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Abstract

In this paper we provide a new parametrization of the characteristic curve (I -V curve) associated to the photovoltaic (PV)
single-diode model (SDM), which is the most common model in the literature to analyze the behavior of a PV panel. The
SDM relates the voltage with the current, through a transcendental equation with five parameters to be determined. There are
many methodologies to extract the SDM parameters and some of them are based on obtaining the best fit of the SDM model
on a voltage–current dataset through the ordinary least squares method. However, the fact that errors affect not only the current
but also the voltage indicates that the maximum likelihood estimation (MLE) of the parameters is obtained by the total least
squares method, also called orthogonal distance regression (ODR). The main difficulty in performing ODR lies in obtaining
the Euclidean distance from a point to the SDM I -V curve which is in general a hard mathematical problem; in our particular
case it is noticeably more difficult due to the implicit nature of the SDM equation and the fact that solution candidates might
not be unique. This paper proposes a new parametrization that allows reduction of the calculus of the Euclidean distance from
any point to the I -V curve to solving a single-variable equation. An in-depth mathematical analysis determines the number

f possible candidates where the Euclidean distance can be attained. Moreover, a full casuistry alongside a geometrical study
ased on the curvature of the I -V curve and the Maximum Curvature Point, permits identification and classification of all these
andidates. This enables for the first time a complete algorithm to compute the Euclidean distance from a point to an I -V

curve at any condition and, thus, to perform a reliable ODR to obtain the MLE of the SDM parameters. Using the obtained
theoretical background, it is demonstrated that two existing methodologies to compute the Euclidean distance fail in some
cases, whereas the proposed algorithm is execution-proof and runs faster.
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1. Introduction

The calculation of the Euclidean distance from a point to a curve in the plane R2, also referred to as orthogonal
istance or perpendicular distance, is a mathematical problem that consists of finding the minimum distance from
he point to the curve. This distance, defined through the Euclidean norm or the 2-norm in R2, finds applications in
umerous engineering problems, especially in the broad field of parameters identification. In the particular case that
he curve is a straight line, the problem is quite simple and the solution is given by a very well-known closed-form
ormula (see, for example, [41]). For any other type of curve, the distance problem becomes much more complicated
see, for example, [24] for the distance to a conic), especially when the curve is given implicitly or the solution
andidates mare multiple (not unique). This paper deals with such an application on photovoltaic (PV) modeling,
n which we want to calculate the Euclidean distance from a voltage–current point to the characteristic curve (I -V
urve) generated with the single-diode model (SDM) equation which implicitly relates the voltage and the current.

The SDM, also known as five-parameter model, is surely the most widely used approach to characterize the
ehavior of a PV module (e.g. Google Scholar yields more than 95,000 results to a search of keywords photovoltaic
ingle diode model). Obtaining the SDM parameters has been an active research topic for more than 50 years and
s still at the forefront of research today. A short review that follows aims to provide a glimpse of the state of the
rt on this area. The following studies use experimental data to extract the parameters. In particular, [8] obtains
he maximum likelihood estimates (MLE) of the parameters by using the Euclidean distance; [16,30,44] have
btained in recent years very promising results in the parameters extraction by minimization based on the current
istance; and [28] analyzes in depth various fitting approaches, including a novel method that combines current and
oltage distances. As an alternative approach, [43] provides an analytical and quasi-explicit method for parameters
xtraction without the use of fitting techniques. Other papers use the manufacturers’ datasheet for the parameters
xtraction; for example, [31,45] demonstrate that only with the three Remarkable Points (short-circuit, open-circuit
nd maximum power points), there are infinite I –V curves satisfying these conditions. Other papers analyze the
arameters behavior as functions of the environmental conditions (see, for example, [9,20,26]), or other factors such
s degradation (see, for example, [6,27,39]). There are many methodologies to obtain the SDM parameters from a
et of voltage–current points obtained from experimental measurements, some of which are based on approximations
nd simplifications of the model. Examples are assuming infinite shunt resistance, Rsh , [10,46]; treating the ideality
actor, n, as a constant [47]; neglecting the series resistance, Rs [21]; as well as approximations of the equations
erived from the model being forced to satisfy the Remarkable Points conditions, that is, the short circuit point,
0, Isc), the open circuit point, (Voc, 0) and maximum power point, (Vmpp, Impp), satisfy the SDM equation and the

slope at the maximum power point, I ′
mpp, satisfy the relation I ′

mpp = −Impp/Vmpp (see, for example, [7,19,38]).
One of the most efficient methodologies for the calculation of the parameters is the so-called “Reduced form

method” [29,30]. This is based on finding closed relations between the parameters by using the remarkable points
conditions in order to reduce the number of parameters to be determined, then these independent parameters
are obtained by means of curve fitting with the rest of available points. [16] is another paper that uses the
idea of reducing the dimension of the parameter search space in combination with a generalized Benders-like
decomposition, it obtains similar results to [30]. Nevertheless, the methodology that today obtains the best results
over two case studies (originally used in [22] and nowadays usually used in the literature to compare parameter
extraction methods) and on the one million curves dataset of National Renewable Energy Laboratory (NREL), is the
so-called “Two-step linear least-squares method” [44]. This is based on the “Oblique Asymptote method”, inspired
by the geometric properties of the SDM [42], in conjunction with the least-squares method. It is also possible to
obtain good parameters directly by performing a curve fitting method starting from certain parameters acquired
by simple strategies. Other methods adopt sophisticated optimization techniques such as metaheuristic algorithms
(for example, genetic [5,37], generalized reduced gradient [33], particle swarm [1], pattern search [2], simulated
annealing [23], artificial bee colony [36], adaptive differential evolution [17] , harmony searchbased [3], or salp
swarm [35]), but some of them need to know a priori bounds on the parameters that can be obtained, for example,
from the remarkable points using the formulae provided in [45], see also [31].

In almost all the optimization methodologies, the objective function consists of minimizing an error metric based
on the current, usually the Root Mean Square Error (RMSE). However, it has been shown quite a few times in the
literature that this approach may skew the results when the samples feature noise in both voltage and current. A very
recent paper [8] has demonstrated that the maximum likelihood parameters estimation (MLE) is obtained only when
the metric is based on the Euclidean distance from a voltage–current point to the I –V curve instead of the current
2
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distance. This means that the calculation of the Euclidean distance becomes a key tool in photovoltaic modeling. A
few studies prior to the one just mentioned have used to date the Euclidean distance metric for the calculation of the
model parameters. [15] applies orthogonal distance regression (ODR) to find the model parameters that minimize
the sum of squared orthogonal distances from each data point to the model surface in the core of their model
calibration algorithm. [15] uses the well-known ODRPACK software ([11,12]) based on an algorithm to perform
ODR [13,14]. This algorithm has an inner loop that attempts to find the Euclidean distance from each sample
(xi , yi ) to the model curve as follows: consider a finite collection of points on a neighborhood [a, b] of xi and, then
compute the corresponding points of the model curve which, moreover, satisfy the orthogonality condition (OC)
(i.e. the tangent line to the model curve at a model point is orthogonal to the line crossing this point and (xi , yi ),
that is checked with an independent routine). This inner loop has some computational limitations, namely, it is not
guaranteed that the window [a, b] provides a point of the model curve where the OC is satisfied, and it is not certain
that the point is the global minimum, as we show later that this is a problem with multiple solutions. Moreover,
the accuracy and speed of the algorithm will depend on the number of points taken in [a, b]. These limitations can
occur, for example, when (xi , yi ) is not sufficiently close to the model curve or the interval [a, b] is not sufficiently
arge. Other methods to compute the Euclidean distance from a point to an I –V curve suffer again in providing a
olution without checking if it really is the global minimum, which occurs particularly when multiple candidates
re available. These are the main challenges in two benchmark methods we evaluate in this paper: (i) the system
f two nonlinear equations formed by the SDM equation and the necessary optimality condition, and (ii) a recent
ethod which reduces the previous system in a one-variable equation based on the so-called diode voltage [8].
This paper treats this problem comprehensively by theoretically studying the Euclidean distance calculation on

DM and introducing an algorithm that guarantees correct and reliable solution. This method is based on a new
arametrization of the SDM (Section 2), which allows to reduce the calculation of the Euclidean distance to compute
he roots of a one-variable function. This function has been deeply studied to locate all its possible roots and
nfer whether they are possible candidates to provide the Euclidean distance (Section 3). Furthermore, this study
xplores for the first time relevant geometrical concepts, such as the curvature of a I –V curve and the corresponding
alculus of the maximum curvature point of a I –V curve alongside the identification of its evolute (Section 3.3 and
ppendix A). The resulting foolproof ED algorithm (Section 4) is then applied to orthogonal distance regression for
igh accuracy and fast execution time. The proposed parametrization is useful for other applications as well related
o photovoltaic modeling. Finally, these findings are supported by experimental tests (Section 5) that demonstrate
he reliability of the ED Algorithm (Appendix A) as compared to the existing state of the art.

. A photovoltaic single-diode model parametrization

This section introduces a parametrization of the I –V curve associated to the SDM and explains the meaning and
ther implications of the parameters defined.

.1. New parametrization

The single-diode model (SDM) equation associated to a solar panel with ns cells in series is given by

I = Iph − Isat

(
exp

(
V + I Rs

nsnVT

)
− 1

)
−

V + I Rs

Rsh
(1)

here I is the panel current, V is the panel voltage, Iph is the panel photocurrent, Isat is the panel diode saturation
urrent, Rs is the panel series resistance and, Rsh is the panel shunt resistance. The value n is the ideality factor,
nd VT =

k
q T is the so-called thermal voltage, where T is the temperature, k is the Boltzmann’s constant and, q is

the electron charge.
Eq. (1) can be rewritten (see, for example, [42], and [44])as

I = A + B − EV − BC V D I (2)

where

A =
Iph Rsh

, B =
Isat Rsh

, E =
1

, C = exp
(

1
)

, D = exp
(

Rs
)

. (3)

Rsh + Rs Rsh + Rs Rsh + Rs nsnVt nsnVt

3
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Fig. 1. Geometrical parameter meaning in the parametrization (7).

If we define x = BC V D I > 0, taking logarithms one has

ln x = ln B + V ln C + I ln D (4)

In addition, substituting x = BC V D I in Eq. (2) yields

I = A + B − EV − x (5)

Now, combining (4) and (5) one obtains

ln x = ln B + V ln C + (A + B − EV − x) ln D

from where V can be isolated exclusively in terms of x as

V =
1

ln C − E ln D
(ln x − (A + B − x) ln D − ln B) (6)

Finally, if V in (5) is replaced by its expression in (6), I becomes as follows exclusively in terms of x

I = A + B − E
(

1
ln C − E ln D

(ln x − (A + B − x) ln D − ln B)

)
− x

Therefore, we have established that any point of the I –V curve (2) is of the form (V (x) , I (x)) for certain
ositive x , where{

V (x) =
1

ln C−E ln D (ln x − (A + B − x) ln D − ln B)

I (x) = A + B − EV (x) − x
(7)

n other words, (V (x) , I (x)) is a parametrization of the I –V curve.
It is worth noting that all the previous formulation and the subsequent development can be expressed in terms

f the original parameters Iph, Isat , n, Rsh , and Rs but, as we will see in Section 3, the expressions and results are
impler and easier to interpret using parameters A, B, C, D, and E .

These explicit expressions of V and I as functions of the auxiliary variable x have many applications and will
e a key tool here in the precise and fast calculation of the Euclidean distance from a point to an I –V curve.

.2. On the parameter x of the new parametrization

Geometrically speaking, the parameter x in the I –V curve parametrization (7) given by

x = BC V D I
= A + B − EV − I ∈ ]0, +∞[

s the vertical distance of the I –V point (V (x) , I (x)) to the asymptote oblique A + B − EV of (1) and (2) (see
Fig. 1).
4
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2.2.1. The parameter x as a function of V or I
I and V can be expressed in terms of the Lambert W function, W0 (see [4]), and the expressions using the

parameters A, B, C , D, and E are shown in (8) and (9).

I = A + B − EV −
1

ln D
W0

(
BC V D A+B−EV ln D

)
(8)

V =
1
E

(A + B − I ) −
1

ln C
W0

(
B
E

D I C
1
E (A+B−I ) ln C

)
(9)

Comparing the second equation in (7) with (8) and (9) one deduces the following expressions for the parameter
x in terms of V and I via the Lambert W function.

x (V ) =
1

ln D
W0

(
BC V D A+B−EV ln D

)
x (I ) =

E
ln C

W0

(
B
E

D I C
1
E (A+B−I ) ln C

)

.2.2. The parameter x as a function of the derivative function I ′ and vice versa: the slope of the I –V curve at
ny point

Eq. (2) defines I as an infinitely differentiable function of the variable V (see [42]). Differentiating implicitly
ith respect to V in (2) one obtains

I ′
= −E − BC V D I (

ln C + I ′ ln D
)

nd by exploring that BC V D I
= x one has

I ′
= −E − x

(
ln C + I ′ ln D

)
from where

x
(
I ′

)
= −

I ′
+ E

ln C + I ′ ln D
and I ′ (x) = −

E + x ln C
1 + x ln D

(10)

In [42], it was established −
ln C
ln D < I ′ < −E , so ln C + I ′ ln D > 0 and I ′

+ E < 0.
Please observe that the second expression in (10) gives directly the slope of the I –V curve at any point (V, I )

hrough

I ′ (V, I ) = −
E + BC V D I ln C
1 + BC V D I ln D

= −
E + (A + B − EV − I ) ln C
1 + (A + B − EV − I ) ln D

(11)

his above relationship (11) has been already given in [42].
In the following, the new parametrization given in (7) along with the properties derived from it, is applied to

btain the Euclidean distance from a point to an I –V curve defined by the SDM equation. The novelty of this
arametrization paves the way also to other applications in photovoltaic modeling.

. The Euclidean distance from a point to an I–V curve: an in-depth analysis

.1. Problem reduction

The problem of finding the point(s) of the I –V curve, corresponding to the SDM (2), closest with respect to the
uclidean distance to a given point (V0, I0) can be modeled as the following mathematical optimization problem

Minimize (V − V0)
2
+ (I − I0)

2

subject to I = A + B − EV − BC V D I (12)

Using the parametrization (7), the optimization problem (12) is reduced to minimize the single-variable function

d (x) = (V (x) − V0)
2
+ (I (x) − I0)

2 (13)

here x ∈ 0, +∞ .
] [

5
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Fig. 2. Graphical representation of closest points of an I –V curve from a point (V0, I0).

The example of Fig. 2 shows three different points (in black), their corresponding closest points on the I –V
curve (in green) and the Euclidean distance (dashed lines). It is worth noting that there may be multiple solutions
to that problem, as Fig. 2 illustrates.

3.1.1. Properties of function d
In order to analyze the possible extremes of d given in (13), let us study the properties of function d and its first

and second differentiated functions. These properties are given below.

• d is infinitely differentiable on its domain ]0, +∞[.
• limx→0+ d (x) = +∞ and limx→+∞ d (x) = +∞.
• The derivative function of d can be written as (see the details in Appendix C)

d ′ (x) =
2

δ2 x
f (x)

where

f (x) = (α + βx) ln x + γ x2
+ ηx + ρ (14)

with

α = 1 + E2

β = ln D + E ln C

γ = (ln C)2
+ (ln D)2

δ = ln C − E ln D

η = β (1 − ln B) − γ (A + B) + δ (I0 ln C − V0 ln D)

ρ = − (α ln B + β (A + B) + δ (V0 − E I0)) (15)

For SDM parameters with physical meaning, α, β and γ are positive (see (3)), but also δ is positive because
E < ln C/ ln D (see again (3)). Please observe that α, β, γ and δ do not depend on (V0, I0), whereas η and
ρ are functions of (V0, I0).
Remark: Obviously, the critical points of d (d ′ (x) = 0) are the roots of the function f ( f (x) = 0). Moreover,
d ′ and f have the same sign.

3.1.2. Properties of function f
Let us study the properties of function f given in (16) and next, its implications on d ′ and d .

• f is infinitely differentiable on its domain ]0, +∞[.
• limx→0+ f (x) = −∞ and limx→+∞ f (x) = +∞

• From the previous properties, f has at least one root on ]0, +∞[
• f ′ (x) =

1
x (α + βx) + β ln x + 2γ x + η =

1
x

(
βx ln x + 2γ x2

+ (β + η) x + α
)

• lim + f ′ x = +∞ and lim f ′ x = +∞
x→0 ( ) x→+∞ ( )

6
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Fig. 3. Shapes of f ′ and f when f ′(x+) ≥ 0.

• f ′′ (x) =
−α

x2 +
β

x + 2γ

• f ′′ (x) = 0 ⇔ x = −
1

4γ

(
β +

√
β2 + 8αγ

)
< 0 (out of the domain of f ) or x =

1
4γ

(√
β2 + 8αγ − β

)
> 0.

Due to its relevance in the results of this work, let us denote

x+ =
1

4γ

(√
β2 + 8αγ − β

)
(16)

.2. Critical points of the distance function d

From the above properties of f , one has that its derivative function f ′ is decreasing on ]0, x+[ and increasing
n ]x+, +∞[ and, so, f ′ attains on ]0, +∞[ a unique relative (indeed global) minimum at x+. Based on this, the
ollowing casuistry analyzes all the possible cases to find and classify the critical points of d and, as a consequence,
t allows to obtain in any case the global minimum of d.

1. If f ′ (x+) ≥ 0, then f ′
≥ 0 on ]0, +∞[ and, consequently, f is increasing on ]0, +∞[, then f and d ′ have

a unique root x0 on ]0, +∞[, which is the unique critical point of d (in fact the global minimum of d). See
illustrative examples in Fig. 3.

2. If f ′ (x+) < 0, f ′ has two roots, x1 and x2, with 0 < x1 < x2, such that f ′ > 0 on ]0, x1[ ∪ ]x2, +∞[ and
f ′ < 0 on ]x1, x2[, then function f has a relative maximum at x1 and a relative minimum at x2.
Two subcases are distinguished:

(a) If f (x1) ≤ 0 or f (x2) ≥ 0, then f and d ′ have a unique root x0 on ]0, +∞[, which is the unique
critical point of d , (in fact the global minimum of d). More concretely:

• If f (x1) < 0 or f (x2) > 0, then f and d ′ have a unique root x0 on ]0, +∞[ (see Fig. 4).
• If f (x1) = 0 or f (x2) = 0, f and d ′ have a pair of different roots (see Fig. 5).

– If f (x1) = 0 and x0 is the other root, then x1 < x0 and d attains a unique relative (in fact
global) minimum at x0 and an inflection point at x1.

– If f (x2) = 0 and x0 is the other root, then x2 > x0 and d attains a unique relative (in fact
global) minimum at x0 and an inflection point at x2.

(b) If f (x1) > 0 and f (x2) < 0, f has three roots x01, x02 and x03, with x01 < x02 < x03, where d attains,
respectively, minimum, maximum and minimum relatives, then, the global minimum of d cannot be
attained at x02. Just comparing d (x01) and d (x03) one knows which is the global minimum of d (see
Fig. 6).

Remark: From the previous casuistry it is concluded that there are at most three candidates to attain the Euclidean
istance from a point to the I –V curve and, in fact they can be perfectly analytically classified. The main reason
hy existing methods may fail to find the Euclidean distance is because they do not analyze the number of possible

andidates nor do they classify the candidates obtained. In contrast, this paper shows that leveraging on the previous
nalysis, a closed algorithm can be designed to obtain the solution(s) corresponding to the global minimum without

ny failures. The next subsection explains how this is achieved in a computationally efficient manner.

7
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Fig. 4. Shapes of f ′ and f when f ′(x+) < 0 and f (x1) < 0 or f (x2) > 0.

Fig. 5. Shapes of f ′ and f when f ′(x+) < 0 and f (x1) = 0 or f (x2) = 0.

Fig. 6. Shapes of f ′ and f when f ′(x+) < 0 with f (x1) > 0 and f (x2) < 0.

.3. A geometrical analysis of the critical points of d through the curvature of the I –V curve.

Previous subsection has proven that function f may have 1, 2 or 3 roots depending on the location of the
amples (V0, I0) and that the candidate to the Euclidean distance is not always unique. However, it should be noted
hat for samples very close to the curve, f will exhibit usually just 1 root as explained later. Nevertheless, in many
pplications there are instances that some samples are far away from the curve, thus giving rise to multiple solutions,
hich is the reason why many algorithms fail. For example, in parameter extraction applications, a search algorithm
ay initialize and go through parameter values that correspond to curves which are distant to the samples.
In this subsection, we establish some interesting relationships between certain geometrical features of the I –V

urve and the functions f and f ′. These relationships along with the information provided in the previous subsection
llows for a resourceful casuistry that reaches quickly and flawlessly the roots of f and therefore the Euclidean
istance.

First of all, please observe that due to the strict concavity of the I –V curve (see [42]), for the points (V0, I0)
above the I –V curve the function d has a unique critical point where its global minimum is attained.

Now, let us interpret the geometrical meaning of f ′ (x+) = 0. Remember that, as seen in Section 3.2, the sign
f f ′(x ) is crucial to locate the roots of f .
+

8
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Fig. 7. Graphical representation of an I –V curve and its corresponding line f ′ (x+) = 0.

Since f ′′ (x+) = 0, which is equivalent to 2γ x2
+

= α − βx+, the following equivalence can be derived from the
expression of f ′ (x+)

f ′ (x+) = 0 ⇔ I0 =
ln D
ln C

V0 + µ

where µ =
1

δ ln C

(
γ (A + B) − β ln

( e x+

B

)
−

2α
x+

)
does not depend on the point (V0, I0) (see in Fig. 7 the geometric

epresentation). Now, one has that f ′ (x+) > 0 if, and only if, I0 > ln D
ln C V0 +µ, and, as a consequence, f ′ (x+) < 0

f, and only if, I0 < ln D
ln C V0 + µ. In other words, if the point (V0, I0) is on the line I =

ln D
ln C V + µ or above, then

f ′ (x+) ≥ 0 and d has a unique critical point where it attains its global minimum. On the other hand, if the point
V0, I0) is below this line, then f ′ (x+) < 0 and the second level of casuistry of Section 3.2 must be done to find
he global minimum of d.

Next, let us interpret the geometrical meaning of f (x1) = 0 and f (x2) = 0 in the case f ′ (x+) < 0.

.3.1. Maximum curvature of an I –V curve: the maximum curvature point.
As we have already explained the beginning of this subsection, points “close enough” to the I –V curve satisfy

hat f has a unique root, i.e. d has a unique critical point where the global minimum distance is attained. As we
how below, this is not a coincidence but a consequence of the proximity of the experimental points to the I –V
urve alongside the curvature of the curve (see [40]).

In general, the radius of curvature of a curve at one of its points P0 is the radius of the circular arc which best
pproximates the curve at this point. Formally, the radius of curvature, R, is the reciprocal of the curvature, k, let
s define below. The circular arc is a portion of a circumference, osculating circle, of radius R, curvature radius,

centered at a certain point O , center of curvature, and, therefore, this radius is the minimum distance from O to the
curve. Moreover, the distance is attained, at least, at P0, and thus, any other point P1, on the segment connecting
O and P0, attains its minimum distance to the curve uniquely at P0 (see [40]).

Let us provide the exact computation of the maximum curvature of an I –V curve.
The curvature of the function I is given by the formula (see [18] for a historical overview of the definition of

curvature)

k =

⏐⏐I ′′
⏐⏐(

1 + (I ′)2)3/2 =
−I ′′(

1 + (I ′)2)3/2

here the second equality is a consequence of I ′′ < 0 (see for instance [42]).
One has the following expression of I ′′ in terms of I ′

I ′′
=

(
ln C + I ′ ln D

)2 (
I ′

+ E
)

ln C − E ln D
9
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Fig. 8. Geometrical interpretation of the casuistry in the different regions of an I –V curve. Yellow, blue, green (E) and OMC P : f has 1
root; Evolute (ext(E)) (except OMC P ): f has 2 roots; Red (int(E)): f has 3 roots.

So, using the expression of I ′ in terms of x given in (10) one can express the curvature k in terms of x as (see
details in Appendix C.2)

k (x) =
δ2x(

α + 2βx + γ x2
)3/2

where α, β, γ, δ where given in (15).
Observe that the critical points of k (those where k ′

= 0) are exactly the same points where f ′′
= 0 (see details

n Appendix C.3, see also Proposition 1.3 in [25], and [32]), recall x = −
1

4γ

(√
β2 + 8αγ + β

)
< 0 (which is

ot a possible value) and x = x+ =
1

4γ

(√
β2 + 8αγ − β

)
> 0. Moreover, at x = x+ function k attains a relative

aximum which is in fact its global maximum on ]0, +∞[. So, the maximum curvature of the I –V curve is

kmax = k (x+) =
δ2x+(

α + 2βx+ + γ x2
+

)3/2

nd it is attained at the “Maximum Curvature Point”, MC P = (VMC P , IMC P), which is obtained from (7) for
x = x+.

The radius of curvature of the I –V curve at the MC P is Rmax = 1/kmax and the corresponding center of
curvature is denoted by OMC P (see Figs. 8 and 9).

One has that the line crossing the points MC P and OMC P is exactly f (x+) = 0, and the center of curvature of
the MC P is the intersection point of the lines f (x+) = 0 and f ′ (x+) = 0 (see Fig. 8).

Fig. 8 shows that the place of all the centers of curvature of the I –V curve, called the evolute of the curve,
provides a partition of the plane into three subsets: E , int (E), and ext (E), given by:

1. E : the evolute itself formed by two branches f (x1) = 0 and f (x2) = 0. The points in E necessarily satisfy
f ′ (x+) ≤ 0.

2. int (E): an open set between the two branches of the evolute and with the point OMC P as a cusp, that is, the
points satisfying f ′ (x+) < 0 with f (x1) > 0 and f (x2) < 0 (red region in Fig. 8).

3. ext (E) = (E ∪ int (E))c: the complementary set of E ∪ int (E), that is, the points satisfying f ′ (x+) < 0 with
f (x1) < 0 or f (x2) > 0, or the points satisfying f ′ (x+) > 0 (yellow, blue and green regions in Fig. 8).

Recall from the analytical casuistry that:

• If (V0, I0) ∈ ext (E) ∪ OMC P , function f has a unique root where function d attains its global minimum.
• If V , I ∈ E \ O , function f has two roots but function d has a unique global minimum in one of them.
( 0 0) MC P

10
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Fig. 9. Graphical representation of an I –V curve and its corresponding strip Λ.

• If (V0, I0) ∈ int (E), function f has three roots and function d can attain its global minimum at one or at
most at two of them.

Taking into account all the previous information, any point (V0, I0) with a distance to the I –V curve less than
Rmax = 1/kmax falls into the set ext (E). The set of these points is the strip colored in orange in Fig. 9.

So, coming back to our first comment in this subsection, an example of a real situation where the points are
close enough to the I –V curve can be given when one has a set of I –V points measured with a certain noise level
that is small enough for the noisy points to satisfy the conditions for f to have a unique root corresponding to the
unique minimum of d . But even in this special case, some algorithms like N-R method may fail to converge to that
solution if the seed used is not in the basin of attraction of the solution.

4. Proposed strategy to compute the Euclidean distance

In this section, we are employing all the theoretical information obtained in the previous subsections to design
an algorithm that computes in any possible case the Euclidean distance from a point (V0, I0) to the I –V curve. We
minimize the casuistry that turns around the value x+ given in (16). In addition, in each possible position of the
point (V0, I0), we provide a seed that ensures not only the convergence of the N-R method applied to f , but also
that it is close to the solution to achieve a fast convergence. As can be seen in Fig. 10, the selection of the seeds for
the N-R method applied to f , depends on the sign of f (x+); specifically, to ensure convergence of the method, if
f (x+) > 0 the seed xs must be selected to the left of x+ satisfying f (xs) < 0 and, if f (x+) < 0 the seed must be
selected to the right of x+ satisfying f (xs) > 0 (see Appendix B.1 on how to obtain the concrete seeds proposed
in the ED algorithm of Appendix A).

This selection of seeds guarantees moreover that:

• If f has 1 or 2 roots, that is, if (V0, I0) is inside the yellow, blue or green regions or on the black curve of
the evolute in Fig. 8, the N-R method converges to the solution corresponding to the Euclidean distance.

• If f has 3 roots, that is, if (V0, I0) is inside the red region in Fig. 8, the N-R method achieves the two relative
minima of d and, then, just a simple comparison will provide the one corresponding to the Euclidean distance.

Algorithm 1 designed to obtain the Euclidean distance, whose flowchart is shown in Fig. 11 and pseudocode can
be found at Appendix A, has the following main steps:

1. Initialization phase: Compute the root xaux of f obtained with a seed selected as explained before in terms
of the sign of f (x+).

2. Identification phase: Check the position of the point (V0, I0) to distinguish the number of possible roots of
f .
11
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Fig. 10. Graphical representation of seeds selection in different parts of the I –V curve using the geometrical meaning of the casuistry.

Fig. 11. Flowchart of algorithm to compute the ED from a point to an I –V curve.

• f has a unique root: In the three following cases f has a unique root and, when xaux provides the
Euclidean distance:

(a) d (xaux ) ≤ Rmax: which means that (V0, I0) is close enough to the I –V curve
(b) I (xaux ) ≤ I0: which means that (V0, I0) is above the I –V curve
(c) f ′ (x+) ≥ 0: which means that (V0, I0) is above the line f ′ (x+) = 0

In these cases, the point V , I is inside one of the following regions in Fig. 8: yellow, blue or green.
( 0 0)

12



F.J. Toledo, V. Galiano, J.M. Blanes et al. Mathematics and Computers in Simulation xxx (xxxx) xxx

C
w

5

v
i
l
w
g
n

5

t

o
(

• f has one or two roots: If none of the previous cases are satisfied, one has in particular that f ′ (x+) < 0
that guarantees the existence of x1 and x2 (roots of f ′), which must be calculated (see in Appendix B.2
how to obtain these roots). Then, in the two following cases f has 1 or 2 roots and, again, xaux provides
the Euclidean distance:

(a) f (x2) ≥ 0: the point (V0, I0) is in the blue region on the evolute of Fig. 8.
(b) f (x1) ≤ 0: the point (V0, I0) is in the green region on the evolute of Fig. 8.

• f has three roots: In the remaining case, the point (V0, I0) is in the red region and, f has 3 roots. The
Euclidean distance is obtained by comparing the two relative minima obtained with the seeds selection.

omment: In the case f ′ (x+) < 0, the roots x1 and x2 of the function f ′ (x) =
1
x

(
βx ln x + 2γ x2

+ (β + η) x + α
)
,

ill be obtained through the solutions of the equation f p (x) = 0 where

f p (x) = βx ln x + 2γ x2
+ (β + η) x + α

. Experimental results

As already discussed, the problem of obtaining the Euclidean distance from a point to a curve is, in general, a
ery hard mathematical problem. In our case, in addition, one has the burden that the I –V curve is given by an
mplicit equation, which implies that it is very challenging to compare our method with other counterparts in the
iterature. We have identified two methods from the state of the art that provide the Euclidean distance, although
e will show that they fail under certain conditions. It should be emphasized that these special conditions are not
enerally known a priori and, therefore, the universal use of these methodologies could lead to erroneous results
ot being detected.

.1. A system of two equations with two unknowns (S2E)

A sensible methodology to calculate the candidates to attain the Euclidean distance from a point (V0, I0) to the
I –V curve given by (2) is obtained as follows. This formulation is based on [8] but using the parameters A, B, C ,
D, and E given in (3) used to rewrite the SDM equation as (2).

Since I is a differentiable function of V (see [42]), the optimization problem (12) is reduced to minimization of
he one-variable function

F (V ) = (V − V0)
2
+ (I − I0)

2

where I = I (V ). The necessary condition for relative extremes (Fermat condition) F ′ (V ) = 0 leads to the relation

I ′
= −

V − V0

I − I0
(17)

Now, since

I ′
= −E − BC V D I (

ln C + I ′ ln D
)

(18)

one obtains from (17) and (18) the following expression as a necessary condition for relative extremes

V0 − V − (I0 − I ) E − BC V D I ((I0 − I ) ln C − (V0 − V ) ln D) = 0 (19)

This relation (seen as a two-variables equation) together with the model Eq. (2) lead to the following system
f two equations with two unknowns, whose solutions provide the candidate solutions to the optimization problem
12) {

I = A + B − EV − BC V D I

V0 − V − (I0 − I ) E − BC V D I ((I0 − I ) ln C − (V0 − V ) ln D) = 0 (20)

This system can be solved, for example, with a numerical method like the Newton–Raphson method for systems
of non-linear equations. It is well known that the N-R method converges if the seed is close enough to the solution
and, moreover, we have seen in the previous section that if the point (V0, I0) is close enough to the I –V curve,
then the solution of the problem (12) is unique. Therefore, if the point V , I itself is taken as seed so that the
( 0 0)
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Fig. 12. Graphical representation of the regions where S2E method does not converge (gray) or it converges to a root different from the
lobal minimum (blue).

Fig. 13. Graphical representation of the basins of attraction of the N-R method for the different possibilities of solutions of (20).

wo previous closeness conditions are simultaneously satisfied, then the N-R method will provide the Euclidean
istance. Let us call S2E the procedure of solving the system (20) with the N-R method taking (V0, I0) as seed.

Fig. 12 shows an example (SDM I –V curve with parameters Iph = 10A, Is = 10−6 A, a = 1.9, Rs = 0.1 Ω ,
Rsh = 100 Ω ) where the system (20) is solved by the N-R method for a mesh of 2000 × 2000 points (V0, I0)

istributed uniformly on the square image using each point itself as seed. The I –V curve is drawn in red; the
oints drawn in blue indicate seeds the N-R method converges to a solution where the Euclidean distance is not
ttained; in the gray points the N-R method does not converge at all; and in the remaining points (no color) N-R
uccessfully identifies the correct solution. Please note that this analysis has been possible by comparing the N-R
ethod results with the ones obtained by our method by means of distance tolerance of 10−12. For the N-R method,
convergence tolerance of 10−12 and a maximum of 200 iterations are used, i.e. non-convergence is inferred by

eaching the maximum number of iterations.
To better understand the behavior of the N-R method applied to system (20), Fig. 13 shows the basins of attraction

f each solution in the three different possible cases, that is, when the system (20) has 1, 2 or 3 solutions. I –V
urve is drawn in red and the blue curve represents the solutions of the necessary condition Eq. (19). Point (V0, I0)

s drawn in purple and obviously lies into the blue curve. The color of each solution and the corresponding basin
f attraction is the same. In gray color are shown the points/seeds for which the N-R method does not converge.

The fractal structure of each one of the basins of attraction must be emphasized, which explains the difficulty in
electing the seed for the N-R method. In addition, the point V , I itself is not always on the basin of attraction
( 0 0)
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Fig. 14. Graphical representation of the regions where DVE method does not converge (gray) or it converges to a root different from the
global minimum (blue).

of the solution corresponding to the Euclidean distance as shown above and occurs in practice during a parameter
identification process via a curve fitting method.

5.2. The diode voltage equation (DVE)

In [8], the following alternative methodology was proposed to obtain the Euclidean distance under certain special
hypotheses. Using the necessary condition for relative extremes (17) and the derivative expression (18) in terms of
the original parameters, one obtains the one-variable equation

(Iph − Is(e
VD
a −1)−

VD

Rsh
− I0)(Rs +(1+ R2

s )(
1

Rsh
+

Is

a
e

VD
a ))−(VD −V0− I0 Rs)(1+ Rs(

1
Rsh

+
Is

a
e

VD
a )) = 0 (21)

here the unknown is the so-called diode voltage given by VD = V + I Rs . Once the equation is solved, the
orresponding point (V, I ) given by

I = Iph − Is(e
VD
a − 1) −

VD

Rsh

V = VD − I Rs

is a candidate to attain the Euclidean distance. Observe that (21) is a nonlinear equation that can be solved by a
numerical method. If one uses the N-R method with seed V seed

D = V0 + I0 Rs , one has that if (V0, I0) is close enough
o the I –V curve to guarantee both, the solution of (12) is unique and the N-R method converges, then the obtained
olution provides the Euclidean distance. In other case, this methodology does not provide the desired solution as
e will see below with an analogous study to that performed for S2E. Let us call DVE the procedure of solving

21) with the N-R method taking V seed
D = V0 + I0 Rs as seed.

Conclusions are similar to that obtained for S2E: if the seed V seed
D is taken with the point (V0, I0) itself, there

are points where the N-R method does not converge to the Euclidean distance, as seen in Fig. 14. Moreover, again
the complicated structure of the basins of attraction of each solution indicates the difficulty to select the correct
seed to the N-R method converges to the corresponding solution. As an example, a gray point has been taken from
Fig. 14 and used as the nominal point (V0, I0) in the example represented in Fig. 15(a), where there is only one
possible solution to be the Euclidean distance. As shown, (V0, I0) falls outside the basin of attraction of the N-R
method and, therefore, the method does not converge taking this point as a seed. In the examples of Figs. 15(b)
and 15(c), the DVE method converges to a solutions which do not provide the Euclidean distance.
15
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Fig. 15. Graphical representation of the basins of attraction of the N-R method for the different possibilities of solutions of (21).

Table 1
Execution times and failures obtained for S2E, DVE and ED.

Methods Time (s) Failures

Noise Level Low Medium High Low Medium High

S2E 0.20013 0.20522 0.23397 0% 0% 0.38%
DVE 0.064051 0.063244 0.067489 0% 0% 2.27%
ED 0.046947 0.045734 0.048097 0% 0% 0%

5.3. Experimental results with noisy points of an I –V curve

One of the main applications of the calculus of the Euclidean distance from a point to an I –V curve is to
erform orthogonal distance regression (ODR) to obtain the best fit of an I –V curve based on the PV SDM to a
et of experimental noisy points (V exp

i , I exp
i ). This is equivalent to finding the 5 parameters of the SDM I –V curve

hat minimize the objective function (22)

SE D =

N∑
i=1

(V exp
i − V theo

i )2
+ (I exp

i − I theo
i )2 (22)

here (V theo
i , I theo

i ) is a point of the I –V curve closest (in the Euclidean distance sense) to (V exp
i , I exp

i ), for each
= 1, . . . , N , with N being the number of samples. This type of optimization procedure is a better option (see [8])

han the ordinary linear regression to obtain the maximum likelihood estimation (MLE) of the SDM parameters
hen there is noise in both, the voltage and the current of the samples.
As we have seen in the previous subsections, if the points are not sufficiently close to the I –V curve to ensure

unicity in the solution and convergence of the N-R method, the previous methodologies S2E and DVE may fail to
find the Euclidean distance and be inappropriate to perform ODR without additional interventions.

Let us see what happens in one example where three different levels of Gaussian noise with standard deviations
(σ ∈ {0.001, 0.01, 0.1}) and weighted by VOC in voltage noise and ISC in current noise, are added to 1000 samples

f a synthetic I –V curve with the same parameters as in Section 5.1. As before, the proposed method hereinafter
enoted as ED (from Euclidean Distance) is used as a benchmark to assess whether S2E and DVE successfully
btain the Euclidean distance and capture their execution cost (average of 100 repetitions). Results are shown in
able 1.

As expected from the aforementioned theoretical analysis, if the noise is low or medium, the noisy points are
ufficiently near to the I –V curve to satisfy the proximity conditions which ensure that S2E and DVE methods attain
he Euclidean distance. However, when noise is high, these methods fail in some cases. Nevertheless, the execution
ime is always higher than ED, despite all the necessary casuistry performed in the latter. This indicates that the
ophisticated ED design not only guarantees universal convergence to the right solution, but it does it also at the
ost computationally efficient way. Between S2E and DVE, the latter is faster due to the 1-equation formulation,
ut it fails more often.
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Table 2
Results for the ODR using S2E, DVE or ED.

Methods Time (s) Failures Best RMSE

Noise Level Low Medium High Low Medium High Low Medium High

S2E 2.6235 10.686 8.7305 0% 0% 6% 44% 13% 7%
DVE 0.85821 3.4582 3.9172 0% 0% 15% 41% 9% 3%
ED 0.47458 3.0602 3.4956 0% 0% 0% 100% 100% 100%

Table 3
Sets of basic seeds for ODR initialization.

Name/Parameters Iph (A) Isat (A) n Rs = 1 (�) Rsh = 1 (�)

ONES 1 1 1 1 1
NMO 1 10−6 1 1 103

TSLLS1 I T SL L S1
ph I T SL L S1

sat RT SL L S1
s RT SL L S1

sh I T SL L S1
ph

To better understand the practical impact of the ED algorithm, we have taken a set of 200 noisy points from
n I –V curve with the levels of noise indicated previously and then performed an ODR to obtain the parameters

of the SDM where the original parameters have been used to initialize the regression procedure. The lsqnonlin

MATLAB function has been used in all implementations with the same convergence tolerances. Again, in order to
obtain a reliable and stable execution time, the average of 100 repetitions of each experiment has been taken.

In the case of high noise, the methods S2E and DVE fail at some instances as shown in Table 2, that is, the
lsqnonlin function has returned error and the ODR process could not be completed; on the contrary, with the ED
algorithm all the ODR executions were entirely successful. For low and medium levels of noise, all the methods
have converged and provided practically the same SDM parameters but, as it happened for the synthetic curves,
the ED algorithm has been the fastest as can be seen in Table 2. As expected, execution times increase when noise
level is higher because more iterations for the Newton–Raphson method convergence are needed. Again, DVE is
faster than 2SE but suffers from more failures.

The third column group of Table 2 provides the best Root Mean Square Error (RMSE) with respect to the
Euclidean distance given by RM SE =

√
1
N SE D , where SE D is given in (22) and the theoretical points are

obtained with the ED method. Thus, for each simulation, we have calculated the corresponding RMSE and we
have considered that a simulation reaches the best RMSE if it differs from the lowest by less than 10−9. Although
his output should not be significant when the ODR successfully completes, since all the methods only act as internal
oops to obtain the Euclidean distances, it is worth noting that only with the ED method the best RMSE is obtained
00% of the times. With the other methods, the RMSE is less than optimal quite often, being worse at higher noise
evels. This further confirms the accuracy and robustness of the ED algorithm.

.4. Validation on the NREL dataset

To evaluate the benefits of the ED algorithm in real cases, the ODR has been performed on a selection of I –V
curves taken from the National Renewable Energy Laboratory (NREL) dataset [34], measured from the mSi460A8
panel at the Cocoa location. Specifically, 1000 curves have been randomly selected and no parameters such as
irradiance or temperature have been filtered. As in the previous subsection, we have used S2E, DVE and ED as
internal loops to compute the Euclidean distance in the ODR. Since the initial parameters are very important in
ODR, we have also used three basic sets of seeds given in Table 3 where NMO (Normal Magnitude Order) is a
selection of orders of magnitude that could be found in parameters of I –V curves measured under non-extreme
environmental conditions and with panels that are not too degraded. Parameters corresponding of TSLLS1 are those
obtained with the first phase of the TSLLS method [44] (see https://pvmodel.umh.es/) which would generally be
close to the ODR solution (see [8]).

Similar to the previous subsection, Table 4 shows that ODR falls in some cases when methods S2E and DVE are
used as internal loops to compute the Euclidean distance, while it always works fine with the ED algorithm. But
what is striking again is that the best RMSE is attained 100% of the times only with the ED algorithm in contrast
17



F.J. Toledo, V. Galiano, J.M. Blanes et al. Mathematics and Computers in Simulation xxx (xxxx) xxx

h
s
b
m
a
r

A

g
e
o
t
V
C
b
E

A

Table 4
ODR using S2E, DVE and ED in 1000 I –V curves from NREL dataset.

Seeds ONES NMO TSLLS1

Best RMSE RMSE<0.01 Failures Best RMSE RMSE<0.01 Failures Best RMSE RMSE<0.01 Failures

S2E 9.4% 3.2% 0.4% 6.2% 26.5% 0% 19.8% 99.2% 0%
DVE 9.8% 2.7% 3.5% 7.0% 26.5% 1% 7.6% 99.2% 0%
ED 100% 26.1% 0% 100% 84.2% 0% 100% 99.3% 0%

to the other two counterparts. Please also observe that when TSLLS1 parameters are used as seeds, none of the
methods fails, and this is also almost the case with NMO parameters since the produced I –V curves happen to be
sufficiently close to the samples that feature limited only noise. In Table 4, we have added as extra information the
percentage of times that the RMSE is smaller than a small quantity (for example 0.01) when the three methods
to compute the Euclidean distance are used in the ODR. At all noise levels, the best method to obtain an RMSE
smaller than 0.01 is the ED algorithm, being almost the same when the initial seeds are close to the final solution,
which again indicates the benefit of ED over the other methods for any seed selection.

6. Conclusion

In this paper we provide a new parametrization of the single-diode model I –V curve. This parametrization allows
reducing the calculus of the Euclidean distance from a point to an I –V curve to solve a single variable equation.
A deep analytical study of the function involved in this equation provides a complete casuistry of all possible
solutions, performed for the first time. A geometrical study based on the curvature of the I –V curve as well as the
Maximum Curvature Point has allowed to design an optimized algorithm (Algorithm 1) which computes with high
speed and accuracy the Euclidean distance from a point to an I –V curve without failures. The proposed method

as been compared with a couple of methods available in literature (S2E and DVE) for solving this problem in
pecial conditions which ensure their convergence. The consistency and reliability of the proposed method ED has
een proved and its performance is the best between the methods compared. As a main conclusion, the proposed
ethod is found as the only reliable method with the best performance for calculating the Euclidean distance from
point to the I –V curve of the SDM model and allows the possibility of performing a robust orthogonal distance

egression without failures.
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ppendix A. ED algorithm pseudocode
See Algorithm 1.

18



F.J. Toledo, V. Galiano, J.M. Blanes et al. Mathematics and Computers in Simulation xxx (xxxx) xxx
Algorithm 1: Pseudocode of the Euclidean distance method
Input: SDM parameters A, B, C, D, E and a point (V0, I0)
Output: Euclidean distance, D0, from the point (V0, I0) to the I -V curve I = A + B − EV − BCV D I , and the (Vmin, Imin) where

the distance is attained
Notation : N R( f ; xs ) means Newton–Raphson method to compute the root of f starting from the seed xs RF( f p; 0+, x+)

means Regula-Falsi type method to compute the root of f p in the interval ]0+, x+]
1 Define f (x); f ′(x); f p(x); d(x); V (x); I (x); x+; Rmax; α; β; γ ; δ; η; ρ; u = min{1, x+};

2 if f (x+) ≥ 0 then

3 xs = min{1, exp(−
γ u2

+ max{0, η}u + ρ

α
)};

4 else

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Initialización
Phase

5 xs = max{1,
−η +

√
max{0, η2 − 4γρ}

2γ
}; // seed for xaux

6 xaux = N R( f ; xs );
7 if d(xaux ) ≤ Rmax or I (xaux ) ≤ I0 or f ′(x+) ≥ 0 then
8 x0 = xaux ;

}
1 root of f

9 else

10 xs = max{1,
−(β + η) +

√
max{0, (β + η)2 − 8γα}

4γ
} // seed for x2

11 x2 = N R( f p; xs ); // computation of x2
12 if f (x2) ≥ 0 then // f (x2) ≥ 0 implies f (x+) ≥ 0
13 x0 = xaux ;

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
1 or 2 roots of f

14 else
15 x1 = RF( f p; 0+, x+); // computation of x1
16 if f (x1) ≤ 0 then // f (x1) ≤ 0 implies f (x+) ≤ 0
17 x0 = xaux ;

18 else
19 if f (x+) ≥ 0 then
20 x01 = xaux ;

21 xs = max{1,
−η +

√
max{0, η2 − 4γρ}

2γ
}; // seed for x03

22 x03 = N R( f ; xs ); // computation of x03

23 else
24 x03 = xaux ;

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

3 roots of f

25 xs = min{1, exp(−
γ u2

+ max{0, η}u + ρ

α
)}; // seed for x01

26 x01 = N R( f ; xs ); // computation of x01

27 if d(x01) ≤ d(x03) then
28 x0 = x01;// in the case d(x01) = d(x03) choose x01
29 else
30 x0 = x03;

31 (Vmin, Imin) = (V (x0), I (x0)) ;
32 D0 =

√
d(x0);

Appendix B. Roots computation

B.1. Seeds to initialize the Newton–Raphson method to find the roots of f in the ED algorithm.

Recall that

f (x) = (α + βx) ln x + γ x2
+ ηx + ρ, with α, β, γ > 0.

Let us distinguish the following two cases:
(a) f (x+) ≥ 0
To find the largest root in the subcase f ′(x+) < 0 with f (x1) > 0 and f (x2) < 0, we will use the same procedure

explained later in the case f (x ) < 0. Now we look for the smallest root x of f .
+ min
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Fig. B.16. Possible graphs of f in the case f (x+) ≥ 0..

Fig. B.17. Possible graphs of f in the case f (x+) < 0..

The Newton–Raphson method initialized from a seed xs in the interval ]0, xmin] will converge to xmin. To obtain
xs , we want to find a continuous function above f in the interval ]0, xmin], as close as possible to f , and with a
oot easy to compute. This root will be the seed xs (see Fig. B.16). The idea is that f is close to α ln x + c for
mall positive values of x , where c is a constant only depending on the parameters and (V0, I0).

• If x+ ≤ 1, for 0 < x ≤ x+, one has ln x ≤ 0 and

f (x) < α ln x + γ x2
+

+ max{0, η}x+ + ρ

= α ln x + γ (

u  
min{1, x+})2

+ max{0, η}

u  
min{1, x+} + ρ  

g(x)

Since 0 < xmin ≤ x+, the unique root of g given by

exp(−
γ u2

+ max{0, η}u + ρ

α
)

belongs to ]0, xmin[.
• If x+ > 1, we distinguish the following cases:

– If f (1) ≤ 0, then 1 ∈]0, xmin].
– If f (1) > 0, then xmin < 1 and ln x < 0 for 0 < x ≤ xmin, which implies for these values of x that

f (x) < g(x)

and, the unique root of g belongs to ]0, xmin[.

Therefore, the following seed guarantees that the Newton–Raphson method applied to f converges to xmin

xs = min{1, exp(−
γ u2

+ max{0, η}u + ρ

α
)} ∈]0, xmin]

b) f (x+) < 0
To find the smallest root in the subcase f ′(x+) < 0 with f (x1) > 0 and f (x2) < 0, we will use the same

rocedure explained before in the case f (x ) ≥ 0. Now we look for the largest root x of f .
+ max
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Fig. B.18. Graphs of f ′ and f p.

The Newton–Raphson method initialized from a seed xs in the interval [xmax, +∞[ will converge to xmax. To
btain xs , we want to find a continuous function below f in the interval [xmax, +∞[, as close as possible to f ,
nd with a root easy to compute. This root will be the seed xs (see Fig. B.17). The idea is that f is close to the
arabola γ x2

+ ηx + ρ (recall γ > 0) for large values of x .

• If x+ ≥ 1, for x ≥ x+ one has ln x ≥ 0 and

γ x2
+ ηx + ρ < (α + βx) ln x + γ x2

+ ηx + ρ  
f (x)

Since xmax ≥ x+, the maximum root of γ x2
+ ηx + ρ given by

−η +
√

η2 − 4γρ

2γ

belongs to [xmax, +∞[.
• If x+ < 1, we distinguish the following cases:

– If f (1) ≥ 0, then 1 ∈ [xmax, +∞[.
– If f (1) < 0, then xmax > 1. Since ln x > 0 for x > 1, one has

γ x2
+ ηx + ρ ≤ f (x) for x > 1

and, as before,

−η +
√

η2 − 4γρ

2γ
∈ [xmax, +∞[

Therefore, the seed xs given by

xs = max{1,
−η +

√
max{0, η2 − 4γρ}

2γ
} ∈ [xmax, +∞[

guarantees that the Newton–Raphson method applied to f converges to xmax.
Note: The use of 1

2γ
(−η +

√
max{0, η2 − 4γρ}) instead of 1

2γ
(−η +

√
η2 − 4γρ) avoid complex numbers when

x2
+ ηx + ρ has no real roots in the case f (1) ≥ 0.

.2. Finding the roots of f p in the ED algorithm.

Now we want to obtain the roots x1 and x2 of f ′(x) =
1
x f p(x) in the case f ′(x+) < 0 with f (x1) > 0 and

f (x2) < 0, which is the same to find the roots of f p where

f p(x) = βx ln x + 2γ x2
+ (β + η)x + α

(see Fig. B.18).

• Since f p(0+) = limxarrow0+ f p(x) = α > 0 and f p(x+) < 0, to compute the root x1 of f p it is used
a Regula-Falsi type method defined by the following iterative scheme zk+1 =

αzk with z0 = x+.

α − f p(zk)
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Another possibility is to use the N-R method with a seed obtained with the following strategy: Start with a
small positive xs < x+ (for example xs =

x+

10 ) and compute f p(xs). If f p(xs) = 0 then x1 = xs . If f p(xs) > 0
apply Newton–Raphson method to compute the root of f p. If f p(xs) < 0, do xs =

xs
10 (10 can be changed

for any number greater than 1) and start again. This last strategy can be used indeed to obtain all the seeds
in the ED algorithm.

• To obtain the root x2, we proceed similarly to the largest root of f . Now, we want to apply the Newton–
Raphson method to f p with a seed xs in the interval [x2, +∞[ that ensures convergence to x2. To obtain xs ,
we want to find a continuous function below f p in the interval [x2, +∞[, as close as possible to f p, and
with a root easy to compute. The idea followed now is that f p is close to the parabola 2γ x2

+ (β + η)x + α

(recall γ > 0) for large values of x . The seed xs obtained with the procedure previously discussed (even with
the same casuistry but applied to f p) is

xs = max{1,
−(β + η) +

√
max{0, (β + η)2 − 8γα}

4γ
}

which guarantees that the Newton–Raphson method applied to f p converges to x2.

ppendix C. Some calculus developments

.1.

Let us see that

d ′(x) =
2

δ2 x
((α + βx) ln x + γ x2

+ ηx + ρ  
f (x)

)

here

α = 1 + E2

β = ln D + E ln C

γ = (ln C)2
+ (ln D)2

δ = ln C − E ln D

η = β(1 − ln B) − γ (A + B) + δ(I0 ln C − V0 ln D)

ρ = −(α ln B + β(A + B) + δ(V0 − E I0))

Recalling that

d(x) = (V(x) − V0)2
+ (I(x) − I0)2

ith {
V(x) =

1
δ
(ln x − (A + B − x) ln D − ln B)

I(x) = A + B − EV(x) − x

one has that

d ′(x) = 2(V(x) − V0)V ′(x) + 2(I(x) − I0)I ′(x) =

= 2(
1
δ

(ln x − (A + B − x) ln D − ln B)  
V(x)

− V0)
1
δ

(
1
x

+ ln D)  
V ′(x)

+ 2(A + B − E

V(x)  
1
δ

(ln x − (A + B − x) ln D − ln B) − x   − I0)(−E

V ′(x)  
1
δ

(
1
x

+ ln D) − 1  )
I(x) I′(x)
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a

=
2
δ2 ((ln x − (A + B − x) ln D − ln B − δV0)(

1
x

+ ln D)

+ (δ(A + B) − E(ln x − (A + B − x) ln D − ln B) − δx − δ I0)(−E(
1
x

+ ln D) − δ))

=
2

δ2x
((ln x − (A + B − x) ln D − ln B − δV0)(1 + x ln D)

+ (δ(A + B) − E(ln x − (A + B − x) ln D − ln B) − δx − δ I0)(−E(1 + x ln D) − δx))

=
2

δ2x
((1 + x ln D − E(−E − x(E ln D + δ  

ln C

))) ln x

+ ((ln D)2
+ (E ln D + δ  

ln C

)2)x2

+ (ln D − ((A + B) ln D + ln B + δV0) ln D + (E ln D + δ  
ln C

)E

+ ((A + B)(E ln D + δ  
ln C

) + E ln B − δ I0)(−E ln D − δ  
− ln C

))x

+ (−(A + B) ln D − ln B − δV0 + (δ(A + B) + E(A + B) ln D + E ln B − δ I0)(−E)))

=
2

δ2x
((1 + E2  

α

+ (ln D + E ln C  
β

)x) ln x

+ ((ln D)2
+ (ln C)2  
γ

)x2

+ ((ln D + E ln C  
β

)(1 − ln B) − (A + B)((ln D)2
+ (ln C)2  
γ

) + δ(I0 ln C − V0 ln D))x

− δ(V0 − I0 E) − (A + B)(ln D + E(

ln C  
δ + E ln D)  
β

) − ln B(1 + E2  
α

))

=
2

δ2x
((α + βx) ln x + γ x2

+ ηx + ρ) =
2

δ2x
f (x)

C.2.

Let us see that

k(x) =
δ2x

(γ x2 + 2βx + α)3/2

Recall that the curvature of the function I is given by the formula

k =
|I ′′

|

(1 + (I ′)2)3/2 =
−I ′′

(1 + (I ′)2)3/2 (C.1)

nd also recall the relations

I ′′
=

(ln C + I ′ ln D)2

ln C − E ln D
(I ′

+ E) and I ′
= −

E + x ln C
1 + x ln D

Then

k(x) =
−I ′′

(1 + (I ′)2)3/2 = −

(ln C+I ′ ln D)2

ln C−E ln D (I ′
+ E)

(1 + (I ′)2)3/2 = −
(ln C + I ′ ln D)2(I ′

+ E)
(ln C − E ln D)(1 + (I ′)2)3/2

= −
(ln C −

E+x ln C
1+x ln D

′
ln D)2(− E+x ln C

1+x ln D + E)
E+x ln C 2 3/2
(ln C − E ln D)(1 + (− 1+x ln D ) )
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C

R

= −

1
(1+x ln D)3 ((1 + x ln D) ln C − (E + x ln C) ln D)2(−(E + x ln C) + E(1 + x ln D))

1
(1+x ln D)3 (ln C − E ln D)((1 + x ln D)2 + (E + x ln C)2)3/2

= −
(ln C + x ln D ln C − E ln D − x ln C ln D)2(−E − x ln C + E + x E ln D)

(ln C − E ln D)((1 + x ln D)2 + (E + x ln C)2)3/2

= −
(ln C − E ln D)2(−x(ln C − E ln D))

(ln C − E ln D)((1 + x ln D)2 + (E + x ln C)2)3/2

=
(ln C − E ln D)2x

((1 + x ln D)2 + (E + x ln C)2)3/2 =
δ2x

((1 + x ln D)2 + (E + x ln C)2)3/2

=
δ2x

(1 + x2 ln2 D + 2x ln D + E2 + x2 ln2 C + 2x E ln C)3/2

=
δ2x

(γ x2 + 2βx + α)3/2

.3.

Let us see that the critical points of k (those where k ′
= 0) are exactly the same points where f ′′

= 0.

k ′(x) =
δ2(α + 2βx + γ x2)3/2

− δ2x 3
2 (α + 2βx + γ x2)1/2(2β + 2γ x)

(α + 2βx + γ x2)3

=
(α + 2βx + γ x2)1/2(δ2(α + 2βx + γ x2) − 3δ2x(β + γ x))

(α + 2βx + γ x2)3

=
δ2(α + 2βx + γ x2)1/2(α + 2βx + γ x2

− 3xβ − 3γ x2)
(α + 2βx + γ x2)3

=
−δ2(2γ x2

+ βx − α)
(α + 2βx + γ x2)5/2

Then

k ′(x) = 0 ↔ 2γ x2
+ βx − α = 0 ↔ f ′′(x) = 0
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