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Abstract—In the last decades, Matrix Factorization (MF)
models and their multilinear extension – Tensor Factorization
(TF) models have been shown to be powerful tools for high
dimensional data analysis and features extraction. Computing
MF’s or TF’s are commonly achieved by solving a constrained
optimization subproblem on each block of variables, where the
subproblems usually have a huge problem size that one has to rely
on First-order Methods (FoM), i.e., gradient-based optimization
methods.

In this work, we consider Higher-order Methods (HoM),
which are based on higher-order derivatives of the objective
function. Compared to FoM, HoM are faster both in theory and
practice. However, HoM has a higher per-iteration cost than FoM.
Based on the recent development of efficient and implementable
HoM, we consider higher-order proximal point methods within
the BLUM framework which is potentially tractable for large-
scale problems. For the newly proposed HoM, we introduce
the appropriate objective functions, derive the algorithm, and
show experimentally that the drop in the number of iterations
with respect to their per-iteration cost make these HoM-based
algorithms attractive for computing MF’s and TF’s.

Index Terms—Matrix Factorization, Tensor decomposition,
higher-order proximal point methods, constrained optimization

I. INTRODUCTION

Identifying the underlying structure of a data set and extract-
ing meaningful information is a key problem in data analysis.
Simple and powerful methods to achieve this goal are linear
dimensionality reduction (LDR) techniques, which are equiv-
alent to low-rank matrix and tensor approximations. Examples
of LDR techniques are principal component analysis (PCA),
their sparse and/or robust variants, independent component
analysis (ICA), low-rank matrix completion, sparse compo-
nent analysis, Canonical polyadic decomposition (CPD), and
Tucker decomposition. This type of methods, besides being
simple, are applicable in many applications. Among low-rank
approximation techniques, nonnegative matrix factorization
(NMF) and nonnegative tensor factorization (NTF) require the
factors of the low-rank approximation to be component-wise
nonnegative. This allows us to interpret them meaningfully,
e.g., when they correspond to nonnegative physical quantities.
Applications of NMF include extracting parts of faces (e.g.,
eyes, noses, and lips) in facial images, identifying topics in
text documents, learning hidden Markov models, extracting
materials and their abundances in hyperspectral images, sep-
arating audio sources from mixtures, detecting communities
in networks, and decomposing gene expression micro-arrays
[1]–[6].

The recent progress in technologies and telecommunications
allows collecting huge volumes of information. Big data has
led to many issues that are still challenging for the state-of-
the-art MF and TF methods. Computing such decomposition
commonly involves solving large scale optimization problems
with special structure. The data community is urgently looking
for new theoretical and algorithmic solutions. In this work,
we focus on High-order Methods (HoM), which utilizes the
higher-order derivatives of the objective function. Based on the
recent development of efficient and implementable HoM [7]–
[12], we propose a higher-order proximal point methods within
the Bi-level unconstrained minimization (BLUM) framework
[11] which is potentially tractable for large-scale problems.
We propose new 3rd-order proximal point methods using
only 2nd-order derivatives with convergence rate O(k−4) and
improves the lower bound O(k−7/2), where k is the iteration
counter1. Roughly speaking, the idea of these approaches
consists of 1) an assumption on boundedness of the 4th-
derivative and 2) the implementation of 3rd-order scheme from
[8] using only the 2nd-order oracle.
Contributions: (1) we propose the first tractable 3rd-order
algorithm relying on the BLUM framework to tackle low-
rank tensor approximations, and (2) we extend BLUM to
constrained problems with nonnegativity constraints.

II. INEXACT HIGHER-ORDER PROXIMAL POINT METHODS

We now briefly discuss the notions of HoM and the key
aspects of BLUM for the proposed algorithms.

A. Notation, assumptions and higher-order proximal methods

Let E ⊂ Rn denotes a vector space endowed with an inner
product ⟨x, y⟩ and its induced norm ∥x∥ = ⟨x, x⟩ 12 , let f :
E→ R be a closed convex function, we want to solve

argmin
x∈E

f(x). (1)

We assume f is p-times continuously differentiable on E
such that the pth derivative is uniformly upper-bounded
as sup

x∈E

∥∥Dpf(x)
∥∥ =: Mp < +∞, where ∥Dpf(x)∥ =

max
h

{∣∣Dpf(x)[h]p
∣∣ : ∥h∥ ≤ 1

}
and Dpf(x)[h1, ..., hp] is the

pth-order directional derivative of f at x along the direction
h = [h1, ..., hp].

1Note that others 2nd-order methods with similar rates have been concomi-
tantly introduced in [7].



The higher-order proximal point methods are based on the
pth-order proximal operators defined as

proxp
f,λ(x̄) := argmin

x∈E

{
fp
x̄,λ := f(x) + λdp+1(x− x̄)

}
, (2)

where λ ∈ R+ and p ∈ N, the function fp
x̄,λ is the pth-order

model and dp+1(a) = 1
p+1∥a∥

p+1. Note that (2) generalizes
the proximal operator

proxf,λ(x̄) := argmin
x∈E

{
f(x) +

1

2λ
∥x− x̄∥2

}
,

and (2) reduces to the proximal-point algorithms [13], [14] if
p = 1. The method achieves faster convergence even when it
does not solve (2) exactly, as shown in [11].

B. Inexact proximal method - BLUM

Often (2) cannot be computed efficiently, hence an approx-
imate solution is computed using an optimization procedure.
The work [11] defines a set of acceptable solutions to (2) as

Ap
λ,f (x̄, β) =

{
x ∈ E : ∥∇fp

x̄,λ(x)∥ ≤ β∥∇f(x)∥
}
, (3)

where β ∈ [0, 1) is a tolerance parameter. In case we have
1st-order optimality ∥∇f(x)∥ = 0 or we set β = 0, we have
the ideal cases of Ap

λ,f (x̄, β) that (2) is solved exactly.

Let Ak := 2(1−β)
λ ( k

2p+2 )
p+1, ak+1 := Ak+1−Ak and define

Φ0(x) := dp+1(x − x0), Algorithm 1 shows the accelerated
inexact pth-order proximal algorithm, abbreviated as AIPPA.

Algorithm 1 AIPPA.
Input: x0 ∈ E, β ∈ [0, 1), λ > 0, Φ0(x) := dp+1(x− x0)
Output: An approximate solution to Problem (1)

1: for k = 0, 1, ... do
2: vk := argmin

x∈E
Φk(x) and yk := Ak

Ak+1
xk + ak+1

Ak+1
vk

3: Compute Tk ∈ Ap
λ,f (yk, β) and update Φ as

Φk+1(x) = Φk(x) + ak+1

(
f(Tk) + ⟨∇f(Tk), x− Tk⟩

)
4: Choose xk+1 such that f(xk+1) ≤ f(Tk).
5: end for

Convergence rate: the sequence {xk}k generated by AIPPA
satisfies f(xk)− f⋆ ≤ O( 1

kp+1 ) [11, Theorem 2].
Stopping criterion: Condition (3) can be checked in practice
and integrated directly as a stopping criterion for any proce-
dure used to compute Tk given yk.
Bi-level framework: BLUM has two levels:

• an upper-level corresponds to a chosen pth-order proxi-
mal algorithm

• a lower-level where an algorithm running on lower-order
derivative (for a instance the (p− 1) derivatives) is used
to approximately solve Step 3 in AIPPA.

We are now ready to discuss the set up of the BLUM
framework in the newly proposed algorithm for solving CPD.

III. PROPOSED ALGORITHM FOR CPD

Now we present a new inexact 3rd-order proximal algo-
rithms for computing a nonnegative CPD of an input nonnega-
tive n-way tensor, i.e., approximating a tensor with a sum of R
rank-one nonnegative tensors. Let a tensor T has dimensions
I1 × I2 × · · · × IN , let matrices U (n) have size In × R for
1 ≤ n ≤ N . Computing a rank-R nonnegative CPD of T is
achieved by solving:

argmin
U(n)≥0
1≤n≤N

D
(
T
∣∣I×1U

(1)×2· · ·×NU (N)
)
:= F

({
U (n)

})
, (4)

where D is a measure of discrepancy between two tensors (we
consider two cases later), I is the identity tensor of dimensions
all equal to R, the symbol ×n is the n-mode product [2]. Note
that the proposed method can be used to compute a low-rank
matrix approximation of an matrix, which is a special case of
nonnegative CPD where input T is a 2-way tensor and the
feasible set is E.

We solve (4) by Block-Coordinate Descent (BCD) that
consists of optimizing alternatively over one factor of the
factorization while the others are kept fixed at their most
recent value, i.e., at each iteration we successively solve n-
subproblems for CPD; say one in U (n) and the others in
U (1), ..., U (n−1), U (n+1), ..., U (N) alternatively (after rewrit-
ting tensor decomposition model using tensor matricization
along the different modes). Each subproblem is solved using
a variant of AIPPA. In the following we present the update for
one factor U (n) to tackle (4). The updates of the other factors
are performed in a similar fashion under permutation.

Consider the update of U (1), after matricization along the
1st-mode we have:

T = I ×1 U
(1) ×2 ...×N U (N)

⇔ T(1) = U (1)
(
U (2) ⊙ · · · ⊙ U (N)

)T
,

(5)

where T(i) is the unfolding of tensor T along mode i, ⊙ is
the Khatri-Rao product. Note that (5) is an NMF of V = T T

(1)

with factors X = (U (1))T and W = U (2) ⊙ · · · ⊙ U (N).
We now consider two functions D, denoted as f(X):

min
X

f(X) :=
1

2
∥V −WX∥2F − γ

∑
i,j

log(Xij), (6)

min
X

f(X) :=
1

24
∥V −WX∥44 − γ

∑
i,j

log(Xij), (7)

where γ ≥ 0 is a penalty weight and log(x) is the log-barrier
function that promotes nonnegativity of x. Note that both f in
(6) and (7) are separable w.r.t. each column of X , i.e., denoting
V:,j = v and X:,j = x (the j-th column of V and X resp.),
solving (6) and (7) boils down to solving m minimization
problems in parallel (m = number of columns of X), where
each minimization being performed over one particular column
of X . For instance (6) becomes:

min
x∈E

f(x) :=
1

2
∥v −Wx∥2F − γ

∑
i

log(xi).



To solve each of these subproblems in the CPD, we use a
variant of AIPPA with p = 3 and β := 1

p (in the “upper-level”
part). For such choices, we assume that the 4th derivative of f
is bounded on Q ⊂ E with constant M4 > 0 and let λ = 3M4

[11], here Q is the nonnegative orthant of appropriate size.
If we drop the constraints (set γ = 0), one need to only

consider (7) for computing X since M4 = 0 for (6) (and
then loosing high convergence rates offered by the higher-
order proximal algorithm).

A. The step 2 in AIPPA

We now present solution to the problem at step 2 in AIPPA,
i.e., solving the minimization vk = argmin

x∈E
Φk(x), where

Φk(x) = Φk−1(x) + ak

(
f(Tk) +

〈
∇f(Tk), x− Tk

〉)
.

Define g0 = 0 and gk = gk−1 + ak∇f(Tk), the above
minimization problem is simplified to

vk = argmin
x∈E

gTk x+ dp+1(x− xk),

which has an optimal solution

v⋆k = xk −
gk

∥gk∥1−
1
p

.

Note that yk can be written as

yk = xk −

(
1−

( k

k + 1

)4) gk

∥gk∥1−
1
p

.

B. The step 3 in AIPPA

Two issues arise when solving the higher-order proximal at
step 3 in AIPPA.

a) Determine M (the upper bound of directional deriva-
tive): For (7), one can show that computing the uniform
upper-bound for the 4th derivative boils down to solving an
eigenvalue problem for the 4th order derivative tensor

I ×1 W
T ×2 W

T ×3 W
T ×4 W

T .

Moreover, if γ > 0, one can easily see that D4 log(xi)
is not bounded above for xi → 0. In this case, we tune
numerically M4 along iteration of our algorithm to ensure
numerical stability and the objective function along iterations
is monotonically decreasing.

b) Solving the high-order prox: Recall Section II, a
crucial step for AIPPA is the computation of the “lower-level
part in BLUM: solving Tk ∈ AH,f (yk,

1
3 ), where we dropped

the symbol p to ease the notation. In our case, we want to
compute an approximate solution for the following 3rd-order
proximal operator:

proxf,3M4
(yk) := argmin

x∈E

{
f̄(x) := f(x) + 3M4d4(x− yk)

}
,

(8)
where f is the objective function of (6) or (7).

For an efficient computation of Tk, we use Bregman gra-
dient descent (BGD, Algorithm 2), where the update of xi+1

Algorithm 2 Bregman gradient descent (BGD)
Input: Given yk, β, M4, γ ≥ 0, set x0 = yk
Output: An approximate solution to Problem (8)

1: while ∥∇f3M4,yk
(xi)∥ > β∥∇f(xi)∥ do

2: xi+1 := argmin
x∈E

⟨∇f̄(xi), x− xi⟩+ Lβρyk
(xi, x)

3: end while

involved the minimization of the linearized f , denoted as f̄ in
(8).

In step 2 of BGD, we use L = 3
2 (suggested in [11]), and

the term βρyk
(xi, x) is the Bregman divergence between xi

and x with respect to ρyk
, defined as follows [11]:

βρyk
(xi, x) = ρyk

(x)− ρyk
(xi)− ⟨∇ρyk

(xi), x− xi⟩,

where

ρyk
:=

1

2
⟨∇2f(yk)(x− yk), x− yk⟩+ 3M4d4(x− yk).

After some algebra, step 2 of BGD can be simplified to a
quartic minimization

xi+1 = argmin
x

(x− yk)
TQ(x− yk)

2
+
2gTkix

3
+
3M4

4
∥x−yk∥4,

where
• Q = ∇2f(yk) is Hessian of f(x),
• gki = ∇f(yk)− 3

2Q(xi−yk)− 3M4

4 ∥xi−yk∥2(xi−yk).
We now discuss how to solve the quartic problem. Recall by

assumption f is convex thus the Hessian admits an eigenvalue
decomposition (EVD). Let U diag(σ)UT be the EVD of the
Hessian Q and let the vector c = UT gki where gki is defined
above, the optimal solution x⋆

i+1 of the quartic minimization
is given by

x⋆
i+1 = yk −

2

3
U

c

σi + λ⋆
,

where λ⋆ is the unique nonnegative solution of the following
non-linear scalar problem

λ⋆ = argmin
λ

M4

3

(∑
n

c2n
(σn + λ)2

)2

−
∑
n

c2n(λ+ 1/2sn)

(σn + λ)2
.

We obtain λ⋆ by fixed-point iteration: setting the gradient of
the above function w.r.t. λ to zero gives the following update

λ ← 4M4

3

∑
n

c2n
(σn + λ)2

.

Remark: on quartic function For the cases (6) and (7) with
W full rank, the function f is strongly convex. However, the
model f̄ is not globally strongly convex due to d4 as x4 is not
bounded below by x2 when |x| < 1.

Remark: why BCD At first glance, it seems possible to
optimize all the factor matrices all-at-once [15] by stacking
all the block variables into one large variable. However this
creates an explosion in dimension, and making the BGD
iteration very expensive to compute as we now need to run a
huge EVD in the order of

∏N
i=1 Ii for every iteration.



Algorithm 3 IAHOM for nonnegative CPD.
Input: a nonnegative N -way tensor, M4 > 0, γ ≥ 0, rank R.
Output: Nonnegative factors U (1), ..., U (N)

Initialization: {U (1)
0 , ..., U

(N)
0 }

1: for k = 0, ... do
2: for n = 1, ..., N do
3: Update U

(n)
k as an inexact solution of:

min
U(n)≥0

F (U
(1)
k , ..., U

(n−1)
k , U (n), U

(n+1)
k−1 , ...)

by Algorithms 1 and 2.
4: end for
5: end for

C. IAHOM: Inexact Accelerated Higher-Order Method

Lastly, Algorithm 3 IAHOM summarizes the proposed
general method for computing the rank-R CPD of a N -way
input tensor T (with or without nonnegativity constraints), for
both objective functions from Problems (6) and (7).

IV. NUMERICAL EXPERIMENTS

We now compare Algorithm 3 for both Problems (6)
and (7), respectively dubbed as IAHOM-O2 and IAHOM-
O4, with the well known methods Hierarchical Alternating
Least Squares (HALS) [16] and SDF-NLS [17] (a L-BFGS
method) implemented in TensorLab [18]. We consider low-
rank synthetic datasets: we generate each entry of {U (n)}
(1 ≤ n ≤ N ) using the uniform distribution in [0, 1] and
let T := I ×1 U (1) ×2 · · · ×N U (N). We consider N = 3,
R ∈ {5, 10} and In ∈ {50, 100}. To compare the solutions
generated by the algorithms, we report the evolution of the
relative data fitting error defined as

E(k) :=
∥T − I ×1 U

(1)
k ×2 · · · ×N U

(N)
k ∥F

∥T ∥F
along iterations k. The results for the different datasets (dif-
fering in rank R and dimensions) are shown on Figs. 1-3.
IAHOM-O2 and IAHOM-O4 converged faster than HALS and
SDF-NLS in all the cases.

V. CONCLUSIONS AND FURTHER WORKS

We presented a first application of 3rd-order proximal meth-
ods within the BLUM framework. We extended the BLUM
framework to solve constrained minimization problems, par-
ticularly with nonnegativity constraints by using log barrier.
We provide two tractable algorithms to solve approximately
the 3rd-order proximal operators and ultimately to compute
low-rank approximation of tensors under the BCD framework.

In the experiment on synthetic data sets, we showed that the
proposed algorithms can be used efficiently for computing the
nonnegative CPD of an input tensor with moderate sizes. We
showed that the algorithms enjoy a faster convergence than
the state-of-the-art method.

This work is only preliminary and further works will focus:
• developing new approaches for more constraints,

• developing efficient routines for the fast estimation of the
uniform bound M , which is critical for the algorithm to
have a faster convergence,

• the theoretical analysis of BLUM framework for con-
strained minimization problems.
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Fig. 1. Results for [I1, I2, I3, R] = [50, 50, 50, 5].
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Fig. 2. Results for [I1, I2, I3, R] = [50, 50, 50, 10].
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Fig. 3. Results for [I1, I2, I3, R] = [100, 100, 100, 10].



REFERENCES

[1] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, p. 788, 1999.

[2] A. Cichocki, R. Zdunek, A. H. Phan, and S.-i. Amari, Nonnegative
Matrix and Tensor Factorizations: Applications to Exploratory Multi-
Way Data Analysis and Blind Source Separation. John Wiley & Sons,
2009.

[3] N. Gillis, “The why and how of nonnegative matrix factorization,”
Connections, vol. 12, no. 2, 2014.

[4] A. M. S. Ang and N. Gillis, “Algorithms and comparisons of nonnegative
matrix factorizations with volume regularization for hyperspectral un-
mixing,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 12, no. 12, pp. 4843–4853, 2019.

[5] N. Gillis, Nonnegative matrix factorization. SIAM, 2020.
[6] V. Leplat, N. Gillis, and A. M. Ang, “Blind audio source separation with

minimum-volume beta-divergence nmf,” IEEE Transactions on Signal
Processing, vol. 68, pp. 3400–3410, 2020.

[7] Y. Nesterov, “Superfast second-order methods for unconstrained convex
optimization,” J Optim Theory Appl, vol. 191, pp. 1–30, 2021.

[8] ——, “Implementable tensor methods in unconstrained convex optimiza-
tion,” Math. Program., vol. 186, p. 157–183, 2021.

[9] G. Grapiglia and Y. Nesterov, “On inexact solution of auxiliary problems
in tensor methods for convex optimization,” Optimization Methods and
Software, vol. 36, no. 1, pp. 145–170, 2021.

[10] ——, “Tensor methods for finding approximate stationary points of
convex functions,” Optimization Methods and Software, 2020.

[11] Y. Nesterov, “Inexact accelerated high-order proximal-point methods,”
Math. Program., 2021.

[12] ——, “Inexact high-order proximal-point methods with auxiliary search
procedure,” SIOPT, vol. 31, no. 4, pp. 2807–2828, 2021.

[13] R. T. Rockafellar, “Monotone operators and the proximal point algo-
rithm,” SIAM journal on control and optimization, vol. 14, no. 5, pp.
877–898, 1976.

[14] N. Parikh and S. Boyd, “Proximal algorithms.” Found.Trends Optim.,
vol. 1, no. 3, pp. 123–231, 2013.

[15] P. Paatero, “A weighted non-negative least squares algorithm for three-
way ‘parafac’factor analysis,” Chemometrics and Intelligent Laboratory
Systems, vol. 38, no. 2, pp. 223–242, 1997.

[16] A. Cichocki, R. Zdunek, and S. Amari, “Hierarchical als algorithms
for nonnegative matrix and 3d tensor factorization,” in Independent
Component Analysis and Signal Separation. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 169–176.

[17] L. Sorber, M. Van Barel, and L. De Lathauwer, “Structured data fusion,”
IEEE Journal of Selected Topics in Signal Processing, vol. 9, no. 4, pp.
586–600, 2015.

[18] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer,
“Tensorlab 3.0. mar. 2016. available online.” https://www.tensorlab.net,
2016.


