
Inexact higher-order proximal algorithms for tensor factorization
Valentin Leplat1 Anh-Huy Phan1 Andersen Ang2

1Center of Artificial Inteligence Technology, Skoltech, Moscow, Russia 2School of Electronics and Computer Science, University of Southampton, UK

Abstract

Higher-order Methods (HoM) for factorization models

Two new efficient & implementable proximal HoMs

Setup: minimizing p-times differentiable convex function

We solve argmin
x∈E

f (x). (1)

E ⊂ Rn a vector space (with inner product & norm)

f : E → R closed, convex, p-times differentiable with bounded derivative

sup
x∈E

∥∥Dpf (x)
∥∥ =: Mp < +∞, (2)

Dpf (x)[h1, ..., hp] : pth-order directional derivative of f (x) along direction h = [h1, ..., hp]
‖Dpf (x)‖ = max

h

{∣∣Dpf (x)[h]p
∣∣ : ‖h‖ ≤ 1

}
Higher-order proximal point methods

pth-order prox operator prox
p
f,λ(x̄) := argmin

x∈E

{
f

p
x̄,λ

:= f (x)+λdp+1(x−x̄)
}

(3)

λ ∈ R+, p ∈ N, f
p
x̄,λ is the pth-order model, dp+1(a) = 1

p+1‖a‖p+1

(3) generalizes the prox operator proxf,λ(x̄) := argmin
x∈E

{
f (x) + 1

2λ
‖x − x̄‖2

}
Inexact proximal method

Often (3) can’t be computed efficiently =⇒ compute an approximate sol.

HoM achieves fast convergence even if (3) is not solved exactly

(Nesterov21) defines a set of acceptable sol. to (3) as

Ap
λ,f (x̄, β) =

{
x ∈ E : ‖∇f

p
x̄,λ(x)‖ ≤ β‖∇f (x)‖

}
, (4)

where β ∈ [0, 1) is a tolerance parameter.
If we have 1st-order optimality ‖∇f (x)‖ = 0 or we set β = 0, we have the
ideal cases of Ap

λ,f (x̄, β) that (3) is solved exactly.

AIPPA: Accelerated Inexact Pth-order Proximal Algorithm

where � 2 R+ and p 2 N, the function f
p

x̄,�
is the pth-order

model and dp+1(a) = 1
p+1kak

p+1. Note that (2) generalizes
the proximal operator

prox
f,�

(x̄) := argmin
x2E

n
f(x) +

1

2�
kx� x̄k2

o
,

and (2) reduces to the proximal-point algorithms [13], [14] if
p = 1. The method achieves faster convergence even when it
does not solve (2) exactly, as shown in [11].

B. Inexact proximal method - BLUM

Often (2) cannot be computed efficiently, hence an approx-
imate solution is computed using an optimization procedure.
The work [11] defines a set of acceptable solutions to (2) as

Ap

�,f
(x̄,�) =

n
x 2 E : krf

p

x̄,�
(x)k  �krf(x)k

o
, (3)

where � 2 [0, 1) is a tolerance parameter. In case we have
1st-order optimality krf(x)k = 0 or we set � = 0, we have
the ideal cases of Ap

�,f
(x̄,�) that (2) is solved exactly.

Let Ak := 2(1��)
�

(k

2p+2)
p+1, ak+1 := Ak+1�Ak and define

�0(x) := dp+1(x � x0), Algorithm 1 shows the accelerated
inexact pth-order proximal algorithm, abbreviated as AIPPA.

Algorithm 1 AIPPA.
Input: x0 2 E, � 2 [0, 1), � > 0, �0(x) := dp+1(x� x0)
Output: An approximate solution to Problem (1)

1: for k = 0, 1, ... do
2: vk := argmin

x2E
�k(x) and yk := Ak

Ak+1
xk + ak+1

Ak+1
vk

3: Compute Tk 2 Ap

�,f
(yk,�) and update � as

�k+1(x) = �k(x) + ak+1

�
f(Tk) + hrf(Tk), x� Tki

�

4: Choose xk+1 such that f(xk+1)  f(Tk).
5: end for

Convergence rate: the sequence {xk}k generated by AIPPA
satisfies f(xk)� f

?  O(1
kp+1) [11, Theorem 2].

Stopping criterion: Condition (3) can be checked in practice
and integrated directly as a stopping criterion for any proce-
dure used to compute Tk given yk.
Bi-level framework: BLUM has two levels:

• an upper-level corresponds to a chosen pth-order proxi-
mal algorithm

• a lower-level where an algorithm running on lower-order
derivative (for a instance the (p� 1) derivatives) is used
to approximately solve Step 3 in AIPPA.

We are now ready to discuss the set up of the BLUM
framework in the newly proposed algorithm for solving CPD.

III. PROPOSED ALGORITHM FOR CPD

Now we present a new inexact 3rd-order proximal algo-
rithms for computing a nonnegative CPD of an input nonnega-
tive n-way tensor, i.e., approximating a tensor with a sum of R
rank-one nonnegative tensors. Let a tensor T has dimensions
I1 ⇥ I2 ⇥ · · · ⇥ IN , let matrices U

(n) have size In ⇥ R for

1  n  N . Computing a rank-R nonnegative CPD of T is
achieved by solving:

argmin
U

(n)�0
1nN

D

⇣
T
��I⇥1U

(1)⇥2· · ·⇥NU
(N)

⌘
:= F

⇣�
U

(n)
 ⌘

, (4)

where D is a measure of discrepancy between two tensors (we
consider two cases later), I is the identity tensor of dimensions
all equal to R, the symbol ⇥n is the n-mode product [2]. Note
that the proposed method can be used to compute a low-rank
matrix approximation of an matrix, which is a special case of
nonnegative CPD where input T is a 2-way tensor and the
feasible set is E.

We solve (4) by Block-Coordinate Descent (BCD) that
consists of optimizing alternatively over one factor of the
factorization while the others are kept fixed at their most
recent value, i.e., at each iteration we successively solve n-
subproblems for CPD; say one in U

(n) and the others in
U

(1)
, ..., U

(n�1)
, U

(n+1)
, ..., U

(N) alternatively (after rewrit-
ting tensor decomposition model using tensor matricization
along the different modes). Each subproblem is solved using
a variant of AIPPA. In the following we present the update for
one factor U (n) to tackle (4). The updates of the other factors
are performed in a similar fashion under permutation.

Consider the update of U
(1), after matricization along the

1st-mode we have:

T = I ⇥1 U
(1) ⇥2 ...⇥N U

(N)

, T(1) = U
(1)

⇣
U

(2) � · · ·� U
(N)

⌘T

,

(5)

where T(i) is the unfolding of tensor T along mode i, � is
the Khatri-Rao product. Note that (5) is an NMF of V = T T

(1)

with factors X = (U (1))T and W = U
(2) � · · ·� U

(N).
We now consider two functions D, denoted as f(X):

min
X

f(X) :=
1

2
kV �WXk2

F
� �

X

i,j

log(Xij), (6)

min
X

f(X) :=
1

24
kV �WXk44 � �

X

i,j

log(Xij), (7)

where � � 0 is a penalty weight and log(x) is the log-barrier
function that promotes nonnegativity of x. Note that both f in
(6) and (7) are separable w.r.t. each column of X , i.e., denoting
V:,j = v and X:,j = x (the j-th column of V and X resp.),
solving (6) and (7) boils down to solving m minimization
problems in parallel (m = number of columns of X), where
each minimization being performed over one particular column
of X . For instance (6) becomes:

min
x2E

f(x) :=
1

2
kv �Wxk2

F
� �

X

i

log(xi).

To solve each of these subproblems in the CPD, we use a
variant of AIPPA with p = 3 and � := 1

p
(in the “upper-level”

part). For such choices, we assume that the 4th derivative of f
is bounded on Q ⇢ E with constant M4 > 0 and let � = 3M4

[11], here Q is the nonnegative orthant of appropriate size.

Ak := 2(1−β)
λ (k

2p+2)p+1

ak+1 := Ak+1 − Ak

Φ0(x) := dp+1(x − x0)

We pick β = 1
3 for CPD.

Convergence (Nesterov21): {xk} from AIPPA satisfies f (xk) − f? ≤ O(1
kp+1)

(4) can be used as stopping criterion for procedure used to get Tk given yk

BLUM Bi-level framework: has two levels:

up-lv corresponds to a chosen pth-order proximal algo
low-lv where an algo running on low-order derivative is used to

approximately solve Step 3 in AIPPA.

Step 2 in AIPPA: vk = argmin
x∈E

Φk−1(x) + ak

(
f (Tk) +

〈
∇f (Tk), x − Tk

〉)
Let g0 = 0, gk = gk−1 + ak∇f (Tk), the problem is simplified to

vk = argmin
x∈E

gT
k x + dp+1(x − xk),

which has optimal sol v?
k = xk − gk/(‖gk‖1−1/p)

3rd-order algo for CPD

Rank-R nonnegative CPD of a tensor T

argmin
U (n)≥0
1≤n≤N

D
(

T
∣∣I ×1 U (1) ×2 · · · ×N U (N)

)
:= F

({
U (n)}), (5)

We solve (5) by BCD, where each subproblem is solved using AIPPA.

Why BCD: all-at-once approach is too expensive for HoM.

We consider two functions D, denoted as f (X):

2-norm-power-2 : min
X

f (X) := 1
2
‖V − WX‖2

F − γ
∑
i,j

log(Xij) (6)

4-norm-power-4 : min
X

f (X) := 1
24

‖V − WX‖4
4 − γ

∑
i,j

log(Xij) (7)

X is the matrix variable of mode-n factor

W is the Khatri-Rao product of other factors

V is input tensor T in mode-n unfolding

negative log is for nonnegativity constraint and γ is a parameter

For example, (6) can be cast as min
x∈E

f (x) := 1
2
‖v − Wx‖2

F − γ
∑

i

log(xi), which

belongs to problem class (1).

Step 3 in AIPPA

Determine M (upper bound of directional derivative in (2)) For the

4-norm-power-4 (7), computing M for the 4th derivative boils down to

eigenvalue problem for 4th-order tensor I ×1 W T ×2 W T ×3 W T ×4 W T .

Solving high-order prox Computing Tk ∈ AH,f (yk, 1
3) is equivalent to

proxf,3M4(yk) := argmin
x∈E

{
f̄ (x) := f (x) + 3M4d4(x − yk)

}
, (8)

where f is the cost function of (6) or (7).

We use Bregman gradient descent to compute Tk: update xi+1 via minimizing
the linearized f (the f̄ in (8))

If we drop the constraints (set � = 0), one need to only
consider (7) for computing X since M4 = 0 for (6) (and
then loosing high convergence rates offered by the higher-
order proximal algorithm).

A. The step 2 in AIPPA
We now present solution to the problem at step 2 in AIPPA,

i.e., solving the minimization vk = argmin
x2E

�k(x), where

�k(x) = �k�1(x) + ak

⇣
f(Tk) +

⌦
rf(Tk), x� Tk

↵⌘
.

Define g0 = 0 and gk = gk�1 + akrf(Tk), the above
minimization problem is simplified to

vk = argmin
x2E

g
T

k
x+ dp+1(x� xk),

which has an optimal solution

v
?

k
= xk �

gk

kgkk1�
1
p

.

Note that yk can be written as

yk = xk �

1�

⇣
k

k + 1

⌘4
!

gk

kgkk1�
1
p

.

B. The step 3 in AIPPA
Two issues arise when solving the higher-order proximal at

step 3 in AIPPA.
a) Determine M (the upper bound of directional deriva-

tive): For (7), one can show that computing the uniform
upper-bound for the 4th derivative boils down to solving an
eigenvalue problem for the 4th order derivative tensor

I ⇥1 W
T ⇥2 W

T ⇥3 W
T ⇥4 W

T
.

Moreover, if � > 0, one can easily see that D
4 log(xi)

is not bounded above for xi ! 0. In this case, we tune
numerically M4 along iteration of our algorithm to ensure
numerical stability and the objective function along iterations
is monotonically decreasing.

b) Solving the high-order prox: Recall Section II, a
crucial step for AIPPA is the computation of the “lower-level
part in BLUM: solving Tk 2 AH,f (yk,

1
3), where we dropped

the symbol p to ease the notation. In our case, we want to
compute an approximate solution for the following 3rd-order
proximal operator:

prox
f,3M4

(yk) := argmin
x2E

n
f̄(x) := f(x) + 3M4d4(x� yk)

o
,

(8)
where f is the objective function of (6) or (7).

For an efficient computation of Tk, we use Bregman gra-
dient descent (BGD, Algorithm 2), where the update of xi+1

involved the minimization of the linearized f , denoted as f̄ in
(8).

In step 2 of BGD, we use L = 3
2 (suggested in [11]), and

the term �⇢yk
(xi, x) is the Bregman divergence between xi

and x with respect to ⇢yk , defined as follows [11]:

�⇢yk
(xi, x) = ⇢yk(x)� ⇢yk(xi)� hr⇢yk(xi), x� xii,

Algorithm 2 Bregman gradient descent (BGD)
Input: Given yk, �, M4, � � 0, set x0 = yk

Output: An approximate solution to Problem (8)
1: while krf3M4,yk(xi)k > �krf(xi)k do
2: xi+1 := argmin

x2E
hrf̄(xi), x� xii+ L�⇢yk

(xi, x)

3: end while

where

⇢yk
:=

1

2
hr2

f(yk)(x� yk), x� yki+ 3M4d4(x� yk).

After some algebra, step 2 of BGD can be simplified to a
quartic minimization

xi+1 = argmin
x

(x� yk)TQ(x� yk)

2
+
2gT

ki
x

3
+
3M4

4
kx�ykk4,

where
• Q = r2

f(yk) is Hessian of f(x),
• gki = rf(yk)� 3

2Q(xi�yk)� 3M4
4 kxi�ykk2(xi�yk).

We now discuss how to solve the quartic problem. Recall by
assumption f is convex thus the Hessian admits an eigenvalue
decomposition (EVD). Let U diag(�)UT be the EVD of the
Hessian Q and let the vector c = U

T
gki where gki is defined

above, the optimal solution x
?

i+1 of the quartic minimization
is given by

x
?

i+1 = yk �
2

3
U

c

�i + �?
,

where �
? is the unique nonnegative solution of the following

non-linear scalar problem

�
? = argmin

�

M4

3

X

n

c
2
n

(�n + �)2

!2

�
X

n

c
2
n
(�+ 1/2sn)

(�n + �)2
.

We obtain �
? by fixed-point iteration: setting the gradient of

the above function w.r.t. � to zero gives the following update

� 4M4

3

X

n

c
2
n

(�n + �)2
.

Remark: on quartic function For the cases (6) and (7) with
W full rank, the function f is strongly convex. However, the
model f̄ is not globally strongly convex due to d4 as x4 is not
bounded below by x

2 when |x| < 1.
Remark: why BCD At first glance, it seems possible to

optimize all the factor matrices all-at-once [15] by stacking
all the block variables into one large variable. However this
creates an explosion in dimension, and making the BGD
iteration very expensive to compute as we now need to run a
huge EVD in the order of

Q
N

i=1 Ii for every iteration.

C. IAHOM: Inexact Accelerated Higher-Order Method

Lastly, Algorithm 3 IAHOM summarizes the proposed
general method for computing the rank-R CPD of a N -way
input tensor T (with or without nonnegativity constraints), for
both objective functions from Problems (6) and (7).

Step 2 of BGD is a quartic minimization problem

xi+1 = argmin
x

(x − yk)T Q(x − yk)
2

+
2gT

kix

3
+ 3M4

4
‖x − yk‖4,

where Q = ∇2f (yk) is Hessian of f , and the linear term

gki = ∇f (yk) − 3
2Q(xi − yk) − 3M4

4 ‖xi − yk‖2(xi − yk).

Solving quartic problem f convex =⇒ Hessian Q has eigenvalue

decomposition Q = Udiag(σ)UT . Let c = UT gki, then optimal x?
i+1

x?
i+1 = yk − 2

3
U

c

σi + λ?,

where λ? is the unique nonnegative sol of scalar problem

λ? = argmin
λ

M4
3

(∑
n

c2
n

(σn + λ)2

)2

−
∑

n

c2
n(λ + 1/2sn)
(σn + λ)2

,

can be solved numerically.

IAHOM: Inexact Accelerated HoM (= AIPPA for nonneg. CPD)

Algorithm 3 IAHOM for nonnegative CPD.
Input: a nonnegative N -way tensor, M4 > 0, � � 0, rank R.
Output: Nonnegative factors U

(1)
, ..., U

(N)

Initialization: {U (1)
0 , ..., U

(N)
0 }

1: for k = 0, ... do
2: for n = 1, ..., N do
3: Update U

(n)
k

as an inexact solution of:
min

U(n)�0
F (U (1)

k
, ..., U

(n�1)
k

, U
(n)

, U
(n+1)
k�1 , ...)

by Algorithms 1 and 2.
4: end for
5: end for

IV. NUMERICAL EXPERIMENTS

We now compare Algorithm 3 for both Problems (6)
and (7), respectively dubbed as IAHOM-O2 and IAHOM-
O4, with the well known methods Hierarchical Alternating
Least Squares (HALS) [16] and SDF-NLS [17] (a L-BFGS
method) implemented in TensorLab [18]. We consider low-
rank synthetic datasets: we generate each entry of {U (n)}
(1  n  N) using the uniform distribution in [0, 1] and
let T := I ⇥1 U

(1) ⇥2 · · · ⇥N U
(N). We consider N = 3,

R 2 {5, 10} and In 2 {50, 100}. To compare the solutions
generated by the algorithms, we report the evolution of the
relative data fitting error defined as

E(k) :=
kT � I ⇥1 U

(1)
k

⇥2 · · ·⇥N U
(N)
k

kF
kT kF

along iterations k. The results for the different datasets (dif-
fering in rank R and dimensions) are shown on Figs. 1-3.
IAHOM-O2 and IAHOM-O4 converged faster than HALS and
SDF-NLS in all the cases.

V. CONCLUSIONS AND FURTHER WORKS

We presented a first application of 3rd-order proximal meth-
ods within the BLUM framework. We extended the BLUM
framework to solve constrained minimization problems, par-
ticularly with nonnegativity constraints by using log barrier.
We provide two tractable algorithms to solve approximately
the 3rd-order proximal operators and ultimately to compute
low-rank approximation of tensors under the BCD framework.

In the experiment on synthetic data sets, we showed that the
proposed algorithms can be used efficiently for computing the
nonnegative CPD of an input tensor with moderate sizes. We
showed that the algorithms enjoy a faster convergence than
the state-of-the-art method.

This work is only preliminary and further works will focus:
• developing new approaches for more constraints,
• developing efficient routines for the fast estimation of the

uniform bound M , which is critical for the algorithm to
have a faster convergence,

• the theoretical analysis of BLUM framework for con-
strained minimization problems.

0 50 100 150 200 250 300 350 400
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 1. Results for [I1, I2, I3, R] = [50, 50, 50, 5].

0 100 200 300 400 500 600 700 800
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 2. Results for [I1, I2, I3, R] = [50, 50, 50, 10].

0 100 200 300 400 500 600 700
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 3. Results for [I1, I2, I3, R] = [100, 100, 100, 10].

VI. ACKNOWLEDGEMENT

This research was partially supported by the Ministry
of Education and Science of the Russian Federation (grant
075.10.2021.068).

Numerical results

IAHOM-O2 = AIPPA for (6)

IAHOM-O4 = AIPPA for (7)

compare with

HALS

(hierarchical alternating least

squares)

SDF-NLS

(a L-BFGS method)

E(k) relative fitting error

‖T − I ×1 U
(1)
k ×2 · · · ×N U

(N)
k ‖F

‖T ‖F

Test on order-3 tensor

Data generated U [0, 1] for all
factor matrices

Test cases [I1, I2, I3, R]
[50, 50, 50, 5]
[100, 100, 100, 10]

IAHOM-O2 & O4 are faster in

all cases.

0 50 100 150 200 250 300 350 400
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 100 200 300 400 500 600 700
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Other information

Contact

V.Leplat@skoltech.ru a.phan@skoltech.ru andersen.ang@soton.ac.uk

22nd IEEE Statistical Signal Processing Workshop 2-5 July 2023, Hanoi, Vietnam

V.Leplat@skoltech.ru
a.phan@skoltech.ru
andersen.ang@soton.ac.uk

