Inexact higher-order proximal algorithms for tensor factorization
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Abstract

= Higher-order Methods (HoM) for factorization models
= Two new efficient & implementable proximal HoMs

Setup: minimizing p-times differentiable convex function

argmin f(x). (1)
rclk

We solve

= £ ¢ R" a vector space (with inner product & norm)
= f:E — R closed, convex, p-times differentiable with bounded derivative

sup ||Dpf || = M, < +oo, (2)

= DPf(z)|hi, ..., hy) : pth-order directional derivative of f(x) along direction h = |hy, ..., hy)]
* | D7 f (@)l = max {| D" f(x)[R)"| - |h]] < 1}

Higher-order proximal point methods

= pth-order prox operator IOFOX?’/\(_) = argrrllén {pr = f(:v)Jr)\de(x—a‘:)} (3)
T
= AeRT, peN, fL is the pth-order model, dy41(a) = Z%HCLHPH

" (3) generalizes the prox operator prox; ,(7) := argmin {f(a:) 2>\|]:1: — a:||2}
xel

= [nexact proximal method

= Often (3) can’t be computed efficiently = compute an approximate sol.
= HoM achieves fast convergence even if (3) is not solved exactly
= (Nesterov21) defines a set of acceptable sol. to (3) as

A, ((@,8) = {x € E: ||V \(@)]| < BIV @)}, @)

where 8 € [0, 1) is a tolerance parameter.

= If we have 1st-order optimality ||V f(z)|| = 0 or we set 8 = 0, we have the
ideal cases of A~ f(_ B) that (3) is solved exactly.

AIPPA: Accelerated Inexact Pth-order Proximal Algorithm

3rd-order algo for CPD

= Rank-R nonnegative CPD of a tensor T

argmin D(T‘I X1 Ub) xy . X N U<N>) —

U >0
1<n<N

= We solve (5) by BCD, where each subproblem is solved using AIPPA.
= Why BCD: all-at-once approach is too expensive for HoM.

F({U<">}), (5)

= We consider two functions D, denoted as f(X):

1
2-norm-power-2 : min f(X) = §||V — WXH% - 'yZlog(Xij) (6)

. i
. 1 4
4-norm-power-4 : min f(X) = QHV —WX]||;— sz: log(X;;) (/)

= X Is the matrix variable of mode-n factor

= W is the Khatri-Rao product of other factors

= V is input tensor 7 in mode-n unfolding

= negative log is for nonnegativity constraint and ~ is a parameter

1 .
For example, (6) can be cast as f,?gﬁﬂ T) = §||v — Wa:||% — VZlog(xi), which

belongs to problem class (1).

Step 3 In AIPPA

Algorithm 1 AIPPA.

Input: xo € E, 5€10,1), A >0, ®o(x) :=dp11(x — x0) A1-B) 1 |
Output: An approximate solution to Problem (1) Ap = Y (2p +2)p+
1: for £k=0,1,... do . - 4
2: v = argmin ®; () and yy, = Aﬁilxk — Z’Zj‘rll Vi e+l Fhtl k
ek —
3. Compute Ty, € A (yx,3) and update ® as bo(z) = dpy1(z — 20)

Dpr1(z) = () + a1 (f(Th) + (Vf(Tk), x — Tk)) We pick 8 = % for CPD.
4:  Choose xj11 such that f(xri1) < f(T%).
5: end for

= Convergence (Nesterov21): {z;.} from AIPPA satisfies f(x}) — f* < O(—r)

= (4) can be used as stopping criterion for procedure used to get T}. given y;.

= BLUM Bi-level framework: has two levels:
= up-lv corresponds to a chosen pth-order proximal algo

= low-lv where an algo running on low-order derivative is used to
approximately solve Step 3 in AIPPA.

- Step 2 in AIPPA: Uk = afgﬂ]léﬂ Dp_1(x) + ay (f(Tk) +(Vf(T}), z - Tk>>
Tre

let g9 =0, g = 911 + a1V f(T}.), the problem is simplified to

Vi = argmin gg:v +dpy1(r — ),
relk

which has optimal sol vy = xj, — g/ (lgl|F=1/P)

= Determine M (upper bound of directional derivative in (2)) For the
4-norm-power-4 (7), computing M for the 4th derivative boils down to
eigenvalue problem for 4th-order tensor Z x1 W xo Wi xa W x, W

= Solving high-order prox Computing T}. € AH7f<y/€, %) IS equivalent to

prox g, (y) = argmin { f(2) = f(z) + 3Mads(z —yp)}, (8
x€el

where f is the cost function of (6) or (7).

We use Bregman gradient descent to compute Ty update x; ;1 via minimizing
the linearized f (the f in (8))

Algorithm 2 Bregman gradient descent (BGD)

Input: Given yg, 5, My, v > 0, set xg = Yz
Output: An approximate solution to Problem (8)

1: while ||V fsnr, y, (20)]| > BV f(2:)]| do

2: Tipq = argmin (V f(z;), 2 — ;) + LBy, (i, )
ek
3: end while

Step 2 of BGD is a quartic minimization problem

o\ T _ 201 3 M
s — s 20 Q=) 2 s
€T

where Q = V2 f(y;,) is Hessian of f, and the linear term
= V() = 5Q(i — wi) — 2w — yel i — )

= Solving quartic problem f convex =— Hessian () has eigenvalue
decomposition Q = Udiag(o)UL. Let ¢ = U! g1, then optimal T3

4
— e =yl

C
*x
Lit1 = Yk — gUO'Z Y

where \* is the unique nonnegative sol of scalar problem

2
My 2 (N +1/2sp)
)\* — T n L n
R (Z (00 + A)2> 2 (on+ A2
n n

A
can be solved numerically.

IAHOM: Inexact Accelerated HoM (= AIPPA for nonneg. CPD)

Algorithm 3 IAHOM for nonnegative CPD.

Input: a nonnegative /NV-way tensor, M4 > 0, v > 0, rank R
Output: Nonnegative factors U1 ... U W)

cre ye g 1 N
Initialization: {Ué ), ...,U(g )}
1: for k=0,... do
2: forn=1,.... N do
3: Update U (n) as an inexact solution of:
min F(U(l) U(n Doy, U(n+1) ...
U(n) >0
by Algorithms 1 and 2.
4: end for
5: end for
Numerical results
" T HALS |
* IAHOM-02 = AIPPA for (6) -~ TAHOM-02|.
— — TAHOM-O4
= |JAHOM-04 = AIPPA for (/) 102 = SDF-NLS
= compare with 310
- HALS 5
(hierarchical alternating least i
squares) 05
- SDF-NLS |
(a L-BFGS method) L
= E(k) relative fitting error e w m m W e w
(1) Iteration number k
T —Zx,U,"7" X9+ Xn U ||F 00 | | | | | |
HTHF ——HALS ]
A - IAHOM-02||
= Test on order-3 tensor R\ __ TAHOM-O4

—= SDF-NLS

= Data generated U|0, 1] for all
factor matrices

= Test cases [11, I, I3, R]
= [50, 50, 50, 5]
= 1100, 100, 100, 10]

* JAHOM-02 & O4 are faster in N
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