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a b s t r a c t

We are given one input–output (i-o) trajectory (u, y) produced by a linear, continuous time-invariant
system, and we compute its Chebyshev polynomial series representation. We show that if the input
trajectory u is sufficiently persistently exciting according to the definition in Rapisarda et al. (2023),
then the Chebyshev polynomial series representation of every i-o trajectory can be computed from
that of (u, y). We apply this result to data-driven simulation of continuous-time systems.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Before stating the problem we aim to solve and illustrating our
ontributions, we briefly recall the discrete time ‘‘fundamental
emma’’ of [1] and explain its relevance for data-driven simulation

nd control of discrete-time systems. Let
{[̂

uk
ŷk

]}
k=0,...,T

be input–

output (i-o) samples produced by a system B represented by a
system of linear, constant-coefficient difference equations, with
uk ∈ Rm and ŷk ∈ Rp, k = 0, . . . , T . Arrange the data in a Hankel
matrix of depth L:

HL (̂u, ŷ) :=

⎡⎢⎢⎢⎢⎣
û0 û1 . . . ûT−L
ŷ0 ŷ1 . . . ŷT−L
...

... . . .
...

ûL−1 ûL−1 . . . ûT
ŷL−1 ŷL−1 . . . ŷT

⎤⎥⎥⎥⎥⎦ . (1)

We call û persistently exciting of order L if

rank HL (̂u) =

⎡⎢⎣ û0 û1 . . . ûT−L
...

... . . .
...

ûL−1 ûL−1 . . . ûT

⎤⎥⎦ = Lm .

In the statement of the fundamental lemma we use the notion
of controllability (see the definition on p. 327 in [1]) and that of
state cardinality (see the definition on p. 326 in [1]).
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Theorem 1. Assume that the system B producing the data{[̂
uk
ŷk

]}
k=0,...,T

is controllable, and denote by n its state cardinality.

Define

V :=

{
v ∈ RL(m+p)

| ∃

[
u
y

]
∈ B and k ∈ N

s.t. v⊤
=
[
u⊤

0 y⊤

0 . . . u⊤

L−1 y⊤

L−1

] }
.

If û is persistently exciting of order L + n, then im HL (̂u, ŷ) = V .

Proof. See Theorem 1 p. 327 in [1]. □

Theorem 1 provides a parametrization of all restrictions of
trajectories of B to the interval [0, L − 1] ∩ N in terms of the
shifts of the restrictions of one (sufficiently persistently exciting)
trajectory col(̂u, ŷ) to [0, T ] ∩ N. This parametrization is used
to generate i-o trajectories of the system directly from data,
without knowledge of a system model. The introduction of [2]
outlines some advantages of a data-driven solution to simulation
as compared to the two-stage process of first identifying a model
for the system, and then using the model for generating trajecto-
ries. We also remark that data-driven simulation has important
applications in control (see [2,3], and some of the more recent
data-driven control literature, that relies on this crucial result).

In this paper we provide a parametrization analogous to that
of Theorem 1 for linear, continuous-time invariant systems. To
this purpose we identify system trajectories with the sequences
of their coefficients in the Chebyshev orthogonal polynomial se-

ries representation (in the following called for brevity’s sake the
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hebyshev representation). It is well known (see section 2.4.2
f [4]) that the Chebyshev representation of the derivative of
function can be computed directly from the Chebyshev repre-

entation of the function itself, by matrix multiplication with a
nown differentiation operator. Using this property, we associate
o a given i-o trajectory a matrix whose rows are the Chebyshev
epresentation of the trajectory and those of a finite number of
ts derivatives. Such matrix plays an analogous role to that of
he Hankel matrix (1), in the sense that if the input trajectory is
ufficiently persistently exciting (according to the definition in [5]),
hen the linear combinations of its columns generate all possible
Chebyshev representations of system trajectories and a finite
number of their derivatives. We use this continuous-time version
of the fundamental lemma to compute the output trajectory
corresponding to a given input trajectory and initial conditions.
Only in a couple of recent publications concerned with stochastic
systems (see [6,7]) have orthogonal basis concepts (polynomial
chaos expansions in that case) been used to solve data-driven
control problems. We believe that approximation theory concepts
and tools have great potential also for the study of deterministic
continuous-time systems.

The structure of the paper is as follows. In Section 2 we
review some basic material about Chebyshev polynomials, and
in Section 3 we recall the results of [5] on continuous-time
persistency of excitation and its characterization. The continuous-
time version of the fundamental lemma is stated in Section 4;
two important consequences thereof are illustrated in Section 5.
Section 6 contains some applications of our results to data-driven
simulation. In Section 7 we discuss some of the practical is-
sues arising in implementing our approach, and we compare our
results with the literature in data-driven control.

We state our results using standard systems and control con-
cepts, but some of the proofs require familiarity with the behav-
ioral approach; we refer the interested reader to [8,9] as suitable
introductions.

Notation

We denote by N, R and C respectively the set of natural, real
and complex numbers. We denote by R[s] the ring of polynomials
with real coefficients, and by Rg×q

[s] the set of g × q matrices
with entries in R[s]. If p ∈ R[s], then deg(p) denotes the degree
of p. We associate polynomials and differential operators with
constant coefficients as follows: if p0 + · · ·+ pLsL ∈ R[s], then we
define p

( d
dt

)
by p

( d
dt

)
:= p0 + · · · + pL dL

dtL
. The notion of degree

xtends in a natural way to polynomial differential operators as
he largest order of differentiation.

Rn, respectively Cn, denote the space of n-dimensional vectors
with real, respectively complex, entries. Rn×m denotes the set of
n × m matrices with real entries; Rn×∞ the set of real matrices
with n rows and an infinite number of columns; and R∞×∞

the set of real matrices with an infinite number of rows and
columns. The transpose of a matrix M is denoted by M⊤, and its
pseudoinverse by M†. If A and B are two matrices with the same
number of columns, we define col(A, B) :=

[
A⊤ B⊤

]⊤. Given a
matrix M , im M denotes its image; left kerM := {v | v⊤M = 0},
the space of its left annihilators; and row space M the subspace
spanned by its rows. The ith row of a matrix M is denoted by
M(i, :); the submatrix consisting of the rows of M from the ith to
the jth is denoted M(i : j, :).

L2(I,R) denotes the space of square-integrable real-valued
functions defined on a finite interval I := [t0, t1] ⊂ R, equipped
with the standard inner product ⟨f , g⟩ =

∫ t1 f (t)g(t)dt .
t0
w

2

2. Chebyshev polynomial orthogonal bases

Chebyshev polynomials are widely used due to their versatility
(differently from Fourier representations, which can only be used
to represent periodic functions); to the efficiency with which
series representations can be computed (via the FFT; this is not
possible e.g., for Legendre polynomials); and to their ‘‘near best’’
approximation property. For details, see respectively chapters 1
and 2 of [10] and section 2 in chapter 1 of [11]; and chapter 16
of [10].

2.1. Fundamental definitions

Define I := [−1, 1]. The Chebyshev polynomials on I1 are
0(t) := 1, C1(t) := t , and Cn+1(t) = 2tCn(t) − Cn−1(t), n ≥ 2.
enote by w the Chebyshev weight function w : (−1, 1) → R
efined by w(t) :=

1√
1−t2

, t ∈ (−1, 1); the polynomials Ck

are orthogonal to each other with respect to the inner product
on L2(I,R) defined by ⟨f , g⟩w :=

∫
I f (t)g(t)w(t)dt . They form

a complete basis for L2(I,R), equivalently their span is dense
in L2(I,R). Consequently, for every f ∈ L2(I,R) the sequence{∑N

k=0 f̃kCk

}
N∈N

, where f̃k := ⟨f , Ck⟩w ∈ R, k ∈ N is uniquely
determined by f , converges in the mean to f . If f is Lipschitz
continuous, then the sequence

{∑N
k=0 f̃kCk

}
N∈N

converges abso-
lutely and uniformly (see Theorem 3.1 p. 17 in [10]). Moreover
(this follows from the Bessel equality, see Theorem 23 in section
6 of [12]) the sequence of coefficients {̃fk}k∈N is square-summable.
Denoting

f :=
[̃
f0 f̃1 . . .

]
and C :=

[
C0 C1 . . .

]⊤
, (2)

we write

f =

∞∑
k=0

f̃kCk = f̃ C. (3)

We call the right-hand side of (3) the Chebyshev basis represen-
tation of f . We define the bijective projection Π : L2(I,R) →

ℓ2(N,R) by:

Π (f ) := f̃ . (4)

If f ∈ L2 (I,Rn) is a vector function, we denote by fi, i =

1, . . . , n the ith component of f . If fi =
∑

∞

k=0 f̃i,kCk is the Cheby-
shev polynomial basis representation of fi, i = 1, . . . , n, then we
write

f =

⎡⎢⎣̃f1,0 f̃1,1 . . .
...

... . . .

f̃n,0 f̃n,1 . . .

⎤⎥⎦
  

=:̃f

C. (5)

In the multivariable case, the projection analogous to (4) is the
map Π : L2(I,Rn) → ℓ2(N,Rn) defined by Π (f ) := f̃ , with
f defined by (5); that is, the kth coefficient of Π (f ) is the n-
dimensional vector

[
f1,k . . . fn,k

]⊤.
See Comments 2 and 6 in Section 7 for details on the compu-

tation of the Chebyshev coefficients.

1 Shifted Chebyshev polynomials can be defined for general intervals (t0, t1)
ith t , t ∈ R by the transformation t →

2 t −
t1+t0 .
0 1 t1−t0 t1−t0
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.2. N-Projection

Let f ∈ L2(I,R) be represented by (3); we define πN (f ) by

πN (f ) :=

N∑
k=0

f̃kCk , (6)

and we call it the N-truncation or N-projection of the Chebyshev
representation of f . The projection of a vector-valued function is
defined in the natural way.

Since the sequence of N-projections {πN (f )}N∈N converges, the
approximation error

f − πN (f ) =

∞∑
k=N+1

f̃kCk , (7)

ecays with N . It can be shown that the ‘‘more differentiable’’
is, the faster (7) goes to zero with N; consequently, ‘‘well-
ehaved’’ functions can be represented up to machine precision
y truncated series. See Comment 3 in Section 7 for more details
bout the relation of smoothness and accuracy of the projection
rror.

.3. Differentiation

Since Ck ∈ R[t], also d
dt Ck ∈ R[t], and there exist dk,j ∈ R such

hat

d
dt

Ck =

∞∑
j=0

dk,jCj , k ∈ N. (8)

Using formula (2.4.22) p. 87 of [4], it can be proved that d0,k = 0
for all k ∈ N; if ℓ is even, then dℓ,k = 2ℓ if k < ℓ is even, 0
otherwise; and if ℓ is odd, then dℓ,0 = ℓ, dℓ,k = 2ℓ if k ≤ ℓ − 1 is
even, and dℓ,k = 0 otherwise. From these expressions for dk,j we
define the infinite matrix D :=

[
dk,j
]
k,j∈N:

D :=

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 . . .

1 0 0 0 0 . . .

0 4 0 0 0 . . .

3 0 6 0 0 . . .

0 8 0 8 0 . . .
...

...
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎦ . (9)

The nonzero entries of D increase linearly with their indices.
Define
d
dt

C :=
[ d
dt C0

d
dt C1 . . .

]⊤
. (10)

rom (8) and (10) it follows that d
dt C = DC. Let f =

∑
∞

k=0 f̃kCk;
assume that d

dt f ∈ L2(I,R). Then d
dt f =

∑
∞

k=0 f̃k
d
dt Ck and

onsequently
d
dt

f = f̃
d
dt

C = f̃DC = f̃D
=:̃f (1)

C. (11)

q. (11) justifies the terminology differentiation operator for D.
ndeed, the map d

dt on L2(I,R) induces the map D : ℓ2(N,R) →

2(N,R) defined by:

(̃f ) := f̃D. (12)

It is straightforward to check that if dk

dtk
f ∈ L2(I,R), then the

hebyshev representation of dk

dtk
f is associated with f̃ (k) := f̃Dk,

k ≥ 0. With the position (5), the derivative of a vector-valued
function satisfies the same equation as (11).

It follows from (11) that if f̃k decays much faster than the
entries of D (linearly) increase, then for practical purposes the
3

computation of the coefficients f̃ (1)k can be performed via mul-
tiplication of finite vectors and matrices: a machine-precision
approximation of the (Chebyshev representation of the) deriva-
tive of a function can be directly computed from the (Chebyshev
representation of the) function itself. See Comment 5 in Section 7
for a discussion of error bounds for the derivative approximation
error.

3. Persistency of excitation

We summarize the main result of [5]. Consider the input-
state-output representation
d
dt

x = Ax + Bu

y = Cx + Du , (13)

ith A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m. We associate
to (13) its external behavior, defined by

B =
{
col(u, y) ∈ C∞(R,Rm+p) | ∃ x ∈ C∞(R,Rn)

s.t. col(u, x, y) satisfies (13)
}
. (14)

Remark 1. Other spaces than C∞ could be adopted for the
solution space, for example locally integrable functions, to ac-
commodate functions relevant for engineering purposes such as
ramps and steps (see [9]). We choose C∞ to reduce the level
of detail necessary to discuss technicalities related to conver-
gence issues and error bounds. Making the necessary alterations,
however, most of the results we present hold e.g., for Lipschitz
continuous, piecewise continuous and L2-functions with a fi-
nite number of derivatives in the distributional sense. Moreover,
using piecewise Chebyshev representations, also discontinuous
functions such as steps can be accommodated (see section 8.1
of [13]). □

Define

Ok :=

⎧⎨⎩
C if k = 0[
Ok−1

CAk

]
if k ≥ 1

;

the system lag is defined by

ℓ := min{k ∈ N | rank Ok = rank Ok−1}. (15)

Evidently ℓ ≤ n; if (C, A) is observable, then ℓ is its observability
index.

The module of annihilators of B, denoted N (B), is the set of
all polynomial differential operators annihilating all trajectories
of B; it is formally defined by

N (B) :=

{ [
η ξ

]
∈ R1×(m+p) [s] | (16)

η

(
d
dt

)
u + ξ

(
d
dt

)
y = 0 ∀ col(u, y) ∈ B

}
.

We denote by N (B)L the set of annihilators of B with order less
than or equal to L:

(B)L := {
[
η ξ

]
∈ N (B) | deg

[
η ξ

]
≤ L} ,

nd by ⟨N (B)L⟩ the module of R1×(m+p) [s] generated by N (B)L.
The following is Definition 1 in [5].

efinition 1 (Persistency of Excitation). Let I = [−1, 1]. f : I →
m is persistently exciting of order k if

(a) f is (k − 1)-times continuously differentiable in I;
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(b) For every v :=
[
v0 . . . vk−1

]
∈ R1×km it holds that

v

⎡⎢⎢⎣
f (t)
f (1)(t)

...

f (k−1)(t)

⎤⎥⎥⎦ = 0 for every t ∈ I

H⇒ v0, . . . , vk−1 = 0. (17)

Remark 2. If f is persistently exciting of order k, then it does
not satisfy any linear, constant-coefficient differential equation of
order less than or equal to k − 1. In the scalar case, any linear
combination of k linearly independent exponential functions is
persistently exciting of order k on every interval. □

For other definitions of persistency of excitation for
continuous-time systems, see Def. 3.2 and Th. 3.1 in [14] in the
context of adaptive parameter estimation; and [15] for the case
of linear and nonlinear autonomous systems. A thorough investi-
gation of the relation between these definitions and Definition 1
is a matter for future research.

The following is the main result of [5], see Corollary 3 p. 592
therein.

Theorem 2. Let (̂u, x̂, ŷ) : R → Rm+n+p be a trajectory of (13).
Assume that (A, B) is controllable and that û is persistently exciting
of order at least ℓ + n on I. Define

N (̂u, ŷ)ℓ+1
:=

{ [
η ξ

]
∈ R1+(m+p)

[s] | deg
[
η ξ

]
≤ ℓ

and η

(
d
dt

)
û + ξ

(
d
dt

)
ŷ = 0 on I

}
.

Then ⟨N (̂u, ŷ)ℓ+1
⟩ = N (B).

In Theorem 2 it is stated that if (A, B) is controllable and if
u is persistently exciting of order at least n + ℓ, then the set
of all differential equations satisfied by all i-o trajectories of B
coincides with the set of all differential equations of order up to
ℓ satisfied by the particular trajectory (̂u, ŷ). Consequently, if û
is sufficiently persistently exciting, then the data (̂u, ŷ) are suffi-
ciently informative: they contain all information about the system
dynamics, as represented by the differential equations describing
the system behavior. The result of Theorem 2, however, does not
clarify how to exploit the sufficient informativity property of the
data to generate system trajectories (as happens in the discrete-
time case, see Theorem 1). We consider this fundamental problem
in the next section.

4. An approximate fundamental lemma

Because of linearity and time-invariance of the representa-
tion (13), independently of the stability of the system none of
the trajectories of B defined by (14) exhibits finite escape to
infinity. Consequently, for fixed I such trajectories all belong to
L2(I,Rm+p), and have a Chebyshev representation. Using (4), we
define

Π (B) :=
{
col(̃u, ỹ) ∈ ℓ2(N,Rm+p) | ∃ col(u, y) ∈ B

s.t. col(̃u, ỹ) = Π (col(u, y))
}
. (18)

Consider η ∈ R1×(m+p)
[s]; write η(s) =:

∑δ

j=0

[
ηu
j η

y
j

]
sj,

where ηu
j ∈ R1×m, η

y
j ∈ R1×p, j = 0, . . . , δ. Let L ∈ N, L > δ;

associate bijectively with η(s) and with η
( d
dt

)
the coefficient vector

η ∈ R1×L(m+p) defined by

η :=
[
ηu
0 η

y
0 . . . ηu

δ η
y
δ 01×(m+p) . . . 01×(m+p)

]
. (19)
4

Lemma 1. Define B by (14), and let col (u, y) ∈ B. Assume
that (A, B) is controllable, and that u is persistently exciting of order
L > ℓ + n. Define the L(m + p) × ∞ matrix WL (̃u, ỹ) by

WL (̃u, ỹ) := col
([̃

u
ỹ

]
Dj
)

j=0,...,L−1
. (20)

hen

eft ker WL (̃u, ỹ) =

{̃
η ∈ RL(m+p)

| η

(
d
dt

)
∈ N (B)

}
. (21)

Proof. We use a row-proper kernel representation of B (see p.
576 of [16]) R(s) = R0 + · · · + Rℓ, with Ri ∈ Rp×(m+p), i =

, . . . , ℓ. Denote the ith row of R(s) by ηi(s) and its degree by δi,
= 1, . . . , p. It can be proved (see Corollary 6.7 p. 1065 of [9])
hat n =

∑p
i=1 δi.

Write ηi(s) =:
∑δi

j=0

[
ηu
i,j η

y
i,j

]
sj. Since ηi

( d
dt

)
col(u′, y′) = 0

for every col(u′, y′) ∈ B, and since L > δi, the corresponding
coefficient vector η̃i defined by (19) belongs to left ker WL, i =

1, . . . , p. Since dk

dtk
ηi
( d
dt

)
, k ∈ N also annihilates B, it follows that

the shifts of η̃i, defined by

σ η̃i :=
[
0 0 ηu

i,0 η
y
i,0 . . . ηu

i,δi
η
y
i,δi

0 0 . . .
]

σ 2̃ηi :=
[
0 0 0 0 ηu

i,0 η
y
i,0 . . . ηu

i,δi
η
y
i,δi

. . .
]

...

σ L−δi−1̃ηi :=
[
0 0 . . . ηu

i,0 η
y
i,0 . . . ηu

i,δi
η
y
i,δi

]
also belong to the left kernel of WL. The association of dk

dtk
ηi
( d
dt

)
nd σ k̃ηi defines an isomorphism between polynomial differential
perators and their coefficient vectors.
Since R(s) is row-proper, its highest row-coefficient matrix

hc, defined by Rhc := col(
[
ηu
i,δi

η
y
i,δi

]
)i=1,...,p, has full row rank.

onsequently, the vectors σ j̃ηi, j = 0, . . . , L − δi − 1, i = 1, . . . , p
re linearly independent. Note that there are

∑p
i=1(L − δi) =

p−
∑p

i=1 δi = Lp−n such vectors. Define the (Lp−n)× L(m+p)
matrix

E := col
(
σ j̃ηi

)
i=1,...,p,j=0,...,L−δi−1 ; (22)

since N (B) = ⟨η1(s), . . . , ηp(s)⟩, the equality

ow space(E) =

{̃
η ∈ RL(m+p)

| η

(
d
dt

)
∈ N (B)

}
,

holds true. Since col(u, y) ∈ B, for i = 1, . . . , p it holds that
ηi
( d
dt

)
col(u, y) = ηi

( d
dt

)∑
∞

k=0 col(̃uk, ỹk)Ck = 0 and from the
linear independence of the Chebyshev polynomials Ck it follows
that EWL (̃u, ỹ) = 0. Consequently, row space(E) is contained in
left ker (WL (̃u, ỹ)).

We prove the converse inclusion. Recall that u is persistently
exciting of order greater than ℓ + n. Denote by N (u, y)L the
set of annihilators of col(u, y) with degree less than or equal to

− 1, and by ⟨N (u, y)L⟩ the module of R1×(m+p)
[s] generated by

hese vectors. Use Theorem 2 to conclude that since L > ℓ + n,
he equality N (B) = ⟨N (u, y)L⟩ holds. Consequently, N (B) =

η1(s), . . . , ηp(s)⟩ = ⟨N (u, y)L⟩. Each η(s) ∈ N (u, y)L is associated
ith a vector η̃ ∈ R1×L(m+p) that belongs to the left kernel of
L (̃u, ỹ). It follows that row space(E) ⊇ left ker (WL (̃u, ỹ)). □

Corollary 1. Define B by (14), and let col (u, y) ∈ B. Assume
that (A, B) is controllable, and that u is persistently exciting of order
L > ℓ + n. Define WL (̃u, ỹ) by (20). Then rank WL (̃u, ỹ) = Lm + n.

roof. Define the annihilators ηi(s) as in the proof of Lemma 1.
rom Lemma 1 it follows that the subspace of RL(m+p) gener-
ted by the rows of E defined by (22) equals left ker W (̃u, ỹ).
L
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ince R is row-proper, E has full row rank Lp − n. Consequently
rank WL (̃u, ỹ) = L(m + p) − (Lp − n) = Lm + n. □

We state the continuous-time equivalent of Theorem 1.

Theorem 3. Define B by (14), and let col (u, y) ∈ B. Assume
that (A, B) is controllable, and that u is persistently exciting of order
L > ℓ + n. Define WL (̃u, ỹ) by (20), and

V :=

{
v ∈ RL(m+p)

| ∃ col(u, y) ∈ B , k ∈ N

s.t. col

([̃
u
(j)
k

ỹ
(j)
k

])
j=0,...,L−1

= v

}
. (23)

Then im WL (̃u, ỹ) = V .

Proof. The subspace im WL (̃u, ỹ) is included in V , since it consists

of finite linear combinations of columns col
([̃

u(j)
k

ỹ(j)k

])
j=0,...,L−1

, and

since col(u, y) ∈ B.
We prove the converse inclusion. Since (A, B) is controllable,

B admits an image representation (see section 6.6 of [8]) induced
by a polynomial matrix M ∈ R(m+p)×m

[s]. That is, B = im M
( d
dt

)
,

here we write

(s) =:

[
D(s)
N(s)

]
=:

[
D0 + D1s + · · · + Dr sr
N0 + N1s + · · · + Nr sr

]
,

where Di ∈ Rm×m, Ni ∈ Rp×m, i = 1, . . . , r . A trajectory
col(u′, y′) ∈ B if and only if there exists g : R → Rm such that

[
u′

y′

]
= M

(
d
dt

)
g =

[
D0 . . . Dr
N0 . . . Nr

]⎡⎢⎢⎢⎣
g
d
dt g
...

dr
dtr g

⎤⎥⎥⎥⎦ .

efine D̃ :=
[
D0 . . . Dr

]
, Ñ :=

[
N0 . . . Nr

]
; and define

heir j-shifts, j = 0, . . . , L − 1, by

σ jD̃ :=
[
0 . . . 0 D0 . . . Dr 0 . . . 0

]
jÑ :=

[
0 . . . 0 N0 . . . Nr 0 . . . 0

]
,

here the first jm columns of σ jD̃ and σ jÑ are zero, j = 0, . . . , L−
.
We define M := col

([
σ jD̃
σ jÑ

])
j=0,...,L−1

, and we write

col
([

u′(j)

y′(j)

])
j=0,...,L

= M col
(
g (j))

j=0,...,L+r−1 . (24)

pplying Π to both sides of (24) we obtain

col
([̃

u′(j)

ỹ′(j)

])
j=0,...,L

= M col
(̃
g (j))

j=0,...,L+r−1 . (25)

ince g̃ can take the value of any sequence in ℓ2(N,Rm), the
ubspace V defined in (23) satisfies V = im M. We now prove
hat im M = im WL (̃u, ỹ).

The set of annihilators N (B) coincides with the syzygy of
he module generated by the columns of M(s) (see Theorem 2.1
n [9]). The argument used in proving Lemma 1 shows that N (B)
oincides with the module generated by the polynomial vectors
ssociated with the elements of left ker WL (̃u, ỹ). It follows that
eft ker WL (̃u, ỹ) = (im M)⊥ = (V)⊥, from which we conclude
hat V = im WL (̃u, ỹ). This concludes the proof. □

emark 3. We illustrate the conceptual relation between The-
rems 1 and 3. Time-shift (in discrete-time) corresponds to dif-
erentiation in the Chebyshev representation domain (see (12)).
5

he restrictions[
u⊤

0 y⊤

0 . . . u⊤

L−1 y⊤

L−1

]⊤ (26)

f discrete-time trajectories to [0, L − 1] correspond to the vector[̃
u

⊤

k ỹ
⊤

k . . . ũ
(L−1)⊤
k ỹ

(L−1)⊤
k

]
, (27)

constructed from the kth Chebyshev coefficients of the jth deriva-
tive of col(u, y), j = 0, . . . , L− 1. Note that (27) is the Chebyshev
representation of the L-jet

[
u⊤

k y⊤

k . . . u(L−1)⊤
k y(L−1)⊤

k

]
, of

ol(u, y). The matrix WL (̃u, ỹ) defined in (20) plays a similar role
o that of the Hankel matrix (1). The image of WL (̃u, ỹ) equals
the set of all admissible vectors of Chebyshev coefficients (27)
corresponding to some trajectory col(u, y) ∈ B, just as the image
of HL (̂u, ŷ) equals the set of all restrictions (26) of trajectories of
B to [0, L − 1] ∩ N. □

Corollary 2. Define B by (14), and let col (u, y) ∈ B. Assume that
A, B) is controllable, and that u is persistently exciting of order L >
+n. Define WL (̃u, ỹ) by (20). Define d := rank(WL (̃u, ỹ)) = Lm+n
nd factorize WL (̃u, ỹ) as WL (̃u, ỹ) = MR, with M ∈ RL(m+p)×d,
∈ Rd×∞. Then (im M)⊥ is isomorphic to a set of generators of
(B).

roof. Follows from Lemma 1 and Theorem 3. □

xample 1. Consider data generated by the behavior with m =

= 1 described by the differential equation
( d
dt − 1

)
y = u. The

lag ℓ = 1 and the state cardinality n = 1. The trajectory[
u(t)
y(t)

]
=

[
−5e−4t

− 4e−3t
− 3e−2t

− 2e−t

e−4t
+ e−3t

+ e−2t
+ e−t

]
,

belongs to B, and u is persistently exciting of order L = 3 >
n + ℓ = 2. A machine-precision Chebyshev representation of
u and ỹ can be computed with 23 Chebyshev coefficients using
Chebfun (see [17] and Comments 2 and 4 in Section 7). Let L = 3;
the corresponding matrix WL (̃u, ỹ) ∈ R6×23 has singular values
2.7428 · 103, 9.6540, 3.3994 · 10−1, 3.0483 · 10−3, 3.5851 · 10−11,
2.3100 · 10−13. The gap between the last two singular values and
the third last one is of the order of 108; this numerically confirms
the results of Corollary 1. Using the same notation as in the proof
of Lemma 1, define η :=

[
1 0 0 1 −1 0

]
from the values

of the coefficients of the polynomial differential operator defining
the system. It can be verified that ∥ηW3 (̃u, ỹ)∥ = 4.3783 · 10−13

and ∥σηW3 (̃u, ỹ)∥ = 7.1132 · 10−11. Since B = im
[

d
dt − 1

1

]
,

sing Theorem 3 we conclude that V defined in (23) equals

m

⎡⎢⎣−1 0 0 1 0 0
1 −1 0 0 1 0
0 1 −1 0 0 1
0 0 1 0 0 0

⎤⎥⎦
⊤

= im
[
V⊤
u V⊤

y
]

,

with dimension 4, as stated in Corollary 1. In this particular case,
the shifts of the coefficient matrix of the image representation
can be directly used to compute a basis for V .

If N = 9, the corresponding matrix W3 (̃u, ỹ) ∈ R6×10 has
ingular values 2.7386 · 103, 9.1684, 7.4189 · 10−1, 3.0300 · 10−1,
1.7760 · 10−2, and 2.3464 · 10−3. In such case it is not evident
what rank W3 (̃u, ỹ) is, since the singular values are relatively
close together. It can be verified that ∥ηW3 (̃u, ỹ)∥ = 1.7562 ·

10−1, and consequently computing a basis for im W3 (̃u, ỹ) in
this case would not produce an accurate system of generators for
the subspace V defined in Theorem 3. A significant drop in the
magnitude of the singular values (of the order of 104) appears
only for values of N larger than or equal to 18; only for such larger
numbers of coefficients makes sense to consider data matrices as
representative of the system dynamics. □
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ũ
t
W
a

5
i

o
r
t
n

P

c
s

k
c

C
u
c
s

P
b
t

P
V
r
(

C

t
v

P
ũ
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. Data-driven characterization of system trajectories

In discrete-time, every linear combination of the shifts of
the restriction of) a system trajectory is (the restriction of) a
ystem trajectory. Consequently, HL (̂u, ŷ) defined in (1) provides
direct parametrization of all system trajectories. Linearly com-
ining the columns of W (̃u, ỹ) defined in (20) (or the columns
f M defined from a rank-revealing factorization of W (̃u, ỹ), see
orollary 2) only generates the kth coefficients of the L-jet of
system trajectory. To compute from W (̃u, ỹ) the Chebyshev

epresentation of an admissible system trajectory, a sequence of
(m + p)-dimensional vectors needs to be computed by linear
ombination of its columns. In the next two subsections we show
ow to do this in two important cases: the computation of an i-o
ystem trajectory; and the computation of the output trajectory
orresponding to a given input one.

.1. Data-driven characterization of all system trajectories

We first introduce some notation. In the following it will
e easier to work with a rearranged version of (20) and the
orresponding subspace (23). We define[
col
([̃
uDj

])
j=0,...,L−1

col
([̃
yDj

])
j=0,...,L−1

]
=:

[
WL (̃u)
WL (̃y)

]
. (28)

and V by

V :=

⎧⎨⎩v ∈ RL(m+p)
| ∃ col(u, y) ∈ B , k ∈ N

such that

⎡⎣col
(̃
u
(j)
k

)
j=0,...,L−1

col
(̃
y
(j)
k

)
j=0,...,L−1

⎤⎦ = v

⎫⎬⎭ . (29)

Denote d := dim(V); recall from Corollary 1 that d = Lm + n. Let
∈ RL(m+p)×d be a basis matrix for V; such a basis matrix can

e computed via a rank-revealing factorization of
[
WL (̃u)
WL (̃y)

]
, see

Corollary 2. Partition V conformably with (29):

V =:

[
Vu
Vy

]
, with Vu ∈ RLm×d , Vy ∈ RLp×d. (30)

inally, recall that we denote the ith row of a matrix M by M(i, :).

heorem 4. Define B by (14), and let col (u, y) ∈ B. Assume
hat (A, B) is controllable, and that u is persistently exciting of order
> ℓ + n. Define WL (̃u), WL (̃y) by (28); Vu and Vy by (30); and
(B) by (18). The following statements are equivalent:

1. col
(̃
u′, ỹ′

)
∈ Π (B);

2. There exists G ∈ Rd×∞ such that[
W (̃u′)
W (̃y′)

]
=

[
Vu
Vy

]
G , (31)

3. There exists G ∈ Rd×∞ such that

(VuG)(1, :) = ũ′

(VyG)(1, :) = ỹ′

(VuG)(1, :)Di
− (VuG)(i + 1, :) = 0

(VyG)(1, :)Di
− (VyG)(i + 1, :) = 0 , (32)

i = 1, . . . , L − 1.

Proof. To prove the implication (1) H⇒ (2), construct from the
rthogonal basis representation of col(u′, y′) the matrices W (̃u′)
6

and W (̃y′). From Theorem 3 it follows that im
[
WL (̃u′)
WL (̃y′)

]
⊆

im
[
WL (̃u)
WL (̃y)

]
= im V . Consequently, there exists G ∈ Rd×∞ such

that
[
WL (̃u′)
WL (̃y′)

]
= VG.

We prove the implication (2) H⇒ (1). Let η ∈ R1×(m+p)
[s]

be any annihilator of B of degree less than or equal to L − 1;
define its coefficient vector η̃ by (19). Since V is a basis matrix

for V defined by (29), it follows from (31) that η̃

[
WL (̃u′)
WL (̃y′)

]
= 0.

Now 0 = η̃

[
WL (̃u′)
WL (̃y′)

]
=

∑L−1
j=0 η̃u

j

(̃
u′Dj

)
+
∑L−1

j=0 η̃
y
j

(̃
y′Dj

)
, is

equivalent with 0 =
∑L−1

j=0 η̃u
j

(
dj

dt j
u′

)
+
∑L−1

j=0 η̃
y
j

(
dj

dt j
y′

)
. It follows

hat col(u′, y′) is annihilated by every annihilator of B. It follows
hat col(u′, y′) ∈ B, and consequently that col(̃u′, ỹ′) ∈ Π (B).

To prove (2) ⇐⇒ (3), observe that the ith row of WL (̃u′) equals
′Di, i = 0, . . . , L − 1. The equivalence of WL (̃u′) = VuG and
he first and third equation in (32) follows. The equivalence of
L (̃y′) = VyG with the second and last equation in (32) follows
nalogously. □

.2. Data-driven characterization of system trajectories given the
nput

In data-driven simulation, the problem arises of computing
utput trajectories with specified input trajectories. We provide a
efinement of the result of Theorem 4 and characterize all output
rajectories corresponding to a given input. To this purpose we
eed to state three preliminary results.

roposition 1. Define the subspace V by (29). Let V be a basis
matrix for it, and partition it as in (30). The matrix Vu has full row
rank Lm.

Proof. Since u is an input, col(u(i))i=0,...,L−1 can be any trajectory
in L2(I,RLm), and its Chebyshev representation col(̃u(i))i=0,...,L−1
an take any value in the space of m-dimensional square-
ummable sequences ℓ2(I,RLm).
Consequently, for every vu ∈ RLm there exists u′

∈ L2(I,R) and
∈ N such that the Chebyshev representation col(̃u′(i))i=0,...,L−1 of
ol(u′(i))i=0,...,L−1, the L-jet of u′, satisfies vu = col

(̃
u′(i)
k

)
i=0,...,L−1

.

hoose one output trajectory y′
∈ L2(I,Rp) corresponding to

′, and consider the vector vy := col(̃y(i)k )i=0,...,L−1. Then v :=

ol(vu, vy) ∈ V , and vu ∈ im(Vu). Since vu is arbitrary, Vu is
urjective. □

roposition 2. Let V be a basis matrix for the subspace V defined
y (29); partition it as in (30). Let K be a basis matrix for ker Vu;
hen rank VyK = n, the state cardinality of B.

roof. From Proposition 1 and Corollary 1 it follows that dim ker
u = d − Lm = Lm + n − Lm = n. The matrix VyK has Lp
ows and n columns. Assume that there exists v ∈ Rn such that
VyK )v = 0; then, since im K = ker Vu, it follows that Vu(Kv)=0.

onsequently,
[
Vu
Vy

]
(Kv) = 0. The matrix V has full column rank;

he equality Kv = 0 follows. K is a basis matrix, and consequently
= 0. Conclude that VyK has full column rank. □

roposition 3. Let u ∈ L2(I,Rm), with Chebyshev representation
∈ ℓ2(I,Rm); define WL (̃u) by (28). Let V be an image matrix for

29), partitioned as in (30). Let K ∈ Rd×n be a basis matrix for
er V . The following statements are equivalent:
u
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1. G ∈ RLm×∞ solves the equation VuG = WL (̃u);
2. There exists F ∈ Rn×∞ such that

G = V⊤

u

(
VuV⊤

u

)−1
WL (̃u) + KF . (33)

Proof. Straightforward from the fact that Vu is surjective. □

We characterize all output trajectories corresponding to a
given input.

Theorem 5. Define B by (14), and let col (u, y) ∈ B. Assume
that (A, B) is controllable, and that u is persistently exciting of order
L > ℓ + n. Define WL (̃u), WL (̃y) by (28); Vu and Vy by (30); Π (B)
by (18); and denote by K ∈ Rd×n a basis matrix for ker Vu. Let
u′

∈ L2(I,Rm) be given. The following statements are equivalent:

1. col
(̃
u′, ỹ′

)
∈ Π (B);

2. There exists F ∈ Rn×∞ such that

WL (̃y′) = Vy

(
V⊤

u

(
VuV⊤

u

)−1
WL (̃u′) + KF

)
.

Proof. To prove (1) H⇒ (2), construct from the representation
of col(u′, y′) the matrices WL (̃u′) and WL (̃y′). Use Theorem 3 to

conclude that
[
WL (̃u′)
WL (̃y′)

]
= VX for some X ∈ Rd×∞. Use formula

(33) in Proposition 3 to conclude that X = V⊤
u

(
VuV⊤

u

)−1
WL (̃u) +

KF for some F . Statement (2) follows.
To prove (2) H⇒ (1), observe that if F is such that

WL (̃y′) = Vy

(
V⊤

u

(
VuV⊤

u

)−1
W (̃u) + KF

)
,

then also[
WL (̃u′)
WL (̃y′)

]
=

[
Vu
Vy

](
V⊤

u

(
VuV⊤

u

)−1
W (̃u) + KF

)
. (34)

Now use statement (2) of Theorem 4. □

6. Data-driven continuous-time simulation

Define B by (14), and let col (u, y) ∈ B. Assume that (A, B) is
controllable, and that u is persistently exciting of order L > ℓ+n.
Define WL (̃u), WL (̃y) by (28); Vu and Vy by (30); and Π (B) by (18).

Problem: Given q ∈ N; di ∈ R(m+p), i = 0, . . . , q − 1; t0 ∈ I; and
u′

∈ L2(I,R), compute if it exists, a trajectory y′
∈ L2(I,R) such

that col(u′, y′) ∈ B and

col
(
u′(i)(t0), y′(i)(t0)

)
= di , i = 0, . . . , q − 1. (35)

In the following we call this the simulation problem.

Proposition 4. Denote by Vy((i − 1)p + 1 : ip, :) the ith p-
dimensional block-row of Vy, i = 1, . . . , L + 1. Let K be a basis
matrix for ker Vu. The simulation problem is solvable if and only if
there exists F ∈ Rn×∞ such that

Vy((i − 1)p + ip, :)
(
V⊤

u

(
VuV⊤

u

)−1
WL (̃u′) + KF

)
D

= Vy(ip + 1 : (i + 1)p, :)
(
V⊤

u

(
VuV⊤

u

)−1
WL (̃u′) + KF

)
, (36)

i = 1, . . . , L − 1; and[
ũ′

Vy(1, :)
(
V⊤
u

(
VuV⊤

u

)−1
WL (̃u′) + KF

)]DiC(t0) = di , (37)

i = 0, . . . , q − 1. If the problem is solvable, then the solution is the
trajectory col(u′, y′) whose orthogonal basis coefficients are

col
(̃
u′, V (1 : p, :)

(
V⊤

(
V V⊤

)−1
W (̃u) + KF

))
.
y u u u L y

7

Fig. 1. Simulated and exact trajectories for Example 2.

Proof. The conditions (36) are equivalent to each block-row
of VyF being the Chebyshev representation of the derivative of
the vector trajectory represented by the previous block-row. The
conditions (37) are equivalent with (35). □

Example 2. We consider the same data as in Example 1. We
choose the input trajectory u′(t) = e2t , and the conditions
u′(0)
y′(0)

]
=

[
1
2

]
. Solving the differential equation for the given

input and initial conditions yields the system trajectory whose

value at t is
[
u′(t)
y′(t)

]
=

[
e2t

et + e2t

]
. We now compute an approxi-

mate solution directly from the data.

Since Vu =

[
−1 1 0 0
0 −1 1 0
0 0 −1 1

]
and Vy =

[1 0 0 0
0 1 0 0
0 0 1 0

]
,

hoosing K =
[
1 1 1 1

]⊤ results in VyK =
[
1 1 1

]⊤. As
stated in Proposition 2, rank VyK equals the state-space dimen-
sion n = 1.

To approximate the input function u′ to machine precision, we
use 23 Chebyshev coefficients. We then solve with Mathematica
the Eqs. (36); the solutions are parametrized by α ∈ R as

F (α) = α
[

1 0.8928 0.2144 0.0350 0.0043 . . .
]

+
[

0 4.2979 3.3340 1.2962 0.3435 . . .
]
.

The Eq. (37) imposing the satisfaction of the initial condition
for such family of parametrized sequences yields the solution
α = 9.815 =: α. We conclude from Proposition 4 that a solution
to this data-driven simulation problem exists. The polynomial
approximating such solution corresponds to the entries of

Vy,1,:

(
V⊤

u

(
VuV⊤

u

)−1
W (̃u′) + KF (α)

)
,

ee statement 2 of Theorem 5.
We computed with Mathematica the L2-norm of the error

n I = [−1, 1] between such polynomial and the exact solution
′(t) = et + e2t ; it equals 2.32831 · 10−10. A plot of the exact
olution y′ and of the simulated one y23 is given in Fig. 1; they
re indistinguishable from each other.
To illustrate the effect of truncation on the accuracy of the sim-

lated trajectories, we approximate u′ using only 3 coefficients.
olving (36) and (37) with Mathematica yields
′(α) = α

[
0 0.8928 0.2144 0.0350 0.004 . . .

][
0 2.0682 1.0053 0.2204 0.0272 . . .

]
.

mposing that the initial conditions constraint (37) is satisfied
ields α = 8.3853; the corresponding solution has an error with
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2-norm 0.0533. The graph of the function y3 corresponding to
uch approximation of the input is plotted in Fig. 1. □

emark 4 (Data-Driven Free Response Simulation). A special case
f data-driven simulation occurs when the input is zero, i.e., the
ata-driven simulation of a free response given initial conditions,
s formalized in the following problem.

roblem: Given q ∈ N; di ∈ Rp, i = 0, . . . , q − 1; and t0 ∈ I
ompute, if it exists, a trajectory y′

: I → Rp such that col(0, y′) ∈ B

nd
′(i)(t0) = di , i = 0, . . . , q − 1. (38)

The following result is proved analogously to Proposition 4.

roposition 5. Denote by Vy((i − 1)p + 1 : ip, :) the ith p-
imensional block-row of Vy, i = 1, . . . , L. Let K be a basis matrix
or ker Vu. The free response simulation problem is solvable if and
nly if there exists F ∈ Rn×∞ such that

y((i − 1)p + 1 : ip, :)KFD = Vy(ip + 1 : (i + 1)p, :)KF , (39)

= 1, . . . , L − 1, and

yKFDiC(t0) = di , i = 0, . . . , q − 1. (40)

f F exists, then ỹ′
= Vy(1 : p, :)KF is the Chebyshev representation

f y′. □

. Comments

omment 1 (Other Approaches to Continuous-Time Data-Driven
ontrol). The result closest to ours in problem formulation is
n [18]. A fundamental difference is that in [18] at least one
tate trajectory is measured (see section IV.B therein); the state
s used also for defining the initial conditions of the simulation
see formula (15) therein). In contrast, we use only i-o data, and
ur approach is applicable also when no insight is available into
he internal structure of the system. A second difference is in
he computations used for simulation: in [18] a system of time-
arying differential equations is numerically solved (see formulas
14), (15), (17) therein). In contrast, in (36)–(37) we solve a
ystem of linear equations. The state is assumed to be directly
easured also in e.g., [19–22]. Often it is assumed that also the

tate derivative is directly measured (see [19–21,23]), even if this
s hardly ever possible except for some mechanical systems. In
ther cases, the state derivative is numerically estimated from
he values of x at the sampling instants (see [22]), based on as-
umptions on the intersample behavior (e.g., piecewise constant
nputs). In contrast, we work on measurements of the external
ariables only; the derivatives of the i-o trajectories necessary
or simulation do not need to be directly measured; and no
ssumptions on the intersample behavior are made. □

omment 2 (Computation of Chebyshev Coefficients). Given N ∈

, the Chebyshev grid is the set {ti}i=0,...,N defined by ti :=

cos(iπ/N), i = 0, . . . ,N . Given f ∈ L2(I,R), an approximation
f the first N Chebyshev coefficients f̃k =

∫
I f (t)Ck(t)w(t)dt can

e computed directly from samples f (ti), i = 0, . . . ,N by interpo-
ation rather than integration, as follows. There exists a unique
olynomial interpolant p =

∑N
i=0 c̃iCi such that p(ti) = f (ti),

= 0, . . . ,N . For a fixed N , the approximation of f given by
runcation of its Chebyshev series

∑N
i=0 f̃iCi and that given by its

hebyshev interpolant p =
∑N c̃ C are close, and c̃ → f̃ as
i=0 i i i i

8

→ ∞, see Th. 4.2 of [10]. How close the approximation is
epends on the smoothness of the function f ; for differentiable
nd analytic functions, the approximations in the ∞-norm are
ithin a factor of 2 of each other, see respectively Th. 7.2 and Th.
.2 of [10]. If the sampling instants {ti}i=0,...,N are not arranged
n a Chebyshev grid (e.g., when they are equi-spaced), a least-
quares procedure can be used to compute approximations of the
hebyshev interpolant [24]. □

omment 3 (Projection Error). The Chebyshev series of a differ-
ntiable function converges ‘‘algebraically’’, see Theorem 7.2 p.
3 of [10]; for analytic functions, ‘‘geometrically’’, see Theorem
.2 p. 57 of [10]; for C∞-functions, the approximation error goes
o zero faster than O(N−k) for every finite k (‘‘exponential conver-
ence’’), see p. 47 of [4]. Similar results can be established for less
egular functions defined in Sobolev spaces (see Appendix A.11
f [4] and section 5.5.2 of [4]). Consequently, for a fixed value
f N , the accuracy achievable using a truncated Chebyshev series
omputed from N samples of a function f ∈ L2(I,R) depends on
he smoothness of f . Upper bounds on the approximation error
re functions of the maximum value of the function in a bounded
ubset of C for analytic functions (see (8.1) of [10]); and of the 1-
orm of df

dt for once-differentiable functions (see (7.4) in [10]).
Error analysis for functions differentiable more than once can
be established using Sobolev spaces techniques, see section 5.5.2
of [4]. □

Comment 4 (On the Choice of Truncation Index). We assumed that
the full Chebyshev representations of u, y are known (WL in (20)
as an infinite number of columns). Moreover, we computed the
ull Chebyshev representation of the simulated trajectories (G in
heorem 4 and Proposition 3, and F in Propositions 3 and 4, have
n infinite number of columns). In practice, however, only a finite
umber of coefficients of the simulated signals can be computed.
In principle, the approximation bounds discussed in Com-

ent 3 can be used to estimate the number of Chebyshev co-
fficients necessary to achieve a given accuracy. In practice, the
ollowing procedure is often used (see pp. 18–20 in [10,13]; and
hapter 3 of [25]): the first N Chebyshev coefficients of f are com-
uted. If several consecutive coefficients up to the Nth fall below
achine precision, the accuracy is deemed to be sufficient. If not,
is doubled and the process is repeated. Once a sufficiently large
is found, downsampling can be used to reduce the number of

oefficients. Other truncation criteria are illustrated in sections
.1–3.7 of [25].
Such considerations play an important role in computing a fi-

ite submatrix ofWL whose image equals im WL (see Theorem 3).
o that purpose, one needs to compute also reasonable approxi-
ations of the Chebyshev representations of the derivatives of u
nd y up to the order L (see (20)). Consequently, the number N
f coefficients in the Chebyshev representation of u and y must
e such that at least the last N − L coefficients ũk and ỹk are
elow machine precision. Then also the last coefficients of the
hebyshev representation of u(i) and y(i), i = 0, . . . , L − 1 are
elow machine precision. □

omment 5 (Approximation Error for Derivatives). Unless f is a
olynomial of degree smaller than or equal to N , the computation
11) of the Chebyshev representation of the derivative incurs an
pproximation error. Indeed, differentiation and projection do not
ommute (see section 2.4.2 of [4]), and the error d

dt (πN (f )) −

N
( d
dt f
)
is nonzero. An upper bound on its norm when f and f (1)

are absolutely continuous is given in the following result, whose
proof (omitted due to space limitations) uses Theorem 7.2 p. 53
of [10].
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roposition 6. Let f ∈ L2(I,R) and let N ∈ N, N ≥ 1.
ssume that f and f (1) are absolutely continuous, and that

 d2f
dt2


1

=∫ 1
−1

⏐⏐⏐ d2fdt2
(τ )
⏐⏐⏐ dτ is finite. Then the 2-norm of the error is less than or

qual to
2
 d2 f
dt2


1√

π (N−1) .

This result can be generalized to the case when f is differen-
iable more than once, using Sobolev spaces of L2-functions with
certain number of derivatives in the sense of distributions, see
emma 2.3 p. 75 in [26]. Proposition 6 can also be used to analyze
he situation when the number N of Chebyshev coefficients of the
ata is fixed, and resampling is not an option. □

omment 6 (Chebyshev Representations from Noisy Data). In prac-
tice the problem arises of computing a Chebyshev representation
for a function f from samples affected by noise, i.e., from f̂ (ti) =

(ti) + ϵi rather than f (ti), i = 0, . . . ,N . Recently [24] two least-
quares algorithms have been devised to compute a polynomial
pproximant from noisy data. Error bounds for the ∞-norm
rror of the approximant, proportional to the noise variance and
nversely proportional to the square of the number of samples,
re available. □

omment 7 (Accuracy of Simulation). The number of coefficients
ecessary to accurately represent a particular input function
aries according to how ‘‘complex’’ it is. Moreover, a good Cheby-
hev approximation of the corresponding output usually requires
t least as many non-negligible coefficients as the input function;
or example, if the input is a linear combination of exponentials,
enerically also all natural frequencies of the system will be
resent in the output. Consequently, in simulations N must be
djusted dynamically. Its initial value depends on the complexity
f the input function. Then Eqs. (36)–(37) are solved, and the last
ew Chebyshev coefficients of the corresponding solution y′ are
hecked. If they fall below machine precision, then an accurate
epresentation of the output has been obtained. Otherwise, N is
oubled (see Comment 4) and a solution of (36)–(37) for the new
alue of N is computed. The process continues until an acceptable
pproximation of y′ has been computed. This process is analogous
o the ‘‘lazy evaluation’’ used in spectral methods for the solution
f differential equations, see section 3 of [13]. □

. Conclusions

The results illustrated in this paper complement the definition
nd the characterization of persistency of excitation provided
n [5]. We used Chebyshev representations and their properties
o represent all possible smooth system trajectories in terms of
sufficiently informative one (Theorem 3). We have also de-

ised procedures to compute the Chebyshev representation of any
mooth system trajectory from that of a sufficiently informative
ne (Theorems 4 and 5). We used our approach to solve two
roblems in data-driven simulation, namely the computation of
ree and forced responses given the initial conditions.
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