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1. INTRODUCTION

The “fundamental lemma” (Theorem 1 p. 327 of (Willems
et al., 2005)) is extensively used in discrete-time data-
driven control, see e.g. (Berberich and Allgöwer, 2019;
Berberich et al., 2020; Coulson et al., 2019; Persis and
Tesi, 2020; van Waarde et al., 2022). More recently, also
continuous-time problems have been investigated, see e.g.
Bisoffi et al. (2022); Strässer et al. (2021); Berberich et al.
(2021); Dai and Sznaier (2021). These approaches assume
at least that state and the input variables are measured,
and that either the state derivative is measurable, or that
a numerical approximation of it is computed.

A continuous-time version of the fundamental lemma has
been stated in Theorem 2 of (Lopez and Müller, 2022),
where a parametrization of admissible continuous-time
system trajectories is obtained solving a system of linear
time-varying differential equations determined from input-
state data. In this paper we adopt a different approach
based on orthogonal bases for spaces of continuous-time
functions square integrable on a finite interval. We focus
on linear, time-invariant autonomous systems. We give
a parametrization of all system trajectories based on
matrices with a finite number of rows and an infinite
number of columns, derived from the coefficients of the
orthogonal basis representation of one “sufficiently rich”
trajectory. Using such parametrization we solve boundary
condition problems, a special case of the more general
data-driven simulation problem considered in (Markovsky
and Rapisarda, 2008) for discrete-time systems.

Our approach offers some advantages over the results of
(Lopez and Müller, 2022). We do not need to measure also
the state trajectory: we use only the external variables.
Admittedly, in the present contribution we only consider
the special case of systems without inputs; however, re-
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cent results (see (Rapisarda et al., 2023)) show that the
MIMO case can be dealt with in a similar way. Moreover,
the computation of system trajectories from data occurs
via linear algebraic operations, not by the more involved
method of numerically solving time-varying linear differ-
ential equations.

Orthogonal basis concepts (polynomial chaos expansions)
have been used only in a couple of recent publications
concerned with data-driven control problems for stochastic
systems (see (Mühlpfordt et al., 2018; Pan et al., 2022)).
With this contribution we hope to offer a glimpse of the
potential that such concepts have also for the study of
deterministic continuous-time systems.

Notation

We denote by N, R and C respectively the set of natural, real and
complex numbers, and by Rrss the ring of polynomials with real
coefficients. Rn, respectively Cn, denote the space of n-dimensional
vectors with real, respectively complex, entries. Rnˆm denotes the
set of nˆm matrices with real entries; Rnˆ8 the set of real matrices
with n rows and an infinite number of columns; and R8ˆ8 the set
of real matrices with an infinite number of rows and columns. The
transpose of a matrix M is denoted by MJ, its complex conjugate
transpose by M˚, and its pseudoinverse by M:.

Define I :“ pt0, t1q. We denote by L2pI,Rq the space of square-
integrable real-valued functions defined on I equipped with the
standard inner product x¨, ¨y. The inner product on L2pI,Rq defined
by a weight-function w is denoted by xf, gyw :“

ş

I fptqgptqwptqdt.
Notation and definitions extend to vector-valued functions.

Given an orthogonal basis tbkukPN for L2pI,Rq, we define b :“
“

b0 b1 . . .
‰J

. Given a complete orthogonal basis tbkukPN and f P

L2pI,Rq, the orthogonal basis representation of f is f “
ř8

k“0
rfkbk,

where rfk P R, k P N. We call rfk the k-th coefficient of f (in

the orthogonal basis representation). If f “
ř8

k“0
rfkbk, we define

rf :“
”

rf0 rf1 . . .
ı

P R1ˆ8. The map associating f P L2pI,Rq with

rf is denoted by Π, i.e. rf “ Πpfq. If f P L2pI,Rnq and fi is the

i-th component of f , i “ 1, . . . , n, then we denote by rf P Rnˆ8



the matrix whose i-th row is the orthogonal basis representation of

fi, i “ 1, . . . , n. We call
řN

k“0
rfkbk the truncation or projection

to degree N of the orthogonal representation of f . If f P L2pI,Rq

has a square-integrable derivative, the vector of coefficients of the

orthogonal basis representation of d
dt
f is denoted by rf p1q.

2. ORTHOGONAL BASES FOR FUNCTION SPACES

2.1 Basics

Let I “ pt0, t1q, with t0, t1R; an orthogonal basis for
L2pI,Rq is defined by: a set of basis elements bk P L2pI,Rq,
k P N; a weight function w : I Ñ R; an inner product
on L2pI,Rq defined by xf, gyw :“

ş

I fptqgptqwptqdt, such
that xbj , bkyw “ γjkδj,k, j, k P N, where δ¨,¨ denotes the
Kronecker delta, and γjk ą 0, j, k “ 0, . . ..

A basis tbkukPN is complete if its linear span is dense in
L2pI,Rq. For proofs of the following statements, see section
6 of (Sansone, 1959).
Theorem 1. The following statements are equivalent:

(1) tbkukPN is complete;
(2) If f P L2pI,Rq and xf, bkyw “ 0 @ k P N, then f “ 0;

(3) If f P L2pI,Rq, there exist unique rfk P R, k P N, such
that the sequence

!

řN
k“0

rfkbk

)

NPN
converges in the

mean to f ; moreover, rfk “ xf, bkyw.

We denote by b the infinite vector defined by

bp¨q :“ rb0p¨q b1p¨q . . .s
J

; (1)

given f “
ř8

k“0
rfkbk P L2pI,Rq, we denote by rf the

infinite vector defined by

rf :“
“

rf0 rf1 . . .
‰

. (2)

The equality f “
ř8

k“0
rfkbk is equivalent with

fptq “ rfbptq , t P I . (3)

When dealing with vector functions, we denote by fi,
i “ 1, . . . , n the i-th component of f P L2 pI,Rnq. Let

fi “
ř8

k“0
rfi,kbk; we write

f “

»

—

–

rf1,0 rf1,1 . . .
...

... . . .
rfn,0 rfn,1 . . .

fi

ffi

fl

loooooooomoooooooon

“: rf

b . (4)

Define the map Πb : L2pI,Rq Ñ pRq
N
by

Πb pfq :“
!

rfk

)

k“0,...
; (5)

it follows from Theorem 23 in section 6 of (Sansone,
1959) that Πb is a bijective isometry between L2pI,Rq and
ℓ2pN,Rq. The definition of Π generalizes in a straightfor-
ward way to the vector case using (4).

2.2 Differentiation

Let f “
ř8

k“0
rfkbk; assume that f is differentiable and

that d
dtf P L2pI,Rq. Because of completeness, the following

equality holds @ t P I:

d

dt
fptq “

8
ÿ

k“0

rfk
d

dt
bkptq . (6)

In many cases, e.g. when using polynomial orthogonal
bases such as Chebyshev or Legendre polynomials, d

dtbk
can be written as linear combination of the basis elements:
there exist dk,j P R, k, j P N, such that

d

dt
bkptq “

8
ÿ

j“0

dk,jbjptq . (7)

A matrix representation of differentiation follows from (7).
Let t P I; define

d

dt
bptqJ :“

„

d

dt
b0ptq

d

dt
b1ptq . . .

ȷJ

, (8)

and define from (7) the infinite matrix

Db :“ rdk,js
k,jPN . (9)

With these positions, (7) can be written as d
dtbptq “

Dbbptq, and (6) is equivalent with

d

dt
fptq “ rf

d

dt
bptq “ rfDb

loomoon

“: rfp1q

bptq .
(10)

The differentiation operator d
dt on L2pI,Rq induces an

operator Db defined by:

Db : ℓ2pN,Rq Ñ ℓ2pN,Rq

rf Ñ rfDb , (11)

i.e. the (orthogonal basis representation of the) derivative
of a function is directly computed from the (orthogonal
basis representation of the) function itself.

Example 1 (Chebyshev polynomials). Let I “ p´1, 1q.
The Chebyshev polynomials 1 are defined by (see Gil
et al. (2007)): C0ptq :“ 1, C1ptq :“ t, and Cn`1ptq “

2tCnptq ´ Cn´1ptq, n ě 1. They are orthogonal with
respect to the inner product defined by wptq “ 1?

1´t2
,

and form a complete basis for L2pI,Rq. Define Cptq :“

rC0ptq C1ptq . . .s
J
. Using formula (2.4.22) p. 87 of (Canuto

et al., 2006), it can be proved that

DC “

»

—

—

—

—

—

—

–

0 0 0 0 0 . . .
1 0 0 0 0 . . .
0 4 0 0 0 . . .
3 0 6 0 0 . . .
0 8 0 8 0 . . .
...
...
...
...
...
. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (12)

Remark 1 (Computation of coefficients). In principle,

computing rfk “
ş

I fptqbkptqwptqdt requires numerical in-
tegration. However, for some bases (most notably, the
Chebyshev and Legendre ones), the orthogonal basis repre-
sentation can be computed by interpolating f on an appro-
priate sampling grid (see (3.4) p. 14 of Trefethen (2019),
and section 2.3 of Canuto et al. (2006), respectively) 2 .

1 Chebyshev polynomials can also be defined on pt0, t1q, with some
scaling involved.
2 A description of the process used to compute the coefficients of the
Chebyshev expansion up to machine precision is given in pp. 18-20
of Trefethen (2019).



For the Chebyshev basis, the coefficients can be efficiently
computed using the FFT (see section 3.3 of Trefethen
(2019)). Consequently, the Chebyshev and Legendre basis
representations of trajectories can be be computed directly
from sampled data.

Remark 2 (Convergence of the series representation). A
general principle in orthogonal bases is that the smoother
a function is, the faster the approximation error f ´
řN

k“0
rfkbk decays with N . In this contribution we consider

autonomous systems only, whose trajectories are infinitely
differentiable. Consequently, fast convergence rates can
be expected. For the Chebyshev basis, for example, if
f P C8 then the approximation error for a truncation to
N coefficients goes to zero faster than OpN´kq for every
finite k (“exponential convergence”), see p. 47 of (Canuto
et al., 2006). It follows that the trajectories of the systems
considered in this paper can be represented up to machine
precision by truncated series involving a relatively small
number of coefficients.

3. SUFFICIENTLY INFORMATIVE TRAJECTORIES
AND THEIR CHARACTERIZATION

Some of the concepts used in this section assume familiar-
ity with the behavioral approach; we refer the interested
reader to (Polderman and Willems, 1997; Rapisarda and
Willems, 1997) as suitable introductions. In the following
the symbol N pBq denotes the set of annihilators of a
linear differential behavior B P C8pR,Rqq, considered as a
module on R1ˆqrss or R1ˆqr d

dt s, depending on the context.
The notation ℓpBq denotes the lag of B; this is the highest
order of differentiation in a shortest lag description of
B, see (Willems, 1986). The symbol npBq denotes the
McMillan degree of B, i.e. the minimal dimension of a
state-space description of B; for autonomous systems,
npBq “ dim pBq. Given pi P R1ˆqrss, i “ 1, . . . , N , the
notation xp1, . . . , pN y denotes the module generated by the
pi, i “ 1, . . . , N .

Definition 1. Let B be an autonomous behavior with q-
dimensional trajectories, and let I “ pt0, t1q, t0, t1 P R. A
trajectory w P B is informative for identification of B if
for every L P N, L ě ℓpBq it holds that

N pBq “ x

#

L
ÿ

i“0

ηis
i P R1ˆqrss |

L
ÿ

i“0

ηi
di

dti
w “ 0 on I

+

y .

(13)

Note that in (13) the inclusion Ě holds for every w P B,
since annihilators of every trajectory in B also annihilate
the particular trajectory w P B. The opposite inclusion
holds only if the trajectory w contains enough information
to deduce a basis for the module of all annihilators of B.

If B is a linear differential behavior, no finite-time escape
to infinity occurs, and all its trajectories are square-
integrable on I. Consequently every w P B has a basis
representation rw. Define

ΠbpBq :“ t rw : N Ñ Rq | D w P B such that rw “ Πbpwqu ,

where Πb is the projection defined in (5). Since Πb is a
bijective isometry, ΠbpBq is a subspace of ℓ2pN,Rq. If B
is autonomous, then its dimension is finite and it equals
npBq, the minimal dimension of the state in any state-

representation of B. It follows that ΠbpBq is also finite-
dimensional, and that dim ΠbpBq “ npBq.

For simplicity of exposition, in the rest of the paper we
consider the case of scalar (q “ 1) trajectories only. The
extension to the case q ą 1 requires a more cumbersome
notation and some adaptation to some of the arguments,
but it is relatively straightforward.

In statement 4 of the next result we characterize ΠbpBq in
terms of the row space of the following matrix constructed
from the coefficients of an informative trajectory:

ĂWL :“

»

—

—

–

rw
rwD
...

rwDL

fi

ffi

ffi

fl

P RpL`1qˆ8 . (14)

Theorem 2. Let B be an autonomous behavior with
scalar trajectories, and let w P B. Let b be a complete
orthogonal basis for L2pI,Rq, with differentiation matrix

(9) denoted by Db. Define ĂW by (14). Let L P N, L ě ℓpBq.

The following statements are equivalent:

(1) w is informative for identification;
(2) N pBq equals

x

!

řL
i“0 ηis

i P Rrss | rη0 . . . ηLs P left ker ĂW
)

y;

(3) rank ĂWL “ npBq;

(4) row space ĂWL “ ΠbpBq.

Proof. Denote by left ker ĂWL the set of left-annihilators

of ĂWL defined by (14); the equality

left ker ĂWL “

#

rη0 . . . ηLs |

L
ÿ

i“0

ηi
di

dti
w “ 0 on I

+

,

(15)
follows from completeness of b and from w “

ř8

i“0 rwibi.
The equivalence of statements p1q and p2q follows from
(15), from L ě ℓpBq, and the definition of informative
trajectory, see (13).

To prove p2q ùñ p3q, let η be a lowest-degree annihilator
of B; its degree equals ℓpBq “ npBq, the dimension of B.

Write ηpsq “
řℓpBq

j“0 ηjs
j ; then rη :“

“

η0 . . . ηℓpBq 0 . . . 0
‰

P

left ker ĂWL. Since
dk

dtk
η

`

d
dt

˘

, k P N also annihilates B, it
follows that

σrη :“
“

0 η0 η1 . . . ηℓpBq 0 . . . 0 0
‰

σ2
rη :“

“

0 0 η0 η1 . . . ηℓpBq 0 . . . 0
‰

...

σL´ℓpBq
rη :“

“

0 0 0 0 . . . 0 η0 . . . ηℓpBq

‰

,

(16)

also belong to the left kernel of ĂWL. The vectors σj
rη,

j “ 0, . . . , L ´ ℓpBq are linearly independent. Standard
behavioral theory can be invoked to prove the equality
xηpsqy “ N pBq; it follows that rη and (16) generate

left ker ĂW. Consequently rank ĂWL “ pL`1q´pL´ℓpBq`

1q “ ℓpBq “ npBq. The implication p2q ùñ p3q is proved.

To prove the implication p3q ùñ p2q, let ηpsq be a minimal
degree annihilator of B. Denote the coefficient vector



rη :“
“

η0 . . . ηℓpBq 0 . . . 0
‰

P R1ˆpL`1q .

Evidently rη P left ker ĂWL. Now define the set of vectors
(16), and use the assumption p3q to conclude that (16)

is a basis of left ker ĂWL. Since N pBq “ xηpsqy, the
implication p3q ùñ p2q is proved. We show the implication
p3q ùñ p4q. Because of linearity of B, its closeness under
differentiation, and because the basis b is complete, any

linear combination of the rows of ĂW is the image under Πb

of a unique trajectory in B. Consequently row space ĂW Ď

ΠbpBq. From p3q it follows that dim row space ĂW “

npBq. Since Πb is a bijection, dimpBq “ dim ΠpBq;
consequently dim ΠpBq “ npBq, and the claim follows

from row space ĂW Ď ΠbpBq. Finally, the implication
p4q ùñ p3q follows from the fact that Πb is a bijection,
and npBq “ dimpBq “ dim ΠpBq.

In the next sections we show that using the characteriza-
tion of ΠbpBq in Theorem 2 we can extend the fundamen-
tal lemma to continuous-time autonomous systems, giving
data-driven solutions to initial conditions and boundary
conditions problems.

4. THE DATA-DRIVEN SIMULATION PROBLEM
WITH INITIAL CONDITIONS

In this section we solve the following problem.

Autonomous data-driven simulation problem
with initial conditions

Let B be an autonomous scalar linear differential
system. Let w P B be informative for identification.

Given di P R, i “ 0, . . . , dℓpBq´1, compute a trajec-
tory w1 P B such that

ˆ

di

dti
w1

˙

p0q “ di , i “ 0, . . . , ℓpBq ´ 1 .

In order to state our solution to the initial condition
problem, we first state how “initial conditions” are related
to the basis representation of a trajectory.

Proposition 1. Let b be a complete orthogonal basis for
L2pI,Rq with differentiation matrix (9). Let f P L2pI,Rq,

with basis representation rf . For every i P N it holds that
´

di

dti f
¯

p0q “

´

rfDi
¯

bp0q.

Proof. Follows from
´

di

dti f
¯

ptq “

´

rfDi
¯

bptq @ t P I.

Statement 3 of Theorem 2 shows that an upper bound
on the lag of an autonomous system can be computed
from an informative trajectory; from the following result
a procedure can be straightforwardly devised to solve the
data-driven simulation problem with initial conditions.

Theorem 3. Let b be a complete orthogonal basis for
L2pI,Rq with differentiation matrix (9). Let w P B be

informative for identification, and define ĂW by (14). There

exists w1 P B such that di

dtiw
1p0q “ di, i “ 0, . . . , L if and

only if there exist αi P R, i “ 0, . . . , L such that

di “

´

rα0 . . . αLs ĂW
¯

Dibp0q , i “ 0, . . . , L . (17)

Moreover, if (17) is solvable, then any two solutions

α “ rα0 . . . αLs and α1 “
“

α1
0 . . . α1

L

‰

differ by a vector in left ker
”

ĂWbp0q ¨ ¨ ¨ ĂWDLbp0q

ı

.

Proof. Sufficiency follows defining w1 :“
řL

i“0 αi
di

dtiw,
using 4) of Theorem 2; and applying Proposition 1.

To prove necessity, use statement 4 of Theorem 2 to
conclude that the basis representation of every trajectory

w1 P B belongs to row space ĂW. Equivalently, there exist

αi P R, i “ 0, . . . , L such that rw1 “ rα0 . . . αLs ĂW. Now
use Proposition 1 to conclude that this linear combination

of the rows of ĂW must satisfy (17).

To prove the second part of the Theorem, observe that (17)
is a system of linear equations in the indeterminates αi, i “

0, . . . , L, with coefficient matrix
”

ĂWbp0q ¨ ¨ ¨ ĂWDLbp0q

ı

.

Any two solutions differ by an element of the left kernel of
such coefficient matrix.

In Theorem 3 we reduce the data-driven simulation prob-
lem to that of solving the system (17) of L ě ℓpBq linear
equations in the unknowns αi, i “ 0, . . . , L. Such system

of equations involves the infinite matrix ĂW P RpL`1qˆ8.
Since the trajectories of an autonomous system are vector-
exponential, the convergence rate of the approximation is
extremely fast (see Remark 2) and consequently machine-
precision accuracy can be achieved with a relatively small
number of coefficients computable directly from trajectory
samples (see Remark 1). Consequently, for practical pur-
poses the sequence t rwkukPN has finite support, the matrix
ĂW has a finite number of columns, and the computation
of the derivative using a truncated differentiation matrix
yields an excellent approximation. The next example ex-
emplifies some of these practical issues and our solutions.

Example 2. We use the Chebyshev basis to solve an
initial condition problem for the system B “ ker p d

dt `

1qp d
dt ´ 2q, and the data wptq “ e´2t ` et. We use N “ 19

samples of w on the Chebyshev grid tj :“ cos
`

jπ
N

˘

,
j “ 0, . . . , N . Using chebfun (see (Trefethen, 2019))
we compute from these samples the first 19 coefficients
of the Chebyshev basis representation of w. These are
sufficient to give a machine-precision approximation of
w (see footnote 2 on the process of selection of N and
computation of the coefficients).

We compute the 19 ˆ 19 p1, 1q-block of the differentiation
matrix from (12); we denote such matrix by D1. We denote
the vector of the first 19 coefficients of w by rw1. We
obtain an approximation of the vector of coefficients of
the derivative of w by multiplying rw1 by the i-th power
of D1, instead of using the infinite product rwDi. Since
the coefficients of the Chebyshev representation of w are
numerically zero from the 20th on, the error incurred in
approximating the i-th derivative of w with the truncated
product rw1D1i is negligible.



We computed an informative w ensuring that both natural
frequencies of the system are excited by the initial condi-
tions; note that this is generically true for a random choice
of the initial conditions. The dimension of the state space
can be computed using the normalized singular values of

ĂW 1
L :“

»

—

–

rw1

...
rw1D1L

fi

ffi

fl

P RpL`1qˆ19 for successive values of L,

as shown in Table 1. The numerical rank of ĂW 1
L equals 2

for L ě 1, see statement 2 of Theorem 2.

Table 1. Singular values of ĂW 1
L for Example 2

L Normalized SVDs

0 1
1 1, 2.4306 ¨ 10´1

2 1, 1.4437 ¨ 10´1, 4.0508 ¨ 10´14

3 1, 8.5684 ¨ 10´2, 1.2201 ¨ 10´12, 1.5907 ¨ 10´14

4 1, 4.8094 ¨ 10´2, 2.7146 ¨ 10´11, 6.0841 ¨ 10´13, 4.4475 ¨ 10´15

Assume that we want to compute from w a trajectory w1 P

B such that w1p0q “ 1, d
dtw

1p0q “ 3. The solution of such
initial conditions problem can be computed with pen and
paper solving for α and β in the equations αe´2¨0`βe0 “ 1,
´2αe´2¨0 ` βe0 “ 3, obtained from the parametrization
αe´2t ` βet of trajectories in B. The resulting trajectory
is w1ptq “ ´ 2

3e
´2t ` 5

3e
t. We use Theorem 3 to compute

an approximation of w1; denoting b1 :“ rb0 . . . b18s
J
, we

first compute

”

ĂW 1
3b

1p0q ĂW 1
3Db1p0q

ı

“

»

—

–

2.0000 ´1.0000
´1.0000 5.0000
5.0000 ´7.0000

´7.0000 17.0000

fi

ffi

fl

,

and then we solve the equations in α :“ rα0 . . . α3s:

α

»

—

–

2.0000 ´1.0000
´1.0000 5.0000
5.0000 ´7.0000

´7.0000 17.0000

fi

ffi

fl

“ r1 3s .

The least-squares solution of these equations is α0 “

0.4571, α1 “ 0.4032, α2 “ 0.5111, α3 “ 0.2952. The
Chebyshev coefficients of the approximate solution of the
initial conditions problem are associated with the vector
α0 rw1 ` . . . ` α3 rw1D13. Such coefficients and those of the
exact solution ´ 2

3e
´2t ` 5

3e
t are compared in Table 2.

5. THE DATA-DRIVEN SIMULATION PROBLEM
WITH BOUNDARY CONDITIONS

Using the parametrization of system trajectories in terms
of their orthogonal basis expansion provided in Theorem
2, we solve the following problem.

Autonomous data-driven simulation problem
with boundary conditions

Let B be an autonomous scalar linear differential
system. Let w P B be informative for identification.

Given t0, t1 P I and d0, d1 P R, compute w1 P B such
that w1pt0q “ d0, w

1pt1q “ d1.

Table 2. Chebyshev coefficients for Example 2

Exact solution rw1

5.9039 ¨ 10´1 5.9039 ¨ 10´1

4.0047 4.0047
´4.6611 ¨ 10´1 ´4.6611 ¨ 10´1

3.5755 ¨ 10´1 3.5755 ¨ 10´1

´5.8514 ¨ 10´2 ´5.8514 ¨ 10´2

1.4006 ¨ 10´2 1.4006 ¨ 10´2

´2.0586 ¨ 10´3 ´2.0586 ¨ 10´3

3.0485 ¨ 10´4 3.0485 ¨ 10´4

´3.6600 ¨ 10´5 ´3.6600 ¨ 10´5

4.0773 ¨ 10´6 4.0773 ¨ 10´6

´4.0134 ¨ 10´7 ´4.0134 ¨ 10´7

3.6338 ¨ 10´8 3.6339 ¨ 10´8

´3.0038 ¨ 10´9 ´2.9984 ¨ 10´9

2.3000 ¨ 10´10 2.3143 ¨ 10´10

´1.6344 ¨ 10´11 ´1.4037 ¨ 10´11

1.0852 ¨ 10´12 2.0116 ¨ 10´12

´6.7502 ¨ 10´14 2.1893 ¨ 10´13

3.8488 ¨ 10´15 3.2022 ¨ 10´15

´2.6830 ¨ 10´16 1.8398 ¨ 10´16

The following is a characterization of all solutions to this
problem.

Theorem 4. Let b be a complete orthogonal basis for
L2pI,Rq with differentiation matrix (9). Let w P B be

informative for identification, and define ĂW by (14).

There exists w1 P B such that w1pt0q “ d0 and w1pt1q “ d1
if and only if there exist αi P R, i “ 0, . . . , L such that

rd0 d1s “ rα0 . . . αLs ĂW rbpt0q bpt1qs . (18)

Moreover, if (18) is solvable, then any two solutions

α “ rα0 . . . αLs and α1 “
“

α1
0 . . . α1

L

‰

differ by a vector in left ker ĂW.

Proof. Sufficiency of the condition follows defining w1 :“
řL

i“0 αi
di

dtiw, using statement 4 of Theorem 2, and the

equality fptq “ rfbptq for all f P L2pI,Rq and all t P I.

To prove necessity, use statement 4 of Theorem 2 to
conclude that the basis representation of every trajectory

w1 P B belongs to row space ĂW. Equivalently, there exist

αi P R, i “ 0, . . . , L such that rw1 “ rα0 . . . αLs ĂW. Now

use the equality fptq “ rfbptq to conclude that this linear

combination of the rows of ĂW must satisfy (17).

To prove the second part of the Theorem, observe that (18)
is a system of two linear equations in the indeterminates

αi, i “ 0, . . . , L, with coefficient matrix ĂW rbpt0q bpt1qs P

RpL`1qˆ2. Any two solutions differ by an element of the
left kernel of such coefficient matrix.

Example 3. We use the same data of Example 2 and solve
the boundary condition problem of computing a trajectory
w1 P B such that w1p´1q “ 1 and w1p1q “ 2. Using the
parametrization w1ptq “ αe´2t ` βet of all trajectories
of B, it can be checked that the desired trajectory is

w1ptq “ e4´2e2

e6´1 e´2t` 2e5´e
e6´1 e

t. We now use the approximate
parametrization of all solutions provided by the row space

of ĂW 1. We first compute b1p´1q and b1p1q; the solution of
the boundary condition problem w1p´1q “ d´1, w

1p1q “

d1, are parametrized by the system of equations



rα0 . . . α3s ĂW 1
“

b1p´1q b1p1q
‰

“ rα0 . . . α3s

»

—

–

7.7569 2.8536
´14.4102 2.4476
29.9241 3.2596

´58.7446 1.6356

fi

ffi

fl

“ rd´1 d1s .

We solve these equations in the least-squares sense with
d´1 “ 1, d1 “ 2 and obtain

rα0 . . . α3s “ r0.2116 0.1731 0.2502 0.0959s ,

from which the trajectory
ř3

i“0 αi rw1D1ib1p¨q is obtained.

6. CONCLUSIONS AND FURTHER WORK

Using orthogonal bases representations of square-integrable
functions, in Theorem 2 we parametrized all (vectors of
coefficients of) trajectories of scalar autonomous systems
in terms of linear combinations of the (vector of coefficients
of the) derivatives of a “sufficiently rich” one. We used
such parametrization to solve initial- and boundary-values
data-driven simulation problems in sections 4 and 5.

The results presented in this contribution are part of a
broader research effort aimed at evaluating the potential of
orthogonal basis functions in continuous-time data-driven
control. The following are two of the current lines of
investigation:

‚ Using an analogous approach to the one illus-
trated here, we have recently solved the problem of
parametrizing restrictions of MIMO trajectories in
terms of linear combinations of an informative one
and its derivatives, see (Rapisarda et al., 2023);

‚ The parametrization obtained in (Rapisarda et al.,
2023) for MIMO systems is also being used to solve
data-driven optimal control problems, and it is being
applied to develop a data-driven alternative to classi-
cal approaches to continuous-time Iterative Learning
Control problems.
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Berberich, J., Römer, A., Scherer, C., and Allgöwer, F.
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