as ramps and steps (see [9]). We choose C∞ to reduce the level
of detail necessary to discuss technicalities related to conver-
gence issues and error bounds. Making the necessary alter-
ations, however, most of the results we present hold e.g., for
Lipschitz continuous, piecewise continuous and L2-functions
with a finite number of derivatives in the distributional sense.
Moreover, using piecewise Chebyshev representations, also dis-
continuous functions such as steps can be accommodated (see
section 8.1 of [13]).

Define

Ok :=


C if k = 0Ok−1

CAk

 if k ≥ 1
;

the system lag is defined by

ℓ := min{k ∈ N | rank Ok = rank Ok−1} . (15)

Evidently ℓ ≤ n; if (C, A) is observable, then ℓ is its observabil-
ity index.

The module of annihilators of B, denotedN(B), is the set of
all polynomial differential operators annihilating all trajectories
of B; it is formally defined by

N(B) :=
{[
η ξ

]
∈ R1×(m+p) [s] | (16)

η

(
d
dt

)
u + ξ

(
d
dt

)
y = 0 ∀ col(u, y) ∈ B

}
.

3



We denote byN(B)L the set of annihilators ofBwith order less
than or equal to L:

N(B)L := {
[
η ξ

]
∈ N(B) | deg

[
η ξ

]
≤ L} ,

and by ⟨N(B)L⟩ the module of R1×(m+p) [s] generated by
N(B)L.

The following is Definition 1 in [1].

Definition 1 (Persistency of excitation). Let I = [−1, 1]. f :
I→ Rm is persistently exciting of order k if

a) f is (k − 1)-times continuously differentiable in I;

b) For every v :=
[
v0 . . . vk−1

]
∈ R1×km it holds that

v


f (t)

f (1)(t)
...

f (k−1)(t)

 = 0 for every t ∈ I

=⇒ v0, . . . , vk−1 = 0 . (17)

Remark 2. If f is persistently exciting of order k, then it does
not satisfy any linear, constant-coefficient differential equation
of order less than or equal to k−1. In the scalar case, any linear
combination of k linearly independent exponential functions is
persistently exciting of order k on every interval.

For other definitions of persistency of excitation for
continuous-time systems, see Def. 3.2 and Th. 3.1 in [14] in
the context of adaptive parameter estimation; and [15] for the
case of linear and nonlinear autonomous systems. A thorough
investigation of the relation between these definitions and Def-
inition 1 is a matter for future research.

The following is the main result of [1], see Corollary 3 p. 592
therein.

Theorem 2. Let (̂u, x̂, ŷ) : R→ Rm+n+p be a trajectory of (13).
Assume that (A, B) is controllable and that û is persistently ex-
citing of order at least ℓ + n on I. Define

N (̂u, ŷ)ℓ+1 :=
{[
η ξ

]
∈ R1+(m+p)[s] | deg

[
η ξ

]
≤ ℓ

and η
(

d
dt

)
û + ξ

(
d
dt

)
ŷ = 0 on I

}
.

Then ⟨N (̂u, ŷ)ℓ+1⟩ = N(B).

In Theorem 2 it is stated that if (A, B) is controllable and if
û is persistently exciting of order at least n + ℓ, then the set
of all differential equations satisfied by all i-o trajectories of B
coincides with the set of all differential equations of order up
to ℓ satisfied by the particular trajectory (̂u, ŷ). Consequently,
if û is sufficiently persistently exciting, then the data (̂u, ŷ) are
sufficiently informative: they contain all information about the
system dynamics, as represented by the differential equations
describing the system behaviour. The result of Theorem 2, how-
ever, does not clarify how to exploit the sufficient informativity
property of the data to generate system trajectories (as happens
in the discrete-time case, see Theorem 1). We consider this fun-
damental problem in the next section.

4. An approximate fundamental lemma

Because of linearity and time-invariance of the representa-
tion (13), independently of the stability of the system none of
the trajectories of B defined by (14) exhibits finite escape to in-
finity. Consequently, for fixed I such trajectories all belong to
L2(I,Rm+p), and have a Chebyshev representation. Using (4),
we define

Π(B) :=
{
col(̃u, ỹ) ∈ ℓ2(N,Rm+p) | ∃ col(u, y) ∈ B
s.t. col(̃u, ỹ) = Π(col(u, y))} . (18)

Consider η ∈ R1×(m+p)[s]; write η(s) =:
∑δ

j=0

[
ηu

j η
y
j

]
s j,

where ηu
j ∈ R1×m, ηy

j ∈ R1×p, j = 0, . . . , δ. Let L ∈ N, L >

δ; associate bijectively with η(s) and with η
(

d
dt

)
the coefficient

vector η̃ ∈ R1×L(m+p) defined by

η̃ :=
[
ηu

0 η
y
0 . . . ηu

δ η
y
δ 01×(m+p) . . . 01×(m+p)

]
. (19)

Lemma 1. Define B by (14), and let col (u, y) ∈ B. Assume
that (A, B) is controllable, and that u is persistently exciting of
order L > ℓ + n. Define the L(m + p) ×∞ matrixWL (̃u, ỹ) by

WL (̃u, ỹ) := col
([̃

u
ỹ

]
D j

)
j=0,...,L−1

. (20)

Then

left kerWL (̃u, ỹ) =
{
η̃ ∈ RL(m+p) | η

(
d
dt

)
∈ N(B)

}
. (21)

Proof. We use a row-proper kernel representation of B (see p.
576 of [16]) R(s) = R0 + . . . + Rℓ, with Ri ∈ Rp×(m+p), i =
0, . . . , ℓ. Denote the i-th row of R(s) by ηi(s) and its degree by
δi, i = 1, . . . , p. It can be proved (see Corollary 6.7 p. 1065 of
[9]) that n =

∑p
i=1 δi.

Write ηi(s) =:
∑δi

j=0

[
ηu

i, j η
y
i, j

]
s j. Since ηi

(
d
dt

)
col(u′, y′) = 0

for every col(u′, y′) ∈ B, and since L > δi, the corresponding
coefficient vector η̃i defined by (19) belongs to left kerWL, i =
1, . . . , p. Since dk

dtk ηi

(
d
dt

)
, k ∈ N also annihilates B, it follows

that the shifts of η̃i, defined by

ση̃i :=
[
0 0 ηu

i,0 η
y
i,0 . . . ηu

i,δi
η

y
i,δi

0 0 . . .
]

σ2η̃i :=
[
0 0 0 0 ηu

i,0 η
y
i,0 . . . ηu

i,δi
η

y
i,δi
. . .

]
...

σL−δi−1η̃i :=
[
0 0 . . . ηu

i,0 η
y
i,0 . . . ηu

i,δi
η

y
i,δi

]
also belong to the left kernel of WL. The association of
dk

dtk ηi

(
d
dt

)
and σkη̃i defines an isomorphism between polynomial

differential operators and their coefficient vectors.
Since R(s) is row-proper, its highest row-coefficient matrix

Rhc, defined by Rhc := col(
[
ηu

i,δi
η

y
i,δi

]
)i=1,...,p, has full row rank.

Consequently, the vectors σ jη̃i, j = 0, . . . , L−δi−1, i = 1, . . . , p
are linearly independent. Note that there are

∑p
i=1(L − δi) =

Lp−
∑p

i=1 δi = Lp−n such vectors. Define the (Lp−n)×L(m+p)
matrix

E := col
(
σ jη̃i

)
i=1,...,p, j=0,...,L−δi−1

; (22)
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since N(B) = ⟨η1(s), . . . , ηp(s)⟩, the equality

row space(E) =
{
η̃ ∈ RL(m+p) | η

(
d
dt

)
∈ N(B)

}
,

holds true. Since col(u, y) ∈ B, for i = 1, . . . , p it holds that
ηi

(
d
dt

)
col(u, y) = ηi

(
d
dt

)∑∞
k=0 col(̃uk, ỹk)Ck = 0 and from the

linear independence of the Chebyshev polynomials Ck it fol-
lows that EWL (̃u, ỹ) = 0. Consequently, row space(E) is con-
tained in left ker (WL (̃u, ỹ)).

We prove the converse inclusion. Recall that u is persistently
exciting of order greater than ℓ + n. Denote by N(u, y)L the
set of annihilators of col(u, y) with degree less than or equal
to L − 1, and by ⟨N(u, y)L⟩ the module of R1×(m+p)[s] gener-
ated by these vectors. Use Theorem 2 to conclude that since
L > ℓ + n, the equality N(B) = ⟨N(u, y)L⟩ holds. Con-
sequently, N(B) = ⟨η1(s), . . . , ηp(s)⟩ = ⟨N(u, y)L⟩. Each
η(s) ∈ N(u, y)L is associated with a vector η̃ ∈ R1×L(m+p)

that belongs to the left kernel of WL (̃u, ỹ). It follows that
row space(E) ⊇ left ker (WL (̃u, ỹ)).

Corollary 1. Define B by (14), and let col (u, y) ∈ B. Assume
that (A, B) is controllable, and that u is persistently exciting of
order L > ℓ+n. DefineWL (̃u, ỹ) by (20). Then rankWL (̃u, ỹ) =
Lm + n.

Proof. Define the annihilators ηi(s) as in the proof of Lemma
1. From Lemma 1 it follows that the subspace of RL(m+p) gener-
ated by the rows of E defined by (22) equals left kerWL (̃u, ỹ).
Since R is row-proper, E has full row rank Lp−n. Consequently
rankWL (̃u, ỹ) = L(m + p) − (Lp − n) = Lm + n.

We state the continuous-time equivalent of Theorem 1.

Theorem 3. Define B by (14), and let col (u, y) ∈ B. Assume
that (A, B) is controllable, and that u is persistently exciting of
order L > ℓ + n. DefineWL (̃u, ỹ) by (20), and

V :=
{
v ∈ RL(m+p) | ∃ col(u, y) ∈ B , k ∈ N

s.t. col


̃u( j)

k

ỹ
( j)
k




j=0,...,L−1

= v

 . (23)

Then imWL (̃u, ỹ) = V.

Proof. The subspace imWL (̃u, ỹ) is included in V,
since it consists of finite linear combinations of columns

col
([̃

u( j)
k

ỹ( j)
k

])
j=0,...,L−1

, and since col(u, y) ∈ B.

We prove the converse inclusion. Since (A, B) is control-
lable, B admits an image representation (see section 6.6 of [8])
induced by a polynomial matrix M ∈ R(m+p)×m[s]. That is,
B = im M

(
d
dt

)
, where we write

M(s) =:
[
D(s)
N(s)

]
=:

[
D0 + D1s + . . . + Dr sr

N0 + N1s + . . . + Nr sr

]
,

where Di ∈ Rm×m, Ni ∈ Rp×m, i = 1, . . . , r. A trajectory
col(u′, y′) ∈ B if and only if there exists g : R → Rm such

that [
u′

y′

]
= M

(
d
dt

)
g =

[
D0 . . . Dr

N0 . . . Nr

] 
g

d
dt g
...

dr

dtr g

 .
Define D̃ :=

[
D0 . . . Dr

]
, Ñ :=

[
N0 . . . Nr

]
; and define

their j-shifts, j = 0, . . . , L − 1, by

σ jD̃ :=
[
0 . . . 0 D0 . . . Dr 0 . . . 0

]
σ jÑ :=

[
0 . . . 0 N0 . . . Nr 0 . . . 0

]
,

where the first jm columns of σ jD̃ and σ jÑ are zero, j =
0, . . . , L − 1.

We defineM := col
([
σ jD̃
σ jÑ

])
j=0,...,L−1

, and we write

col
([

u′( j)

y′( j)

])
j=0,...,L

=M col
(
g( j)

)
j=0,...,L+r−1

. (24)

Applying Π to both sides of (24) we obtain

col
([̃

u′( j)

ỹ′( j)

])
j=0,...,L

=M col
(̃
g( j)

)
j=0,...,L+r−1

. (25)

Since g̃ can take the value of any sequence in ℓ2(N,Rm), the
subspaceV defined in (23) satisfiesV = imM. We now prove
that imM = imWL (̃u, ỹ).

The set of annihilators N(B) coincides with the syzygy of
the module generated by the columns of M(s) (see Theorem
2.1 in [9]). The argument used in proving Lemma 1 shows that
N(B) coincides with the module generated by the polynomial
vectors associated with the elements of left kerWL (̃u, ỹ). It fol-
lows that left kerWL (̃u, ỹ) = (imM)⊥ = (V)⊥, from which we
conclude thatV = imWL (̃u, ỹ). This concludes the proof.

Remark 3. We illustrate the conceptual relation between Theo-
rem 3 and Theorem 1. Time-shift (in discrete-time) corresponds
to differentiation in the Chebyshev representation domain (see
(12)). The restrictions[

u⊤0 y⊤0 . . . u⊤L−1 y⊤L−1

]⊤
(26)

of discrete-time trajectories to [0, L − 1] correspond to the vec-
tor [̃

u
⊤

k ỹ
⊤

k . . . ũ
(L−1)⊤
k ỹ

(L−1)⊤
k

]
, (27)

constructed from the k-th Chebyshev coefficients of the
j-th derivative of col(u, y), j = 0, . . . , L − 1. Note
that (27) is the Chebyshev representation of the L-jet[
u⊤k y⊤k . . . u(L−1)⊤

k y(L−1)⊤
k

]
, of col(u, y). The matrix

WL (̃u, ỹ) defined in (20) plays a similar role to that of the Han-
kel matrix (1). The image ofWL (̃u, ỹ) equals the set of all ad-
missible vectors of Chebyshev coefficients (27) corresponding
to some trajectory col(u, y) ∈ B, just as the image of HL (̂u, ŷ)
equals the set of all restrictions (26) of trajectories of B to
[0, L − 1] ∩ N.
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Corollary 2. Define B by (14), and let col (u, y) ∈ B. As-
sume that (A, B) is controllable, and that u is persistently ex-
citing of order L > ℓ + n. Define WL (̃u, ỹ) by (20). Define
d := rank(WL (̃u, ỹ)) = Lm + n and factorize WL (̃u, ỹ) as
WL (̃u, ỹ) = MR, with M ∈ RL(m+p)×d, R ∈ Rd×∞. Then (im M)⊥

is isomorphic to a set of generators of N(B).

Proof. Follows from Lemma 1 and Theorem 3.

Example 1. Consider data generated by the behavior with m =
p = 1 described by the differential equation

(
d
dt − 1

)
y = u. The

lag ℓ = 1 and the state cardinality n = 1. The trajectory[
u(t)
y(t)

]
=

[
−5e−4t − 4e−3t − 3e−2t − 2e−t

e−4t + e−3t + e−2t + e−t

]
,

belongs to B, and u is persistently exciting of order L =
3 > n + ℓ = 2. A machine-precision Chebyshev represen-
tation of ũ and ỹ can be computed with 23 Chebyshev coef-
ficients using Chebfun (see [17] and Comments 2 and 4 in
Section 7). Let L = 3; the corresponding matrix WL (̃u, ỹ) ∈
R6×23 has singular values 2.7428 · 103, 9.6540, 3.3994 · 10−1,
3.0483 · 10−3, 3.5851 · 10−11, 2.3100 · 10−13. The gap between
the last two singular values and the third last one is of the or-
der of 108; this numerically confirms the results of Corollary
1. Using the same notation as in the proof of Lemma 1, de-
fine η :=

[
1 0 0 1 −1 0

]
from the values of the coeffi-

cients of the polynomial differential operator defining the sys-
tem. It can be verified that ∥ηW3 (̃u, ỹ)∥ = 4.3783 · 10−13 and

∥σηW3 (̃u, ỹ)∥ = 7.1132 · 10−11. Since B = im
[ d

dt − 1
1

]
, using

Theorem 3 we conclude thatV defined in (23) equals

im


−1 0 0 1 0 0
1 −1 0 0 1 0
0 1 −1 0 0 1
0 0 1 0 0 0


⊤

= im
[
V⊤u V⊤y

]
,

with dimension 4, as stated in Corollary 1. In this particular
case, the shifts of the coefficient matrix of the image represen-
tation can be directly used to compute a basis forV.

If N = 9, the corresponding matrix W3 (̃u, ỹ) ∈ R6×10 has
singular values 2.7386 ·103, 9.1684, 7.4189 ·10−1, 3.0300 ·10−1,
1.7760 · 10−2, and 2.3464 · 10−3. In such case it is not evident
what rank W3 (̃u, ỹ) is, since the singular values are relatively
close together. It can be verified that ∥ηW3 (̃u, ỹ)∥ = 1.7562 ·
10−1, and consequently computing a basis for im W3 (̃u, ỹ) in
this case would not produce an accurate system of generators
for the subspace V defined in Theorem 3. A significant drop
in the magnitude of the singular values (of the order of 104)
appears only for values of N larger than or equal to 18; only
for such larger numbers of coefficients makes sense to consider
data matrices as representative of the system dynamics.

5. Data-driven characterization of system trajectories

In discrete-time, every linear combination of the shifts of (the
restriction of) a system trajectory is (the restriction of) a sys-
tem trajectory. Consequently, HL (̂u, ŷ) defined in (1) provides a

direct parametrization of all system trajectories. Linearly com-
bining the columns ofW(̃u, ỹ) defined in (20) (or the columns
of M defined from a rank-revealing factorization of W(̃u, ỹ),
see Corollary 2) only generates the k-th coefficients of the L-jet
of a system trajectory. To compute fromW(̃u, ỹ) the Chebyshev
representation of an admissible system trajectory, a sequence of
L(m + p)-dimensional vectors needs to be computed by linear
combination of its columns. In the next two subsections we
show how to do this in two important cases: the computation
of an i-o system trajectory; and the computation of the output
trajectory corresponding to a given input one.

5.1. Data-driven characterization of all system trajectories
We first introduce some notation. In the following it will be

easier to work with a rearranged version of (20) and the corre-
sponding subspace (23). We definecol

([̃
uD j

])
j=0,...,L−1

col
([̃

yD j
])

j=0,...,L−1

 =:
[
WL (̃u)
WL (̃y)

]
. (28)

andV by

V :=
{
v ∈ RL(m+p) | ∃ col(u, y) ∈ B , k ∈ N

such that


col

(̃
u

( j)
k

)
j=0,...,L−1

col
(̃
y

( j)
k

)
j=0,...,L−1

 = v

 . (29)

Denote d := dim(V); recall from Corollary 1 that d = Lm + n.
Let V ∈ RL(m+p)×d be a basis matrix for V; such a basis matrix

can be computed via a rank-revealing factorization of
[
WL (̃u)
WL (̃y)

]
,

see Corollary 2. Partition V conformably with (29):

V =:
[
Vu

Vy

]
, with Vu ∈ RLm×d , Vy ∈ RLp×d . (30)

Finally, recall that we denote the i-th row of a matrix M by
M(i, :).

Theorem 4. Define B by (14), and let col (u, y) ∈ B. Assume
that (A, B) is controllable, and that u is persistently exciting
of order L > ℓ + n. Define WL (̃u), WL (̃y) by (28); Vu and
Vy by (30); and Π(B) by (18). The following statements are
equivalent:

1. col (̃u′, ỹ′) ∈ Π(B);

2. There exists G ∈ Rd×∞ such that[
W(̃u′)
W(̃y′)

]
=

[
Vu

Vy

]
G , (31)

3. There exists G ∈ Rd×∞ such that

(VuG)(1, :) = ũ′

(VyG)(1, :) = ỹ′

(VuG)(1, :)Di − (VuG)(i + 1, :) = 0
(VyG)(1, :)Di − (VyG)(i + 1, :) = 0 , (32)

i = 1, . . . , L − 1.
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Proof. To prove the implication 1) =⇒ 2), construct from
the orthogonal basis representation of col(u′, y′) the matri-
ces W(̃u′) and W(̃y′). From Theorem 3 it follows that

im
[
WL (̃u′)
WL (̃y′)

]
⊆ im

[
WL (̃u)
WL (̃y)

]
= im V . Consequently, there

exists G ∈ Rd×∞ such that
[
WL (̃u′)
WL (̃y′)

]
= VG.

We prove the implication 2) =⇒ 1). Let η ∈ R1×(m+p)[s] be
any annihilator ofB of degree less than or equal to L−1; define
its coefficient vector η̃ by (19). Since V is a basis matrix forV

defined by (29), it follows from (31) that η̃
[
WL (̃u′)
WL (̃y′)

]
= 0. Now

0 = η̃
[
WL (̃u′)
WL (̃y′)

]
=

∑L−1
j=0 η̃

u
j

(̃
u′D j

)
+

∑L−1
j=0 η̃

y
j

(̃
y′D j

)
, is equiva-

lent with 0 =
∑L−1

j=0 η̃
u
j

(
d j

dt j u′
)
+

∑L−1
j=0 η̃

y
j

(
d j

dt j y′
)
. It follows that

col(u′, y′) is annihilated by every annihilator of B. It follows
that col(u′, y′) ∈ B, and consequently that col(̃u′, ỹ′) ∈ Π(B).

To prove 2) ⇐⇒ 3), observe that the i-th row of WL (̃u′)
equals ũ′Di, i = 0, . . . , L−1. The equivalence ofWL (̃u′) = VuG
and the first and third equation in (32) follows. The equivalence
of WL (̃y′) = VyG with the second and last equation in (32)
follows analogously.

5.2. Data-driven characterization of system trajectories given
the input

In data-driven simulation, the problem arises of computing
output trajectories with specified input trajectories. We provide
a refinement of the result of Theorem 4 and characterize all out-
put trajectories corresponding to a given input. To this purpose
we need to state three preliminary results.

Proposition 1. Define the subspaceV by (29). Let V be a basis
matrix for it, and partition it as in (30). The matrix Vu has full
row rank Lm.

Proof. Since u is an input, col(u(i))i=0,...,L−1 can be any trajectory
inL2(I,RLm), and its Chebyshev representation col(̃u(i))i=0,...,L−1
can take any value in the space of m-dimensional square-
summable sequences ℓ2(I,RLm).

Consequently, for every vu ∈ RLm there exists u′ ∈
L2(I,R) and k ∈ N such that the Chebyshev representation
col(̃u′(i))i=0,...,L−1 of col(u′(i))i=0,...,L−1, the L-jet of u′, satisfies
vu = col

(̃
u′(i)k

)
i=0,...,L−1

. Choose one output trajectory y′ ∈
L2(I,Rp) corresponding to u′, and consider the vector vy :=
col(̃y(i)

k )i=0,...,L−1. Then v := col(vu, vy) ∈ V, and vu ∈ im(Vu).
Since vu is arbitrary, Vu is surjective.

Proposition 2. Let V be a basis matrix for the subspace V
defined by (29); partition it as in (30). Let K be a basis matrix
for ker Vu; then rank VyK = n, the state cardinality of B.

Proof. From Proposition 1 and Corollary 1 it follows that
dim ker Vu = d − Lm = Lm + n − Lm = n. The matrix VyK has
Lp rows and n columns. Assume that there exists v ∈ Rn such
that (VyK)v = 0; then, since im K = ker Vu, it follows that

Vu(Kv)=0. Consequently,
[
Vu

Vy

]
(Kv) = 0. The matrix V has full

column rank; the equality Kv = 0 follows. K is a basis matrix,
and consequently v = 0. Conclude that VyK has full column
rank.

Proposition 3. Let u ∈ L2(I,Rm), with Chebyshev representa-
tion ũ ∈ ℓ2(I,Rm); define WL (̃u) by (28). Let V be an image
matrix for (29), partitioned as in (30). Let K ∈ Rd×n be a basis
matrix for ker Vu. The following statements are equivalent:

1. G ∈ RLm×∞ solves the equation VuG =WL (̃u);

2. There exists F ∈ Rn×∞ such that

G = V⊤u
(
VuV⊤u

)−1
WL (̃u) + KF . (33)

Proof. Straightforward from the fact that Vu is surjective.

We characterize all output trajectories corresponding to a
given input.

Theorem 5. Define B by (14), and let col (u, y) ∈ B. Assume
that (A, B) is controllable, and that u is persistently exciting of
order L > ℓ + n. DefineWL (̃u),WL (̃y) by (28); Vu and Vy by
(30); Π(B) by (18); and denote by K ∈ Rd×n a basis matrix for
ker Vu. Let u′ ∈ L2(I,Rm) be given. The following statements
are equivalent:

1. col (̃u′, ỹ′) ∈ Π(B);

2. There exists F ∈ Rn×∞ such that

WL (̃y′) = Vy

(
V⊤u

(
VuV⊤u

)−1
WL (̃u′) + KF

)
.

Proof. To prove 1) =⇒ 2), construct from the representa-
tion of col(u′, y′) the matrices WL (̃u′) and WL (̃y′). Use The-

orem 3 to conclude that
[
WL (̃u′)
WL (̃y′)

]
= VX for some X ∈

Rd×∞. Use formula (33) in Proposition 3 to conclude that
X = V⊤u

(
VuV⊤u

)−1
WL (̃u) + KF for some F. Statement 2) fol-

lows.
To prove 2) =⇒ 1), observe that if F is such that

WL (̃y′) = Vy

(
V⊤u

(
VuV⊤u

)−1
W(̃u) + KF

)
,

then also[
WL (̃u′)
WL (̃y′)

]
=

[
Vu

Vy

] (
V⊤u

(
VuV⊤u

)−1
W(̃u) + KF

)
. (34)

Now use statement 2) of Theorem 4.

6. Data-driven continuous-time simulation

Define B by (14), and let col (u, y) ∈ B. Assume that (A, B)
is controllable, and that u is persistently exciting of order L >
ℓ + n. DefineWL (̃u), WL (̃y) by (28); Vu and Vy by (30); and
Π(B) by (18).
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Problem: Given q ∈ N; di ∈ R(m+p), i = 0, . . . , q−1; t0 ∈ I; and
u′ ∈ L2(I,R), compute if it exists, a trajectory y′ ∈ L2(I,R)
such that col(u′, y′) ∈ B and

col
(
u′(i)(t0), y′(i)(t0)

)
= di , i = 0, . . . , q − 1 . (35)

In the following we call this the simulation problem.

Proposition 4. Denote by Vy((i − 1)p + 1 : ip, :) the i-th p-
dimensional block-row of Vy, i = 1, . . . , L + 1. Let K be a basis
matrix for ker Vu. The simulation problem is solvable if and
only if there exists F ∈ Rn×∞ such that

Vy((i − 1)p + ip, :)
(
V⊤u

(
VuV⊤u

)−1
WL (̃u′) + KF

)
D

= Vy(ip + 1 : (i + 1)p, :)
(
V⊤u

(
VuV⊤u

)−1
WL (̃u′) + KF

)
, (36)

i = 1, . . . , L − 1; and[
ũ′

Vy(1, :)
(
V⊤u

(
VuV⊤u

)−1
WL (̃u′) + KF

)]Di
C(t0) = di , (37)

i = 0, . . . , q − 1. If the problem is solvable, then the solution
is the trajectory col(u′, y′) whose orthogonal basis coefficients
are

col
(̃
u′,Vy(1 : p, :)

(
V⊤u

(
VuV⊤u

)−1
WL (̃u) + KF

))
.

Proof. The conditions (36) are equivalent to each block-row of
VyF being the Chebyshev representation of the derivative of the
vector trajectory represented by the previous block-row. The
conditions (37) are equivalent with (35).

Example 2. We consider the same data as in Example 1. We
choose the input trajectory u′(t) = e2t, and the conditions[
u′(0)
y′(0)

]
=

[
1
2

]
. Solving the differential equation for the given

input and initial conditions yields the system trajectory whose

value at t is
[
u′(t)
y′(t)

]
=

[
e2t

et + e2t

]
. We now compute an approxi-

mate solution directly from the data.

Since Vu =

−1 1 0 0
0 −1 1 0
0 0 −1 1

 and Vy =

1 0 0 0
0 1 0 0
0 0 1 0

,
choosing K =

[
1 1 1 1

]⊤
results in VyK =

[
1 1 1

]⊤
.

As stated in Proposition 2, rank VyK equals the state-space di-
mension n = 1.

To approximate the input function u′ to machine preci-
sion, we use 23 Chebyshev coefficients. We then solve
with Mathematica the equations (36); the solutions are
parametrized by α ∈ R as

F(α) = α
[

1 0.8928 0.2144 0.0350 0.0043 . . .
]

+
[

0 4.2979 3.3340 1.2962 0.3435 . . .
]
.

The equation (37) imposing the satisfaction of the initial con-
dition for such family of parametrized sequences yields the so-
lution α = 9.815 =: α. We conclude from Proposition 4 that

a solution to this data-driven simulation problem exists. The
polynomial approximating such solution corresponds to the en-
tries of

Vy,1,:

(
V⊤u

(
VuV⊤u

)−1
W(̃u′) + KF(α)

)
,

see statement 2 of Theorem 5. We computed with
Mathematica the L2-norm of the error on I = [−1, 1] between
such polynomial and the exact solution y′(t) = et + e2t; it equals
2.32831 · 10−10. A plot of the exact solution y′ and of the sim-
ulated one y23 is given in Figure 1; they are indistinguishable
from each other.

y23(t)

y3(t)

y'(t)

2

4

6

8

10

Figure 1: Simulated and exact trajectories for Example 2

To illustrate the effect of truncation on the accuracy of the
simulated trajectories, we approximate u′ using only 3 coeffi-
cients. Solving (36) and (37) with Mathematica yields

F′(α) = α
[

0 0.8928 0.2144 0.0350 0.004 . . .
]

+
[

0 2.0682 1.0053 0.2204 0.0272 . . .
]
.

Imposing that the initial conditions constraint (37) is satisfied
yields α = 8.3853; the corresponding solution has an error with
L2-norm 0.0533. The graph of the function y3 corresponding
to such approximation of the input is plotted in Figure 1.

Remark 4 (Data-driven free response simulation). A special
case of data-driven simulation occurs when the input is zero,
i.e., the data-driven simulation of a free response given initial
conditions, as formalized in the following problem.

Problem: Given q ∈ N; di ∈ Rp, i = 0, . . . , q − 1; and
t0 ∈ I compute, if it exists, a trajectory y′ : I → Rp such
that col(0, y′) ∈ B and

y′(i)(t0) = di , i = 0, . . . , q − 1 . (38)

The following result is proved analogously to Proposition 4.

Proposition 5. Denote by Vy((i − 1)p + 1 : ip, :) the i-th p-
dimensional block-row of Vy, i = 1, . . . , L. Let K be a basis
matrix for ker Vu. The free response simulation problem is solv-
able if and only if there exists F ∈ Rn×∞ such that

Vy((i− 1)p+ 1 : ip, :)KFD = Vy(ip+ 1 : (i+ 1)p, :)KF , (39)
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i = 1, . . . , L − 1, and

VyKFDi
C(t0) = di , i = 0, . . . , q − 1 . (40)

If F exists, then ỹ′ = Vy(1 : p, :)KF is the Chebyshev represen-
tation of y′.

7. Comments

Comment 1 (Other approaches to continuous-time data-driven
control). The result closest to ours in problem formulation is
in [18]. A fundamental difference is that in [18] at least one
state trajectory is measured (see section IV.B therein); the state
is used also for defining the initial conditions of the simula-
tion (see (15) therein). In contrast, we use only i-o data, and
our approach is applicable also when no insight is available
into the internal structure of the system. A second difference
is in the computations used for simulation: in [18] a system of
time-varying differential equations is numerically solved (see
(14), (15) and (17) therein). In contrast, in (36)-(37) we solve
a system of linear equations. The state is assumed to be di-
rectly measured also in e.g., [19, 20, 21, 22]. Often it is as-
sumed that also the state derivative is directly measured (see
[19, 20, 21, 23]), even if this is hardly ever possible except for
some mechanical systems. In other cases, the state derivative
is numerically estimated from the values of x at the sampling
instants (see [22]), based on assumptions on the intersample
behavior (e.g., piecewise constant inputs). In contrast, we work
on measurements of the external variables only; the derivatives
of the i-o trajectories necessary for simulation do not need to
be directly measured; and no assumptions on the intersample
behavior are made.

Comment 2 (Computation of Chebyshev coefficients). Given
N ∈ N, the Chebyshev grid is the set {ti}i=0,...,N defined by ti :=
− cos(iπ/N), i = 0, . . . ,N. Given f ∈ L2(I,R), an approxima-
tion of the first N Chebyshev coefficients f̃k =

∫
I f (t)Ck(t)w(t)dt

can be computed directly from samples f (ti), i = 0, . . . ,N by
interpolation rather than integration, as follows. There ex-
ists a unique polynomial interpolant p =

∑N
i=0 c̃iCi such that

p(ti) = f (ti), i = 0, . . . ,N. For a fixed N, the approximation
of f given by truncation of its Chebyshev series

∑N
i=0 f̃iCi and

that given by its Chebyshev interpolant p =
∑N

i=0 c̃iCi are close,
and c̃i → f̃i as N → ∞, see Th. 4.2 of [10]. How close the
approximation is depends on the smoothness of the function f ;
for differentiable and analytic functions, the approximations in
the ∞-norm are within a factor of 2 of each other, see respec-
tively Th. 7.2 and Th. 8.2 of [10]. If the sampling instants
{ti}i=0,...,N are not arranged in a Chebyshev grid (e.g., when they
are equi-spaced), a least-squares procedure can be used to com-
pute approximations of the Chebyshev interpolant ([24]).

Comment 3 (Projection error). The Chebyshev series of a dif-
ferentiable function converges “algebraically”, see Theorem 7.2
p. 53 of [10]; for analytic functions, “geometrically”, see The-
orem 8.2 p. 57 of [10]; for C∞-functions, the approximation

error goes to zero faster than O(N−k) for every finite k (“expo-
nential convergence”), see p. 47 of [5]. Similar results can be
established for less regular functions defined in Sobolev spaces
(see Appendix A.11 of [5] and section 5.5.2 of [5]). Conse-
quently, for a fixed value of N, the accuracy achievable using
a truncated Chebyshev series computed from N samples of a
function f ∈ L2(I,R) depends on the smoothness of f . Upper
bounds on the approximation error are functions of the maxi-
mum value of the function in a bounded subset of C for ana-
lytic functions (see (8.1) of [10]); and of the 1-norm of d f

dt for
once-differentiable functions (see (7.4) in [10]). Error analysis
for functions differentiable more than once can be established
using Sobolev spaces techniques, see section 5.5.2 of [5]).

Comment 4 (On the choice of truncation index). We assumed
that the full Chebyshev representations of u, y are known (WL

in (20) has an infinite number of columns). Moreover, we com-
puted the full Chebyshev representation of the simulated trajec-
tories (G in Theorem 4 and Proposition 3, and F in Proposition
3 and Proposition 4, have an infinite number of columns). In
practice, however, only a finite number of coefficients of the
simulated signals can be computed.

In principle, the approximation bounds discussed in Com-
ment 3 can be used to estimate the number of Chebyshev coef-
ficients necessary to achieve a given accuracy. In practice, the
following procedure is often used (see pp. 18–20 in [10]; [13];
and Chapter 3 of [25]): the first N Chebyshev coefficients of f
are computed. If several consecutive coefficients up to the N-th
fall below machine precision, the accuracy is deemed to be suf-
ficient. If not, N is doubled and the process is repeated. Once
a sufficiently large N is found, downsampling can be used to
reduce the number of coefficients. Other truncation criteria are
illustrated in sections 3.1-3.7 of [25].

Such considerations play an important role in computing a
finite submatrix ofWL whose image equals im WL (see Theo-
rem 3). To that purpose, one needs to compute also reasonable
approximations of the Chebyshev representations of the deriva-
tives of u and y up to the order L (see (20)). Consequently, the
number N of coefficients in the Chebyshev representation of u
and y must be such that at least the last N−L coefficients ũk and
ỹk are below machine precision. Then also the last coefficients
of the Chebyshev representation of u(i) and y(i), i = 0, . . . , L − 1
are below machine precision.

Comment 5 (Approximation error for derivatives). Unless f is
a polynomial of degree smaller than or equal to N, the com-
putation (11) of the Chebyshev representation of the derivative
incurs an approximation error. Indeed, differentiation and pro-
jection do not commute (see section 2.4.2 of [5]), and the error
d
dt (πN( f )) − πN

(
d
dt f

)
is nonzero. An upper bound on its norm

when f and f (1) are absolutely continuous is given in the fol-
lowing result, whose proof (omitted due to space limitations)
uses Theorem 7.2 p. 53 of [10].

Proposition 6. Let f ∈ L2(I,R) and let N ∈ N, N ≥ 1. Assume
that f and f (1) are absolutely continuous, and that

∥∥∥∥ d2 f
dt2

∥∥∥∥
1
=∫ 1

−1

∣∣∣∣ d2 f
dt2 (τ)

∣∣∣∣ dτ is finite. Then the 2-norm of the error is less than
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or equal to
2
∥∥∥∥∥ d2 f

dt2

∥∥∥∥∥
1√

π(N−1) .

This result can be generalized to the case when f is differ-
entiable more than once, using Sobolev spaces of L2-functions
with a certain number of derivatives in the sense of distribu-
tions, see Lemma 2.3 p. 75 in [26]. Proposition 6 can also
be used to analyze the situation when the number N of Cheby-
shev coefficients of the data is fixed, and resampling is not an
option.

Comment 6 (Chebyshev representations from noisy data). In
practice the problem arises of computing a Chebyshev repre-
sentation for a function f from samples affected by noise, i.e.,
from f̂ (ti) = f (ti) + ϵi rather than f (ti), i = 0, . . . ,N. Recently
([24]) two least-squares algorithms have been devised to com-
pute a polynomial approximant from noisy data. Error bounds
for the ∞-norm error of the approximant, proportional to the
noise variance and inversely proportional to the square of the
number of samples, are available.

Comment 7 (Accuracy of simulation). The number of coeffi-
cients necessary to accurately represent a particular input func-
tion varies according to how “complex” it is. Moreover, a good
Chebyshev approximation of the corresponding output usually
requires at least as many non-negligible coefficients as the in-
put function; for example, if the input is a linear combination
of exponentials, generically also all natural frequencies of the
system will be present in the output. Consequently, in simula-
tions N must be adjusted dynamically. Its initial value depends
on the complexity of the input function. Then equations (36)-
(37) are solved, and the last few Chebyshev coefficients of the
corresponding solution y′ are checked. If they fall below ma-
chine precision, then an accurate representation of the output
has been obtained. Otherwise, N is doubled (see Comment 4)
and a solution of (36)-(37) for the new value of N is computed.
The process continues until an acceptable approximation of y′

has been computed. This process is analogous to the “lazy eval-
uation” used in spectral methods for the solution of differential
equations, see section 3 of [13].

8. Conclusions

The results illustrated in this paper complement the definition
and the characterization of persistency of excitation provided in
[1]. We used Chebyshev representations and their properties to
represent all possible smooth system trajectories in terms of
a sufficiently informative one (Theorem 3). We have also de-
vised procedures to compute the Chebyshev representation of
any smooth system trajectory from that of a sufficiently infor-
mative one (Theorem 4 and Theorem 5). We used our approach
to solve two problems in data-driven simulation, namely the
computation of free and forced responses given the initial con-
ditions.
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